NOTICE

THIS DOCUMENT HAS BEEN REPRODUCED FROM MICROFICHE. ALTHOUGH IT IS RECOGNIZED THAT CERTAIN PORTIONS ARE ILLEGIBLE, IT IS BEING RELEASED IN THE INTEREST OF MAKING AVAILABLE AS MUCH INFORMATION AS POSSIBLE

Interpretation of F-106B In-Flight Lightning Signatures

by
T. F. Trost
M. G. Grothaus
C. T. Wen

Report on
N.A.S.A. Grant NAG-1-28

August 1985
(NLSA-CR-176387) INTERERETATION OF P-106B
N86-1 $=320$
IN-FLIGHT LIGHTHING SIGNATURES (Texas rechnological Univ.) 51 p HC AO4/MFAO1 CSCL O1C $\underset{\text { G3/05 }}{\substack{\text { Unclas } \\ 04914}}$

Department of Electrical Engineering/Computer Science Texas Tech University

[^0]by
T. F. Troat
M. G. Grotheua
C. $-T$. Wen

Department of Electrical Engineering/Computer Science Texae Tech Univereity Lubbivck, Texan 79409

Auguet, 1985

Prepared for
National Aeronautica and Space Adminiatration
Langley Research Center
Hampton, Virginia 23665
Under Grant No. NAG-1-28
"Lightning Seneora and Data Interpretation"

ABSTRACT

Thim report conaime of a erien of ahort dimcuasions covering varioue characteriatice of the electromagnetic deta obtained on maSA F-106B aircraft during direct lightning
 following topicm are dimcumeed:

Lightning current, $\mathrm{P}, \mathrm{meanured}$ directly vermus I obteined from computer integration of meamured I-dot.

A method of compeneation for the low-frequency cutoff of the current tranaformer uned to meanure I.

Propertien of faet pulsee obeerved in the lightning timederivative vaveforme.

The characteristic D-dot mignature of the F-106B aircraft.
An RC-discharge interpretation for some lightning waveformit.
A method for inferring the locations of lightning channel attachment pointe on the aircraft by using B-dot data.

Simple, approximate relationahipa betveen D-dot and I-dot and between 8 and I.

Estimates of energy, charge, voltage, and reaistance for a particular lightning event.

ACKNOWLEDGMENTS

The authore viah to thank M. E. Thoman of NASA Langley Reaearch Center for mupplying the digitized data ueed in thie vork and for providing much mpporting information concerning the inatrumentation of the $F-106 B$ aircraft.

table of contents

I. INTRODUCTION

During the paet few yeare, lightning atrikea to the NASA F$106 B$ adreraft have yielded much nev electromegnetic data on Eircraft-iightning interactionm. Thim report brieliy exeminet equeral of the more obvioun charecterintice of the data. Refulte of controlied laboratory teate at Texme Tech Uridveraity ae vell an remulte from epproximate theoreticel reletionwhipe are ueed for deta interpretation. Mont of the iightning etriken under discumeion are from 1982, with just eingle; alhough important, -trike from 1984.

Related research activities at Texae Tech which are not explicitiy discumed in the prement work include an experimental study of the electromagnetic resonances of model of the F-106B attached to reaistive wiree [1] and en experimental mtudy of mpark Initiation on an isoleted, conducting object in etrong elactroistatic field (in progrean).

II. RESULTS FROM 1982 DATA

Two tranaient recordere vere umed in 1982 and were avitched among the four electromagnetic encore mown in Fig. 1. A few lightning etrikea vere obtained with the recordere connected to the. I and I-dot mensorm, which meawure the current and the time derivative of the current on the nomeboom. The reaulta from the atrike which produced the largest current (82-44-04) ere ahown in Fig. 2. The lightning waveform depicted in the figure in a current pulae vith a fagt rise time and a sow finll time. The figure comparew I to the time integral of I-dot in order to test the conaimency of the two meamurementa. A amall dimplacement in time has been introduced so that the two curven are not confumed. Notice that the agreement overall ia quite good. However, the effecte of the coaree quantization of the 6-bit traneient recordera are very evident: in the I vaveform, the jumps between adjacent amplitude levela are quite large, and in the integrated I-dot vaveform the entire trailing edge of the lightning pulee in repremented by a constant mope. Thie conetant decine remulted from a conetant negative level in I-dot. The actual I-dot valuea were somall on the trailing edge of the pulae that the recorder digitized all of them in ita firat level below zero. Thim may be eeen in the I-dot record, which is mown in Fig. 3. Refering to Fig. 3, notice also that the I-dot mignal vent off meale briefly during the fastest-rising portion on the leading edge of the pulse. Thus mome pomitive mea var miseed for the integration. This is conaiatent with the fact that the integrated I-dot curve

in Fig. 2 goan elightiy below the zaro axia at the pery end of the pulee.

I-Spnege proge

For lightning eignaturea vhich varied more miowly than the pulae ghown in Fig. 3, che I uenmor van found to introduce dietortion in the form of droop. Thim in to be expected fince the I Eenwor wee a current traneformer with a lower cutoff $1-3$ dB) frequency $f_{0}=2.8 \mathrm{kHz}$. Becauge of the droop, unipoler IIghtning currenta appeared ae bipolar at the eenmor sutput, the affect being pronounced unleas the lightaing pulea : pngthe vere muck leme than $\left(2 \pi I_{0}\right)^{-1} 60 \mu \pi$.

In order to eatimnte the true lightning mignaturen from the menmor output vaveforme, ve have mmanced the tranafor function oif the eensor in our laboratory and have written a computer program which uaea the tranafer, function to put the lov-frequency content back into the vaveforme [2]. The program easentialiy juat Fourier tranaforme the menmor output vaveformm, dividen by the tranefer function, and inveree trangiorma the resulta. Two examplea of vaveforme procemeed with thim program are mown in Figa. and 5 (82-41-19 and 82-41-22). Each example thowe the proceseed and unprocemeed vaveforms muperimposed. Notice that mont of the underahoot is removed by the proceaning and mo is not a true characterintic of the lightning.

Fant Puiger in the Time-Derivetive Weveforme

A common feature of many of the lightning time-derivative

vaveforma is the appearance of very fant pulaen. The pulmes occur either mingly or in groupa, and the average number of pulaen per group for 1982 van 2.4. An example of egroup of 3 pulees in a Ddot vaveform ia ghown in Fig. 6 (82-38-02). The 10 na mample interval of the tranaient recordera ia not ahort enough to provide detailed pulee shapes. In fact, the pulaja are only two or thrise eamplea in vidth, and their true peak valuea are probably often
 Dodot and B-dot pulace vere of pomitive polarity. Thie correapende to increaning poeitive charge at the front of the aircrafte (where the D-dot eenmor in located) and increaning current fore-to-aft slong the fuselage (where the B-dot eenmor is located). The fact that all the pulaes had the ame polarity impliea a charging mechanimm attached to the airplane. That im, an explanation for the charge accumulation based aolely on the polarization of the airplane by an ambient electric field ia not antiafactory mince the ambient field would not alwaya be oriented so an to put the anme polarity of charge on the noae.

For the puleen that occurred in groupe of two or more we have maiaured the time intervala between adjacent pulees. Fig. 7 ghova the dietribution of theae time intervale; the average value ia 300 na. Unfortunately, there in probably mome inaccuracy in the diatribution at ghort timea becauae of the ringing of the aircraft. The pulees excite the electromagnetic remonances of the aircraft, which take mout 300 na to ring down [3]. (The period of the lowest-frequency remonance ia about $160 \mathrm{n} . \mathrm{m}_{\mathrm{s}}$) Thus weak pulse following within 300 na of atrong one may be obacured by

the ringing.

A typical example of aircraft ringing if eeen in Fig. 6 folloving the aecond, and largest, pulee. An expanded plot of thim portion of the waveform it mown in Fig. 8, labelled F-106. Notice that the ringing consimts in part of a prominent double hump ahape. Thim ahape has almo been obaerved in laboratory scale-model teate [4], and ane of the vaveforme from the laboratory model if ghown in Fig. 8 for comparimon with the F-106 data. From the laboratory teate it has been found that the double hump reaulta from the reflection from the rear of the aireraft of a fant current change. That in, the mape ia producad by a current atep which in injected at the front of the aircraft, travela to the rear, and then partially reflecte from the trailing edge of the vinge (firet hump) and then from the end of the fumelage and tail (eecond hump). This mape is a characterimtic eignature of the F-106 in remponee to current injection at the noae. It in clearly oberved 58 timea in the 1982 D-dot data. The poaitive polarity of the pulae preceding the humpe means a positive change in the charge on the nowe, so that electrone must have exited there. See Fig. 9. Thie is an intereating remult becaume it meana that the noee of the aircraft vas acting an a negative tip, and it is known from laboratory atudien [5] that in a rod-plane gap, if the rod is negative, a higher voltage must be applied to caume eparkover than if the rod is positive.

Fig. 8. Comparison of D-dot double hump signature of $\mathrm{F}-106 \mathrm{~B}$ ($82-38-02$) and laboratory model.

Fig. 9. Channel attachment to noseboom, and abrupt loss

htrgrift Rigecharging

The variation of electric field, E, corremponding to the $D-$ dot vaviform in Fig. 6 hae been obtained by integrating and dividing by ϵ_{0}. The resuit ia shown in Fig. 10. The fagt pulmem in D-dot appear am emell, abrupt increames in electric field, while the main feature of E im an approximately exponential rime to $360 \mathrm{kV} / \mathrm{m}$. Thia indicatea that the aircraft experienced an increame in poittive charge or a decreame in negetive charge, with a time constant of about 680 n . The location of the zero electrie-field level is not known and has been arbitrarily located at the bottom of the plot. Three curven, rather than one, have been plotted in order to show the effect on E of the uncertainty In the exact value of D-dot due to the G-bit quantization of the traneient recorder. The middle curve is the integral of the管ctual D-dot data, and the upper and lover curven are, rempectively, the integrale of the data after the D-dot zero level had been mhifted up and down by $1 / 2$ of leaet-aignificant-bit (LSB).

Valuen of maximum E and time constant, T, for meveral lightning atriken vhich ahoved approximately exponential diacharging (or charging) like that in Fig. 10 are given in Table I. Alı of theae waveforme vere aimilar to Fig. 10 in that they contained, firat, a brief slowly riaing portion, then a few rapid increasem, and finally a longer, quami-exponential rime. The T veluea vere meamured an the time required for the curver to reach (1 - e^{-1}) of their final valus, not including the slow rime at the beginning.

82-38-02	360	680
82-38-04	120	670
82-40-04	190	500
82-40-07	440	370
82-42-06	160	630
82-42-09	240	600

Fig. 11 show the waveform of B-dot that was recorded aimultaneounly vith the D-dot vaveform of Fig. 6. The time integral of B-dot is mown in Fig. 12, with the effect of $\pm 1 / 2$ LSB change in B-dot illustrated by the multiple curves. Unfortunately, theae 1/2-bit changea cauee a large variation in the final value of B, indicating the need for finer quantization. Actually, the B-dot vaveform vas altered in one reapect prior to integration: the value of the large poaitive peak, which van at full gecale for the recorder, wan increamed. If thie had not been done, the final valuew of all three of the curver in Fig. 11 vould have been negative, indicating a large continuing current flowing on the aircraft inetead of ahort pulee. While continuing currert is poasible, data recorded in 1984 suggent that the current in the prement case was actually in the form of a mort pulee. A quick look at 1984 data (84-17-01) mowe D-dot and Bdot vaveformm aimilar to thome here, but in addition, thanke to an increame in the number of data channela, it alao ahown I; and the

I waveform ia ementialiy a mort pulme. Thum, aince and Iary cloandy related, we amume in the preaent came that the final value of ahould be zero, and ve have multiplied the peak E-dot value by the factor, 4.27, which achievan thim.

The picture that emergea from Fige. 10 and 12 taken together 10 that of a puime of current vhich diachargea the airplane. The aituation ia aimilar to the dimcharging of a capacitor through a reaimtor. If one aseumea that the airplane ia the capacitor, with - eapacitance of epproximately 500 pF (Appendix I), then, uning t = RC, the 680 na time conatant given a reaimtance of 1.4 k f for the eircuit. The initial voltage, V, of the airplane can be entimated alao. One vay to do thim im to eatimate I from and then make uee of the fact that, at the inatant when dimcharging begina, $V=I_{\text {max }} R$, where $I_{\text {max }}$ is the maximum value of the currant. To relate I and \quad ve une the approximate reault [6]

$$
\begin{equation*}
B=\mu_{0} I /(2 \pi r), \tag{1}
\end{equation*}
$$

Where r ia the effective radiue of the airplane at the location of the B-dot eenmor. Subatituting 35 E-6 T for maximum (irom Fig. 12) and 3.0 m for r (from [6]), give日 $I_{\text {max }}=530$ A. Then $V=740$ kV.

An part of the laboratory ecale-model tente deacribed in [4], a model of the F-106B we: connected to pair of virem in four different vaye to provide a variety of entry and exit pointe for
current pulees. Tio current entry and exit pointa are liated in Table II.

Table II. Wire Attmehmente on Model		
Contigu	-_EntEx	_Extt_
1	nowe	engine exhauet
2	nome	port wingtip
3	atarboard vingtip	port vingtip
4	belly	tail

For sach attachment point configuration, tranafer functiona vere computed relating the eignale meanured from mall menmora mounted on the model to the entry-wire mignal applisi by a pulaer. Fig. 13 mhowe the tranefer functiona for a B-dot eencor which was located and oriented like the B-dot menmor on the actual eirplane shown in Fig. 1. Ae indicated on Fig. 13, the tranefer functione are defined men $B_{L}(v) / V_{I N}(v)$, where $B_{L}(v)$ it the Fourier tranaform of the time-integral of the B-dot eenmor output and VIN(w) in the tranetorm of the puleer voltage. The frequency axem have been mealed to corrempond to the actual plane. An inmet elong mide each tranafer function illuetratea the model with wirem to mov the attachment locations.

The curven in Fig. 13 give information on the varioum remonant modef of the model that are excited by the current pulaen. Some of the main characterietica of the curven are, firmt, for configuration: 1 and 2, peak at 7 MHz , eecond, for configuration 3, a dip at 13 MHz and, third, for configuration 4,

Fig. 13. Transfer functions of laboratory model for four wire-attachnent configurations.
a peak at 20 MHz . Our interpretation of these characteriatice is an followe: The 7 MHz remonance im the lowent one and ham current flowing in the ame direction elong the whole length of the fuyelage (like a half-wavelength dipole anterina). It ie atrongly excited in configurationa 1 and 2. In configuration 4 the 7 MHz remonence is not excited becaume the midehip attachment given current to the front and back eimulteneourly; the epectrum peak in nov at 20 MHz . In configuration 3 the 13 MHz reaonance ia conspicuously mbaent. Evidently it ia not excited by the vingtip-to-wingtip input.

These remulte lead one to the conclusion that, if the attachment point locationa were unknown, it vould be poanible to infer the locationm bamed on an inepection of the tranefer function. Thie idea can almo be extended to the in-ilight deta.

Fatit componente in the lightning gignaturea can excite many of the aircraft remonancef, and, in fact, in-filght B-dot waveforma often have apectra remembling the model tranafer functiona in Fig. 13, and it is easy to pick out the three caaem, peak at 7 MHz , dip at 13 MHz , and peak at 20 MHz . Thus when we ace a particular case in-flight, we infer the correaponding attachment. However, we cannot any gregigely where the attachment pointe were located. For example, current entry at the noeeboom or at the front of the fuselage vould be expected to give about the same remonances. Almo, notice that there ia little difference in the tranafer functions for configurations 1 and 2, where the exit point was changed. It is probably true in general that the location of the exit point does not affect the tranafer
functione very much in the reaonance region (i 27 MHz) becauese only a mali amount of current im cerried off by the wire.

Furthermore, nearby lightning ilanh, with no attachmente at ali, might produce mpectra mimilar to thome dimcussed here. Thus, at beat, we infer oniy the likely region for current entry. Tuble III categorize: mome in-ilight remulta.

Table III. Inferred Attachmenta

Spectral Cheremerintic	Attachment _- (EntモY)	In-Filght _Exampler
peak at 7 MHz	nowe	82-38-02 (Eee [3]).
		82-38-04, 82-40-04,
		82-40-07, 82-42-06,
	-	82-42-09
dip at 13 MHz	wingtip	80-38-04 (ser [4])
peak at 20 MHz	mid-fuselage	80-38-01 (tee [4]),
		80-38-03A, 81-26-10,
		82-37-04, 82-38-07B

III. RELATIONSHIPS AHONG THE WAVEFORMS IM STRIKE 84-17-01

The vaveforma from the 1984 atrike number 84-17-01 are Eimilar to the 1982 aircraft-discharging vaveforma already diecumed, but they repreaent a more complete eet, originating from eight rather than two external menmora. Several interesting comparimona can be made among the eight. Basically the event coneimed of a everal-hundred-ampere pulee at the noseboom, with - peak I-dot oi $26.6 \mathrm{E}+9 \mathrm{~A} / \mathrm{E}$ (or $26.6 \mathrm{kA} / \mu \mathrm{E}$). Thim ie not a large current for lightning, but it produced a aignificant traneient on an internal fueclage wire that vent off-acele at 52 V. The Eignature of the current in common one for atrikee to the F-106B, conainting of fant rime with mome atructure and alow fall.

Data from 1984 in further improved becaume of the ume of 8bit, rather than 6-bit, tranaient recorder.

I 릉 $\boldsymbol{\text { I }}$-dot
The I menmor meamuring nomeboom current during 1984 was a shunt rather than a current traneformer as in the paet. On comparing the I vaveform from 84-17-01 with the time-integrated Idot veveform we find, in contrate to our aimilar comparimon in Fig. 2, rather poor agreement. The waveforme are ahown in Figa. 14 and 15, and meveral differencea between them may be noted. The trailing edge of the pulee is almoet completely miseing in Fig. 15. Thia is due to inaufficient dynamic range in the I-dot record. More apecifically, the slope on the trailing edge in Fig. 14 varies from $-8.7 \mathrm{E}+8 \mathrm{~A} /$ E toward zero and thus is alvays leas

than the firet digitized level (below zero) in the I-dot record, $19 E * 8$ Ale. Other differences between the vaveforma are that the peak value in Fig. 15 is much greater, end the curve demeende mora quickly following the peak than in Fig. 14. We expected that the amplitude of integrated I-dot would be greater than I because the arrangement of menmore on the aircraft var much that nome of the current bypassed the shunt but 11 of it vent through the I-dot ensor: but the two waveform verse expected to have the same shape. The difference in chape may be due to quantization error in I and I-dot or to some problem with the hunt. Further studies should be done to determine which of thee e is the case, because interpretation of the data if very difficult without knowledge of the true current, waveform.

D- dot and I- dot
A very simple theoretical treatment (Appendix II) predicts that

$$
\begin{equation*}
\text { D-dot }=I-d o t /(2 \pi \mathrm{rc}) \tag{2}
\end{equation*}
$$

for any fast disturbance, where r is the effective radius of the airplane at the location of the nose D-dot ensor. In order to see how closely the actual results follow the ample theory, we have taken the values $5.07 \mathrm{~A} / \mathrm{m}^{2}$ and $1.14 \mathrm{E}+10 \mathrm{~A} / \mathrm{m}$ from the first peak e (P_{1}) in D-dot and I-dot for substitution into this equation. The waveform are shown in Figs. 16 and 17 , respectively. Using r $=0.8 \mathrm{~m}$, the result is $5.07 \approx 7.56$, which in not too bad.

E-dot and I-dot; and I

The umefulnean of Eq. 1 in Section II of thie report may be checked by unjing the equatson to determine the value of r for a number of different meta of 1 and I peak values. B-dot and I-dot peakm may almo be umed. For Eq, 1 to be umeful, the valuea of r obtained ahould be nearly the aame. Table IV chowe mome reaulte. The firat three entriea in the table are taken from data apparing in [6].

The B-dot waveform and ite time integral, B, uaed for the lant four entrien in Table IV are plotted in Fige. 18 and 19. All values of r th the table clueter together, lying between 2.7 and 4.1, except for the lant one, at 5.7. There does not eeem to be any obviou explanation for this large value. Poamibilities appear to be, firat, inaccurate data due to inadequate mampling

```
1-
I
[
[
[
[
[
[:
[
[
!
```

MAGNETIC FLUX DEFSITY (T)

Abstract

apeed and, eecond, inmecuraciea due to exceneive apacing between amplitude quantization levele.

1 and E

The integral of the nome D-dot aignal in Fig. 16 leade to the E vaveform of Fig. 20. Thif reveale airarait diacharging like that diacumaed above for the 1982 data. Hovever, for 84-17-01 more complete deta in available. In addition to the four mencore elready deacribed (Fig. 1), other menaore vere uned as foldowes I on the tail, D-dot on the tail, D-dot under the port ving, anil dot under the port wing for tranmerae currenta. The tail I record conainta of fluctuations between 0 and 71 A during the entire length of the traneient recorder memory, 650μ. 71 A in the firat level above zero, and mo the average current van, very roughly, 35 A. The polarity wan auch that electrone vere floving onto the airplane. We interpret thia aa veak, continuing lightning-channel current which vae cherging the aixplene. A large amount of corona vould be expected on the airplane extremitiea during thie charging phase. When the required conditiona were met, a new channel formed from the noaeboom, and the airplene vae discharged. The development of the nomeboom channel probably took place in atep-sime fachion. Thim in auggeated by the etructure on the leading edge of the current pulae in Fig. 14. Two concecutive marp riaes in current are ecen; they are labeled P_{1} and P_{2} in the figure. These eharp increames corrempond to pulaes in tine I-dot waveform, and the pulsea have been labeled with the same notation in Fig. 17. In

fact, the two event are alamo revealed in D-dot and E. See Figs. 16 and 20. The actuation here io an example of a roup of lent pulaé like those analyzed earlier in this report in Fig. 7. We thu come to interpret theme pules an corresponding to the development, or connection, of a discharge channel. Once the peak current ip reached in Fig. 14, there ie a brief aemi-ilat aport, and then an exponential decay begins an the charge atored on the aircraft pesure into the new channel. The exponential discharge ie elmo mean in the E waveform of Fig. 20. Remember that, with this interpretation, the true zero of E would be at the top of the curve, not at the bottom.

A simplified equivalent circuit for this scenario ie shown in Fig. 21. The airplane ie represented by the capacitor, C. Charging current at the tail is applied by the source $I_{c,}$ and the channel at the nomeboom is represented by the variable resistor. One imagine that the reaimence of the reaiator drop from a high value in etep-rise fashion, producing the pules P_{1} and P_{2}, and reachea a value, R, for the discharge phase.

We have taken the beginning of the discharge phase to be at point X in Fig. 14. The time constant, T, for the discharge (the time to fall to $\mathbf{e l}^{-1}$ in found from Fig. 14 to be 520 nm . With reference to the circuit in Fig. 21, number of electrical parameter a can now be computed. Using $T=R C$, the resietance, R, Ie found to be 1040Ω. The voltage ecroan the sapacitor, C, and thu e the airplane, after the channel has connected and the discharge begins if given simply by $V=-\quad$ R. Taking I an the current at point X in Fig. 15, 665 A, given $V=-692 \mathrm{kV}$. Hers it

Fig: :21. Equivalent circuit for aircraft charging and discharging scenario applied to strike 84-17-01.
is better to use Fig. 15 than Fig. 14 because, as mentioned above, mome fraction of the total current bypameed the menmor which was uned to obtain Fig. 14. Next, the total energy, W, etored in the capacitor is given by $W=1 / 2$ CV2 $=120 \mathrm{~J}$. The peak power delivered to the channel can almo be found: $P=-I V=4.60 \mathrm{E}+8$ W, or 460 NW .

An alternative method for calculating the voltage and energy usea the charge, q, tranaferred from the capacitor. From Fig. 21 one eeem that the capacitor current ie the difference between the tail current (I_{C}) and the nomeboom current (current through R). Integrating this difference given $q=-298$ E-6 C. To determine the charge, O, on the capacitor at time X, q munt be added to the charge remaining at the end of the pulae, which ia given by - CIcR $=-18.2 \mathrm{E}-6 \mathrm{C}$. Thus $0=-316 \mathrm{E}-6 \mathrm{C}$, and $\mathrm{V}=0 / \mathrm{C}=-632 \mathrm{kV}$. Then $W=1 / 2 \mathrm{CV}^{2}=99.9 \mathrm{~J}$.

The two methode in the preceding paragraphe for calculating the energy give nearly the mame resulte, and we conclude that W. 100 J. Note that our calculatione apply to the diacharge phame of the event; a quantitative analyeia for the channel development phame, when the reaietor in Fig. 21 im verying, ham not yet been carried out.

A mall but interesting effect, which we neglected, if the very milght drop in E after 1.3μ in Fig. 20. This may be due to a late-time.increame in the channel resiatance, R. Another reault from Fig. 20 is that the time constant for dimcharge of E is leas than that for I in Fig. 14. Thia indscates the approximate nature of our underetanding of this type of lightning event; future data
should help to provide a better underatanding.
To put the valuea calculated above into permpective, we have compared the electrical diacharge from the airplane to the discharge of a typical power-aupply capacitor in an electronice package. The reaulta are ahown in Table V. The peak power, P, was calculated in both cames ambuming a remietance of 1040 ת.

Table V. Comparimon of Diachargea, Airplane and Capacitor

	\underline{V} (V)		C	-(I)	
Airplane	. 0005	632,000	316	100	4.20 E+8
Capacitor	100	100	10,000	0.5	96.2

One can aee from the values that C and O are mall for the airplane, but V ie large. Thus the energy etored and the peak pover, delivered are large for the airplane.

IV. CONCLUSIONS

Thie report if concerned with the extraction of information from the in-filght data, and eeveral bagic typea of information have been dimcuamed. Theme are 1) the conmiatency and accuracy of the deta recordinga, 2) the electromagnetic characterietice of the lightning, and 3) the electromagnetic characterietice of the F106B.

Comparimone betveen I and the time-integral of I-dot ahowed good agreement in Fig. 2 (from i982) but poor agreement in Figm. 14 and 15 (from 1984). Finding the reamon for the lack of agreement in Fige. 14 and 15 will require the etudy of data from additional Etrikes.

The old I senmor distorted the lightning pulmes because of ita low-frequency cutoff behavior, making the pulaen bipolar. See Fige. 4 and 5. We moved that we could correct for thim dietortion. Actually, there are only a few old vaveforme that need to be processed in this way, but they are Eignificant ones becaume they tie together the F-106B data vith ground-bamed Etudies of other workere. Theas waveforme (Figs. 4 and 5) are aimilar, for example, to the lightning current vaveforms that have been inferred by Weidman and Krider [7] from remote measurements of lightning fields.

Computer integration of the time derivative data, as in Figa, 10 and 12, can leave considerable uncertainty in the final value of the integrated waveform, due to the errors introducad by
quantizing the data. The new 8-bit tranmient recordera will help to alleviate this problem, but the geinm of the recordera munt alvayø be carefully adjuated to make maximum une of the available dynamic range.

Characterintitcin of the hightning

Fant puleem, like those marked vith arrowe in Fig. 6, are very prominent in the time-dorivative data. They come in bunche: of two to three and are among the fantent componente eyer obeerved in lightning fields. They may be amociated with the development of leader channels on the noseboom, es illumtrated in Fig. 9, where negative charge is carried off of the airplane. The time required for three pulaen ia typically in the range 100 to 700 na .

By integrating D-dot vaveforme like the one in Fig. 6, one diecovera that there is an epproximately exponential variation in D, and E, following the occurrence of the faet puleem. This is Eimilar to the decay of the voltage of a capacitor an it discharges into a resietor. A poasible interpretation of the overall event in that a channel in produced during the time of the pulaes, and the charge on the arcraft dumpe into thim channel during the time of the exponential variation. In Fige. 14 and 20 the waveforme for E and Eimultaneous current, I, are given for one much event, etrike 84-17-01. Values of various quantitiea for the exponential discharge phase are given in Tables I and V, where all valuea seem reasonable. In particular, in 84-17-01 it appeare pe heve an event with en energy of 100 J, which is fairly potent.

If the RC-dimcharge idea for atrike 84-17-01 is correct, the
neceamary apparatue for an approximate aimulation of thic event on the ground 1: auggeated by Fig. 21: A high-voltage pover mupply 1e connected to the tail of the aircraft through a lerge reaietor to eimulate the mource, I_{c}. The aircraft im charged to - 650 kV and then eliowed to mpark over at the nomeboom to a 1000Ω regiator connected to ground.

Although Section III containe numerous comparimone between meagured quantities, one ratio of quantities has thue far not been mentioned-- E/H. From Fige. 19 and 20 and ueing $B=\mu O H$ ve find (max. E)/(max. H) $=3710$. Thia value is ten timen that of a free-apace electromagnetic wave, indicating the importance of the electric field vie-a-via the magnetic as earlier auggeated by Baum [8].

Finally, the eimple relationmhipa between D-dot and I-dot in Eq. 2 and between B and I in Eq. 1 are only roughly correct for the lightning fielde.

The double-hump aignature ahown in Fig. 8 is a characteristic of nome-mounted D-dot mensor on the F-106B or other similar delta-ving aircraft mubjected to a fant tranaient input at the nose. It if an example of the influence of mircraft mape on lightning vaveforms.

Because of aircraft remonancem, the apectral content of lightning aignala from the B-dot aenaor can be umed to infer the locations of the lightning attachment pointa on the aircraft, as illustrated in Table III. Thim result is one benefit of

1aboratory scalemodel meemuremente (Fig. 13).
A \quad Iinal comment, it is intereating that the timem derivative date revenis important ehort-timemeale information-laet lightning puleen and aircraft reaonancen and reilectione (double hump)-- vhile by merely integreting, one geta deta which emphanize longer-time-meale picture, giving the overali dimchmrge time and energy and euggeeting the RC circuit interpretation.

APPENDIX I: CAPACITANCE OF F-106B

The capacitance between a circular diak of radiuer and a ephere at infinity ia given by $C_{d}=8 \epsilon_{o} r$. For aphere rather then adiak, $C_{\infty}=4 \pi \epsilon_{0} r$. We approximate the capacitance of the F-106B to lie between that of adiak of radium 5.8 m and that of a ephere of the ame riadius. We obtmin $C_{d}=410 \mathrm{pF}$ and $\mathrm{C}_{\mathrm{m}}=645 \mathrm{pF}$, and thue for the airplane we take $C=500 \mathrm{pF}$.

APPENDIK II: RELATION BETWEEN D-DOT AND I-DOT
The aimplest caee for the propagation of an electromagnetic dieturbance is one where the dieturbance maintaina the ame ohape ae it travela and thum is given by $f(z-v t)$. Thia vould be the eituation for a wave ineide a uniform, loamena coaxial tranamianion line, for example. We will aamume thia ia approximataly correct for propagation of lightning dieturbances along the noaeboom and forvard fueslage of the F-106B. For the propagation mpeed, v, we une $c=3.00 \mathrm{E}+8 \mathrm{~m} / \mathrm{m}$.

We will let the z axie run through the nomeboom and forvard fumelage and take the fore-to-aft lightning current and murface charge to be approximately mymetrically distributed about this exia. The equation of coneervation of charge can now be written in the form

$$
\delta 1 / \delta z+\delta q / \delta t=0
$$

where i is current and q is murface charge per unit length in the axial direction. Jf i in function of z-ct, then

```
61/8z=-1/c 61/6t.
```

Charge conaervation nov becomea
8q/8t 1/c bi/8t.

If the funelage is approximately circular with radiue r, then the charge per unit area 1 m $q /(2 \pi r)$, and thia is the ame an the electric dieplacement, D. Thus, dividing the equation above by 2nr, ve find
D-dot = I-dot/ (2n re) ,
uaing the "-dot" notation employed in the body of thie report.

REFERENCES

1. Wood, G. W. and T. F. Troat, "Electromagnetic Remonances of Cylinderm and Aircraft Model with Reaistive Wirem," Air Force Weapond Labormtory Report AFWL-TR-84-90, Kirtland AFB, New Mexico, 1985.
2. Wen, C. -T. "Analymie of Lightring Traneiente on an Aircraft," M.S. Themin, Texam Tech Univeraity, May, 1985.
3. Troat., T. F. et el. "Some Remulta and Limitations of Prony Analyaim of In-Fiight Lightning Data," Proc. Intl. Conf. on Lightning, Ft. Worth, Texam, 1983.
4. Turner, C. D. and T. F. Tront, "Laboratery Modeling and

Analymie of Aircraft-Lightning Intermetionm," N.A.S.A. CR 169455, 1982.
5. Hutzler, B. \&t il. "High Voltage Laboratory Teata and Lightning Phenomena," Proc. Intl. Conf. on Lightning, Paria, France, 1985.
6. Troat, T. F. and F. L. Pitte, Analymis of Electromagnetic Fielde on an F-10GB Aircraft During Lightning Striken," Proc. Int1. Conf. on Lightning, Oxford, England, 1982.
7. Weidman, C. D. and E. P. Krider "The Radiation Field Weveforma Produced by Intracloud Lightning Dimeharge Procemaen," J. Geophym. Reaearch, vol. 84, pp. 3159-3164, 1979.
8. Baum, C. E. Simulation of Electromagnetic Aepecte of Lightning," Lightning Technglegy, NASA Conf. Pub. 2128, 1980.

[^0]: Lubbock, Texas 79409

