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Abstract 
 

NASA’s Exploration Technology Development Program funded the Energy Storage Project 
to develop battery and fuel cell technology to meet the expected energy storage needs of the 
Constellation Program for human exploration. Technology needs were determined by 
architecture studies and risk assessments conducted by the Constellation Program, focused on 
a mission for a long-duration lunar outpost. Critical energy storage needs were identified as 
batteries for EVA suits, surface mobility systems, and a lander ascent stage; fuel cells for the 
lander and mobility systems; and a regenerative fuel cell for surface power. To address these 
needs, the Energy Storage Project developed advanced lithium-ion battery technology, targeting 
cell-level safety and very high specific energy and energy density. Key accomplishments include 
the development of silicon composite anodes, lithiated-mixed-metal-oxide cathodes, low-
flammability electrolytes, and cell-incorporated safety devices that promise to substantially 
improve battery performance while providing a high level of safety. The project also developed 
“non-flow-through” proton-exchange-membrane fuel cell stacks. The primary advantage of this 
technology set is the reduction of ancillary parts in the balance-of-plant – fewer pumps, 
separators and related components should result in fewer failure modes and hence a higher 
probability of achieving very reliable operation, and reduced parasitic power losses enable 
smaller reactant tanks and therefore systems with lower mass and volume. Key 
accomplishments include the fabrication and testing of several robust, small-scale non-flow-
through fuel cell stacks that have demonstrated proof-of-concept. This report summarizes the 
project’s goals, objectives, technical accomplishments, and risk assessments. A bibliography 
spanning the life of the project is also included.  
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Overview

• Project Goals and Objectives

• Summary of Accomplishments
• Fuel Cells• Fuel Cells

• Prior work in flow-through technology
• Current work in non-flow-through 

technology
• Predicted System Performance

• Batteries
• Components
• Cells
• Predicted System Performance

• Summary
• Bibliography

Energy Storage Technologies for 
Altair, EVA, and Lunar Surface Systems
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Energy Storage Project 
Objective and Overall Approach

The Energy Storage Project’s objective is to reduce risks associated with the use of Lithium chemistry 
batteries, fuel cells, and regenerative fuel cells for Altair, Lunar Surface Systems, and EVA. 

Our deliverables are:
– Primary fuel cell for Altair Descent Stage (TRL 6 by PDR)

R ti f l ll f LSS (TRL 6 ft CDR)– Regenerative fuel cell for LSS (TRL 6 after CDR)

– Rechargeable battery cells for Altair Ascent Stage, EVA Suit 2, and LSS 
EVA and Altair: TRL 6 cells by PDR; LSS: TRL 6 cells by PDR; 
All: cells early enough for batteries by CDR

We are addressing the top technology development needs for advanced energy storage:
– Human-rating and increased reliability
– Mass/volume reductions
– High performance components and systems

And we are performing systems analyses to ensure the right approaches are being pursued:And we are performing systems analyses to ensure the right approaches are being pursued:
– Cost/benefit analyses based on Constellation mission architectures.

Mechanisms to determine Constellation Requirements:
• Cx Technology Prioritization Process
• Risk Identification Workshop (Aug 2007 and Aug 2008)
• Lunar Architecture Team reports
• Exploration Architecture Requirements Document
• Points-of-contact on Lander, Surface Systems, EVA, and Ares I/V projects

Energy Storage Project
Documented Constellation Priorities

Documentation Project Criticality Technology Need

LAT-2 #MOB-5 Mobility Enabling

High Specific-Energy-Density Power Systems – Need lightweight, long-life 
rechargeable batteries and need reliable micro-fuel cells to reduce mass of the 
power system by 30% - 50% to extend life of the power system components, 
and to reduce cost and frequency of maintenance.

LAT 2 #POW 1 Surface Systems Enabling

High Specific-Energy-Density PEM Fuel Cell Systems – Need light weight, long-
life (10,000 hr) regenerative fuel cells, 2000 psi electrolyzer, and water 
separators designed for 1/6 g environment to improve life/reliability  to LAT-2 #POW-1 Surface Systems Enabling separators designed for 1/6 g environment to improve life/reliability, to 
increase mass to the lunar surface, and to reduce cost.

LAT-2 #EVA-3 EVA Enabling
High Specific-Energy-Density EVA Suit PLSS Power – Need lightweight, high 

energy density rechargeable batteries and micro-fuel cells to increase useable 
mass to lunar surface, to increase EVA range and mission flexibility. 

LSS TPP – Draft
IRMA ID 2380 Surface Systems

Critical

Regenerative fuel cells - Meet energy storage requirements for up to 15 days
(360 hours) or more (e.g., for a 20 kWe night time power requirement, this 
means an energy storage requirement of 7,200 kW-hrs of storage capacity
(2 orders of magnitude greater than ISS)) Also highly desirable to have 5 year 
lifetime.

IRMA Risk ID 2527 EVA 5x5 Required specific energy not achievable with current batteries

Cx TPP 606
Surface Systems, 

Orion and ILSM SiG
Critical
LS #2 Regenerative fuel cell for Lunar Surface SystemsCx TPP 606 Orion and ILSM SiG LS #2 Regenerative fuel cell for Lunar Surface Systems

Cx TPP 466 Lander
Critical
LT #28 Low mass, highly reliable fuel cell for Lunar Lander power generation.

Cx TPP 465 
IRMA Risk ID 4796 Lander

Critical
LT #27

Low mass rechargeable battery to power the Lunar Lander ascent module during 
ascent from the lunar surface. 

Cx TPP 544 EVA
Critical
LT #12 EVA Suit power

Cx TPP 661 Surface Systems

Highly 
Desirable
LS #11 High specific energy power for Lunar Rovers

Ares V Risk #2366
Cx TPP 525 Ares I/V

5x5
Critical LT #16

Solid Rocket Booster Thrust Vector Control Power Source require high power, 
primary batteries

Updated 4/21/08
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Energy Storage Technology Development 
Mission Requirements Assessment

Lunar Architecture Studies identified regenerative fuel cells and rechargeable batteries as enabling 
technology, where enabling technologies are defined as having:

“overwhelming agreement that the program cannot proceed without them.” 

Surface Systems 
Surface Power: Maintenance-free operation of regenerative fuel cells for >10,000 hr using

~2000 psi electrolyzers Power level TBD (2 kW modules for current architecture)~2000 psi electrolyzers. Power level TBD (2 kW modules for current architecture)
Reliable, long-duration maintenance-free operation; human-safe operation; 
architecture compatibility; high specific-energy, high system efficiency.

Mobility Systems: Reliable, safe, secondary batteries and regenerative fuel cells in small mass/volume.  
200 W-hr/kg desired; 150 W-hr/kg may be sufficient.
Human-safe operation; reliable, maintenance-free operation; architecture 
compatibility; high specific-energy. 

EVA 
Portable Life Support System (PLSS); and Power, Communications, Avionics, and 
Informatics (PCAI) Subsystem: 
Human-safe operation; 8-hr duration; high specific energy; high energy-
density.

Lander
Ascent Stage: Rechargeable battery capability for ascent operations and to support emergency 

lander/surface operations. Nominally 14 kWhr in 67 kg, 45 liter package.
Human-safe, reliable operation; high energy-density.

Descent Stage: Functional primary fuel cell with 5.5 kW peak power.
Human-safe reliable operation; high energy-density; architecture compatibility 
(operate on residual propellants).

Fuel Cell Systems

• Goals

• Approach

• Technology Development

• Predicted System Level Performance

NASA/TM—2011-216963 4



Key Performance Parameters for Fuel Cell Technology Development
Customer Need Performance Parameter SOA

(alkaline)

Current

Value*
(NFT PEM)

Threshold

Value**

(@ 3 kW)

Goal**

(@ 3 kW)

Altair:

3 kW for 220 hr 
continuous, 5.5 kW peak.

System power density 

Fuel Cell

RFC (without tanks)

49 W/kg

n/a

44 W/kg

n/a

88 W/kg

25 W/kg

136 W/kg

36 W/kg

Fuel Cell Stack power density n/a 51 W/kg 107 W/kg 231 W/kg

Fuel Cell Balance-of-plant mass n/a 2 kg 21 kg 9 kg

*Based on non-flow-through test 
hardware with 4-cells and heavy 
end plates, scaled to 3 kW

**Threshold and Goal values based 
on full-scale (3 kW, 300 cm2) fuel 
cell and RFC technolog

Lunar Surface Systems: 

TBD kW for 15 days 
continuous operation

Rover: TBD

MEA efficiency @ 200 mA/cm2

For Fuel Cell

Individual cell voltage

For Electrolysis

Individual cell voltage

For RFC (Round Trip)

73%

0.90 V

n/a

n/a

n/a

72%

0.89 V

83%

1.48

60%

73%

0.90 V

84%

1.46

62%

75%

0.92 V

85%

1.44

64%

System efficiency @ 200 mA/cm2

Fuel Cell 71% 64% 71% 74%

4/5/10

cell and RFC technology.

***Includes high pressure penalty 
on electrolysis efficiency 2000 psi

Parasitic penalty

Regenerative Fuel Cell***

Parasitic penalty

High Pressure penalty

2%

n/a

n/a

n/a

8%

n/a

n/a

n/a

2%

43%

10%

20%

1%

54%

5%

10%

Maintenance-free lifetime

Altair: 220 hr (primary)

Surface: 10,000 hr (RFC)

Maintenance-free operating life

Fuel Cell MEA

Electrolysis MEA

Fuel Cell System (for Altair) 

Regenerative Fuel Cell System

2500 hr 

n/a

2500 hr

n/a

13,500 hr

n/a

n/a

n/a

5,000 hr

5,000 hr

220 hr

5,000 hr

10,000 hr

10,000 hr

220 hr

10,000 hr

Summary of Fuel Cell and Regenerative Fuel Cell Technology Development since 2006

Flow-Through Fuel Cell Stack Development  (Work stopped)
13,500 hr of  MEA testing complete, passing 10,000 hr life goal through use of Pt-black catalysts
System characterized, strengths and weaknesses documented

Component Development
Passive components for Flow-Through Balance-of-Plant (Work stopped)

Water/gas separators, injectors/ejectors, regulators
Devices characterized, strengths and weaknesses documented

Passive thermal management (Work stopped)
Pyrolitic graphite cooling plates and flat plate heat pipesPyrolitic graphite cooling plates and flat plate heat pipes

Tested in Flow-Through and Non-Flow-Through fuel cell stacks, respectively
Temperature distribution across any single plate and from plate-to-plate stays within 2-3 C
Devices characterized, strengths and weaknesses documented

MEAs for fuel cells (Work continues)
JPL MEAs supplied to Teledyne, Infinity, and Proton
0.89 V at 200 mA/cm2 exceeds the performance of vendor cells substantially
Work continues

MEAs for high pressure electrolyzers (Work continues)
JPL MEAs supplied to Hamilton Sundstrand
Work continues

High Pressure Electrolysis (Work continues only under SBIR)
Hamilton-Sundstrand system modified for high pressure operation; tested at JPL

Liquid feed system draws significant parasitic power for pumps and water/gas separators
Novel concepts under study via SBIR (vapor feed, passive liquid feed)

Non-Flow-Through Fuel Cell Stack Development (Work continues)
Water removal mechanism and advanced manufacturing process brought to TRL 4
Electrochemical hydrogen pump implemented to provide low-power purge and inert concentration

Unitized Regenerative Fuel Cell System (Work stopped)
System characterized, strengths and weaknesses documented

NASA/TM—2011-216963 5



3.2.1  Flow-Through Primary PEMFC Development

Key Key Accomplishment:Accomplishment:
• Initiated testing of Teledyne multi-kW flow-through 

PEMFC breadboard system
• Achieved several hundred hours of testing through 

multiple simulated Shuttle load profiles

Significance:Significance:
• Passive reactant recirculation and water separator 

components replace active components; reduced 
mass and volume, lower parasitic power, increased 
reliability, longer life

• Initial performance testing has identified 
limitations and control issues with reactant 
recirculation system using ejectors and solenoid 
valves

• Initial testing has shown performance of 
membrane water separators to be comparable

NASA MEA Life Testing - September 2004 to July 2006
Cell Voltage and Current Density vs. Time

NASA MEA 4-Cell Test Stack

Performance Over Time

1.0

1.1

700

800
Cell#1 Cell Voltage
Cell#2 Cell Voltage
Cell#3 Cell Voltage
Cell#4 Cell Voltage

Teledyne multi-kW flow-through PEMFC Breadboard

membrane water separators to be comparable 
to active water separators

• Successfully passed 10,000 hr life goal through use 
of Pt-black catalysts on MEA (13,500 hr)

• Establishes the basis for all future MEA 
advancements
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Water/Gas Separators

12

14
Flow Resistance Design Target :
13.8 inches of water at 20 slpm

Active
5.67 kg each

100 W parasitic loss each
================

11 kg
200 W

Passive
0.45 kg each

0 W parasitic loss each
==============

1 kg
0 W

Passive Water/Gas Separators: no 
performance degradation

FC Recent Accomplishments: GRC Passive Water/Gas Separators 
Reduce Mass and Parasitic Power Without Compromising Performance
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Flow Resistance Performance :
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Air Mass Flow, slpmH2 / H2O

O2 / H2O          H2/H2O

Additional “cells” to 
fuel cell stack

Active Separators

O2 or H2
Wicking 
Material

Separator 
Housing

Gas Flow Channel

Passive Separators
Side view (above), top view (right)
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Flow-Through Primary PEMFC Development
Key Accomplishment/Deliverable/Milestone:Key Accomplishment/Deliverable/Milestone:
• Completed testing of GRC membrane water separator
• Accepted delivery of Lockheed meniscus water separator
Significance:Significance:
• Passive water separators replace active mechanical water separators; reduced mass and 

volume, lower parasitic power, increased reliability, longer life
• Testing has shown performance of GRC membrane water separator to be comparable g p p p

to active water separators
• Initial assessment of Lockheed meniscus water separator is not promising because of 

gravity dependency
• Initial assessment of Texas A&M gas-driven vortex water separator is not promising 

because of insufficient momentum for consistent operation

deflection 
plate

Integrated Ejector/Regulator and 
Integrated Ejector/Regulator/Two-

Stage Water Separator System 

Lockheed Meniscus Water Separator
Top Level Assembly

vane device

liquid level sensor TAMU Gas-driven water 
separator demonstration 

Flow-Through Primary PEMFC Development
Key Accomplishment/Deliverable/Milestone:Key Accomplishment/Deliverable/Milestone:
• Completed initial assessment of combined reactant recirculation and water separator 

concepts at NASA JSC/Texas A&M
Significance:Significance:
• Passive reactant recirculation and water separator components replace active components; 

reduced mass and volume, lower parasitic power, increased reliability, longer life
• Initial testing has shown performance of Tescom integrated ejector/ pressure regulatorInitial testing has shown performance of Tescom integrated ejector/ pressure regulator 

to be comparable to active pumps
• Initial testing has shown performance of two-stage membrane contactor and de-bubbler 

(both tubular) to be comparable to active water separators
• Initial testing has shown gas-driven vortex separator to lack sufficient momentum for 

consistent operation
• Initial testing has shown liquid-driven vortex separator connected to pumped coolant 

loop to be comparable to active water separators 

RV-8501

PT-8501
1000 psig

H-8601

0.0

PT-8503
100 psigA

Suction

ER-8402

Flexible 
Tubing

Flexible 
Tubing MOV-8501

M

FH-8401

Fle
Tu

10-32 female threaded O-ring port for Beswick 
fittings, Dome Pressure Set Point -- 0 to 100 psig

This must be fluid tight such as might be

Phase 4, Integrated Ejector, Regulator, and 
Two-Stage Water Separator System 

3/8

3/8

Set 50 psig

GN2 to Sys. 8F028, TK-8401
Phase 1. Ref 356-8F028-M1

50psig

0.0

0.0 DP-8502
10 psidPT-8502

100 psig

H2O from Sys. 8F028,
WFC-8401, Phase 1. 

Ref 356-8F028-M1, 50psig

TK-8601

Flexible 
Tubing

Fl
T

Flexible 
Tubing

GFM-8501
300 SLPM

P-8602 0-30 mLPM 

Suction

M

MOV-8502

P-8601 0-30 mLPM 

DR-8601

0.0

H

H 8601

0.0

Motive gas

PT-8601
100 psig

BPR-8601

0.0

PT-8602
100 psig

GN2 from Sys. 8F028, ER-8401
Phase 1. Ref 356-8F028-M1

100psig

To Open Tank, 
Drain

De-bubbler 
Assm

Phase 2 Integrated Ejector and Regulator Package

Variable Internal Flow Area Inserts
positioned here -- 0 to 100 psig

10-32 female threaded O-ring port for
Beswick precision orifice fitting, Ejector Jet

0 to 1000 psig

10-32 female threaded O-ring port for 
Beswick fitting, Ejector Supply Pressure --  
0 to 1000 psig

10-32 female threaded O-ring port for 
Beswick fitting, Supply Pressure --  supply 
pressures from 0 to 1000 psig , this is an 
instrumentation fitting, it is not absolutely necessary

1/4” male A/N fitting (37degree flared), Supply Inlet Port, 
supply pressures from 0 to 1000 psig  

TBD” female port,
Total Flow Outlet Port

0 to 100 psig

10-32 female threaded O-ring port for 
Beswick fitting, System Pressure --  0 to 100 psig

Suggested port routing for 10-32 
instrumentation ports and internal 
loading passages. 

TBD” female port,
Suction Flow Inlet Port

TBD” female port,
Suction Flow Inlet Port

This must be fluid-tight, such as might be
provided by an O-ring sliding seal.    
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Pumped Loop 

Thermal 
Management

Bypass 
Valve

Recent Accomplishments: Fuel Cells

Significance: Passive cooling 
plates replace active pumped-
liquid cooling loop; reduced 
mass and volume, lower 
parasitic power, increased 

Key accomplishment: Completed fab of passive cooling 
plates for Teledyne and Infinity short stacks

Heater

Fuel Cell

Fuel 
Cell 

Stack

Thermostat Valve
Fuel Cell with 

Passive 
Thermal 

Management

Accumulator

Pump Fuel Cell 
System Hx

Management

Th l t

p p ,
reliability, longer life

Testing has shown pyrolytic 
graphite cooling plates to 
have 4x the conductivity of 
copper

Testing has shown flat-plate 
heat pipes to have 30-40x 
the conductivity of copper

Fuel Cell 
System Hx

Flat-Plate Heat Pipes for 
4-Cell TRL-4 Non-Flow-Through Stack

Thermal management 
vacuum test rig

Temperature Distribution Across Pyrolytic 
Graphite Cooling Plates In 6-Cell Sub-kW 

Flow-Through Stack

Testing shows the temperature distribution across any single plate and from plate-
to-plate stays within 2-3 C which is very acceptable.

Temperature control uses a thermostatic valve to modulate the cooling flow 
through the HX.

Recent Accomplishments: 
Passive Cooling Reduces System Mass and Complexity 
Without Degrading Performance (1/2)

Thermal Conductivity Tests in VF-15
90

P l ti

Four Graphite Cooling Plates slid into the 
HX Interface Plate & Cooling Channel. 
Pad heaters simulate FC heat.

Graphite Cooling Plate
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Heat Pipes 
Copper &Titanium
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Graphite

Pyrolytic Graphite 
Copper Laminate 
Cooling Plates

Heat Pipes and Pyrolytic Graphite have high 
enough thermal conductivity to be acceptable 
lightweight cooling plates for fuel cells while 
copper does not.  

Exploded View Showing Graphite 
Cooling Plates & HX Interface Plate

HX Interface Plate
The graphite cooling plates, HX Interface Plate, and HX Cooling Channel have been 
fabricated and delivered to Teledyne Energy Systems for integration into a 6-cell Flow-
Thru Stack.

The 6-Cell fuel cell stack has been fully assembled.
The integrated FC stack is to be tested at Teledyne in August 2008.

Simulated fuel cell stack testing with identical graphite cooling plates underway at GRC.

0
0.0 2.0 4.0 6.0 8.0 10.0 12.0

Thermal Gradient, oC/cm
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Ti Heat Pipe

Recent Accomplishments: 
Passive Cooling (2/2)

Exploded View Showing Ti Heat Pipe FC Stack Showing Ti Heat Pipe Edges FC Stack with HX Interface Plate 

The Ti heat pipes have been fabricated and tested at GRC. Their 
thermal conductivity ranged from 3500 to 6300 w-m/K. (copper is
400 w-m/K)

FC Stack Integrated with System HX

The Ti heat pipes were delivered to Infinity Fuel Cells for integration 
into the non-flow-through stack 

The HX Interface plate hardware has been fabricated and will be 
delivered to Infinity for final stack assembly

The integrated FC stack is to be delivered to GRC by Fall 2008 for 
testing.

Preparations are being made for this testing to occur in the GRC
Bldg 309 Fuel Cell Laboratory

Milestone Accomplishment: 
MEA Testing Shows Substantial Improvement Over SOA

1.000

1.200

Jet Propulsion
Laboratory

Nafion 115
4.0 mg/cm2 Ptunsupported cathode
~65% RH @ inlet
70 oC

Single Cell Polarization Curves (as measured)
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Narayan et al, STAIF 2007

0.58 V
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0.000

0.200

0.0 200.0 400.0 600.0 800.0 1000.0 1200.0 1400.0 1600.0 1800.0

Current Density (mA/cm2)

Nafion 111
0.5 mg/cm2 PtC-supported cathode
60% RH @ inlet
80 oC
100 kPaabs H2/O2
Neyerlin et al, ECS Journal,154:B279-87, 2007
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Membrane Electrode Assembly Accomplishments:  
MEA Performance Exceeds Minimum Success Criteria

JPL MEAs supplied to 
Teledyne, Infinity, and Proton Energy

 NASA fuel cell and electrolysis MEA 
performance exceeds best performance of 
industry vendors
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Comparison of JPL’s best iridium-doped ruthenium with the latest vendor supplied 
MEA shows substantially better (30 mV) performance by the NASA material.
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N115

JPL MEAs performing at 0.89 V at 200 mA/cm2 exceed 
the performance of Vendor cells substantially.

Key Key Accomplishment:Accomplishment:
• JPL-developed MEA 86% efficient at 1.48 V

Objective:Objective:
Develop balanced high-pressure (≥ 2,000 psi) electrolysis technology for Exploration missions. 
Incorporate advanced membrane-electrode-assemblies (MEAs) with better electrical performance into high-
pressure electrolyzers.

MEA and Electrolysis MEA and Electrolysis Technology: Recent ProgressTechnology: Recent Progress

Partners: Hamilton Sundstrand, NASA

High-pressure electrolyzer in test stand

• Hamilton Sundstrand modified existing International Space 
Station electrolyzer (liquid-feed) for high-pressure operation.  
• Testing at JPL showed good voltage performance to
2000 psi H2 and 1000 psi O2 with Nafion MEA.

Significance:Significance:
• Advanced electrolysis MEAs will deliver more H2 and O2

gases with less electrical power input, reducing the required 
size of a solar array for a regenerative fuel cell system.
• Balanced high-pressure operation permits operation within 

hit t h i ll t k d i l han architecture having smaller tanks, reducing launch mass 
and volume requirements.

Future Work:Future Work:
•Vapor-feed and passive liquid-feed electrolyzers are being 
investigated to reduce the significant parasitic power draw of 
the pumps and water/gas separators required for liquid feed 
systems. 83 cm2 MEA with platinum-black catalyst 

on hydrogen side and iridium oxide 
catalyst on oxygen side
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Background:Background:
Flow-Through PEMFC technology is characterized by 
recirculating reactants and external product water separation

• Recirculation requires pumps or injectors/ejectors
• Water separation requires motorized centrifugal

Recent Accomplishments: 
Flow-Through vs. Non-Flow-Through PEMFC Down-Select

Non-Flow-Through
PEMFC Schematic

Water separation requires motorized centrifugal 
separators or passive membrane separators

Non-flow-through PEMFC technology is characterized by 
dead-ended reactants and internal product water removal

• Tank pressure drives reactant feed; no recirculation
• Water separation occurs through internal cell wicking

Selection:Selection:
Non-flow-through PEM fuel cell technology selected for further 
developmentdevelopment

Justification:Justification:
Flow-through PEMFC technology is at a higher TRL, but 
non-flow-through technology offers advantages in efficiency, 
weight, volume, parasitic power, reliability, life, and cost. FT NFT

Stack 16 kg 13 kg

BOP 21 kg 9 kg

Total 37 kg 22 kg

Representative mass 
allocation for 3 kW fuel cell

derivative of Gemini fuel cell technology

Recent Accomplishments: 
Non-Flow-Through System Testing Begun

Non-flow-through PEMFC technology is 
characterized by dead-ended reactants and 
internal product water removal

Tank pressure drives reactant feed; 
no recirculation required

Pumps or 
injectors/ejectors for 
recirculation

no recirculation required

Water separation occurs through 
internal cell wicking

Components eliminated in NFT 
system include:


50 cm2 Lab Stack #1 
Integrated with Balance-of-Plant

Motorized centrifugal 
separators or passive 
membrane separators for 
water separation

Packaging Concept for 
Non-Flow-Through System


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Non-Flow-Through Primary PEMFC Development

Key Accomplishment/Deliverable/Milestone:Key Accomplishment/Deliverable/Milestone:
• Completed testing of non-flow-through PEMFC single cell at Phase II SBIR contractor infinity 

technologies
• Completed 3D modeling of balance-of-plant components at NASA GRC

Significance:Significance:

NASA APWR Cell Testing

1.000

1.200

Conditions:
Date: 4-3-07
Cell dead ended. Passive water removal mode, no venting
MEA:  A-1
Temp: 70 deg C
O2 Press =31.01 @ 0 ma/cm2  to 29.88 psi @ 1000 ma/cm2
H2 press = 31.31@  0 ma/cm2  to 29.54psi @ 1000 ma/cm2
H20 Press = 25.62 constant from 0 to 1000 ma/cm2

• Successful steady-state operation in dead-ended mode demonstrated; achieved current 
densities > 1,000 mA/cm2

• Establishes the basis for future non-flow-through technology advancements
• All ancillary components can be mounted on circuit boards attached to stack end plates, 

significantly reducing mass and volume of non-flow-through PEMFC systems
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WBS 3.2.2 Balance of Plant and System Testing
MS 3.2.2-1 Lab Stack #1 System Testing Complete

PT:  Energy Storage
PM:  Carolyn Mercer
PI:  Mark Hoberecht

Objective:Objective:
Develop non-flow-through fuel cell technology at baseline stack vendor Infinity Fuel Cells and Hydrogen, Inc. 
for Exploration missions. Integrate Infinity Lab Stack #1 (4-cell, 50 cm2) with a GRC-developed balance-of-
plant and conduct performance evaluation testing at GRC.

Key Accomplishment/Deliverable/Milestone:Key Accomplishment/Deliverable/Milestone:
• Partners: Infinity Fuel Cell and Hydrogen, GRC
• 11/30/08 – Infinity Lab Stack #1 System Testing Complete
• The fabrication and testing of this small-area (50 cm2) short-
stack (4 cells) using JPL MEAs with a GRC-developed 
balance-of-plant is one of several non-flow-through fuel cell 
system tests used to evaluate the performance of a stack 
integrated with a balance-of-plant.  

Significance:Significance:Significance:Significance:
• The milestone represents the first successful testing at the 
system level of a non-flow-through fuel cell stack integrated 
with a balance-of-plant.

Shown: Infinity Lab Stack #1 integrated 
with GRC balance-of-plant
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WBS 3.2.1.1 Baseline Stacks
Milestone 3.2.1.1-1 Lab Stack #2 Unit Delivery  

PT:  Energy Storage
PM:  Carolyn Mercer
PI:  Mark Hoberecht

Objective:Objective:
Develop non-flow-through fuel cell technology at baseline stack vendor Infinity Fuel Cells and Hydrogen, Inc. 
for Exploration missions. Incorporate GRC-developed passive flat-plate heat pipe technology and JPL-
developed membrane-electrode-assembly (MEA) technology into Infinity fuel cell stacks for performance 
evaluation.

Key Accomplishment/Deliverable/Milestone:Key Accomplishment/Deliverable/Milestone:
• Partner: Infinity Fuel Cell and Hydrogen 
• 4/30/09 – Lab Stack #2 Unit Delivery from Infinity to GRC
• This small-area (50 cm2) short-stack (4 cells) delivery is one 
of several stack deliveries used to evaluate the development 
progress of non-flow-through fuel cell technology from 
baseline fuel cell vendor Infinity Fuel Cells and Hydrogen, Inc.  
This stack also incorporates NASA-developed  technology in 
the form of passive flat-plate heat pipes (GRC) and advanced 
MEAs (JPL).

Shown:  Infinity Lab Stack #2 with JPL 
MEAs and GRC flat-plate heat pipes 
(protruding fins of heat pipes visible 
behind blue tie rods)

( )

SignificanceSignificance::
• Passive flat-plate heat pipes are an alternative to pumped-
liquid cooling loops in fuel cells, and offer the potential of 
better heat transfer, higher reliability, and lower parasitic 
power.
• Advanced fuel cell MEAs with better electrical performance 
will deliver more power from a fixed quantity of hydrogen and 
oxygen reactants.

Energy Storage Project Recent Accomplishments: 
Integrated Balance-of-Plant Components for Fuel Cells

 Integrated balance-of-plant demonstrated in 
conjunction with the laboratory scale fuel 
cell stacks 

 During this testing, the balance-of-plant ran

Solenoid Valves 
Pressure 

Transducers 

Pressure AccumulatorDuring this testing, the balance of plant ran 
on a battery source consuming less than
10 W of parasitic power to operate the fuel 
cell system

 A full-scale (3-kW fuel cell system) balance-
of-plant will likely operate on less than
50 W of parasitic power (same number of 
components, but some components larger)

 A 2-12 kW flow-thru fuel cell system tested 

Pressure
Regulator

Pressure 
Transducers 

Pressure Accumulator 

at GRC required several hundred watts of 
parasitic power during operation

 That difference in parasitic power means 
that Altair would need almost 100 kg less 
reactants over the course of its 2-3 week 
mission using a non-flow-through fuel cell 
system versus a flow-through system

Pressure
Regulator
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Milestone Accomplishments  
3.2.1.1-2 Lab Stack #3 Unit Delivery

3.2.2.2-4 BOP for Lab Stack #3 Complete
3.2.2.2-5 Lab Stack #3 System Testing Complete

3.5-1  Lab Stack #3 MEA Delivery

PT:  Energy Storage
PM:  Carolyn Mercer
PI:  Mark Hoberecht

Objective:Objective:
Develop non-flow-through fuel cell technology at baseline stack vendor Infinity Fuel Cells and Hydrogen, Inc. 
for Exploration missions. Incorporate advanced membrane-electrode-assemblies (MEAs) with better 
electrical performance into fuel cell stacks. Integrate Infinity Lab Stack #3 (4-cell, 50 cm2) with a GRC-
developed balance-of-plant and conduct performance evaluation testing at GRC.

Key Accomplishment/Deliverable/Milestone:Key Accomplishment/Deliverable/Milestone:
• Partners: Infinity Fuel Cell and Hydrogen, JPL, GRC  
• 3/25/09 – Lab Stack #3 MEA Delivery from JPL to Infinity
• 3/31/09 – Lab Stack #3 Unit Delivery from Infinity to GRC
• 3/31/09 – Balance-of-Plant for Lab Stack #3 Complete
• 4/30/09 – Infinity Lab Stack #3 Testing Complete
• The fabrication and testing of this small-area (50 cm2) short-
stack (4 cells) using JPL MEAs with a GRC-developed 
balance-of-plant is one of several non-flow-through fuel cell 
system tests used to evaluate the performance of a stacksystem tests used to evaluate the performance of a stack 
integrated with a balance-of-plant.  

Significance:Significance:
• System testing of Lab Stack #3 revealed several additional 
stack design modifications and balance-of-plant procedure 
adjustments which are both needed to resolve system 
performance deficiencies.
• These changes will be implemented in subsequent hardware 
builds and evaluated through additional testing.

Shown:  Infinity Lab Stack #3 
and test rig with fuel cell system 
(stack + balance-of-plant)

NonNon--FlowFlow--Through Fuel Cell Technology: Recent ProgressThrough Fuel Cell Technology: Recent Progress

Key Accomplishments:Key Accomplishments:
• Delivery of 4-cell, 150 cm2 non-flow-through fuel cell 

stack incorporating advanced manufacturing process.
• First successful continuous testing of a non flow through

Objective: Objective: 
Generate data showing performance of a non-flow-through fuel cell stack having a full-size active area.

Lab-scale non-flow-through fuel cell 
stack under test

Partners: Infinity Fuel Cell and Hydrogen, NASA

• First successful continuous testing of a non-flow-through 
fuel cell for 100 hr.

• Test data showed successful operation, with performance 
exceeding all prior small area stacks.

• Innvotive Hydrogen Pump used to increase operation 
time between purges

SignificanceSignificance::
• Demonstrates the feasibility of non-flow-through fuel cell 

technology for Exploration missions
• Eliminates a substantial program risk associated with 

scale-up of non-flow through fuel cell technology from ascale-up of non-flow through fuel cell technology from a 
laboratory size to the final flight hardware active area.

• Validates the decision to develop non-flow-through fuel 
cell technology over the previous flow-through 
technology.

• The 150 cm2 cell size is optimum for full-size stacks 
anticipated for 120 VDC Exploration applications such as 
Altair and Lunar Surface Systems. 

•• Future Work:Future Work:
• Build ¼-scale breadboard, then 3-kW Engineering Model

Schematic image of future 3 kW non-
flow-through fuel cell stack
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Non-Flow-Through Fuel Cell: Common Test Bed
• Configurable to test stacks provided by multiple vendors
• Capable of testing total output power of 1 kWe
• Capable of testing stacks up to 40 cells
• Capable of conducting un-attended life testing
• Developed and built using COTS hardware
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Fuel Cell Technology Progression to Simpler Balance-of-Plant

Active coolant 
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(coolant loop 
not shown)

PEMFC System Comparison (cont’d)

1-kW Flow-Through PEMFC Systemg y

3-kW Non-Flow-Through 
PEMFC System

(mock-up)
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Fuel Cell Predicted Performance
• Test data shows that even with existing heavy endplates, power density of current 

hardware nearly matches that of SOA Shuttle alkaline flight hardware:
• 59 kg non-flow-through stack (endplates 17 kg) + 10 kg BoP @ 3 kW = 44 W/kg
• SOA Shuttle alkaline @ 6 kW = 49 W/kg 

• Note: KPP threshold and goal power density values are based on 300 cm2 hardwareNote:  KPP threshold and goal power density values are based on 300 cm hardware 
(for 30 V systems), which is more mass efficient than smaller 150 cm2 hardware (for 
120 V systems).  Our current expectations for 3 kW performance are based on test 
results from 4-cell stacks, and assume a 4-screen design, 4 kg flightweight endplates, 
and a 10 kg BOP.  The expected 3 kW performance ranges from:

• 66 W/kg for the stack and 54 W/kg for the system, assuming a 4-chamber cell 
(separate cavities for coolant and product water); to

• 125 W/kg for the stack and 88 W/kg for the system, assuming  a 3-chamber cell 
(combined water/coolant cavity) and additional mass optimization.

• Next steps are to build successively taller stacks to move toward 1/4 scale breadboard 
(40 cells, 1 kW, 150 cm2) while retaining the excellent power density

• Voltage, lifetime, and some mass KPP’s not specifically addressed in current fiscal year
• Optimization for voltage not in current year scope, although some conductive 

coatings will be investigated
• Lifetime testing not in current year scope
• Mass optimization not in current year scope, although replacing metallic porous 

plate with Supor membrane for mass reduction will be investigated

WBS 3.2.1.2 Alternative Stacks
Milestone 3.2.1.2-1 SBIR Stack Delivery

PT:  Energy Storage
PM:  Carolyn Mercer
PI:  Mark Hoberecht

Objective:Objective:
Develop non-flow-through fuel cell technology at alternative stack vendor ElectroChem, Inc. for Exploration 
missions. Integrate this ElectroChem stack with a GRC-developed balance-of-plant and deliver to JSC for 
performance evaluation testing.

Key Accomplishment/Deliverable/Milestone:Key Accomplishment/Deliverable/Milestone:
• Partners: ElectroChem, GRC, JSC
• 4/30/09 – ElectroChem Alternative Stack Delivery to GRC
• This small-area (50 cm2) short-stack (4 cells) delivery will be 
used to evaluate the development progress of non-flow-
through fuel cell technology from alternative fuel cell vendor 
ElectroChem, Inc.

Significance:Significance:
• Several fuel cell stack vendors are developing non-flow-
through fuel cell technology as an alternative to the baseline 
stack technology under development. This approach increases 
competition and reduces risk. Shown:  ElectroChem alternative non-flow-

through fuel cell stack (4-cell short stack)
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Key Accomplishment/Deliverable/Milestone:Key Accomplishment/Deliverable/Milestone:
• Completed testing of single-cell unitized regenerative fuel cell (URFC) system in NASA GRC 

test facility
• Accepted delivery of 10-cell URFC stack from Proton Energy Systems
Significance:Significance:

3.4  Regenerative Fuel Cell Technology Development

• URFC performs both fuel cell and electrolysis functions in a single stack; reduced RFC stack 
mass and volume, but higher system mass and volume due to lower efficiency in both fuel 
cell and electrolysis operating modes

Plans for FY’08 and beyond:Plans for FY’08 and beyond:
• Conduct performance testing of 10-cell URFC

system in NASA GRC test facility
• Perform study/design of reactant management

integration hardware required for RFC system
with separate fuel cell and electrolysis stacks

URFC System

Batteries

• Goals

• Approach

• Component Development

• Cell Development

• Predicted Cell Level Performance

NASA/TM—2011-216963 18



Customer Need Performance 
Parameter

State-of-the-Art Current Value Threshold 

Value

Goal

Safe, reliable 
operation

No fire or flame Instrumentation/control-
lers used to prevent 
unsafe conditions. 
There is no non-
flammable electrolyte in 
SOA

Preliminary results 
indicate a small reduction 
in performance using 
safer electrolytes and 
cathode coatings

Tolerant to electrical and 
thermal abuse such as 
over-temperature, over-
charge, reversal, and 
short circuits with no fire 
or flame***

Tolerant to electrical and 
thermal abuse such as 
over-temperature, over-
charge, reversal, and 
short circuits with no fire 
or flame***

Specific energy
Lander:
150-210 Wh/kg
10 l

Battery-level
specific energy*

[Wh/kg]

90 Wh/kg at C/10 & 30 °C

83 Wh/kg at C/10 & 0 °C

(MER rovers)

160 at C/10 & 30 oC (HE)

170 at C/10 & 30 oC (UHE)

80 Wh/kg at C/10 & 0 oC

( di t d)

135 Wh/kg at C/10 & 0°C 
“High-Energy”**

150 Wh/kg at C/10 & 0°C 
“Ult Hi h E ”**

150 Wh/kg at C/10 & 0°C 
“High-Energy”

220 Wh/kg at C/10 & 0°C 
“Ult Hi h E ”

Key Performance Parameters for Battery Technology Development

10 cycles

Rover:
160-200 Wh/kg
2000 cycles

EVA:
270Wh/kg
100 cycles

[ g]
(predicted) “Ultra-High Energy”** “Ultra-High Energy”

Cell-level specific 
energy

[Wh/kg]

130 Wh/kg at C/10 & 30 °C

118 Wh/kg at C/10 & 0 °C

199 at C/10 & 23 oC (HE)

213 at C/10 & 23 oC (UHE)

100 Wh/kg at C/10 & 0 oC

(predicted)

165 Wh/kg at C/10 & 0°C 
“High-Energy”

180 Wh/kg at C/10 & 0°C 
“Ultra-High Energy”

180 Wh/kg at C/10 & 0°C 
“High-Energy”

260 Wh/kg at C/10 & 0°C 
“Ultra-High Energy”

Cathode-level
specific capacity
[mAh/g]

180 mAh/g 252 mAh/g at C/10 & 25 oC
190 mAh/g at C/10 & 0 oC

260 mAh/g at C/10 & 0°C 280 mAh/g at C/10 & 0°C 

Anode-level
specific capacity
[mAh/g]

280 mAh/g (MCMB) 330 @ C/10 & 0 oC (HE)

1200 mAh/g @ C/10 & 0 oC 
for 10 cycles (UHE)

600 mAh/g at C/10 & 0°C 
“Ultra-High Energy”

1000 mAh/g at C/10  0°C
“Ultra-High Energy”

Revised 4/8/10

Energy density
Lander: 311 Wh/l

Rover:   TBD

EVA: 400 Wh/l

Battery-level
energy density

250 Wh/l n/a 270 Wh/l  “High-Energy”

360 Wh/l  “Ultra-High”

320 Wh/l “High-Energy”

420 Wh/l “Ultra-High”

Cell-level energy 
density

320 Wh/l n/a 385 Wh/l  “High-Energy”

460 Wh/l  “Ultra-High”

390 Wh/l “High-Energy”

530 Wh/l “Ultra-High”

Operating 
environment
0 to 30 oC, Vacuum

Operating 
Temperature

-20 to 40 oC 0 to 30 oC 0 to 30 oC 0 to 30 oC

Assumes prismatic cell packaging for threshold values. Goal values include lightweight battery packaging.
*    Battery values are assumed at 100% DOD, discharged at C/10 to 3.0 V/cell, and at 0 oC operating conditions
**  ”High-Energy”          = mixed metal oxide cathode with graphite anode
** “Ultra-High Energy” = mixed metal oxide cathode with Silicon composite anode
*** Over-temperature up to 110 oC; reversal 150% excess discharge @ 1C; pass external and simulated  internal short 
tests; overcharge 100% @ 1C for Goal and  80% @ C/5 for Threshold Value.

Anode (commercial)
Anode (NASA)

Cathode (NASA)

Li(LiNMC)O2 

NASA Cathode

High Ultra-High
E

Energy Storage Project Cell Development for Batteries

Electrolyte (NASA)

Separator (commercial)

Safety devices (NASA)
incorporated into cell

Conventional
Carbonaceous Anode

Si-composite 
NASA Anode

Energy
Cell

Energy
Cell

“High Energy” Cell
Baseline for EVA and Rover
Lithiated-mixed-metal-oxide cathode/Graphite anode
Li(LiNMC)O2/Conventional carbonaceous anode
150 Wh/kg (100% DOD) @ battery-level 0 C C/10
80% capacity retention at ~2000 cycles

“Ultra-High Energy” Cell
Upgrade for EVA and Altair, possibly Rover
Lithiated-mixed-metal-oxide cathode/Silicon composite anode
Li(LiNMC)O2/silicon composite
220 Wh/kg (100% DOD) @ battery-level 0 C C/10
80% capacity retention at ~200 cycles
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FY09 FY10
Q4Q1 Q2 Q3 Q4Q1 Q2 H1 H2

Component Development

FY13FY12FY11
H1 H2 H1 H1H2 H2

Lithium-Ion Battery Master Schedule   
FY14

Q3

NASA TRL 5/6 Testing

H1 H2
FY15

High Energy 

SDR PDR

SRRLander - Altair
SRR

PDR

EVA (Suit 2 Config)

LSS PDR

CDR

CDR

MCR

Integrated 
Component 
Down-select

Flightweight 
Cell A

Scale-up and 
Cell Build

Screen, scale-up, 
cell design

Component Development NASA TRL 5/6 Testing

Environmental 
Testing 
Complete

BASIC A
OPTION 

1A

Environmental 
Testing 
Complete

Battery

Ultra-High 
Energy Battery

Scale-up and 
Cell BuildHigh Energy 

Cell “A”

Integrated Component 
Down-Select   1 & 2 

Screen, scale-up, 
cell design

Scale-up 
and Cell Build

Flightweight
Cell B

Complete

BASIC B

OPTION 
1B

Scale-up and 
Cell Build #1

Scale-up and 
Cell Build #2
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Pack level testing of 
Li-ion cells

Fault isolation 
electronics studies

and design
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Energy Cell

“B”

Safety, Packaging 

and Control
Sep. 23, 2009

Lithium Ion Battery Technology Development
Advanced Cell Components

Cathode

+-

e-

Nano-particle based 
circuit breaker

Anode

Layered Li(NMC)O2

cathode particle
• Varying composition 

and morphology to 
improve capacity and 
charge/discharge rate

Charger or 
Load

e-

O
|

Li
|

O
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Ni Mn Co

Optimized Solid-Electrolyte interface Layer
• Mitigates causes of irreversible capacity

Li+

Cat ode

Improving Cell-Level Safety
• Nano-particle circuit breaker
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Li+
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Li+

S
ep

ar
at

o
r

Li+

Li+

Li

Li+

Li+

Li+

Li+

Li+

Anode

Silicon nano-particles 
alloy with Li during 
charge, lose Li ions 
during discharge
• Offers dramatically 

improved capacity over 
carbon standard

Li-Metal-PO4

Safety Coating for 
Thermal Stability
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Advanced electrolyte with additives provides

NixMnyCoz
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O
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NixMnyCoz
...

• Nano-particle circuit breaker, 
flame-retardant electrolytes, and
cathode coatings to increase the thermal 
stability of the cell. 
Goal: no fire or flame, even under abuse.Li+

• Porous, elastomeric binder allows ionic 
transport and  accommodates large 
volume changes during 
charge/discharge cycling

• Functionalized nanoparticles adhere to 
binder without blocking reactive silicon 
surface area

Li

Li+

Li+

Providing Ultra High Specific Energy
• Silicon-composite anodes to significantly improve 

capacity; elastomeric binders and nanostructures to 
achieve ~200 cycles

• Novel layered oxide cathode with lithium-excess 
compositions (Li[LixNiyMnzCo1-x-y-z]O2) to improve 
capacity

Advanced electrolyte with additives provides 
flame-retardance and stability at high voltages 
without sacrificing performance. 
Example: LiPF6 in EC+EMC+TPP+VC Li
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• Develop silicon-based carbon 
composite materials

– Much higher theoretical capacity 
than carbonaceous materials

Anode Development
Led by William Bennett, ASRC at NASA GRC

1600

1800

Cycle Performance of 11‐month Anode Deliverables

rate

C/10

• Development focus on:
– Decreasing irreversible capacity 

loss
– Increasing cycling stability by 

reducing impact of volume 
expansion 

– Improving cycle life

Sili b d d S ifi it
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Cycle Number

LM

GT 2B

GT 2A

ETDP‐ 71,77, 81

C/10

• Anode Development at: 
– Georgia Tech Research Institute
– Lockheed Martin
– Glenn Research Center

Silicon-based anodes: Specific capacity vs. 
cycles for three materials at C/10 and 23 °C 
in coin cell half cell.

Project:  ETDP Energy Storage Project –
Space-rated Lithium-ion Batteries

COTR:  Concha Reid, NASA GRC

“Advanced Nanostructured Silicon Composite Anode Program”
PI: Dr. Justin Golightly, Lockheed Martin

Anode Development
NASA Contract # NNC08CB02C

Objective:Objective:
To develop an optimized silicon nanoparticle anode with a 
novel elastomeric binder that will mitigate capacity fade 
and enable long cycle. 
ApproachApproach:: 1800

LM 11‐month deliverable at 0°C
pppp

• Functionalize nanoparticles to covalently adhere with 
binder

• Optimize binder to manage volume changes during 
cycling

• Optimize anode properties to meet capacity, temperature 
and life requirements

AccomplishmentsAccomplishments::
• Anode exceeded 1000 mAh/g when tested in a full cell 

with an NMC cathode (NEI-D) at room temperature.  
Performance has stayed good through all 5 cycles to 
date

200
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Cycle Number
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D
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ETDP‐91

C/2
C/5

C/10

date.
• Anode samples demonstrated >1000 mAh/g at C/10 for 

40 cycles at room temperature in half cell testing.  
• The KPP goal for the anode specific capacity of 

1000 mAh/g at C/10 and 0 oC has been demonstrated 
over more than 10 cycles.

• Anode tested in a full cell with Saft’s NCA cathode and 
tested for 230 cycles at 40% depth of discharge. Long-
term cycling stability was demonstrated with this 
electrode pair, but capacity imbalance between 
electrodes limited performance. 

Preliminary results for unoptimized materials are shown. 
Materials were tested at NASA in coin cell half cells.

Challenge:

Anode specific capacity fade rates are 
still too high to meet the goal of 200 
cycles at the cell level.  
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Anode Development
NASA Contract # NNC08CB01C

Project:  ETDP Energy Storage Project –
Space-rated Lithium-ion Batteries

COTR:  Richard Baldwin, NASA GRC

“Design of Resilient Silicon Anodes”

Dr. Gleb Yushin & Dr. Tom Fuller, Georgia Institute of Technology
Dr. Igor Luzinov, Clemson University

Objective:Objective: Georgia Tech Anode 2A at 0°CObjective:Objective:
To address the NASA “ultra-high energy cell” 
performance metrics, develop a practical silicon-
based anode cell component with demonstrated high 
capacity and cycle life.

Approach:Approach:
Optimize a (nano)silicon-based anode structure by 
utilizing a novel elastic epoxidized polybutadiene 
(EPB) binder so as to permit sufficient elastic 
deformations during detrimental volume changes 
associated with lithium silicon alloying and de

200
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Georgia Tech Anode 2A at 0 C

A
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D

Avg

C/10 C/5 C/2 C/10

associated with lithium-silicon alloying and de-
alloying. 

Accomplishments:Accomplishments:
• Anode samples demonstrated >1000 mAh/g at C/10 

for 10 cycles at room temperature in half cell 
testing.  

1 2 3 4 5 6 7 8 9 10 11 12

Cycle Numberdataat 0°C
ETDP 77
ETDP‐79

Preliminary results for unoptimized materials are shown. 
Materials were tested at NASA in coin cell half cells.

Challenge:

Anode specific capacity fade rates are 
still too high to meet the goal of 200 
cycles at the cell level.  

GRC In-House Anode Synthesis
PI: Jim Woodworth, NPP,NASA GRC

Resorcinol Formaldehyde (RF) Gels

• Resorcinol- formaldehyde resin formed in water

• Formed into monoliths

• Formed into microspheres• Formed into microspheres

• Silicon or other materials may be added to the 
material

• Materials are freeze dried and pyrolyzed to form 
the carbonaceous anode material

Silicon Sputter Coated Carbon Fiber Paper

• Apply Si to an active support material that is 
also capable of acting as a current collector

42

also capable of acting as a current collector

• 50 nm Si Coating Silicon

Silicon Sputter Coated Copper

• 50 nm Si coating

• Used to study lithiation of silicon
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Cathode Development
Led by Kumar Bugga, NASA JPL

• Develop Li(NMC) materials
– Offer enhanced thermal 

stability over conventional 
cobaltate cathodescobaltate cathodes 

– High voltage materials

• Development focus on:
– Increasing specific capacity
– Improving rate capability
– Stabilizing materials for 

higher voltage operation
– Reducing irreversible 250

300

/k
g

1200

1400

Thermal Stability Increases

Synthesis methods affect tap density

g
capacity loss

– Increasing tap density

• Cathode Development at: 
– University of Texas at Austin
– NEI Corporation
– JPL
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Adding transition metals improves thermal stability

Project:  ETDP Energy Storage Project –
Space-rated Lithium-ion Batteries

COTR:  Richard Baldwin, NASA GRC
TM: Kumar Bugga, NASA JPL

Cathode Development
NASA Contract # NNC09CA08C

ObjectiveObjective::
Develop LiNMCO2 cathode materials with high 
capacity and low irreversible capacity (IRC) loss. 

“Development of High Capacity Layered Oxide Cathodes”
PI: Dr. Arumugam Manthiram, University of Texas at Austin

291 mAh/g

ApproachApproach::
• Vary composition of base material to maximize 

discharge capacity with low IRC loss.
• Modify cathode surface with metal oxide coatings to 

increase capacity and decrease the IRC.
• Dope samples with titanium to increase capacity.

AccomplishmentsAccomplishments
• Surface modified samples demonstrate higher 

capacity, lower irreversible capacity loss, and more P li i lt f hi h t d it t i l i i ll

~210 mAh/g

capacity, lower irreversible capacity loss, and more 
stable cyclability after 25 cycles as compared to 
unmodified cathode sample.

• Tap density increased to 1.6 g/cc to accommodate 
Saft’s manufacturing process, but specific capacity 
degraded (down to ~210 mAh/g from 252 at 3.0 V)

Preliminary results of high tap density material in coin cell 
half cell. 1st cycle data shown. The discharge capacity is 
slightly lower than anticipated, but increases after a few cycles 
to ~ 230 mAh/g at C/10.

Challenge:

0 oC capacity is very poor (~30% reduction). Even 
at room temperature, the specific capacity remains 
below 260 mAh/g. 
High first cycle irreversible capacity loss.(~30% at 
room temperature).
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Project:  ETDP Energy Storage Project –
Space-rated Lithium-ion Batteries

COTR:  Concha Reid, NASA GRC
TM: Will West, NASA JPL

Cathode Development
NASA Contract # NNC09CA07C

ObjectiveObjective::
Develop a LiNMC cathode material with a 
unique structure, composition, and a fine-

“Mixed Metal Composite Oxides for High Energy Li-ion Batteries”
PI: Dr. Nader Hagh, NEI Corporation

grained particle morphology. Synthesize 
materials using a scalable and low cost process.

ApproachApproach::
• Understand ordering and produce a highly 
ordered structure 

• Ultra fine particle crystallization using solid 
state reactions

• Structure refinement 

AccomplishmentsAccomplishments::
• Produced several variants of LiNMCO2 cathode 
materials

• Demonstrated stability over a wide operating 
voltage window (4.8 to 2.5 V).

• Successfully synthesized powders with tap 
densities above 2.0 g/cc.

Preliminary results of unoptimized materials are shown. 
Materials were tested at NASA  in coin cell half cells.

Challenge:

0 oC performance is very poor (~40% reduction).
High first cycle irreversible capacity loss.(~24% at R.T.).

Electrolyte Development
Led by Marshall Smart, NASA JPL

• Develop advanced electrolytes with additives:
– Non-flammable electrolytes and flame retardant additives
– Stable at potentials up to 5 V 

Compatible with the NASA chemistries– Compatible with the NASA chemistries

• Development focus on:
– Reducing flammability
– Stabilizing materials for higher voltage operation
– Compatibility with mixed-metal-oxide cathodes and silicon 

composite anodes

• Electrolyte Development at:• Electrolyte Development at: 
– JPL
– Yardney Technical Products/University of Rhode Island
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JPL In-House Electrolyte Development
Led by Marshall Smart, NASA JPL

ObjectiveObjective::
• To develop flame retardant electrolytes for Li-ion 

cells that are stable up to 5.0 V.

ApproachApproach::
• Determine best formulation for low-flammability 

th t i i t t ith hi h lt i d t lthat is consistent with high-voltage mixed-metal-
oxide cathodes, and with graphite and silicon 
composite anodes:

• Vary concentration of triphenyl phosphate 
additives

• Test both linear and cyclic fluorinated 
carbonates as non-flammable solvents.

AccomplishmentsAccomplishments::
• JPL Gen #1 Electrolyte has <50% heat release, 

<25% pressure rise, and >33% faster flame 

Comparable performance was obtained with the JPL Gen #2  
electrolytes (containing LiBOB) compared with the baseline solution.

Self-extinguishing time (SET) flammability tests show excellent 
flame retardance in JPL and Yardney/URI electrolytes.  

p
extinction compared to Saft electrolyte, but 
showed poor compatibility with NMC cathodes.

• JPL Gen #2 electrolytes (containing LiBOB) now 
shows good performance with graphite/NMC 
electrodes, and has lower flammability because 
of increased TPP content (10%).

Project:  ETDP Energy Storage Project –
Space-rated Lithium-ion Batteries

COTR:  Richard Baldwin, NASA GRC
TM: Marshall Smart, NASA JPL

Electrolyte Development 
NASA Contract # NNC09CA06C

ObjectiveObjective::
• To develop flame retardant electrolytes for Li-ion cells 

“Flame Retardant, Electrochemically Stable Electrolyte for Lithium-Ion Batteries”
PI: Dr. Boris Ravdel, Yardney Technical Products

Collaborator: Dr. Brett Lucht, University of Rhode Island (URI)

• that are stable up to 5.0 V.

ApproachApproach::
• Characterize electrochemical stability of baseline 

electrolyte solution at and above 5 V
• Examine flame retardant properties of baseline 

electrolyte with additives
• Characterize effect of additives on electrochemical 
• stability
• Analyze performance of cells containing the developed Rate capability at 23 °C of electrolyte with lowest• Analyze performance of cells containing the developed 

electrolytes

AccomplishmentsAccomplishments::
• Flame retardant electrolytes were formulated
• Tests performed on 12 Ah cells made with developed 

electrolyte formulations 

(effort completed December 2009)

Rate capability at 23 C of  electrolyte with lowest 
Self-extinguishing time (left):
0.95 M LiPF6 + 0.05M LiBOB EC+EMC+DMMP 
(30:55:15 wt %) developed by Yardney Technical 
Products
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Separators and Safety Components

Separators
Led by Richard Baldwin, NASA GRC

S t ith i d f t• Separators with improved safety 
• Shutdown separators
• Optimized for ETDP chemistry

Safety Component 
Development

Led by Judy Jeevarajan, NASA JSC

• Development of internal cell materials 
(active or inactive) designed to improve 
the inherent safety of the cell

• Functional components
• Safety Component Development at: 

– Physical Sciences, Inc.
– Giner

Project:  ETDP Energy Storage Project –
Space-rated Lithium-ion Batteries

COTR:  Judy Jeevarajan, NASA JSC

Safety Component Development
NASA Contract # NNC09CA04C

ObjectiveObjective::
•Coat metal oxide cathodes with lithium metal phosphate coatings to improve thermal stability. 

ApproachApproach::

“Metal Phosphate Coating for Improved Cathode Safety”
PI: Dr. Christopher Lang, Physical Sciences Corporation

ApproachApproach::
•Coat LiCoO2 cathodes using 1 and 2% lithium metal phosphate solutions
•Optimize coatings to increase onset temperature of exothermic peak or eliminate peak 

AccomplishmentsAccomplishments::
• Demonstrated  no loss in discharge capacity 

for uncoated cathode compared to cathode 
with ~1.5% LiCoPO4 coating (results reported 
for 1 cycle)

• Demonstrated robust adhesion of coating in 
half cells for 200 cycles, cycling at C-rate with 
capacity retention of ~90 of 1st cycle capacity

• Demonstrated to reduce exotherms without 
reducing performance on high voltage 
cathodes (Toda). Preliminary results show complete suppression of 

exotherm with coated LiCoO2 cathode.

Next step:

Determine compatibility with MPG-111/NMC full cell.
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Project:  ETDP Energy Storage Project –
Space-rated Lithium-ion Batteries

COTR:  Judy Jeevarajan, NASA JSC

Safety Component Development
NASA Contract # NNC09CA05C

ObjectiveObjective::
To develop the compositions and fabrication methods for integration of a Composite Thermal 
Switch into Li-ion cells.

“Control of Internal and External Short Circuits in Lithium-Ion Batteries”
PI: Dr. Robert McDonald, Giner Incorporated

ApproachApproach::
•Optimize a switch temperature for safe handling of 
short circuits in Li- ion cells (switch activation causes a 
resistance increase at surface of coated electrode).
•Build Li-ion cells to demonstrate the concept and 
effect using externally applied heat and hard shorts.
•Perform electrochemical testing to confirm that safety 
improvements do not compromise performance.

AccomplishmentsAccomplishments:: Prior work for Li primary cells Activation of switchAccomplishmentsAccomplishments::
• Switch coated on both copper and aluminum substrates
• Coatings deposited in different thicknesses to compare switch 

behavior as a function of temperature
• Non-uniform switching behavior and resistance observed on samples

Prior work for Li primary cells. Activation of switch 
at ~173 °C yields >108 fold increase in resistance.

Challenge:

Repeatable, consistent switching behavior.

• Assess NASA-developed 
components

– Build and test electrodes and 
screening cells

– Provide manufacturing 
perspective from the start

Cell Development
Led by Tom Miller, NASA GRC

p p

• Scale-up NASA-developed 
components

– Transition components from the 
lab to the manufacturing floor

• Build and test evaluation cells (10 Ah):
– Determine component interactions
– Determine cell-level performance

• Design flightweight cells (35 Ah)
– Identify high risk elements early
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Component screening:
UT Austin increased the tap density of their cathode to provide manufacturability;
Saft modified their electrode processing to be compatible with Giner’s thermal switch;
Georgia Tech will modify their binder additives to be compatible with Saft’s anode 

f t i

“Advanced Lithium-Based Chemistry Cell Development”
PI: Dr. Bob Staniewicz, Saft America

Project:  ETDP Energy Storage Project –
Space-rated Lithium-ion Batteries

COTR:  Tom Miller, NASA GRC

Cell Development 
NASA Contract # NNC09BA04B

manufacturing process.
Toda-9100 identified as baseline cathode.

Baseline cells: graphite anode (MPG-111), nickel-cobalt cathode (NCA)
DD cells (10 Ah, cylindrical): fabricated and under test.
34P cells(45 Ah, prismatic): fabricated, activated, and delivered.

Flightweight cells (35 Ah, prismatic):  PDR held May, 2010
Flightweight cell design predicted to meet 185 Wh/kg at 25 C,
and possibly 194 Wh/kg (using a proposed design change in the bussing 
configuration) 0 C predictions below current baseline DD Cells

34PCell

configuration).  0 C predictions below current baseline.

Basic
(34 months)

Option 1
Flightweight Cell Fabrication (18 months)

High Energy Cell
• Component screening and evaluation 

for manufacturing suitability
• Component material scale-up
• Electrode optimization
• Fabrication and delivery of 

evaluation screening cells
• Flightweight cell design

Fabrication and delivery of 12-48 (TBR) High 
Energy, ~35 Ah (TBR) flightweight cells that 
incorporate cell-level safety components.

Ultra High Energy 
Cell

Fabrication and delivery of 12-48 (TBR) Ultra 
High Energy, ~35 Ah (TBR) flightweight cells 
that incorporate cell-level safety components.

DD Cells

Key Key Accomplishment:Accomplishment:

Objective:Objective:
Develop a cell/battery design tool to aid 
in component materials assessments

Cell Development
Battery Estimator Rev. 13

0.95 cc elyte/Ah units flag 2

Electrochemical Projections %of base material grams wt% thickness thk., mils vol%
User input theor. potential (V) 4.1 100% user Pos 182.0728 52% Positive mix layer 2.56 46%

area basis 9083 cm2 capacity (Ah) 39.00 2600% user Neg 50.9804 14% Negative mix layer 1.65 29%
capacity 39.00 Ah energy (Wh) 134.56 2486% LiPF6/EC-DMC 46.9994 13% separator 0.79 14%

P/N_ratio 0.9 total weight (g) 353.06 1152% Celgard 2500 6.9485 2% positive collector 0.40 7%
Neg IrrCap% 10% total volume (cm3) 129.08 1006% Al 24.8981 7% negative collector 0.20 4%
PosPorosity 20% vol-% Wh/kg 381.12 216% Cu 41.1584 12% total 5.5951 100%
NegPorosity 40% vol-% Wh/dm3 1042.4 247% total 353.0576 100% bicell electrodes

VoltageEfficiency 84% % of theor. Ah/kg 110.46 226% pos electrode 206.97 pos electrode thk. 5.52
separator thk. 0.79 mils Ah/dm3 302.1 258% neg electrode 92.14 neg electrode thk. 3.49

Pos_Collector_thk 0.40 mils thk., (mils) 5.6 64% cell volume includes terminal length
Neg_Collector_thk 0.20 mils kg/dm3 2.735 115% Current case Wh/kg Wh/liter g current density

Ah/m2 42.94 166% electrochemical 381.12 1042.4 353.06 5 hr-rate

material selection Effective Volts 3.450 prismatic cell 343.82 652.4 391.36 7.8 Amps

Positive mix 1 capacity mAh/g active mat'l. net cylindrical cell 347.10 794.1 387.66 0.859 mA/cm2

10% 1 positive 280.0 214.2 battery, prismatic 273.85 544.0 3930.9

5% 3 negative 1000.0 765.0 battery, cylindrical 270.53 524.4 3979
density 2.735 g/cc

user Pos

Toggle thickness unitsShow %-of-baselineSet as baseline Restore

Kynar

Super-P

• Spread sheet developed that projects 
cell/battery level characteristics based on 
component level materials 

• Based on standard design configuration
• Configured to rapidly perform what-if? 

analyses

Significance:Significance:

• Aids in quantifying impact of incremental 
improvements in battery design materials 300
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p y g
• Allows identification of critical factors which 

control cell/battery energy density and specific 
energy

• Provide engineering-accuracy forecasts of size 
and mass for cells and batteries

• Rate performance can be estimated from 
laboratory data for electrodes under relevant 
conditions
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• Projected discharge profiles for cells using 
electrode voltage data 
 Based on electrode data at 23 and 0 °C

 Representative of fresh cell without many cycles

Cell-Level Specific Energy Prediction Results –
Using Current Component Data
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High Energy

23 °C
• Cathode low-temperature performance 

produces very low specific energy at 0 °C
 Lower than SOA at 0 °C

 Specific energy at room temperature represents 
improvement over SOA

KPP at 0 °C model at 3 V cutoff

threshold goal 23 °C 0 °C
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Baseline electrodes = MPG-111 and NCA
HE electrodes = MPG-111 and Li(LiNMC)O2 

UHE electrodes = Si-composite and Li(LiNMC)O2

• Expected performance should improve with further component development
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Energy Storage Risk Assessment: Overall Project - Closed Risks
Summary Since December 2007 Major Re-plan

1

2

33

2

5
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
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CONSEQUENCES         

1

671







Explanation of risk closure before 
becoming “green”:

2010 





becoming green :

1. Constellation accepted late 
delivery of regenerative fuel 
cell so this project closed it 
as an Energy Storage risk.

2. Battery performance risk split 
into more detailed technical 
risks.
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Rank/
ID

Description Likelihood, Consequence     
Mitigation

Risk Mgmt Approach

1

ES-04

Battery 
safety: 
chemistries 
may pose 
unacceptable 
risks to the 

Less likely with lithium ion 
chemistry than with lithium 
metals.  Potential 
consequence is  
spontaneous ignition 
causing loss of crew.

Address electrolyte flammability.
Include safety goals in NRA and RFP. 
Develop fault isolation electronics.
Carry “high energy” cell as fall back.

Energy Storage Risk Assessment: Overall Project – Open Risks
Summary Since December 2007 Major Re-plan

12

1



1 2 3 4 5

2

1

L
I
H
O
O
D

CONSEQUENCES         

crew. (3, 5)

2

ES-03

Regenerative 
fuel cell life: 
10,000 hr 
reliable 
operation 
may not be 
achieved.

Highly likely that new 
system design will have 
unforseen problems that 
could limit life goal.

(4, 4)

Develop non-flow-through technology to 
eliminate balance-of-plant components 
(including the highest-failure-rate 
components) for both primary and 
regenerative fuel cell systems. 

Build fuel cell systems out of modular 
units to prevent single-point failures. 

Leverage SBIR/IBR for innovation.

3

ES-10

IPP/SBIR 
electrolysis 
funding not 
stable

IPP/SBIR funding likely to 
remain steady in FY09 and 
FY10.  If not, high pressure 
electrolysis will not be ready 
for integration further

Focus SBIR solicitations on Energy 
Storage needs.

3

1. Li-ion chemistry selected.
2 P i f l ll i k l d





3

for integration further 
impacting LSS schedule.  
(1, 4)

2. Primary fuel cell risk lowered; 
electrolysis still at low TRL.

3. Management structure of the 
SBIR program in flux.

2010

Rank/
Trend

Description Likelihood/Consequences Risk Mgt. Approach

1

ES-
13a

ES-
13b

There is uncertainty of 
the load profile and 
energy requirements 
within the Constellation 
Program

Trade studies based on limited program 
requirements may miss the key drivers 
associated with the energy storage technical 
focus.

Impact: Although there are iterative cycles to 

Define the power load profiles 
and mission requirements as 
early as possible.

Energy Storage Risk Assessment: Batteries
Status of Risks as Reported at Last TCR

5

4

L
I
K
E

1a 21b

13b Program.

1a) LSS

1B) EVA and Altair

Impact: Although there are iterative cycles to 
continuously review updated requirements, 
there are potential schedule impacts if 
significant re-work is necessary.

2

ES-14

Scale-up of critical 
materials to meet 
performance goals may 
not be compatible with 
existing manufacturing 
techniques or may 
require multiple re-
qualifications.

The aerospace lithium-ion battery market is 
small in comparison with the commercial 
market sector and the commercial market 
drives the manufacturing process.

Impact: There is a risk that once the lithium-
ion cell design has been baselined, the 
suppliers may alter their manufacturing 
process and impact performance or 
necessitate re-qualification of the lithium-ion 
cell.

Contract with Industry Partner to 
evaluate advanced materials for 
their manufacturability. Factor 
results into component 
downselection decisions. 

Once baselined for flight, 
maintain government 
control/oversight/manufacturing 
of critical materials.

CONSEQUENCES

3

2

1

1 2 3 4 5

L
I
H
O
O
D

2,31b

3

ES-15

Poor integrated cell 
performance due to 
potential incompatibility 
of the best selected 
cathodes, anodes, 
electrolytes, separators, 
and their associated 
unique manufacturing 
processes to function 
together as a complete 
lithium-ion cell design. 

Prelim assessment = 3 / 5; Individual 
development of advanced components for 
lithium-ion cells may fail to meet all of the 
enhanced performance metrics for human-
rated batteries. Impact: Additional interactive 
investigations with added costs will need to 
be conducted to meet the compatibility 
issues and safety for human-rating.

Integrate candidate materials 
together in a laboratory to screen 
for compatibility and guide 
selection of best components.

Manufacture evaluation cells 
with different combinations of 
candidate component materials 
and conduct performance, safety 
and abuse testing to determine 
the best performing chemistries. 

1. EVA and Altair have detailed 
power lists, although still 
subject to change. LSS 
working on power profiles.

2. Materials now selected; 
scale-up not yet begun

3. Integration not yet begun.

2010
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Rank
WBS 
Trend

Description Likelihood,   
Consequence     

Mitigation

Risk Mgmt Approach

1
ES-
12

Non-Flow-Through 
stack development 
may not be 
successful.

If Non-Flow-Through 
stack development is not 
successful, mass/vol 
and reliability 
requirements won’t be 
met for Lander & LSS.

Non-flow-through stack being 
developed by experienced vendor 
personnel team (Gemini, Shuttle 
fuel cell experience); several 
leading fuel cell SBIR vendors 
developing back-up stacks.

2 N Fl Th h If N Fl Th h N fl th h b l f l t

5

4

3

L
I
K
E

Energy Storage Risk Assessment: Fuel Cells
Status of Risks as Reported at Last TCR

12

3 4

5

1
2

ES-
12

Non-Flow-Through 
balance-of-plant 
development may 
not be successful.

If Non-Flow-Through 
balance-of-plant 
development is not 
successful, mass/vol 
and reliability 
requirements won’t be 
met for Lander & LSS.

Non-flow-through balance-of-plant 
being developed in-house at NASA 
by experienced fuel cell team; 
system integration and testing 
planned at each succeeding 
technology readiness level.

3 High-pressure 
electrolysis for RFC 
may not be 
successful.

If high-pressure 
electrolysis is not 
successful, lower 
pressure electrolysis will 
be required with 
mass/vol and parasitic 
power penalties.

Two parallel development 
approaches (IPP & SBIR) with 
leading high-pressure electrolysis 
vendors. Down-select to follow, 
leading to TRL

5 & 6.

1 2 3 4 5

2

1

L
I
H
O
O
D

CONSEQUENCES         

2

1. Non-flow-through stacks built 
and tested, initial feasibility 
demonstrated 4 RFC integration of 

fuel cell and 
electrolysis 
technologies may 
not be successful.

If necessary integration 
hardware doesn’t work, 
RFC won’t be available 
for LSS.

Perform reactant management 
study/design, followed by hardware 
development, integration, and 
testing.

5
ES-
03

10,000 hr. life for 
primary fuel cells 
and RFCs may not 
be achievable.

If 10,000 hr. system life 
is not achievable, extra 
redundancy or 
premature system 
maintenance or 
replacement will be 
required.

Stress long life at component and 
subsystem levels; perform system 
life testing at TRL-5 for early 
awareness of issues; perform at 
TRL-6 in parallel with system 
qualification.

demonstrated.
2. NFT BOP built and tested, 

initial feasibility 
demonstrated.

3. Initial electrolysis work 
promising, but too early to 
reduce likelihood a level.

4. Same
5. Same

2010

Top 10 Battery 
Lower-Level Risks
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Top 10 Fuel Cell & RFC Lower-Level Risks

TRL Status

Technology
TRL at 
end of 
FY10

Needed to reach TRL 6 Comments

Technical Budget 
(ROM)

Schedule
(ROM)

Non-Flow-Through Fuel 
Cell S stem

4 $19M 3  Years
Cell System

High Pressure (2000 psi)
electrolyzer

2/3 $21M 5  Years

Regenerative Fuel Cell 
System

2

“High Energy” lithium-ion 
battery cell

2/3 Component 
development

$17M* 3-4  Years Operation at

0 °C limits 
performance

“Ultra High Energy” 2/3 Component $19M* 6  Years Cycle life and 
lithium-ion battery cell development operation at

0 °C limits 
performance

*Some synergy will allow for cost savings if both High Energy and Ultra-High Energy battery 
cells are pursued concurrently. These estimates assume a stand-alone task.
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Lessons Learned

1. It is better to try to develop technologies with aggressive goals, aggressive 
schedules, and no budget margin than not to try, even if the risks are very 
high.

• Although we have not met our technical goals for battery components, we made 
substantial progress and are now positioned to support nearer-term demos.  
F th d l t i i d d ill ti t b hi h i k• Further development is required, and will continue to be high risk.

2. Down-selecting technologies before TRL-4 is extremely risky – we got lucky 
on this one for fuel cells.  

• A serious technology development program supporting serious program schedules 
should not take this risk.

• It is a testament to the skill of our technical staff that this decision could 
be made without adequate data on the lower-TRL system.

3. Working closely with Cx and industry at the very beginning had us on a path 
to cross the “valley-of-death” for technology infusion.

• Priorities set by EVA, LSS and Altair were essential to keep the technology 
focused.

• Feedback provided by Saft, America ensured a sharper focus on manufacturability 
early on.

• Close collaboration with Infinity Hydrogen led to success.

Energy storage technologies were considered critically important for NASA’s Constellation Program.
Advanced batteries are critical

Reduces mass/volume and extends mission duration for EVA,
Extends range and/or functionality of robots/mobility systems,
Reduces mass or adds functionality for landers

Advanced fuel cells are critical for vehicle power

Summary 

Advanced fuel cells are critical for vehicle power
Recent advances make NASA-developed technology extremely attractive for reliability and system 
mass/volume
Provides water for life support

Advanced regenerative fuel cells are critical
Provides surface power during the lunar night

Substantial technical progress was made under the Energy Storage 
Project

Advancements made in Lithium Ion components
Li(NMC) cathodes show improved specific capacity at C/10

64

Li(NMC) cathodes show improved specific capacity at C/10,
Silicon-composite anodes show improved cycle life, 
Electrolytes show compatibility with high-voltage cathodes and 
improved self-extinguishing times,
Cathode coating shows improved thermal stability.

Advancements made in PEM fuel cells
“Non-flow-through” stack technology demonstrated to TRL-4
Flat-plate heat-pipes demonstrated to be effective for thermal 
management
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Energy Storage Project Final Report 
List of Acronyms

BOP Balance of Plant
C Charge/Discharge Rate
CDR Critical Design Review
Cx Constellation Program
DOD Depth of Discharge
ETDP Exploration Technology Development Program
EVA Extra Vehicular Activity

MEA Membrane Electrode Assembly
NFT Non-Flow Through
NMC Ni-Mn-Co 
NTR New Technology Report
PDR Preliminary Design Review
PEM Proton Exchange Membrane
PEMFC Proton Exchange Membrane Fuel CellEVA Extra Vehicular Activity

FC Fuel Cell
FT Flow Through
GEN Generation
GRC Glenn Research Center
HE High Energy
HX Heat Exchanger
IPP Innovative Partnership Program
IRC Irreversible Capacity
ISRU In-Situ Resource Utilization
JPL Joint Propulsion Laboratory
JSC Johnson Space Center
KSC Kennedy Space Center
LAT L A hit t T

PEMFC Proton Exchange Membrane Fuel Cell
PI Principal Investigator
PLSS Portable Life Support System
PSU Power Supply Unit
RFC Regenerative Fuel Cell
R.T. Room Temperature
SBIR Small Business Innovative Research
SPR Small Pressurized Rover
TAMU Texas A&M University
TBD To Be Determined
TBR To Be Reviewed
TCR Technical Content Review
TPP Technology Prioritization Process

LAT Lunar Architecture Team
LS Lunar Surface
LSS Lunar Surface Systems
LT Launch Technology

TRL Technology Readiness Level
UHE Ultra-High Energy
URFC Unitized Regenerative Fuel Cell
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