

LCA of Parabolic Trough CSP: Materials Inventory and Embodied GHG Emissions from Two-Tank Indirect and Thermocline Thermal Storage

ASME ES2009 San Francisco, CA

Garvin Heath John Burkhardt Craig Turchi Terese Decker Chuck Kutscher

July 20, 2009

NREL/PR-6A2-46875

NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC.

Issue

- Significant env. impacts from energy systems
- Renewable energy systems shown to be much better than conventional (fossil), but requires different approach to estimate
 - Vast majority of env emissions from conventional systems in operation (fuel combustion)
 - Majority of env emissions from RE in component manufacture
- Requires accounting for all life cycle stages to evenly compare
- CSP touted as an important RE technology
 - Especially for ease of integration of energy storage to smooth solar resource fluctuations and extend into evening peak hours or longer
- Very few LCAs of CSP, especially of modern design and on US-based systems

Goal: determine the life cycle environmental impacts (e.g., GHG emissions) and net energy balance of modern parabolic trough CSP in US

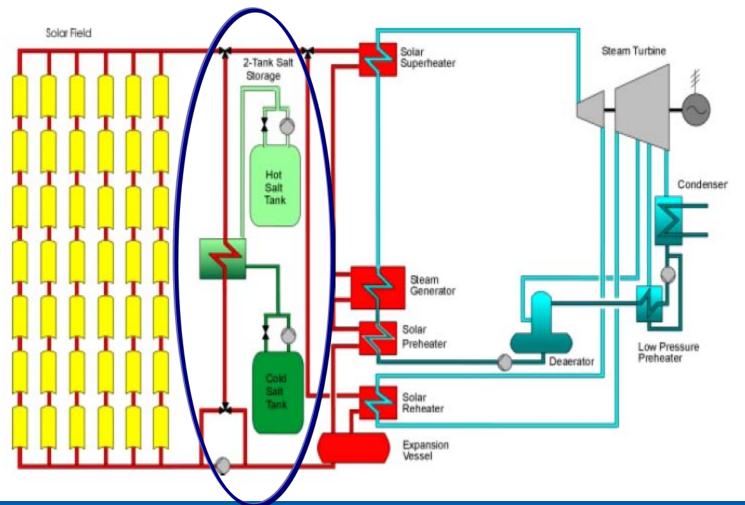
Today: comparison of materials inventory and embodied GHG emissions from two-tank and thermocline thermal energy storage sub-systems

> - TES ~40% of CSP system embodied GHG emissions (Lechon et al., 2006)

Approach

- Life cycle assessment
 - Inventory level
 - Conforms with ISO standards
- Significant industry input
- Focus on impacts embodied in component manufacture
 - Construction, operation and decommissioning impacts generally found to be small for RE technologies, including CSP (Veibahn et al., 2008)

Data Sources



Two-tank

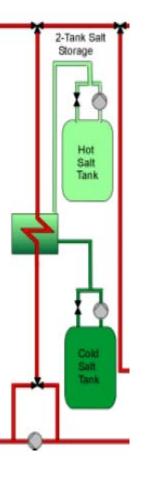
- Supporting spreadsheets to Kelly, 2006, Nexant Parabolic Trough Solar Power Plant Systems Analysis, Preferred Plant Size (NREL/SR-550-40162)
- Extensive conversations with Kelly
- Thermocline
 - Uses two-tank as base, from which subtractions and substitutions were made based on expert judgment
- Materials life cycle GHG emissions
 - Ecolnvent v2 LCI database (1st choice)
 - Mass-based
 - <u>www.ecoinvent.ch</u>
 - US Economic Input Output (EIO-LCA)
 - Cost-based
 - CMU: <u>www.eiolca.net</u>
- Global warming potentials
 - 2007 IPCC

System Definition and Boundary

- 50 MWe parabolic trough plant
- 6 hours thermal storage

Systems – Indirect two-tank

Storage tanks


- Hot and cold tanks (2)
- Immersion heaters
- Insulation
- Nitrate salt and therminol pipes, heat tracing pipes and insulation
- Thermal mass molten salt
 - 60% Potassium nitrate;
 - 40% Sodium nitrate

Tank foundations

- Concrete and rebar
- Insulation
- Steel plate
- Thermal slab and rebar

•Oil-to-salt heat exchangers

- Tubes, shells, covers
- Insulation
- Heat tracing pipes



•Pumps

- Nitrate salt pumps for each tank
- Oil-to-salt HX
- •Elevated platform
 - Structural steel
 - Structural concrete
 - Rebar
- •Nitrogen ullage system
 - Nitrogen
 - Tank
 - Compressor
 - Pipes
 - Insulation
 - Heat tracing
 - N2-to-air heat exchanger

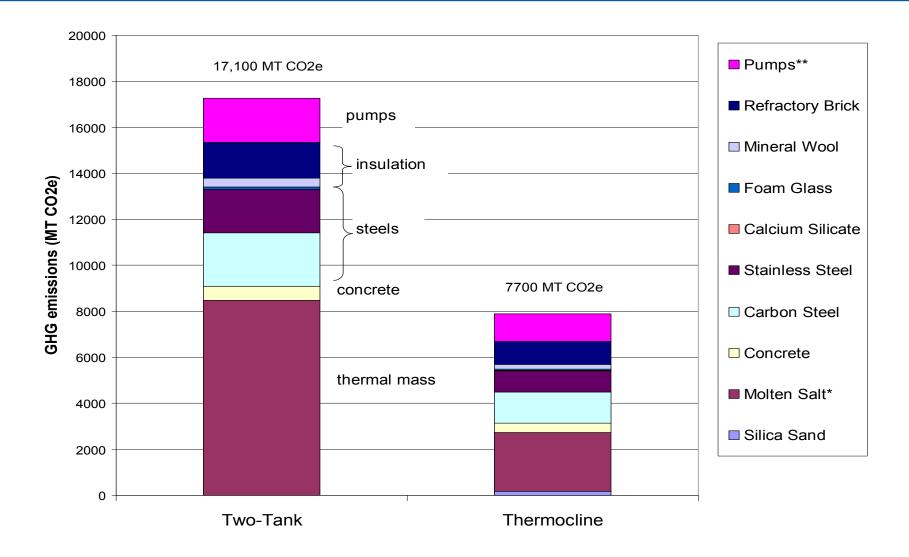
Systems – Thermocline

- Single tank
 - Model as hot tank (slightly larger)
- Replace 70% of salt with silica sand
- Half of most materials
 - Some retained in full (N2 system)

Source: Sandia National Laboratories test

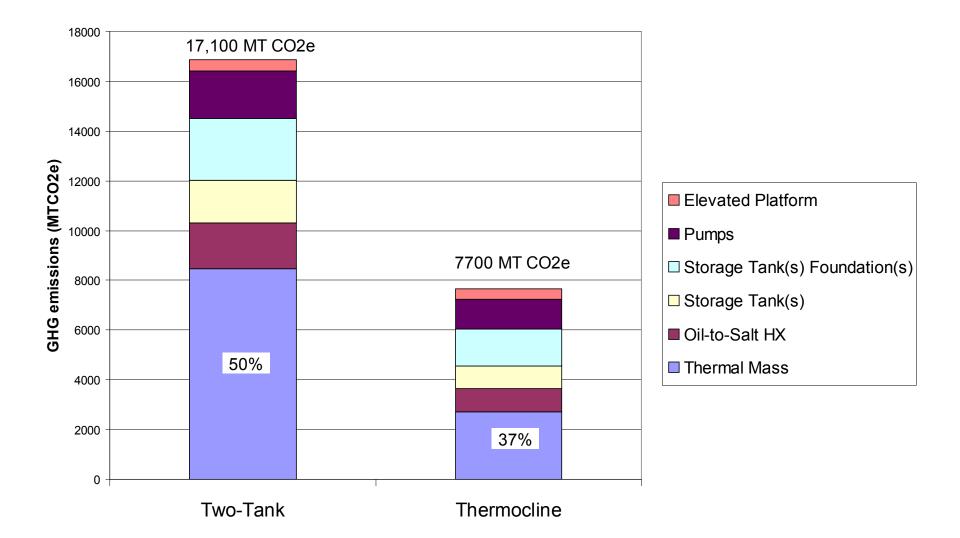
Materials and Proxies

- Nitrate salts (40% Potassium Nitrate, 60% Sodium Nitrate)
 - Neither in LC databases
 - Decided that both could be approximated by same material
 - Most nitrate salt used in CSP application is mined
 - Surrogate = KCI, a known mined product
- Steels
 - Carbon steel (tanks, pipes, rebar)
 - Stainless steel (oil-to-salt HX and piping, immersion heaters)
- Concrete
- Insulations
 - Calcium Silicate
 - Also not in LC databases
 - Closest analogue = sand-lime brick
 - Closest based on peak process temperature and process steps
 - Refractory bricks
 - Mineral wool
 - Foam glass
- Pumps
 - Because highly manufactured, used economic value with EIO


Results: Materials Inventory

	MATERIAL MASS [KG] TWO-TANK THERMOCLINE		Thermocline Reduction (%)
Silica Sand	_	8,950	
Molten Salt*	25,600	7,680	70%
Concrete	5,140	3,360	35%
Carbon Steel	1,615	936	42%
Stainless Steel	417	182	56%
Calcium Silicate	134	67	50%
Foam Glass	91	44	52%
Mineral Wool	283	158	44%
Refractory Brick	667	432	35%
Pumps**	-	-	38%

* Molten salt = 40% Potasium Nitrate 60% Sodium Nitrate


** Based on reduction of GHG emissions associated with pumps, estimated from EIO-LCA.

Results: GHG Emissions by Material

% reduction in GHG emissions per material = % mass reduction

Results: GHG Emissions by Component

Results: Sensitivity Analyses

- Nitrate salts
 - Nitrate salts for thermal storage could also come from synthetic pathway
 - Haber process uses considerable natural gas and releases N2O
 - Synthetic nitrate salt proxy = KNO3 (fertlizer)
 - Per unit mass, synthetic salt > 8x GWP vs. mined
 - Impact on GHG emissions from TES:
 - 2-tank = increase total emissions nearly 5x
 - Thermocline = increase total emissions over 3x
- Calcium silicate
 - So small a contribution that using different (higher GWP) proxy not matter

Conclusions

- Thermocline system demonstrates greatly reduced
 - Materials inventory
 - GHG emissions (-55%)
 - Cost
- Relative results expected to be robust to
 - Inclusion of construction, operation and decommissioning-related impacts
 - Selection of material proxy for nitrate salts (though difference is enhanced)
- Further research needed
 - Life cycle inventory of thermal storage nitrate salts (underway by manufacturer)
 - Completion of LCA for full plant
 - Comparison to previous work and other power systems

Questions?

Andosol