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Materials and Structures Research for Gas Turbine Applications 
Within the NASA Subsonic Fixed Wing Project 

 
Janet Hurst 

National Aeronautics and Space Administration 
Glenn Research Center 
Cleveland, Ohio 44135 

 
Abstract 

In an era of both declining NASA budgets and demanding 
space goals, the NASA Aeronautics Research Mission 
Directorate has elected to address foundational research 
problems for aeronautics. To this end, the Subsonic Fixed 
Wing (SFW) Project, within the Fundamental Aeronautics 
Program, has selected challenging goals which anticipate an 
increasing emphasis on aviation’s impact upon the global 
issue of environmental responsibility. These SFW project 
goals are greatly reduced noise, reduced emissions and 
reduced fuel consumption. Specific goals, selected by a 
combination of systems analysis, experience and industry 
input, are generational in approach, addressing 25 to 30 years 
of technology development. Successful implementation of 
these demanding goals will require development of new 
materials and structural approaches within gas turbine 
propulsion technology. 

The Materials and Structures discipline, within the SFW 
project, comprise cross-cutting technologies ranging from 
basic investigations to component validation in laboratory 
environments. Material advances are teamed with innovative 
designs in a multidisciplinary approach with the resulting 
technology advances directed to promote the goals of reduced 
noise and emissions along with improved performance. For 
propulsion needs, these technologies have been grouped into 
three basic categories. These are 1) improved hot section 
materials for hotter engines with minimal cooling 
requirements to promote reduced NOx and fuel burn. Among 
the technologies of interest have been new alloy compositions 
and coatings which are demonstrating improved capabilities 
for this purpose. Also of interest for propulsion applications 
are 2) lightweight and multifunctional systems which will 
allow reduced fuel burn via weight reduction in the engine and 
its surrounding structure. An example of this technology is 
High Temperature Shape Memory Alloys (HTSMA) for 
actuation applications requiring large displacements and low 
frequencies such as chevrons and variable area nozzles for 
high bypass ratio engines. The final area under investigation is 
3) More Electric aircraft, which at this time is focused 
primarily on Turboelectric technology as a revolutionary 
approach to the entire SFW design space. Major challenges to 
be addressed in this field are improved cryocoolers and 
superconducting materials.  

A brief overview is presented of the current materials and 
structures research focused upon propulsion applications within 
NASA Subsonic Fixed Wing Project. As such, it does not 

comprise the entirety of Materials and Structure research for gas 
turbine engines at NASA. Several other projects also include 
research of this type to address their specific project goals. 

Introduction 
The objective of the Subsonic Fixed Wing Project (SFW), 

one of four flight regime based projects within the NASA 
Fundamental Aeronautics Program, is to conduct discipline 
based foundational research to address environmental 
challenges and improve the performance of subsonic aircraft 
(Ref. 1). The aggressive goals of the SFW project are shown 
in Figure 1 and define a design space with large reductions in 
noise, NOx, fuel burn and reduced runway length. A 
generational approach is used by the SFW project with current 
generation aircraft referred to as “N” and so forth from near-
term concepts or N+1, mid-term ideas designated as N+2, to 
the basic research ideas which will enable new N+3 aircraft 
concepts in 30 years or more. The achievement of these goals 
requires a multidisciplinary effort to investigate new materials, 
structural concepts and technologies. Within the Materials and 
Structures discipline are cross-cutting technologies with 
overlapping applications within each of the four flight regime 
based FA projects. Technologies of interest are divided among 
the four projects, with considerable cooperation existing 
between those projects at the discipline level. For 
incorporation in the SFW portfolio, three criterions must be 
addressed. The first being whether the technology enables a 
significant, achievable impact on the goals of SFW. The 
second one is whether the technology fits best within SFW or 
would be better aligned with the goals of another project. The 
third criterion is whether there are sufficient resources 
available to make reasonable progress. Technologies from 
very basic fundamental research to nearer term concepts are 
included. Additionally, vigorous supplementation of in-house 
capabilities is accomplished via periodic NASA Research 
Announcements (NRA). Four NRA rounds have been pursued 
thus far, one each year of the SFW project with significant 
university involvement. Additionally, the Small Business 
Innovation Research program (SBIR) has usefully augmented 
the research portfolio. 

The critical materials and structures technology needs for 
subsonic flight regime applications have been identified as 1) 
improved hot section materials, 2) improved lightweight 
structures which employ improved and/or multifunctional 
materials with an integrated design solution and 3) more 
electric aircraft to meet future consumer and industry needs. 
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Figure 1.—Subsonics Fixed Wing Project (SFW) System Level 

Metrics (Courtesy Ruben Delrosario, Principal Investigator). 

Nomenclature 
AFRL  Air Force Research Laboratory 
CMC Ceramic Matrix Composites 
EBC  Environmental Barrier Coating 
ERA Environmentally Responsible Aviation Project 
FA  Fundamental Aeronautics 
HTSMA  High Temperature Shape Memory Alloys  
IPHTET  Integrated High Performance Turbine Engine 

Technology  
LDS  Low Density Superalloy 
NASA National Aeronautics and Space Administration 
GRC  NASA Glenn Research Center 
NOx Nitrogen and oxygen containing gases, very 

reactive  
NRA  NASA Research Announcement 
OPR Overall Pressure Ratio 
PM Powder Metallurgy 
TBC  Thermal Barrier Coating 
SAA Space Act Agreement 
SBIR  Small Business Innovation Research 
SFC Specific Fuel Consumption 
SFW  Subsonic Fixed Wing Project within the NASA 

Fundamental Aeronautics Program 
SOFC  Solid Oxide Fuel Cell 
T3  Turbine Inlet Temperature  

Hot Section Materials Research and 
Design 

Historically there has been a clear trend of increasingly 
higher operating temperatures within commercial class engines 
(Ref. 2). This trend is likely to continue with modern engine 
designs incorporating higher overall pressure ratios (OPR)  
and reduced film cooling and so driving the need for hot section  

materials to higher capabilities to provide both improved 
specific fuel consumption (SFC) and reduced NOx emissions 
To achieve these dual goals, new materials are needed as well as 
innovative designs. Improvements to hot section performance 
are being addressed by each of the FA programs. Additionally, 
the new Environmentally Responsible Aircraft project (ERA) is 
targeting improved NOx engines. At this time SFW is 
addressing several technologies for improved hot section 
performance these range potentially near term applications to 
basic research. Some of these to be discussed here include 
turbine seals, high temperature alloys and coatings, advanced 
hybrid disk concepts, multifunctional diagnostic coatings and 
high temperature nanotubes. Ceramic matrix composites (CMC) 
are also clearly of interest for advanced hot section components 
(Ref. 3), however CMC technology is adequately addressed by 
the other NASA projects flight regime based projects.  

High Temperature Seals 
Advanced gas turbine engine seals represent an opportunity 

to provide a significant reduction in specific fuel consumption 
(sfc) relative to current state-of-the-art (SOA) labyrinth seals. 
This reduced fuel burn is applicable across N, N+1, and N+2 
aircraft platforms, previously shown in Figure 1. The 
commonly used labyrinth seals require clearance to avoid 
rubbing contact. Clearance must account for a range of engine 
conditions with centrifugal growth of the rotor, geometry 
changes due to thermal expansion, and dynamic shaft motion 
all occurring in response to mission profile. Abradable 
materials can be used to reduce this clearance, but once they 
are abraded, the gap remains. It has been shown that 
contacting brush or finger seals can result in half the leakage 
rate of conventional labyrinth seals (Refs. 4 to 7). Also studies 
by engine companies (Refs. 8 and 9) have shown that a 
50 percent reduction in leakage will yield a 2 to 3 percent 
reduction in sfc. But a major drawback of these advanced seals 
is that shorter life results from rubbing wear of the contacting 
seal. SFW researchers are evaluating non-contacting 
compliant seals such as non-contacting brush/finger seals. 
These non-contacting finger seals holds promise to achieve 
low leakage rates and long life capability in subsonic gas 
turbine engines. A GRC designed non-contacting brush/finger 
turbine seal (Ref. 10) is shown in Figure 2. Verification and 
refinement of design methodology using experimental data 
and analysis is on-going with testing up to 800 °C and 
pressures up to 1.7 MPa differential (250 psid). The goal of 
the current effort is to both validate design and analysis 
methodology, and to demonstrate leakage that is no more than 
50 percent of SOA labyrinth seals and twice the life of 
contacting brush or finger seals at subsonic engine conditions. 
This work is conducted in the GRC High Temperature, High 
Speed Turbine Seal Test Facility, seen in Figure 3. Details 
regarding this facility have been reported elsewhere (Ref. 11). 

 

CORNERS OF 
THE TRADE
SPACE

N+1 (2015)
GENERATION
Conventional 
Configurations
(Tube and Wing)

N+2 (2020)
GENERATION
Unconventional 
Configurations
(Hybrid Wing)

N+3 (2030)
GENERATION
Advanced Aircraft 
Concepts relative to 
user-defined reference 

Noise -32 dB -42 dB -71 dB
(cum below Stage4) 

LTO NOx
Emissions -60% -75% better than  -75%
(below CAEP/6)

Performance:
Aircraft Fuel Burn  -33% -40% better than -70%

Performance: exploit
Field Length -33% -50% metroplex concepts
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Advanced High Temperature Alloys 
Metallurgurical engineers continue to make great 

improvements to alloy compositions and processing as engine 
temperature needs have increased. While there is undoubtedly 
a limit to the ultimate temperature which can be achieved with 
alloys, increases in upper use temperatures continue. Some 
applications, such as rotating components, are likely to require 
metal parts for the foreseeable future. Advanced alloy 
development continues to be a priority for the SFW project. 

Within SFW, the alloy design space is characterized and 
optimized for cyclic oxidation, creep resistance, hot salt 
corrosion and microstructural stability. A series of nickel-
based superalloys is under investigation for airfoil 
applications. The baseline composition in this series, known as 
LDS for low density superalloy, has been reported elsewhere 
(Refs. 12 and 13). These compositions possess excellent creep 
resistance and at the same time offer densities lower by 5 to 
10 percent than the current generation of alloys. Figure 4 
(Ref. 13) is a Larsen-Miller plot which illustrates the 
improved creep behavior of the baseline alloy (LDS,) as well 
as a further optimized composition, relative to state-of-the-art 
superalloys. These improvements have resulted in an 
additional 19 °C (35° F) increase in temperature capability and 
a 56 °C (100 °F) increase over commercial blade alloys. 
Efforts to transfer this technology to industry are underway 
through a NASA Space Act Agreement (SAA) with 
Honeywell Corporation. 

Advanced Hybrid Disk Concepts 
Improved turbine disks are another critical technology to 

enable higher temperature engine operation. Design 
considerations push for turbine inlet temperatures, T3, of 
760 °C (1400 °F) to 816 °C (1500 °F). While high temperature 
CMCs are being considered for other engine components, the 
high damage tolerance required by the turbine disk will likely 
negate the use of intermetallics or CMCs, at least for many 
years. Yet use of even advanced 2nd and 3rd generation powder 
metallurgy metals such as Rene 88 (Ref. 14) and ME3 
(Ref. 15), confine T3 to no more than 1300 °F due to creep and 
corrosion limitations. The need for higher use temperatures 
has prompted efforts to develop dual alloy concepts comprised 
of a powder metallurgy (PM) disk bonded to a single crystal 
superalloy rim, shown in Figure 5. By placing the joint 
between the two metals such that the PM alloy remains at no 
more than 704 °C (1300 °F), the single crystal rim alloy may 
operate to 760 °C (1400 °F) or more. The improved LDS 
single crystal alloy compositions developed for blades are 
candidates for this application as well.  

Significant advances have been made in understanding the 
ultimate temperature capability of 3rd generation powder 
metallurgy (PM) disk alloys. Also single crystal alloys with 
the necessary creep resistance have been identified, an 
example is shown in Figure 6. Additional work is on-going to  
 

 
 
Figure 2.—GRC non-contacting brush/finger turbine seal  

(Ref. 10). 
 

 
 
Figure 3.—GRC High Temperature, High Speed Turbine Seal 

Test Facility (Ref. 11).  
 

 
Figure 4.—Larsen-Miller plot of creep behavior of 

improved creep of SFW Developed alloys 
compared to commercial blade alloys (Ref. 13). 
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Figure 5.—Schematic of a hybrid disk 
section. (Courtesy of Michael Nathal, 
GRC.) 

 
 

 
 

Figure 6.—LDS alloys have creep resistance required for 
816 °C (1500 °F) turbine disk rim temperatures (Ref 13). 

 
 
 

 
 
Figure 7.—Three-dimensional  strain mapping of a PM/SX joint 

tensile specimen showing most of the deformation occurs in 
the single crystal region (Ref. 13). 

 

understand long term corrosion and oxidation behavior of this 
alloy family. Compositions must be optimized for a balance of 
properties within the alloy/property behavior maps. Also, 
promising brazing schemes and compositions for the 
PM/single crystal joint have been identified. Understanding 
the properties of this joined region will be critical to predict 
behavior of a component. By utilization of 3–D strain 
mapping during tensile testing, it has been shown that most of 
the deformation occurred within the single crystal, shown in 
Figure 7 (Ref. 13). Currently, an optimized high temperature 
coating scheme is being developed for this alloy/application 
system. Potentially a hybrid disk with CMCs may be 
considered, although thermal expansion mismatch would 
cause considerable stress at the joint. 

The hybrid disk concept has been pursued in the past by 
DOD programs such as IHPET with NASA involvement. 
SFW GRC researchers are collaborating with AFRL to further 
the hybrid disk concept to enable to achieve a 100 to 200 °F 
increase in T3 temperature. This effort relies on synergy 
between the advanced alloy work done within NASA’s SFW, 
Supersonics and Aging Aircraft projects.  

High Temperature Coatings 
To further improve high temperature performance of state-

of-the-art alloys, thermal barrier coatings must be developed 
in tandem with those alloys to optimize specifically targeted 
applications. Within SFW, coatings are actively under 
development are for the advanced superalloy compositions 
discussed previously for both blades and disks. As advanced 
engine designs push materials to increased temperatures, these 
coatings become critically important. An additionally 
pervasive issue for coating technology has been the potential 
premature loss of coating through spallation or erosion. 
Evaluation of the condition of the coatings is done by 
inspection of the part, often a difficult and expensive 
procedure. An innovative solution to this problem may be the 
application of luminescent coatings, described below, which 
provide both thermal protection and diagnostic health 
monitoring of the coating system. An additional 
multifunctional coating scheme also pursued within SFW has 
been thermal barrier coatings which also provide vibration 
damping to engine component.  

Delamination and Temperature Sensing 
Luminescence-Based Diagnostics for TBCs 

Thermal barrier coatings (TBCs) have been used to provide 
thermal protection for many turbine engine components. 
However, TBCs fail through spallation, leading to conditions 
which may damage engine performance or safety. Inspection 
of the TBC coating with nondestructive diagnostic tools could 
assess the progression of cracks within the coating (Refs. 16 to 
18). This crack progression causes spallation which will lead 
to eventual TBC failure, as shown in Figure 8. Non-contacting 
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temperature measurement of the substrate would also be 
useful, as then prediction of when the thermal function of the 
TBC was no longer effective would be possible. By careful 
doping of the TBC with luminescent sublayers, it has been 
found that crack progression can be monitored from an early 
stage, by near-infrared and upconversion luminescence 
imaging, before delamination can be detected visually, shown 
in Figure 9. Detection is possible because the buried 
delamination cracks are highly reflective and cause a relative 
increase in luminescent emission from delaminated areas. 
Prior to this near-infrared and upconversion luminescence 
imaging, the SOA techniques all had drawbacks which made 
implementation in an engine unlikely. Eddy current (Ref. 19) 
and impedance measurements (Refs. 20 and 21) are unsuitable 
for use in an engine, while techniques using optical probes had 
limitations in depth probing (Refs. 22 and 23). Pyrometry 
(Ref. 24) also suffered from uncertainty as emissivity 
measurements change with time at temperature. Luminescent 
subcoatings can also be used to monitor substrate temperature 
or surface temperature, depending on the location of the 
dopant (Ref. 25). It is important note that TBC life has not 
been affected by incorporation of luminecensing dopants 
(Ref. 26). Additionally, the incorporation of the dopants does 
not require difficult or cumbersome processing techniques. 
Dopants may be incorporated into commonly used coating 
deposition techniques such as plasma spraying (Ref. 26). 
Techniques such as this will be needed as engine operating 
temperatures are pushed to higher operating temperatures to 
monitor the condition of protective coatings. Plans are in place 
to demonstrate this technology in an engine test. 

Damping Coatings 
Another multifunctional capability of TBCs is the potential 

to damp vibrational stress within hot section components 
while also providing oxidation and erosion resistance. This 
coating scheme would enable thinner blades, or other 
component, while also reducing high cycle fatigue damage. A 
unique high temperature, high frequency, high force test 
capability was developed and demonstrated (Ref. 27), capable 
of testing at temperature up to 1230 °C, shown in Figure 10. 
Metallic, ceramic and cermet coatings have been applied by 
both air plasma spraying and high velocity oxy-fuel (HVOF). 
An example of the initial results is shown in Figure 11. Up to 
a fourfold improvement in damping at 800 °C was found 
among the investigated coatings (Ref. 27). 

High Temperature Nanotubes  
In partnership with the Supersonics project, high 

temperature nanotubes are investigated for applications which 
are too harsh for carbon nanotubes (CNT). CNT are limited to 
approximately 500 °C in air while Boron Nitride Nanotubes 
(BNNT) and Silicon Carbide nanotubes (SiCNT) are stable to 
over 1000 °C, as shown in Figures 12(a) (BNNT), and (b) 
 

 
Figure 8.—Furnace test showing progression of 

delaminations to TBC failure as imaged by 
upconversion luminescence. 

 

 
Figure 9.—A small delaminated region is detected 

on a plasma spray coated disk specimen. 
 

 
Figure 10.—Laser Heated Cantilever Beam 

Vibration Test Rig, GRC. 
 

  
Figure 11.—Improved damping of a coated single 

crystal superalloy. 

Localized Delamination

NIR Luminescence

1 cm
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(SiCNT). While CNT reinforced nanocomposites may be 
useful for some low temperature uses, the superior 
temperature and oxidative stability of BNNT make it of 
interest for engine applications. NASA GRC has a robust 
capability for producing BNNT (Ref. 28), capable of 
producing both bulk nanotubes and in-situ coating on 
substrates. Many substrates have been successfully coated 
include superalloys, carbon, silicon carbide, silicon, 
superalloys and various foam structures, an example is shown 
in Figure 13. As a structural reinforcement within composites, 
the GRC BNNT has successfully demonstrated improved 
mechanical properties within glass compositions (Ref. 29) and 
also recent work within aluminum. Additional applications 
include thermal management and high temperature electronics.  

Silicon Carbide nanotubes (SiCNT) are synthesized by 
converting the outer wall layers of carbon nanotubes to silicon 
carbide via a chemical templating procedure (Refs. 30 and 31). 
Several grams of silicon carbide nanotubes can be synthesized 
each day. The process generally results in dual layer 
nanotubes, with an inner core of C surrounded by an outer 
layer of SiC, much like a coaxial cable. Samples are 65 to  
70 percent SiC with balance being carbon. Temperature 
stability of SiCNT, determined by thermogravimetric data in 
Figure 12(a), shows that weight loss occurs up to 800 °C, as 
carbon is removed from the sample by oxidation. Slight 
weight gain occurs above 1000 °C as oxidation reactions begin 
to form glassy phases. SiCNTs are being incorporated into 
environmental barrier coatings (EBC), TBCs and composites.  

An NASA NRA with Brown University compliments in-
house experimental work by providing valuable modeling and 
experimental insight into the mechanical behavior of ceramic 
nanocomposites. One significant finding which has influenced 
the direction of in-house work highlighted the strength 
advantage of multi-wall nanotubes over single wall nanotubes 
when used as structural reinforcement for composites 
(Ref. 32). 

Lightweight and Multifunctional Engine 
Structures 

Metal Foams 
Engine and airframe manufacturers alike have made great 

strides in recent years in weight reduction for both engine and 
airframe by incorporating new composites and materials. As 
fan cases and by-pass ducts are large structures relative to 
other engine components, weight reductions here are an 
excellent target. One method of weight reduction is to use 
multifunctional materials. To provide for engine containment, 
structure must be strong and lightweight, and also capable of 
containing impact events such as blade out. Various material 
systems composed of polymer, nanocomposite or metals, 
could be utilized in sandwich structures. One potentially 
useful material for lightweight sandwich or other structures 
may be metal foams. Metal foams, as shown in Figure 14(a), 
 

 
(a) 
 

 
(b) 
 
Figure 12.—(a) Thermogravimetric data demonstrates the 

thermal stability of BNNT in air at temperature up to 
1200 °C. Photo of BNNT following heat treatment in air to 
1200 °C. (b) Thermogravimetric data demonstrates the 
thermal stability SiCNT in air at temperature up to 1200 °C. 
Photo of SiCNT following heat treatment in air to 1200 °C. 

 
 

 
 

Figure 13.—BNNT deposited on superalloy foam.  
Inset—coated foam at a lower magnification. 
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could supply structural strength and acoustic damping for 
engine related structures such as the fan case. Polymer foams 
have already been widely used for impact resistance and sound 
absorption. Potentially, through the use of metal foams, these 
functions could be extended into hotter sections of the engine 
as well. Coupon level testing was carried out on metal foams 
and demonstrated sound absorption (Ref. 33). Simulated tip 
rub engine testing with Williams International has also 
recently been completed (Ref. 33) and demonstrated graceful 
degradation and minimum tangential loading (Fig. 14(b)). 

To understand, model, and eventually optimize foam 
structures and properties, characterization of non-idealized 
foams is necessary. A methodology to quantify metal foams 
based on strut and cell face dimensions has been developed 
(Ref. 34). Next, understanding of how microstructural features 
affect pertinent properties needs development.  

Many issues with metal foams remain. A serious drawback 
of this material is weight. Additionally metal foams are not 
manufactured for the purpose of sound absorption or strength. 
These attributes along with fatigue tolerance, and density have 
not been optimized. There are many manufacturers of metal 
foam so processing approaches and resultant materials vary 
considerably. Additionally, few high temperature superalloy 
compositions are available.  

Shape Memory Alloys 
Aircraft engines of the future are moving toward real time 

adaptable systems rather than static engine configurations. 
These adaptive structures respond to changing performance 
demands by altering shape, position or geometry as necessary 
to achieve fuel burn, emission reduction and /or performance 
benefits. But work performing structures, such as motors, 
actuators, solenoids, hydraulics and pneumatics, represent 
additional weight and may therefore negate actual fuel savings 
from the performance enhancement which they enabled. To 
avoid this, new solid-state devices may allow adaptive 
structures for engine applications to also achieve a weight 
decrease. These actuators would likely be used in devices 
where traditional hydraulic systems would not be possible. To 
meet these needs, SFW is developing two types of smart 
materials, high temperature shape memory alloys (HTSMA), 
and high temperature adaptive piezoelectric devices. 

Shape memory alloys (SMA), with their high energy 
density, will be useful for large stroke and low frequency 
applications. There are many potential engine applications 
starting with simple replacement of conventional actuators, 
but in addition there are adaptive chevrons (Ref. 35), variable 
area exhaust nozzles (Ref. 36), acoustic liners, shape changing 
blades and vanes (Ref. 37), flow control devices, adaptive 
inlets (Ref. 38), seals, and others. Yet while these applications 
have been demonstrated, the commercial SMAs or hydraulic 
systems that were used were only a placeholder for HTSMAs. 
Currently available SMAs, typically NiTi, are usable to only 
70 °C, insufficient for practical situations. SFW has targeted 
 

the development of high temperature shape memory alloys 
(HTSMA) for use to 200 °C. Additional compositions are 
being developed for much higher temperature applications, up 
to 500 °C, by the FA Supersonics Project. A HTSMA driven 
variable area exhaust nozzle demo for a high by-pass ratio 
engine is a currently unfunded goal within SFW.  
 

 
(a) 

 

 
(b) 

 
Figure 14.—(a) Typical metal foam. (b) Post engine 

tested metal foam arc segments 
 

 
 

Figure 15.—Idealized behavior of a HTSMA (Ref. 43). 
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There are at least four requirements (courtesy Ron Noebe, 
GRC) for successful HTSMA development for actuators: 1) 
Martensitic finish temperature (Mf) of at least 80 °C. This is 
necessary to prevent premature actuation in harsh 
environments. Commercial SMA materials do not meet this 
requirement. 2) Dimensional stability during thermal cycling 
for long-life and durability. This requires little or no 
irrecoverable strain. 3) Large recoverable transformation 
strain for large stroke and high work output. 4) Narrow 
hysteresis for fast actuation. These qualities are shown in the 
idealized behavior of a HTSMA shown in Figure 15.  

Several new NiTiPd-X compositions have been 
documented (Refs. 39 to 43) to meet most of the above 
requirements. These compositions are superior to NiTi alloys 
in both higher transformation temperatures and dimensional 
stability. On-going research is striving for additional 
improvements in dimensional stability. The hysteresis 
behavior of some of the compositions in this family is shown 
in Figure 16 (Ref. 44).  

In another alloy system, NiTiHf, very promising results 
were also achieved (Ref. 44). This system has been reported to 
have poor performance with low Mf temperatures, wide 
hysteresis, poor dimensional stability, poor ductility and 
difficult processing. However, by incorporating nano-
dispersion strengthening, alloys with outstanding properties 
including high Mf temperatures were obtained, shown in 
Figure 17.  

Collaboration with industrial partners as well as other 
government facilities and universities, is a desired outcome for 
most efforts within SFW. A clear success story exists in the 
collaboration within the SMA actuator community. The 
CASMART organization is comprised of primary and 
secondary materials producers to end users, along with alloy 
specialists, and modelers. They come together to advanced 
SMA technology, developing alloy compositions and 
processing, developing test standards and alloy certification 
standards, by creating models and methodologies, and by 
promoting system-level developments. This group was formed 
in 2007 by Boeing, GRC, LaRC, and Texas A&M and has 
grown to nine members (shown in Fig. 18), each with their 
own unique role. Additionally, GRC researchers have worked 
through the NRA process to find productive partnership with 
researchers and students at the Texas Engineering Experiment 
Station, Texas A&M University, who have performed 
complimentary work in both processing and modeling under a 
cooperative agreement. 

Adaptive Piezoelectric Technology 
While SMAs are appropriate for applications which require 

large displacements and low frequencies, applications 
requiring small displacements and high frequencies, may 
benefit from piezoelectric devices. Piezoelectrics may be 
appropriate for applications such as active fuel modulation, 
and active vibration damping. The integrated structural  
 

 
Figure 16.—Hysteresis plots for NiTiPd-X compositions 

(Ref. 43).        
 

 
Figure 17.—Promising hysteresis properties in the NiTiHf 

system. Inset—Microstructure of nanodispersion 
strengthened NiTiHf alloy. 

 
 
 
approach envisioned for an advanced term hybrid wing 
aircraft utilizing embedded engines will likely require 
vibration suppression (Ref. 45). An effort to develop high 
temperature piezo-ceramic compositions exists at GRC, 
funded by the FA Supersonics Project. Leveraging this effort, 
SFW is developing the controls and methodology to utilize 
these new materials. Active damping technology enables the 
reduction of hazardous vibration and associated dynamic 
stresses, thereby increasing life of a component. To assure 
sufficient fatigue life, designers often must increase structure 
and thereby add weight and volume. As an example problem, 
the Adaptive Structures team is working to develop shunted 
piezoelectric damping and/or active control with piezoelectric 
actuators to reduce fan and compressor blade vibrations. This 
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will permit thinner and more highly loaded blades. This will 
also allow distortion tolerant fan blades for embedded engines 
which are of interest for N+2 and N+3 concepts where 
boundary layer ingestion may occur (Ref. 45). More near 
term, thinner blades will enable reduced fuel burn through 
weight reduction and reduced noise as well.  

Significant resonant stress reduction in flat plates (Refs. 46 
and 47) and also on a fan blade was demonstrated with both 
passive shunt circuits and an active control system (Refs. 47 
and 48). A representative result is shown in Figure 19. Testing 
has also been performed under centrifugal loading to ascertain 
material and circuit integrity (Ref. 49). The next phase will 
test embedded piezoelectric devices within scaled composite 
blades in the Dynamic Spin Rig. Electrical power will be 
transferred to the rotating blades using wireless telemetry. 
Preliminary runs employing a lightweight inductive power 
supply have been promising. 

More Electric Propulsion 
Without doubt, the future of aviation will be more electric. 

While an all-electric commercial aircraft may be considerably 
in the future, there are other options. An exciting N+3 concept 
under investigation in SFW is turboelectric distributed 
propulsion. Also, current civil aviation has increasing 
electrical demands from instrumentation to passenger laptops. 
Powering these requirements constitutes a drain on available 
power from the engine. Solid oxide fuel cells (SOFC) are one 
method of reducing this demand on engines. Of additional 
interest for the SFW project is lightweight motors, super 
capacitors and nanotechnology.  

Turboelectric Distributed Propulsion 
Turboelectric distributed propulsion technology is a 

fundamentally unique approach to potentially meet future 
propulsion requirements. While this approach can be 
developed for tube-and-wing configured aircraft, when 
coupled with a hybrid wing aircraft, significant benefits are 
expected (Ref. 50). The potential N+3 future aircraft would 
address every corner of the SFW design space (Fig. 1). Some 
of these benefits are listed in Figure 20. This concept enables 
integrated engine and aircraft architectures that are predicted 
to reduce both drag and fuel burn from the airframe and allow 
for lower fuel burn and emissions from the propulsion system. 
This idea relies on power distributed electrically from turbine-
driven generators to motors that drive the multiple propulsive 
fans, see Figure 21. The turboelectric propulsion concept has 
been addressed in detail elsewhere (Refs. 50 to 52) and was 
the subject of a recent NASA sponsored workshop (Ref. 51). 
Representatives from three NASA centers, Air Force, industry 
and universities were present and took part in developing 
technology roadmaps. Recent advances in both cryocooler 
technologies and superconducting materials have generated 
renewed interest in this approach. The distributed turboelectric 
 

propulsion system requires significant weight reduction of 
cryogenic and superconducting components for this concept to 
be competitive (Ref. 50) with more conventional approaches. 
Therefore continued improvements to these technologies are 
currently pursued within SFW through a combination of 
SBIRs, contracts and in-house efforts. Recent 
accomplishments include a preliminary design of a cryocooler 
which enabled an 80 percent weight reduction while also 
meeting efficiency goals (Ref. 52). Additionally, in a SBIR 
effort, an improved low loss MgB2 superconducting wire was 
developed with fine filaments and a high resistance matrix 
(Ref. 52). Model developments for motor and generator 
concepts are currently underway. Also, an in-house high 
temperature super conducting motor has been constructed and 
will be soon tested. 
 
 

 
 

Figure 18.—CASMART organization works to develop SMAs. 
 
 

 
 

Figure 19.—Typical piezoelectric damping. 
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Figure 20.—Multiple benefits may be obtained from the turboelectric propulsion approach.  

(Courtesy G. Brown, GRC). 
  
 
 

 
Figure 21.—Components of turboelectric propulsion. (Courtesy G. Brown, GRC). 
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Figure 22.—Microstructure of the GRC all-ceramic 

SOFC. 
 

Solid Oxide Fuel Cells (SOFC) 
The auxiliary power unit (APU) provides electricity to the 

plane’s on-board systems while in flight and on the ground to 
provide for passenger convenience and comfort. Generally, 
APUs are gas-turbine driven generators and are inefficient and 
polluting. Fuel cell driven APUs would provide significant 
reduction in fuel burn, NOx and noise while the aircraft is on 
the ground. But PEM fuel cells do not perform well at high 
altitudes due to the need to control hydration of the electrolyte. 
Hybrid PEM/turbine APUs combines fuel cell ground based 
performance with a gas turbine’s high altitude advances 
(Ref. 53). Potentially, the commercially PEM fuel cells could 
be replaced with less mature Solid Oxide Fuel Cell (SOFC) 
technology. Advantages of SOFC fuel cells include better 
performance at altitude than PEM cells, reduced CO poisoning 
and better sulfur tolerance. However, SOFCs are heavy and so 
unsuitable for aviation. SFW has a small effort in SOFC 
technology with the goal of improved specific power density 
(power output relative to weight). New SOFC designs at GRC 
have enabled improved specific power density (power output 
relative to weight) devices up to 1 kW/kg (Ref. 53). The 
unique microstructure of the GRC SOFC, shown in Figure 22, 
provides the opportunity for much lighter weight devices 
while maintaining a robust structure. An additional advantage 
of this technology is that it does not require expensive 
precious metals. The all-ceramic design has been successfully 
tested as a small stack. Future work will test larger stacks and 
evaluate durability.  

Additional Efforts 
Additional work exists at a low level as an informal 

technology incubator. All are at low TRL. Topics such as 
nanocomposites, aerogels, thermoelectrics, power harvesting, 
lightweight motors, oil free bearings and others are explored. 
As the technology matures, feasibility is continually evaluated. 
Some of these topics will be elevated in significance, while 
other technologies will be de-emphasized or dropped. The 
SFW Materials and Structures portfolio is flexible and as some 
technologies are found to fall short of the hoped-for impact, 

rebalancing occurs. As always within the FA Program, 
research will be supplemented by NRA awards as well as 
SBIRs  

Conclusion 
The Subsonics Fixed Wing Project has the clear objective 

of addressing environmental challenges for subsonic aircraft 
and improving their performance through the development of 
technologies and tools. Advances in materials and structures 
technologies are essential to meet the SFW goals for reduced 
fuel consumption, reduced noise and reduced emissions for 
future generations of aircraft. From new engine concepts 
operating at higher temperatures with less fuel consumption 
and pollution, to radically different aircraft propulsion 
systems, structures and materials advances are the enabler to 
the future of aviation.  
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