NOAA Technical Memorandum NMFS

FEBRUARY 1983

REPORT OF PORPOISE EXPERIMENT TESTING DETECTION OF ON-TRACK SCHOOLS (PET DOTS), MARCH 7-APRIL 5, 1981

Rennie S. Holt

NOAA-TM-NMFS-SWFC-27

NOAA Technical Memorandum NMFS

The National Oceanic and Atmospheric Administration (NOAA), organized in 1970, has evolved into an agency which establishes national policies an manages and conserves our oceanic, coastal, and atmospheric resources. An organizational element within NOAA, the Office of Fisheries is responsible for fisheries policy and the direction of the National Marine Fisheries Service (NMFS).

In addition to its formal publications, the NMFS uses the NOAA Technical Memorandum series to issue informal scientific and technical publications when complete formal review and editorial processing are not appropriate or feasible. Documents within this series, however, reflect sound professional work and may be referenced in the formal scientific and technical literature.

CONTENTS

Page
INTRODUCTION 1
OBJECTIVES 1
VARIABLES MEASURED
Sea State 2
Sun Glare 2
Observer Performance 3
STUDY AREA AND ITINERARY
Area of Operation 3
Flight Schedule 3
PERSONNEL
Scientific Party 4
Flight Crew 4
EQUIPMENT
Aircraft 4
Navigation System 5
Cameras 5
Binoculars 5
Dye Markers 5
Clock 6
DUTY STATIONS 6
OBSERVER TEAMS AND ROTATION 7
PROCEDURES
Flight Procedures 7
Search Procedures 8
RESULTS 10
LITERATURE CITED 12
APPENDIX I 76
APPENDIX II 79
Table Page
1 Sea state conditions measured by the Beaufort scale (from Bowditch, 1966) 132 Searching effort, sun position, Beaufort number,and observer positions during each leg of flights1 through 16. Observer and Beaufort number codesdefined in text. Cloudy conditions denoted by ' 0 'horizontal and vertical position. Zero value for'speed KM/HR' denotes data not recorded143 Searching effort, sun position, Beaufort number, andobserver positions during each leg of flights 2through 16 occurring outside the study area. Observerand Beaufort number codes defined in text. Cloudyconditions denoted by ' 0 ' horizontal and vertical sunposition. Zero value for 'speed KM/HR' denotes data notrecorded.28
4 Dolphin schools, sun position, Beaufort number, observer detecting school and perpendicular distance, summarized by species codes, recorded during flights 1 through 16. School size estimates of zero denotes data not recorded. Schools detected during legs of effort occurring outside the study area denoted by '*'31

LIST OF FIGURES

Figure Page1 Vertical (top) and horizontal (bottom) sunpositions. Cloudy conditions denoted by zerohorizontal and vertical position57
Tracklines flown from the airplane during flights1 through 1658
Aerial survey transect record. 59
Aerial survey sighting record. 60
Tracklines flown in the study area during flight 2. Study area defined in text. 61
Tracklines flown in the study area during flight 3. Study area defined in text 62
Tracklines flown in the study area during flight 4. Study area defined in text 63
Tracklines flown in the study area during flight 5. Study area defined in text 64
Tracklines flown in the study area during flight 6. Study area defined in text. 65
Tracklines flown in the study area during flight 7. Study area defined in text. 66
Tracklines flown in the study area during flight 8. Study area defined in text 67
Tracklines flown in the study area during flight 9. Study area defined in text 68
Tracklines flown in the study area during flight 10. Study area defined in text. 69
Tracklines flown in the study area during flight 11. Study area defined in text. 70
Tracklines flown in the study area during flight 12. Study area defined in text 71
Tracklines flown in the study area during flight 13. Study area defined in text. 72
Tracklines flown in the study area during flight 14. Study area defined in text. 73
Tracklines flown in the study area during flight 15. Study area defined in text. 74
Tracklines flown in the study area during flight 16. Study area defined in text 75
Tracklines surveyed with good sea state conditions (Beauforts $0-2$) during Flights 2-16 77
Tracklines surveyed with poor sea state conditions (Beauforts 3-6) during Flights 2-16 78

Rennie S. Holt
Southwest Fisheries Center National Marine Fisheries Service, NOAA La Jolla, California 92038

INTRODUCTION

The National Marine Fisheries Service (NMFS) has the responsibility of assessing the status of the porpoise stocks which are affected by the Eastern Tropical Pacific tuna purse seine fishery. Stock assessments rely on estimates of the present population size of the stocks. Population abundance estimates were made in 1975 (Smith 1975¹, 1981) and 1979 (Holt and Powers, 1982) using line transect methods. I conducted an experimental aerial survey in 1980 off the coast of Costa Rica to test several of the assumptions made in the use of line transect theory for estimating porpoise abundance with aerial survey data. This paper describes the experimental procedures and the data obtained in this survey.

OBJECTIVES

The primary objective of the experiment was to examine the effect of environmental factors and observer performance on line transect methods used for estimating density of dolphin schools. Environmental factors investigated were sea state and sun glare. Observer performance was examined with experienced and inexperienced teams of observers. A secondary objective was to evaluate the use of aerial photographies for measuring dolphin lengths, determining species composition of schools, and comparing the precision of observer estimates of dolphin school size.

Specific requirements to accomplish the objectives of the survey were:

1. Use of a slow, low flying aircraft with a configuration permitting unobstructed views to the front, downward, and to both sides of the plane.
2. Fly tracklines so that similar flights were made under a range of sea state conditions and with different orientations to the sun.

[^0]3. Insure that observers with aerial surveying experience and those without experience had equal opportunity to search for schools under all environmental conditions.
4. Search for dolphin schools using methods compatible with line transect theory and estimate, either visually or using a navigational system, the perpendicular distance of each school from the trackline.
5. When conditions permitted, obtain vertical 1.97 cm and 0.89 cm format photographs of dolphin schools for enumeration of individuals and for studying school composition.
6. When necessary, leave the trackline and circle dolphin schools to: (a) estimate the number of individuals, (b) identify the species, and (c) record swimming patterns, school configuration and other behavioral aspects.
7. Have two observers in the bow such that one monitors the activities of the other to determine if schools are missed and not recorded.

VARIABLES MEASURED
Sea State

Sea state was measured using the Beaufort scale (Table 1) which ranged from Beaufort 0 (very calm seas) to Beaufort 6 (rough seas). Sea state conditions were recorded at the time searching began or was resumed, at the time of a dolphin sighting and whenever sea state conditions changed.

Sun Glare

Sun glare effects are dependent not only upon the sun's horizontal position but also its vertical position. Horizontal sun position was recorded using the positions of a clock face with 12 o'clock directly ahead. Vertical $^{\prime}$ position was recorded as $12,1,2$, or 3 with 12 directly overhead and 3 on the horizon (Figure 1). Sun positions were not recorded during cloudy conditions. Sun glare conditions were recorded at the time searching began or was resumed, at the time of a sighting and whenever sun position changed.

During previous aerial surveys (Holt and Powers, 1982), the bow observer was instructed to terminate the searching effort if he felt that all animals (schools with >14 animals) on the trackline could not be detected with probability of one. This may have occurred due to rain, darkness, very rough sea states or more frequently the presence of direct sun glare on the trackline. During this experiment we continued to search during all sun positions in order to define a range of conditions where all schools on the trackline could be detected.

Observer Performance

The critical assumption that all schools on the trackline are detected may be affected by the ability of individual observers to detect schools. Experience in detecting animals from the air may be critical. Therefore, in this experiment data for observers with previous aerial survey experience and those without were collected. In addition, a bow monitor provided a direct visual check of the bow observer's performance.

STUDY AREA AND ITINERARY

Area of Operation

The aircraft operated along the Pacific coast near Liberia, Costa Rica. Flights occurred in a coastal band extending seaward for approximately 55.5 km and parallel to the coast for approximately 111 km (Figure 2). The experimental design required the study area be sampled under all environmental conditions. The area defined was offshore the coastline from $9^{\circ} 41^{\prime}$ to $10^{\circ} 40^{\prime} \mathrm{N}$ latitude and from $85^{\circ} 20^{\prime}$ to $86^{\circ} 21^{\prime} \mathrm{W}$ longitude. This area was selected by examining the location of effort encountered under the various sea state conditions. Furthermore, the location of the western longitudinal boundary was selected to maximize the chance of enough survey effort in the area while insuring all experimental factors were spatially distributed and to reduce the inclusion of bias owing to onshore-to-offshore density gradients (Appendix I).

Flight Schedule
The survey was scheduled to begin January 2, 1981; however, because of mechanical and logistical problems, the first survey flight did not occur until March 7, 1981. The plane was ferried from its home base in Naples, Florida to San Jose, Costa Rica between February 18-22, 1981, and to the study base at Liberia, Costa Rica on March 1, 1981. Survey flights were conducted between March 7 and April 5, 1981 out of Liberia. The plane was ferried back to Naples between April 7-9, 1981. Survey flight schedules were:

Flight number	Date	Departure (local time)	Return (local time)	Flight Length (hours:minutes)
1	$3 / 7$	1455	1720	$2: 25$
2	$3 / 9$	1400	1732	$3: 32$
3	$3 / 10$	0750	1144	$3: 54$
4	$3 / 11$	0830	1200	$3: 30$
		1314	1708	$3: 54$
5	$3 / 12$	0637	1016	$3: 39$
	$3 / 13$	1252	1714	$4: 22$
		0632	1105	$4: 33$
		1312	1655	$3: 43$

Flight number	Date	Departure (local time)	Return (local time)	F1ight Length (hours:minutes)
7	$3 / 15$	0651	1113	$4: 22$
8	$3 / 16$	1335	1726	$3: 51$
9	$3 / 17$	0637	1118	$4: 41$
10	$3 / 19$	0637	1245	$6: 08$
		0646	1207	$5: 21$
11	$3 / 20$	1438	1720	$2: 42$
12	$3 / 21$	0854	1146	$2: 52$
13	$3 / 22$	0620	1108	$4: 48$
13	$4 / 1$	0614	1651	$3: 13$
14	$4 / 3$	0657	1029	$4: 13$
15	$4 / 4$	1358	0926	$2: 29$
		618	1742	$3: 44$
16	$4 / 5$	1445	1045	$4: 27$
		0614	1800	$3: 15$

PERSONNEL
Scientific Party
Rennie Holt, Chief Scientist, NMFS
William Brinkerhoff, NMFS
Larry Hansen, NMFS
Mark Lowry, NMFS
Frank Ralston, NMFS
William Walker, Los Angeles Natural History Museum (contractor)
Flight Crew
John 01son, Chief Pilot (Flights 1-13)
Timothy Flynn, Chief Pilot (Flights 14-16)
Robert DeRosa, Co-Pilot

EQUIPMENT

Aircraft

A Beech, AT11-A modified, two-engine, ex-military bombardier trainer aircraft, owned and operated by Aero-Marine Surveys, Inc., Groton, Connecticut was used in the survey. Reasons for selecting this aircraft were:

1. Flying speed - The plane was capable of flying a minimum of 185-278 $\mathrm{km} / \mathrm{hr}$ depending on prevailing winds. Experience with previous aerial surveys indicates flights should be flown in this range to ensure detection of schools on the trackline.
2. Observation areas - As a bombardier trainer, the nose of the airplane was made of plexiglass, allowing unobstructed forward and downward visibility. Modified left and right waist windows were installed in the rear of the plane. These windows were $41 \times 58 \mathrm{~cm}$ and allowed unobstructed vertical and aft view with less than 185 m from the trackline. Forward visibility at distances greater than approximately 555 m was partially obstructed by the wings of the plane.
3. Range - Fully loaded and in good flying conditions the plane was capable of flying at least 1159 km .
4. Safety - The plane could fly on one engine if necessary.
5. Cost - The hourly contract rate allowed a sufficient number of flights to obtain the needed sample sizes. Additionally, the plane was offered at the lowest price in the competitive bidding process.
6. Experience of contractor - Aero-Marine Surveys had considerable experience conducting surveys of this type.

Navigation System

An Omega Navigation System (ONS) was used throughout the survey. The system was used by the scientists to obtain geographic position, ground speed, and perpendicular distance of a school from the trackline. Data could be "frozen" in the display mode for subsequent transferring to data sheets.

Cameras

Three different format-size cameras were used to photograph dolphin schools and document the survey. These were a KA-62A (1.97 cm) format derial reconnaissance camera, four 70 mm (0.89 cm format) Hasselblad cameras, and a Nikon 35 mm camera.

Binoculars

Two types of binoculars were used. One, SWIFT Admiral Mark I, Model No. 751 (10x50 power) glasses, was used primarily to inspect possible targets seen with the unaided eye at long distances from the plane and the other, Minolta Celtic (7×35 power) wide angle binoculars, was used in making species identifications.

Dye Markers

A mixture of eosin, powered aluminum and small gravel enclosed in a paper bag was dropped from the plane as near a school as possible to aid in returning to the location of the school.

Clock

A digital Casio battery operated clock was used to record tine of sightings and positions. The clock displayed hours and minutes only. Consequently, calculations of ground speed for some legs of effort where few kiloneters were searched were imprecise.

DUTY STATIONS

Six duty stations were used during the survey, with observers rotating sequentially through all stations.

1. Bow: The bow observer sat in the plexiglass nose. His major responsibility was to detect all schools in a path approximately 185 m wide directly beneath the aircraft. He usually directed the plane over a school when in a circling mode.
2. Recorder: The recorder sat directly behind the pilots where he could visually monitor the ONS readout. He did not have access to the ONS controls, and had to request the pilots to display specific data elements in the readout unit. His duties were to take transect data at regular intervals and make notes of any pertinent information transmitted to him via the Internal Communication System (ICS). At times of sightings he was responsible for immediately recording the plane's position, time, and perpendicular distance of the school from the trackline. Other data required by the transect and sighting forms (Figures 3 and 4) were recorded while the sighted school was being observed. Observer school size estimates were generally not given over the ICS.
3. Left Waist: The port side observer sat on a cushion in the extreme aft of the cabin and observed an area from the edge of the plane outboard to a varied limit set primarily by environmental conditions and plane altitude. The viewing window was located in the rear of the plane so that the observer could see downward slightly under the plane, for observation of part of the trackline.
4. Bow Monitor: The bow monitor sat beside the bow observer in the plexiglass nose of the aircraft. His major duty was to serve as a visual check of the ability of the bow observer to detect schools directly beneath the airplane. The bow monitor refrained from indicating the presence of a school until it was obvious that the bow observer had failed to detect its presence i.e. the plane had completely overflown the school without its detection.
5. Right Waist: The starboard observer sat on a cushion adjacent the port observer but on the starboard side of the aircraft. His duties were identical to the left waist observer except on the opposite side of the aircraft.
6. Off: The last station was a nonduty rest position.

OBSERVER TEAMS AND ROTATION

Observers changed positions either when the plane reversed directions to survey in the opposite direction or after 45-55 minutes if the plane was following tracklines that zig-zagged across the study area. As a result of the rotational system observers were effectively partitioned into two teams, each with three members. The members of the "experienced" team had participated in previous aerial surveys that used line transect methods, while the members of the "inexperienced" team had not participated in aerial surveys of any type and were not familiar with line transect methods except as instructed during the presurvey training. Experienced observers were assigned number codes 8, 10 and 11 while inexperienced observer codes were 12, 13 and 14. Each team represented an independent effort in that members of a team always occupied the observational positions (bow observer, left and right waist) at the same time, and alternated observing with members of the other team.

The experienced and inexperienced teams alternated occupying the observational positions at the beginning of each flight. The bow monitor was a member of the opposing team. A die was rolled to determine specific starting duty stations within each team. Positions were assigned so that each observer had approximately equal access to each starting position.

Training for the study included flights aboard U.S. Coast Guard helicopters near San Diego, emphasizing (1) sighting cues used to detect marine mammals, (2) methods to estimate school sizes, (3) use of the Beaufort scale, and (4) familiarization with each element collected on the data forms.

PROCEDURES

Flight Procedures

One day's searching effort was considered as a single flight, although the plane may have made a refueling stop. Ideally a typical day's activities consisted of: departing the aerodrome between 0600-0630, a 10 -minute ferry to the study site, surveying until 1130, returning to airport and refueling, departing around 1330, surveying until 1700 and finally returning to the aerodrome to refuel for the next day's flight. This schedule was modified frequently due to mechanical and logistical problems so that only the morning or afternoon segment was completed. Because of delays encountered prior to the beginning of the survey flights, a 4 -day flight schedule was attempted. The first and third days' flights included morning and afternoon segments, the second day's flight included only a morning segment, and the fourth day was an off day. This schedule however could not be maintained due to mechanical and logistical emergencies. In practice, flights were generally completed when the plane and crew were available. A summary of events that contributed to flight schedule changes is given in Appendix II.

Once on a survey track, the pilots followed a predetermined line and maintained an altitude of 274 m . The aircraft's ground speed was generally maintained between 185 and $278 \mathrm{~km} / \mathrm{hr}$ dependent upon wind speed and
direction. The plane's course usually was not altered to avoid rain squalls.
Tracklines were oriented to provide a range of orientations of the plane to the sun. Generally lines were placed parallel to the coast in a northsouth and northwest-southeast directions (Figure 2). Lines were also surveyed which criss-crossed the study area to obtain desired sun orientations. The same trackline may have been flown on more than one occasion. The location of the first trackline flown each day was varied with distance from shore.

Search Procedures

In general, searching procedures used to detect dolphin schools followed those used in the NMFS 1979 aerial survey (Jackson, 1979²) with a major difference that the search mode was not terminated under adverse conditions. The search mode of each survey flight began when the plane was on the trackline. On a cue from the pilot, time and position were recorded and the observers began scanning the sea surface for signs of dolphins. Sighting cues used to locate the dolphins differed depending on the sea state, sun position, size of the school, behavior of the dolphins, and distance of the school from the aircraft.

The distance from the plane at which a school could be observed decreased as the sea state increased. For example, with calm seas, Beaufort two or less, various sea surface patterns could be distinguished up to several miles away from the aircraft. These patterns, referred to as "scars," would then be scrutinized with binoculars to determine the presence of dolphins. Under the same conditions, but closer to the plane, surface disturbances and/or the dolphins themselves were often the sighting cues. As sea conditions worsened, with larger swells and more white caps, scars and other surface disturbances became more difficult to detect. Such changes necessitated that the observer concentrate his efforts closer to the aircraft. Under adverse sea conditions, Beaufort five or higher, the animal itself was usually the only discernible sign. In these situations, all searching was done close in to the airplane. Bird activity was also used as a sighting cue during all sea states.

All observers, including the "off" observer if he desired, were in constant communication with each other and the pilots via the ICS. Throughout each survey flight, the recorder maintained a Transect Record (Figure 3) of the flight, leg number, date, altitude, ground speed (indicated on the ONS), and the code numbers of personnel at each of the observer stations. Sea state and sun position were also noted after consultation with the observers. A new transect record or leg was started at each rotation of observers, when the airplane made a major course or altitude change, or when environmental conditions changed, e.g., a change in Beaufort or sun position. Geographic

[^1]positions and local times were recorded at the beginning and end of each leg and at frequent intervals (transect checks) throughout the leg. Local time was subsequently converted to Greenwich Mean Time. Positions were also recorded for each sighting and when the aircraft diverted or returned to the trackline. "Search" or "no search" modes were noted for each geographic position and "sighting record numbers" were referenced to specific positions where a sighting occurred.

When a sighting was announced, the recorder inmediately logged the time and position, and assigned a sequential sighting number. Concurrently, the person making the sighting determined if the plane should be diverted from track to investigate. The plane generally did not divert if (a) the school consisted solely of large whales, (b) a suspected cue was detected at a perpendicular distance substantially greater than 1.85 km , (c) the school size was obviously less than 15 animals, or (d) for schools with more than 15 animals, environmental conditions were unsuitable for photography. If the observer determined that a sighting was made but decided not to divert the plane for further observations, he instructed the pilot to continue on track. He then relayed his information concerning the sighting to the recorder who filled out a Sighting Record (Figure 4) data sheet. Observer search effort continued if the airplane was not diverted.

If the observer decided to divert the plane, he asked the pilot to turn left or right so he could continue observing the school as the plane circled. At the same time, he also instructed the recorder to note the "cross track" distance if he felt an accurate reading could be obtained.

If conditions were suitable for aerial photography, the observer requested a photographic run. The pilots then positioned the plane between the sun and the school, so that the approach was made with the sun on the aircraft's tail, a pattern found most effective in previous aerial surveys. The observer also instructed the pilots to reduce airspeed to approximately $185 \mathrm{~km} / \mathrm{hr}$ while maintaining 274 m . Normally, the bow observer, having visually located the school while the plane circled, directed the pilots over the school during a photographic pass. From the bow position, he either fired the cameras or commanded another observer to start and stop the picture series. When the plane was directly over the school, the recorder was instructed to obtain another cross-track distance and, if possible, a geographic position. The perpendicular distance of the school from the aircraft was subsequently calculated.

Following the photographic run(s), the approach pattern was changed slightly to allow optimum observation for the observers to estimate school size. On these passes, still at 274 m , the plane was positioned so that the dolphin school was situated within 185 or 370 m of the plane and on the side opposite the sun. As the aircraft approached the school, the pilot, usually directed by the bow observer, dipped the wing to give the observers a near vertical view of the school with minimum glare. All available observers made independent estimates of school size. Using this same circling pattern, species identification was attempted. One observer, usually Mr. Walker, the marine mammal identification specialist, viewed the dolphins through wide angle binoculars while the remaining observers looked with their unaided
eye. Between each pass, discussions on noted identification characteristics took place to assist in determining the species. Circling in this manner continued until a positive identification was made or time constraints (usually less than 10 minutes) necessitated returning to the trackline.

If conditions were not suitable for photography, the circling procedure was abbreviated. An attempt was made to estinate school size and, if possible, to determine species identification in one pass. If it was apparent that school size was greater than 14 , the plane returned to track.

Line transect methods require determining perpendicular distances of objects, recorded as points, from the trackline (Burnham et al., 1980). Dolphin school configurations are not points but range from tight compact clusters to loose aggregations. In theory, the mid-point of the configuration should be utilized to determine perpendicular distance; however, given the speed of the aircraft and the spatial distribution of the animals, this was not practical. Instead, the perpendicular distance for a school was estimated by determining the distance of the initial sighting cue (i.e. first animal(s) detected) to the trackline.

The applied definition of a "school" affects the number of schools recorded. A group of dolphins spatially distributed over a small area in a loose aggregation could be viewed as one large school or several smaller independent schools. We tended to view those aggregations as one school. The decision was somewhat subjective, but we attempted to be consistent over all experimental conditions.

As the aircraft returned to track to resume searching, each observer made notes, in a personal notebook, of estimated school size (best-high-low) and species composition. School size was not discussed over the ICS if more than one observer made an estimate. Search effort resumed when the plane was at the searching altitude and back on track.

On occasion, when sightings occurred in rapid succession, the recorder asked each observer to record notes in his own log book concerning the sighting. Sighting numbers were supplied over the ICS to insure that data were coded accurately.

RESULTS

The primary objective of collecting data to allow comparison of sighting survey results under various sea state and sun angle conditions was accomplished with 373 sightings of marine mammals made while surveying 13,157 km in 16 flights. The tracklines searched for all flights (Figure 2) were in the area from $8^{\circ} \mathrm{N}$ to $11^{\circ} \mathrm{N}$ latitude, and from $85^{\circ} \mathrm{W}$ to $88^{\circ} \mathrm{W}$ longitude. Within the study area, 252 marine mammal sightings, which met all selection criteria, were made while surveying $10,712 \mathrm{~km}$ on 15 flights (Figures 5-19).

Data collected on each leg of effort for all flights, including the date, altitude, indicated ground speed, location of each observer, sun position, sea
state, number of sightings of schools of marine mammals, km covered, and mean $\mathrm{km} / \mathrm{hr}$ for each leg are given in Table 2. Data collected outside the study area are presented in Table 3. The "speed $\mathrm{km} / \mathrm{hr}$ " was ground speed recorded from the ONS at the time each leg began while "mean $\mathrm{km} / \mathrm{hr}$ in leg" was averaged ground speed calculated by dividing distances searched in a leg, determined from starting and ending geographic positions, by elapsed time in search mode. The latter is a better indicator of speed.

The details for each of the marine mammal sightings classified by species groups are given in Table 4. Included are the flight and leg, date, sun position, Beaufort number, observer making the sighting, perpendicular distance to the sighting, geographic position, and the school size. Most of the schools were not identified to species, as discussed previously. Eight of the 373 marine mammal schools recorded during the survey were identified as including two species (mixed schools) and, therefore, are presented twice in the species lists and summary tables (i.e. total schools in Table 4 equal 381). Sightings which occurred outside the study area are denoted by an asterisk in Table 4.

The requirements of the survey, listed on page 1, necessary to accomplish the objectives were met to various degrees. Requirements 2, 3, 4 and 7 were completed adequately: various sea states and sun orientations were encountered; experienced and inexperienced observer teans remained intact throughout the experiment; perpendicular distances were estimated for virtually all sightings and a bow monitor was present on all legs of all flights. During the survey, two schools were detected by the bow monitor which were not detected by the bow observer. These were schools 30 and 210 (Table 4). Requirement for use of a slow flying aircraft with unobstructed forward and downward views was partially met. The aircraft's speed was satisfactory; however, the view forward of the aircraft from the side ports was restricted by the wings. This reduced the time a school was available for detection before it was overflown. Requirement 5, aerial photography, was not accomplished due to very high sea states and minimal off-track circling. Requirement 6 was met, except that the procedure to minimize off-track circling resulted in a large number of the schools recorded as unidentified dolphins (Table 4).

The data presented here will allow evaluation of line transect density estimation methods under different sighting conditions and for observer effects. Detailed analyses of the data are under way.

LITERATURE CITED

Bowditch, N. 1966. American practical navigator, an epitome of navigation. U. S. Naval Oceanographic Office. H. O. Pub. No. 9. Washington, DC. 1524 pp.

Burnham, K. P., D. R. Anderson and J. L. Laake. 1980. Estimation of density for line transect sampling of biological populations. U. Wildl. Manag. Monographs No. 72, 220 pp.

Holt, R. S., and J. E. Powers. 1982. Abundance estimation of dolphin stocks involved in the eastern tropical Pacific yellowfin tuna fishery determined from aerial and ship surveys. NOAA TM-NMFS-SWFC-23, 95 pp .

Sinith, T. D. 1981. Line transect techniques for estimating density of porpoise schools. J. Wildl. Manag. 45(3):650-647.

Table 1. Sea state conditions measured by the Beaufort scale (from Bowditch, 1966).

Wind force (Beau- fort)	Knots	Descrip- tive	Sea conditions	Probable wave height in ft.
0	$0-1$	Calm	Sea smooth and mirror-like.	-
1	$1-3$	Light air	Scale-like ripples without foam crests.	$1 / 4$
2	$4-6$	Light breeze	Small short wavelets; crests have a glassy appearance and do not break.	$1 / 2$
4	710	Gentle breeze	Large wavelets; some crests begin to break; foam of glassy appearance. Occasional white foam crests.	2
5	$17-21$	Moderate breeze	Small waves, becoming longer; fairly breeze frequent white foam crests.	Moderate waves, taking a more pronounced long form; many white foam crests; there may be some spray.

凸

$0000-10000-0000000000000000000100$

-OT-NOOONNOOOONNNNNNNOONOONNNNNM-

 - - - - - - - - - - - - - - -

[^2]

	E6	YRMODA		ALT. SPEED FEET KH/HR		BOU MON. LEFT RIGHT REC.					$\begin{aligned} & \text { SUN POSIIION } \\ & \text { HORZ. VERT. } \end{aligned}$		BEAUF. NUKBER** NUMBER SIGHTINGS		KM	HEAN KM/HR IN LEG
4	13	81311		900					13		9	1	4	0	22.10	189.42
4	14	81	311	900	247	12	8	14	13	10	3	2	4	0	37.75	377.52
4	19	81	311	900	194	13	10	12	14	11	8	1	4	0	36.83	220.96
4	20	81	311	900	255	13	10	12	14	11	3	1	4	0	30.94	265.19
4	27	81	311	900	222	14	11	13	12	8	8	2	4	0	40.00	171.43
4	28	81	311	900	240	14	11	13	12	8	3	2	4	0	37.57	250.45
5	1	81	312	900	222	8	14	10	11	13	4	2	3	0	14.55	218.20
5	2	81	312	900	212	8	14	10	11	13	3	2	5	0	22.28	222.80
5	3	81	312	900	246	8	14	10	11	13	10	1	4	1	33.15	221.03
5	4	81	312	900	240	8	14	10	11	13	10	1	3	0	2.22	133.03
5	10	81	312	900	234	11	13	8	10	12	9	1	4	1	36.83	200.89
5	11	81	312	900	216	11	13	8	10	12	9	2	4	0	31.88	239.07
5	12	81	312	900	246	11	13	8	10	12	10	2	5	0	8.86	265.66
5	20	81	312	900	222	10	12	11	8	14	3	1	4	0	36.83	220.97
5	21	81	312	900	222	10	12	11	8	14	3	1	3	0	9.91	148.64
5	22	81	312	900	233	10	12	11	8	14	11	1	4	0	34.43	229.56
5	23	81	312	900	251	10	12	11	8	14	11	1	3	0	1.12	0.00
5	27	81	312	900	236	8	14	10	11	13	3	12	3	1	18.41	200.88
5	28	81	312	900	214	8	14	10	11	13	8	1	3	0	18.41	184.13
9	14	81	317	900	231	12	11	13	14	8	6	1	2	0	6.61	198.38
9	15	81	317	900	223	12	11	13	14	8	4	1	2	2	56.27	225.09
9	16	81	317	900	216	10	13	8	11	12	11	1	2	2	57.29	245.54
9	17	81	317	900	216	10	13	8	11	12	11	1	3	0	4.30	257.83
9	18	81	317	900	231	10	13	8	11	12	12	1	2	0	2.24	134.47
12	40	81	321	900	234	8	12	10	11	13	0	0	3	0	28.91	216.84
12	41	81	321	900	220	8	12	10	11	13	3	1	3	0	9.03	541.81
12	44	81	321	900	210	14	10	13	12	8	8	1	2	0	2.95	196.80
12	45	81	321	900	231	14	10	13	12	8	8	1	3	0	33.95	226.36
12	46	81	321	900	236	11	13	8	10	14	3	1	3	0	38.33	209.07
12	51	81	321	900	240	12	8	14	13	11	9	2	3	0	37.01	277.59
13	6	81	322	900	0	11	12	8	10	14	5	1	2	1	14.71	220.69
13	7	81	322	900	227	11	12	8	10	14	11	1	2	0	22.28	148.54
13	9	81	322	900	222	13	8	14	12	11	5	1	2	0	19.35	290.31

$N-\infty$
ニ二mN二

Table
and perpen-
during legs schoo Beaufort number, observer detecting species codes, recorded Dolphin schools, sun position, School size estimates of zero denes data not recorde

SPECIES: COASTAL SPOTTEI DOLPHIN (S.A. GRAFFMANI) SPECIES CODE:											
0BS.\#	flight	Leg	$\begin{aligned} & \text { IIATE } \\ & \text { YRHODY } \end{aligned}$	$\begin{aligned} & \text { SUN FOSITION } \\ & \text { HORZ. VERT. } \end{aligned}$	beauf. Number	$\begin{gathered} \text { IETECTED } \\ B Y \end{gathered}$	PERF. HIST. (NM)	Latitude deg min	LONGITUDE DEG MIN	$\frac{\text { MEAN_SCHO }}{\text { BEST }}$	$=\frac{S I 2 E}{L O W}$
102	6	15	810313	5	2	8	0.6	948 N	8540 W	75.0	59.0
201	9	10	810317	$10 \quad 1$	2	10	0.6	1027 N	8617 W	25.0	20.0
227	10	5	810319	10	2	14	0.4	1027 N	$864 W$	739.8	559.8
229	10	5	810319	10	2	12	0.5	1021 N	863 W	367.0	277.0
252	10	14	810319	$12 \quad 12$	2	8	0.0	1010	8558 W	225.0	175.0
257	10	19	810319	9 2	3	14	0.2	1020 N	866 W	238.0	194.0

```
                            \infty
```

m
SIGHTINGS EY SFECIES

085.\#	FLIGHT	LEG	$\begin{aligned} & \text { DATE } \\ & \text { YKMOIY } \end{aligned}$	SUN POSITION		BEAUF. NUMBER	IIETECTEII BY	FERF. IIST. (NM)	LATITUDE IIEG MIN			LONGITUDE DEG MIN			MEAN SCHOOL SIZE EST				
					. VERT.							EEST	LOW						
14	3	1	810310	9	2	3	10	1.6	10	18	N				86	7	W	533.0	400.0
156	7	17	810315	6	12	2	13	0.5		54	N	85	54	W	95.0	75.0			
204	9	13	810317	12	1	2	11	1.0		48	N	85	47	W	108.5	92.5			
231	10	5	810319	10	1	2	13	0.1	10	9	N	86	4	W	250.0	185.0			
235	10	9	810319	3	1	2	11	0.9	10	8	N	86	3	W	633.0	500.0			
274	12	31	810321	9	1	3	14	0.9	10	37	N	86	11	W	760.2	580.2			
285	12	46	810321	3	1	3	8	1.7	10	31	N	86	10	W	400.0	300.0			
312	14	11	810403	6	2	3	13	0.4		12	N	86	0	W	253.2	200.0			
318	14	13	810403	7	2	3	10	3.1	10	12	N	86	4	W	225.2	180.0			
350	16	29	810405	6	1	2	8	0.7		54	N	85	55	W	1325.0	1150.0			

$$
\text { 茈 } \quad 0
$$

SFECIES: STRTPED DOLPHIN
(S. COERULEOALBA)

SFECIES CODE: 13	
HEAN_SCHOOL SIZE ESI	
BEST	LON
225.0	150.0
77.0	87.0

085.\#	FLIGHT	LEG	IATE YRMOHY	$\begin{aligned} & \text { SUN FOSIIION } \\ & \text { HORZ. UERT. } \end{aligned}$	BEAUF. TUMBER	$\begin{gathered} \text { IETECTED } \\ \text { BY } \end{gathered}$	FERF. IIST. (NM)	LATITUIE IIEG MIN
296*	13	6	810322	51	2	11	0.0	1037
298*	13	14	810322	5	1	8	0.7	1034 N

$\infty \infty$

MEAN SCHOOL SIZE EST
LONGITUIE

OBS.\# FLIGHT
∞
으영
SPECIES CODE： 49
MEAN SCHOOL SIZE EST
BEST

3.0
2.0
2.0

岑岩	zこて			
啔	盛			
－				
压总	－on		2	00
:---	:---			
0	00			

SPECIES: BEAKED WHALE
㐫 $\quad \infty=\infty$

OBS．\＃	FLIGHT	LEG	DATE YRMODY	SUN HORZ	SITII	BEAUF． NUMBER
18＊	3	6	810310	9	1	3
35＊	4	8	810311	12	12	2
93	6	10	810313	4	2	2

$$
z z z z z z z z z z z z z z z z z z=z=z z
$$

Mono MMOQ0
———nomammmmmmmmmata\&otat

$$
\text { 二 } \infty \text { " }
$$

$$
\infty \text { oommo }
$$

SFECIES CODE： 77

岂学	
－0	
㟔	

 0BS．\＃

 o
(20

08S.\#	FLIGHT	ghecies: unimentified nolphin								SPECIES CONE: 77	
		LEG	diate	SUN FOSITION	beauf.	IETECTEI	PERF.	latiture	longiture	MEAN SCHOO	SILEEESI
			YRMOIY	HORZ. VERT.	Nutiber	BY	HIST. (NM)	DEG MIN	DEG MIN	BEST	LOW
182	8	19	810316	41	2	10	0.1	10.18 N	862 H	28.0	28.0
183	8	21	810316	$9 \quad 12$	1	12	0.5	1026 N	860	63.0	53.0
184	8	21	810316	$9 \quad 12$	1	13	0.2	1023 N	860	20.0	19.0
185	8	21	810316	$9 \quad 12$	1	14	0.1	1020 N	860 W	32.0	28.0
186	8	21	810316	$9 \quad 12$	1	14	0.0	1017 N	860 W	19.0	17.0
187	8	23	810316	$12 \quad 12$	2	14	0.0	956 N	8552 W	49.0	41.0
188	8	23	810316	$12 \quad 12$	2	13	1.0	955 N	8550 W	140.0	108.0
189	8	23	810316	$12 \quad 12$	2	14	0.0	954 N	8558 W	58.0	45.0
190	8	24	810316	12 - 12	2	14	0.0	952 N	8543 W	58.0	48.0
191	8	24	810316	$12 \quad 12$	2	14	0.1	949 N	8538 W	33.0	28.0
192	8	24	810316	$12 \quad 12$	2	14	0.0	947 N	8533 W	175.0	138.0
194	8	29	810316	312	3	11	0.1	108 N	8558 W	93.0	70.0
196	9	2	810317	$12 \quad 2$	3	8	0.3	956 N	863 W	300.0	250.0
197	9	4	810317	$12 \quad 2$	3	11	0.0	748 N	8547 W	130.0	100.0
198	9	6	810317	$5 \quad 2$	2	12	0.1	956 N	860 H	40.0	30.0
199	9	8	810317	$3 \quad 2$	3	14	0.6	102 N	8610 W	33.0	23.0
200	9	8	810317	32	3	13	0.2	1012 N	868 W	16.0	15.0
202	9	11	810317	101	3	8	0.3	10 ON	8615 W	63.0	29.0
203	9	13	810317	121	2	8	0.2	952 N	862 W	30.0	20.0
205	9	14	810317	61	2	14	0.6	950 N	8559 W	80.0	70.0
206	9	14	810317	61	2	14	0.6	958 N	8617 W	244.0	175.0
207*	9	15	810317	41	2	14	0.7	1025 N	8623 W	30.0	25.0
208*	9	15	810317	41	2	14	0.7	1029 N	8624 W	19.0	15.0
209*	9	16	810317	111	2	11	0.5	1018 N	8622 W	40.0	20.0

23 3 3 3 = 3 3 3 3 3 3 3 3 3 3 3 3 3

 IATE
YRMOEY

PERF.
IIST. (NM)
DETECTED
IIATE SUN POSITION BEAUF.
YRMODY HORZ. VERT. NUMBER

Lis

\# 二 3 3 3 3 3 = 3 3 3 3 3 3 3 3 3 3

 으으으으으으으우우으응

 DATE
YRMOIIY

以

z

gebeies: undientifien nolfhin
IATE SUN POSITIGN BEAUF. IETECTEG PERF.
YGMOMY HORZ. VERT. NUMEEK BY HIST. (NM

$$
\begin{aligned}
& \text { TION FEAUF, DETEC } \\
& \text { UERT. NUMBER }
\end{aligned}
$$

SIGHTINGS BY SpECIES
SPECTES: UNIDENTIFTED SMALL WHALE

085.\#	FLIGHT	Leg	$\begin{aligned} & \text { TIATE } \\ & \text { YRMODY } \end{aligned}$	$\begin{aligned} & \text { SUN } \\ & \text { HORZ } \end{aligned}$	SITIO	EEAUF. NUMBER	IETECTED BY	PERF. IIST. (NM)	latitude DEG MIN	Longitude DEG MIN	MEAN SCHO	$\frac{I Z E}{E O W}$
300	13	15	810322	12	12	1	8	0.2	1030 N	8614 W	18.0	18.0
324	15	14	810404	3	2	3	14	0.2	1023 N	861 W	30.0	25.0
325	15	17	810404	10	1	5	14	0.0	105 N	8556	0.0	3.0

085.\#	FLIGHT	Leg	$\begin{aligned} & \text { TIATE } \\ & \text { YRMODY } \end{aligned}$	$\begin{aligned} & \text { SUN } \\ & \text { HORZ } \end{aligned}$	SITIO	EEAUF. NUMBER	IETECTED BY	PERF. IIST. (NM)	latitude DEG MIN	Longitude DEG MIN	MEAN SCHO	$\frac{I Z E}{E O W}$
300	13	15	810322	12	12	1	8	0.2	1030 N	8614 W	18.0	18.0
324	15	14	810404	3	2	3	14	0.2	1023 N	861 W	30.0	25.0
325	15	17	810404	10	1	5	14	0.0	105 N	8556	0.0	3.0

$$
\infty \pm \pm
$$

SPECIES CODE: 79 MEAH SCHOOL SIZE ESILONGITUAE
DEG MIN
$8815 W$INLATITUD
DIEG MI
SIGHTINGS BY SPECIESSPECIES: UNiontified lakge hhale

S\#IOJ-1S AQ SONILHIS

SIGHTMNGS By bectes

| 3 | 10 | 5 | 5 | $366.27(10)$ | $580.71(10)$ | $458.31(10)$ | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 6 | 6 | 5 | 1 | $214.13($ | $6)$ | $350.63($ | $6)$ | $276.30($ | $6)$ |
| 13 | 2 | 2 | 0 | $118.50($ | $2)$ | $238.50($ | $2)$ | $161.00($ | $2)$ |
| 21 | 29 | 28 | 1 | $8.28(29)$ | $10.31(29)$ | $9.40(29)$ | | | |
| 77 | 280 | 276 | 4 | $92.52(279)$ | $176.47(278)$ | $124.69(280)$ | | | |
| 90 | 16 | 11 | 5 | $182.65(14)$ | $327.79(14)$ | $308.64(16)$ | | | |

$\stackrel{n}{\sim}$
$\stackrel{y}{c}$
$\stackrel{a}{\square}$
SPECIES NAME
(SCIENTIFIC NAME)
(STENELLA LOUGIROSTRIS) COASTAL SFOTTEI IIOLFHIN
(S.A. GRAFFMANI)
STRIFEI DOLFHIN
(5. COERULEOALBA) RISSO'S IOLFHIN
(GRAMFUS GRISEUS) UNIDENTIFIET MOLFHIN SPOTTED IOLFHIN
(STENELLA ATIENUATA)
(stenella attenuata)
(SCIENTIFIC NAME)
totals
GRANI TOTAL

$\left.\begin{array}{lllllllllll}33 & 3 & 3 & 0 & 28.00(& 3) & 39.33(& 3) & 32.00(& 3\end{array}\right)$

Figure 1. Vertical (top) and horizontal (bottom) sun positions. Cloudy conditions denoted by zero horizontal and vertical position.

Figure 2. Tracklines flown from the airplane during flights 1 through 16.

AERIAL SURVEY TRANSECT RECORD

Figure 3. Aerial survey transect record.

AERIAL SURVEY SIGHTING RECORD

Figure 4. Aerial survey sighting record.

Figure 5. Tracklines flown in the study area during flight 2. Study area defined in text.

Figure 6. Tracklines flown in the study area during flight 3. Study area defined in text.

Figure 7. Tracklines flown in the study area during flight 4. Study area defined in text.

Figure 8. Tracklines flown in the study area during flight 5. Study area defined in text.

Figure 9. Tracklines flown in the study area during flight 6. Study area defined in text.

Figure 10. Tracklines flown in the study area during flight 7. Study area
defined in text.

Figure 11. Tracklines flown in the study area during flight 8. Study area defined in text.

Figure 12. Tracklines flown in the study area during flight 9. Study area defined in text.

Figure 13. Tracklines flown in the study area during flight 10. Study area defined in text.

Figure 14. Tracklines flown in the study area during flight 11. Study area defined in text.

Figure 15. Tracklines flown in the study area during flight 12. Study area defined in text.

Figure 16. Tracklines flown in the study area during flight 13. Study area defined in text.

Figure 17. Tracklines flown in the study area during flight 14. Study area defined in text.

Figure 18. Tracklines flown in the study area during flight 15. Study area defined in text.

Figure 19. Tracklines flown in the study area during flight 16. Study area defined in text.

The experimental design required that the study area be surveyed approximately uniformly for all variables. Data encountered during the various sun glare conditions were partially selected by manipulating the direction of travel of the plane during each flight. Data encountered during the various sea state conditions could not be selected but were recorded as encountered. During the survey, Flight 1, a training flight, and Flights 2, 3 , and 4 were used to determine an area where sea state conditions were uniform. It was perceived empirically that the northern, southern and far offshore regions covered by these flights had higher sea states than the more inshore region, therefore, the majority of the subsequent flights were conducted closer inshore. Inspection of the spatial distribution of effort conducted during good (Beauforts 0-2) and poor (Beauforts 3-6) conditions (Figures A1-1 and A1-2) confirmed the empirical observations. The study area was defined from $9^{\circ} 41^{\prime}$ to $10^{\circ} 40^{\prime} \mathrm{N}$ latitude and from $85^{\circ} 20^{\prime}$ to $86^{\circ} 21^{\prime} \mathrm{W}$ longitude. The location of the western boundary was placed conservatively to insure sea state conditions were spatially distributed in the study area and to reduce the inclusion of bias owing to onshore-to-offshore density gradients.

Figure AI-1. Tracklines surveyed with good sea state conditions (Beauforts 0-2) during flights 2-16.

Figure AI-2 Tracklines surveyed with poor sea state conditions (Beauforts 3-6) during flights 2-16.

APPENDIX II
Summary of Time-Lost Problems

The major time lost occurred prior to the outset of the survey. The survey was originally scheduled to begin January 2; however, delays, including an engine fire, encountered by the contractor while completing an earlier project forced the scheduled departure to January 12.

On January 12 the plane took off from the contractor's home office in Groton, Connecticut to ferry to Naples, Florida, the designated home base for the survey. Immediately after take off the landing gear malfunctioned and could not be lowered into the landing position. The plane was forced to complete a wheels-up landing at the Groton airport. Damage to the aircraft's frame was minimal. However, both engines had to be replaced. The plane was repaired and was flown to Naples, Florida on February 12 after a lapse of 31 days.

The scientific crew departed San Diego for Costa Rica via commercial airline on February 13, but the survey airplane, which had departed Naples for Costa Rica, encountered rough weather and had to return to Naples. Additionally a mechanical problem with the landing gear was found. The plane finally arrived in San Jose, Costa Rica on February 22 after a delay of 10 days.

During the next few days several problems were encountered: an aerial photography camera which had been air "expressed" to San Jose did not arrive for two weeks, and then was impounded by customs; one additional aircraft seat for the observer team was required; and camera mounts had to be custom made and installed. However, the most serious problem was a continuous 30-40 knot crosswind blowing across the single runway at the San Jose airport. The AT-11 airplane has a tail landing wheel, which makes the plane very difficult to control on landing in crosswinds greater than 20 knots. An alternate airport at Liberia, Costa Rica was located. Aviation fuel was not available at the airport, but arrangements were completed for fuel to be trucked to Liberia, and the base of operatons was moved to Liberia on March 6 after a delay of 13 days.

Flight 1 occurred on March 7. The tachometer broke inflight, and a replacement was flown to San Jose from Naples. The part was installed and flight 2 was made on March 9 after a delay of 1 day.

The morning segment of flight 3 was completed on March 10, however, electrical power to the gas pump used to refuel the airplane had been disconnected and the afternoon segment was cancelled.

Flights 4 through 7 were made on schedule. The morning segment of flight 8 was made but the afternoon segment was cancelled because of a lack of fuel. Additional fuel was obtained and flights $9-13$ were made on schedule.

The flight crew began a required scheduled 100 -hour maintenance check of the aircraft on March 24. Several needed repairs were identified, including a dead battery, faulty propellor governor, and a cracked cylinder head. Replacment parts were obtained and on March 31 flight 14 was attempted, however, the ONS failed. A replacement was obtained and flight 14 was finally made on April 3 after a delay of 13 days.

Flight 15 was made on April 4 and flight 16 on April 5. The operation of the ONS during off-track circling was intermittent and finally completely malfunctioned. The decision was then made to terminate the study and the scientific crew returned to San Diego on April 7.

RECENT TECHNICAL MEMORANDUMS

Copies of this and other NOAA Technical Memorandums are available from the National Technical Information Service, 5285 Port Royal Road, Springfield, VA 22167. Paper copies vary in price. Microfiche copies cost $\$ 3.50$. Recent issues of NOAA Technical Memorandums from the NMFS Southwest Fisheries Center are listed below:
NOAA TM NMFS SWFC 17 Local stability in maximum net productivity levels for a simple model porpoise population sizes.
T. POLACHECK
(April 1981)
18 Environmental data contouring program EDMAP2.
L. EBER
(April 1982)
19 The relationship between changes in gross reproductive rate and the current rate of increase for some simple age structured models.
T. POLACHECK
(May 1982)
20 Testing methods of estimating range and bearing to cetaceans aboard the R/V D. S. Jordan
T. D. SMITH
(1982)

21 "An annotated bibliography of the ecology of co-occurring tunas (Katsuwonus pelamis, Thunnus albacares) and dolphins (Stenella attenuata. Stenella Iongirostris and Delphinus delphis in the eastern tropical Pacific"
S. D. HAWES
(November 1982)
22 Structured flotsam as fish aggregating devices.
R. S. SHOMURA and W. M. MATSUMOTO
(November 1982)

23 Abundance estimation of dolphin stocks involved in the eastern tropical Pacific yellowfin tuna fishery determined from aerial and ship surveys to 1979.
R. S. HOLT and J. E. POWERS
(November 1982)
24 Revised update and retrieval system for the CaICOFI oceanographic data file.
L. EBER and N. WILEY
(December 1982)
25 A preliminary study of dolphin release procedures using model purse seines.
D. B. HOLTS and J. M. COE
(December 1982)
26 "Possible effects of sampling biases on reproduction rate estimates for porpoise in the eastern tropical Pacific."
TOM POLACHECK
(January 1983)

[^0]: ${ }^{1}$ Smith, T. D. 1975. Estimates of sizes of two populations of porpoise (Stenella) in the eastern tropical Pacific ocean. Southwest Fisheries Center Adminstrative Report No. LJ-75-67. La Jolla, CA 88 pp.

[^1]: ${ }^{2}$ Jackson, T. D. 1979. Trip report: porpoise population aerial survey of the eastern tropical Pacific Ocean, January 22-April 25, 1979, Southwest Fisheries Center Administrative Report. LJ-80-1, La Jolla, CA 74 pp.

[^2]:

 $0000-0000-000-00-0-00-0-000-0000 \mathrm{~m}$

 응응응ㅇㅇㅇ

