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ABSTRACT 

A new data mining algorithm was developed to identify the strongest correlations between capacitance data (measured 
between -1.5 V and +0.49 V) and first- and second-level performance metrics (efficiency [η%], open-circuit voltage 
[VOC], short-circuit current density [JSC], and fill-factor [FF]) during the stress testing of voltage-stabilized CdS/CdTe 
devices.  When considering only correlations between first- and second-level metrics, 96.5% of the observed variation in 
η% was attributed to FF.  The overall decrease in VOC after 1,000 hours of open-circuit, light-soak stress at 60 ºC was 
about -1.5%.  The most consistent correlation identified by the algorithm in this particular experiment between FF and 
third-level metric capacitance data during stress testing was between FF and hysteresis in the apparent CdTe acceptor 
density (Na) between reverse and forward voltages scans, as determined in forward voltage bias.  Since the contribution 
of back-contact capacitance to total capacitance increases with increasing positive voltage, this result suggests that 
degradation in FF was associated with decreases in Na hysteresis near the CdTe/back contact interface. 

Keywords: chemometrics, CdTe solar cell, durability, reliability, efficiency, capacitance-voltage measurement, data 
mining, algorithm 

1. INTRODUCTION 

Understanding solar cell efficiency and reliability is crucial for advancing the field of photovoltaic research.  Changes in 
efficiency can be investigated as a function of processing, measurement, and stress conditions.  As efficiency changes 
during accelerated lifetime testing (ALT), various measurement techniques can be used to observe which other 
performance characteristics also change as a function of a particular stress condition.  With the increasing scope of 
measurement capability and information storage, it is increasingly important to be able to quickly analyze large amounts 
of data and determine the significance of and interconnectedness between different types of measurements.  The ultimate 
goal is to accurately associate changes in efficiency with the degradation mechanisms responsible for those changes. 

The “bottom line” for the photovoltaic industry is to increase module power output (efficiency) and to limit power loss 
(improved reliability) at a competitive price.  A previous investigation [1] used first- and second-level correlations 
between changes in η% and changes in VOC, JSC, and FF in order to ascertain the durability of a set of high-efficiency 
cells over a range of stress temperatures from 60-120 °C.  Since solar cell η% is determined by 

 η% = 
inc

SCOC FFJV
φ

 (1) 

(where φinc, the incident power density, is typically normalized to a solar value of 100 mW/cm2), a comparison of the 
linear correlation coefficients (R2) of Δη% versus ΔVOC, ΔJSC, and ΔFF during stress testing was performed as a function 
of stress temperature.  This analysis is shown in Figure 1.  As a reference, a linear fit of a perfectly correlated set of y 
and x has R2 = 1, and a linear fit of a completely non-correlated set of y and x has R2 = 0.  The moderate correlation of 
∆η% with ∆JSC, seen at lower stress temperatures, was associated with reduced optical attenuation due to S out-diffusion 
from the CdS.  The most important variable affecting ∆η% over the entire temperature range, approaching perfect 
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correlation at 120 °C, was ∆FF.  This figure clearly shows that understanding the loss in FF would be helpful in 
understanding the loss in η%. 
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Figure 1. Linear correlation coefficient (R2) of Δη% versus ΔVOC, ΔJSC, and ΔFF, as a function of stress 
temperature (ref. [1]). 

Arrhenius plots of overall efficiency change as a function of inverse temperature identified two dominant temperature-
dependent degradation mechanisms.  An activation energy for S diffusion into CdTe of 2.94 eV was determined for low 
stress temperatures (60-80 ºC).  At higher temperatures (100-120 ºC), an activation energy for Cu diffusion into CdTe of 
0.63 eV was determined to be responsible for the decreases in VOC and FF observed at these temperatures. 

The data mining technique described in this paper was developed to facilitate rapid identification of correlations between 
third-level metrics obtained with capacitance-voltage (C-V) measurements and first- (η%) and second- (VOC, JSC, FF, 
light series resistance [RS], and light and dark shunt resistance [RSH,L and RSH,D]) level performance metrics.  The 
technique is not limited to only C-V data and can be applied to other measurement techniques (e.g., photoluminescence, 
x-ray diffraction, deep-level transient spectroscopy, secondary ion mass spectrometry, etc.).  This technique is optimally 
used for determining degradation mechanisms in a specific set of devices, preferably a set fabricated and stressed 
identically. 

2. THE ALGORITHM 

Chemometrics is a formal methodology applied to optimizing complex systems where many input variables contribute to 
one or more output parameters.  The case for solar cells is obvious.  Optimizing the performance, reliability, and cost of 
solar cells involves investigating many different materials (types of semiconductors, transparent conductors, metallic 
conductors, encapsulants, etc.), processes (evaporation, sputtering, close-spaced sublimation, etc.), and conditions of 
processing (temperatures, times, film thicknesses, deposition rates, etc.).  The “design of experiment” approach using 
multivariate analysis is one chemometric approach for doing this efficiently.  The latter was demonstrated, for example, 
in the fabrication of CdS/CdTe devices [2], where efficiency was optimized within the scope of input parameter 
variations associated with film thickness, CdCl2 treatments, and back contact preparation.  An important result of that 
study was that optimal performance did not result in optimal durability, the latter determined by stressing cells under 
one-sun illumination, open-circuit bias, and elevated temperature. 
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In the same way that correlations between first- and second-level metrics during stress testing are useful for broadly 
determining why cells degrade, similar correlations between second- and third-level metrics should be useful for more 
specifically identifying degradation mechanisms.  C-V measurements have recently been used in cell stress studies [3-6] 
to qualitatively determine electronic changes in the device while performance changes with stress.  To date, these studies 
have focused mostly on changes in the depletion width (W) and the apparent net acceptor density (Na) as a function of 
stress.  Advanced C-V analysis can also yield more intricate details associated with band offsets and interface states [7] 
as well as deconvolution of junction capacitance and back contact capacitance from total device capacitance [8]. 

Three important aspects we advocate when incorporating C-V measurements into stress studies include measuring 
capacitance as a function of voltage-sweep direction (reverse-to-positive bias [forward] versus positive-to-negative bias 
[reverse]), not exposing the cell to conditions too far removed from those the cell might encounter in actual module use 
(i.e., limit voltage), and the ability to collect data quickly in order to handle large sample sets for statistical purposes.  
The hysteretic behavior of C-V data (see for example [3]) is commonplace in CdTe (and in CuInGaSe2 films, for that 
matter), can result in a bimodal distribution of C-V-derived parameters like W and Na (something that device models 
should consider), and directly contributes to transient behavior in modules [9].  It is for this reason that our approach 
incorporates both forward- and reverse-direction voltage scans. 

There are three levels of analysis in the data mining technique presented in this paper.  These levels will be demonstrated 
within the context of a stress study, where measurements are made as a function of time during ongoing stress testing.   
In this example, the first- and second-level metrics and C-V are measured at several times during the stressing of a set of 
solar cell devices.  The first level of analysis, shown in Figure 2(a), is to correlate η% with VOC, JSC, and FF, as a 
function of stress time.  If η% is highly correlated with FF, as in this example, then looking for causes of FF degradation 
will illuminate possible causes of η% degradation and will suggest a road map for improved cell durability.  The second 
level of analysis, shown in Figure 2(b), is to correlate FF with measurements of third-level metrics, such as capacitance, 
conductance (G), net acceptor density, and depletion width.  Those C-V-derived data can be determined for each value of 
voltage in each voltage scan direction.  This is performed for several identically processed devices, such that values of R2 
between that data and FF can be determined.  In doing so, the voltage at which the highest correlation occurs (V1) will 
be identified.  The third level of this analysis technique, shown in Figure 2(c), is to choose the measurement condition of 
highest correlation and to look at the raw data, for example, FF versus W at V = V1 as measured during the forward scan 
from negative to positive voltage bias. 

 

Figure 2. Outline of the (a) first, (b) second, and (c) third levels of the data mining technique presented in this 
paper.  In order to understand power loss, this technique quickly reveals correlations between changes in the 
metrics that contribute to degradation of the output power. 
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The overall algorithm for this data mining technique is shown in Figure 3.  For each device, light and dark current-
voltage (J-V) scans yield values of η%, VOC, JSC, FF, RS, RSH,L, and RSH,D.  This data is stored in a database.  The data 
mining code, currently written in but not limited to LabVIEW, then computes a y-versus-x linear fit at every fixed 
measurement condition, where y = η%, VOC, JSC, FF, RS, RSH,L, and RSH,D, and x = the specified measurement at the fixed 
condition (e.g., x = W at a specific voltage and in a specific direction of scanned voltage).  Every linear fit produces a 
slope, intercept, and value of R2. 

 

Figure 3. The data mining algorithm.  The third-level metrics include any measurement data beyond the usual J-V 
measurement, with C-V-derived data shown as an example. 

The linear fit, as opposed to any other type of fit, was chosen purely due to its predictive capabilities, i.e., we do not 
presume that a linear relationship exists.  If two parameters are highly correlated, then it is possible to use the 
information from one of those parameters to predict the other parameter, without requiring both measurements.  This 
correlation is especially valuable in stress studies, where it is useful to predict at what time a parameter will degrade 
beyond some specified value, which could indicate the predicted lifetime of the device. 

3. RESULTS AND DISCUSSION 

3.1 Algorithm Validation 

This data mining approach will be demonstrated for a group of laboratory cells that show improved VOC durability 
compared to what we have reported in the past.  Figure 4 shows the variation in VOC, measured as a function of stress 
time during elevated temperature, one-sun, open-circuit bias ALT for four representative groups.  Cells in group A were 
stressed at 100 °C and are standard devices where the CdTe layer is relatively thick (9 to 10 μm).  These devices show 
an overall decrease in VOC of about 1.5% after 2,000 hours.  Cells in group B were also stressed at 100 °C and were 
made by the same processing conditions, except that the CdTe thickness was considerably reduced (2 to 3.5 μm).  With 
only nominal changes in cell fabrication procedure, the degradation of the thinner cells is significantly greater (>10% 
VOC degradation after 270 hours of stress).  The conclusion from Figure 4(a) is that thinner CdTe devices are clearly less 
stable than thicker devices.  Figure 4(b) again compares thicker (9 to 10 μm) CdTe cells in group C with thinner 
(approximately 4 μm) cells in group D, where both groups were stressed at 60-65 °C.  In this case, the thinner cells of 
group D do not show the typically large decrease in VOC during ALT.  VOC degradation after 1,000 hours for groups C 
and D is similar, with a decrease of around 1.2 to 1.3%.  Obtaining stable CdTe devices while reducing film thickness is 
important because the latter is a major driver for reducing CdTe module cost [10].  Further discussions in this paper will 
concentrate primarily on devices from group D. 
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Figure 4. Degradation of VOC for different processing variations during ALT at (a) 100 °C and (b) 60-65 °C. 

A set of five CdS/CdTe devices in group D were stressed with 1,000 hours of ALT at 65 °C.  In order to track 
performance changes during stress, these cells were characterized using J-V measurements at ALT times of 
0 (unstressed), 60, 120, 300, 450, 675, and 1,000 hours.  The J-V-derived parameters are shown as a function of stress 
age in Figure 5.  RS in Figure 5(e) was calculated from the inverse-slope of J-V at J = 0 mA/cm2 under one-sun 
illumination.  RSH,L, and RSH,D in Figures 5(f) and 5(g) were calculated from the inverse-slope of J-V at V = 0 V with and 
without one-sun illumination, respectively.  C-V measurements (at 100 kHz, with AC amplitude of 50 mV) were also 
performed in parallel with J-V measurements in order to validate the data mining algorithm. 

 

Figure 5. Graphs of (a) η%, (b) VOC, (c) JSC, (d) FF, (e) RS, (f) RSH,L, and (g) RSH,D versus age.  Lines connect data 
collected from each of the five devices. 

The first-level metric was plotted as a function of the second-level metrics, as shown in Figure 6.  In Figure 6(c), η% has 
a 96.5% correlation with FF over the entire range of stress times, which indicates that 96.5% of the variation in η% can 
be explained by variations in FF.  Furthermore, this means that if FF can be measured, then η% can be predicted with 
96.5% accuracy.  The relative stability of VOC suggests that recombination is not a strong contributor to FF loss, thus FF 
loss was believed to be due primarily to degradation in either RS or RSH. 
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Figure 6. Graphs of η% versus (a) VOC, (b) JSC, (c) FF, (d) RS, (e) RSH,L, and (f) RSH,D for the aggregate of all five 
devices at all seven stress ages, shown with linear fits and corresponding values of R2. 

The power of the data mining algorithm will now be demonstrated as applied to C-V measurements.  As mentioned 
previously, the algorithm determines all possible correlations between performance metrics (η%, VOC, JSC, FF, RS, RSH,L, 
and RSH,D) and a family of C-V-derived dependent variables for each set of different stress times, each voltage scan 
direction, and each incremental change of voltage.  For illustration, Figure 7 shows a small subset of these correlations 
before stress (t = 0), between FF and C, G, W, and Na, over the entire voltage range of the measurement, in both forward 
and reverse voltage scans.  Also shown is the difference in C, G, W, and Na determined between the two voltage scan 
directions (hysteresis, defined as the value measured in the forward scan minus the value measured in the reverse scan). 

 
Figure 7. Correlation graphs showing R2 at every voltage step for FF versus (columns, from left to right) C, G, W, 
and Na as calculated from the (first row) reverse voltage scan, (second row) forward voltage scan, and (last row) 
difference between the measurements during the two scan directions, all for unstressed devices (t = 0). 
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Correlation graphs for y = η%, VOC, JSC, RS, RSH,L, and RSH,D  are not shown.  In Figure 7, it is easy to see that the correlation 
between first- and second-level metrics and third-level C-V metrics varies considerably with voltage but, in general, 
changes continuously.  The data shown in Figure 7 is only for the set of C-V and performance data at t = 0, i.e., 
unstressed.  The algorithm performs similar calculations at all stress times and, using a set of selection criteria and error 
checking routines to account for non-continuous behavior (like those shown for reverse bias in the FF versus Na column 
in Figure 7), is able to identify the most consistent correlation during ALT studies useful for identifying degradation 
mechanisms. 

Out of a possible set of 588 correlations, the algorithm identified two correlations as being the most consistent for this 
particular set of devices.  These involved FF = f(Na hysteresis) (shown for three arbitrary stress times in Figure 8) and 
η% = f(Na hysteresis), where Na hysteresis was determined between the forward and reverse voltage sweeps at a voltage 
of +0.49 V.  This result is in complete agreement with the first- and second-level correlation analysis shown in Figure 6.  
Since η% is so strongly correlated with FF, it is not surprising that the result of the algorithm included both FF and η%.  
The correlation with Na hysteresis, however, is not a possible conclusion after only considering correlations between 
first- and second-level metrics. 

 

Figure 8. Graphs of FF versus Na hysteresis at 0.49 V, as calculated between the forward and reverse voltage 
scans, after stress times of (a) 60 hours, (b) 120 hours, and (c) 675 hours. 

The correlation between FF and Na (in the forward and reverse scan directions and in the hysteresis between the two) at 
0.49 V observed for all stress times is shown in Table 1.  Since the correlation of FF = f(Na hysteresis) shown in Figure 7 
appears likely to increase with voltages higher than 0.49 V, we plan to use higher positive voltages in the future.  The 
use of higher voltages during ALT, however, will require careful consideration of how higher forward currents during 
these measurements might compromise degradation.  A likely explanation for why higher voltages yield better 
correlations in this particular experiment may be found in the literature.  As shown in Figure 3 of the paper by 
Burgelman, et al. [8], in increasing the voltage beyond 0.49 V, the total cell capacitance is no longer determined by Na 
hysteresis near the junction, but also by Na hysteresis near the back contact.  Based on this result, our data mining 
algorithm not only corroborates the information extracted from considering only first- and second-level metrics alone, 
but goes further in suggesting that cell degradation in this experiment is due to a decrease in Na hysteresis near the 
interface between the CdTe and the back contact. 

Stress Age R2 (FF vs. Na, forward scan) R2 (FF vs. Na, reverse scan) R2 (FF vs. Na, hysteresis) 
0 0.686 0.568 0.733 
60 0.810 0.513 0.845 

120 0.600 0.125 0.884 
300 0.678 0.254 0.862 
450 0.690 0.124 0.528 
675 0.861 0.474 0.750 

1000 0.408 0.001 0.698 

Table 1. R2 values for linear fits of FF versus Na at 0.49 V, as calculated during the forward voltage scan, at each 
stress time.  
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4. CONCLUSIONS 

A data mining approach was developed to efficiently analyze large amounts of data and to quickly identify correlations 
between first- and second-level performance metrics with third-level characterization data.  It was applied specifically to 
C-V data collected during stress testing of laboratory cells, but should be applicable with other characterization 
techniques. 

From a simple consideration of the correlation between cell efficiency and second-level metrics (VOC, JSC, FF), we 
determined that 96.5% of the variation in efficiency during stress for this set of devices could be explained by variations 
in FF.  The data mining approach corroborated this result.  With the algorithm, a large amount of data was reduced to 
only two correlations, both involving hysteresis in the apparent net acceptor density (Na) measured at the maximum 
voltage used in our data collection (0.49 V) calculated from the difference in Na between the forward and reverse voltage 
scans.  With forward voltage bias, the measured capacitance sees contributions due to the reverse-biased back contact 
capacitance in addition to the forward-biased junction capacitance.  The latter is also affected by injected charge 
(electrons) under forward bias, which is not considered in this paper.  With this additional caveat, our results to date 
suggest that degradation in these cells is related to a decrease in Na hysteresis at the CdTe/back contact interface. 
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