
 

 

Wind Turbine 
Tribology Seminar 
A Recap 
 
DRAFT 
 
Authors: 
R. Errichello, GEARTECH 
S. Sheng and J. Keller, NREL 
A. Greco, ANL 
 
Sponsors: 
National Renewable Energy Laboratory (NREL) 
Argonne National Laboratory (ANL) 
U.S. Department of Energy 
 
Presented at:  
Renaissance Boulder Flatiron Hotel 
Broomfield, Colorado, USA 
November 15-17, 2011 

February  2011February  2011 

 
Wind Turbine 
Tribology Seminar 
A Recap 
 
Authors: 
R. Errichello, GEARTECH 
S. Sheng and J. Keller, NREL 
A. Greco, ANL 
 
Sponsors: 
National Renewable Energy Laboratory (NREL) 
Argonne National Laboratory (ANL) 
U.S. Department of Energy 
 
Presented at:  
Renaissance Boulder Flatiron Hotel 
Broomfield, Colorado, USA 
November 15-17, 2011 
 
 
 
 
 

     
    
    

 
 
 
 
 



 

ii 
 

NOTICE 

This report was prepared as an account of work sponsored by an agency of the United States 
government. Neither the United States government nor any agency thereof, nor any of their 
employees, makes any warranty, express or implied, or assumes any legal liability or 
responsibility for the accuracy, completeness, or usefulness of any information, apparatus, 
product, or process disclosed, or represents that its use would not infringe privately owned rights.  
Reference herein to any specific commercial product, process, or service by trade name, 
trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, 
recommendation, or favoring by the United States government or any agency thereof.  The views 
and opinions of authors expressed herein do not necessarily state or reflect those of the United 
States government or any agency thereof. 

 Printed on paper containing at least 50% wastepaper, including 10% post consumer waste. 
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Foreword 
 
Tribology is the science and engineering of interacting surfaces in relative motion.  It 
includes the study and application of the principles of friction, lubrication, and wear that 
impact the design and operation of bearings and gears in wind turbine gearboxes, and 
their subsequent maintenance requirements and overall reliability.  The Wind Turbine 
Tribology Seminar was convened by the National Renewable Energy Laboratory 
(NREL), Argonne National Laboratory (ANL), and the U.S. Department of Energy 
(DOE) to explore the state-of-the-art in wind turbine tribology and lubricant technologies, 
raise industry awareness of this complex topic, present the science behind the 
technologies, and identify possible R&D areas for improvements.  The Wind Turbine 
Tribology Seminar was held at the Renaissance Boulder Flatiron Hotel in Broomfield, 
Colorado, on November 15-17, 2011.  This report is a summary of the seminar and its 
conclusions.   
 
The presentations given at the meeting can be downloaded at: 
 
http://www.nrel.gov/wind/pdfs/2011_wind_turbine_tribology_seminar.pdf 
 
Interested readers who were not at the meeting may wish to consult the detailed 
publications listed in the bibliography section, obtain the cited articles in the public 
domain, or contact the authors directly. 

http://www.nrel.gov/wind/pdfs/2011_wind_turbine_tribology_seminar.pdf�
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Introduction 

Surface damage and failure of contacting components (i.e., bearings, and gears) are among the 
more frequent and costly types of failures for a wind turbine and can be the root cause of system 
failure for the gearbox, main rotor bearing, generator, yaw system, and blade pitch systems.  
Understanding the fundamental tribological factors that influence contacting element 
performance is important to addressing these issues; disseminating this information to foster 
collaboration on this topic is one of the main objectives of the 2011 Wind Turbine Tribology 
Seminar.  The other objective is to identify the major tribological related issues impacting the 
wind energy industry leading to recommendations for future research and development strategies 
to improve turbine reliability and ultimately lower the cost of wind energy. 
 
The Wind Turbine Tribology Seminar was conceived to: (1) present state-of-the art tribology 
fundamentals, lubricant formulation, selection of oils and greases, gear and bearing failure 
modes, R&D into advanced lubricants, and mathematical modeling for tribology, and field 
observations; (2) provide a forum for researchers, tribologists, lubricant engineers, wind turbine 
manufacturers, gearbox manufacturers, bearing manufacturers, owners, operators, and those in 
the supply chain to share their knowledge and learn from their colleagues; and (3) develop a list 
of R&D needs to guide future wind turbine tribology research. 

The seminar consisted of six sessions with 29 moderators, speakers, and panelists. Three came 
from Germany, two from the UK, one from Belgium, and one from Japan.  About 110 attendees 
attended the seminar and participated in the discussions.  Table 1 details the seminar's agenda. 
The next section summarizes each presentation, and final section presents conclusions.  
Appendix A contains the speakers’ biographies. 
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Table 1. Seminar Agenda 

Day 1: November 15, 2011 
Time Topic Speaker and Affiliation 
8:00 AM Introduction Paul Veers, 

NREL 
Ali Erdemir, 
ANL 

8:30 AM  Tribological Challenges in Wind Turbine Technology Gary Doll, 
U of Akron 

Session I: Tribology Fundamentals (Bob Errichello, GEARTECH) 
10:00 AM Elasto Hydrodynamic Lubrication (EHL) Fundamentals Vern Wedeven, 

Wedeven Associates 
11:00 AM EHL Surface Interactions in Micropitting Pwt Evans, 

Cardiff University 
1:00 PM The Influence of Lubricant Properties on EHL Film Thickness 

and Traction 
Andy Olver, 
Imperial College 

2:00 PM Surface Roughness and Micropitting Lane Winkelmann, 
REM Surface Engr 

Session II: Lubricant Fundamentals (Bill Herguth, Herguth Laboratories, Inc.) 
3:00 PM Fundamentals of Lubrication Gear Oil Formulation Jon Leather, 

Castrol 
4:00 PM Selecting Synthetic Gear Oil Dennis A. Lauer, 

Klüber Lubrication 
5:00 PM Wind Turbine Grease Lubrication Henri Braun, 

ExxonMobil 
 
 
Day 2: November 16, 2011 
Session III: Wind Turbine Tribological Damage (Shawn Sheng, NREL) 
8:00 AM NREL Gearbox Reliability Collaborative Failure Database 

Project 
Mark McDade, 
NREL 

8:30 AM Bearing and Gear Failure Modes Seen in Wind Turbines Bob Errichello, 
GEARTECH 

10:00 AM Microstructural Alterations in Hertzian Fatigue Bob Errichello, 
GEARTECH 
Andy Olver, 
Imperial College 

11:00 AM Classic Bearing Damage Modes Ryan Evans, 
Timken 

Session IV: Root Cause Hypotheses (Brian McNiff, McNiff Light Industry) 
1:00 PM Introduction Bob Errichello, 

GEARTECH 
1:15 PM The Mechanism of White Structure Flaking in Rolling 

Bearings 
Hideyuki Uyama, 
NSK 

2:15 PM The Bearing Axial Crack Root Cause Hypothesis of Frictional 
Surface Crack Initiation and Corrosion Fatigue-Driven Crack 
Growth 

Jürgen Gegner, 
SKF 

3:45 PM Hammering Wear Impact Fatigue Hypothesis Johan Luyckx, 
Hansen 

5:00 PM Influence on Bearing Life by New Material Phenomena Walter Holweger, 
Schaeffler 
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Day 3: November 17, 2011  
Session V: R&D Activities (Jim Johnson, NREL) 
8:00 AM Surface Treatment and Nano Lubricant Ali Erdemir, 

ANL 
8:45 AM Novel Macromolecular Nano Lubricant Oils and Greases Ajay P. Malshe, 

NanoMech Inc. 
9:45 AM Update on the Development of a Full Life Wind Turbine 

Gearbox Lubricating Fluid 
Manfred Jungk, 
Dow Corning 

10:30 AM Modeling Tribological Contacts for Wind Turbine Gearbox 
Component Life Prediction 

Nathan Bolander, 
Sentient 

11:15 AM Approaching Component Surface Fatigue Life by Integrated 
Contact and Lubrication Mechanics & Beyond 

Jane Wang, 
Northwestern Univ 

Session VI: R&D Needs Development (Aaron Greco, ANL) 
1:00 PM Panel Discussion: 

Field Observations of Tribological Damage in Wind Turbines 
 
A look at Wind Turbine Oil Over Time 
 
Damage Seen From a Wind Turbine Manufacturer’s Angle 
 
Pitch and Yaw Bearing Damage 

 
Art Miller, 
enXco 
Bill Herguth, 
Herguth Labs 
Shawn Doner, 
Winergy 
Les Miller, 
Kaydon 

2:30 PM Future R&D Areas All Attendees 
3:30 PM Tour of National Wind Technology Center Jim Johnson, 

NREL 
 
Critical evaluation of the seminar's information revealed the complex challenge of tribology for 
the wind industry and highlighted the need for multidisciplinary research in areas including 
contact mechanics, tribology, materials science, lubrication, mechanical engineering, component 
design, condition monitoring, and modeling. 
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Summary of Presentations 

Introduction 
Wind Market and NREL Gearbox Reliability Research Overview 
Paul Veers, NREL 

The presentation began with an overview of the wind turbine assets at NREL and the wind 
energy market globally and in the United States and then segued into a discussion of wind 
turbine gearbox reliability challenges.  The need for improved reliability in terms of failure 
frequency and resulting downtime in wind turbine drive trains, including the main shaft/bearings, 
gearbox, and generator, was demonstrated.  An overview of the Gearbox Reliability 
Collaborative (GRC), including tests, modeling, analysis, overhaul database, and condition 
monitoring was presented along with drive train testing assets at the National Wind Technology 
Center (NWTC). 

Argonne National Laboratory (ANL) Wind Tribology Overview 
Ali Erdemir, ANL 

An overview of ANL's tribological, surface treatment, and nano-lubricant research and its 
engineering staff was presented.  Argonne’s tribology mission is to perform leading-edge R&D 
in the fields of materials, lubricants, surface engineering, and tribology to: 

• Improve efficiency, durability, and reliability of machine components that operate under 
severe tribological conditions (including those in wind turbines) 

• Understand fundamental tribological mechanisms through advanced surface/structure 
analytical methods and modeling/simulation. 

Argonne tribology strengths, facilities, and recent success stories, such as super-hard nano-
composite coatings and carbide-derived carbon, were discussed.  Current wind turbine R&D 
activity in ultra-fast boriding and nano-boron additives were presented.  Future areas of R&D, 
such as explaining the root causes of failure mechanisms, commercial implementation of 
advanced surface technologies, and investigation of hydrogen embrittlement were discussed. 

Tribological Challenges in Wind Turbine Technology 
Gary Doll, University of Akron  

Some wind turbine bearings are not achieving their desired operational lives because of life 
limiting wear modes.  Tribological issues manifest themselves through different bearing failure 
modes in various systems of wind turbines.  The primary mechanisms in pitch/yaw bearings, 
main shaft bearings, the gearbox, and the generator are false brinelling, micropitting, wear and 
cracking, and electrical arc damage.  Micropitting and smearing are caused by large amounts of 
roller/raceway sliding in situations in which lambda (Λ), the ratio between the oil film thickness 
and the combined surface finishes of the parts, is low.  Micropitting, smearing, and false 
brinelling problems can be solved with durable tungsten carbide-reinforced, amorphous, 
hydrocarbon thin film (WC/aC:H) coatings on rollers.  WC/aC:H coatings on rollers provide 
bearings with a high tolerance of debris damage.  The solutions to micropitting and scuffing in 
gears are the same as in roller bearings.  The root cause of radial cracking and wear from an 
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Irregular White Etch Area (IrWEA) is controversial, but probably mechanical in nature.  Cleaner 
steels, higher compressive stresses on raceways, increased Λ, and less roller skidding can reduce 
IrWEA wear and radial cracking, if the IrWEA wear is of mechanical origin.  In generators, less 
electric arc damage is shown in oils than in greases.  Examples of problems without current 
solutions are: 1) increasing seal life and 2) the development of a common nacelle lubricant. 

Presentation Summary 
• Wear problems in pitch and yaw bearings 

o False brinelling because bearings and gears are not rotating, vibrations cause 
small motions termed dither.  This leads to fretting. 

o Fretting leads to false brinelling and fretting corrosion 
o There is a critical dither angle 
o False brinelling is avoided by regular rotation, along with adequate base oil 

viscosity and antiwear additives 
• Wear problems in main shaft bearings 

o Micropitting defined 
 Surface initiated fatigue due to roller/raceway sliding and low Λ condition 

(oil film thickness) 
 Uneven load distribution between upwind/downwind bearing rows 
 Micropitting avoidance through reduction of roller/raceway sliding by 

using preloaded tapered roller bearings will reduce risk of micropitting 
and/or coatings and super-finishes on SRB rollers reduce shear stresses 
and increase Λ by polishing raceways in operation 

• Wear problems in gearbox 
o Scuffing wear 

 Rollers skidding across raceway in low Λ condition generates local 
temperatures high enough to melt steel 

 Caused by decreasing loads and transient conditions 
 Avoid transients and reduce clearance, or use coated rollers 

o Axial Cracking & Wear from IrWEA 
 Caused by hydrogen embrittlement or mechanical causes such as scuffing 
 Avoidance through black oxide on rings and rollers, usage of case 

carburized rings from ultra clean steel, and reduction in shear stress (pre-
loaded TRBs and coatings) 

o Debris Damage 
o Gear scuffing 

• Electric Arc Damage in Generator 
o Loads generated during grid reversal 
o Avoidance through usage of ceramic balls, electrical insulating coating on rings, 

use of oil instead of grease, and usage of dry oils with high dielectric strengths. 
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Tribology Fundamentals 
 

Elastohydrodynamic Lubrication (EHL) Fundamentals  
Vern Wedeven, Wedeven Associates, Inc. 

The formation of an elastohydrodynamic (EHD) film to provide elastohydrodynamic lubrication 
(EHL) is the key lubrication mechanism for long-life and robust operation of rolling element 
bearings and gears for wind turbines.  Understanding the EHL mechanism, and how it uniquely 
links to theory, provides a foundation for engineering design, tribology technology development, 
and problem solving.  The performance of EHL films is linked to fundamental and inherent 
lubricant properties of viscosity, pressure-viscosity coefficient, and traction coefficient.  Seven 
features characterize this mechanism and spell the acronym, MIRACLE: 

M = Molecular attraction of adsorbed films, which drags lubricant along with the moving 
surfaces 

I = In-flight refueling by fluid flow in the converging inlet region, in which the surfaces supply 
fluid and pump up the film 

R = Radical increase of viscosity with pressure, in which the oil becomes a pseudo-solid 

A = Accommodation of stress by elastic flattening of surfaces and by the pseudo-solid, which 
rides the Hertzian region 

C = Cushioning of asperities due to asperity deformation 

L = Limiting shear strength of pseudo-solid film, which limits traction forces 

E = Exit without trauma, in which the pseudo-solid reverts to oil without damage 

Wind turbine operational features, including start/stop, present unusual demands and limitations 
for EHL mechanisms to be operational.  The linkage between EHL mechanisms and boundary 
lubrication mechanisms is essential for understanding bearing/gear performance limits and 
failure mechanisms.  Five key tribology parameters (entraining velocity, film thickness-to-
surface roughness ratio, sliding velocity, total contact temperature, and contact stress) are used to 
“manage” technology development for the lubricated contacts of bearings and gears.  These 
parameters can be used for design, failure analysis, lubricant formulations, and evaluation of 
materials and surface engineering technologies.  Specialized testing illustrates how controlling 
lubrication and failure mechanisms are expected to play out in service hardware. 
 
EHL Surface Interactions in Micropitting  
Pwt Evans, Cardiff University, UK 

The presentation detailed the effect of surface roughness on Elastohydrodynamic Lubrication 
(EHL).  The importance of surface roughness was discussed in terms of Λ.  The importance of 
surface roughness was illustrated for cases with sub unity Λ in the extreme loading events that 
occur due to the interaction of surface asperity features.  The application of suitable analysis 
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methods to gear contacts operating in these conditions shows that their operation occurs in a 
mixed lubrication regime, with direct surface interaction of the asperity features occurring as 
transient high pressure events. 

High pressure events, such as asperity interaction, can lead to scuffing failure when the asperity 
contact levels are high.  They also lead to cyclic asperity loading within the EHL contact due to 
sliding effects.  Cyclic loading is used as an input to fatigue calculations that identify the near 
surface zone beneath heavily loaded asperities and have high probabilities of fatigue failure.  The 
manner by which these asperities are subjected to plastic deformation during the running-in 
process, and the resulting residual stress field, was considered. 

 
Effect of Lubricant Properties on EHL Film Thickness and Traction  
Andy Olver, Imperial College, UK 

The presentation discussed the effects of various phenomena on film thickness and traction.  
Dimensionless speed, and material and load parameters were defined and basic regression 
equations to estimate the film thickness were presented.  Methods to estimate the effect of 
temperature on lubricant viscosity were discussed.  The phenomenon of “shear thinning," 
defined as the variation of viscosity with shear rate, was shown.  The Ree-Eyring versus Carreau 
methods for estimation of the coefficient of friction were discussed, including accounting for the 
slide roll ratio and temperature droop as measured in simple bench tribometer tests.  The 
following are proposed: 

• A protocol for extracting a description of the EHL traction behavior of an oil from simple 
bench tribometer tests 

• This can be used in conjunction with a coupled thermal EHL model to predict traction 
over a wide range of conditions for competing oils. 

 

Surface Roughness and Micropitting 
Lane Winkelmann, REM Surface Engineering 

The presentation discussed typical wind turbine failure modes, and described the basics of 
micropitting on gears.  The benefits of super-finishing gears were discussed.  Super-finishing 
modifies the topography of the gears and can eliminate micropitting, increase lubricant life and 
cleanliness, and increase component life. It is relatively easy to implement.  Isotropic super-
finishing, in which directionally-oriented grinding asperity rows are eliminated, was discussed in 
detail.  Isotropic super-finishing can reduce the mean roughness value by an order of magnitude 
while maintaining the overall component geometry.  Supporting validation work and the results 
from micropitting tests through standard methods for Forschungsstelle für Zahnräder und 
Getriebebau (FZG) Brief Test of Grey Staining (BTGS) was shown.  The current status of 
implementation of isotropic super-finishing was discussed. 
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Lubricant Fundamentals 
Fundamentals of Lubrication Gear Oil Formulation 
Jon Leather, Castrol Industrial 

The presentation discussed a systematic approach to gear oil formulation and development, 
starting with the fundamentals of gear oils and their application in wind turbines.  There are 
industrial and wind industry requirements for gear oils.  The composition, effects and side-
effects of gear oils and their components is a balancing act when formulating the oils.  An 
example project was discussed that demonstrated the basic process of building a new product.  
Once a prototype is developed, field trials occur through the final development stages. 

The challenges facing wind turbine gear oil formulation are manifested by the requirements for 
wind turbine operation: 

• Long oil life: +3 to 5 year minimum 

• Use of anti-scuff/antiwear additives with high load carrying capacity 

o Wear performance should remain constant as the oil ages 

o Micropitting protection 

• Oil cleanliness: 16/14/11 for new oil 18/16/13 used 

• Wide temperature range 

o Cold startup 

o High operating temperatures 

• Oxidation stability 

o Resistance to sludging 

o No effect on the service intervals of filters 

• Stability with water and condensation: Rust and corrosion protection 

 

Other requirements by gearbox and wind turbine manufacturers include:  

• Deutsches Institut für Normung (DIN)-minimum requirements 

• Compatibility with elastomers and paints 

o Static and dynamic tests 

o Long-term tests with a duration of at least 1000 hrs 

• Foam tests 

o Mixed with anti-corrosion oil 

o After filtration 

• FZG-tests 



 

9 
 

o Micropitting tests 

o Increased loads and/or tests without running in 

• Tests of antifriction bearings: 
o Corrosion protection, especially salt water 

o Formation of residues under the influence of water and temperature 

o Wear tests on an FE 8 test-rig 

o Endurance tests on test benches for antifriction bearings 
• Further requirements 

o Filterability 

o Good cleanliness class and automatic countability (ISO 4406 Particle Count) 

 
Selecting Synthetic Gear Oil 
Dennis A. Lauer, Klüber Lubrication 

When selecting synthetic gear oil, the maximum performance level that the gear oil is able to 
meet should be compared to the actual performance of the gear oil.  The maximum performance 
of gear oils, with advanced additive packages, and the impact of the base oil on performance 
parameters were summarized.  Over the life cycle of the turbine, the highest performance oil 
proves to be the most cost effective, though it commands the highest price. 

The requirements for wind turbine gear oil are higher than the industrial gear oil requirements 
specified by DIN 51517-3.  Specifically, wind turbine gear oil is expected to meet the following 
requirements: 

• High scuffing and micropitting load-carrying capacity 

• Low friction behavior 

• No negative influence on wear behavior and life time of rolling bearings 

• High oxidation stability 

• High upper operating temperature 

• No residue formation 

• No negative influence on radial shaft seals. 

 
When selecting wind turbine gear oil, the following performance characteristics should be 
considered: 

• Scuffing load-carrying capacity greater than LS 13 

• Resistance to micropitting greater than, or equal to, LS 10 

• Pitting load-carrying capacity 
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• Bearing load-carrying capacity 

o Suitable for rolling bearing lubrication FAG FE8 test 

o Maximum roller wear <= 10 mg, maximum cage wear <= 100 mg 

• Foam test 

• Elastomer compatibility 

o Static elastomer compatibility, according to DIN ISO 1817 

o Dynamic elastomer compatibility, according to DIN 3761 

• Oil change intervals 

• Viscosity-temperature behavior 

• Efficiency, oil temperature, wear, and wear rate 

• Friction behavior. 

 
Wind Turbine Grease Lubrication 
Henri Braun, ExxonMobil 

Lubricating greases face a demanding environment in wind turbine applications.  Wide operating 
temperature ranges, shifting wind forces and directions, high torques and loads, water 
contamination, and boundary lubrication conditions are the key performance challenges. These 
are exacerbated by the operator's desire to minimize the number of greases used and to maximize 
re-greasing intervals.  Thus, developing lubricating greases for wind turbines is a costly and 
complex undertaking that must consider numerous, often conflicting, targets.  Synthetic-base oils 
can help meet the lubrication needs of main pitch and yaw bearings with one grease, and help 
reduce traction and extend grease life.  Still, achieving optimum performance requires a carefully 
balanced formulation of base oil, thickener, and additives.  Finally, extensive laboratory, bench, 
and field testing is necessary to demonstrate overall performance. 

The challenges facing wind turbine grease formulation are demonstrated by various and 
conflicting requirements across different turbine components as follows: 

• Main bearing 

o Fluctuating winds introduce thrust loads 

o High load and slow speed make EHL conditions difficult to achieve; suggest the 
use of high viscosity base oils (ISO VG 460) 

• Pitch bearing 

o High torques and bending moments during rotation 

o Bi-directional oscillation (partial rotation) results in boundary lubrication 
conditions 

o Vibration leads to fretting wear and corrosion  
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• Yaw bearing 

o High thrust loads from weight of nacelle 

o Bi-directional oscillation (partial rotation) results in boundary lubrication 
conditions 

o Vibration leads to fretting wear and corrosion 

• Yaw gears 

o Vertical tooth flanks require excellent adhesion 

o Exposure to environment necessitates excellent corrosion protection 

• Generator bearing 

o Moderate to high speed rotation 

o Lower base oil viscosity than pitch, yaw, and main bearings (ISO VG 100) 

o NLGI 2 or firmer, with good oil release control 

 
To address these challenges, synthetic oil greases are advantageous over mineral oil products, 
providing: 

• Wider operating temperature range, lower viscosity at low temperatures and higher 
viscosity at high temperatures 

• Lower traction, reducing heat generation and energy losses 

• Longer grease life 

 
As is the case for wind turbine gear oil development, the development of wind turbine grease 
also is a costly and complex undertaking that requires: 

• Consideration of numerous, often conflicting, targets 

• Extensive laboratory, bench and field testing to demonstrate performance 

 
Two attempts to address these challenges include:  

• Main bearing protection through a balance of EHL and additive chemistry 

• Pitch and yaw bearing protection through targeted additives and controlled bleed 

 
Wind Turbine Tribological Damage 
 
NREL Gearbox Reliability Collaborative Failure Database Project 
Mark McDade, NREL 

The four parts of the NREL Gearbox Reliability Collaborative were explained and include 
modeling and analysis, testing, condition monitoring, and the failure database.  The GRC Failure 
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Database was presented in detail, including its value to industry and individual participants and 
demonstrating the actual software used to input information resulting from gearbox overhauls.  
The database houses information collected from gearbox rebuilds, such as: 

• Background data from in-field operation 

• Failure modes from tear-down inspection 

• Existing data from records. 

The goal of the database is to share “sanitized data” within the participating group and to identify 
the root cause of failures and prescribe remedies.  The database software provides a structured 
data collection system with a navigation tree that is visually-oriented. It offers wireless image 
transfer from the camera to the software.  To expedite data input, the database software includes 
embedded models of each gearbox, a failure atlas with classifications of failure modes, and 
interactive help.  Reports are automatically generated that identify: 

• The failure location 

• Failure images, with comments from the inspector 

• Failure mode identification and description. 

 
Bearing and Gear Failure Modes Seen in Wind Turbines 
Robert Errichello, GEARTECH 

Wind turbine bearings and gears have a long history of failure modes such as Hertzian fatigue, 
consisting of macropitting, micropitting, or subcase fatigue, and by scuffing or bending fatigue.  
Current failures of rolling-element bearings in wind turbine gearboxes are manifested as axial 
cracks in the inner rings. Current failures in gears are manifested as bending fatigue that 
originate from non-metallic inclusions.  Examples of bearing and gear failures were presented to 
demonstrate the morphology of the various failure modes.  Current failure modes that are 
prevalent in wind turbine gearboxes include: 

• Bending fatigue, originating from non-metallic inclusions 

• Micropitting, due to rough surfaces or lubricants with inadequate micropitting resistance 

• Subcase fatigue, due to grind temper or inadequate case depth 

• Adhesion or abrasion, due to contaminated lubricants 

• Fretting corrosion during parking 

• Case/core separation, due to excessive case depth at tips of teeth 

• Axial cracks in bearing inner rings.  
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Microstructural Alterations in Hertzian Fatigue 
Robert Errichello, GEARTECH 

Microstructural alterations in Hertzian fatigue have been studied for decades and are a key 
indicator for the fatigue mechanism in rolling-element bearings and gears for wind turbines.  
Several features were described that characterize microstructural alterations such as: butterflies, 
dark-etching areas (DEA), white-etching areas (WEA), flat white bands, and steep white bands.  
Microstructural alterations were shown to be linked to Hertzian stress and the number of load 
cycles. 

Current failures of rolling-element bearings in wind turbine gearboxes are manifested as axial 
cracks in the inner rings.  The white-etching areas associated with this failure mode are irregular 
and are termed irregular white-etching areas (IrWEAs) or white-etching cracks (WECs).  Several 
theories have been proposed for the root cause of IrWEAs, WECs, and axial cracks.  However, 
none of the theories have been proven, and it is an active field of research. 
 

• It is probable that IrWEAs and WECs have identical driving mechanisms that manifest as 
different alterations in bearing microstructure depending on the specific metallurgy of the 
material's alloy and processing. 

• How IrWEAs and WECs develop and progress is not understood yet.  Both have been 
characterized as brittle fracture modes that generate cleavage fractures.  It might be a 
single-step or a multiple-step process that generates cleavage cracks and white-etching 
bands. 

• It is not understood how coatings, such as black oxide, help to prevent axial cracks.  They 
might reduce traction stresses, damp vibrations, or prevent diffusion of hydrogen.  On the 
other hand, the temperatures used to coat the components might beneficially alter the 
bearing metallurgy. 

 
Microstructural Alterations in Rolling Contact 
Andy Olver, Imperial College, UK 

Transformations, at inclusions and on crack faces, are indistinguishable from those occurring at 
the surface in simple rubbing experiments (e.g., fretting).  Crack faces in rolling contact are 
subject to fretting displacements and high pressure.  Surface cracks are typically associated with 
local plastic deformation due to reduced plastic constraint.  The resultant residual stresses control 
the direction of small surface cracks.  Microstructural alterations in Hertzian contacts have the 
following features: 

• Transformations at inclusions and on crack faces are indistinguishable from those 
occurring at the surface in simple rubbing experiments (e.g., fretting) 

• The alterations are nano-grained ferrite (e.g., cell ferrite) 

• Crack faces in rolling contact are subject to fretting displacements and high pressure 

• Surface cracks are typically associated with local plastic deformation, due to reduced 
plastic constraint 
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• Resultant residual stresses control the direction of small surface cracks. 
 

Classic Bearing Damage Modes 
Ryan Evans, The Timken Company 

Rolling element bearing damage in the field is attributable to either material fatigue, or wear, in 
most applications.  Bearing life prediction tools estimate the statistical likelihood of contact 
surface spalling due to material fatigue, given a set of assumptions about the bearing operating 
conditions.  However, even if a bearing is designed, manufactured, and specified for an 
application, premature damage and wear may occur due to contamination, inadequate 
lubrication, and/or misuse.  Classic examples of these damage modes and their causes were 
presented for steel rolling element bearings.  In addition, transmission electron microscopy 
characterization of subsurface microstructural alterations, called “white etch areas,” from wind 
turbine gearbox bearings was discussed.  Classic failure modes include: 

• Macropitting (spalling) 

o Inclusion origin 

o Point Surface Origin (PSO) 

o Geometric Stress Concentration (GSC) 

• Micropitting (peeling) 

• Wear or other damage 

o Abrasive wear 

o Debris denting 

o Etching/corrosion 

o False Brinelling/Fretting corrosion 

o True Brinelling 

o Heat discoloration 

o Scuffing (smearing) 

o Electric discharge 

Investigations are underway to better understand WEA microstructural alterations and their 
causes. 

 
Root Cause Hypotheses 
The Mechanism of White Structure Flaking in Rolling Bearings  
Hideyuki Uyama, NSK, Japan 

Microstructural change is observed on cross sections of the rolling bearings used for wind 
turbine gearboxes.  This microstructural change is the same phenomena, called a "white 
structure."  NSK has experienced premature flaking, due to white structures in bearings, in 
automotive electrical accessories, as an example.  The main cause of white structures is due to 
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hydrogen generated by decomposition of the lubricant.  Formation mechanisms of white 
structures related to hydrogen embrittlement, and accelerating factors of hydrogen generation, 
were reported.  Our research shows the following: 

• Bearing failures in wind turbine gearboxes may be classified as white structure flaking 

• White structure flaking is induced by hydrogen that diffuses into the bearing's steel 

• White structures are caused by localized, microstructural changes.  The presence of white 
structures indicates that hydrogen-induced, localized plastic deformation is present in 
rolling contact fatigue 

• The type of lubricant, slip, static electricity, and material influence white structure 
flaking. 

It is hoped that our experience with automotive bearings will help solve wind turbine bearing 
failures. 

 
The Bearing Axial Crack Root Cause Hypothesis of Frictional Surface Crack 
Initiation and Corrosion Fatigue-Driven Crack Growth 
Jürgen Gegner, SKF, Germany 

Results of failure analysis and research were presented.  Some medium and large size bearings, 
such as those used in wind turbine gearboxes, suffer from premature failures due to axial 
raceway cracks.  Root cause hypotheses from the literature were reviewed.  Surface initiation, 
and the subsequent chemically-assisted propagation of the cracks, occurs as brittle spontaneous 
fracture and corrosion fatigue, respectively.  Local microstructural changes result from hydrogen 
impacts due to aging reactions of the lubricant at the tip and the rubbing faces of the advancing 
crack.  Material response in the form of cleavage-like surface cracking suggests there are 
causative tangential tensile stresses.  Weaker areas with inhomogeneities and edge-zone 
embrittlement were considered.  The tensile stresses are caused by sliding friction in the rolling 
contact, induced by vibrations, for example.  A tribological model was presented.  The tangential 
tensile stresses are estimated to be high enough for cracking. A combination of cold working, 
because it generates compressive residual stresses, together with black oxidizing and final low-
temperature reheating, is proposed as an effective countermeasure.  Our conclusions are: 

• Axial cracks initiate from the surface by brittle, spontaneous, cleavage-like fractures 

• The root cause of the axial cracks is tangential tensile stress, due to high local sliding 
friction 

• Surface cracks propagate by corrosion fatigue cracking (CFC) 

• CFC is caused by lubricant decomposition at the crack tips and on the rubbing crack 
faces. 

 
  



 

16 
 

Hammering Wear Impact Fatigue Hypothesis  
Johan Luyckx, Hansen Transmissions, Belgium 

The main features and status of the WEC/IrWEA failure mode in roller bearings applied in wind 
gear units were described.  The material observations in WEC/IrWEA were shown and a detailed 
interpretation concludes that different material damage patterns are generated by an impact load 
system.  The updated Hansen wind experience regarding WEC/IrWEA failures was presented.  It 
detailed bearing variants that have improvement potential.  The material research performed on 
the different drivers identified in the Hansen wind experience were discussed and interpreted. 
These resulted in the formulation of a root cause hypothesis.  There is an observed correlation 
between WEC/IrWEA failed raceways and the hammered (flattened) appearance of the raceway.  
The hypothesis is that the impact load system is caused by a roller contact on a flattened wear 
particle from the raceway, henceforth called “hammering wear impact.”  This impact load 
system generates subsurface material damage, which initiates a bearing fatigue failure process.  
Further research work is proposed and a summary of all potential solutions and parameters was 
presented with the following conclusions: 

• Axial cracks are caused by the impact load system 

• IrWEAs and WECs are consequences of the impact load system 

• Countermeasures include: 

o Raceway surface treatment, such as reduced roughness, black oxide, hot 
assembly, strain hardening, hard coatings 

o Case carburizing  

 
Influence on Bearing Life by New Material Phenomena 
Walter Holweger, Schaeffler 

Classical failure modes in bearings appear as a subsurface dark etching area, followed by 
strictly-oriented low and high angle white bands (LAB/HAB).  The appearance of such features 
is a function of pressure and is expressed in the Woehler line.  In contrast to this classical 
fatigue, irregular white etching bands indicate a new fatigue process not ruled by the classical 
theorems (the Woehler Line).  A majority of failures occur in wind mill applications, in the 
high speed shaft at low nominal contact pressure. 

Detailed forensic investigations show the degradation of the matrix and the matrix carbides in a 
nanometer scale.  Downsizing implies the presence of a severe plastic deformation mode, 
normally found in high pressure torsion experiments.  Neither severe plastic deformation nor 
high pressure torsion is found in the real application. 

Test rigs at Schaeffler technologies prove the occurrence of irregular white etching with 
respect to loading and materials.  Those results show that IrWEAs occur due to multiple 
influences, e.g., vibrations, straying currents, and the chemistry of lubricants and 
preservatives.  Recent results prove lubricants and preservatives to be of major importance, 
while vibrations, straying currents, and mechanical loading are of minor importance. 
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A stringent model of irregular white etching area requires a multiple descriptor model. The 
hierarchy of root causes is: 

• Nature of EHL lubrication (preservatives, additives) 

• Nature of the surfaces (dark oxide, hot assembly, passivation) 

• Nature of the material (type of heat treatment, microstructure, interstitials) 

• Nature of the loading (vibration, slip, electric discharge) 

 
R&D Activities 
Surface Treatment and Nano Lubricant Bearings 
Ali Erdemir, ANL 

Leveraging over 25 years of tribology experience (specifically, surface engineering, advanced 
lubricants, materials and coatings, and surface analytical characterization), the Argonne tribology 
group has been active in the wind turbine area for several years.  The objective of the current 
work has been to develop, test, and implement innovative surface engineering and nano-
lubrication technologies that can increase the reliability of wind turbine drivetrain components; 
primarily through an ultra-fast boriding process, lubricant- derived, diamond-like carbon (DLC) 
coatings, and nano-boron lubrication technology. 

The ultra-fast boriding process was developed to enhance the hardness of gear and bearing 
surfaces, by more than a factor of two, compared to standard carburizing (1800 HK to 600 HK).  
This was achieved through an advanced electrochemical process that increases efficiency by 
80% compared to current boriding, making it economically practical for wind applications.  The 
sliding wear performance of the borided surface is shown to be improved by an order of 
magnitude compared to that of standard carburized gear steels. 

The lubricant-derived DLC technology introduces a paradigm shift in lubricant/material 
technologies.  The concept is to design coatings that catalyze a reaction with base lubricants to 
form a protective boundary film.  The advantage of this technique is that it can generate 
boundary films from oils that do not contain organometallic additives.  This simplifies the 
lubricant formulation and removes additives, which in some cases can cause early failure in 
some wind applications.  The results presented showed scuffing performance of these designer 
coatings that exceeded the limits of the test rig, Surface analysis showed evidence of diamond-
like, sp3 bonding in the boundary film. 

Finally, the nano-particle-based lubricant additives have been under development for several 
years to enhance performance compared to traditional additive packages.  Nano-particle 
additives, mostly based on boron or carbon, are engineered to interact with the contacting surface 
to produce a low friction/protective boundary film.  Results demonstrate the friction reduction 
qualities and surface analysis shows evidence of the tribofilm.  Micro-pitting performance also 
was significantly enhanced with nano-boron additives compared to commercially-formulated 
oils. In the current test, micro-pitting was nearly eliminated.   
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The conclusion is that ultra-fast surface boriding can enhance surface hardness and reduce wear 
of certain components. More development is needed to optimize the processing for specific drive 
train components: 

• Lubricant-derived DLC coating technology is an area of development that can reduce the 
need for traditional lubricant additives 

• Nano-particle-based additives demonstrate certain advantages on the bench-top scale that 
need verification at the system level. 

 
Novel Macromolecular Nano Lubricant Oils and Greases 
Ajay P. Malshe, NanoMech Inc. 

Successful investigations of advanced nano-lubricant additives that favorably impact robust 
boundary tribofilm formation to reduce wear and friction in wind turbine components, such as 
gearboxes, was presented.  These additives are designed as surface-stabilized nanoscale, 
materials-based macromolecules that are “dropped-in” from off-the-shelf formulated oils and 
grease for the purpose of advancing effectiveness.  They have been prepared for use in 
performance testing to closely simulate the conditions faced by oil lubricants and greases in wind 
turbines.  Specimens of the most widely used materials in wind turbine gearboxes have been 
prepared for evaluation in several tribological tests to assess the performance of the developed 
nano-lubricants.  These tests were used to demonstrate successful and consistent performance, 
meeting the demands for lubrication of wind turbine gearboxes. 

 
Update on the Development of a Full Life Wind Turbine Gearbox Lubricating Fluid 
Manfred Jungk, Dow Corning 

The goal of this project is to prove and implement an alternative chemistry for the lubricating 
fluid used for wind turbine gearboxes.  Due to the chemical robustness of the altered lubricating 
fluid, the expectation is that the need for condition monitoring and/or maintenance of the 
gearbox is reduced significantly and could potentially be eliminated.  The fluid technology to be 
expanded into gearbox lubrication has been successfully used in "lube for life" specialty 
applications.  In this study, bench testing like FZG gear and FE 8 bearing have been carried out 
to document the suitability of the fluid compared to existing gearbox oil specifications.  The 
benefits, such as superior viscosity temperature profile with viscosity indices above 300, and 
material compatibility have been demonstrated.  The target viscosity's superior viscosity 
temperature profile is lower than that currently used gearbox oils and results in friction reduction 
and reduced wear of the internal gears and components.  Full-scale wind turbine gearbox trial 
results indicate improved power output efficiency.  In addition to the increase of efficiency, the 
other potential impact is increased operating reliability through reduction in the downtime by 
eliminating planned and unplanned gear oil changes. 
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Modeling Tribological Contacts for Wind Turbine Gearbox Component Life 
Prediction 
Nathan Bolander, Sentient Corporation 

Modeling of lubrication and contacting surfaces can provide more accurate and flexible options 
for determining the life of wind turbine components.  A few techniques that are being developed 
to improve the understanding of surface contact fatigue were presented.  First, a brief 
introduction to EHL/mixed-EHL modeling was presented, including discussion of the governing 
equations and discretization techniques.  The utility of a mixed-EHL approach, based on 
deterministic consideration of surface roughness profiles, was emphasized.  In the next section, a 
microstructure-based approach for contact fatigue analysis was presented. The approach utilized 
detailed mixed-EHL traction profiles as inputs. Users can model the effect of a wide range of 
parameters that influence surface fatigue, such as surface roughness, material properties, and 
load variation.  The analysis resulted in a fatigue life distribution.  The final section showed a 
method by which a prognostic model for the remaining life of wind turbine components can be 
assembled from a damage progression model, a source of diagnostic information, and an 
uncertainty management model to update the architecture.  A prognostic model for bearing spall 
propagation was presented as an example application. 

Inputs for traction modeling (EHL/mixed-EHL) assume: 

• Real surfaces are rough 

• Reynolds equation governing lubrication flow in the contact zone 

• Model outputs are a time history of surface shear stress, due to lubricant flow and 
asperity interaction. 

 
In terms of fatigue damage initiation, there are several points to remember: 

• Fatigue cracks initiate in the microstructure 

• To understand fatigue, an understanding of microstructure level stresses is needed 

• Fatigue models must consider: 

o Microstructure geometry/composition 

o Residual stresses due to manufacturing 

o Surface tractions 

o Load history/non-linear damage accumulation. 

 
When developing a prognostic system, it is necessary to include three primary components: 

• A damage progression model 
• A source of diagnostic information 
• An architecture to update predictions and manage the model uncertainties. 
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Approaching Surface Fatigue Life by Integrated Contact and Lubrication 
Mechanics 
Jane Wang, Northwestern University 

Surface damage due to contact fatigue is a major threat to wind turbine transmission gears and 
bearings. Fatigue life prediction is based on interfacial mechanics, and therefore, is vital to 
design, operation monitoring, and performance/reliability improvements.  Over the years, a 
comprehensive fatigue life prediction approach has been developed for components under cyclic 
motion, based on advanced contact mechanics and mixed elastohydrodynamic lubrication (EHL) 
models.  The comprehensive approach is capable of simulating the entire transition from full-
film and mixed EHL down to boundary lubrication, or even dry contact, of real machined rough 
surfaces under severe operating conditions.  The presentation introduced the models and 
predicted gear pitting life results with comparisons to test data.  In addition, issues like material 
inclusions, defects, reinforcements, and surface treatments, such as coatings and case hardening, 
were discussed. 

Panel Discussion 
Field Observations of Tribological Damage in Wind Turbines 
Art Miller, enXco 

Four examples of wind turbine gearbox faults, discovered during end of warranty (EOW) 
inspections, were presented.  The first case demonstrated micropitting and fretting on the planet 
gear, micropitting and scuffing on the ring gear, intermediate gear and pinion, and high speed 
gear and pinion.  The second case was a gearbox with a failed non-drive end tapered roller 
bearing on one of the three planet gears.  The gearbox in the third case demonstrated a pitted 
intermediate pinion and correlating oil debris sensor data.  The gearbox in the fourth case 
showed pitting and smearing on the high speed shaft bearing.  Conclusions were that oil 
cleanliness and quality does appear to be a contributing factor and flushing out the gearboxes and 
replacing clean gear oil appears to retard the progression of wear.  Some of the gear oils seem to 
be better at controlling the foam.  Testing brands that are outside of the OEM’s list of 
recommendations are worth looking into.  Viscosity is the most important property when 
choosing a lubricant and working with higher viscosities and oil with a higher index (VI) has had 
positive results 

A Look at Wind Turbine Gearbox Oil over Time 
Bill Herguth, Herguth Laboratories, Inc. 

Examinations of seven different oils, from May 2004 to October 2011, totaling 3500 samples 
with run times from 1 to 72,649 hours used in a variety of gearbox makes, models and locations, 
were presented.  The results show that gearbox oils react in service in different ways and that 
trending the data helps in determining the end of life.  There is enough data available to plan 
future lubricant change schedules. These should be based on new algorithms using oil type, in-
service time, gearbox make and model and operating parameters.  Additive concentration and 
type do not necessarily indicate the relative wear protection or useful life 
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Damage as Seen from a Wind Turbine Gearbox Manufacturer’s Angle 
Shawn Doner, Winergy 

The wind turbine industry has cost issues related to gearbox reliability.  Solutions to the 
reliability problems are paramount.  The presentation began with an example of shallow spalling 
on the intermediate pinion that was widespread in a particular gearbox.  It was determined that 
the problem was a lubricant issue due to high water content in the oil.  The particular oil was 
sensitive to moisture, which lowered its load carrying capacity.  Water in oil is a continuing 
concern in the wind industry.  Field data is extremely important to gearbox manufacturers to 
implement knowledge in future designs for continuous improvement.  Winergy views the 
lubricant as a machinery element, an integral part of the overall design.  Winergy has completed 
FZG tests to evaluate the effectiveness of oils with 500 parts per million (ppm) water, and also 
without water in the oil.  One oil failed at load stage 5, others completed load stage 10. 

Pitch and Yaw Bearing Damage 
Les Miller, Kaydon 

Dimensional challenges regarding the size and weight of pitch and yaw bearings in modern wind 
turbines were discussed, along with the magnitude of required preload to support the blade.  Key 
issues with design and maintenance of pitch and yaw bearings were summarized.  Smooth 
rotation is a continuing challenge in the presence of heavy preload and hub flexibility.  Seal 
integrity and durability also are a continuing challenge and are important to increase resistance to 
false brinelling and fretting wear.  There is currently no accurate means to predict friction torque 
under load.  Life calculations such as L10 life are no longer required for certification, because the 
current designs are not failing due to fatigue.  An example of a hub and bearing finite element 
analysis was presented, focusing on a large amount of deflection under a high preload.  
Examples of damaged pitch and yaw bearings also were shown.  Adaptive pitch control was 
discussed with the possibility that it may resolve fretting, but it can result in fatigue issues. 
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Summary and Conclusions 

Tribology is an interdisciplinary topic, involving interactions of fluid and surface chemistry to 
the physics of solid contact.  In the wind energy community, tribological failures also are an 
inter-industry challenge because they include the bearing and gear OEM, lubricant formulator, 
turbine manufacturer, and operator.  Therefore, a coordinated R&D effort is important to 
successfully identify, solve, and implement mitigation methods. DOE has the ability to approach 
the issues across industry boundaries and to provide information sharing that benefits the 
industry as a whole.  DOE is also able to leverage the national laboratories and their unique 
capabilities and facilities, with the experience and application guidance of its industrial partners. 
 
Research 
There are several national laboratory research projects, in the past and ongoing, to address wind 
turbine tribological-related issues from varied approaches.  Currently, the NREL Gearbox 
Reliability Collaborative (GRC) is working to understand the drive train system and account for 
load conditions that result in overstressed contacting elements. The GRC is utilizing advanced 
computer simulations, dynamometer testing, and field trials.  In addition, its database effort is 
collecting information on field failures of gearboxes to elucidate the types of failures 
experienced by a range of turbine models at various locations.  Argonne National Laboratory is 
engaged in the development of advanced surface treatments and lubricant additives that can 
benefit the wind industry, and has unique bench-top testing capabilities and lab-based coating 
and lubricant fabrication equipment.  Oak Ridge National Laboratory also has unique tribology 
and metallurgy capabilities, and has been engaged in the forensic analysis of damaged wind 
turbine bearings using advanced microscopy techniques. 

Seminar Summary 
The reliability of a wind turbine is highly dependent on tribological issues associated with blade 
pitch systems, main shaft bearings, yaw systems, gearboxes, and generators.  Many of the failure 
modes that occur in these systems such as Hertzian fatigue, adhesion, abrasion, corrosion, 
fretting corrosion, polishing, electric discharge, and scuffing are influenced by tribology.  
Lubricant base oil, additives, and cleanliness must be correctly specified for each of these 
systems to achieve their design life.  Currently, bearings in blade pitch systems, main shafts, yaw 
systems, gearboxes, and generators suffer early failures despite well maintained systems, proper 
lubricant selection, and clean oil.  Furthermore, micropitting continues to attack gear teeth and 
bearing components.  False brinelling and fretting corrosion are the primary failure modes for 
blade pitch and yaw bearings, and electric discharge is often the root cause of failures of 
generator bearings.  Lubricant contamination by solid particles is a principle mechanism that 
causes debris dents on bearing components. These eventually lead to micropitting and 
macropitting.  A recent critical bearing problem manifesting as axial cracks is occurring 
primarily in the inner rings of bearings, though also sometimes in outer rings.  Currently, there 
are several controversial hypotheses for the root cause of this failure mode, but none of the 
hypotheses have been widely accepted across the entire tribology community. 
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Tribology and Lubrication Fundamentals 
As previously stated, tribology is an interdisciplinary topic, and a review of these fundamentals 
is essential for an informative understanding on how the entire wind turbine system operates.  
For wind turbine applications, there are several factors that cause extreme tribological 
conditions, which lead to early failure and system down time. These conditions are listed in the 
following section.  The fundamental tribological topics that are most relevant to wind 
applications, which were covered in this seminar, included elastohydrodynamic lubrication 
behavior and surface interaction, and lubricant fundamentals: formulation, synthetics, and 
greases. 

Elastohydrodynamic lubrication (EHL) is one characteristic to counter formal contact, like 
rolling element bearings and gear tooth contact.  In the EHL lubrication regime, the surfaces are 
separated by a thin lubricant film, which is influenced by the lubricant, surfaces and contacting 
conditions.  If the surface roughness is on the same order or greater than the generated film 
thickness, contact occurs. This is characterized as mixed lubrication, increasing the risk of 
surface damage, such as asperity scuffing and micropitting.  It can be effectively controlled by 
reducing the surface roughness through super finishing techniques. An important parameter for 
designing components that operate in the EHL regime is the traction or friction at the contact.  A 
protocol for extracting this parameter was proposed. 

Lubricants used in wind turbine applications are subjected to extreme conditions and are 
expected to maintain their performance throughout operation, and therefore, they are required to 
meet higher standards than similar lubricants for other industries.  Synthetic lubricants typically 
offer the better cost benefit throughout the life cycle.  Development of new lubricants typically 
involves a systemic approach of blending different concentrations of certain additives to balance 
the various performance characteristics: scuffing, micropitting, wear, oxidation stability, 
compatibility with elastomers and paints, foaming, and other techniques.  In addition to gear oils, 
greases are used in many bearing components: generator, main shaft, pitch, and yaw; each with 
their own design requirements. 

Factors Influencing Surface Failures 
It is clear that wind turbines offer unique environments for mechanical systems due to factors 
such as: 

• Vibration loading 

• Rapid acceleration 

• Frequent stops and starts 

• Periods of standstill during parking 

• Misalignment of gears and bearings, due to elastic deformations 

• Exposure to contamination by water and dust 

• Exposure to wide temperature variations 

• Difficult access for maintenance. 
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Because of this unique operational environment, it is important to maintain the quality of the 
lubricant by: 

• Monitoring the life cycle of the oil- like the onset of oxidation and organic species in the 
oil 

• Monitoring viscometrics, additive chemistry, contamination species (wear) and 
degradation 

• Filtering the oil.  There is no filter too small that would filter out additives; however, 
lubricant additives may absorb on the filter medium. 

 
Critical Surface Damage/Failure Modes 
Several surface damage mechanisms were identified as significant for wind turbines throughout 
the seminar, including false brinelling and fretting corrosion, mainly in blade pitch and nacelle 
yaw components, micropitting, abrasive wear, scuffing (also called smearing in bearing 
literature), axial cracking of bearing rings associated with irregular microstructural changes (also 
known as IrWEAs), Hertzian fatigue, electrical discharge damage, mainly in generator bearings, 
and surface etching/corrosion.  Without a comprehensive collection of failure data and analysis, 
it is difficult to quantify the severity and frequency of each type of failure; however, anecdotal 
accounts during the seminar highlighted certain damage modes. 

Some of the damage modes are summarized below: 

• False brinelling and fretting corrosion, as it was pointed out by Doll and others, is a 
common issue for blade pitch and yaw bearing and gear components, which only 
experience a small range of motion or structural vibration.  This condition causes 
lubricant to be squeezed out of the contact area and removes protective oxide layers. This 
results in an accelerated wear mode that forms indentations in the raceway, impeding the 
smooth operation of the positioning system.  To alleviate these issues, certain control and 
design parameters to avoid critical dithering angles are recommended, in addition to the 
use of coatings and lubricating greases with proper antiwear additives. 

• Micropitting is a wear mode that affects both gears and bearings, and is typically 
associated with tangential shear stress caused by rolling-sliding contact. In bearings, this 
is typically caused by sliding or skidding during unsteady operation.  Micropitting is 
commonly a precursor to larger surface failures such as Hertzian fatigue (also caused by 
overstressed contact, material inclusions, and other factors).  Micropitting has been and 
continues to be an issue that the wind industry has dealt with over the years and was the 
topic of a similar seminar titled “Wind Turbine Micropitting Workshop.”  The outcome 
of this report included recommendations for run-in procedures, discussion of root causes, 
and recommendations for testing and future research. In general, the major factors 
influencing micropitting include inadequate EHL film thickness, surface roughness, 
unsteady operating conditions, and antiwear lubricant additives.  The fundamental 
mechanisms that cause micropitting are still a matter of discussion and more work is 
needed in this area to fully characterize this damage mode.  The standardized testing 
method for micropitting performance is reported to be inaccurate and misleading to 
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designers, which has perpetuated this problem.  There is a critical need to reevaluate the 
standardized test method and consider different approaches. 

• Scuffing is a surface damage mode of sliding contact typically characterized by the 
severe adhesion and rapid plastic deformation. It is caused by local frictional heating at 
the surface where lubrication film thickness is inadequate.  This is generally understood 
as a lubrication short-fall, caused by inadequate design, lubricant supply, and additive 
formulation.  Mitigation methods are fairly well established in the form of EP lubricant 
additives or surface coatings.  However, this type of damage is commonly observed in 
field failures and a better understanding of the occurrences is needed.  This would 
involve an analysis of specific failures including operating conditions leading to failure 
and bearing/gear location and design. 

• Electric discharge damage can occur when faulty insulation, induction effects, or 
improper grounding allows the electric current to pass through the bearing, thereby 
damaging the bearing surfaces.  Electric discharge damage is caused by electric arc 
discharge across the oil film, between the rollers and raceways.  Electric current might 
originate from electric motors, electric clutches, instrumentation, or it might be due to the 
accumulation of static charge and subsequent discharge.  Damage might occur during 
electric welding on, or near, the gearbox, if the path to ground is not properly made 
around the bearings rather than through them.  Wind turbine bearings might be damaged 
by lightning strikes.  When an electrical arc occurs, it produces temperatures high enough 
to melt bearing surfaces.  Microscopically, the damage appears as small, hemispherical 
craters.  Edges of the craters are smooth and they might be surrounded by burned or fused 
metal in the form of rounded particles that were once molten.  A metallurgical section, 
taken transversely through the craters and acid etched area, might reveal austenitized and 
rehardened areas in white, bordered by tempered areas in black.  Sometimes microcracks 
are found near the craters.  Overall, damage to bearings is proportional to the number and 
size of the arcing points.  Depending on its extent, electric discharge damage might be 
destructive to bearings.  Associated microcracking might lead to subsequent Hertzian 
fatigue or bending fatigue.  If arc burns are found on bearings, all associated gears should 
be examined for similar damage.  Electric discharge damage can be prevented by 
providing adequate electrical insulation or grounding and by ensuring that proper welding 
procedures are enforced. 

o Arcing - Electric discharge damage might consist of randomly spaced discharge 
craters; this damage is designated as arcing 

o Fluting - Electric discharge damage is often periodically spaced around the raceway 
giving it a “fluted” or “washboard” appearance.  The flutes are depressions in the 
raceway transverse in the rolling direction and are separated from each other by 
lands of undamaged surface.  Fluting generally leads to high vibration and noisy 
operation. 

• Microstructural alteration (i.e., white etching area cracks) is a class of damage mode that 
can lead to axial cracking and macropitting at 1% to 20% of the L10 bearing design life 
(Gegner).  As discussed previously in this report, this is one of the more critical, and least 
understood, failure modes experienced in wind turbines.  While not unique to the wind 
industry, it is found to be much more prevalent than in other applications.  As reported, 
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there are several theories about the cause of WEA cracks including hydrogen induced 
embrittlement from lubricant decomposition (Uyama); mechanically induced, from high 
stress and slip conditions (Evans); mechanical impact loading (Luyckx); or multiple 
influencing factors, without one root cause (Holweger).  No one root cause, or 
combination of multiple root causes, has been fully established and more fundamental 
research effort is needed to address this critical issue.  Furthermore, the influence of 
materials, lubricants, and loading conditions on IrWEA cracking occurrence needs to be 
established through carefully designed test procedures, which are not yet established.  
Mitigation methods need to then be validated and optimized.  Table 2 compares the 
current hypotheses for axial cracks. 

Table 2. Comparison of Hypotheses for Axial Cracks 

Hypothesis Crack origin Failure mechanism Root cause 

NSK Subsurface Hydrogen enhanced 
localized plasticity (HELP) 

Hydrogen embrittlement, due to 
lubricant decomposition 

SKF Surface 
Brittle fracture followed by 
crack propagation due to 
corrosion fatigue cracking 

Tensile stress, due to high 
surface traction 

Hansen Subsurface Adiabatic shear bands Elastic stress waves, due to 
impact on surface asperities 

Schaeffler Subsurface Severe plastic deformation 
Complex interaction between 
lubricant, surfaces, materials, 
and loads 

 
To facilitate communication between failure investigators, the nomenclature of failure modes for 
gears and bearings should be harmonized.  Table Error! No text of specified style in document. 
recommends failure mode nomenclature and includes commonly used, but non-preferred names. 

Table 3. Recommended Failure Mode Nomenclature 

Failure mode Preferred name Non-preferred names 

Hertzian fatigue Macropitting Spalling, pitting 

Hertzian fatigue Micropitting Peeling, superficial spalling 

Scuffing Scuffing Smearing, scoring 

 
Field Failure Tracking and Analysis 
Without statistical tracking of the field failures and root cause analysis, it is difficult to have a 
comprehensive account of the critical failure modes and to quantify the impact of each failure 
type.  The NREL Gearbox Reliability Collaborative database effort is focused on facilitating this 
activity by working with wind farm owners and operators to develop the strategy to collect and 
analyze failure data.  This helps to focus research efforts, and also aids in the development of 
appropriate mitigation methods through detailed forensic analysis.  The database currently has 
collected 36 failure instances to date and expected to expand significantly in the near future. 
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Opportunities for Learning and Path Forward 
The following list of discussion points was made by presenters and seminar participants on the 
topic of lessons learned within this and other industries. 

• Comparisons with the aerospace industry should be considered for approaches to 
overcoming tribological challenges. 

• Rolling element bearings in the aerospace industry generally have much longer, lives, ten 
years or more, even though they are subjected to highly loaded conditions. 

• WEA issues are of interest to the aerospace industry as bearings reach their design life. 
• The aerospace industry has experience of solving one issue at the expense of another 

issue.  Therefore, system testing is critical for wind turbine design. 
• Moving technology through technology readiness levels (TRL) 5, 6 ,7, and 8 

(prototyping, system testing, demonstration, and application) and then to market requires 
costly testing. Coordinated and focused R&D programs are critical, including 
collaboration where applicable.  

• TRL 4 (component level lab testing) is the critical point when technologies merge 
together.  In tribology, synergies between lubricants, materials, and system design are 
identified at this point. 

• Some tests are not appropriate and may mislead the design and, thus, the choice of 
solutions.  Some testing methodologies are in house and not publicly available.  
Improvement of test methods is recommended versus the addition of more tests.  
Identification of tests that appropriately replicate the conditions leading to a certain 
failure or performance metric are necessary where there is no well excepted standardized 
test method. 

• With many MW size turbines reaching the end of warranty, operators now can test new 
oils and may be willing to share data to spur development. 

• Verification of new lubricant and surface/material technologies is critical to 
advancement. Typical verification period out-of-laboratory is 2 years of field testing for 
lubricants by some OEMs. 

• Scaling issues seem to be a root cause for many tribology related failures, along with 
rapid market development, which requires time to tease-out issues experienced in the 
field.   

• Material, coating, and lubricant development will take an industry-wide collaboration. 
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Recommendations for Future R&D Activity 

The final session of the seminar was dedicated to a discussion of R&D needs moving forward to 
address the critical tribological issues discussed throughout the seminar.  Given the breadth and 
depth of the seminar participants, the input to this process was informative. 

It is noted that the surface failures observed in wind turbines are not fundamentally different 
from failures observed in other applications; however, the severity, frequency, and uncertainty of 
root causes for many of these failures has led to a reexamination of fundamental understandings 
and testing methodologies. Throughout this seminar, specific tribological topics clearly highlight 
needed R&D efforts. General R&D approaches are listed in 4 and recommendations for 
addressing specific issues are in 5. 
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Table 4. Research Needs in Wind Turbine Tribology: General R&D Approach 

Item Subject Description 
A Failure analysis of 

components  
Collection of in-field failed components and conducting 
detailed analysis and characterization using advanced 
methods to determine the morphology of failures across 
a large population and across component types and 
varied operating conditions.  Collection of operational 
load and environmental spectra and the examination of 
components before failure also provides a better 
understanding of the factors that cause certain failures 
and how to control them. 

B Quantification and 
classification of failures 

Utilize field failure data to quantify the criticality of 
different failure modes and focus efforts.  Also requires 
an effort to standardize the description and classification 
of failure modes, especially for WEA and micropitting. 

C Test methodology 
development to mimic field 
failures 

In conjunction with item ‘A,’ develop bench-top test 
methodology that accurately recreates the surface 
damage observed in the field. Reexamine standardized 
tests and make recommendations to improve test 
standards.  Publicize test methodology. 

D Identify drivers: 
operational, 
environmental, materials, 
and others 

Isolate the individual drivers for each failure mode and 
test the acceptable limits for each driver; this can 
include water composition of lubricant, particle size of 
contamination, operation limits at the contact, and more 

E Bench-top testing of 
mitigation methods 

Utilizing test methodologies established in item ‘C;’ 
conduct screening of specific mitigation methods; such 
as coatings, lubricants, materials, and others. 

F System validation Further validate mitigation methods proven in bench-top 
testing at the system level, in dynamometer and infield 
environments. 

G Modeling and analysis Develop models used for simulating contact conditions 
and failure analysis.  Validate with experimental data 
and utilization for understanding the fundamental 
tribological interactions. 
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Table 5. Research Needs in Wind Turbine Tribology: Specific Issues 

Recommendations for Addressing Specific Issues 
H Analysis of lubricant 

additive interaction 
Typical additives may have an adverse effect in certain 
conditions.  For example, antiwear additives might 
inhibit run-in and promote micropitting; decomposition of 
additives might cause adverse effects on the bearing 
and gear material. 

I Establish a strategic 
approach to investigating 
WEA 

A standardized approach to examining WEA formation 
is needed to understand root causes and test different 
theories.  Some key items include the role of material 
microstructure, i.e. level of retained austenite in 
carburized layer; identification of mechanical drivers;  
development of test methodology to mimic mechanical 
conditions, i.e., impact loading; understanding the 
connections between mechanical drivers and material 
science; computer modeling to isolate certain 
mechanisms; role of lubricant chemistry 

J Lubricant aging studies Changes in lubricity, antiwear characteristics, and 
corrosiveness of lubricants subjected to aging in the 
field need to be better characterized.  At what point 
these changes can lead to surface damage needs to be 
better established. 

K Black oxide influence Black oxide is a common treatment method; however, it 
is uncertain how it is influencing certain failure modes 
(adversely or beneficially).  Comprehensive testing is 
needed to examine its role and recommendations for 
future application. 

L Lubricant filtering study Filtering lubricants to remove particle and water 
contamination is important to keep oil clean and 
functioning properly.  There is some question as to 
whether lubricant additives react with the filtering 
medium removing it from the oil.  Testing and 
consensus is needed. 

M Surface finish It is generally accepted that smoother surfaces are 
better for avoiding micropitting, scuffing, and wear.  
Super finishing techniques are available; however, there 
is some debate on what level of smoothness is required 
and if there is a level of “too smooth.” 

N Surface engineering Coating and other surface engineering is an ongoing 
area of research in many industries. In wind, where cost 
is critical, an evaluation of coating performance and 
benefit is needed.  This may lead to development of 
new, better performing, and cost effective coatings that 
meet wind requirements. 

O Advanced base lubricants Synthetic lubricants are becoming common in the wind 
industry.  New classes of synthetic lubricants need to be 
evaluated with respect to cost and safety. 

P Advanced lubricant 
additives 

Traditional organo-metallic EP additives have certain 
performance limitations and questionable interaction 
with certain materials, in addition to environmental 
concerns.  New additives,need to be evaluated and 
optimized for wind application. 
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