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Abstract—Wind and solar power are playing an increasing role 
in the electrical grid, but their inherent power variability can 
augment uncertainties in the operation of power systems. One 
solution to help mitigate the impacts and provide more flexibility 
is enhanced wind and solar power forecasting; however, its 
relative utility is also uncertain. Within the variability of solar 
and wind power, repercussions from large ramping events are of 
primary concern. At the same time, there is no clear definition of 
what constitutes a ramping event, with various criteria used in 
different operational areas. Here, the swinging door algorithm, 
originally used for data compression in trend logging, is applied 
to identify variable generation ramping events from historic 
operational data. The identification of ramps in a simple and 
automated fashion is a critical task that feeds into a larger work 
of 1) defining novel metrics for wind and solar power forecasting 
that attempt to capture the true impact of forecast errors on 
system operations and economics, and 2) informing various 
power system models in a data-driven manner for superior 
exploratory simulation research. Both allow inference on 
sensitivities and meaningful correlations, as well as quantify the 
value of probabilistic approaches for future use in practice. 

Index Terms—wind energy, solar energy, forecasting, time 
series analysis 

I. INTRODUCTION 
The increasing amounts of wind and solar power capacity 

being installed in the electrical system are causing more 
concern from system operators about the variable and uncertain 
nature of these generators. To an extent, power system 
operations are already able to handle variability and 
uncertainty, e.g., power demand. Existing techniques include 
regulation reserves, load-following reserves, and sub-hourly 
economic dispatch. However, in simplistic terms, the 
uncertainty in load, now coupled with increasing levels of 
uncertainty in generation, can lead to wider distributions of 
uncertainty for all variables and parameters of interest; 
responding to variability under increased uncertainty is all the 
more difficult. Enhanced wind and solar power forecasting can 
help address some of these concerns through the reduction of 
uncertainty faced by the system of interest. Because there are 
mechanisms in place to handle small amounts of uncertainty 
and variability, power system operators place primary 
emphasis on better understanding the impact of extreme events 
(e.g., large ramps), which can have significant influence on 
system economics and reliability. Secondary concern is for 
uniform power forecasting improvements for enhanced 
planning applications. 

Wind and solar ramps can occur at different timescales, 
geographic scales, and in both the positive and negative 
directions. Variable generation forecasting can help remove 
some of the uncertainty involved with the power supply, but 
may have trouble forecasting large ramping events. The 
numerical weather prediction models often used for forecasting 
are generally good at predicting roughly when a ramping event 
may occur; however, there are two main ways in which 
inaccurate forecasting of ramp events can lead to large errors: 
ramp magnitude and timing errors. In ramp magnitude errors, a 
ramp is forecast, but the actual value changes significantly 
more/less than was forecast. In ramp timing errors, the actual 
ramp in power significantly leads/lags the forecast time. Of 
course, both errors can occur simultaneously, which indicates a 
poor forecast. It is the hope that offline ramp analyses, coupled 
with extensive unit commitment and dispatch simulation 
studies, will allow the synthesis of knowledge for enhanced 
dispatch in cases of large variable generation power ramps. 

The automated identification of ramping events must be 
computationally inexpensive to justify online applications, but 
can also help facilitate the improvement of forecasting 
algorithms by providing metrics on how well ramping events 
are captured. Kamath analyzed wind ramping events in the 
Bonneville Power Administration area using two definitions of 
ramping [1]. The first definition was simply the slope of 
change between two points; the second considered the 
minimum and maximum values of generation between two 
points. Zheng and Kusiak [2] focused on forecasting wind 
power ramping events. They employed the rate of change of 
wind plant power over a 10-minute interval to define ramps. 
Hodge et al. [3] used similar fixed-point definitions to identify 
and characterize the number of ramping events that occurred 
for solar power at different timescales. Hansen et al. [4] used 
the swinging door algorithm to characterize irradiance time 
series data in the Southwest United States. Because of the 
flexibility and simplicity of the algorithm, both wind and solar 
power ramps over varying time frames can be identified. 

II. SWINGING DOOR ALGORITHM 
In this work, we propose the application of an algorithm 

from the area of data compression, known as the swinging door 
algorithm [5], to identify wind and solar power ramping events. 
Its computational and structural simplicity, requiring only one 
parameter in its definition, are favorable attributes considering 
its robustness in the face of noisy data. 
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Ramps are typically extracted through a linear piecewise 
approximation to the original time series of data. If extracting 
ramps from measured data, the approximation can be thought 
of as a disregard for the noise inherent to the measurement 
process and/or insignificant changes. If extracting ramps from 
simulated data, the approximation can be thought of solely as 
disregard for the insignificant changes. In either case, the focus 
of ramp extraction is placed on the significant linear ramps (in 
terms of magnitude and duration) present in the dataset. 

Mathematically speaking, a ramp is quantified by its 
instantaneous rate of change, its derivative, 𝑑𝐺

𝑑𝑡
, and is 

approximated initially by a local ratio of differences: 𝑑𝐺
𝑑𝑡

=
𝐺(𝑘)−𝐺(𝑘−1)
𝑘−(𝑘−1)

. The discrete-time nature of either the measured or 
simulated data easily allows such a calculation. However, the 
point of ramp extraction is to determine a trend in a sequence 
of local derivatives and the magnitude and duration of such a 
trend. For example, when considering a time series of power, 
the local derivative (ramp) from the first two points may be 
3.0
2−1

= 3 MW and from the second and third points 3.2
3−2

=
3.2 MW. The trend is apparent and the average ramp is 3.1 MW 
over the three discrete-time samples. The question of interest is 
when a particular ramp has started and/or when the local 
derivative has changed to the point it can no longer be 
considered part of a particular ramp. 

Figure 1 illustrates a simplified example of a signal and the 
ramps that may be extracted. Of course, a realistic time series 
of wind or solar power is much more complicated, but the same 
strategies and goals for the extraction of ramps apply as 
described here. The measurement points are discrete-time 
samples, and the spline fit is included in the figure to show 
what the continuous process may resemble. The identified 
ramps are nearly of equal magnitude, but in general this will 
not be the case. It is somewhat easy to visually discern the 
ramps (trends) even though it is apparent the sign of the slope 
can change within a particular ramp. Although noise is inherent 
to any real measured data, here there are no assumptions about 
the probability density of a realization and the piecewise linear 
approximation to the time series is anchored to dominant 
points. Considering a threshold for the ramp trend and 
anchoring the piecewise linear approximation to measurement 
points allows for reduced sensitivity to inflection points and 
other insignificant fluctuations. 

The swinging door algorithm allows the extraction of ramps 
in a signal, in a piecewise linear fashion, while allowing for 
consideration of a threshold parameter influencing its 
sensitivity to ramp variations. The only tunable parameter is ε, 
the width of one “door” in the algorithm (as shown in Figure 2) 
that directly allows the (threshold) sensitivity to noise and/or 
insignificant fluctuations to be specified. If the tolerance is very 
low (a small ε value), the ramp extraction algorithm will 
identify many small ramps as it basically traces the original 
signal, violates the threshold, and starts over. If the tolerance is 
very high (a large ε value), the algorithm will identify a few 
large ramps as it is under constrained and a large fluctuation is 
required for the threshold to be violated. In the figure, it should 

be noted the scale is arbitrary for the purposes of explanation, 
and in general the signal magnitude is much larger than the 
scale of the threshold bounds. 

From Figure 2, the swinging door algorithm is briefly 
described: 1) the initial (dominant) point, or new (ramp 
segment) iteration of the algorithm, is on the y-axis and 
threshold doors of width ε are placed above and below it; 2) a 
new point A is acquired and the doors “swing open,” as 
indicated, to include the point – i.e., lines are drawn from the 
doors’ hinges to the point; 3) a new point B is acquired and 
lines are again drawn (updated) to intersect at B; 4) a new point 
C is acquired, but there has been an inflection in the signal, and 
the swinging doors open only to accommodate new points in a 
ramp segment iteration, so the top door (extended line) remains 
in its angle position above C and the lower door line is drawn 
to point C – further extension of the lines would result in an 
intersection at some point in the future; 5) a new point D is 
acquired; again the top door (line) angle position is not 
updated, and the lower door line is drawn to point D. The lines 

Figure 1. Example of the piecewise linear approximation 
to a time series for ramp extraction and analysis; the 
scale is arbitrary for explanation purposes. 

Figure 2. The swinging door algorithm for the extraction 
of ramps in power from the time series; the scale is 
arbitrary for explanation purposes. 
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are now parallel (or do not intersect in the future), which starts 
a new iteration of the algorithm – i.e. the threshold has been 
exceeded when the line angle from the hinges to their most 
open position is greater than or equal to parallel. The threshold 
could be violated somewhere between C and D, but because of 
the discrete-time nature of the approximation, a new iteration 
would still start at D. The piecewise linear approximation (the 
ramp, shown in red) starts at the end of the previous iteration 
(dominant point) and ends when the threshold is exceeded 
(next dominant point). 

Ramp sign changes are an indicator of fluctuation, but it is 
not obvious what an insignificant fluctuation is when 
considering noisy measured data and/or actual (but slight) 
power variations. There are two applications that are noted for 
defining the threshold and thus what is considered an 
insignificant fluctuation: 1) according to the accuracy of the 
measurement device as defined by its distribution of 
measurement uncertainty, or 2) according to the utility of the 
measure as defined by power system economics and its relative 
importance in driving operations. In this work, neither 
application is explicitly employed, but the ε value varied to 
explore the sensitivity of ramp events extracted according to its 
value. Specifically, the ε value is set to a percentage of the 
maximum capacity observed in the time frame of interest. 

Figure 3 shows a typical example in the extraction of ramps 
from a large wind farm over a two-day period. The power 
profile, composed of hourly data, is variable but somewhat 
smooth because of the diversity in power from individual 
turbines aggregating to cancel high-frequency variability, 
combined with time-averaged power output over the hour. 
Therefore, a rather high tolerance, ε value of 10% of maximum 
capacity, was used and provided an accurate piecewise linear 
approximation to the wind power profile. 

Figures 4 and 5 show typical examples in the extraction of 
ramps from a solar plant over a two-day period, both using data 
sampled on a one-minute basis; first, the clear day of Figure 4, 
followed by the somewhat cloudy day of Figure 5. The power 

profile is smooth in Figure 4 and shows high-frequency 
variability in Figure 5. A rather low tolerance, ε value of 1% of 
maximum capacity, was used and provided an accurate 
piecewise linear approximation to the solar power profile. 
However, it is apparent the ε choice introduces tradeoffs 
between the count of ramps and their approximation accuracy. 
That is, a clear day may be adequately described by fewer 
piecewise segments, whereas a cloudy day may require more 
for an adequate description. Economics of the system under 
consideration will likely determine the choice of ε. 

III. WIND AND SOLAR DATA 
To showcase the use of the swinging door algorithm for 

wind and solar power ramp detection, it was applied to various 
datasets. Wind data came from a wind plant in the Xcel 
Colorado territory with an approximate capacity of 300 MW; 
the discrete-time sample was 1 minute. The solar data came 
from Oahu and Maui, Hawaii, in association with the Hawaiian 
Solar Integration Study; the discrete-time sample was 1-second. 

Figure 3. Typical example of ramp extraction from two 
days of power at a large wind farm, showing up and 
down ramps of large, medium, and insignificant nature. 

Figure 4. Typical example of ramp extraction from the 
first of two days of power at a PV solar plant, showing a 
clear day leading to a smooth profile. 

Figure 5. Typical example of ramp extraction from the 
second of two days of power at a PV solar plant, 
showing up and down ramps because of clouds. 
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Figure 6. Bivariate distribution of wind power, ramp rise 
versus run, as a function of the ε value; top subplot is ε = 
1% maximum capacity in December, followed by ε = 2, 
3, and 5%, respectively. 

 

Figure 7. Bivariate distribution of solar power, ramp rise 
versus run, as a function of the ε value; top subplot is ε = 
1% maximum capacity in December, followed by ε = 2, 
3, and 5%, respectively. 
 

IV. RESULTS 
The resolution of the extracted ramp events is a function of 

ε, which is informed by application specifics. The utility of a 
given magnitude of ramp event (as part of power system 
economics) was not considered here, but it is the subject of 
ongoing research toward understanding the probabilistic 
relationships of various systems. Typical wind and solar power 
examples were provided in this section, but the time resolution, 
geographic diversity, and extent of smoothing from plant 
aggregation were limited to the data available.  

Ramp extractions were visualized by rise-run distributions. 
Figures 6 and 7 give the bivariate distributions of wind and 
solar power, respectively, as a function of various ε values; in 
both figures, the ε value was, from top-to-bottom subplots, 

equal to 1, 2, 3, and 5% of the maximum capacity observed in 
the month of December. 

From the wind power ramp extraction of Figure 6 (i.e., rise 
[MW] versus run [min]), it is noted that with lower tolerance, 
more ramps of longer duration were extracted. This would be 
expected, but it is also interesting to note how the distribution 
spreads within the more immediate (quick) ramp region. In the 
solar power ramp extraction of Figure 7 (rise [kW] versus run 
[s]), the same trends as the wind example were noted; however, 
there appeared to be a correlated “what goes up, must come 
down” pattern to the ramps because of the diurnal nature of 
solar irradiance. That is, there was an approximate balance of 
up and down ramps of similar magnitude and duration. 
Furthermore, the dispersion of ramps was driven by the plant 
(area) size and the December cloud cover. 
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Figure 8. Bivariate distribution of wind power, ramp rise 
versus run, as a function of the aggregation level of wind 
turbines; top subplot is ε = 25% total wind farm, followed 
by ε = 50, 75, and 100%, respectively. An ε = 3% of the 
maximum capacity was used for the month of December. 

 

Figure 9. Bivariate distribution of solar power, ramp rise 
versus run, as a function of the aggregation level of PV 
modules; top subplot is ε = 25% total plant, followed by  
ε = 50, 75, and 100%, respectively. An ε = 3% of the 
maximum capacity was used for the month of December. 

As might be expected, smoothing from aggregation was 
observed in both power datasets and varied according to the 
size (area) of the total plant. In wind power, the downstream 
turbines generally experienced slower and more turbulent 
wind, and spatial correlations in power variability diminished 
with distance. In solar power, cloud cover seemed to have only 
influenced a portion of the array, and spatial correlations in 
power variability diminished with distance. In either case, and 
as is frequently observed, variability was smoothed with 
increasing plant (area) size. 

It was of interest to determine the extent of smoothing 
observed in the extracted ramp events. Figures 8 and 9 give the 
bivariate distributions of wind and solar power, respectively, as 

a function of levels of aggregation in either percentage of wind 
turbines or PV modules; in both figures, the percentage was, 
from top-to-bottom subplots, equal to 25, 50, 75, and 100% of 
the total fleet in the month of December. As shown by the wind 
power ramp extraction of Figure 8 (i.e. rise [MW] versus run 
[min]), there was a slight reduction in the dispersion of ramps 
as the aggregation level increased. In the solar power ramp 
extraction of Figure 9 (rise [kW] versus run [s]), the same 
trends as the wind example were noted; however, the correlated 
nature caused by diurnal behavior became more pronounced 
with increasing levels of aggregation. In addition, the 
frequency of more immediate (quick) ramps seemed to level 
off around one-half the total capacity of the PV solar plant. 
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V. CONCLUSIONS 
The forecasting of solar and wind power ramps is a major 

area of concern in the field of variable generation forecasting. 
In this work, the application of a data compression technique to 
the identification of solar and wind power ramps was shown. 
Because these ramping events are one of the most pressing 
concerns of system operators in balancing areas with large 
penetrations of variable generation, this automated 
identification process is helpful toward creating algorithms and 
assessment metrics that can better forecast variable generation 
ramps and their economic impact. 

One of the critical issues in wind and solar power 
forecasting is that the metrics used to assess forecasting 
techniques are simple statistical measures that do not take into 
account the factors that are most critical for power system 
operations. For example, because power systems have means 
by which they can compensate for small forecast errors, and 
large forecasting errors are both expensive and can present 
reliability concerns, it would be better to improve the 
forecasting for these extreme events, even at the cost of slightly 
decreased performance during the rest of the times. This is 
something that is very difficult to capture with the currently 
used statistical techniques in which the impact of a large 
number of small error events can overwhelm the impact of a 
small number of large error events. 

Because ramping events comprise a large percentage of 
these large error events, their automated identification is an 
important step toward developing metrics that can be used to 
tune forecasting algorithms to consider their importance. In 
addition, similar identification techniques could be used 
actively in system operations. One possible example of how 
this could be used to improve operations would be an increase 
in reserves being triggered by the signal when a down ramp in 
power output had begun. The automated identification would 
also be useful in assessing probabilistic forecasts. Some system 
operators currently request that downward ramps in wind 

power are forecast in a probabilistic manner, in a separate 
forecast product from the normal forecasts. These forecasts 
indicate degree-of-belief, giving the likelihood of a down ramp 
occurring in the specified time frame, and the automated 
identification techniques advocated here could lead to 
improvements in assessing system performance. 
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