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ABSTRACT

This report describes the study and development
:of two numerical techniques for the analysis of
‘electromagnetic scattering from a rectangulér wire mesh. Both
techniques follow from one basic formulation and they are
both solved in the spectral domain. These techniques were
developed as 3 result of an investiqgation towards more
efficient numerical computation for mesh scattering. These
techniques are efficient for the following reasons:

a) They make use of the Fast Fourier Transform.

) They avoid any conv&lution problems by converting
integrodifferential equations into algebraic
equations.

c) They do not require inversions of any matrices.

The first method; the "SIT" or Spectral Iteration Technique,
ic applied for regions where the spacing between wires is
not less than two wavelenghs. The second method, the

"SDGC" or Spectral Domain Coniugate Gradient approach, can
be used for any spacing between adjacent wires. A study of
electromagnetic wave properties, such as reflection
coefficient, induced currents and aperture fields, as
functions of frequency, angle of incidence, polarization and
thickness of wires is presented. Examples and comparisons
of results with other methods are also included to suppeort

the validity of the new algorithms.
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1., INTRODUCTION

A new technology for large space-based systems requires
antennas with 100 meters or larger in diameter for radio
frequency operation, communication, earth observation and
radio astronomy applications.

A new type of antenna, the MESH DEPLOYABLE ANTENNA,
which appears to be more cost-effective and easier to .
trahsport into space compared to a solid reflector of 100
meters in diameter, was the motivation for the study
reported herein. Thé mesh used to construct large space
reflector antennas is usually made of gold-plated molybdenum
wire about one mill in diémeter. The wires run and cross in
a weave that is periodic in nature, forming a reflecting
surface that behaves differently depending on the number of
openings per wavelength and polarization of the incident
energy. The undesirable effects resulting from such a
surface include transmission loss, resistive loss, and cross
polarization loss.

Here a wire mesh structure is used as a simplified model
of the knitted (woven) material. A rectangular mesh
struéture is a periodic structure, and scattering from
periodic structures is a subject that has a long and
illustrious history dating back to Lamb and Rayleigh in the

last century [1-5].
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éonstructing solutions to the problem of mesh scattering
can be achieved using a variety of methods. One possible
-method which has been widely used is the METHOD OF MOMENTS
(MOM) [6-8]. This method, when applied to periodic
surfaces, has the disadvantage of requiring the inversion éf
a very large matrix, a fact that renders the method
unwieldy. Other methods involve COUPLED INTEGRAL EQUATIONS.
These methods will not usually yield a solution due to the
complexity of inverting the integrals for a periodic mesh.
Another popular technique used for estiméting the reflection
coefficient from a wire mesh is based on AVERAGED BOUNDARY
CONDITIONS [9-10]. Thigsmethod offers good results when the
number of mesh openings per wavelehgth is large [1l1].
However, even this method fai;s for certain applications
when the number of openings per wavelength becoﬁes small.

This dissertation includes the analysis and formulation
of two new models for studying scattering from wire meshes
that are more efficient and simpler to apply than the
previOué methods. The first method is based on the SPECTRAL
ITERATION APPROACH (SIT) [12-18] which is valid for cases
where the spacing between adjacent wires is larger than two
wavelengths. This limitation on the size of spacing between
wires for the SIT method led to the development of the
second model which is valid for all spacings. This new
model is the SPECTRAL DOMAIN CONJUGATE GRADIENT method

(SDCG) [19-22] and is a combination of the SIT and the



Conjugate Gradient method. Both methods utilize the fast
Fourier transform and avoid any convolution problems and any
inversion of matrices.

‘These two techniques offer new accurate models which can
be extended and applied to the more difficult problems of
knitted mesh surfaces. A number of examples are computed
and compared with other methods. Also, comments and
suggestions are made for possible extension of the SDCG
method to the more complicated problem of the knitted

structure.



2. THE SPECTRAL ITERATION APPROACH

2.1 FORMULATION
‘Any scattering problem could be expressed in the form of

the integral equation:
¢(X)=‘/%(Xux') v(x') dx + ¢i°°(x) (2.1)
with the constitutive equation V¥ (x)=K(x) o (x) (2.2)

where K(x,x') is the kernel of the integral transform

o "% (x) is the externally applied field
@ (x) is the field quantity, and
¥ (x) is the source quantity

The S.I.T. method is a frequency domain (Spectral
Domain) solution, and consists ofvcasting the general basic
global equations (i.e. the second order partial differential
equation or its integral representation, such as equation
(2.1)) as a local algebraic equation in the Fourier
transform space. and leaving the local constitutive equation
as a local algebraic equation in real space. That is,
taking the Fourier transform of equation (2.1) and keeping

(2.2) the same, one arrives at:

3 (k) = R(k) T (k) + & NC(k) (2.3)

¥ (x)

K(x) ® (x) (2.4)
Equations (2.3) and (2.4) show how the original set of
equations are converted into a set of two simultaneous

algebraic equations in two unknowns (the fields and the

induced currents) in two different domains connected by the



Fourier transform which is given by:

F(x) =[°;(x) exp(jk.x) dx (2.5)
The operatioﬁoin equation (2.5) from now‘on will be denoted
by the transform pair: '

F(k)e—>£(x) (2.6)
By virtue of the numerical Fast Fourier transform and the
local algebraic representation, the number of required
complex ﬁultiply and add operations and the number of
required storage locations are of the order of NlogzN and N
respectively (where N represents the number of F}oquet modes
or cells into which the problem is discretized). |

For periodic structﬁtes,—the Floquet theorem [23] is
used to account for the periodicity of the wire mesh and the

coupling between adjacent wires., The specific equations for

a wire mesh (See Figure 2.1) are formulated as follows:

Fig. 2.1. Wire mesh geometry
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The electric field E due to a magnetic current M is
given by:

E(x,y)=-1/4 VxF(x,y,2) ' (2.7)
where T is the associated electric vector potential of the
source and € is the permitivity of the medium in which the
wire mesh is placed. F and M are related by the free space
Green's function §=exp(—jﬁ.§)/411r by

'E(?)=fc‘?(?,?') M(E) aF (2.8)
From this the, magnetic field intensity, H, can be derived
(See Appendix 8.1) from Maxwell's equations and expressed
as:

R(X,y,2)= = wF(x,¥,2) +UVF(x,y,2)/j0eu " (2.9)
where 1 is the permeability of the medium. Sipce we have a
plangr‘éffﬁéiﬁfeﬁfé“is set equal to zero. Now expanding

equation (2.9) in terms of its Cartesian coordinates x and y

yields:
1 2 éf 2 éf
2 2
H(x,y)=— (kg + a + )Fx’:? 4-(ko + C) + )FYQ
Jaue | Ox ay axz Ox ay c7y2

(2.10)
A planar periodic structure such as that shown in Figure
(2.1) could be considered to be the source distribution for
the magnetic field of the equation (2.10). Substituting
equation (2.8) into equation (2.10) and taking Fourier
transform of equation (2.10) yields the transformed

scattered tangential fields at z=0 in the following form:



2 2 7]
} Ko “mn " %mnPan| - -
[ Gla__ ,B8 ) Mla_ B8 )
jou mn’ ~ mn mn’ P mn
_ 2_n2
mann Ko B mn

(2.11)

where amn=2 n m/a -ko sind cosop

an=2 n n/c --2 1T m/a cot ~ko sin® sing are the Floquet

modes [24] and

) = -j/2 (koz- a? -'Bz ) I is the Fourier

Gla B mn mn

mn mn

transform of Green's function.

Fig. 2.2 FSS Geometry

Taking the inverse Fourier transform of equation (2.11)

yields:



F;—Z -a? a_ B R
-l:s(x,y)=—l— ’ " e é( a B ila_, B )
w3 _ , , S o mn’ T mn mn’ ~ mn
mn |~ %anPan X0 "B mn
L — cexpljla x +B_ vl
(2.12=-a)
Now, by using the equivalence theorem and applying the
appropriate boundary conditions on ﬁs(x,y) at z=0 (see
Appendix 8.2) leads to: |
— —
%mn B mn k02"c"2mn . -
Etinc=“j_:ji— Z —é(amn’smn)ﬁ(o‘mn’amn)
mn | ® 2mn +.k'02 ~ “%mn P mn
— - -expljla _x +B ~v)]
(2.12-b)

where E represents the transformed electric aperture field .
-3 .

and H'™C is the incident tangential magnetic field. To

extend the formulation over the full range (i.e. to include

conducting regions), the current densities have to be added

to equation (2.12) to give:

(A NIE]
[ R

inc 2

A ->
G[J(X'Y)]= H-t j(L)l.L

B mn “ko ~%mn B mn
.ekp[j( a X +8 o v)]

(2.13)



where & 1is the complement of the truncation operator

defined as:

8(X(Z)]=X(¥) for ¥ in the aperture (2.14)
~and  @[X(¥)]=0 for ¥ in the conducting regions
and  S[X(E)I=x(¥)-8(X(?)] (2.15)
Note that in equation (2.13) 3-and EL are both the unknowns

to be solved for.

Equation (2.13) can be recognized as the discrete
Fourier series for a periodic sequence [25]. Note that
there is a direct duality between the (x,y,z) domain and the

(kx,k 'kz) domain. Since all the functions involved here

y
have a 2n /m and a 2m /n periodicity in their exponents, one
period (i.e. one cell) of the structure is .sufficient to
completely specify the transform. That leads to the use of
the discrete Fourier transform which can be evaluated very
efficiently by the Fast Fourier transform. It should be
noted here that because of the exactness of the duality
between the two domains, no aliasing effects will appear
when the FFT is performed. By aliaéing we mean overlapping
of spectral components.

Besides equation (2.13), the boundary condition that
governs the behavior of the tangential components oflﬁhe
electric field,'ﬁ, over the conducting regions has to be
satisfied: Equation (2.13) can now be rewritten as :

E, =z ! Frcut™ + 83 (2.16)
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> . . =
where Et is the Fourier transform of E_

F is the Fourier transform and F'-l is its inverse

Z. is the product of the Floquet expanding modes

and Green's dyadic in the spectral domain.

If the induced currents were available, the solution of E&

could be immediately obtained from (2.16). In practice,
-however, J is an unknown to be solved together with %t and
equation (2.16) cannot be solved directly; Instead, using
equation (2.16) a recursive relationship between the (p+l)th

approximate value of Ek and the pth approximation of Et is

L

now derived and both Et and J are computed simultaneously,
via the following iterative procedure:

a) Start with a guess for E, in the (x,y) domain and

t
‘ épply the truncation operator (i.e. apply the
boundary condition that Et=0 over any perfectly
conducting surfaces).
b) Take the Fourier transform of E&
c) Solve for 3(p)=F-1[%F(9Et(p))];ﬁtinc
| (2.17)

B o
d) Set currents J equal to zero everywhere except over

the conducting surfaces, that is find:

LR

)=8{F " T F (e B PNy 14 1IN¢ (2.18)

Substituting equation (2.18) into (2.16) yields:
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E P =7l F e F iz e g, (P42l P -E IO (H, 100

And finally taking the inverse Fourier transform of (2.19-a)

yields:

-~

- -15- -1 -15- > i A i
Et(p+l)_r_- 13 lFé\F 13 .,Q}Et(p),,_f_— 15-1 F[_Htlnc+e(-§t1nc)]

(2.19-b)
- -
Note that once Et is evaluated J can also be computed.
Equation (2.19-b) could be cast in a more convenient form

({operator form) as:

E (Pl g (P2 (2.20)
-13-1-8-13 ,
where L=F""z7'FeF "'z © is an operator
and C = F-l-z--lF[J’-ﬁtinc+6(§£inc)] is a constant that

depends on the initial conditions and the incident wave.
The two most attractive features of this method are the
following:
a) No extreme amount of computer memory storage is
required.
b) No explicit knowledge of appropriate basis functions
is needed.
However, like most iterative techniques, the basic iterative
scheme suffers from convergence problems. These problems
and the attempts to alleviate them is the subject of the

next section,

2.2 CONVERGENCE OF ITERATIVE SCHEME

To achieve convergence the important condition that has
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to be satisfied is that p (L) < 1 or that the spectral
radius of the operator L has to be less than one. As it
turns out, for two dimensional cases whefe the wire spacing
is greater than two wavelengths, o (L) < 1 anq hence
equation (2.20) converges very quickly for any type of
incident polarization, angle of inéidence and wire
thickness, However, for spacings less than two wavelengths
the method fails miserably. To achieve convergence in those
cases the Successive Relaxation method could be employed to
"rglax" the process and force p (L) < 1 for some relaxation
factor ©., The choice, not only of the optimum relaxation
factor, but simply of a relaxation factor that would produce
a convergent scheme is a difficult task indeed.

In the one dimensional problem (parallel grid) the
Contraction Mapping Theory was used very successfully to
obtain the optimum relaxation factor 6 which forces the
spectral fadius to be less than 1 [26]. To show how this

theory was used, equation (2.20) is rewritten as:

g(xn) = 1 - L x"+cC (2.21)
Define a new mapping G(x") so that: -
G(x") =ex + (1-8) g(x™) (2.22)

According to the contraction mapping theory [27-31] a
transformation G of a metric space X onto itself is Lipshitz
-continuous if there exists a p, independent of x and y such
that

d(G(x),G(y))<d(x,y) for all x,y,e X where d(x,y) is a
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proper metric in X. For strictly contractivé mappings is
less than one.
2.2.1 One Dimensional Case

‘For the one dimensional case the simplest possible
metric d that can be used to obtain the optimﬁm é is
chosen as follows:

laty)-a(x )| <o |y-x;| for p< 1 (2.23)
Let y=xo+-5 then
<p (2.24)

lG(xo+ S )-G(xo)l <p |8 or ‘C(xoé )-G(xo)
<)

So the necessary and sufficient condition for contraction

mapping becomes:

d (G(x)) <p (2.25)
“dx : : :

Now substitute (2.22) in (2.24) to obtain:
|8(xo+6)+(1-6}‘ g(x +6)-ex_+(1-6) g(x )| < p|s| or

|e+ (1-8) dg(x) | <p
dx

Setting © =0 in the above equation and solving for @
yields:

® = (dg(x)/dx)/(dg(x)/dx-1) (2.26)
This value of © is called the "contraction" factor since it
will yield a convergent scheme even in those cases where the
basic iterative scheme of equation (2.20) fails to converge.
It shquld be noted here that in the above analysis € is
treated as a constant when in fact it is a function of x.

The reason for that treatment is that 8 is solved in the
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'neighborhood of a solution (root) Xq where the values that ©
acquires are approximately equal. Therefore @ can be
assumed to be constant within that partiéular neighborhood.
(For examples and results on the one dimensional problem see
[26]).
2,2.2 Two Dimensional Case

In two dimensions, the basic iterative scheme of

equation (2.21) is given by:

XL L12 x| |c1
= +
x Lo L22 vyl |c2
. (2.27)
or n+l n ‘n
X = L1l x + Ll12 y +.Cl
y™* o= 21 x™ + 122 y" + C2 (2.28)

Equation (2.28) can be expressed in the more convenient

form:
xn+l - g(xn,yn)
y™*1 o= nex®,y™ (2.29)

To achieve convergence in the two dimensional problem, the

four partial derivatives gx,gy,hx and hy must satisfy the
following condition [32-35]:

|gx|+|gy|< kl

‘hx|+|hyl< k2 (2.30)

for k1l and k2 less than one and for all points (x,y) in the
neighborhood R of the root (xo,yo), where R consists of all
(x,y) with|x-xoK € , |[y-yoK € , for some positive €. For

wire spacings less than two wavelengths condition (2.30) is
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not satisfied. Thus, one has to construct new mappings

(functions) for the system in (2.27) to obtain convergence
in a manner similar to the one dimensionél case. Now, to
apply the method of contraction mappings the system (2.29)

is rewritten as:

G(x",y™) Gxxn + (1-8 ) g(x",y"

H(xT,y") = 6y + (1-e) h(x",y") (2.31)

where Gx and GY are relaxation factors.
Unlike the one dimensional problem, Gx, Gy, Hx and Hy
cannot be separately set equal to zero since they would

produce a system of equations that are impossible to solve

for g,=0, g =0, h =0 and h =0, i.e.

. and

Gx + (1-8x) g, = 0
(l-ex) gy =0 for e . (2.32)
@ + (1-8 h =
y ( y) y 0
=0 for @ (2.33)

(l-ey) hx y
One way to avoid this difficulty ig to set kl and k2 to
nonzero values but their absolute value must always be less
than one.
a) First Method

Let k1 and k2 less than one in equations (2.32) and
(2.33) to obtain:

e, + (1-8.) g | < 1/2
[(1-8) g | < 1/2 (2.34)
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and
|8, + (1-8,) h | < 1/2 |

[(1-8) h, | < 172 o (2.35)
Since hx, hy, gx and gy are complex numbers that implies
that ex and ey can acquire complex values and hence ex and
8 are expressed as:
8 = a + jb ' (2.36-a)
8 =c + jd (2.36-b)

Moreover, let

B
5 (2.37)

real (gx) a imaginary (gx)

real (gy) ! imaginary (gy)
Upon substituting equations (2.36) and (2.37) into (2.34)
one obtains:
|a + ib + (l-a=jb) (a+ 555.  < 0.5 B L T (2.38-a)
| (1-a-3b) ( v+38 [ ¢ 0.8  (2.38-b)
Taking absolute values yields: A

1/2

[(a +a-aa + bB)2 + (b +B - aB - ba )2 < 0.5

[(y - ay + b5)2+ (6- ad - b\()zll/2

< 0.5
or
2 2 2
(a +ao-aa +bB)° + (b +8-aB-ba) < (0.5)
(2.39-&)
(Y -~a v+ b8 )2 + (6- a6 - by )% < (0.5)2
(2.39—b)

Equation (2.39) can be expanded to yield two nonlinear

equations in two unknowns a and b of the form:
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2 2 _ 2
Al a® + A2 b + A3 a + A4 b + A5 =0.40

2 2

a2 + b2 -2 a+1 = .42 /( ¥2 + 82 (2.40)

where Al, A2, A3, A4 and A5 are constants that depend on gy
and 9y e Similarly, to solve for Gy=c+jb another set of

nonlinear equations is to be solved:

Bl c2 + B2 d% + B3 c + B4 d + B5 = 0.40°

c2+d2-2c+1.=.42 /62 m? (2.41)

where e=real (hx), n=imaginary (hx) and Bl1, B2, B3, B4
and BS are constants that debend on hx and hy'

The solution of these nonlinear equations give 8 4 and ey
that would be expected to yield a convergent scheme but,
unfortunately, théy fail to do so for a wire mesh. This
failure is attributed to the fact that the chosen metric is
not the appropriate one for this type of geometry, whereas
it could be a good choice for other geometries of frequency
selective surfaces. This fact leads to another choice of a
metric space,

b) Second Method
This time the Euclidean norm is chosen as follows:
||M“2 = (|Gx|2 +|Gy|2 +|Hx|2 +|Hy|2 ) 1/2
(2.42)

It ' is desired to solve for Gx, Gy, Hx and Hy that are

functions of 8x and 3y with the hope to yield ”M“2 <l. So
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the basic minimization scheme for solving for x and vy in

this case is the following:

olull, o 3lMl.
ge, de, | | (2.43)

It was found previously that Gx, Gy, Hx and Hy can be

written in terms of x, y as:

Gx =8_ + (1-)g,
Gy = (l-ex)gy
Hx = (1-€§)hx
y =%y + (=f)hy _
and hence '
. % * * *
||ME = (Gx Gx + Gy Gy + Hx Hx + Hy Hy ) (2.45)

Substituting equations (2.44) into (2.45) and after a long

and tedious manipulation one obtains:

2

2 . 2. 1/2
Mh=(a1® Al+ @ B148 Al+3BCl+ a, A2+ a,B2+B,“A2+jB,C2+d)

2 * (2.46) °
where Al=|gd +1+|ng ~9,~9x
= 2 * 2 2
Bl=g, ~lo" + 9x -[9d" 2|9y

*

Cl=g, -9

A2=l+|hJ2-hy-hy* +|hA2
Bz=hy-|hyf +ny* —|hy|2 -2|hA2

*

C2=hy -hy
D =‘gA2 +|hA2 +‘hd2 +‘gJ2
Now to solve for 8x= a1+j Bl and ey = a, +3 82 one

needs to solve the following system of equations:
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Fylog/Byr0,/B )‘-—S—ﬂflb—- 0 = i —i— (2a ,A,+B,]
11 rPyrParPe’™ YT T 17171
1 . d a; 2 ||MH2
. d |jm], 1 1
F,(a ,B,,a Js——=¥ = 0= — — [2 a,A,+B,]
72 Ut W g d a, 5 141l 272752
) d |[M]||, 1 1 : |
F,(a,,Bysa,,B,))z=m—m——""=0 = — —— 2 B,A,+]jC
3V rP1r %20 P2 17171
d B, 2 ”M||2
F,(a,,B,,a B):'..._d._!E‘_Il_z-:o:_l _L [2 BA+jC]
4' 1P 202 a 8, 5 ”an 27272

(2.47)
By using Newton's method or any other minimization method

one can solve for a o which will give

2 2
the values for Gx and 8;; Uﬁfortunately, once more the

Bl and B

values of Sx and Gy obtained by this method yield valges

' ”'"V“M“2>1-for some points inside the cell. It should be noted
here that the condition thatI‘M“2<l should be satisfied at
all sampled points in the cell, and the violation of this
condition at one point is enough to affect all the other
points sinée they are all related together via the two
dimensional Fourier Transform.

Figure (2.3) shows a 16 by 16 array of sampled cell
points and the value of HMH2 at each point. It can be seen
that the condition the “MH2<1 is violated at numerous
points, which implies that a contraétion mapping cannot be
achieved by this method. It was observed that the smaller
the wire spacing the‘larger the values of ”M“2 become,

especially near the edges of the wires.



A= 0,25610000 B= 0.25010002 C= 0.25610000 D= 0.25010002
FREQ = 0.2998E+09
PHI = 0.0 THETA = 0.0 PSI = 90.0

NX =14 NX1 =2 NX2=15 NY =14 Nyl =2 NY2 =15

0.3 2.8 6.9 4.3 6.8 4.8 6.5 5.2 6.1 5.7 5.6 6.1 3.6 0.5
2.8 0.1 1.8 2.2 1.3 2.0 1.3 1.9 1.1 1.4 1.3 2.3 ‘0.1 7.8
6.9 1.8 0.0 0.8 1.6 0.6 1.6 0.6 1.5 0.5 1.1 0.0 2.3 4.0
4,3 2.2 0.8 0.0 0.1 0.6 0.2 6.5 0.4 0.4 0.0 0.9_ 2.1 6.8
6.8 1.3 1.6 0.1 0.0 0.1 0.5 0.3 0.5 0.0 0.4 1.2 1.1 5.0
4.8 Z.b 0.6 0.6 0.1 0.0 0,2 ‘0.1 0.0 0.4 0.6 0.6 1.7 6.3
6.5 1.3 1.6 0.2 0.5 0,2 16.0 0.0 0.1 0.5 0.1 1.4 0.9 5.5
5.2 1.9 0.6 0.5 0.3 0.1 0.0 0.0 0.2 0.2° 0.7 0.1 1.9 5.8
6.1 1.1 1.5 0.4 0.5 0.0 0.1 0.2 0.0 0.6 0.2 1.6 1.2 6.0
5.7 1.4 0.5 0.4 0.0 0.4 0.5 0.2 0.6 0.0 0.4 0.6 1.9 5.3
5.6 l.é l.1 0.0 0.4 0.6 0.1 0.7 0.2 0.4 0.0 1.7 1.2 6.7
6.1 2.3 0.1 0.9 1.2 0.6 1.4 0.1 1.6 0.6 1.7 0.0 1.5 3.9
3.6 0.0 2.4 2.1 1l.1 1.7 0.9 1.9 1.2 1.9 1.2 1.5 0.0 8.2

0.2 7.8 4.0 6.8 5.0 6,3 5.5 5.8 6.0 5.3 6.7 3.9 8.2 0.5

Fig. 2.3 The values for “M”2 at each sample point inside
aperture _ :
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Since neither one of the previous chosen metric spaces
appear very promiéing for this particular geometry of
fréquencyuselective surfaces (i.e. a plahar meshi the trial
of different metric spaces is put to an end and a different
line of thought is followed in the next method.

c) Third Method

Instead of using ex and Gy, four different relaxation
factors 811, €12, ©21 and 822 could be utilized to offer
more degrees of freedom in satisfying condition (2.30).

Thus, the new modified system of equations becomes:

_ —r - - _

" 1l-le11 e12| [x™ [(1-611) - e12] | g(x%,y™| =c(x",y™)
|+

y" =621 822] [y [-e21 (1 - €22) | |h(x",y™) |=H(x",y™)

- o b a— e —

(2.48)
Now it is easy to set all four partial derivatives Gx, Gy,
Hx and Hy equal to zero to obtain:
Gx=811+(1-611) 9y -812 hx=0
Gy=612+(1-€11 -812 h_=0
y ( ) QY v

Hx=821-921 Iy +(1-822) hx=0

Hy=822-821 g +(1-622) hy=0 (2.49)
Solving this system of equations for 811, €12, 821, 822
yields:

h + 1-h
o11= %y Ix ahy
hx 9y - (1-g_) (l-hy) (2.50)



22

g
912= X
h, gy - (1-g_) (l-hy) | (2.51)
h
821= X ,
h, gy - (l-gx) (l-hy) (2.52)
h + (1~ h
622= % g, + (1-g4) hy
h, 9y ~ (1-g,) (l-hy) (2.53)

Again, this choice of 8's works very well for the one
dimensional problem but it does not lead to convergence for
the two dimensional wire mesh problem,

To explain why this -method does not work for the two
dimensional problem the theory for constructing convergent
iterations for a pair of trancendental equations is invoked.
" According to this theory the original system of equation
xn+l=g(xn,yn)

' n+
yn 1=h(xn,yn)

can be written as:

x" ek o [g(x™,y™) -x"1+ B [h(x",y™)-y"1=G(x",y")

+
y"layPe v 1g(x",y™)-x"1+ 6 [h(x™,y™) -y 1=H(x",y")
(2.54)
Note the similarity of the above equation with egquation

(2.48). The parameters a, B , Yy and 6play the same role in
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equation.(2.54) as the relagation factors €11, 612, 821 and
©22 in equation (2.48). To find the root of equation (2.54)
it is desired to determine a ,B ,Y and‘é , by the four
conditions that the first partial derivatives of G and H are
zero at some point (x,y) that hopefully is near the root{
Note that the unknown parameters enter linearly in the same
way as e's do in equation (2.48), so the calculation of the
,Hx and H A posses no pfoblem. For

y 4
the case of trancendental equations, it is known that this

partial derivatives G, /G

method of constructing convergent schemes works provided

that the partial derivatives 9y, r9 ,hx and hy DO NOT vary

y
very rapidly in the neighborhood of the root (xo,yo). Thus,
although it is easy to produce a G and an H that are well
behaved at the root (xo,yo) they may behave quite badly a
small distance away. If this strategy is to be successful G
and H must not only have small partial derivatives in some
region, but this region must also include the desired root.
For the two dimensional wire mesh it was found that the
derivatives gx'gy'hx and hy vary very rapidly, especially at
points close to the edges of the wire. So this fact, and
the lack of knowledge‘of the region within which a root
exists, causes this method to fail.
d) Fourth Method |

Finally, another method that could be tried to solve for

X and y is Newton's method. 1In this case, we start with the

basic iterative scheme:




+
xn 1l

=lL11 r12] [«x
y™1o=lL21 L22] |7
which gives:
x™L = p11 %™+ L12
y™1 = 121 x™ + L22

Since convergence means

(2.25) can be rewritten

x-L11 x -L12 y - C1 -

y-L21 x -L22 y - C2

Note that L11, L12, L21
solve the above equation
Newton's method.

The convergence of t
y,h
for wire spacings less t

the derivatives, gx,g

fact by itself causes th

Figure (2.4) shows how the relaxation factors 8, and e

contract the basic itera

push the iteration into

24

c1

+

+(C2

yn + Cl

y" + C2 (2.55)
that for large n x2_¢.xn+1 equation
as:

=0

=0 (2.56)

and L22 are operators SO one can

for a root (xo,yo) by employing

his formulation though suffers since
X and hy are much larger than one
han two wavelengths or so. This

is method to fail.

y
tive scheme, but still not enough to

the region of convergence.
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R | ”T<?+5)-T(?:)“
| R= . — for &6=(o0.0l,0.01)
| ”r+6 -r"
I
. R ¢ 1L -CONTRACTION
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- : R ) 1- DIVERGENCE
b
10 = @)
i
= X— *-% No relaxation factor
\
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= _ X =0,5X +0.5 Lx
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i Y Y
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1 = O =)
\ Il sttt [
0 1A 22 3A

Figure 2.4. Contraction effect of different relaxation
factors.
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2.3 COMMENTS

It is believed that, unlike the one dimensional problem,
the two dimensional problem has functioné and partial
derivatives that are very steep, so any method that dgpends
in a critical way on magnitudes of derivatives will have
difficulty to converge. It is also believed that all the
above mentioned methods for obtaining a convergent scheme
can be very effectively applied to other geometries of
frequency selective surfaces, such as an array of metallic
patches, cross dipoles, circular apertures, etc.

In conclusion, this method works very well for large
spacingg between adjacent wires without making use of any
relaxation, contraction or variational factors, but it fails
miserébly to converge for two dimensional problems where the

mesh spacing is less than two wavelengths or so.
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3. .THE SPECTRAL DOMAIﬁ CONJUGATE GRADIENT APPROACH

Unlike the previous (S.I.T.) metpgd,ain this method the
induced currents and the aperture fields are solved
separately. The common features of the S.D.C.G. method and
the S,I.T. method are that they are both solved in the
spectral domain and that both make use of the fast Fourier
transform. In the S.D.C.G. approach, the conjugate gradient
method is employed to improve upon each previous iterate.
Hence., the method is basically an iterative technique.

This part of tﬁe the dissertation includes the analysis
and formulation of the §toblém in the spectrai domain for
both current densities and electric fields and their
solution via the conjugate gradient technique. Moreover, a
number of numerical properties for the conjugate gradient
method are discussed, and ways of terminating the iterative

process are suggested.

3.1 REVIEW OF THE CONJUGATE GRADIENT THEORY

Suppose that the system that is to be solved is given
by:
=Y (3.1)
Let ;(0) be and initial guess for x and the residual error

vector be:

£(0) =7 - A x(0) (3.2)

1

If A is symmetric positive definite then A"~ is also
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symmetric positive definite. Now define the quadratic error

functionals as:
errrl = 27 a7 £ =<Za71in
ERRFZ = 2 % = <&, %> =|| 1:||2 (3.3)
ErrE3 = 2° (a A")71E = <2, (a aH)" 1B

where the asterisk * means the conjugate transpose.

All error functionals in equation (3.3) are positive for all

+(0) >(0)

-> - .
values of x except for x =Xg where x_ is the exact

e
=(0)

solution of AX=y. 1In the case where X is equal to the

exact solution ie all the error functionals in (3.3) would
be equal to zero.
Now, substitute equation (3.2) in the first error

functional of equation (3.3) to obtain:
1 - »(0)) -1 *(0)) 5

ERRF™ =<(y -A x , A (y - A or
ERRFL =<(J, a~1 P> - 2¢<7,%(9)> +<x(0) A x(0)
(3.4)
E.‘RRF1 is now a quadratic equation function in §(0). Let

-
x(n) be a point in N-dimensional space. Then the equation

%(0) _ %(n) »(n)

= X +a, P | (3.5)

is the equation of the line through point';(n)

=>(n)

in the
direction of p , called the direction vector. For a two
dimensional interpretation see Figure (3.1). The parameter q
is proportional to the distancel;(O) - ;(n) . Substituting

equation (3.5) in equation (3.4) leads to:
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B(n)'-?(n) > + Other

ERRFl= an2<‘5‘“), ap(m) 5 ) a, <

terms (3.6)

ERRFl is now a quadratic function with respect to a, and

has 'a local minimum which is found by differentiating

equation (3.6) with respect to a, , i.e.
1
1 J¢ ERRF! )
= +(n) +(n) +>(n) >(n)
W =a_ <p s AP > =< p o T > =0
2 (3(1n n

wline x{Qax(n)s G.p(n)

contours of
constant error
x5
J X
A
X2

rréct solution

Fig. 3.1. The error functional and the conjugate gradient
method in two dimensions
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from which one can solve for a n to obtain:
<§(n);;(n)>

<-§(n)

(o8 = .
n a3, (3.7)

Once the position of the local minimum has been found, the

next trial vector can be defined as:

x(n+l) _ F(n) a B(n)

(3.8)
From Figure (3.1) one can see now that at each iteration a
new local minimum is found until the global minimum is
reached.

There are two basic methods that can be used here to
obtain the next trial vector. The first is the steepest
descent method and the 6£her~one is the conjugate gradient
method. These methods differ only in the choice of their
direction vector E(n). Sarkar showed how the steepest
descent method method can be applied for electrostatic
problems [36]. In the conjugate gradient method, the
direction vectors, B(n), must mutually orthogonal with
respect to the the matrix A. That is,

<3(i) ’ A'E(j) > =0 for i # j (3.9)
The iterative scheme of the conjugate gradient method, which
can now be used to yield successive approximations towards
the correct solution, is given by Hestenes and Stiefel [371,
and A, Jennings [38] as:

First, let the initial vector (i.e. for n=0) be:

20 220 3 _ L 20

=70 _F_ (3.10)
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The equations for the nth iteration are:

g(n) _ 5 g(n)

@, pn)

y T
a =
n <B(n) , z(n)
x(n+l) _ 3(n) ag p(n)
pintd) o g _ g gin) (3.11)
B =
n <E(n) , E(n) s
-3(n+1) = 2(n+l) | 3h”;(n)
It can be shown [38] that the following othogonal -

relationships are also satisfied:
(i >( 3
i, plidy o for i > j (3.12)

G 23y o for i # j (3.13)

3.2 CURRENT DENSITY FOkMULATION
The magnetic field B due to an electric current density .

-p .
J is given by:

K7x A (x,y,2)

uw

(3.14)

T'I*(X,Y)=

- >
where A is the associated magnetic vector potential, A and

-
J are related by the free space Green's function
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N
exp(-jk.r)

(1]
2l
]

4nr
as follows:
A (D) =uf G(T, T . J(E") (3.15)
From this the electric field intensity ﬁs can be derived

from Maxwell's equations and expressed as:

vv.-l:'(x,y,z)

j wue (3.16)

—Es(x'y,Z) = -jO)K(X,Y,Z) +

For a planar structure we set the z-component of the
magnetic vector A equal to zero. Now, upon expanding
equation (3.16) in cartesian.coordinates we obtain, for z=0,
— 2 =
k02+ élz —él—— .j;.Jx
1 O%x Ox Dy

*s
E (x,y) S e—
jwe 2 2
_ %

3 TN fe

(3.17)

Considering the periodicity of the two dimensional structure
shown in Figure (3.2) (planar structure), and taking the

Fourier transform of equation (3.17) leads to:

-, _—
. 1 ko™ *mn "% mnP mn .
s - Z 3
ES(a B = G J
JoH 2_ 2
= %n® mn ko™ B'mn

(3.18)

where the sign (~) denotes the Fourier transformed quantity.
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 n and B represent the Floquet coefficients which were
defined in the previous chapter as:
Q2T m/a ~ko sin & coso

and

an=2n n/c -2n m/a cot Q -ko sin® singp

(211]
]

. 2 _ 2 2 ,1/2
( Q n’ an)- j/2 (ko a )

an ~ B mn is the

FPourier transform of Green's function, and Jx ' JY are the

unknown current densities.

Y
>

Fig. 3.2 Frequency selective surface geometry
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Notice that the spectrum of ES is discrete. That is, it

exists for discrete values of n and an. Note, also, that

n
the convolution problem is avoided and instead of dealing
with an integrodifferential equation we have to consider
algebraic equations.

Taking the inverse Fourier transform of equation (3.18)

yields:

' ——
2 .2 |
1 Ko ™" 2" " %mun B mn - )
2s = 35
ES(x,y) == G . J

jwe '
2 2
- mn %n Pman . Ko " BTmn

] -expl+j(a  x+ B v)]
(3.19)
To enforce the boundary condition over the surface of all
metallic regions we require that the total tangential

electric field should satisfy the condition:

E' (x,y) + ES(x,y) =0 (3.20)
where El is the incident electric field and
Es is the scattered electric field

Substituting for the value of Es from equation (3.20) into

equation (3.19) yields:

T~ 2_ 2 _ ]
1 Ky < mn %%n B mn .
’i_ = g
~E"= — Glap, Bmn) I (O Byp)
J we 2 .2
mn |"%mn P mn ko™=B “mn
.exp[+j(a.mnx+6 mny)]

(3.21)
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Equation (3.21) can be recognized as the inverse
discrete Fourier transform which can be performed via the
fast Fourier transform (FFT). Equation (3.21) could now be
written in an operator form as:

-tt=2_ T ) (3.22)
where Zmn is the product of E, the Floquet modes and the
inverse Fourier transform.

A soluﬁion of the above equation will yield the unknown
current densities Jx and‘Jy from which the reflected and
transmitted fields can be obtained and hence the reflection
and transmission coefficients could be calculated. It
should be mentioned heré-that like the spectral domain
iteraﬁion approach, the spectral domain conjugate grédient
method is independent of basis functions.

Now, one way ﬁo solve for Jx and Jy is.to use the
conjugate gradient method (19,20,37,38}. The conjugate
gradient method in the spectral domain was used by other
investigators [21,22] on different geometries. In-our case,
£he algorithm of equation (3.11) caﬁnot be directly applied
on equation (3.22) since Zmn is symmetric but not self
adjoint or positive definite. To over come this difficulty
and guarantee a convergent scheme, equation (3.22) has to be
properly modified. To do that, multiply both sides of

*
equation (3.22) by 2. (i.e. the conjugate transpose of

mn

Zmn) to obtain:



-2 El = 2 23 (3.23)

. .
where the product 2 mn %mn is a Hermitian matrix and

therefore positive definite. That also means that the
algbrithm (3.11) can now be applied to the transformed
equation (3.23). 1In fact, one can apply the previous

algorithm on equation (3.23) without actually forming

* .
2 mn Zmn explicitly via the following algorithm [37,38]:

Let 3(0) be the initial guess and let the initial residual
(0)

vector ? be:
+-(0) _ -+(0) =i
r = zmn J + E
-(0) _ * -=(0) )
P -Zmnr

ERRF =’|?(°)” 2

The equations for the nth iteration are:
*  >(n)i| 2
Lol
n +(n)|| 2
[ 2n 3]
J(n+1) = Jn) L4 E(n)
n
7" ;(n)” 2 | 2
ErrF(P*1) = grre(™) - ey
“Zmnp I (3.24)
*(n+l) _ 2(n) _ =(n)
r =r an Zmn
[#an 20|
B = *mn
SENEEI

>(n+l) _ * +(n+l) .o =>(n)
p =2 nft +Bhp
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In the above algorithm the root mean square error
*

“r r”l/z was chosen as the quadratic functional to be
minimized, This minimization is also called minimization in
the .range [39]. For a minimization of the functional

* *-1 1/2

r (AA) r ;, one could refer to the work done by
Hestenes and Stiefel, T. Sarkar, J. W. Daniel, T. Cwik and

Appendix [8.3].

3.3 NUMERICAL PROPERTIES OF THE CONJUGATE GRADIENT METHOD
3.3;1 Singular Operators.

Although the transformation z*mn zmn appears to render
the conjugate gradient method universally applicable for the
solution of linear.operator equations, one must be careful
of the condition number of zmn. If Zmn is almost singular,

*
Z 2 will be even more ill-conditioned than zmn’ For

mn “mn
example, let a matrix A be:
1 1
A=
.99 1
This matrix has a condition number approximately equal to
400’ i.e.
A2 / A1 = 400
*
whereas A A has a condition number of Az/kl = 160,000. That
means that there is a strong risk of facing poor convergence
rates.

One way to check whether or not Zmn is nearly singular

is to slightly perturb the coefficients of Zmn and apply the
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conjugate gradient method again. If the results of the
perturbed system are very different from those obtained from
the original system, then the matrix Zmnlcould be considered
to be nearly singular and hence poor convergence rates
should be anticipated.

3.3.2 Convergence rate

J. W. Daniel, T. Sarkar and Westlake [40]) have shown that
the convergence rate of the conjugate gradient method is

given by:
Ilg(n) ¥ \ | ,

e < ‘

H'J’(o) _ 3e“ / A max +\/A min (n)+ \/Amax _\/A min ()

\ﬁ max .-\/A min \/A max +'\/A min

(3.25)
where Je is the exact solution and A’max and A’min are
*
the maximum and minimum eigenvalues of 2 mnémn in the finite

dimensional space in which the problem is being solved. 1In
this dissertgtion all problems are solved in a finite
dimensional space and an investigation of what happens to
the convergence rate as ﬁhe dimension of the approximation n
goes to infinity is avoided.

W. J. Kammerer and M. 2. Nashed [41] have shown that
the conjugate gradient method will converge even when Z0n is
a singular matrix (but with poor rates as mentioned .before).
In that case, the method converges monotonically to a

solution with minimum norm and the rate of convergence is

given by Sarkar as:
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5 3, < o LA B
°in= M+ n||3(0) + Z+mn Elu n
' (3.26)
where M= uzmn 2, l(Z*mn) * 300, (Zmnz*mn)+ || 2
(3.27)

and Z+mn is the pseudo-inverse of Zmn'
3.3.3 Stability

As in most numerical techniques, stability problems may
appear due to foundoff errors in the calculation of the
residual and the direction vectors. One possible way of
‘automatically detecting “instability during the iterative
process is to loq# at the ratio c:.n/cv.n_.1 since all scalars,

a , are in the range |

n

1l < ar1 < 1
A max A min

“According to T. Sarkar, an upper bound for cx.n/cxn_l is
Amax/ Amin and hence stability may be low if A max/ A min

is large. In our case, computational instability with the
above a;gorithm for the computatioﬁ of the residuals was not
encountered.
3.3.4 Global versus local convergence

As with most optimization methods, the conjugate
gradient method may end up in a local minimum instead of a
desired global minimum., If the number of unknowns is

relatively large, it is practically impossible to judge in
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any way whether or not the minimum found is the desired
minimum. One possible procedure to use to check this is the
following: Use sgyg;al initial guesses in the domain and
repeat the optimization problem. If all optimizations
result in approximately the same answer, one could be
assured that this answer is indeed the desired global
minimum of tﬁe problem. Moreover, it should be mentioned
here that, from the engineering point of ;iew, one is
usually not interested in the global miniﬁum if the solution

obtained can be considered satisfactory.

3.4 STOPPING PROCEDURES AND INITIAL GUESS
3.4.1 Stbpping procedure

For the conjugate gradient method there are different
stopping procedures to terminate the iterative process.

Three of the most widely used procedures are the following:

> > 2i
=H iJl = IIZ@TIJ*:E nge (Normalized error)
2| |

where € 1is an assigned number of desired accuracy.

a) ERROR

b) Percentage error

> > >i
T l 2., 3+ & _
ERROR% =l|Ei”,loo= IlEill 100 <6 (Normalized error)

where & is another assigned number.
c)

< C (Normalized error)



41

3.4.2 1Initial guess

In all cases checked in this dissertation, the initial

(0) _ J (0) =0, That gives al, or 100

Yy
percent, error on the first iteration if the above

guess used was Jx

normalized error measures are used. The other reason for
using a zero guess as a starting point was to see if the
method converges with the worst possible guess.

Any other initial guess could be employed to start the
algorithm. The closer the initial guess to the correct
answer the better, since the faster the method will

converge.
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4, FORMULATION OF THE S.D.C.G. METHOD FOR THIN WIRES WITH

FINITE CONDUCTIVITY AND FOR APERTURE FIELDS

4.1- EddIVALENT RADIUS CONCEPT AND INTERNAL INPEDANCE
The strip analysis can be used to determine the

scattering characteristics from a mesh of cylindrical wires
by employing the "equivalent radius” concept. This is
accomplished by replacing the non-circular cross section of
a-metallic strip with a circular wire whose radius is the
"equivalent radius" of the non-circular cross section (See
Figure (4.1)). Butler [42] has shown that the equivalent
radius of a narrow conducting strip is one fourth of its
width i.e.

g A
where aeq is the equivalent radius of a cylindrical wire,

and a is the the width of a thin metallic strip.

Fig. 4.1. Equivalent radius of a strip
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For the case where the wires are of finite conductivity

the necessary boundary condition that must be satisfied is:

BT+ ET =12, 1 | (4.1)
. -g e | . .
instead of E° + E- = 0, where I 1is the current in the

wires and Z; is the internal impedance of the wire which

nt

is given by Jordan and Balmain [43] as:

Z - zm IO( Yaeq)
int =7 ) ) (4.2)
naeq I, (-vaeq , .
soun N2

where Z_ = is the intrinsic impedance

(o} jw
m + ] em

of the metal. v is equal to (ju_w(0 + joe m))]'/2

and I and I

° 1 are the modified Bessel functions which can

be written in terms of infinite series as:
o9

A . |
I.(x) = :E: .(x/2)2s+n
: s! (s+n)! (4.3)

S=0

n=0 for Io and n=1 for Il. The case of particular interest
here, occurs for frequencies sufficiently high that the
depth of penetration is small compared to the radius of the
wire. This implies that I'yaeq|>>1 and, using the

asymptotic expansion for Io and Il' I°=Il (See Figure

(4.2)). Thus, the internal impedance can now be written as:
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pA
m

(high frequency) ~ ————
2T aeq (4.4)

Zint

@)
®

Q.4+
Q.0 . L 4 : > X

Fig. 4.2. Modified Bessel functions

From equation (4.4) it can be seen that for a small skin

depth Zin is equal to the surface impedance of a thick

t
metal sheet that is one meter long and 2n ag meters wide.
Now substituting the expression for Zm in equation (4.4)

yields:
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Qe

1 AN T 3 [ARRT}
Ziq¢(high frequency)= + \/
2Ta 20 2n 20
e m m

(4.5)

This expression for Z;ht can now be used in equation (4.1),

t
i.e.
+>s »>i » = -
+ =Z. = . =7.

E E int I (Zlnt.A) J Zlnt J (4.6)
since 3=I/A where A is the surface area of the wire,
This leads to:

- i = ” ‘
ES = -EY + 2, 3 (4.7)

-’
Replacing this expression for ES in equation (3.19) yields:

P,z F=2 7 ‘

int ~ “mn ' or

-—bi- =3 -)_ - )
E' = (2, -2, ,) 3 =BJ | (4.8)

Now equation (4.8) can be solved for 3 using the algorithm
mentioned before in equation (3.24) and replacing Zmn by

(2. -2.

mn—Z2int) Rather than form the matrix (2 -2, .)

int

explicitly, one can carry out the calculation using the

following algorithm:



46

*(0) _ 21 7(0) = > (0)
o =E v 2,9 ~ Zine Y
=(0) _ ,* =(0) _ == +(0)
p - ? mn © 2 int T
* %
ERRF =‘\?(°)|‘2
The equations for the nth iteration are:
| * s(n) _s* -»(n)” 2
a = IIZ mn’ zint r
n +(n) _ 3 a(n)i| 2
llzmnp 20 I (4.9)
-*
J(n+l) ='3(n) + ans(n) B )
= 2
*  (n) _%* (n)“ 2
ERRF(n+1) - ERRF(n) Zont Z jnt T i
' (n) _ 35 (n)j] 2
“zmn p ~ Zine P
>(n+l) _ 2(n) _ * =(n) _ T* =(n)
r =T ®h Zmn P Z jnt P
* 2(n+l) _ =* +(n+1), 2
8 . 2 mn T 2 int _
n * -+(n) - = =+(n)
z mn T z int T

* a(n+l) _ ;*int;(n+1) + 8, B(n)

-(n+l) _
1% =2 mn

END OF DO LOOP:

4.2 SOLUTION OF APERTURE FIELDS

To solve for the aperture fields (See Figure (4.3)),
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equation (2.12) is used as the starting point, i.e.

B %an B mn ko?- azmﬁq
-i 2j - -
Hl = — Gla rB ) . >3
wu 2 2 mr ™M
mn :(B mn~¥o ) “mn Bme
. cexp(+jla  x+B _ v)]
(4.10)
<—BB —
i kﬁ
] é ® e e ¢ % CC
/ L4 [ e o /// |
-
=
Z Z Z
Tz

Z Z 1

Z Z ~ DD

g Z C -~

Z .
g Z Z

e
AA— |

\

Fig. 4.3. Sampling for the Aperture fields

For a complete derivation of equation (4.10), see Chapter 2

and Appendix 8.2. H! is the incident magnetic field which

is a known gquantity, G and Q on’ 8 were defined before

n mn

and they are also known. The unknown in this case is Ea,‘so

equation (4.10) can now be cast into operator form as:
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i 2>a ‘
H® =Y E (4.11)
Yon' like Zun in Chapter 3, is neither positive definite nor

self adjoint, so both sides of equation (4.11) are

multiplied by the conjugate transpose of Yon’ i.e.
* >i _ _* +a
Y mn H =Y mn Ymn E (4.12)

Now the algorithm in equation (3.24) can be applied to the
above equation be replacing Zin by S J by £2, ana -E! by
>i
H™.

As before with the current densities, we choose E(O) as
an initial guess for the aperture field, Ea, and start
iterating. 1In this dissertation the initial guess is chosen

to be equal to zero in all check cases and this leads to the

following stopping procedure:

-] *a
[ % - vt
| ]

ERROR =

I (4.13)
If a percentage error is desired then the stopping procedure

becomes:

? gt -
[ e
| g .“ At “mn * 100 (4.14)

Note that, for a zero initial guess, the first error

ERROR% = lxlOO =

estimate will be equal to 1 (for the first iteration),

whereas, the second estimate will yield a 100% error.



49

4.3 REFLECTION COEFFICIENTS

The transmission and reflection coefficients are the
quantities of most important in characte?izing the
properties of a mesh. In order to define those coefficients
for both polarizations, transverse electric (TE) and
transverse magnetic (TM), it is necessary to first define
the incident and scattered fields.

For TE. polarization, the incident fields are:

E, = E_ sin(-9) ;: E

x o E_ coso

y (o]

E cos® cosd E_ sino cos®
o . o)
Hy =

Hx=

-

n n
where E, is the amplitude of the incident electric field and
n=( uofeo - )1/? is the free space wave impedance.

For TM'polarization, the incident fields are given by:

Ex = EO cos® cosy ; EY = Eo cosd sino
E sin{(@ -t /2) E_ cos(ow -n /2)
o o)

Hx= ;H =
n Y n

According to Wait and Hill [44], when the spacing
between adjacent wires of the mesh is less than A/2, there
is only one grating lobe and only the constant current

components Jo and Jooy contribute to the scattered field.

oX

J aqd Joo

oox are the zero-mode current density components.

Y
The rectangular components of the scattered field, for large

z , are given by:
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s _ ceinl 2 -
E° = J (1.-sin“® cos“p ) Joo

. 2 .
%~ Joox sin“g sing cosg

Y
exp ik [zcos 9+ sind (x cosg + y sing)]
(4.17)

E” = J sin28 sing coso -Joo (l.-sinza sinzm)

Yy oT0) 4 y

exp ik [zcos® + sind(x cosop + y sing)]
(4.18)

The above expressions can also be obtained from equation
(3.18) as follows: Solve for J and substitute the solution

in equation (3.18) to obtain the scattered fields. That is,

N 1 k - Q -

il

(Y I}

jWE -Q B8 k
mn mn o} mn | (4.19)

and so the reflection (amplitude) coefficient becomes:

2 ,1/2

o
[

_ s 2
E, / (E « tE y) (4.20)

2 .1/2 |
y) (4.21)

_ s 2
R -Ey'/(Ex+E

If the total power reflection coefficient R is desired

then the following expression can be used:

— —_—e X
Real { J/— ES x 8BS . Z ds }
unit cell

Ri= - -
‘ \ Real { El x B .(- 2) ds} (4.22)
unit cell
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where ES is the scattered field due to the induced current
densities, 3; derived from equation (4.19) and, after taking
the inverse Fourier transform, H° is the scattered magnetic
field derived from E° by making use of Maxwell's equations,

Moreover, if the total power transmission coefficient,
T, is to be computed, one can employ the formula below:

Real { T2 x %" (- %) dAK (4.23)
'Tl= aperture

. 3 *
Real <El X ﬁl o= Q) dA}
aperture

where E2 is the aperture Electric field and %% is the

magnetic field in the aéérture derived from Maxwell's
equation

—jou B2 \/x B2 (4.24)
For perfectly conducting frequency selective structures it
is also true that:

|T|2 + |R|? =1
this condition can be used in the perfectly conducting cases

to check the convergence and accuracy of the results,
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5. RESULTS AND COMMENTS

5.1 ONE DIMENSIONAL CASE (INFINITE GRATiNG OF PARALLEL
"~ STRIPS)

5.1.1 Current densities

The one dimensional case was studied first, and

compared to the Spectral Domain Approach with the

contraction factor [26], since results from that method were

readily available. 1In Table'(5.1),'fdr“éxample; the current

densityllevels, for thin strips obtained by both the S.I.T.

method and the S.D.C.G. method are in very good agreement.

This implies that eithef'methodwcan be employed to generate

the induced current densities on a strip or wire grating for

any incident field.

Table 5.1. Current densities obtained by the S.D.C.G.
method and the S.I.T. method. (See Figure (2.1)
for the geometry). a 1is the spacing between
adjacent strips and w is the width of the
strips.

Spacing(a) width(w) s.D.C.G. S.I.T. Difference

0.55A 0.005A 0.02664928 - 0.02770429 0.001055

0.25 A 0.005 A 0.05155611 0.05183827 0.000281

0.125A 0.005X 0.07172995 0.07114100 0.000588

0.100A 0.002 A 0.07545375 0.07521373 0.000240
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Figures (5.1) and (5.2) show that the current densities

obtained via the S.D.C.G. method for a parallel grid with

.~thick strip and a normally incident field behave as

expected.

For the copolar component the current density

curves downwards. That is, it is larger at the edges than

Fig.

0.007 <

0.008

0.000 4
0.

RRRRRRKS
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202002020 %0 %%
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LKKKEKL” 0-13
KK
S

9008

)
Q
n "8 |

Amplitude of y-component of the current density

for a grid of parallel strips and for a normally
incident field ( ® = 0°). The incident electric
field is along the y axis.,
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at the center (Fig. 5.1), a phenomenon attributed to the

edge effects of the metal strip.

On the other hand, the

cross-polar component in Figure (5.2) curves the other way

around,

3.1679€-06

" 2.1116E-06

1.0SS8E-06

0.000CE+Q0 0‘ i

Fig. 5.2.

i.e. outwards.
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Amplitude for x-component of the current density

- for a grating of parallel strips and for a

normally incident field ( & = 0°). The
polarization is TE and the incident electric
field is y directed.
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Figure (5.3) shows how the reflection coefficient for normal
incidence increases as the spacing of the grid gets smaller.
This anticipated behavior is due to the fact that the closer
the wires, the closer the grid structure resembles a solid
metal sheet. Notice that this method is even valid for
spacings of 1/100 of a wavelength; a fact that renders this
algorithm very useful for radiometric applications where the
spacing between wires is of the order of 1/10 of a
wavelength or less. It should be mentioned here that the
data in Figure (5.3) are'not compared with any measured data
or calculations made using other methods since at these

spacings neither calculations nor measured data exist.

4
m
pas
—————cfin
RSO

@=0°

32X 32
SAMPLES

.90

]

) 1 ‘ — ceLL wipTH(\)
o0r Q2 003 004 CO5 Q06 Q07 008 Q09 Ol

.86

Fig. 5.3. Reflection coefficient for a grid of parallel
strips and spacings of 1/10 A and less.
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The only other method that can generate reflection
coefficients at those spacings is the S.I.T. modified with
the contraction factor given by [26]. Téble 5.2 shows that
the reflection coefficients obtained by both, the S.D.C.G.
method and Brand's method [26] are almost identical for

various wire spacings.

Table 5.2. Reflection coefficients for different wire
spacings calculated by the S.D.C.G. method and
the contraction factor-S.1.T. method. (Normal

incidence)
Spacing . s.D.C.G. S.I.T.
0.125 A 0.844 0.843
0.10 A 0.888 0.885
0.06 A 0.954 -0.960
0.05 A 0.967 0.969
0.02 A 0.994 0.994
0.01 A 0.999 0.999

The S.D.C.G. algorithm for one dimensional cases (i.e.
parallel wires) converges in at most six iterations with a
normalized error of less than 0.5 percent. The CPU time
used for each of the above cases was about 20 sec on the
3081 IBM system and for a 32x32 sampling rate. This time
includes plotting time. Table 5.3 sho&s how the normalized
error decreases at each iteration for spacings of 1/10 of a

wavelength or less.
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Table 5.3. Normalized error versus number of iterations for
spacings less than 1/10 of a wavelength

Spacings between strips Normalized percentage Number of

(width of strips=0.002A) error ({r]l/{E*|l)x100 Iterations
100 1
0.10 3 ~ 13.57 2
0.348 3
100 1
0.09 A 17 2
0.14 3
100 _ 1
0.07 A 29 2
_ 0.3 3
100 ' 1
0.05 A 52 2
0.3 3
100 | 1
0.04 A 69 2
0.13 3
100 1
0.03 A 69 2
0.25 3
100 1
73 2
0.01 A 40 3
17 4
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5.1.2 Aperture Fields

To verify this algorithm for use in solving for the
aperture fields, a number of check cases are presented.
First, the S.D.C.G. method is checked against the S.I.T. -
contraction factor method. The results are depicted in

Figure (5.4) for a sampling rate of 32x32. The agreement

1.03

’ PARALLEL GRID
0.9-; T.E

; wss 5. T.T [26]
0.83

Peee S.D.C.G

0.34

oM™ MDICHDIMIVD MO MOC—HITDXD
(=]
w

0.2
0.13

N CELL WIDTH
-0.150 -0.075 0.000 0.07S 0.150

Fig. 5.4. Amplitude of Aperture fields for an .aperture
size of 0,25 wavelengths by the S.I.T. and
S.D.C.G. methods. (Normal incidence).



between the two methods is very good indeed.
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To actually

see how close the numbers are, Table 5.4 gives the values

for the aperture field at each sampling boint for both

methods.

Table 5.4. Values of aperture field at each sampling point
for an aperture size of 0.25) and normal

incidence.

Cell point
on x-axis

~0es123912€ 310
“0.120795%54p
“0.11248647F¢
=0.1041%40F2
=0,3580* 320
062747261
-0.,7914191
-Je70E111¢
-0.£6248947
~0eS5416774
-0.4581701
=0 e+37493R28F€¢
=0e291575%
~0es20825824
-Je12496091 4
=N,41553862%7
0.416536257
312496091 4
Dec0225 824
De29157SS¢
0.37488238
0e4581701
0.5“1697
0e524504
Ds.70E€111
Ne791419
De374726
0e35£032
0.104174°
Jell24647
Cel207=554
NDe12912631
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J
€
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<
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a
6
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3
6
&
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S.I.T.

method

00182238561E~-0
0.384013295
0560089946
0.661797166

- 0733476592

0756682556
00 £44159245
0.882627010
0. $14653142
0940926552
0eS625533182
0579851842
0593371725 |
1.00326443
1.007795042
1.01301479
1.01301575
1.0097<042
1.00326347
0593371725
8579851842
0+562553E53
0+940926552
0.514653023
0.882627010
De£44159365S

.07966326477

04733476753
0.661737543
056003070
0«284014010
0.1822723835-31

s.D.C.G.

method

0.000000000E+040
0377430677
065562849957
0550452684
073385327141
079787993 4
0.246264482
0.885471702
0.513128¢843
0944895 148
0966925740
0e9845% 7973
09923290930
1.00833133
101503463
1.01830196
1.01831055
1.01503181
1.00839233
0.992323321
0924559417
0566914892
0944902539
0.918127354
0.885474324
0. £456253521
0.79785 422
0e7385RS949
0660450711
0.55684%4115
0.3774 35161
0.000000000zZ+00

Figure (5.5) shows how the error is reduced at each

iteration for this case.

It should be mentioned here that

this normalized error (See Section 3.4 for definition) is
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the total error one obtains by sampling the unit cell by a
rate of 32x32 samples. Another check was obtained against:
published data given by Mittra and Tsao [l6]. Again, the

agreement between the two techniques is shown in Figure

(5.6).

NORMALIZED ERROR APERTURE FIELDS (TE)

1.0
0.9
0.8
0.7
0.6
0.5

0.9

VDOVDDM OMMNIMECDIIVOR

0.3

0.2

9.0

Fig. 5.5. The normalized error for an aperture field of
0.25 Ain size '
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*@-=-@~--¢ S.D.C.G

Tsao and
Mittra [16]

"CLS
0.7
0.5
0.3

0.1
0.0
0.

Fig. 5.6. Amplitude of the aperture electric field for a
unit cell with a=1.4A and b=0.6 a . The
incident field is at normal incidence and with
TE polarization

For the infinite grid of parallel wires, the current
densities, the aperture fields and the reflection
coefficients obtained by this algorithm are in very good
agreement with the S,I.T.-Contraction method and the results

published by Mittra and Tsao.
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'5.2 TWO DIMENSIONAL CASE (i.e. INFINITE GRID WITH SQUARE

OPENINGS)

5.2.,1 Current densities

For the two dimensional case a number of cases are
checked against calculations by Wait and Hill [6,44,45] and
Kontorovich, Astrakham and their colleagues [9,10].
Overall, very good agreement is found in the calculation of
the reflection coefficients for different angles of
incidence, polarization and wire spacing. The reason for
comparing'reflection coefficients with other methods is
simply that the reflection coefficient is the parameter of
most importance in designing wire meshes,

Figure (5.7), (5.8), (5.9) and (5.10) show these

reflection coefficients for both transverse electric (TES??"”'””

and transverse magnetic (TM) incidence. Calculations using
the S.D.C.G. method are compared with two other methods.
Wait's method is based on a Fourier series expansion
solution, whereas, the Kontorovich-Astrakham method is based
on the averaged boundary condition technique. 1In all those
figures, a=b represents the wire spacing of the square mesh
(See Figure 2.1) and c is the equivalent radius of the
strips., Figure (5.7) exhibits the characteristic Brewster-
angle minimum for the S.D.C.G. method and Wait's method.

The discrepancy between the two curves is attributed to the

fact that in the S.D.C.G. method planar strips are actually



63

used instead of round wires. The sampling rate used in
these cases was 16x16 samples. For thin wires, this
sampling rate is good enough to obtain a good estimate for
the reflection cogfficients; this is evident from these
figgres. If more accuracy is desired, the number of samples
can be increased. 1In Figure (5.10) one can see that, by
increasing the sampling rate, a slightly better estimate can

be obtained.

ofe [Reel .

\\\ TM = X—oX=-X— WA'T [6]

-0-0-0- SDCG

o’

REFLECTION COEFFICIENT

0.1 Q2 03 | 04 Q_S_# Q/A

Fig. 5.7. Reflection coefficient for TM incidence and
) various spacings for 8=70 deg., and =0 deg.
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an oblique incidence with 9=70 and »=0 degrees.
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Fig. 5.9. The reflection coefficient for a spacing of

a=0.25) and for different values of the angle of
incidence theta. (TM polarization)
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Fig. 5.10. The reflection coefficient for TE polarization

and different angles of theta. The wire spacing
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Figures (5.11) and (5.12) confirm the expected result
that the wider the wires the larger the reflection
coefficients. This result should be anticipated since a

mesh with wide wires is a better approximation to a

continuous metal sheet.

WIiDTH
. | “Qeel X
Z : Q—@—e-(llq
Woc} , a-a-a 0.059
© ° o —o
= ]
S os | o eia
O -
O -
Z 06 ’ -
O P
- ' ’://// 0005
O / - 2 e
Q04 | / ;b@—b—OZSA
- / o
/
] K =0
T a2 /
\ 5
/I
OD A = A 1
~ 90 &2 70° 60° 50° 40° 30 20° 10° o°

Fig. 5.11. Reflection coefficients for different
thicknesses and for different angles of
incidence theta. The polarization is transverse
magnetic and the mesh opening is a=b=0.25) .
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Fig. 5.12. Reflection coefficients for different widths and
for different angles of incidence theta. (TE
polarization).

Figures (5.13) and (5.14) depict the change iﬁ’the
reflection coefficient when the wire mesh consists of wires
with finite conductivity. The figures confirm the fact that
the reflection coefficient of a lossy wire-mesh is less than
that of the perfectly conducting wires case. The reason for
this difference is that, for perfectly conducting wires
(o=00), the reflection and transmission coefficients are

governed by the relation:



HE +'R|2 =1
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where T is the transmission coefficient and R is the

reflection coefficient.

For lossy wires, due to the loss of

Fig. 5.13.

energy in the wires, T 2+ rR2%2 401,
WQ L 2.7_‘ .
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The reflection coefficient for TM polarization

and for both cases, a perfectly conducting w1re

mesh and a lossy wire mesh.
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Fig. 5.14. The reflection coefficient for different
conductivities.

So far, we have only discussed the reflection coefficients
for different polarizations, angles of incidence, widths and
wire spacings. We have also compared ﬁhem with whatever
.data were available to us {6,9,10]. In the figures to
follow, the current densities are presented and analyzed for
different cases of interest. First, we start with Figures
(5.15) and (5.16) where the current densities, J, and Jy'
are depicted. The spacing used in that case was 0.25A\

wavelengths and a thickness of 0.005A . The sampling rate
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was 32x32 and the wave was normally incident for a TE
polarization. For wider strips Figures (5.17) and (5.18)
show how the current densities behave. And for a case with
lossy wires Figures (5.19) and (5.20) give the results. 1In

all those cases, the square-shaped unit cell was used.
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It should be mentioned here that the magnitude of the
current densities becomes smaller as the‘éonductivity of the
metal strips or-wires is reduced. This result should be
anticipated since the smaller the conductivity of the wires
the lossier they are.

Now, to illustrate the significant effects that occur
at a bonded junction, the créss-shaped unit cell is used.
The current densities obtained in this case are depicted in
Figures (5.21) to (5.26) for different spacings, widths and
angles of incidence. It can be seen from all figures that
this method predicts the step discontinuity at the bonded
junction. It should bezétre;sed here that in this
dissertation only the bonded case is treated; that is, the
QIQAQéthhéfe a perfect contact between the wires exists at
each junction,

Since the existing mesh surfaces resemble mofe closely
the bonded mesh, than the unbonded case, a study of the
unbonded mesh was not done here. Quite often, in practice,
the wires are soldered at the bonds to obtain a perfect
contact. The study of the unbonded mesh is of interest,
though, because of its physical analogy with a thin
magnetized plasma. Anisotropic unbonded wire mesh can be
used to simulate a thin magnetized plasma sheet. Wait has
calculated the reflection and transmission coefficients for

the unbonded mesh case [6].
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Amplitude of x current density component for a
normally incident wave on a square mesh,
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Amplitude of y current density component for a
9=0°



TE,TH=0,PHI=0 (A='257l O.OO5ATHICK) 32X32

Jx_

0.004S. 4

0.0030

0.0015 |

&S &S
00020%0%020%%%
GELRLRLINRRS
KRR
0202020202050 % 2020
QL S
;v&&&%&%&!l
ERECRKKEES \

&

"
‘ O
| ‘é&”%”@b

00%0% %% %%
\é%

9.0.9.9,
QAL

0.0000 J
9.

N
4&%%&&&%%%

W
0200000 000 0%

KKK 02020 0,032 %% %0 %%
SRS 020200.0:9.0% %2060
&

K IR
NUGERRREEEEILRLLALS
000707070 070700. 0207678 %
Y1

00000200008

00000 &Y
0202007667020, 0.0%
%&&%&%ﬁ? :
QRERAXK

X1

CRKS
IR
ACIRIESRLS

81

Fig. 5.24. Amplitude of x current density component (cross-

polar) for a normally incident wave on

mesh with thin strips.

a square



82

TE,TH=60 PHI=0 (A=B=.25;AND .02 THICK)

‘\
XN
0 .
x| NN
il BB
2 R
0.010 | "ygéﬁggk
\\ 12020 20%0%
SHHTTTHTTHIEIRRED
"V RRLER

0.007 < ‘.;Q\.O"’.”

B, [} | RS

XY 90330, 80%
(R SN 000

T KRS QRILKLRS

020200070 %% % 0002

0002020 %072 %% P0%%0%%
02020220762 % % %% SRR
RRRRALRALLS 0?" 000500008
0 0.9.0.0.00.0°0,90, OO
7 002070 %
0620202032200 0 %) RS
I”

RS ENKS IR
QRIRKLK IS 122
ELRNELNRELES L K

™R :."'0’0’0‘0’0’0 K 8.0t
\’0’0’$‘0‘:’:’:’:‘:’:’:’0 :
QLLLKICARAELKL X1
OOOOOOOOQ’ ~0.0%

0. 8SEEE
QERILAS

QKRR

QK
&
5! \3‘°'l3

Fig., 5.25. Amplitude of y current density component for an
obliquely incident wave on a sgquare mesh with
strips of width equal to .02) .



Fig.

5.26.

83

TE, TH=60,PHI=0 (A—-—_B=.25)AND .OZA.THICK)

Eil
0.0081 - .
ogggb‘
‘ 02050 %%% \ :’“’\\\"
0.0027 . 0:.:’:.:’:’:" ) \?ﬁ\ ) \\\’
XRXXRL & AL LGRS
02070 0.0.09.8 ( OO
0202020000 % % ‘<¢”@V§
I B0 20000 0 s0 0,0 0%,. LIRS
SREERRLKRY 020202020 % %%
unouooo, || | VOOOOOOOOON,
90220702 %% % %% 1R 0707620526222 %%
] 070°0.0.0.00.6¢ S 0. 0.0 00000060
0. 6000 070.0.0.0.6°06¢ OO 0.13
o3 0300050000000\ 000600620000 %
000200020 0\ 00000200005
;@vvvavyvg ORISR
OOOSOOON (& VOO P00 00000
EKESA N /7 )‘0 OO
OOOQ KA 9 0,0°00 00
QRGN | | EREELRRIRELK
QLA | IKKKKLLIRLERL
QAN N\ | KEIEKE LRI
.»4\ 24 | LXK XXX KKK RKXKXA 0.08
< é”\d%%%%ﬁ”“@éaﬁb
‘Q&&ﬁ@ﬁ%&%&&%&&&»n

" 00020 %0% %0 %% %
, 0205
S
02020002 %
0020202 %
qu&’
%

-0.0¢

Amplitude of x current density component (cross-
polar) for a square mesh with an obliquely

incident wave.

Figures (5.27) to (5.30) show how the normalized error

is reduced at each iteration. It can be seen from all these
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figures that the residual error decreases monotonically.
From Figure (5.28), one can see that the closer the strip-
spacing, the longer it takes to couverge'to a specified
normalized error. The differehcé in the normalized error
between the 0.25)A and 0.75X spacings is iﬁdeed large,
whereas the corresponding difference in the normalized error

between the spacings of 0.75A and 1.25)A is not that drastic.
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Te—
Fig. 5.27. Normalized error for currents for a square mesh
with a=b=1.,25A , theta=30° and phi=0°.
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Fig. 5.28. Normalized error for the current densities for
different wire spacings.

Figure (5.29) enables us to observe that the error rate

depends not only on the wire spacing, but also on the angle
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of incidence. The normalized error for an angle theta = 70

degrees decreases much faster than that for an angle theta =
30°, or phi = 0°, The reason for that fs based on the fact

that the eigenvalues of the matrix Zmn change as those

angles change.

l.O-T

. A=B=0.25 FOR VARIOUS ANGLES ms(*aT:oEo gg‘fég(%)
0.9 veseeesass THETA=30 0 DEGREES (2)
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VOO SMN~NTDITIOX
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Fig. 5.29. Normalized error for the same square mesh but
with different angles of incidence.
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To see how this occurs, we recall the expressions for
-3

aonn’ an and G = - 5 which are the elements
2 ko =q” -p )

that form the entries of matrix Zﬁh. These elements are

funétions of angles theta (8) and phi (¢ ) and of the wire
spacing. This means that any change in theta, phi or the
spacing will yield a change in the matrix Zmn' and hence,
the eigenvalues of the matrix will be different. It was
mentioned before, in Chapte;_3, that .the rate of convergence
depends on the eigenvalues of matrix Zn® Therefore, any
change in theta, phi or in wire spacing will change the réte
of convergence, _
Another interesting phenomenon is observed in Figure
(5.30) where the normalized error for the same wire spacing
and the_sémgfincident field,‘ﬁut»féf differently shaped unit
cells is plotted; From that figure it is clear that the
norm;iized error for the cross;shaped unit cell decreases
much faster than that of the square-shaped unit cell.
Although both unit cells generate'the same currents énd
refléction coefficients, the cross-shaped unit cell can be
more advantagéous as far as computing time is concerned.
One reason for this difference between the two unit cells
lies in the fact that in the cross-shaped unit cell the wire
strips appear to be wider to the algorithm than the
corresponding strips in the other unit cell, as Figure

(5.31) illustrates.
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Fig. 5.30. Normalized error for two differently shaped unit
cells.
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Before we present some results for the aperture fields,
the problem of evaluating the reflection coefficients from a
frequency selective planar surface, Sho#n in Figure (5.32),
is discussed. Table (5,5) gives the results for the
reflection coefficient evaluated by this algorithm for
different values of Q. Here, it is observed that a cross-
polar component arises even for a nofmally incident wave.
This result is very important in assessing the degree of

depolarization from such a planar structure.
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Fig. 5.32. A different frequency selective surface
geometry.

It should be mentioned here that this configuration
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offers a better approximation to the knitted mesh than the
infinite square grid. The reason for this is that the
periodicity of the above planar structure resembles that of
the knitted mesh,

Table 5.5. Reflection coefficients from the arrangement in

Figure (5.32). (Normal incidence and TM
polarization).

Q copolar cross-polar
90° 0.721 : | 0.0

80° 0.725 0.086
70° 0.7263 0.16

60° ' 0.7316 0.238
50° 0.7523 _ 0.286

40° 0.77157 . 0.292

5.2.2. Aperture Fields

Figure (5.33) shows how the aperture field is compared
with the results published by Tsao and Mittra [16]. This
happens to be the only available data for aperture fields
thét we can compare with our calculations. For spacings
larger than one wavelength there are more than one
propagating modes (i.e. whenever ko2 >‘lin + B%n which
appear as lobes in the aperture field. Notice the four
lobes in Figure (5.33) for a spacing of four wavelengths

between the adjacent strips. Figures (5.34) and (5.35)

depict the amplitudes of the x- and y- components of the’

C - =
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aperture eleqtric field for a normally incident field on a
square mesh with the dimensions a=b=1.25A . Note again,
that this algorithm can predict the two bropagating lobes
and the edge effects on the strips that are perbendicular to
the y-directed incident electric field. Moreover, Figure
(5.36) and (5.37) give the amplitudes of the aperture fields
for a different type of polarization (Transverse magnetic or
TM) and a mesh with innerspacing inen by a=b=0.25A . 1In
this case the angles theta and phi are both equal to 30
degrees. In Figures (5.38) and (5.39), é smaller spacing is
used (a=b=0.125 ) and an angle of incidence equal to 30°,
to see if the algorithmiéan gtill converge under the
conditions of oblique incidence and smaller spacings.
Finally, in Figures (5.40) and (5.41) a sampling rate of
16x16 samples is used instead of 32x32. The x and y
components of the electric field in the aperture are shown.
In this case the wave is normally incident on a mesh of thin
strips and s spacing equal to 0.25 A. Once more, the edge

effects become very evident.
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APERTURE FIELD TH=PH=0 TE (A=1.25))
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for a wave incident on a thin strip mesh with

a=b=0.125A .,
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TE,NORMAL (A=B=.25\AND 005, THICK)

Fig. 5.40. Amplitude of y component of the electric
aperture field for a normally incident wave on a
mesh and sampling rate of 16x16 samples.
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TE,NORMAL (A=B=.25 AND .005 THICK)
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5.3 CPU TIME AND STORAGE REQUIRMENTS

In general the two dimensional problem takes longer to
converge than the one dimensional case. ‘One of the main
reasons for that is the fact.that a two dimensional FFT is
used and more sampling points are required in the two
dimensional case. Moreover, in the two dimensional case,
one has to solve for far more unknowns than in the one
dimensional problem. This number of unknowns also affects
the storage requirements for the two dimensional problem.
In general the CPU time depends on the sampling rate more
than on anything else. For example, for a sampliné rate of
16x16 samples, it takesiénywhere from 30 seconds to 1.40
minutes of CPU time (on an- IBM 3081 system) to converge to a
reasonably accurate result., This time includes sorting and
plotting of data. For a 32x32 sampling rate the CPU time
is, as expected, much more. In fact, in this case the range
is somewhere between 1:32 and 8:00 minutes. As mentioned
before, the CPU time also depends on the angle of incidence
and the strip spacing.

The program size is 56,064 bytes for a 16x16 sampling

rate and 149,192 bytes for a 32x32 sampling rate.
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6. COMMENTS AND SUGGESTIONS FOR FUTURE RESEARCH

Here, a number of recommendations for future research

related to the mesh problem and the S.D.C.G. method are

mentioned.

One). Skew-Symmetric Configuration for a mesh

(a) (b)

Fig. 6.1. Different sampling patterns (a) rectangular
(b) Skew-symmetric.

For a rectangular or a square grid, the number of
‘samples, which is also the number of Floquet modes,
corresponds to the number of couplings being taken into
account. Moreover, for rectangular sampling, the Fast

Fourier Transform can be used directly. On the other handg,
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for non-rectangular sampling, such as that shown in Figure
6.1 (b), the number of samplés méy not correspond exactly to
the number of couplings being taken into account. That will
yield some erroneous results. Moreover, in this case FFT
can not be used and hence a Discrete Fourier Transform has
to be employed instead. So the actual problem here is to
modify the existing algorithm in order to represent the
strips and their width as accurately as possible. The
reason for doing this is to avoid any aliasing problems that
may arise from sampling such a configuration. Solving this
problem is important because a study of the reflection
coefficients as a function of'the angle ¥ will give new
insight in designing mesh structure ﬁhat are skew-symmetric.
Moreover, this configuration might offer a better
approximatién to the actual woven structure than the
rectangular mesh. |
Two) . Double screen

The scattering properties of such a structure are of
interest because a double screeh can be used as a filter in
microwave applications. To solve this problem, the original
structure is divided into two substructures, and the
principles of equivalence and superposition are used to
obtain the fpfmulation in the spectral domain. According to
Tsao and Mittra the problem of the double screen can be

represented as in Figure (6.2):
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N L L .
= 3 _ T : Side View
é/ x4 ! : — X
o H = . & o—
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Fig. 6.2. Equivalent problem for a double screen

Thé equationé for the aperture field, for example, are
~similar to those used in our work for the single square
mesh, but with the phase difference between the two meshes
taken into consideration. Tsao and Mittra give the

following equations in the spectral domain for Ea1 and Eazz

I 2 2
2 @ B kg, - @ - 5 .
___3__ Cy mn mn ° mn G.Ea1 exp[J(amnx+any)]
© M 2, 52 :
mn “ko 't ? mn

o
| add

1
= — for the electric conductor
2 .
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2F
and
2 2 |-
23 “an Pmn Ko @ mn|= sa )
§ C, G.E"j-expljla  x+8  v)]
w W -k %4 a2 -
. mn ko *B mn %mn Bmn
1oL
=— H for the magnetic conductor
2
2 2
where C1 = e Ymnd. and Cz = 1+e Ymnd
where
. 2 2 .2 2 . 2 2
Ymn = -J \/ko =% on” B mn for k5™ >apnt B mn
2 2 2 : 2 2 2
_\/o' mnt ® “mn o for k,” <a mn+B_ mn

The total aperture field at any point is the superposition
>a -2>a
of E 1 and E 2e

Three). A mesh over a ground plane.

MESH

7777 7777 77777 (GROUND PLANE

Fig. 6.3. A mesh over a ground plane.
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In this problem, the evanenscent field from the mesh
interacts with the adjacent ground plane, and hence, the
total scattered field is different than that of the mesh in
free space, To solve this problem the superpositioﬁ
principle should be used as follows. First, solve for the
field reflected by the ground plane (or dielectric plane).
Second, find the scattered field due to the mesh and finally
find the total scattered field. Once the total scattered
fields are known the reflection coefficients can be
determined.

Four). Determination of the Electromagnetic properties of a
mesh with wires made of différent alloys for
Radiometric operation

Figure (6.4) shows that the wires used in constructing
the actual mesh are made of molybdenum 1.2 mill ip diameter
and there is 4-6% gold, by weight, plated over the
molybdenum. 1In thickness this corresponds to 8-11 micro-

inches.

Gold

Fig. 6.4. Gold plated wire substrate
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The resistivity ( p) of gold and molybdenum is
different., For gold p is 2.35 uQ -cm, whereas for
molybdenum the resistivity is 5.2 uQ-cm. In our work we
assumed the mesh was constructed with wires of one type of
resistivity and not alloys. If the skin depth, for a
certain frequency, is larger than the thickness of the fold
that covers the molybdenum wire, the field would penetrate
into the molybdenum region. This means that the wire cannot
be considered as uniform any more. Therefore, the current
algorithm has to be modified to take into consideration this
difference in resistivity., One way to do that would be to
derive an impedance expféssibn for thin wires made of any
kind of alloys. Once ' this impedance is obtained, it can be
used in the S§.D.C.G. method as follows: Start with the
equation for the currents in chapter 3. That is,

+ _ =5

Zmn J =E (6.1)

The new boundary condition becomes:
ES + E' = a

-
alloy J. (6.2)

where 2 is the internal impedance of the alloy divided

alloy
by the area of the strip or the equivalent cylindrical wire.

Now substituting equation (6.2) into equation (6.2) yields:

T = (6.3)
Zgn J = "B ¥ zalloy J .
or (2 ) T = -ET (6.4)
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The conjugate gradient method can be employed next to solve
for the currents as described in Chapter 4.

Another objective of the study here is to relate the
reflection coefficient evaluated by this method to the
emmissiVity and reflectivity measurements carried out by
NASA, at the Langley Research Center,

In conclusion, two techniques were developed here with
an eye toward more efficient numerical computation for
grating and mesh scattering. The first method, the Spectral
Iteration Approach is applied to regions where the spacing
betwéen the wires is not less than two wavelengths. The
second method, the Spectral bpméin Conjugate Gradient
Method, can be used for any spacing. Both techniques were
solved in the Spectral Domain and both follow from one basic
formulation. Aﬁgtﬁdyrbethe electromagnetic properties such
as reflection coefficients, induced currents and aperture
fields were presented and compared with data calculated by
other methods to suppoft the validity of the algorithm,

A number of suggestions for possible extensions of the
current algorithm to solve the problems of skew-symmetric
structures, double screens, wires made of alloys with
different resistivities and a mesh above ground were
mentioned. The code used in the Fortran program and a
listings of all main and utility subroutines appear in the

Appendices.
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8.1 -DERIVATION OF THE EQUATION FOR H AS A FUNCTION OF THE

ELECTRIC VECTOR POTENTIAL F

This appendix is to derive equation (2.9) from equation

(2.7) in Chapter 2.

Start with the equation:

1
-E?= ——E—VX;

(8.1.1)

Substituting equation (8.1.1) into the following Maxwell's

equation:
> ) ->
§7x H= jJweE .. :
yields:
>
Vx §=-j mVxF
Equation (8.1.3) can be written as:
Ux (H+30F =0
Now using the vector identity
Vx (Ve ) =0
equation (8.1.4) becomes:

K = -jm? —VQm

where " is the magnetic scalar potential{

m

curl of equation (8.1.1) leads to:

1
Vxt=-= VeVx?

which can be written as:

1 - -
VxE=-— YV.7F-Y2H

(8.1.2)

(8.1.3)

(8.1.4)

(8.1.5)

(8.1.6)

Taking the

(8.1.7)

(8.1.8)
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by making use of the vector identity

VxVxF=V(V.F)-Y2F (8.1.9)

To completely specify the vector F,-its divergence and
its curl must be defined. 1In equation (8.1.1) the curl of F
was defined. Now, one is at liberty to define the
divergence of'?, which is independent of its curl. The
choice of §7{? is made to simplify equation (8.1.8) which is
achieved by letting:

V. F=-jaoen 0 (8.1.10)
which gives:

1 - -
V. F (8.1.11)

o = -
n j WUE

Substituting equation (8.1.11) into equation (8.1.6) leads

to:
> . 1 \
H=-jofF -V (-— V. ¥
J wue
or
- . > . 1 ->
H=-joF + VV. F

j wue

which is the same as equation (2.9) in Chapter 2.
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8.2 DERIVATION OF THE EQUATION FOR THE SCATTERED MAGNETIC

FIELD HS
The purpose of this appendix is to derive equation

(2.12-b) from (2.12-a) in Chapter 2.

Start from equation (2.12-a), i.e.

— —_—
2 2
1 Ko " %mn “%mn Pmn | . )
s+ _ . = >4+

H "EZL G(amn,an)M(amn.B mn’
- a 8 K Z‘B 2
| mn © mn ° mn__ explj( amnx+6mny)]
(8.2.1)

Figure (8.2.1) below shows how the equivalence theorem could

be utilized to transform the free standing inductive surface

into a perfect electrical conductor {16]

Z/E‘ ZT /E z/§°
. - ﬁ"‘ —_ -
px G = | N - Mo o

. X Bnsadiiidon o o
|ape .|cond.‘ |ape‘con! A ‘E>(

> perfect electrical image of

for z)o conductor El due to

electr. cond.
ZT ZT z[
p— w = M
—_— X . — g —e@gM<a¥-x
. - o
for z<0

Equivalent problem for an inductive FSS

Fig. 8.201.
structure.
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For the region z>0 the total H field (E ) at z=0 can be

tot
expressed as:

%t - s+ > inc

) -
Now the magnetic current related to the aperture field E? is

(8.2.2)

given by:
= E2 xn (8.2.3)
A A A
where n is the normal to the aperture. For z > 0 n = 2z
and for z < 0 n = -Zz. so
A A a A a A
Mxx+Myy-[Exx+E:yy]x(z)
- _pa 2 a ~
Similarly for z < 0
M =B x (-%) o (8.2.5)

and the total H field is given by:

-_ -bs_

H op = H ‘ (8.2.6)
—)+ b S
At z = 0 H tot = H tot
Feo > S s
or 5™ = St + utlnc (8.2.7)
>co >
Moreover -g%" = Hs+ ' (8.2.8)

So equation (8.2.7) becomes:
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From the previous figures we had 2 M* (Due to image theory).

So multiplying equation (8.2.1) by a factor of two yields:’

— 2
P)
Jow.
or
= inc__
He o ==
jou

_
2
Ko = mn

But the equation (8.2.4) M

(8.2.11) leads to:

= inc
H e

or

= inc_ 2
Hy o =m—
jou

which is the same as equation (2.12) in Chapter 2.

2
J'wuz

1"%mn Pmn

2
kO c'mn

L

“%n Bmn

G M'

~%nn Bmn
2_.2
ko""B mn
—
% Bmn ~'§
sl x
K 2‘52 My
o mn
. —
= B and M
Y
~ %pn Pmn ~
Z| E
G ~Y
-E
2 2 X
kKo =B mn
—
2 2
k "= a -
o mn .| E
G _Y
~-E
X
=~ %mn Pan

exp[j(amnx+any)]

expljla  x+8  y)]

(8.2.11)

-Ex so equation

expljla x+B  v)]

(8.2.12)

explj (@ X oY) ]

(8.2.13)
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8.3 MINIMIZATION IN THE DOMAIN FOR THE CONJUGATE GRADIENT

METHOD
The algorithm that minimizes the error fﬁnctional ERRF2=
* *® o
”r (AA ) 1r ll/z is the following:
2(0) _ *>(0) 21 =
r Zmn J + E for n=0

2000 _ % 2(0)

=% mn
The equations for the nth iteration are:
l 2(n) 2
a_ = ,
n =(n 2
(R
F(n+l) _ 3(n) an-ﬁ(n)

2(n+l) _ 2(n) _ an 2z B(n)
;(n+l) lz

Bn = = l 2

- _ ¥ +(n+1) —=(n)

p(n+l) = 2 mn T + Bn

n = n+l
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8.4 CODE

h (¢«— BB __>1 i

Y

-1 b

Fig. 8.4.1 Square cell

AA= Distance between centers of vertical strips in x
direction (INPUT)

BB= Distance between inner edges of vertical strips in x
direction (INPUT)

CC= Distance between centers of horizontal strips in y
direction (INPUT)

DD= Distance between inner edges of horizontal strips in y
direction (INPUT)

F= Frequency (INPUT) —

I0PT=1 for rectangular meshes (INPUT)

IOPT=0 for parallel wire grids (INPUT)

PSI is angle @ (INPUT)
ITM=0 for TE polarization ( INPUT)
ITM=1 for TM polarization ( INPUT)

NOI = Number of iterations ( INPUT)
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IX = Sampling length for FFT ( INPUT)
ALAMB = Wavelength

NX = number of samples incident in the aperture along x.

i/

Fig. 8.4.2. Sampling Arrangement

NX1,NX2 = Edge points in x direction
NY1,NY2 = Edge points in y direction
V.U = Expressions of the Floquet modes X and an
-i V x2-(v2+u?) for k% > u? + v
G =
- kz—(V2+02) for k2 < U2 + V2
EXI,EYI = x and y components of the incident electric field
(INPUT)
HXI,HYI = x and y components of the incident magnetic field
(INPUT)
FFT3D = 3 dimensional complex Fast Fourier transform
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FOR SIT
X,Y 2 dimensional arrays for the aperture field

JCX,JCY = 2 dimensional arrays for the current densities

CONX,CONY

c =F.-l 7-1 F_[_Htinc + @ (Htinc)]

2 dimensional arrays to store the constant:

XIX,YIY,XIY,YIX arrays used to store the perturbed aperture
fields.
GX,GY,HX,HY partial derivatives used in the contraction
operation
FOR THE S.D.C.G.
ZINT internal impedance
DX,DY diregtion vectors *
RX,RY residual vectors
X, Y afe'either‘thefapéttﬁfé'fiéids, or the induced
"{curfents (thé unknown)
TX,TY two dimensional arrays used to store different values
AN Q.
BN Bn
PHASEX,PHASEY arrays used to store phase information
CREFX,CREFY x and y components of the reflection
coefficient
REFF,REFT,RETT,RETF reflection coefficients along theta and
phi angles for TE TM polarizations
21,22 one dimensional arrays used to store the amplitude of
the unknown X and Y so that they can be used for

plotting purposes for the cross-unit cell
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7 o
[ ]

MUPY —

MDOY -

—

Fig. 8.4.3. Cross-Unit Cell

MDOX 1left edge point of perpendicular strips
MUPX right edge point of perpendicular sttips
MDOY 1lower edge point of horizontal strips .

MUPY upper edge point of horizontal strips
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8.5 FLOW-CHART FOR THE SPECTRAL DOMAIN CONJUGATE GRADIENT

METHOD

' READ
AA,BB,CC,DD,Frequency
r ¢+ +IX,ITM,NOI

®

Evaluate ERRF(O)I

L

Calculate
See Chapter 3 & 4

Determine sampling
points that correspond
to the aperture and the
conducting regions, i.e.
NX1,NX2,NY1l,NY2 ,NX,NY

v

LRI R .

g{n+l)_p(n), anp(n)

U

Calculate the Floquet
Coefficients amn’ an

Y

Find ERRF(P*1)
(See Chapter 3 & 4)

A

iCalculate the components
of the incident electric
and magnetics fields Ey v

Ey, Hx, HY.

Define the new residual

vector r(n+1)

o,

LV

Calculate the factor Bn

v

Give initial guess for

S00) o £(0)

v

v

is

< 1% NO—3

ERRF(n+1)

Evaluate the residual

(0) and the

(0)

vector r

direction vector p

YES
4

®

Calculate the amplitude
and phase of current
densities and electric
aperture fields.

K2

Evaluate reflection
Coefficients

STOP
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8.6 LISTING OF THE S.I.T. METHOD

CsesssSIT FORTeRaes :

COAPLZX CONE,CZZTRO,CDET,CXYY,COUS,CXT4Y,CREFX,CREPY

COMPLEX COKX1(32,32)/1024%(0.0,0.0)/

COMPLEX CONY1(32,32)/1024%(0.0,0.0)/

COMPLEX CONX2(32,32)/1024%(0.9,0.0)/

‘COMPLEX CONY2(32,32)/1024#%(0.0,0.0) /

COMPLEX CONX(32,32),/1024%(0.0,0.0) /

CONPLEX CONY(32,32)/1024%(0.0,0.0) /

CONPLEX XU(32,32)/1024%(0.0,0.0) /

COMPLEX YU(32,32)/1024%(0.0,0.0)/

COMPL2X G (32,32)/1028%(0.0,0.0)/

COMPLEX JCX (32,32) ,JCY (32,32)

COMPLEX Y(32,32)/1024%(0.0,0.0)/

COMPLEX X(32,32)/1028#(0.0,0.0)/

COMPLEX YIZ(32,32)/1024%(0.0,0.0)/

CONPLZX XIX(32,32)/1028%(0.0,0.0)/

CONPLEX YIY(32,32)/1028¢(0.0,0.0)/

CONPLEX XIY (32,32)/1024#(0.0,0.0)/

COMPLEX 6X(32,32),6Y(32,32),HX(32,32),RY (32,32)

COMPLEX J,3XI,4YI,CWK(32),A411,412,A21,422,DENO

RSAL K,X2,RWK(382) -

DINENSION ANP(32),RINDEX(32),I¥K(382),CROS(32)

REAL U (32) /32%0.0/

REAL V(32,32)/1028%0.0/ . .
s8¢ AA=DISTANCE BETWEEN CEBNTERS OP VERTIC. STRIPS IN X~DIRECTION *
ss+ BB=DISTANCE BETWEEZN INNER EDGES OP VERTIC.STRIPS IN X=-DIRECT.S®s
#s* CC3DISTANCEZ BETWEEN CENTERS OF HORIZ. STRIPS IN Y-DIRECTION s
s#s DD=DISTANCE BET7EEN INNEP EDGES OP HORIZ. STRIPS IN X~-DIRECT.$s

READ(1,22) AA,BB,CC,DD,P,ERR
22 TFORMAT (8210.4) .

nann

P=2,.998E+8
C *==* JOPT=0 POP A RECTANGULAR OR SQUARE NESH ssss=*
C #*= TOPT=1 ©POB A PARRALLZEL GRID b
IOPT=1

I?(I0OPT.GT.0) CC=31.500B+1S
I”(IOPT.GT.0) DD=1,5002+1S
WRITE(3,33) AA,BS,CC,DD,ERR
33 FORMAT('0',* A= *,P15.8,* B= *,F15.8,' C= ',P15.8,
3¢ D= ! ,P15.8,* ERR= *,P15.8)
WRITE(3,44) P
48 FORMAT('0',*' PREQ = *,B10.4)
READ(1,22) PHI,THI,PSI
WRITE(3,55) °dAI,THI,>2SI
S5 PORMAT('92*,' PHI= *,P10.1,' THETA= ',P10.1,' PSI= ',P10.1)
C **= READ THE NUNBER OF SANPLIFG POIRTS s*«=
READ (1,66) IX

C s*= ITN=1 POR TH POLARIZATION LTI L
PEAD(1,66) ITM
C *ss READ NUYBER OF ITESRATIONS sssneny

9EAD(1,66) NOI
36 FORMAT(II)
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PI=2,141593
PI2=2I/2.
TPI=6, 283185
CV=2.997956E+83
UYy=4,E=-T*PY
RTD=57.29578
EP=8.854E-12
BTA=SQRT (U /EP)
J=CMPLX(0.0,1.0)
ITER=1 .
CONE=CNPLX (1.0,0.0)
CZERO=CYPLX (0.0,0.0)
A=TPI*¥?
ALAMB=CV/F
AA=AA/ALANB
BB=BB/ALANB .
CC=CC/ALAMB :
DD=DD/ALAMB
C *** DETERMINE SAMPLING POINTS THAT CORRESPOND TO THE
c CONDUCTING REGIONS AND THE APERTURE L Ri I TE
*  NX=1PIX(BB/AA®*PLOAT(IX)*2.)/4*2 : :
NY=IFIX (DD/CC*FLOAT(IX) #2.) /4*2
NX 1= (IX-NX) /2+1
NX2=NX1+NX-1
NY 1= (IX-NY) /2+1
NY2=NY 1¢NY =1
WRITE(3,100) NX,NX1,NX2,NY,NY1,NY2
100 FORMAT('0',' NX=¢,I3,3X,*NX1=¢,13,3X,'8¥X2=',I3,3X,
- ' NY=',I3,3X,'NY1=',I3,3X,'HY2=',13)
K=TPI/ALAND
K2=K**2
STSPR=SIN{THI/RTD) *SIN(PHI/RTD) *K
STCPK=SIN (THI/RTD) *COS (PHI/RTD) *K
CPS=COS (PSI/RTD) /SIN{PSI/RTD)
110 CONTINUE
C *®sx% CALCULATE FLOQUET MODES SEEARRERS
DO 200 M=1,IX :
IP (N.GT.IX/2+¢1) GOTO 125
O (™) =TPI* (N-1) /AA-STCPK
GOTO 127
125 U (M)=TPI*(M-IX-1) /AA~STCPK
127 CONTINUE
DO 190 N=1,IX
IP (M. GT.IX/2+1 AND.N.GT.IX/2¢1) GO TO 160
IP (M.GT.IX/2+1) GO TO 150
IF(N.GT.IX/2+1) GO TO 140
VN, N)-TPI'(N-1)/CC-TPI‘(H-1)/\A‘CPS-STSPK

GO TO 170

140 V(M,N)=TPI%* (N-IX- 1)/CC-TPI*(H-1)/AA*CPS-STSPK
GO TO 170

150 Vv, H)-TPI*(N-1)/CC TPI* (M-IX~-1) /AA*CPS-STSPK
GO TO 170

160 V(M,N)=TPI*(N-IX~1)/CC-TPI*(M-IX-1) /AA*CPS-STSPK
170 IFP(R2.GE.T(M)**2eV (Y, N)ttz) G (M, N) ==J*SQRT (K2~ (U (M) **2+V (1, N)"Z
«))
IF(KZ.LT.U(H)**20V(H.N)“2) G (M, N) ==SQRT (17 (M) **2+V (N, ,N) **2-K2)
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L BCONT
190 cConNTINUZ=
290  coyxTtINn: -
IP (ITY.GT.0) GO TO 210
C #*%8% INCIDENT FIELDS POR TE POLARIZATION #*=ay
~  "BXI=SIN(-PHI/RTD) .
BYI=COS{(PHI/RTD}
HX I=CO0S (PHI/RTD) #COS (THI/RTD) /ETA
HYI=SIN(PHI/RTD) #COS (THY/RTID) /ETA
GO TO 261
C s*%s% TNCIDENT PIBLDS POR TH POLARIZATION %*3x#3x
210 EXI=COS{PHI/RTD) *COS (THI/RTD)
EYI=SIN(-PHI/RTD) *COS(THI/RTD)
HYI=SIN (PHI/RTD-PI2) /ETA
HXI=COS(PHI/RTD-PIL2) /ETA
261 CONTINUE
C **% GIVE A GUESS POR INITIAL APERTURE FIBLDS X & Y #ss
DO 310 M=NX1,NX2
D0 300 N=NY1,NY2
X{n,Rn)=sBXI
Y(8,N)=EYI
Xu(m,N)=x(1,N
YO (M,N)=Y(",N)
300 CONTINGE
310 ~ CONTINUE
C **#* START THE COMPUTATION OF CONSTANTS CONX & CONY TRAT DEPEND
(o] OF A GIVER INCIDENT FIELD . *
DO 315 I=1,IX : .
DO 315 L=1,IX
CONX1(I,L)=+1, *HXI*RW=00/J
- -CONYI(I,L)=+1,*HYI*W*0U/J
CONX2(I,L)=~1.*=HXI*W*0U0/J
CONY2(I,L)=~1.*HYI*W=*00/J
315 CONTINUER '
C **% DPERFORM THE TRUNCATION OPERATION ***
DO 325 I=NX1,NX2
DO 325 L=NY1,NY2
CONX1(I,L)=CZERO
325 CONY1(I,L)=CZERO
C *%%* TAKE THE FOURIER TRANSPORHM R b
CALL FPT3D(CONX1,IX,IX,IX,IX,1,69,IWK,R¥K,CVK)
CALL PPT3D(CONY?!,IX,IX,IX,IX,1,69,IWK,RWK,CHK)
CAlLlL PPT3ID(CONX2,IX,IX,1X,IX,1,69,IWK,RNK,CWK)
CALL PPT3D(CONY2,IX,IX,IX,IX,1,69,IWK,RWK,CWK)
DO 340 M=1,1IX
D0.340 N=1,IX
COoux (M, N)=CONX1({M4,N) +CONX2 (4,N)
340 CONY (d4,N) =CONY1(M,N) +#CONY2 (M, N)
bo 350 %=1,1IX
DO 359 N=1,12
CDET== (T (M) #V (4, 1) /G (1, N)) *+#2=(V (1,N) **2,/G (1,N) =G (M, ) )
% (G (4, N) =0 (M) *22/G (11, 1) )
CONS=CONX (M, ,N)
CONX (M, N)= (=11(N) *V (X,N) /G (1, N) SCONX (3, N) = (V (1, N) «#2/G (M, N) -G (%, N))
+«*CONYZ(4,N)) /CDET
CONY (M, N) = (~ (G (M,8) ~U (M) #%2/G (N, K) ) *CONS+U () *V (N, N} /G (X, N) *
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.CONY (M,N)) /CDET
350 CONTINUE -
C *xxx  PND OF CALCILATION OF CONX & CONY =%a%2

.

C .
C =#%22 NOW STAKT ITERATIVE PROCESS fffrrirgitrettey

sRER &
of
C #22 SET ALL PARTIAL DERIVATIVES EQUAL TO ZERO Lt
400 DO S41 M=1,1IX

PO 541 N=1,IX
XIX (M,N) =CZERO
YIX (M,N) =CZERO
XIY (M, H) =CZERO
YIY (M,N) =CZERO
541 CONTINOUE
C ##** DERTURB APERTNRE PIESLDS BY (0.01,0.01) soRseRS
DO 543 M=NX1,NX2
DO 543 N=NY1,NY2
XIX (M,N)= X(H,N)0(0.010 0.010)
YIX(M,N)=Y (N, N)
XIY (M,N)=X (M, N
YIY (%,¥)=Y(8,N)+{0.010,0.010)
s43 CONTINUE : i _
C s** TAKE THE POURIER TRANSPORM OF THE APERTURE FIELDS X & Y *#ss
CALL PPT3D(X,IX,IX,1X,IX,1,69,IVK,RWK,CVK)
CALL PPT3D(Y,IX,IX,IX,IX,1,69,IWK,RWE,CUK)
C ##ss MOLTIDLY TRANFORMED PIELDS BY THE PLOQUET COEPPICIENTS
C . AND GRBEN'S PUNCTION , saes
DO 560 M=1,IX . _
DO 550 n=1,tx
CXMN=X(M,N)
X{M,N)=(0(M)*V(4,N) /G (4,H)*X (N, N) +(V (4, N) **2/G (", ) -G (1,N))
. *Y(M,N))
Y (M, H) = ((G (M, N) ~U () ##2/G (N, N) ) *CXHN-T(#) *V (R,K) /G (M, })
T . =Y (NM,N))
550 CONTINOE
560 CONTINUE :
C #*s»x TAKE THE INVERSE POURIER TRANPORM asan e
CALL FPT3D(X,IX,IX,IX,IX,1,-69,IWK,RWK,CVK)
CALL PFT3D(Y,IX,IX,IX,IX,1,-69,IWK,RNK,CWK)
WRITE(2,570) ITER :
570 FORMAT(3X,/ ' ITERATION NUMBER ',I2)
C *s% CALCULATE CURRENT DENSITIES  *#=x*%
DO 600 M=1,IX
DO 600 n=1,IX
JCX (N, ¥) =T, uyta/u/uu+uxtgaoa)
600 JCY(H,H)=R(H N) *3/9/U0+8XI)%(2.)
C %&x DPLOT CURENTS ON STRIPS #ussz
DO 620 I=1,IX
AR () =CABS (JCY(1,I))
RINDEX (I)=(FLOAT (I-IX/2) -.5) /IX*AA*1,045
IF (ITER.GT. (NOI-1)) WRITE(B,*) AMP (I),RUNDEX (I)
6§20  CONTINDE
c IF (ITER.GT. (NDI-1)) CALL GENDPT (RINDEX,ANP,IX,0)
C **x%x TRUNCATION #s=x
DO 740 N=NX1,NX2
DO 730 N=NY1,NY2
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X (4, N) =CZERO
Y (M,l) =CZERO
730  CONTINUE
740  COMTINUE _
C s«%+ NOR FIND THE P (TRUNC(INVERSE P (G E))) ssee
c
CALL FPT3D(X,IX,IX,IX,IX,1,69,IWK,RWK,CWK)
CALL PPT3D(Y,IX,I¥,IX,IX,1,69,IWK,RWK,CWK)
ITER=ITER+1
Do 760 M=1,IX
DO 750 N=1,IX
CDET=~ (U (M) *V (1,N) /G (M, N)) #*2~ (V (¥ ,N) **2/G (M, ,N)~G (N, N))
« *®(G (M, N) =0 (H) **2/6 (M,N)})
CXMN=X (N, N)
X (M,0)= (-U (%) *V (M, N) /G (8, N) X (M, K) = (V (¥, N) #*2/G (M, N) =G (1, H) )
. %Y (,N)) /CDET
Y(M,N)= (= (G (4,N) =U (M) %%2,/G (4, N) ) *CXHN+U (M) *V (1,N) /G (4, ¥)
<Y (M,N)) /CDET
750 CONTINUE
760 CONTINUE
C sx%% ADD P (TRUN (INVERSE P(G B))) TO CONX AND CONY sens
DO 780 M=1,IX
DO 770 N=1,IX
X (M, N) =X {4, §) +CONX (1, ¥)
Y (N, N)=Y(u,u)+cour(a ¥)
770 CONTINUE
780 CONTINOE
C #*+ CALCULATE THE REFLECTION COEPPICIENTS CREPX AND CREPY $s*
CREPX=X(1,1) /(FLOAT (IX) #FLOAT (IX)) -EXI
CREPY=T (1, 1) 7(FLOAT (IX) *FLOAT (IX)) -BYT
REFX=CABS (CREFX)
REPY=CABS (CREFY)
WRITE(3, 800) REFY
800 . FORMAT (10X,2P10.3)
C % mAKE THE INVERSE POURIER TRANSFORM OF THE RESULT TO OBTAIN
c A NEW VALUE FOR THE APERTURE FIELDS sses
CALL PPT3D(X,IX,IX,IX,IX,%,-69,I1WK,RWK,CHWK)
CALL PPT3D(Y,IX,IX,1X,IX,1,-69,IWK,RWK,CUK)
C **%* PLOT APERTURE PIELD #+#
DO 830 I=1,IX
AND (I) =CABS (Y (I, 16))
c CROS (I) =CABS (Y (8,1))
RINDEX (I) = (FLOAT (I-IX/2) =.5) /IX*AA*1.085
1P (ITER.EQ.NOI) WRITE(8,%*) ANP(I),RINDEX(I)
830 CONTINUE
c IF (ITER.GE.NOI) CALL GENPT (RINDEX,AMP,IX,0)
c CALL GENPT (RINDEX,CROS,IX,0)
C ®*+ PEDEAT SANE PROCESS FOR PERTURBED PIELDS XIX,XIY,YIK,6 YIY®e=
CALL PPT3D(XIX,IX,IX,IX,IX,1,69,IKK,RWK,CWK)
CALL PPT3D(YIX,IX,IX,IX,IX,1,69,IWK,R¥K,CHK)
CcALl FPT3D(XIY,IX,IX,IX,IX,1,69,I¥K,R¥K,CWK)
CALL FFT3D(YIY,IX,IX,IX,IX,1,69,IWK,RVK,CHK)
DO 850 M=1,IX
DO 840 N=1,IX
CXMN=XIX (M, N)
XIX(A,N)= (M) =V (4,) /G (M, N) *XIX (M, N) + (V (4, N) *+2/6G (1, N) -5 (M, N))
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« TYIX(N,N))
YIX (N, N)=((G(M,N) =U (M) 22/G (H,1)) *CXMH-1I (%) *V (M, N) /G (4, N)
. *YIX(M,M))
CXIMN=XIY (1,N)
XIY (M, 0)=(U(M)*V (1, N) /G (M, N)*XIY (4,N)+(V(M,N) **2/G(M, N) -G (X, K))
. *YIY(M,N))
YIY (M, n)-((G(H,H)-U(H)‘*Z/G(H N)) *CXIMN-T (M) *V (M, ¥} /G (4, N)
o BYIY(M,N))
840 CONTINUE
850 CONTINUE
CALL PFT3D(XIX,IX,IX,IX,IX,1,-69,IWK,RWK,CWK)
caLL PFT3D(YIX,IX,IX,IX,IX,1,-69,IWK,RWK,CHK)
CALL PPT3D(XIY,IX,IX,IX,IX,1,-69,IWK,RWK,CUK)
CALL PPT3D(YIY,IX,IX,IX,IX,1,-69,I%K,RWK,CWK)

‘cees woR PERFORM THE TRUNCATION OPERATION POR PERTURBED FPIELDS #*%#

DO 870 N=NX1,NX2
DO. 860 N=NY1,NY2
XIX (%, N)=CZERO
YIX (&, N) =CZERQ
XIY (M, N) =CZERO
YIY (M,N)=CZERO _
860 CONTINUE _—
870 CONTINUE
c .
C #*%% NOW PIND THE P (TRUNC(INVERSE P (G EP))) sss
pa \
CALL PPT3D(XIX,IX,IX,IX,IX,1,69,IWK,RWK,CWK)
. CALL PPT3D(YIX,IX,IX,IX,IX,1,69,IWK,RWK,CHK)
- CALL PPT3D(XIY,IX,IX,IX,IX,1,69,IVK,RWK,CHK)
CALL PPT3D(YIY,IX,IX,IX,IX,1,69,I¥K,RWK,CHK)
DO 910 M=1,IX
DO 900 N=1,IX
CDET=- (O (N} 5V (¥, N) /G (1, N) ) $#2=(V (4, ¥) *%2,/G (8, N)=G (M, ) )
«*(G (4, H) -0 (M) **2/G (4,N))
CXMN=XIX(N,N)
XIX (M, N)=(=0(N)*V(M,N) /G (M, N) *XIX (N, N) = (V ({4, N) **2/G (4, N) -G (A, N))
. *YIX (M,¥)) /CDET
TIX (M, N) = (= (G (¥, ) =U (1) #22/G (N, N) ) *CXNN+T (M) *V (¥, N) /G (M, ) *
.YIX (M,N)) /CDET
CXINN=XIY (M, V)
XIY (M, N)=(=U(M) *V (4, N) /G (M, N) *XIY (31,N) = (V (4, N) *#2/G (M, N) -G (4,N))~
+*YTY (N,N)) /CDET
YIY (M, N)= (= (G (M,N) =0 (N) **2/G (M, N)) *CXINN+U (M) *V (M, ¥) /G (4, §) *
.YIY(N,N)) /CDET
900  CONTINUE
910 CONTINUE
DO 930 M=1,IX
DO 920 N=1,IX
XIX (M, N) =XIX (M, N)+CONX (%,N)
YIX (4, N)=YIX(M,N)+CONY (M,N)
XIY (4, N) =XIY(M,N)+COYX (M, N)
YIY (8, N) =YIY (M,H) +CONY (M, 1)
920  CONTINUE
930 CNHONTINUE
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CALL PPTID(XIX,IX,IX,IX,IX,1,-69,IWK,R¥K,CUK)
CALL FFT3D(YIX,IX,IX,IX,IX,1,-69,IWK,RWK,CVK)
CALL FPT3D(XIY,IX,IX,IX,IY,1,-69,IWK,RWK,CWK)
CALL PPT3D(YIY,IX,IX,IX,IX,1,-69,IWK,RWK,CUK)
EVALUATE PARTIAL DERIVATIVES GX,GY,HX,EHY *%%%
DO 950 M=1,1IX
DO 940 N=1,IX
GX (M, N)=(XIX(M,N}=-X(M4,N))/(0.010,0.010)
AX (M, N)=(YIX(Y,N)~-Y(M,%))/(0.010,0.010)
GY (M, ,N)={XTY(M,N)~X{N,N))/(0.010,0.010)
HY (M, N)=(YIY (N, N) Y(4,%))/(0.010,0.010)
CONTINUE
IMPROVE onzvzous ITERATE FOR APERTURE PIELDS BY USING
A CONTRACTION PACTOR _ Lol 2]
DO 960 M=NX1,NX2 ' ’
DO 960 N=NY1,NY2

_DENO=GX (4,N)*HY (4, N) -HX (M, N) *GY (M, N) -GX (#,N) -HY (M, N) +1.

A11=(1.-HY (M,¥)) /DENO
A12=-GY (M, N) /DENO

A21=-HX(4,Y) /DENO

A22=(1.-GX (M,N)) /DENG

CXMN=X (% ,N)

x(n, N)-A11tx(1,N)+A12tr(n,u)+(1.-A11)#x0(n,u) A12%Y0 (M, N)
Y (%, N) =A21%CXMN+A22%Y (N, N) ~A21#X0 (0, N) + (1. =A22) *YU (N, N)
CONTINUE

IP (ITER.GT.NOI) GO TO 1000

NOW TRUNCSTB THE IMPROVED APERTURE PIELD E = s%3*»

DO 980 x=1,1X
DO 970 R=1,1X

131

IP(H.GE.NX1.AND;H.LE.NXZ.AND.N.GB.NY1.AND.N.LB.NY2) GO TO 965

X(4,N)=(0.00,0.00)
Y(M,N)=(0.00,0.00)
XN (M,N)=X(M,N)

YU (M, H) =Y (N, N)
CONTINUE

CONTINUE

GO TO 400
CONTINUE

sTop

END
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LISTING OF THE S.D.C.G. METHOD FOR THIN STRIPS WITH
THE SQUARE-SHAPED UNIT CELL

-

THIS IS THF CONJG. GRAD. WETHOD POR CUPRENTS ON THIF WIRES*¥
MINTMTZATION IN THE RANGE (VAN DER BERG) s#sses
COMPLEX COME,CZERO,CX#N,F10
COMPLEX CREFX,CREFY,CREP,CRET,ZINT
COMPLEX G (32,32)/1026%(9.0,0.0) /
COMPLEX Y(32,32)/1024%(0.0,0.9)/
CONPLEY X(32,32)/1024% (0.0,0.0) /
COMPLEX YU (32, 32)/1024%(0.0,0.0)/
COMPLEX XU (32,32)/1024%(0.0,0.0) /
COMPLEX RX(32,32)/102u¢(0.0,0.0) /
COMPLEX RY(32,32)/1024%(0.0,0.0) /
COMPLEX J,HXI,HYI,CWK(32)
COMPLEX DY (32,32) /1026#(0.0,0.0) /
COMPLEX DX (32, 32)/1024%(0.0,0.0) /
COMPLEX TX(32,32)/1024%(0.0,0.0) /
COMPLEX TY (32,32)/1024%(0.0,0.0) /
REAL K,K2,RWK(382)
DINENSION IWK(382),RR(350),CH(350),PHASEX(32,32),PHASEY (32,32),
21(1028) ,X1(1028), 21(1ozu),zz(1ozu) AMP(36) , RINDEX (36)
REAL 0 (32) /32%0.0/ -
R2AL V(32,32)/1024%0.0/
AA=DISTANCE BETWEEN CENTERS OF VERTIC. STRIPS IN X~DIRECTION #*
BB=DISTANCE BETWEEN TNNER EDGES OF VERTIC.STRIPS IN X-DIRECT.*#
CC=DISTANCE BETWEEN CENTERS OF NORIZ. STRIPS IN Y-DIRECTION *
READ(1,10) AA,BB,CC,DD,F,ERP
FPORMAT (RE10.8)

F=2.998E+3 )
IOPT=0 FOR A SQUARE OR A RECTANGULAR MESR #=e&=x
InPT=1 FOR A PARALLEL GRID hhid
10PT=1

IF (IOPT.GT.D) CC=1.500E+15

IP (I0PT.GT.0) DD=1,SO0E+15

WRITZ(3,20) AA,BB,CC,DD,ERR

PORMAT (*0*,' A= *,P15.8,' B= ',P15.8,! C= *,P15.8,
* D= ',F15.8,' ERP= ',P15.8)

WRITE(3,30) F

PORMAT (*0',' PRBQ = ?,E10.4)

READ(1,10) PHYI,THI,PST

WRITE(3,u40) PHI,TRAI,PSI

PORMAT ('0',% PHI= ',P10.1,*' THETA= ',P10.1,' PSI= ',P10.1)
PEAD THE NUMBER OF SAMPLING POINTS s#axs
READ(1,50) IX

ITM=0 FOR TE POLARIZATION s*#x

ITH=1 POR TN POLARIZATION *%xs

READ (1,50) ITM

WRITE(3,45) ITM

READ THT NUMBER OF ITERATIONS *%#

READ (1,50) HOT

FORMAT (3%, 'TH® VALUE FOR ITM IS=  ',I3)
FORMAT (T?)

PI=3.141593
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2.997956E+8
nw 4. E~7*PI
RTD=57.29578
" EP=8.854E-12
ETA=SQRT (11U/EP)
J=CHMPLX (0.0, 1.0)
ITFR=1
CONE=CMPLX (1.0,0.0)
CZEPRO=CMPLX (0.0, 0.0)
SIG®A=5.E20
W=TPI*F
ZINT=(1.0,1.0) *SQPT(W*UU /2., /SIGMA) /(1.0)
ALAMB=CV/P
AA=AA/ALAMB
BB=BB/ALANB
CC=CC/ALAMB
DD=DD/ALAMB
NX=IPIX(BB/AA*PLOAT (IX)*2.)/us2
NY=IFIX(DD/CC*PLOAT(IX) *#2.)/4*2
NX1= (IX-NX)/2+1
NX2=NX 14KX~ 1
NY 1= (IX=NY) /2+1 .. -
NY2=NY1+NY-1
WRITE(3,60) NX,NX1,0X2,NY,NY1,NY2
60 PORMAT(*0',' -NX=',I3,3X,'NX1=',I3,3X,'NX2="',I3,3X,
. ' NY=*,I3,3X,'NY1=',I3,3X,'NY2=',I3)
K=TPI/ALAMB
K2=K**2
STSPK=SIN (THI/RTD) *SIN(PHI/RTD) *K
STCPK=SIN (THI/RTD) #COS (PHI /RTD) *K
CPS=COS (PSI/RTD) /SIN (PSI/RTD)
70 CONTINUE
sss DEPINE THE PLOQUE®™ CORPPICIENTS sass
DO 100 M=1,IX
IF (N.GT.IX/2+1) GO TO 75
- U (M) =TPI*(N~-1) /AA~STCPK -
GO TO 80
75 1(N)=TPI* (M-IX=-1) /AA-STCPEK
80 CONTINUE
DO 90 N=1,IX
IF (M.GT. IX/2+1.AND.N.GT. IX/2¢1) GO TO 84
IF(%.GT.IX/2+1) GO TO 83 .
TF(N.GT.IX/2+1) GO TO 81
V(M,N) =TPI*(N-1) /CC-TPI* (M=-1) N ASCPS-STSPK

GO TO 85 .

81 V(M,N)=TPI* (N-IX-1)/CC-TPI#*(M-1) /AA*CPS-STSPK
GN TO 85

83 V({1,N)=TPI*(H~-1)/CC-TPI*(N-IX~-1) /AA*CPS-STSPK
GO TO 8S

S8 V(M,M)=TPI*(N-IX-1)/CC-TPI*(N-IX~-1) /AASCPS~-5STSPK

95 IF(R2.GE.U(M)**24V (M,N) *%2) G(M,K) ==J*SQRT (K2- (U (1) **2+V (M, N) **2
1) ‘
IF (Z2.LT.1 (M) =%2+7 (M, N)%%2) G (M, N) ==SQRT (I" (1) *22+V (N, ) *22 =K2)

. *CONE
/
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90 COYTINUE
106 COUTINUE
IFP (ITM.GT.O) GO TO 110

C ®=¢+ INPUT FOR TE POLAPIZATION #®ss=
FXI=SIN({-P5I/PTD)
PYT=COS (PHI/RTD)
HYI=COS (PHI/RTD) *COS (THI/RTD) /ETA
HY T=STN (PHI/RTD) *COS (THI/RTD) /ETA
PP=1.0
GOTO 120
C s%%s+ TNPUT FOR TM POLARIZATION ##s*
c
110  EXI=COS (PHI/RTD) *COS (THI/RTD)
PYI=SIN (-PHI/RTD) *COS (THI/RTD)
HYI=SIN (PHI/RTD-PI2) /ETA
HXI=COS (PHI/RTD-PI2) /ETA
PT=1.0%COS (THI /RTD)
120 CONTINUE
C #***% SET YOUR INITIAL GUESS POR X AND Y s#=s
c .
123 - DO 130 m=1,IX
D0 125 N=1,IX
X (M, N) =CZERO :
Y (N, N) =CZERO -
X7 (M, N)=X(N,N)
YU (N,R) =Y (8,N)
125 CONTINUE®
130 CONTINUE
C #*%* JORK ON INITIAL GUESS#s#
c
CALL FPT3D(XU,IX,IX,IX,IX,?,69,IWK,RV¥K,CWK)
CALL PPT3D (YO, IX,IX,IX,IX,1,69,IWK,RWK,CWK)
DO 160 N=1,IX
DO 150 N=1,IX
CXMN=XU (M, N)
IU(N,N)=({G(N,N) -V (N, N) **2/G (M, N) ) *XO(X,N)~ (T (M) *V (H,N) /G (84, N))
. *YM(A,N))/(I*W*EP) /2.
YU (M, N) = (=0 (M) #V (8, N) /G (M, N) SCXMN+ (G (H#, K) =0 (1) **2/G (8, N))
. *YU(H,N))/(J*Vs*EP)/],
150 CONTINUP
160 CONTINJE
CALL PPT3D(XU,IX,IX,IX,IX,1,-69,IWK,RHK,CWK)
CALL FPT3D(YU, IX.IX,IX,IX,1,-69,IWK,RWK,CWK)
c WRITE(3,170) ITER
170  FPORMAT(3X,/ ' ITERATION NUMBER ', I2)
DO 200 H=1,IX
DO 190 N=1,IX
C ** COMPOTE THE ERROR FOR YOUR INITIAL GOUESS #%*2
RY (f, N) =EXI+XU (1,N)
RY (M, N)=EYT+ YU (H,N)
IP (M.GE.NX1.AND, M. LE.NX2.A¥D,N.GF.NY 1. AND. N.LE.NY2) BRX(M,N)=CZERO
CIF(M.GR.UXTLAYD. M. L. NX2.AND.N.GF. MY 1. AND. N. LE.EY2) RY (M,N)=CZERO
ERROR=ERROR+RX (M, M) *CONJG (RX (M, N)) +RY (M, B) *CONJG (RY (M, N))
FS=FS+RX (M, N) *CONJG (RX (M, H)) +RY (M, N) *CCNJG (RY (M, N) )
DX (M, NY=RX (M, N
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nY (M, H) SRY (M, M)
190  CONTINUE
200  CONTINOE
C
«C =x%¢ PIND THE FOURIFR TRANSFORM OF RESIDUAL **2
o
CALL PPT3D (DX, IX,I%,IX,TX,1,69,IWK,RWK,CWK)
CALL FPTID(DY,IX,IX,IX,IX,1,69,IRK,RUK,CHK)
C ** MOTILPY BY THE CONJUGATE TRANSPOSE OF THE MATRIX 2
c TO FIND TKE VECTNRS DX AND DY %
no 220 M=1,IX
DO 210 N=1,IX
CXHN=DX (M, N)
DX (M, N)={CONJG(G (M, N) =V (M,N) **2/G (%,N))*DX (M, N) -
. CONJG (V (M,N)*0 (M) /G (M,N)) *DY (1, R) ) /CONIG (J* W* EP) /],
DY (X, N)=(CONIG(-V (M,N)*U(M) /G (M,N)) *CXMN+
. CONJG (G (M, N) = (M) ##2/G (M, N)) DY (M,N)) /CONJG (J*W*EP)/],
210  CONTINU®S ,
220  CONTINUZ
C *s*% NOW PIND THE INV. POURIER TRAS. OF THE DIREC. PUNCTIONS ==
C .
CALL PPT3D(DX,IX,IX,IX,IX,1,-69,IWK,RWK,CWK)
CALL PPT3D(DY,IX,IX,IX,IX,1,-69,1IWK,RWK,CHUK)
D0 369 N=1,1IX
DO 350 W=1,1X
DX (M,¥)=DX (N,N)=RX {M,N) *CONIG (ZINT)
DY (M,N)=DY{H,N)=RY (M, N) *CONIG (ZINT)
IP (M.GE.NX1.AND.N.LE. NX2.AND.N. GE. NY1, AND. N, LE.NY2) DX {%,N)=CZERO
IP(M.GE. NX1.AND. M. LE.NX2.AND.N.GE.NY 1. AND. N. LE.NY2) DY (M,N)=CZERO
TY (M, N)=DY {M,N) ’
TX (M, N) =DX (M,N)
P3=P3I+CONJG (DX (M,N)) *DX (M, N) #CONJIG (DY (M, N) ) #DY (M, V)
359  CONTINOE _
360 CONTINUE
C *#s* NOW START THE ITZRATION PROCESS (MNININIZATION) **#*
c .
C ®=%x* NULTIPLY THE DIRECTION VICTOR BY THE MATRIX Z Led 2
C **%* STORE YOUR RESUTLS IN VECTORS TX AND TY L L D
365 CALL FPPT3ID(TYX,IX,IX,IX,IX,Y,69,IWK,RWK,CWK)
CALL PFTID(TY, IX,IX,IX,IX,1,69,IWK,PUK,CWK)
DO 400 M=1,IX
DO 370 N=1,1IX
CXHN=TX (¥, N)
TX(M, W)= ((G(M,N)~V(M,N) **2/G (N, N) ) *TX (Y, N) - (U (M) *V(H,N) /G (¥, N})
. ®TY(M,N))/ (J*W*EP}/2.
TY (M, N) = (=17 (M) #V (N, N) /G (M, N) *CXMN+ (G (4, ¥) =0 (%) *22 /G (M,N)}))
o ®*TY (M,N))/ (J*W*EP)/2. .
370 CORTINOE
400 CONTINUR
CALL PFT3D(TX,IX,IX,IX,IX,1,-69,I¥K,RWK,CHK)
CALL PPT3D(TY,IX,TX,IY,IY,1,-69,TUK,RWX,CWK)
F1=0.0
DO 410 M=1,IX
DO 410 N=1,IX
TX(M,N)=TX(M,N)Y=DX {M,N) #ZINT
TY(M,N)=TY(M,N)-DY (M, ,N)“ZINT
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¢

TP (4.GB. X1, AND. M. L2.NX2.AND,N. GE. NY1.AND. N.LE.NY2) TX (M,N)=CZERO
TF (M.GE.NX1.AND. M. LE.NX2 .AND.N.GE. Y1, AND. No LE. HY2) TY (N,N) =CZERO
310  P1=P1+CONJIG (™X (M,)) *TX (M, N) +COUJIG (TY (4, N) ) *TY (M, Y)
ITER=ITER+1
C ~ ssss COMPUTE CONSTANT AN ssss
AN=F3/P1 _
CH (ITER) =SQRT (ERROR) /SORT (FS)
E2R=CH (ITER) *100
C e#+ CALCULATE ERROR . s¢3
ERROR=ERROR= (P3*52/P 1)
C *e+ GET A NEW ESTIMATE FOR YOUR UNKNOWUNS X & Y #sss
DO 560 H=1,IX
DO S50 ¥=1,IX
Y (M,N) =X (4, N) +AN®DX (M, N)
Y(M,N) =Y (4,N) sANSDY (%, N)
S50 CONTINGE
560 CONTINUE .
C s*s¢ A NEZ ZSTINATE POR THE RESIDUAL VECTORS RX & RY #sss#
DO 580 n=1,1IX
DO S70 R=21,IX
RY (M,N) =RX (8,N)~AN®TX (¥, K)
BY (M,N)=RY (M, N) =ANSTY (4, H)
TX (8,N) =2RX (¥,N)
© TY(N,N)=RY (H,N) - -
570 CONTINUE
580 CONTINOE
RR (ITER) =PLOAT (ITER)
WRITE(8,*) CH(ITEP),RR(ITER)
C #*¢¢ NULTIPLY THE RESIDUAL VECTORS BY THE CONJG. TRANS. OP MATRIX Z =
cALL PPT3D(TX,IX,IX,IX,IX,1,69,IWK,RWK,CHR)
CALL PPT3D(TY,IX,IX,IX,IX,1,69,IWK,RWK,CHK)
DO 600 M=1,IX :
DO 590 %at,IX
CXNN=TX (N, })
TX(H,N)=(CONIG(G(Y, N} ~V (N, ,N)**2/G(N,N))*TX(N, 1) ~
. CONJG (V (R, N) =1 () /G (M, ) ) *TY (N, N) ) /CONIG (J* U EP)/2.
TY (M, ) = (CONJIG (=V (M, N) #T1 (M) /G (M, N) ) sCXMN+
. CONJG (G (M, N) =0 (M) #22/G (N, N)) * TY (¥, ¥)) /CONIG (J*W*EP)/2,
$90 CONTINTE
600  CONTINDZ
CALL PPT3D(TX,IX,IX,IX,IX,1,-69,IVK,RAK,CWR)
CALL PPT2D(TY,IX,IX,IX,IX,1,-69,IVK,RVEK,CHK)
C ®*ssss STORE THZ OLD VALUE FOR P3 IN P2 TO CALULATZ DN LATER ®ssse
P2=P3
?320.0
PO €84 x=1,IX
PO 646 w=1,1IX
TX (N, ¥)=TX (%,N)=RX (1, N) *CORIG (ZINT)
TY (M,N)=TY (M,N)=RY (1, N) *CONJIG (ZINT)
TP (M.GE.NX1.AND. M. LE4 NX2.AND.N.GE. NY 1. AND. H. LE.NY2) TX (N,N)=CZERO
IP(M.GE.NX 1. AND. M. LP.¥X2 . AND.N.GE. ¥Y1.AND. N. LE.NY2) TY (%,N)=CZERO
F3I=F3+CONTG (T (M,")) *TX (M, N) +COLJG (TY (1, N) ) #TY (4,%)
h4U CONTINUE
C *ts NOW CALTLATE BN stesans
: 8N=F3/P2
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c1 IF(ITER.EQ.20.NR.ITER.EQ.40.0R. ITER.EQ.60) BN=0.0
C #es= OBTAIN A NPV CSTINATE POR THP DIRECTION VECTORS DY & DY #
DO 664 M=1,IX
PO 654 N=1,IX
DY (M, N)=TX (M, N) +BERDY (H, N)
DY (M, N)="TY (4,N) +BNSDY (M, N)
TY (M, N)=DX (¥,¥)
TY (M, N) =DY (M, V)
654  CONTINUE
664 CONTINUE
c
C #*%4* CONTINOE THE ITEPATIVE PROCESS w*%**
IF (ITER.GT.NOT) CALL GENPT (RR,CH,NOT,0)
IF (ITER.GT.NOI)GO TO 700
IF (ERR.LT.1) GO TO 700

GO TO 365 L
C **STORE X £Y INTO 1-DIMEN. ARRAYS TO BE USED FOR ANY PLOTTING
c PURPOSES ' .

700 DO 720 4=1,IX
© DO 720 N=1,IX
I=(A=-1)*IX+N
Z1(I)=CABS(X{}4,N))
22(I)=CABS (Y (%,N)) }
X1(I)’(PLOAT(H-I!/Z)-.5)/IX‘AA‘1 05
¥Y1(I)=(FLOAT(N-IX/2)-.5) /1X*BB*1.05
WRITE(7,*) X1(Y), Y1(I) Z1(1) ,22(1)
720 CONTINUE
GO TO 730 B
C **=* FIND THE -PHASE POR THE CURR’NTS X 6 e L eRERE
723 Do 725 n=1, IX '
DO 725 N=1,1X
PHASEX (1, N)‘O.
PHASEY (%,N)=0.0
IP(M.GR.NX1,AND. M. L2.¥X2.AND. N. GE. NY1.AND, N, LE,NY2) GO TO 725
REX=REAL (X (N, M)}
AINX=AIMAG(X (M,N))
YP (REX.GE. 0. 0.AND.AINX.GE.0.) PX=ATAN(AIMX/REX)*RTD
IF (REX.LTe0.0. AND.AINX.GE.O0.) PX=180.-ATAN (ATNX/REX). *RTD
IP (REX.LE.0.0. ARD,AIMX.LT.0.) PX=180,.+ATAN (AIMX/REX) *RTD
YFP{RFX.GE.0.0.AND.AINX.LT.0.) PX=360.-ATAN(AINX/REX) *RTD
PHASEX (1,N) =PX
REY=REAL (Y (4,N))
AT®Y=AINAG(Y (M,N))
IF (REY.GE.O0.0. AND.AIMY.GE,O0.) PY=ATAN(AINY/REY)*RTD
IF{REY.LT.Q.0. AND.AINY.GE.O0.) PY=180.-ATAN (AIMY/REY) *RTD
IF(REY.LE.0.0.AND.AINY.LT.0.) PY=180.+ATAN (AIMY/REY) *RTD
IF (REY.GE.0.0.AND.AIBY.LT.0.) PY=360.-ATAN(AIMY/RZ2Y) *RTD
PHASEY (§,¥)=PY
725 CONTINOUE
GO TO 900
C #*xxx NO® TARKE TiHE FOURIER TRANFORM OF X AND Y AND MILTIPLY BY 2
C #+=* TO OBTAIN THE SCATTERED PFIELDS *
730 CALL TFPFT3D(X,XIX,IY,IX,IX,1,69,IWF,RWK,CWK)
. CALL TFT3ID(Y,YIX, Y, IX,IX,?,69,I%¥,RIK,CHK)
po 760 M=1,IX
DO 730 N=1,IX
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CXUN=X (N,N)
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XM, N)=((G(M,N)=V (M, 1) *s2/G (N, N))*X (M, N)-(U(H)*V(H ¥) /G (1, W)

. FY (e, u))/(atwtvp)/Q

Y(M,NY=(=-U(M)*V (N, N)/G(H N) *CXMN+ (G (M, N) -U (M) **2/G (M ,N))

.Y (M, N))/(l*uazp)/z
CONTINUE
CONTINNE

C s*%*% CALCULATE THE REFLECTION COEPICIENTS **%s%x2

C s%x%
C *=

C #%a

770
800

C %=

C *=

C s*+

900

CREFX=X(1, 1) /FLOAT (IX) *+2
CREFY=Y(1,1) /JELOAT(IX) #*2

CR®F= (CREFX*SIN (~PHI/RTD) +CREFY*COS (PHI/RTD) )
CRET= (CREFX*COS (PHI/RTD) +CREPY*SIN (PHI/RTD))
IF (IT1.GT.0) GO TO 800

TE POLARIZATION *s%=s

THIS IS THE CO-POLARIZED COMPONENT s$as#
REPF=CABS (CREP/EF)

THIS IS THE CROSS-POLARIZED COMPONSNT ###ssxs
PEPT=CABS (CRET/EP)

WRITE(3,770) REFP,REFT

FORMAT (3%,2P10.5)
GO TO 900
CONTINUE

TM POLARIZATION $#¢*s

THIS IS THE CO-POLARIZED COMPONENT $s#%%
RETT=CABS (CRET/ET)
THIS IS THE CROSS-POLARIZED CONPONENT #essss
RETP=CABS (CREF/ET)

WRITE(3,770) RETT,RETP

WRITE (3,170) ITER

STOR

END
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THE CROSS-SHAPED UNIT CELL

Cc

C##* MICHAEL DROZD-CHRISTOS CURRENT PORMULATION $*e*sxe

" Ces**3%CONJ, GRAD.

METHOD

Ce*x% MINIMIZATION IN THE RANGE #*&*=

COMPLEX
COMPLEX
CONMPLEX
COMPLEX
CONMPLEX
COMPLEX
CONPLEX
COMPLEX
COMPLEX
COMPLEX
CONMPLEX
COMPLEX
COMPLEX

CONE,CZERO,CXMN, CREFY
G (32,32)7102u%(0.0,0.0) /
Y(32,32) /1024¢(0.0,0.0) /
X(32,32) /1024#* (0.0,0.0) /
Y0 (32,32) /1024%(0.0,0.0) /
X0 (32,32)/1024%(0.0,0.0) /
RX (32,32) 71024% (0.0,0.0) /
RY (32, 32) /1024%(0.0,0.0) /
J,HXI,HYI,CWK(32)

DY (32,32) /1024% (0.0,0.0) /
DX (32,32) 71024+ (0.0,0.0) /
TX(32,32)/1026%(0.0,0.0) /
7Y (32,32) /1024# (0.0,0.0) /

REAL K,K2,RWK(342)

DIMENSION INK (382),RR(300),CH(300),X1(1023),71(1023),21(1024),
.22(1028) ,ANP(32) ,RINDEX (32)

REAL U (32)/32%0.0/

REAL V(32,32)/1028%0.0/

aaoan

*x* AA=SPACING BETWEEN VERTICAL WIRES
*** BR=THICKNESS OP VERTICAL WIRES
*&& CC=SPACING BETWEEN VERTICAL WIRES
##%* DD=THICKNESS OF VERTICAL WIRES

.READ (1,22) AA,BB,CC,DD,F
22 FPORMAT (SE10.4)
P=2.9982+8

an

I0PT=1

*%¢ JOPT=0 FOR A CROSS
*%%2T0PT=1 FOR A PARALLEL GRID #*#*=*

L L E 2

b2t b 1]
sehs®
stesy
L2 2 L3

n noa a

33

55

IP (IOPT.GT.0) CC=1.500E+15S
IF (IOPT.GT.0) DD=0.0
WRITE(3,33) AA,BB,CC,DD,P
FORNAT{*0°',* AA=',F8.4,"

TRICK. OF VER, WIRE=‘,F8.4,°*

POR CIRRENTS ON A CROSS *3x%xs%

.F8.8,*' THICK. OF HOR. UIRB=',P8.Q,'_PREQ= ', E10.4)

READ(1,22) PHI,THI,PSI
WRIT® (3,55) PHI,THI,PSI
PORMAT (*0',* PHI=',F7.1,"

**+ READ SAMPLING NUMBER #*#%»*

READ (1,66) IX

*%* ITM=0 FOR TF¥ POLARIZATION
*x* ITM=1 FOR TM POLARIZATION
s*% READ ITNM *s&xs .

READ (1,66) 1T

**%x READ NUMBER OF ITERATIONS

66

READ(1,66) ROI
FORMAT (I3)
PI=3.141593
PI2=PI/2.

THETA=*,P7.1,*

sRxE
shke

xR %

PSI=',F7.1)
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4 LISTING OF THE S.D.C.G. METHOD FOR THIN STRIPS WITH

CC= '.
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_TPI=6.283185
CV=2,997956E+8
nn=4,E=-T*PT
RTD=57.29578
EP=8.3S8E-12
ETA=SQRT (UU/EP)
J=CMPLX (0.0, 1.0)
ITER=)
CONE=CMPLX (1.0, 0.0)
CZERO=CMPLX (0. 0, 0. 0)
 W=TPI*P
ALANB=CV/F
AA=AA/ALAMB
C #** DETERMINE CONDUCTING REGIONS s#s*
MDOX= (IX/2+1-BB*IX/(AA*2))
MUPX= (IX/2+1+BB*IX/ (AA%2))
NDOY= (IX/2+ 1-DD*IX/(CC*2))
MUPY=(IX/2+ 14DD*IX/(CC*2))
IP (IOPT.GT.0) MDOY=IX+1
K=TPI/ALANB
K2=RK**2
STSPK=SIN (THI/RTD) *SIN (PHI/RTD) *K
STCPK=SIN (THI/RTD) #COS (PAI/RTD) *K
C25=COS (PSI/RTD) /SIN (PSI/RTD)
77 CONTINDE ‘
C *%s DEPINE THE PLOQUET COEFPICIENTS #*¢
DO 200 N=1,IX
IP (X.GT.IX/2+¢1) GO TO 125
" U(M)=TPI*(M-1) /AA-STCPK
GO TO 127
125 O(M)=TPI*(4-IX~-1) /AA~STCPK
127 CONTINUE
DO 190 N=1,IX
TP (M.GT.IX/2+1.AND.R.GT.IX/2+1) GO TO 160
IP(N.GT.IX/2+1) GO TO 150
IFP(N.GT.IX/2+1) GO TO 140
V(N,N) =TPI*(K=1) /CC-TPI*(N-1) A A*CPS=STSPK -

GO TO 170

130 Vv (4, N)=TPI* (K~IX-1) /CC-TPI*(N~-1) /AA*CPS-STSPK
GO TO 170

150 V(N,N)=TPI¢(N-1) /CC-TPI*(N-IX~-1) /AA*CPS~STSPK
GO TO0 170

160 V(M,N)=TPI* (F-IX-1) /CC~-TPI#*(N=IX~1) /AA*CPS-STSPK
170 IP(R2.GE.D(N)®¢24+V (N,N) *%2) G(N,N) ==J*SQRT (K2~ (U (N)**2+V (N, N) #+2

)
IF (K2.LT.U (M) **2+V (N,N) **2) G (N,N)==SQRT (0 (N) **2+V (N, N) *%2-K2)
*CONE

190 CONTIRUE

200 CONTIRUE

TF (ITM.GT.D) GO TO 210

C *=x INCIDENT FPIELDS FOR TE POLARIATION **=x%
EXI=SIN(-PHI/RTD)
FYI=COS (PHI/RTD)
HXI=COS(PHI/RTD) *COS (THI/RTD) /ETA
HYI=SIN(PHI/RTD) *COS (THI/RTD) /ETA
GOTO 261
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C *+%%* TNCIDENT FIELDS FOR TM POLARIZATION ®%x%
217 TXI=COS(PHI/RTD) #COS (THI/RTD)
BYI=SIN(-PHI/RTD) *COS (THI/RTD)
HY I=SIN (PHI/RTD-PI2) /ETA
HXI=COS (PUI/RTD=-PI2) /STA
261 CONTINUE
C #*% GIVE AN INITYAL GUESS #ssss=
DO 310 M=1,IX
DO 300 N=1,IX
X (M, ) =CZERO
Y (M, N) =CZERO
IF(M.LE.MUPX.AND. M. GF. 4DOX) GO TO 270
1P (N.LE.MUPY.AND.N.GE.NDOY) GO TO 270
GO TO 280
270 ENORM=ENORM+EXI®*EXI+EYI*EYI
280 XU (M,N)=X{(N,N)
Y0 (M, N)=Y (4,N)
300 CONTINOE
310 CONTINOE
: WRITE (3,320) IX,NOT, NDOX,MUPX,MDOY,MUPY,ITH ]
320 PORMAT('O*,*SAMP POINTS=',I3,'$ ITER=',I3,' DOWN PNT xa'.xa,
.% UP PNT X=',I3,' DOWN PNT Y¥=',I3,* OP PNT Y=',I3,' ITM= '.13)
C s*%s GORK ON INITIAL GUESS***
C **s TAFE THE POURIER TRANFORM OF THE INITIAL GUESS s
CALL PPT3D(XU,1X,IX,IX,IX,1,69,IWK,RWK,CVK)
CALL PPT3D(YU,IX,IX,IX,IX,1,69,IWK,RWK,CVK)
C **s NULTIPLY INITIAL GUESS WITH THE MATRIX 2 ssens
DO 360 NM=1,IX '
DO 350 N=1,IX
CXNN=1XU (¥, N)
XU(H,N)—((G(S,N) v(a, N)“Z/G(H.N))‘XU(H.N) - (U (B)*V(H,B) /G (8,H))
. ®YU(N,8))/(J*WSEP) /9,
YU (N, B)= (=0 () *V (4, N) /G (M, §) *CXMN+(G (N, N)-U(H)"Z/G(u ")
. *YU(N,N))/ (J*usEP)/2,
350 CONTINDE
360 CONTINUE
C ¢*+ TAKE THE INVERSE OF FOURIER TRAXNSPORN senss
CALL PPT3D(XU,IX,IX,IX,IX,1,-69,IWK,RUK,CRK)
CALL PPT3D (Y0, IX,IX,IX,IX,1,-69,IWK,RWK,CUK)
C *ss DEPYNE THE RESIDUAL VECTORS RX AND RY seaes
_ DO 450 M=1,IX
DO 4880 N=1,IX
RX (M, N) =EXT+ XU (N,R)
RY (M, N) =BYI+YU(N,K)
IF (M.LE. NUPX.AND.N.GE. MDOX) GO TO 400
IF(N.LE.MUPY.AND.N.GE.ADOY) GO TO 800
RX (M, N) =CZERO
RY (M, ) =CZERO
400 ERROR=ERROR®RX (M,N) *CONJG (RX (N, N))+RY(H, N) *CONJG (RY (N, N) )
DX (M, N) =RX (M, N)
DY (M, N) =RY (¥, N)
340  CONTINUE
850 CONTINUZ
c
C #%x%  FIND THE FOURIER TRAKS OF THE RESIDUAL 2ass
c
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CALL FFT3D(DX,I7Z,IX,I¥,TX,1,69,IHK,RHK,CUK)
CALL FFT3D(DY,IX,IX,IX,IX,1,69,I%K,RNWK,CHK)
C ®*# CALCULATE THE DIRECTION VECTORS DX £ DY .s%*=
. DO 540 M=1,IX .
D0 539 H=1,1IX
CXMN=DX (M, N)
DX (¥, N) = (CONJG (G (M, N) ~V (M, N)*%2/G (X, N)) *DX (M, E) -
. CONJG (V (M,N)*U (%) /G (M, N)) *DY (M, N) ) /CONJG (I*W* EP) /2,
DY (M, M) = (CONJG (=V {4, N) #U (M) /G (M,N)) *CXMN+
. COYNJG (G (M, N) -U (M) #%2/G (M,N) ) *DY (4, N)) /CONJIG (J*H*EP)/2,
S30 CONTIRUS
S30 CONTINUE
C #*#s NOW FIND THE INV. POURIER TRAS. ,OR THE DIREC. FUNCTIONS *%
c ‘
CALL FPT3D(DX,IX,IX,IX,IX,1,-69,I¥K,R¥K,CWK)
CALL FPT3D(DY,IX,IX,IX,IX,1,-69,IWK,RNK,CHK)
C ##» STORE DX AND DY IN TX AND TY sessss
DO 560 M=1,TIX
DO S50 N=1,IX
IP (M.LE.MUPX.AND. N.GE.MDOX) GO TO 545
IP (N.LE.MUPY.AND. N.GE.NDOY) GO TO 545
DX (4, N)=CZERO
DY (M, ¥)=CZERO
sS85  TY (M, N)=DY(M,N)
TX (M, N) =DX (¥,N) TR
P3=P3+CONRJG (DX (M,N)) *DX (M, N)ocouac(br(u.ny)to!(u,u)
S50 CONTINUE
S60 CONTINUE
S85 CALL PFT3D(TX,IX,IX,IX,IX,1,69,IWK,RWK,CWK)
CALL PPT3D(TY,IX,IX,IX,IX,1,69,IWK,RWK,CHR)
C #*% NULTIPLY TX AND 7Y BY THE NATRIX 2 eeess
DO 610 M=1,1IX
DO 600 N=1,IX
CXNN=TX (1, N) :
TX (M, N)=((G(1,N) =V (M, N) *%2/G (N, §) ) *TX (8,N) - (U (M) *V (%, N) /G (4, N))
. *TY (M,N))/ (J*HSEP) /2.
TY(H.N)=(-U(H)‘V(H¢N)/G(HaN)‘CXHN’(G(HoN)°U(H)“2/G(ﬂo!))
' « *TY(N,N))/ (J*W*ED)/2,
600 CORTINUE
610 CONTINUE
CALL PPT3D (TX,IX,IX,IX,IX,1,-69,IVK,RWK,CVK)
CALL PPT3D(TY, IX Ix.IX,IX,1.-69 IWK, RRR, CVK)
F1=0.0
DO 666 M=1, IX
DO 666 N=1,IX
IP (M.LE.%CPX. AND. . GE. MDOX) GO TO 666
IF (N.LE.MUPY.AND.N.GE.MDOY) GO TO 666
TX (¥,N) =CZERO :
TY (M,N) =CZERO
666 P1=P1+CONJG (TX (8, N)) *TX (H, N) +CONIG (TY (M, N) ) *TY (%, K)
ITER=ITER+1
C *** BYALOATE THE PARAMETER AN #essx

AN=F3/F1
CH (ITER) = (ERROR) / (ENORY)
C ##* CALCULATE THE ERROR sanans

FRROR=ERROR- (F3¢%2/F 1)
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ERR=CH (TTER) *100
RR (ITER) =FLOAT (ITER)
YRITE(7,%*) CH(ITER),RR (ITER)
C *** I¥PROVE PREVIOUS ITERATE FOR X AND Y ##%=
PO 760 ¥=1,IX
po 750 N=1,IX
X (M,N) =X (M, N) ¢+AN®DX (1, V)
Y (M, N) =Y (M,N) + AN®DY (M, N)
750 CONTINUE
760 CONTINUE
C s#s+ JPDATE THE RX AND RY AND STORE THEM IN TX AND TY ##=«
DO 843 M=1,IX -
DO 833 N=1,IX
RX (M, N) =RX (M, N} - AN*TX (4, K)
RY (M,N) =RY (M, N) =AN*TY (N, N)
TX (M,N) =RX (M, N)
TY (M,N) =RY (¥, N)
833 CONTINUE
833 CONTINUE

CALL FPPT3D (TX,IX,IX,IX,IX,1,69,IWK,R¥K,CWK)
CALL PPT3D(TY, IX,IX,IX,IX,1,69,IWK,RWK,CUK)
C se%+ NULTIPLY X & TY WITH THE CONJG. TRANSPOSE OF NATRIX Z ##+
DO 863 M=1,IX '
po 853 N=1,IX
CXMN=TX (M, N)
TX (M, N) = (CORJIG (G (N, N) =¥ (4, N) ##2/G (M, §) ) *TX (M, N) - :
. CONJG (V (M, N) *U (M) /G (4, N)) ®TY (N, N) ) /CONJG (J*W*EP) /2,

TY(M,N)= (CONIG(~-V (N,N)*U (M) /G (M,N)) *CXNN+
. CONJG (G (M, W) ~U (M) **2/G (M,N) ) *TY (1,H)) /CONJG {(J*WSEP)/2.

853 CONTINUE
863 CONTINOE
CALL PPT3D(TX,IX,IX,IX,IX,1,-69,IWK,RWK,CHK)
CALL PPT3D(TY,IX,IX,IX,IX,?,~69,IWK,RWK,CHK)
P2=F3
F3=0.0
DO 900 M=1,IX
DO 900 N=1,IX
IP (M.LE.MUPX.AND.N.GE. #DOX) GO TO 870
IP (N.LE.BUPY.AND.N.GE. HDOY) GO TO 870
TX (N, N) =CZERO
TY (M, N) =CZERO
870  F3=FP3+CONJG (TX (M, N)) *TX (M, N) +CONJIG (TY (M, N) ) *TY (3, N)
900 CONTINUE
C *x= DEPINE THE PARAMETER BN #%¢
BN=P3/F2
C #%#* CALCULATE A NEW ESTINATE FOR THE DIRECTION VECTORS DX & DY %%
DO 964 M=1,IX
DO 954 N=1,IX
DX (M,R)=TX (M,N) +BN*DX (N, K)
DY (M, N)=TY (M,N) +BN*DY (N, n
TX (M, N)=DX (1, N)
TY (¥,N) =DY (¥,¥)
954  CONTINUE
964  CONTINDZ
IF (ERR.LT.0.001) GO TO 1000
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IF (ITER.LE.NOI) GO TO S85
CALL GENPT (RR,CH,NOI,0)
[ GO TO 125 .
970 DO 980 M=1,IX
DO 980 N=1,IX
I=(M=1)*IX+N
Z1(I)=CABS (X (M,H))
Z2(1)=CABS(Y (M,N))
X1(I)=(PLOAT(M-IX/2)~.5) /IX%AA*1,040
¥1(I)= (PLOAT (N-IX/2) -.5) /ZIX*AA* 1,040
ARITE(8,%) X1(I),Y1(I),21(I),22(1)
980 CONTINUE
1000 DO 1100 I=1,IX
AMP(I)=CABS(Y(17,I)) .
RINDEX (I) = (PLOAT (I-1X/2)~.5)/IX*AA*1.045
1100 WRITRE(S8,*) AMP(I),RINDEX(I)
STOP . :
. END
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8.9 LISTING OF THE S.D.C.G. METHOD FOR APERTURE FIELDS

Ce**4#%CONJ, GRAD. METHOD 2 ,FORTS®®s»
C ##* SOLVES FOR THE APERTURE PIELDS  *sx##xx
C #*%t NININIZATION IN THE PANGE #sasexsss
COMPLEX CONE,CZERO,CXMN,CREFX,CREFY
COMPLEX G (32,32)/1024%(0.0,0.0)/
COMPLEX Y(32,32)/1024%(0.0,0.0)/
COMPLEX X (32,32)/1024#(0.0,0.0) /
COMPLEX Y1 (32,32)/1024%(0.0,0.0)
CONPLEX XU(32,32)/1028%(0.0,0.0)
COMPLEX RX (32,32)/1024%(0.0,0.0)
COMPLEX RY(32,32)/1024#(0.0,0.0)
COMPLEX J,HXI,HYI,CWK(32)
COMPLEX DY (32,32)£1024%(0.0,0.0) /

COMPLEX DX (32,32)/1024%(0.0,0.0) /

COMPLEX TX(32,32)/1024#%(0.0,0.0)/

COMPLEX TY (32,32)/1024%(0.0,0.0) /

REAL K,K2,RWK(332)

DINENSION IWK(342) ,RR(250),CH(250),%1(1024),X1(1024),71(1028),
22(1024), AHP(32),RIND&X(32),CROSS(32),PHASEX(32 32) ,PHASEY (32,32)
REAL U(32)/32¢0.0/ .

REAL V(32,32)/1024%0.0/

INTEGER COUNT ‘

READ (1,22) AA,BB,CC,DD,F,ERR

22 FPORMAT (8210.4)

/
/
/
/

F=2.998E+8
C *** TOPT=0 POR A SQOUARE OR A RECTANGULAR MESH #*s3x»
. C %= TOPT=1 POR A PARALLEL GRID bbbk bl
10PT=0 .

IP (I0PT.GT.0) CC=1.500B+15
IF (IOPT.GT.0) DD=1.500E+1S
WRITE(3,33) AA,BB,CC,DD,ERR
33 FORNAT('0°*,* A= *',P15.8,* B= ',P15.8,* C= *,P15.8,
@' D= ',P15.8,' ERR= ',P15.8)
VRITE(3,44) P
44 PORMAT (*O°,' PREQ = ¥,E10.4)
READ(1,22) PHI,THI,PSI
WRITE(3,55) PKI.THI PSI
S5 PORMAT(*0',!' PHI= ',P10.1,* THETA= ',P10. 1,' PSI= *,F10.1)
C *=%* READ NUNBER OF SANPLING POINTS **#¢
READ(1,66) IX
READ(1,66) ITM
READ(1,66) NOIX
WRITE(3,56) ITH
56 FORMAT (3X, *THE VALUE POR ITM IS= I3
66 FOPNAT(I3)
PI=3.141593
PI2=pI1/2.
TPI=6, 283185
CV=2.997956E+8
gu=4.E-7*PI
RTD=57.29578



FP=g,854E-12
ETA=3QRT (TJU/EP)
J=CMPLYX (0.0, 1.0)
ITEGR=1
CconNE=CcMPLX(1.0,0.0)
CZERO=CNPLX (0.0,0.0)

HA=TPI*P

ALAMB=CV/F

AA=AA/ALANB

BB=BD/ALANB

CC=CC/ALANB

DD=DD/ALANB
NX=IFIX(BB/AA®*PLOAT(IX)*2.)/4%2

. NY=IPIX(DD/CC*FLOAT (IX)*2.)/U*2

70

5

80
85

30
95

100
119

115
120

C **=

NX1=(IX-NX) /2+1

NX2=NX 1+8X=-1

NY 1= (IX=1Y) /2+1

NY2=NY1+NY=1

WRITE(3,70) NX,NX1,NX2,NY,NY1,NY2

FORMAT ('0*,* NX=¢,I3,3X,'NX1=',6I3,3X,*NX2=',T3,3X,
' NY=',I3,3X,'NY1=',I3,3X,'NY2=',13)

R=TPI/ALANB

K2=Re*2

STSPRK=STN(THI/RTD) *SIN (PHI/RTD) *K

STCPR=SIN(THI/RTD) *COS (PHI/RTD) *K

CPS=COS(PSI/RTD) /SIN(PSI/RTD)

CONTINUE :

DETERNINE FLOQUET COEPPICIENTS  sesx

D0 120 M=1,IX

IP (M.GT.IX/2+1) GO TO 80

U (M) =TPI* (M=-1) /AA~STCPK

GO TO 85 -

U (M) =TPI#* (N-IX-1) /AA=-STCPK

CONTINUE

DO 115 K=1,IX

IP(M.GT.IX/2+1.AND.N.GT.IX/2+1) GO TO 100

IP(M.GT.IX/2+1) GO TO 95

IP (N.GT.IX/2+1) GO TO 90

V(4,N) =TPI* (N=1) /CC-TPI® {N~1) N A*CPS-STSPK

GO TO 110

V(M,N)=TPI* (N-IX-1) /CC-TPI®(N-1) /AA*CPS-STSPK

GO TO 110

V(%,N) =TPI* (N-1) /CC-TPI* (N~-IX~1) /AA$CPS-STSPK

Go 70 110

V(M,N) =TPI#* (N-IX~1) /CC~TPI#*(N=-IX=-1) /AA*CPS=-STSPK

146

IP (K2.GE.U (M) %247 (N,KN) *%2) G(H.N)=-J~soar(x2-(u(u)ttz+v(n,u)tf21

))

IP (K2.LT.U (M) *22+V (M, ,N) ##2) G (M, N) ==SQRT (U (M) **2+V (%, N) *$2-K2)

*CONE

CONTINOE

CONTINUE

IP(ITY.GT.0) GO TO 130

INCIDENT FIFLDS FOR TE POLATIZATION #%%=
EXI=SIN(-PHI/RTD)

EYI=CDS (PHI/RTD) - .
4XI=C0OS (PHI/RTD) *COS(THI/PTD) /ETA



147

HYT=SLN(PHI/RTD) 2COS(THTI/RTD) /ETA
GOTG 140
C *%* IJCIDENT FI®WLDS FOR TM POLARIZATION *=#
130  EXI=COS(PHI/RTD) *COS(THI/RTD)
EYI=SIN(=-PHI/RTD) #*COS{THI/RTD)
HY I=SIN(PYI/RTD~PI2) /ETA
HXI=COS (PHI/RTD-PI2) /ETA
10 CONTINYE
C #%% GIVE AN INITIAL GUESS #*%%x%%
DO 145 M=NX1,NX2
DO 142 N=NY1,NY2
X{M,N)=CZERO
Y{4,N)=CZERO
X0 (M,R)=X{M,N)
YO (",N)=Y({4,N)
F6=F64+CONJG (HXTI) sHXI+CONJG (HYI) *HYI
182 CONTINUE
1S CONTINUE
C *#%* WORK OV INITYIAL GUESS**s»
C *s*x MULTIPLY INITIAL VECTORS XU & YU BY THE NATRIX Z #**

c
C s** TAKE THE POURIER TRANSPORN OF XU & YU ¥esss
CALL PPT3D(XU,IX,IX,IX,IX,1,69,IWK,RWK,CHK)
CALL PPT3D(YU,IX,IX,IX,IX,1,69,IWK,RWK,CRWK)
DO 160 M=1,IX
DO 150 N=1,IX
CXN=XU (8, N)

XU (N, N)Y=(TT(N) *V (XN, N)/G(H,N)‘XU(H N)#(V(H,N)“Z/G(H.N)'G(H N))i

. *YU (M,N))* (J/W/00)
YU (M, )= ((G (1 ,F)=0 (M **2/G (M, N)) *CXNR~U (N) *V (N, N) /G (M, ¥}
. *YO(M,¥)) *(I/R/00)
150 CONTINUE -
160 CONTINNE
CALL PPT3D(XU,IX,IX,IX,IX,1,-69,IWK,R¥K,CWK)
CALL PPT3D(YU,IX,IX,IX,IX,1,-69,I¥K,B¥K,CWK)
C s*s CALCULATE THE RESIDUAL VEGCTORS RX & RY #e%.
DO 190 M=1,IX
DO 180 W=1,IX
RX (H, N) =HXI-XO (%, X)
RY (M,N)=HYI-YD (M,R)
IF (M.GE.NX1.AND.M.LE.NX2 AND.N.GE.NY 1. AND. N. LE.NY2) GO TO 175
RX (M, N) =CZERO
RY (M, N)=CZERO ~
175 ERROR=ERBOR+RX (M,N) *CONJIG (RX (M, N)) +RY (N, §) *CONJG (RY (N, ¥))
DX (M, N)=RX (4,N)
DY (M, N)=RY (4,N)
180  CONTINUE
190 CONTING®
sss* MULTIPLY THE RESIDUALS BY THE CONJG. TRANS. OF Z
TO FIND THE DIRECTION VECTORS DX & DY sesny
ss** FIND THE FOURIER TRANSFORM OF RESIDUALS *#=

s Xe KeXg)

CALL FFT3D(DX,IX,IX,IX,IX,1,69,IWK,RWK,CHK)
CALL FFT3D(DY,IX,1X,IX,I%X,1,69,IWK,RWK,CVK)
DO 210 M=1,T
PO 200 nu=1,IX
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CXMN=DX (M,M)
DX (M, N) = (CONJG (U (M) *V (14, N)/G(H N) ) #DX (M,N) +
. CONJG ((G (M, N) =11 (M) *%2/G (M, N) ) ) *DY (M,N) ) *CONJIG (J/¥/UV)
DY (M, N) = (CONIG{(V (1,N) ##2/6G (1, N) =G (M,N))) *CXMN-
. CONJG (U (M) *V (4, N) /G (4, N) ) *DY (M, N) ) *CONJIG (J/WN/UD)
200 CONTINOE :
210 CONTINUE
C #®%a NOW PIND THE INV. POURIER TRAS. ,OR THE DIREC. PUNCTIOHS #*s
C
CALL FPT3D(DX,IX,IX,IX,IX,1,-69,IWK,RWK,CWK)
CALL PPT3D(DY,IX,IX,IX,IX,1,-69,IWK,RWK,CWK)
C #=% STORE DX & DY IN TX £ TY **xsix
DO 230 1=1,1IX
DO 220 n=1.1x
IP (#.GE.NX1.AND. N, LB NX2 ,AND.N.GE.NY1. AND. N, LE.NY2) GO TO 215
DX (M,N)=CZERO
DY (4, H)=CZERO
215 TY(M,N)=DY (N,N)
X (1,N)=DX (M,N)
P3=F3+CONJG (DX (M,N)) *DX (M4, N) +CONJIG (DY (4, N) ) *DY (4, H)
220 CONTINUE
230 CONTINUE
C #*» THE ITERATIVE PROCESS STARTS NOW 1?1 s
C **%s NULTIPLY THE DIRECTION VECTORS BY THE MATRIX Z *ss*s
240 CALL PPT3D(TX,IX,IX,IX,1X,1,69,IWK,RVK,CUK)
CALL PPT3D(TY,IX,IX,IX,IX,1,69,IWK,R¥K cnx)
. DO 261 m=1,IX
DO 251 N=1,IX
CXAR=TX (M, N)
TX (8, N) = (U (M) *V (4 ,¥) /G (¥, N) *TX (N, §) + (V (N, N) % 2/G (#, N) -G (8,N) )
. ®TY(M,N))*J/W/UD
TY (A, N)=((G(8,N)~U (M) *%2/G (N, N)) *CXNN=-U (M) *V(N,N) /G (N, N)
« ®TY (M, N))*3/R/00
251 CONTINUZ
261 CONTINUE
CALL PF?3D(TX, IX,IX,IX,IX,1,-69,I%K, aux,cwx)
CALL PPT3D(TY,IX,IX,XX,IX,1,-69,IWK,RWUK,CWK)
P1=0.0
DO 300 ®=1,IX
DO 300 N=1,IX
IP (M.GE.NX1.AND. M, LE.NX2. AND.N.GB.NY1 AND. N. LE.NY2) GO TO 300
TX (M,¥)=CZERO
TY (8,N)=CZERO

300 P1=P1+CONIG (TX (M ,N)) *TX (4, N) +CONJIG (TY (M, N) ) *TY (N, N)
ITERE=ITER+1
C #%%x CALCULATE THE PACTOR AN R
AN=F3/F1
CH({ITER) =SQRT(ERROR) /SQRT(F6)
C *%3x CALCULATE THE ERROR A b
ERROR=ERROR~ (F3*%2/P1)
C **= UPDATE THE VALU®S FOR X & Y bl bl

DO 410 N=1,IX

DO 400 %=1,IX

X (M, M) =X (M,N) +AN=DX (4, N)

Y (M, 0) =Y (M, N) +AN®DY (1, 1)
40" CONTINUE
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819 CONTINUOR
F$5=0.0
C s»% PIND A NEY ESTIMATE FOR Tnv RESIDUAL VECTORS RX & RY ##¢
DO 443 HM=1,IX
DO 433 N=1,IX
RY (M, N)‘RX(H N)=aAN*TX (M, N)
RY (4,N)=RY (N4, N) ~AN*TY (N, N)
*X (8,N)=RX (N,N)
TY (B,N)=RY (%,N)
433 CONTINUE
443 CONTINUE
RE(ITER)=PLOAT(ITER)
c WRITE (8,*) CH(ITER) ,RR(ITER) ,
C s** MUTLTIPLY TX & TY BY THE CONJG. TRANS. OF THE MATRIX Z #**
CALL PPT3D(TX,IX,IX,IX,IX,1,69,IWK,RWK,CHK)
cALL PPT3D(TY,IX,IX,XX,IX,1,69,IWK,R¥K,CHK)
DO 460 4=1,IX
DO 450 N=1,IX
-CXMN=TX (N, N)
TX (M,N) = (CONJG (U (M) *V{M,N) /G(M,N) ) sTX (N, N) ¢+
o CONJG ( (G (4, N) ~U (M) #+2/G (4,N) ) ) *TY (8, u))tconac(J/'/UU)
TY (M, N)={CONIG( (V (M,N) *%2/G (4, N) -G (N,N))) *CXNR~-
CONJG (T (M) *V (N, Y) /G (8,N)) *TY (N, N) )*CONIG (J/R/00)
850 CONTINUE .. -
860 CONTINUE _
CALL PFT3D(TX,IX,IX,XX,IX,1,-69,IWK,RWK,CRK)
CALL FPT3D(TY,IX,IX,IX,IX,1,-69,IWK,RVWK,CHWK)
P2=F3
?3=0.0
DO 470 N=1,IX
DO 470 N=1,1IX
IP (M.GE.NX1.,AND. M. LE.NX2. AND.N.GE.NY1 AND.N.LB.NY2) GO TO 865
X (8,¥)=CZERO
TY (H,N) =CZBRO
465 P3=F3+CONJG (TX (M, N} ) *TX (M,N) +CONIG (TY (M,N)) *TY (N, N)
470" CONTINOE
C ®ss CALCULATE THE PACTOR BN Lad L2
BN=F3/F2 .
C *s*% UDPDATE THE DIRECTION VECTORS DX & DY sees
DO 564 M=1,IX
DO 554 w=1,IX
DX (M,N)=TX (M, N) +3N*DX (X, )
DY (M,N)=TY (N, N)oBN*DY(ﬂ,N)
X (M, M)=DX (M, M)
TY (M,N)= DY(1,N)
S54 CONTINUE
S6u4 CONTINUZ
C **%.GN FOR ANOTHER ITERATION IP YOU WANT #%=s
IF(ITFR.GT.NOI) CALL GEWPT(RR,CH,NOI,O)
IF(ITFER.GT.NOT) O TO 800
IP(TRROR.LT.0.0001) 30 TO 800

GO TO 240
C **2= STORE X & Y INTO THE 1-DIM. ARRAYS 21 £ Z2 TO BE USED POR
c ANY PLOTTING PURPOSES *ae

570 DO S90 M=1,IX
DO S92 n=1,IX



590
6§00

725
800

c.
820. .
©7 -+ CALL GBNPT(RINDBX,AHP,IX,O)

. CALL GEXPT (RINDEX,CROSS,1X,0)

840
900

I=(M=1)*IX+N

21(I)=CABS{X(M,M))

22 (I)=CABS (Y(M,N)) :

X1(I)=({PLOAT (N~ IX/2)~.5)/IX‘AA*1 05
Y1(I)= (PLOAT (N-1IX/2)~.5) /IX*BB*1,.05

 WRITE(7,%) x1(1),!1(1) ,21(1) ,22(1)

CONTINDOE

DO 725 M=NX1,NX2

80 725 N=NY1,HY2

REX=REAL (X (N,N))

AIMX=AIMAG (X(N,N))

IF (REX+GE.N.0.AND.AINX.GE.O.) PX=ATAN(AINX/REX)*RTD
IP(REX.LT.0.0.A¥D.AINX.GE. 0o} PX=180.~ATAN (AINX/REX) *RTD
IP(REX.LE.0.0.AND.AINX,LT.0.) PX=180.+ATAN (AINX/REX) *RTD
IP(REX.GE.0.0. AND.AINX. LT.O.) PX=360.~ATAN (ATNX/REX) *RTD
PHASEX (M,N) =PX .

. REY=REAL (Y (M,N))

AINY=AINAG(Y(N,N))

IP (REY.GE.0.0.AND.AINY.GE.0.) PY=ATAN(AINY/REY)*RTD
IP(REY.LT.0.0.AND.AINY.GE.O0.) PY=180.~ATAN(AINY/REY) *RTD
IP(REY.LE,0.0. AND,AINY.LT.0.) PY=180.+ATAN (AINY/REY) *RTD
IP(REY.GE.0.0. AND.AINY.LT.0.) PY=360.-ATAN (AIMNY/REY) *RTD
PHASEY (4,N) =

CONTIRUE - -

DO 820 I=1,IX

AMP (I) =CABS(Y(I, 16))

RINDEX (I)= (PLOA*(I°IX/2)-.5)/IX‘AA‘1.0GS

WRITE (8,*) AMP(I),RINDEX(I) ..

CROSS (1) =CABS(Y(9,1)).

CONTINUE

WRITE (3,840) ITER
FOTMAT (3%,13)
STOP

END

150
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LISTING OF ONE, TWO, AND THREE DIMENSIONAL COMPLEX
FAST FOURIER TRANSFORM

-I2SL PCUTIEZ 1aA42 - PPTCC

Cocemcecon—cmcscens cowe — ———

3 NANONNNNNANNANNNNNNNNNNNNNNNANNNNANANNONNNNANNOANNNONNNNNNNANANNOCNNNNNNNNNNNNA

CORPITER - ISH/COUBLE
LAT2ST 22VI3I6H - JANDARY 1, 1978
PURPOSE - COXDPUTE THE PAST FOURIER TRANSPORM OF A
COMPLEX VALUED SEQUENCE
gsans = CALL PPTCC (A,N,IWK,¥K)
A2GMMENT a - COMPLEX VECTOR OP LENGTH N, ON INPUT A
CONTAINS THE COMPLEX VALUED SBSUBNCE TO BE
TRANSFORMED, OUTPUT A4 IS REPLACED BY THE
POURYIER TRANSFORY.
g = INPUT RUNMBER OF DATA POINT 0 BE
gg%géggRﬂBD. N MAY BE ANY POSITIVE
I<K - INTEGER WORK VECTOR OP LENGTH 6#N+150.
. ;53! PROGRANMING YOTBS POB PURTHER DBTAIIS)
% - REAL WORK VECTOR OF LENGTI! +150
(<EE PROGRAHHING ROTES FOR PUFTHER DETA ILS)
PPECISIOU/HAEDHARE =~ SINGLZ AND DOUBLE/H32
- SINGLZ/K32,UCB,H

2BQD. INSL ROMTINES
_NOTATICY

2EMARKS

caryRInHT

FAPTANTY

2.

HORE REQUIRED

- INPORHATION ON_SPECTAL NOTATIOR AND
CONVENTIONS IS AVAILABLE IN THE NANUAL
INTRODUCTION OR THROUGH INSL ROUTINB CHELP

PPTCC COMPUTES THRE POURIER TRANSFON, X, ACCORDI&G
TO TAE FOLLOVWING PORMULAS :

X{ReN) = §“§,§“2§BXP (0. (2°oop§-30x)/u))
PO0R K=° 1,.‘..,!’ 6 PI= 1“15..0,

HOTEZ TRAT X OVERYPRITES A OR OUTPUT.
PPTCC CAN BE USED TO COMPUTE

TR = ST ERen. 0. 1 g aeeleaeRs /ny)
+
POR K=° "Q(..'L- A‘ 1“15000 ’

37 PERFORMING THE FOLLOWING srgps;
PO ;01131'SONJG(A(I))
=
19 contishz
CALL FPTCC (A,N,IVK,HR)
20 Iai,n

0
20 conrfnhg ' CoNgG (A (1)) /N

- 1978 BY INSL, INC. ALL RIGHTS RESERVED..
- TNSL WARRANTS ONLY TAAT INSL TESTING HAS BEEN

APPLIED TO THIS CODE. NO OTHER WARRANTY,
EXPRESSEC OR IMPLIFD, IS APPLICABLE.

SURZONTINZ FPTCC (A,N,I9K,WK)

SPPCIPTICATTIONS FOR ARGUMERTS
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1? (KO .LT. K3) GO TO 235
1P (KO .GE. R3 & ISP) GO TO 285
KO = KO = TAK(ID+J) ¢ JJ
GO TO 235
285 %3 = IVR{ID+J) + K3
"~ IF (K3 = KB .GB. IWNK(ID+J-1)) GO TO 250
K2 = K3 + JK
Jk = JK + JJ _
KO = K3 = TAR(ID+J) + JK
GO TO 235
250 IF (J .GE. KT} GO TO 260
R = IWK(J+1) + I
J=J + 1
255 T =T ¢ 1
INK(TLL+T) = J
IF {I .LT. K) GO TO 255
GO TO 230
260 KB = K3
IF (I -LE. 0) GO T0 265
3z TeR(IiLer)
GO TO 230
265 IP_($B .GE. ¥) GO TO 270
A = .
GO T0_ 230
270 JK = IEK(TcekT
Isp = IWR(ID*RT)
M= N = K®
KB = ISP/JK=2
IF (KT .GE. H21) GO T0 9005
ITA = ILL+K3+
ITB = ITA+JK
IDN1 = ID-1
IKT = RT+1
IN = _Ned
DO 278 %n:1+a) IWK (IDN1+4J) /3K
-
275 COHTIN&E
JJ =0
DO. 290 3 = 1,KB
X = KT
280 J7 = INK(IDsKs1) o
IF (3J .LIT. waérnfw)) GO TO 285
JJ = J3 - IWR(I
K=K ¢+ 1
GO TO 280
285 " §§L’gﬁ =JfJwa(ILL i ) 3
* [ ] ’ = -
290 CONTINDE
: DETERMINE THE PERMOTATION CYCLES
OF 'LENGTH GREATER THAN OR EQUAL
DO 300 J = 1
IF (T4K (IL£+J) .LE. 0) GO TO 300
295 K2 = IADS (TWE(ILLeR2))
IF (E2 .%o, J) €O
IYR{ILL+RY) = —IHK(ILL#KZ
GO 70 295
300 CONTINUE
REO?DPR A FOLLOWING THE
f=0 PERMUTATION . YCLES
J=29
XB = 0
xH_= N
305 J =

44 (IYK(ILY. J} .LT. 0) GO TO 305
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315

-0y
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* R 4 KB
)1 = A(KO+Xe1)
LT. JK) GO TO 329
ih
1
T

(SR ]

320

e}
o~

.=JBC1PLX(HK(ITAOI),WK(ITB+I))

. JR) GO TO 1325
(J .LT. xz) GO TO 305
=

KB =2 KB ¢ IS
6KB «LT. Kﬂ) GO TO 305
RET
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R o
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9005 2E
C IHSL ROUTINE NANME - PFT2C

c------------—----.--..-n--;---------------------------‘---;----------.

CONPUTER = IBM/DOUBLE
LATEST REVISION - JANUARY 1, 1978
PORPOSE - COHPUTB THE PAST FOURIER TRANSFORN CF
. PLEX VALUED SEQUENCE OF LENGTH EQUAL TO
l POVBR TWO
USAGE - CALL PFT2C (A,N, I?K)
ARGUMENTS A L4 COHPLEX VECTOR O? LENGTH N, WHERE N=2%*pNM,
INPU NTAINS THE éOﬂPLEX VALUED
SEQUENCB TO B TRANS
ON QOUTPUT A IS RBPLACED BY THE
POURIER TRANSF
.| - IHPUT EXPONENT TO iRICH 2 IS RAISED TO
PRO DUC; ”8’ NUHBER OF DATA POINTS, N
IWK - WOéK V’CTOR OP L NGTH Ne+1.
PRECISION/HARDWARFE - SINGLE AND DOUBLE/H32

- SINGLE/H36,HG8,H
REQD. IMSL ROUTINES NONE REQUIRED

NOTATION .- = TNPORMATION ON SPECTAL NOTATION AND
: CONVENTIONS IS AVAILABLE IN THE MANUAL
INTRODUCTION OR THROUGH INSL ROUTINE UHELP

BEMARKS 1, FFT2C _COMPTITES THE POURIBR TRANSPON, X, ACCORDING
: . TO THE FOLLOWING PORMULA:

Y(R+1) = SUM FRON J = 0 TO N=-1 OFP
A(Je l'CPX 6(0.0 (2. O‘DI‘J‘F)/N)) T e
"OR K= o.‘.o.o' pt= 1 .oo

NOTE THAT X OVERWRITES A ON OUTPUT.
. 2. PFT2C CAN B® USED TO CONMPUTE

aNNAOONNNNONOONNANNANCNONNNNNNONANOONNNNANOONNN
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OF: POOR

X (K+ 1) (1/N) #5034 7B04 J = 9 TO N-1
A(J+1h*CEXPé( . (-2. O‘PI‘J*K)/N))
FOR K—O 1,..0' PI- 1“150..
BY 2ERPOPMING THE POLLOWING STEPS;

Do 10 T 1,

CONJG a1
10 COHT{NE (At
CAL%OP?TZCN(A ¢1,1HX)

= NIG (A (I N
20 COPTfHBE @ a7

- 1978 BY INSL, INC. ALL RIGHTS RESERVED.
- IH?L?{APRANTS ONLY THAT IMSL TESTING HAS BEEN

IED TO THIS CODE. NO OTHER WARRANTY,
EXPRESSED OR IMPLIED, IS APPLICABLE.

COPYRIGAT
WARRANTY

SUBROUTIKE FFT2C (A,N,I7K)
. - SPECIPICATIONS POR ARGUMENTS

INTEGER m, TR (1)
CONPLEX*16 ATY)
SPECIPICATIONS FCR LOCAL VARTABLES
INTEGER 1,1sp,J,33,3SP,K,K0,K1,K2,X3,KR, KN, NK, NN, NP, ¥,
1 NG N8 N8, LA, NN J
pousLe pRecrsioN Rab,ct,c, c3,sV,s2,s3,cx,sK,SQ,A0,11,42,A3,
1 : BO,B1, 03,83, twobT, h2nb
2 zeho,ONE 2012) 42112) )Y .22(2),23(2)
COMPLEX*16 72R0,%A1,%22,Z2 3,482
EQUIVALENCE ZA8,2017) ) o (zAY 21411), (212,22(1)
1 ZA3,23 11} ), (a0 iO{ ; . (80,20 2;),(&1 z1$1‘),
2 g;.%ggzﬁ » (82,82(1), 182,£212)), 1A3.23( 1),
DATA g/:vo 1967811865475D0/,
1 SR7. 3826836323650898D07,
2 CRY:923879932511286AD0/
3 TWOPTI/6.2831853071795860 0/
DATA ZER0/0.0D0/ °§364§33°4x SIi (PI/8) ,CK=COS (P1/8)
=‘ - =
T90p8=2. PI’ '
PIRST EXECUTABLE STATEMENT
P = Me1
N = 2%&N
LA
RH = #04
INITIALIZE- WORK VECTOR
po %th?f'nprwx(t 1) +I¥R (I-1
= - + -
5 CONTINGE (r=1
RAD = TWOPI/N
MK = 0 - 08 .
T8 s .E0. m 6o To 15
Ko = §3wm 1
= + * KB
10 K2 = K2 !
K6 2 K6 =
AR2 = A(K?}
A(K2) = A(RO) - AK2
A x% oo AJKO) o 2E3
- [ R XY f'O TO
1S Ct = ovN= )
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KB = K3 ¢ ISP
: CRECX POR CQMPLETION OP FINAL
ITERATION
I? (KN .LB. KB) GO TO 70
Ip_(J.RES 1) GO TO 20
J = MK
GO TO 20
J =3 =1
c2 = C1 :
I (J .NE. 2) GO TO 65
C1'= c1 *CR + S1 ® SK
S1 = S1_# CK - C2 * SK
GO0 TO 35 )
C1 = (C1 - S1) "* SQ
S1 = {C2 + 51} * SO
Gn TO 35 ‘
CONTIND®
PERMUTE THE COMPLEX VECTOR IN
REVERSE BINARY ORDIR TO NORNAL
IP(M .LE. 1) GO TO 9005
NP = M+l
JJ = 1
INITIALIZE WORK VECTOR
IﬂK‘V) = 1
D0 75 I =
I9K(T) = tvx(r-1) . 2
CONTINOE
§ = IVK(YP-2)
1P (8 .cl. 2) W8 = IVE (1P=-2)
N2 = IWK(MP=1)
1M = ¥2
N§ = I¥K(AP)+1
NP = ¥P-
32 . DETERHINE INDICES AND SWITCH A
1 .
JK =33 + B2
AR2 = A(J)
Ad) = R{IK)
atak) = iK2
J = J+1
IP (JJ .GT. N4) GO TO 85
JI = J3
GO TO 105
J3 = J3 - N
TP (37 .67, n8) GO TO 90
33 = 33
GO TO 19
JJ = J3 - ¥8
X = NP
IP (INK(X) .GE. JJ) GO TC 100
J3 = 33 = IWK(K)
K=K =_1
GO T0_95
JJ = INK(R) ¢ JJ
IF (JJ .L%. J) GO TO 110
K = NN - J
JR = MY = JJ
AR2 = A (J)
A(J) = A(J)
A(3J) = AR?
AR2 = A (K)
AiKk = A (JK)
A(JK) = AK2 .
J= 0+
CYGLE REPEAT®D UNTIL LINITING NUMBER
OF CHANGES IS ACHTRVED -
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OF POOR QUALITY
c IP (J .LE. LM) GO TO 80
9005 RETURN
END
€  INSL ROUTINZ NANE - PFT3D
g---..------‘----‘------_--'“---—-- ..... LR X R A R A B 2 2 K K X K X X ¥ ' ¥ ¥ ¢ N ¥ ¥ I X T X I X "3
g COMPUTER - IBM/DOUBLE
g LATEST REVISION - JUNE 1, 1980
€ PORPOSE - CONPUTE THE PAST POURIER TRANSFORM OF
¢ A COMPLEX VALUED 1,2 OR 3 DINENSIONAL
g ARRAY —~
¢ Usace - CA%%KfPTBD (A,TA1,IA2,N1,¥2,¥3,IJ0B,IWK,RVK,
¢ .
C  ARGUMENTS A - COMPLEY ARRAY. A MAY BE A THREE
C DIMENSIONAL ARRAY OF DIMENSION N1 BY N2
¢ BY N3, A TWO DIMENSIONAL ARRAY OP :
¢ DINERSION N1 BY N2, OR A VECTOR OF
c LENGTH N1. ON INPU® A CONTAINS THE
c ARRAY TO BE TRANSPORMED. ON OUTPOUT
c - A IS REPLACED EY THE FOURIER OR
¢ INVERSE FOURIER TRANSFOR M énzpznnxns on
¢ THE VALUE OP INPUT PARAMETER IJOB).
C IA? - .PTRST DIMENSION OF THE ARRAY A EXACTLY
C AS SPECIFIED IN THE DIMENSION STATEMENT
¢ IN THE CALLING PROGRAM. (INPUTE
C IA2 - SECOND DIMENSION OF THE ARRAY A EYACTLY
o AS SPECIPIED IN THE DIMENSION STATEMENT
¢ IN THE CALLING PROGRAM, éINPUT)
c N1 - LINITS ON THE PIRST, SECOND, AND THIR
¢ gg suasgnrpws oF THE'ARRAY A, RES PECTIVBLY.
¢ IJOB - xsﬁur OBr ION PAPAHETER.
c 1P YJOB IS POSITIVE, THE PAST POURIER
¢ TRANSFORM OF A IS'TO BE CALCULATED.
¢ IP IJOB IS NEGATIVE, THE INVERSE
C PAST POURIER TRANSFORM OF A IS TO BE
c CALCULATED.
c IWK - INTECER WORK vzcroa OF LENGTH
¢ stnaxéul N3) +150
c RWK - REAL WOEK 63 on oF LENGTI
o . 6*MAX (N1,N2 C& 50.
¢ CWX - COMPLEX WOfK GBCTOR OF LENGTH
g MAX (N2,N3).
C PRECISTION/HARDJARE - SINGLE AND DOUBLE/H32
¢ - SINGLE/H32,H48,H6
€ REQD. INSL ROUTINES - PFTCC
C NOTATION - INPORMATION ON SPECTAL NOTATION AND
¢ CONVENTIONS IS AVAILABLE IN THE MANUAL
< TNTRODUCTINON OR THROUGH INSL ROUTINE UHELP
C REMARKS 1. TF IJOR IS POSITIVE PPT3D- CALCULATES THE PONRIER
g TRANSTORH, X, ACCORDING TO THE FOLLOWING FORMULA
¢ X(T+1,J+1,K+1) =TRIPLE SOM OF AéL01 Me1,N+1)®
¢ EXD ziprtsqar(-1)*(ItL/N1+Jtn/ 2+x4u ni))
c "IT 1=0...N1- H-O...NZ' - ...
¢ AND pI=3.1815,.1
¢ IP IJOR IS NEGATIVE, FPT3D CALCULATES THE INVERSE
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,POU&%%% TRANSFORH, X! ACCORDING TO THE POLLOWING

g:o},g:},g:} =1/(N1#N2#U3) #TRIPLE SUN OF
1=5epTéSoRk (- 1) (T 1oatn N2+ K*N/N3
nITé L=o.l.%1 ‘ L 6... {o...“3 ))
I=3Q 1“15' e
MOTE TEAT X _OVERWRITES A ON OUTPOT.
2. TP A IS A T90 DIMENSIONAL ARRAY, SET N3 = 1,

TP A TS A ONE DINERSIONAL ARBAY  (VECTOR),

SET IA2.= K2 = N3 = 1,
COPYRIGHT - 1980 BY IMSL, INC. ALL RIGHATS RESERVED.
WARRANTY - INSL WARRANIS ONLY THAT INSL TESTING AAS BEEN

APPLIED TO THIS CODE. NO OTHER WARRANTY,
EXPRESSED OR IH°LIED, IS APPLICABLE.

10

NN
wno

4s

SUBROUTINE FPT3D (A, IAl, IA2,u1 N2 1308, I7K, RWK,CVK
pbc b STIon& ﬁ ARCONENTS
NTEGER IA, TA2,N1, nz u3 IJOB,
UBLE PRECISION R9RY

MPLEX® A(I 1 IA2, N3§ cwxé !

SPEEIPICATIONS POR LOCAL VARIABLES

INTEGER I,3.X,

DOUBLE PRECISTON  #Y3% .

COMPLEX *#16 c123
PIRST EXECUTABLE . STATENENT

TP (IJOB.CT.O) GO0 TO 10 .
INVERSE TRANSPORN

DO 5 TI=1

D0 5 J=1. wz

P05 k=1l

_CORT£IﬁJ,K) = DCORJIG (A(I,J,K))

TRANSPORN THIRD SUBSCRIPT

DO 25 L=1,N1
DO. 25 H=1/N2

po0 15 f=1,x53

CUK&N) = A(L,N,N)

CONT INUE

CALL PPTCC (CWK,N3,IWK,RRK)

Do §°L?H1k) C¥K (K)

P} =

CONTIRGT

CONTINUE
TPANSPORN SECOND SUBSCRIPT

DO 30 L=1,N1
DO 40 R=1,N3

po 33xﬁ:;'“2A(L n,K)

pd - [ ]

couwrnéz !

CALL PPTCC 5cwx,n2,rwx.awx)

Do QSLJ71k§ CWE (J)

co.v{uﬁn'
CONTIAUE TRANSFORM PIRST SURSCRIPT

RST SURS
NO 45 J=1,N2
po 22L5=;§¥3c AA1 J,K) ,N1,T4UK,RWK)
LS ]

CONTINUS (A1, J.R) N1,
TP {xaoa.cr.oz O TO 55
R1237 = Nisn2=Y3
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DCONJG (A (I, J,K))/C123

X (R123,0.000)

0N





