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Abstract 
A method for characterizing ice shapes using a self-organizing map (SOM) technique is presented. 

Self-organizing maps are neural-network techniques for representing noisy, multi-dimensional data 
aligned along a lower-dimensional and possibly nonlinear manifold. For a large set of noisy data, each 
element of a finite set of codebook vectors is iteratively moved in the direction of the data closest to the 
winner codebook vector. Through successive iterations, the codebook vectors begin to align with the 
trends of the higher-dimensional data. In information processing, the intent of SOM methods is to 
transmit the codebook vectors, which contains far fewer elements and requires much less memory or 
bandwidth, than the original noisy data set. When applied to airfoil ice accretion shapes, the properties of 
the codebook vectors and the statistical nature of the SOM methods allows for a quantitative comparison 
of experimentally measured mean or average ice shapes to ice shapes predicted using computer codes 
such as LEWICE. The nature of the codebook vectors also enables grid generation and surface roughness 
descriptions for use with the discrete-element roughness approach. In the present study, SOM 
characterizations are applied to a rime ice shape, a glaze ice shape at an angle of attack, a bi-modal glaze 
ice shape, and a multi-horn glaze ice shape. Improvements and future explorations will be discussed. 

Nomenclature 
b code book vector element 
h(i,j) neighborhood function of i to j codebook vectors 
j codebook vector index 
M number of codebook vectors 
Rd high-dimensional data space 
x element of data set 
δ scaling parameter governing neighborhood size 
η learning rate 

Introduction 
During the validation and verification of ice accretion codes, predicted ice shapes must be compared 

to experimental measurements of wind-tunnel or atmospheric ice shapes. Current methods for ice 
accretion code validation are either are based on ice shape features such as horn angle, horn thickness, 
stagnation thickness, and wrap limits, depicted in Figure 1.  
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While the shape features noted by Wright and Chung (Ref. 1) are important and can be related to 
airfoil performance, in many instances, distinct horns are not apparent and horn and ice features can 
change considerably along the span of a two-dimensional airfoil. Figure 2 shows the comparison of a 
measured ice shape to three different ice shape predictions for a NACA 0012 airfoil (Ref. 2). Like most 
other comparisons of computational predictions to ice shape measurements, Fortin et al. (Ref. 2) only 
provide an ad hoc comparison of the predicted ice shapes to a “typical” two-dimensional ice shape trace. 
Most importantly, no definition of what makes the measured ice shape “typical” is provided, and no 
statistical data are provided to determine how well the predictions compare to the “typical” ice shape. 

Most “two-dimensional” ice shapes on straight wings have considerable three-dimensional variations 
along the span of the wing. Figure 3 shows a three-dimensional point cloud from an ice shape measured 
after a test in the NASA Icing Research Tunnel at Glenn. The ice shape point cloud shows significant 
variation along the spanwise direction. This variation along the spanwise direction is evident when the 
point cloud is projected onto the chord-thickness plane, shown in Figure 4. Figure 4 shows that the 
“typical” ice shape may have a deviation of as much as 0.1 in. any direction on the horn. However, 
current ice shape comparison techniques do not consider this experimental uncertainty in the 
comparisons. More rigorous “typical” ice shapes and comparison methods are required to advance ice 
accretion codes. 
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Because of the spanwise variation of ice shape measurements, a new method is needed to determine 
what constitutes a “typical” ice shape. The following sections present the basics of a neural network 
concept called a self-organizing map (Ref. 3) has the potential for enabling this more rigorous comparison 
of ice shape predictions to three-dimensional ice shape measurements. A neural network concept called a 
self-organizing map (SOM) has the potential for enabling this more rigorous comparison of ice shape 
predictions to three-dimensional ice shape measurements. 

Self Organizing Maps 
Figure 5 shows three-dimensional data scattered about β, which is inherently one-dimensional 

(a manifold). In a signal-processing application, the data in Figure 5 is noisy and requires significant 
memory. If information about β could be obtained, the “trend” of the noisy data could be transmitted 
much less expensively than transmitting the complete noisy data set. The important question is “how can 
the nature of β be determined using the experimental data?” 

Self-organizing maps depend on the use of codebook vectors, b, to represent “clumps” of data, 
depicted in Figure 6. When a series of codebook vectors are connected, the one-dimensional manifold 
guiding the data in Figure 6 is represented by the spline through the codebook vectors. To develop the 
codebook vectors, an initial shape or random distribution of the vectors is determined. The codebook 
vectors are then moved in the direction of the “clump” of points to which the codebook vector is closest. 
Like most neural network approaches, the SOM requires a learning or training process. Over iterative 
moves, the codebook vectors spread out and settle into their local clumps.  

The self-organizing map (SOM) can be best described as a constrained clustering method (Ref. 3). 
Consider a data set of high dimensional points aligned (up to some noise) along a lower dimensional 
manifold embedded in the high dimensional data space Rd, as depicted in Figure 5. In SOM such a data 
set is described through a collection of M codebook vectors bj ∈ Rd, j = 1,2,...,M, living in the data space. 
Each codebook vector bj represents the region of the data space around it (Voronoi compartment of bj), 
such that all data points in that region are closer to bj than to any other codebook vector. Crucially, a 
topological neighborhood structure is imposed on the codebook using a neighborhood function h(i,j), 
i,j = 1,2,...M. Higher values of h(i,j) signify that codebook vectors bi, bj, should be neighbors (e.g., lie 
close to each other in the data space). Smaller values of h(i,j) mean that no such requirement applies.  

During the training process, the codebook vectors get adapted to the data set so that the quantization 
error (resulting from representing each original data point x by the codebook vector bwin(x) closest to it) is 
minimized and, at the same time, the layout of codebook vectors bj in the data space respects the 
neighborhood properties dictated by the neighborhood function h(i, j). For a one-dimensional data 
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structure, e.g., Figure 5, one simply prescribes that the representative codebook vectors bj must lie on a 
“bicycle chain” embedded in the data space. This corresponds to imposing a linear order on the codebook 
vector indexes 1<2<3<...<M and defining  
 

 ( ) ( ) ,exp, 2

2












δ

−
−=

jijih  i,j = 1,2,...,M, (1) 

 
where δ is the scale parameter governing the neighborhood size.  

During the training phase, data points are iteratively selected from the data set and for each data point 
x, all codebook vectors are moved from their current positions closer to x. By how much each codebook 
vector bj gets moved depends on how close we want bj to be to the principal representative bwin(x) of x. The 
closer bj should be to bwin(x), as measured by the value h(win(x), j) of the neighborhood function, the more 
it gets moved towards x. The update equation can be summarized as 
 
 ( )( ) ( )jjj bxjxwinhbb −⋅η⋅+← , , j = 1,2,...,M, (2) 
 
where η is a positive real number (called learning rate) modulating the proportions of codebook vector 
updates.  
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To ensure convergence of the algorithm, the learning rate η is made to decrease over time (e.g., 
exponentially) from some initial value to 0. It can be shown that in order to preserve the neighborhood 
relations among the codebook vectors, it is recommended that the neighborhood scale parameter δ 
decreases over time as well. Starting with a broader neighborhood (higher value of δ) enabling rough 
ordering of codebook vectors in the data space, the neighborhood size is gradually decreased, leading to a 
more selective codebook ordering.  

When the SOM method is applied to the two-dimensional projection of the ice shape data, the result is 
Figure 7. Figure 7 presents a 30-point SOM representation of the ice shape. The SOM results demonstrate 
that the codebook vectors spread out and, since many points are usually packed in feature changes (like horn 
tips), that most of the important shape features are captured well by the SOM representation.  

Application to Ice Shape Characterization 

The nature of the SOM method and the positioning of the codebook vectors also enable a more 
rigorous validation method for ice accretion codes. Since the “clumps” of points are distributed about the 
codebook vectors, the deviations of the point measurements in the clumps can be used to evaluate the 
coverage statistics and uncertainty of the codebook vector representation. Figure 8 demonstrates how each 
surface measurement is used to determine a deviation from the spline surface through the control points or 
codebook vectors. 

When the deviation of all of the points in a clump are used to calculate the spatial standard deviation 
about the codebook vectors, coverage limits that contain a set percentage of the points may be 
determined. An example of the generation of 95 percent coverage limits is presented in Figure 9. 
Figure 10 shows the resulting 95 percent coverage limits when the method is applied to the three-
dimensional ice shape using the central difference estimate for local derivatives at a codebook vector as 
opposed to the true spline normals. 

The coverage limits provide a mechanism for comparison of the measured ice shapes to predicted ice 
shapes. If the predicted ice shape is within the coverage limits or uncertainty bands, then the predicted ice 
shape agrees with the experimental measurements. An experimental uncertainty can also be assigned to horn 
dimensions and wrap limits. However, many questions remain regarding the repeatable application of SOM 
methods. For example, the most important is “how many codebook vectors are needed to fully characterize 
a shape?” Others are “If an initially random set of codebook vectors is used, is the method repeatable?” and 
“Can initial shapes be used that provide repeatable and quick ice shape characterization?” 
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In the next sections, the SOM will be applied to a rime ice shape, to a glaze ice shape formed on an 
airfoil at an angle of attack (depicted in Fig. 3), a bi-modal glaze ice shape, and a glaze ice shape with 
multiple upper and lower horns. Initial observations based on the ice shape characterizations are 
presented, and improvements and future explorations are discussed. 
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Application to Selected Ice Shapes 
Four ice shapes were examined using self organizing maps. The ice shapes were generated in the 

Icing Research Tunnel at NASA Glenn Research Center in Cleveland, Ohio. Castings were made of the 
ice shapes to enable better reflectivity of the laser off the ice accretion surfaces. The castings were 
scanned with different laser systems and used to create point clouds of the ice shapes. Each of the point 
clouds consisted of well over 100,000 point measurements. Because of the memory limits with the SOM 
tool used with more than 30 codebook vectors, only the 50 percent spanwise-center section and 
approximately the 20 percent of the chord-wise airfoil measurements closest to the leading–edge 
(approximately 20,000 points for each ice-shape) were analyzed.  

The shortened point clouds were then analyzed using the JAVA applet BSOM1 (Ref. 5). Initially, 
BSOM1 places a random distribution of codebook vectors in the ice shape domain. Running BSOM1 
with a random initial placing of the codebook vectors produces a final ice shape characterization where 
the codebook vectors adequately capture the ice shape, but the points are out of order along the arc-length 
of the manifold. To create ice shape characterizations with ordered points along the arc-length of the ice 
shape, the initial points were manually placed in order along a shape that resembled the first 15 percent of 
a NACA airfoil. BSOM1 was then set to “automatic learning” and run until significant movement of the 
codebook vectors could not be detected by sight. The resulting codebook vectors from BSOM1 and the 
point clouds were the read into Mathcad to generate the statistical coverage limits.  

The next sections describe the results of the SOM and statistical coverage limits for the four icing 
shapes. Those ice shapes include: 1) a rime ice shape, 2) a glazed ice shape created with the airfoil 
positioned with a nonzero angle of attack, 3) a bi-modal glaze ice shape, and 4) a multi-horn glaze ice 
shape. The ice shapes and corresponding SOM representations explore issues with the rapid and 
repeatable application of SOM methods to ice shapes. 

Rime Ice Shape 

Figure 11 presents a rime ice shape point cloud and its 30-point SOM representation. A significant 
observation about the SOM representation is the inability of the SOM to capture the sharp leading edge of 
the ice shape. Because the codebook vectors are automatically moved in the direction of the closest clump, 
the do not seem to capture abrupt changes in the manifold (discontinuous manifold derivatives) such as the 
leading edge on the rime ice shape where there is a low level of roughness. Otherwise, the codebook vectors 
capture the ice shape very well qualitatively.  
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Figure 12 presents the SOM representation of the rime ice shape and the 95 percent coverage limits. 
While the SOM does not capture the location of the “point” of the leading edge of the airfoil, the 
computed coverage limits enclose the point cloud. 

Glaze Ice Shape With Angle of Attack 

Figures 3, 7, and 10 present a gaze ice shape formed on an airfoil placed in the wind tunnel with an 
angle of attack. Inspecting Figures 3, 7, and 10, the far spanwise sections of the ice shape are bare airfoil 
surfaces, i.e., the edges of the airfoil have no ice accumulation. While the codebook vectors adequately 
seem to represent the ice shape, Figure 10 demonstrates that the inclusion of these non-iced airfoil points 
significantly increases the coverage limits on the bottom surface of the airfoil.  

To investigate the question of how many codebook vectors are needed to represent an ice shape, the 
shortened section of the ice shape of Figure 3, without the “clean” airfoil sections, was analyzed using a 
40-point SOM and a 50-point SOM. Figures 13 and 14 present the 40-point SOM representation and 
coverage limits of a glaze ice accretion formed on an airfoil at an angle of attack. Figure 13 demonstrates 
that increasing the number of codebook vectors to 40 continues to capture the form of the ice shape, 
qualitatively. Figure 14 demonstrates that eliminating the “clean” airfoil points that were included in the 
original ice-shape file greatly improves the coverage limits captured by the SOM. That is from 
observation, not more or not less than 5 percent of the shortened point cloud measurements appear outside 
the spline through the coverage limit points. 

Figures 15 and 16 present the results of a 50-point SOM for the shortened point cloud from the ice 
shape of Figure 3. Figures 15 and 16 demonstrate that increasing the number of codebook vectors does 
not necessarily improve the point cloud representation. Figure 15 shows that on the downstream section 
of the top horn, the codebook vectors begin to deviate about the perceived manifold in a meandering 
(i.e., zigzag) pattern. Figure 15 identifies a natural limiting factor of quality of BSOM representation. 
That limiting case being the minimum arc length between two codebook vectors should not be less than 
twice the local standard deviation of the data points from the manifold in order to adequately represent the 
original manifold. 
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Bi-Modal Glaze Ice Shape 

Some ice shapes have a significant variation in form, as opposed to smaller scale changes referred to as 
roughness, across the span of the airfoil and ice shape. In some instances, two distinct modes of ice shape 
can be identified within one ice shape point cloud. Figures 17 and 18 present the SOM results and coverage 
limits for a bi-modal ice shape. Figure 17 shows that for the shortened point cloud from the ice shape, the 
outer mode is dominant. The codebook vectors most closely follow the outer mode, but the codebook 
vectors are slightly skewed inward because of the points following the inner mode of the ice shape. 
Likewise, Figure 18 demonstrates that inclusion of the inner mode points inflates the coverage limits such 
that the outer limit points are far outside the true scatter of the point cloud outside of the codebook vectors.  

For a bi-modal ice shape, a meaningful representation of the ice shape would be obtained by 
characterizing both the inner and outer modes separately. For example, Figures 19 and 20 present a 
50-point SOM representation of the bi-modal ice shape with most of the points following the inner mode 
removed from the point cloud. While a few of the point begin to deviate from the outer mode shape, the 
new SOM representation and coverage limits represent the outer mode manifold very well. 

Multi-Horn Ice Shape 

Finally, the SOM approach was applied to a glaze ice shape that presented multiple horns on both the 
upper and lower surfaces of the airfoil. A 38-point SOM representation and the resulting coverage limits 
for an ice shape with multiple upper and lower surface horns are presented in Figures 21 and 22. 
Figures 21 and 22 demonstrate that the 38-point SOM representation effectively captures the overall 
manifold shape and the two dominant horn features; however, the smaller features of the surface are 
smoothed. Also, the coverage limits on the secondary bottom horn are somewhat inflated because the 
feature is actually a spanwise-developing feature. That is, the form of the secondary-bottom horn is not 
constant across shortened point cloud, but it is actually changing along the spanwise distance across the 
shortened point cloud. (As a side note, Figs. 21 and 22 present a 38-point SOM representation because 
two points were deleted from a 40-point data set from BSOM1. It is not clear why, but the BSOM1 
algorithm placed two codebook vectors almost exactly “on top” of two other codebook vectors. Co-
location of codebook vectors should not be an issue with SOM methods. Operator error with the initial 
placement of the codebook vectors, learning rate constant, and neighborhood scaling parameters during 
the learning process is suspected in causing the issue.) 
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Conclusions 
The neural network concept called a self-organizing map was presented for the identification of 

“typical” ice shapes for comparison of measured wind tunnel ice shapes with the results from ice 
accretion prediction codes. In addition to the ice shape characterization, a method was presented for the 
generation of coverage limits for the SOM representation using the statistics of the surface points around 
each point’s winning codebook vector. The coverage limits represent a first step in identifying a rigorous 
approach to verification and validation of ice accretion codes. The results of the SOM characterizations 
and coverage limits for four ice shapes were presented. The self organizing maps provided captured the 
significant trends of each of the ice shapes studied. While significant trends were captured, issues noted 
during the application of the SOM and coverage limit methods to the four ice shapes include: 
 
1. Errors in the SOM representation or coverage limit inflation may be caused by spurious points, 

non-ice shape artifacts (such as bare airfoil points), and bi-modal ice shapes; and 
2. When low noise (roughness) is present in the ice shape, the SOM methods may smooth regions with 

discontinuous slopes on the manifold such as at the tip of a rime ice shape; and 
3. There is an upper limit on the number of points able to capture the true form of the manifold 

(ice shape). This limit is set by the deviation of the point cloud about the manifold and the arc length 
along the manifold between two codebook vectors. 

 
While the results of this study are primarily qualitative based on visual inspection, the self-organizing 
map process represents a promising approach to rigorous characterization of three-dimensional ice shape 
point clouds. 
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