NOTICE

THIS DOCUMENT HAS BEEN REPRODUCED FROM MICROFICHE. ALTHOUGH IT IS RECOGNIZED THAT CERTAIN PORTIONS ARE ILLEGIBLE, IT IS BEING RELEASED IN THE INTEREST OF MAKING AVAILABLE AS MUCH INFORMATION AS POSSIBLE

FINAL REPORT
August 15, 1985

CONTRACT NAS8-36134

COMPLETE SURVEY :OF STARS NEAFER THAN 25 PARSECS

(MASA-CR-178544) AB OMBIASED X-RAY SAMPLIMG N•16-14206 DE STARS 日ITHIM 25 PARSECS OP TEE SOU Final zeport (lockheed Aissiles and Space Co.l 32 P BC A03/AF 101 CSCL 031 G3/89 15835

LOCKHEED MISSIIES \& SPACE CO., INC.
3251 HANOVER ST.
PALO ALTO, CA 94304

Dr. H. M. Johnson
Principal Investigator

Prewared for George C. `arshall Soace Flight Center
Marshall Space Flight Center, AL 35812

AN UNBIASED X-RAY SAMPLING OF STARE WITHIN 25 PARSECS .AE SUN

Hugh in. Johnson
Lockheed Missiies and Space Company

Received Year Month Date

- ABSTRACT

The paper reports a search of all of the Einstein Observatory. IPC and HRI fields for untargeted stars in the Woolley et al. Catalogue of the nearby stars. Optical data and IPC coordinates, flux density ${\underset{x}{x}}$, and luminosity I_{x}, or upper limits, are tabulated for 126 single or blended systems, and HRI results for a few of them. IPC luminosity functions are derived for the systems, for 193 individual stars in the systems (with ${\underset{L}{x}}$ shared equally among blended components), and for 63 individual M dwarfs. These stars have relatively large X-ray flux densities that are free of interstellar extinction, because they are nearby, but they are otherwise unbiased with respect to the X-ray properties that are found in a defined small space around the Sun.

FDML REPORT

CCNTRACT NAS8-36134

Work contimuej satifactorily following the Midterm Report on the lines outlined then. Work is now ccmplete with the result of a paper prepared for publication. A cop. 0 : the manuscript, entitled "An Unbiased X-Ray Sampling of Stars inthin 25 Parsecs of the Sun," is $a t^{+}$ached. The manuscript cover-page abstract and the page 12 conclusions provide a sumary of the findings and conclusions of the research.

Thus, the paper reports a search of all of the Finstein Observatory IPC and MRI fields for untargeted stars in the Woolley et aI. Catalogue of the nearby stars. Optical data and IPC coordirates, flux density F_{x}, and luminosity I_{x}, or upper limits, are tabulated for 126 single or blended systems, and HRI results for a few of them. IPC luminosity functions are derived for the systems, for 193 individual stars in the systems (with L_{x} shared equally among blended combonents), and for 63 individual M dwarfs. These stars have relatively large X-ray flux densities that are free of interstellar extinction, because they are nearty, but they are otherwise unbiased with respect to the X-ray properties that are found in a defined small space around the Sun.

Several tables exhibit the X-ray properties of the untargeted nearby stars in the IPC and HRI fields. The X-ray luminosities range over three orders of magnitude among detected stars. A few of them show evidence of variability. Luminosity functions include stars with less than 3-sigma upper limits on L by resort to a special algorithm. These luminosity functions peak at the lowest detectable L_{x}. Young-disk dwerf N stars occupy a range of higher \mathcal{L} than old-disk dwarf M stars, with an overlap of ranges. A few stars ${ }^{-1}$ with upper-limit $\underset{\sim}{L}$ below the lowest detectable L are old-disk, and the Einstein Observatory was unable to detect siturs near the faint end of the luminosity range unless they were within very few parsecs. Thus the distribution of stellar \mathcal{L}_{x} below about 3×10^{26} ergs s^{-1} remains to be found in a future observational prograrl.

No other publication is planned from this contract, but the P.I. draws attention to a reference in the manuscript to D. I. Harris and H. M. Johnson, "High-Resolution X-Ray Observations of Nearby Binery. Eystems: Flaring and Evidence for Unseen Companions," in Astrophys. J., 249, 640, 1985, where HRI observations of four stars were presented in such detall as to justify the omission of further discussion of them in this manuscript.

$$
-1
$$

AN UNBIASED X-RAY SAMPLING OF STARE WITHIN 25 PARSECS OF THE SUN

Hugh M. Johnson
Lockheed Kissiles and Space Company
Received Year Month Date

ABSTRACT

The paper reports a search of all of the Einstein Observatory. IPC and HRI fields for untargeted stars in the Woolley et al. Catalogue of the nearby stars. Optical data and IPC coordinates, flux density F_{x}, and luminosity L_{x}, or upper limits, are tabulated for 126 single or blended systems, and HRI results for a few of them. IPC luminosity functions are derived for the systens, for 193 individual stars in the systems (with \underline{I}_{x} shared equally among blended components), and for 63 individual M dwarfs. These stars have relatively large X-ray flux densities that are free of interstellar extinction, because they are nearby, but they are otherwise unbiased with respect to the X-ray properties that are found in a defined small space around the Sun.

I. INTRODUCTION

About 4000 target pointings were made with the Imaging Prosortional Counter (IPC) of the Einstein Observatory (SO) and another 800 with its High Resolution Imager (HRI) as identified in Seward and Macdcnald (1993). The nominal fields of view are, respectively, one square degree and 0.14 square degree. Many objects besides targets may be found in these areas, and some targets were not detected. Among the untargeted potential objects are stars in Woolley et al.'s (1970) Catalogue of Stars within 25 Parsecs of the Sun (WEPP in the following). Since WEPP does not. include all of the stars in Gliese's (1969) catalog, it was tracked in parallel with WEPP in the search of all EO fields. It is clearly. worth finding and discussing the untargeted Gliese/WEPP stars because, unlike selected targets, they represent an unbiased sampling of a specific volume, and they are mostly cataloged with an absolute trigonometric parallax, $\underline{\underline{D}}$, so that their X-rey flux density $\underset{\underline{x}}{ }$ (ergs $\mathrm{cm}^{-2} \mathrm{~s}^{-1}$) may be reduced to X-ray luminosity $\underline{\underline{x}}_{\mathrm{x}}=1.2 \times 10^{33}$ $\underline{p}^{-2} \underline{F}_{x}\left(\operatorname{ergs~s}{ }^{-1}\right)$. Most other untargeted stars in EO fields, on the contrary, have not been measured for \underline{p}, so that only a ratio of $\log {\underset{\sim}{x}}$ to an opticgl apparent magnitude might be given for them. This ratio is not very informative in comparison with X-ray data coupled with p.

The reprocessed production data from the Einstein Data Bank (cf. Harris and Irwin 1984) are the basis for this work. The orimary data are centroid coordinates of each detected image, and counts s^{-1} in a detector area and detector passband, corrected for background, vignetting, mirror scattering, detector spread of image, and for interruptions of exposure after start. Catalog stars must be detected to 3σ above background to be listed as IPC imaged in the Einstein Data

Bank; otherwise they are listed as upper limits. Conversion of counts s^{-1} in the IPC broadband ($0.2-3.5 \mathrm{keV}$) to ${\underset{F}{x}}^{\text {depends next }}$ on the generally unknown X-ray source spectrum. Although pulse-height channel counts for sufficiently strong IPC sources may be fitted to model spectra, such sources were not found here. A "hardness ratio," defined as the source counts in the $0.9-3.5 \mathrm{keV}$ channels less the source counts in the $0.2-0.8 \mathrm{keV}$ channels, normalized to source counts in all channels, also has too large statistical errors to be a significant spectral index for most sources here. A bimodal temperature distribution for thin plasma was suggested by the EO Solid State Spectrometer data for the only two red dwarfs observed with it (Swank and Johnson 1982), but isothermal coronae at a sirgle canonical temperature are assumed for all sources in this sampling. This is permissible for the derivation of ${\underset{x}{x}}^{\text {since }}$ it has been shown (cf. Harris and Irwin 1984) that a conversion factor of 2×10^{-11} erss $\mathrm{cm}^{-2} \mathrm{~s}^{-1}$ per IPC count s^{-1} reasonably well represents a large range of temperature around $k T=1 \mathrm{keV}$ for Raymond thermal plasma spectra (Raymond and Smith 1979). White dwarfs may be exceptions to this procedure because it is believed that they are photospheric rather than coronal sources of X-rays (Kahn et al. 1984), and may thus require different treatment. Nevertheless formal values of the upjer linits on coronal (i.e. thin-plasma) \underline{L}_{x} will be given for the white dwarfs that fall in the survey fields.

HRI results have been briefly given earlier (Johnson 1994) but with I_{x} derived according to the procedure in Cash, Charles, and Johnson (1980) for a defined plasma in cooling equilibrium. In this
paper the HRI flux dersity is converted to L_{x} in a way analogous to the IPC method but with the factor 6×10^{-11} ergs $\mathrm{cm}^{-2} \mathrm{~s}^{-1}$ per GRI count 8^{-1} in the band $0.15-4.0 \mathrm{keV}$. Among stars in HRI fields are the resolvable components of four Binaries ($G 134 \mathrm{AB}$, Gl 333AB, Gl 570 $A B$, and $G 1$ 669AB) which have been discussed in detail by Harris and Johnson (1995) so that it is unnecessary to include their HRI results here.

The frequent occurrence of binaries that are unresolvable with either the IPC or the HRI is a problem for X-ray astronong. The ratio of $\underset{\sim}{x}$ between the components is generally not known and not predictable even when several other physical parameters are well known, because I_{x} has been found over a large range among single stars that are optically classified alike (cf. Johnson 1993). This problem will be discussed in §III.

II. THE SAMPIE STARS

a) Optical Properties

EO targets are excluded from this work unless they must be considered in connection with blended binary-star images. In those cases where only one component of a binary is clearly specified as a target, the unspecified component will be included as an untargeted star in this study. It may not be certain whether the targeted component is the sole or even the dominant X-ray source in a blended image.

Both components of binaries with blended images (or potentially blended if undetected) are given in Table 1, the oọtical properties of the whole sample, so that IPC target stars in blended images are thus tabulated. The remarks column of Table 1 , otherwise reserved for optical
information, identifies such targets by T. T followed by an EO sequence number indicates that the star has been a target in another IPC observation than the one used in this sample, where it is untargeted. Most of the Table 1 data are from WEPP, with their notations, e.g. Pattached to magnitudes that are photographic rather than V, and J attached to joint magnitudes of photometrically blended binaries. The parallax and its probable error (p.e.) in the third column are from WEPP, except for improved values in Gliese and Jahreiss (1979) and for 01 323AB from van Altena (1985). One value of p+p.e. is assigned to all components of binaries and multiples. The Gl 395 (C) parallax is based on the common proper motion (c.p.m.) noted in Hoffleit and Jaschek (1982). Following WEPP, (S) stands in place of p.e. for spectroscopic parallaxes. One binary, Gl 698AB, received $p=0,033$ in Gliese and Jahreiss (1979), which removes it from the WEPP space. It is kept in the tables but is ondtted from the data that are Hiscussed in §III.

An exception to WEPP are the white dwarf data in Table 1 , from McCook and Sion (1954).

Parenthetical binary-star designations are added to the Gliese/WEPP nunbers when they are useful, e.g. lower-case (ab) indicates spectroscopic binaries, also found as $S B$ in the remarks. The number in parentheses that sometimes follows SB gives the range of velocities ($k m s^{-1}$) observed in the system, while SBI or SB2 denote single-line or double-line SB's. Finally the notation may shbw that an SB orbit (0) has been published. Visual binary separation and position angle or the semi-major axis of an oribit are noted. Some birary data from Hoffleit and Jaschek (1982), attributed to C. Worley (W) supersede WEPP, and some of their data
vary from WEPP, e.g. the respective identifications of components A and B in $F D$ 20360-1. Optical as well as physical companions are noted when X-ray blending is possible. The V sin \underline{i} measure of steller rotation in $\mathrm{km} \mathrm{s}^{-1}$ is sometimes available in Hoffleit and Jaschek (1982). Finally, the young disk (H) and old disk (OD) age classification foliows Eggen's (1969) kinematical definition, using velocity components in WEPP.

b) IPC Observations

The data are divided into detections in Table 2 and upper iinits in Table 3. Upper limits on ${\underset{F}{x}}^{x}$ and I_{x} are 3σ, computed by the $E 0$ LOCAL DETECT procedure in the broad band. The first colum of Table 2 matches the corresponding names in Table 1 but omits target stars and combines binary or multiple stars with blended images into one entry. The coordinates of the IPC broadband image are followed by the difference, X-O, between the X-ray image coordinate and the WEPP optical coordinate of a single star or, arbitrarily, the first listed component of a binary or multiple, after applying proper motion to the optical coordinate from 1950 epoch to the epoch of the beginning of the X -ray exposure. The IPC broadband F_{x} and the 1σ statistical error follow next, then the corresponding L_{x}, and the $0 . T$. epoch date. Values of L_{x} that depend on spectroscopic parallaxes are marked with a colon. A mean $\langle p\rangle=$ 00046 is adopted for the blend of WEPP $9124,5,7$ in an image, for their L_{x}.

Some stars have a detected inage at one epoch but an upper limit at another, so that they enter both Table 2 and Table 3, respectively. Analysis for the probability that a star is secularly constant in X-ray emission during a given observation, typically $\sim 2 \times 10^{3}$ s of effective
exposure, indicates pessible variability by alue for the probability of leas then 0.01 in 014901 B on 2980 vune 30 , WEPP 9550 AB on 2981 January $12, \therefore$ ad ol $669 A B$ on 1979 March 27. For the latter see Harris and Johnson (2985), All $)^{*}$ tie designated optical vamables in Table 1 are flare stars, except WEPP 9550A (ab) which is an RS CVn epectroscopic binery, TZ CrB. When TZ C.B was the target in the 1979 January 28 observation the joint \underline{L}_{x} wit: WEFF 9550 was double the joint \underline{L}_{x} on 1981 January 20, but the'earlier epoch does not reveal poseible variahility in the atandard analysis despite the higher ${\underset{\sim}{x}}$. Five of the stars in Table 2 had too few counts to accomplish the standard analysis for variability.

Variability over periods longer than the time devoted to one epoch, defl ned as one EO sequence number, may be shown by comparing the data for stars observed at more than one epoch. The reault is that ${\underset{X}{x}}$ is constant within errors at the two epochs of WEPP 9537 and WEPP 9584ABC, but a variation of $\underset{-x}{ }$ in $G 1$ 659AB is more likely. The upper linits of F_{x} for those stars that are also detected at another epoch are generally greater than the F_{x} at detection, except for Gl 687 (ab), which had too few counts in the detection to confirm variability.
c) FRI Observations

Table 4 presents the untargeted data, with the omissions noted in § I. Unike IPC data the HRI upper limits are estimated from the F_{x} value of the weale st source detect'ed. G1 216 A is the only HRI star without an IPC counterpart in Tables 2 or 3. The standard analysis for variability in the images of $G 1216 A$ and $G 1216 B$ formally resulted in a nil probability of constant $\underset{-x}{ }$. They are not optical variables,
and the X-ray behavior is undoubtediy related to the extension of the 8479 s of not time in the processed inages from a start on $\mathbf{1 9 8 0}$ March 17 to an end on 1981 February 24. $01216 C$ - VBI 18, unfortunately, outside the HRI field of view.
III. IPC CENSUS AND LUNLNOSITY FUNCTIOHS

Counting only the untargeted stare in Table 1 that contribute to the detections of Table 2 or the upper linits of Table 3, but counting known individual components of untargeted visual or spectroscopic bimpies in blends, one finds seven A, eight $F, 27 \mathrm{G}, 30 \mathrm{~K}$, and 63 M dwarfs (whether prefixed dor classified in the MK system), as woll as Iffeen F, O, or K atars without any Iuminosity label. 111 M stars without any luninosity $i n b e l$ have been considered as dwaris. In addition there are three white dwaris and 36 unclassified stars. The latter hare escaped classification because of faintness or membership In spectroscopic binsies. Finally, four A, F, or 0 stars of lumdnosity class III or IV make a total of 193 known stars. This is 8.4% of the 2294 known stars counted individualiy in WEPP. The WEPP stars in the volune 25 pc in radius are, in turn, only amall percent of the number expected from an extrapolation of the density in volunes of smaller radii where the fainter ones are more completely counted (cf. Gliese 1931). Many of the unidentified stars within ang given distance may have been detected either optically or with the IPC, but they cannot be tabulated for lack of their parallaxes.

One of the incompletely solved problems of classical astronomy is the deternanation of the empirical luminosity function in the solar neighborhood, or the local population density of stars as function of absolute magnitude. In order to provide an analogous general

Iuminosity function of $\log _{\mathrm{L}} \mathrm{x}$ an unbiased sample such as the present une of WEPP stars in untergeted IPC fields is an essential starting point. This leaves open the question of whether an unbiased sample of WEPP stars is also an unblased sample of X-ray sources within 25 pe of the Sun. Nevertheless it is clear that a luminosity function instead composed of targeted stars might be spectaculariy biased toward "interesting" types. The unbiased luminosity function should show the onset and shape of the bright end under defined conditions, but underpopulation must progressively cheracteriee the faint end. This 18 evident because the 3σ upper $11 m$ de on 90% of the IPC-undetected WEPP atars of Table 3 are produced with less than 3×10^{-2} count s-1, $s 0$ thet stellar y_{x} of 4.5×10^{28} ergs 8^{-1} will usually be detected to
 The threshold needed for 3σ depends on background, source position in field, and other factors. In order to use the avilable sample most fully, the upper limits on $I x$ in Table 3 will be included in the lund nosity function by the method of Arni et al. (1980), which will partially correct the selection effect against weak X-ray sources.

Further selection effects are enbedded in the data. The first one is the unimown share of total \underline{I}_{-x} among $n>1$ components of blended IPC images. The extreme alternatives are to give the total I_{x} to one of the components, or to give $\underline{n}^{-1} \underline{\xi}_{x}$ to each component. Let us assume that \underline{n} is not grester than know from the optical information about apperently individual stars ($\underline{n}=1$) or systems ($\underline{n}>1$), and assisn $\underline{\underline{x}}$ to single stars and $\underline{n}^{-1} \underline{L}_{x}$ to each component in physical systems. This excludes optical companions that are not physical components.

Finally, asy star observed more than once with different vilues of \underline{L}_{x}, or upper 1 imits on ${\underset{L}{x}}$, is anaigned the minimus value in the range on the asoumption thet a quiescent state of L_{x} is longer lasting and more typical than flarine or other active periods.

Table 5 presents a general luninosity function for the IPC data according to the given precepts. The first colum lists factor of 2 bins of \underline{L}_{x} for the number of ditected stars in tre econd colum. Ondetected atars in the third colum are binned so thet each upper limit on \underline{L}_{-x} is lese than the geovetrical mean (central vilue) of the adjacent higher bin, at in Avil et al. (1980). The undetected atars are rediatributed in the fourth colum, according to the likelihood function formulated by Avai et al. (1990), and are added to the detected stars to make the total effective number of atars in each bin of the last colum. The three stars of lowest upper linits on \underline{L}_{x} cannot be assigned to the last three bins aince no stars were detected in them. The luminosity function shows that the relative number of nearby stars per equal step of $108 \underset{\mathcal{L}_{x}}{ }$ increases as \underline{f}_{x} decreases to about 3×10^{26} ergs s^{-1}, but the peak may rafleot oniy a 21 mitation on the power of the EO to detect less lundnous sources in the WEPP sample.

Another lundnosity function my be derived for the WEPP eystems. This uses the blended \underline{L}_{x} of binaries and multiples in the same way as the ${\underset{\sim}{x}}^{x}$ of single stars, but excludes all systems that contain any targeted combonents. The lumanosity function of systems foregoes the optic̣al knowledge of systems multiplicities and avoids arbitraminess in assuring the relative lurinosities of the components. Table 6 gives the results for the 126 systems, presented as in Table 5. The very

1urinous system at ${\underset{a}{x}}=1.3 \times 10^{30}$ ergs s^{-1} is the RS CVn system TZ CrB which was once targeted but also once fell in an IPC field that had targeted an extragalactic radio source. As combared with the general luminosity function in Table 5, the luninosity function of WEPP systems has two peaks rather than one, but the more populous peak is again at the lower $\mathrm{L}_{-\mathrm{x}}$. The faintest upper limits cannot be added into effective numbers in any bins below this peak.

A luminosity function for just M dwarfs follows the precepts for the general luminosity function. Several stars that are spectroscopically unclassified in Täble 1 ray $b \in \mathbb{M}$ dwarfs or white dwarfs according to M_{v}. They are excluded from the present luminosity function. All 23 detected M dwarfs are classifiable as ID or OD , but 12 of the 40 M dwarfs left undetected as upper limits on \underline{L}_{x} lack some of the kinematical data that are required for the age classification. In Table 7 the data for detections are subdivided into $I D$ or $O D$ stars, but the upper limits are not so subdivided. Table 7 shows that the seven most luminous detected M dwarfs are $Y D$, while the six least luminous are equally divided between ID and $0 D$. The three M dwarfs with uoper limits of $L_{x} \leqslant 3.4 \times 10^{26}$ erge s^{-1} (namely G1 283B, G1 666B, and G1 699 = Barnard's star) are also $O D$ stars. The results clearly show in an unbiased way that joung-disk M dwarfs tend to be more luminous X-ray sources than old-disk M cwarfs are, but with an overlap in the range $2.5 \times 10^{26}<\mathrm{L}_{\mathrm{x}}<1.6 \mathrm{x}$ 10^{28} eres s^{-1}. The effective number of M dwarfs relative to the effective nurber of all stars per bin in the general luminosity function.fluctuates from 17% to 58%, but the percentage shows little trend through a range of 10^{3} in \underline{L}_{x}.
IV. CONCLUSIORS

Several tables exhibit the X-ray properties of the untargeted nearby stars in IPC and HRI fields of the EO. The biraries and multiples of 126 pystems are usually blended in X-ray images but, when that is $s 0$, they have been optically analyzed to make a total of 193 individual stars of a wide variety. The X-ray luminosities of detacted stars range over three orders of magnitude. A few of them show evidence of variability. Iuminosity functions of sys tems, of all individual stars; and of the M dwarfs are presented, including sters with less than 3σ upper limits on I_{x} by resort to a special algorithm. These luminosity functions peak at the lowest detectable $\underline{L}_{\mathrm{x}}$. DD dwarf M stars occupy a range of higher ${\underset{-x}{x}}$ than $O D$ dwarf N stars, with an overlap of ranges. A few sters with upper-limit I_{x} below the lowest detectable $\boldsymbol{I}_{\mathrm{x}}$ are old-disk, and the EO was unable to detect stars near the faint end of the luminosity range unless they were within very few parsecs. Thus the distribution of stellar I_{x} below $\sim 3 \times 10^{26}$ ergs s $^{-1}$ remains to be found in a future observational program.

This work has been done as an Einstein Guest Investigator program under NASA contract NAS8-36134. I thank D. E. Harris for programming the search for all of the Einstein Data Bank fields that contain WEPP stars, and Sherene Arem and F. D. Seward for reprocessing these fields in a timely way. W. van Altena checked a list of the systems that lacked trigonometric parallaxes in $197 n$ and confirmed that only Gl 323 AB has sirce then been measured for \underline{p}.
table 1
Optical Properties of the IPC and HRI Samples of Stars

Gliese／	Other	p＋p．e．Spectral			Age		
WEPP	Name	（0：001）	Type	v	M_{V}	Group	Remarks
5	ADS 69A	69 ± 7	KO V	6.14	5.33	YD	CaIlem，B，C，D opt．？，sep．＞153＂
9006	LTT 10091	45士12	\pm	13．8P	14．2P	．．．	NLTT color class
28	HD 3765	72 ± 7	K2 V	7.35	6.64	OD	CaIIem
33	HD 4628	143 ± 4	K2 V	5.75	6.54	OD	T5433，WAB 181：2 opt．？
35	WD 0046＋051	239 ± 1	DZ7	12.41	14.30	OD	T861
38	Wolf 33	55 ± 4	dM2	11.5	10.2	OD	．．．
9035	HD 5817	40 ± 10	dG2	8.4	6.4	OD	
9052A	HD 7895	46さ6	K1 V．	8.00	6.3	OD	AB 27 ＂ $8,209^{\circ}$
9052B	ADS 1057B	46 ± 6	Mо	10.73	9.0	OD	
66A（ab）	HD 10360	148 ± 7	KO V	5.82	6.67	YD	SB
66B	HD 10361	148 ± 7	KO V	5.86	6.71	YD	WAB 10＂8 orb．
70	LTT 10604	114 ± 14	dM2	10.95	11.2	OD	－．
9067A	$+3^{\circ} 275$	43 ± 12	dK5	10.6	8.8	YD	AB 15＂
90678	LTT 10690	43 ± 12	M2	12.4	10.6	YD	
9073A	HD 13043	40 ± 7－	G2 V	6.90	4.9	OD	AB 84＂，339 ${ }^{\circ}$
9073B	Ross 681	40 ± 7	．．．	10.52	8.5	OD	B－V $=+1.24$
9074	Ross 17	46 ± 12	M3	15.4 P	13．7P	－．	．．．
86	HD 13445	89 ± 7	K0 v	6.12	5.87	OD	\cdots
9087	HD 16287	44 ± 12	R0	8.10	6.3	－	－••
9092A	HD 16619	43 ± 12	dG4	7．83J	6.05	OD	$a=0.148$
9092B	ADS 2028B	43 ± 12	－	9.0	7.2	OD	－••
121	HD 18978	58土9	AS V	4.09	2.9	YD	$v \sin \mathrm{i}=144$
． 147	HD 22484	61 ± 5	F8 V	4.28	3.21	YD	T5455，v sin $i=0$
9124	Yale 781	44 ± 11	F8	10.8	9.0	．．．	．．．
9125	Yale 782	48 ± 13	G0	11.0	9.4	．．．	．．．
9126	HD 23232	51 ± 13	R2	9.2	7.7	．．．	．．．
9127	Yale 786	46 ± 11	G3	11.2	9.5	－．	．．．
9131	HD 23585	48 ± 13	A9 V	8.4	6.8	YD	．．．
9132	HD 23713	45 ± 10	F6 V	9．5P	7．8P	YD	－••
9135	HD 283066	44 ± 16	dK6	11.4 P	9．6P	\cdots	CaIIem
9137	－37． 1501	54 ± 8	K	12．8P	11．5P	OD	－••
157A	HD 24916	102 ± 12	dK5	8.06	8.1	YD	T，AB $11^{\prime \prime}, 20^{\circ}$
157B（ab）	ADS 2894B	102 ± 12	dM3e	11.48	11.5	YD	SB（35）
160	HD 25680	69 ± 5	G5 V	5.90	5.09	YD	$v \sin 1=3, W A B 170: 1$ opt．
9849	．．．	50 ± 8	．．．	15.0	14.2	．．．	osin 1＝3，WAB 17081 opt．
9850	．\cdot ．	58 ± 9	－．．	16.5	15.3	－．${ }^{\circ}$	
9157（ab）	HD 28527	52 ± 10	A6 IV	4.78 J,	3.4 J	YD	SB，v sin $1=71$ ，WAB 250＂opt．？
9158	HD 28946	43 ± 13	K1	8.0	6.2	．${ }^{\text {P }}$	
9159A	Aldebaran	50 ± 5	K5 III	0.85 v ．	－0．64V	YD	$\mathrm{T}, \mathrm{AB} 30.4,110^{\circ}$ ，
9159B	ADS 3321B	50 ± 5	dM2	13.2	11.7	YD	－
172	HD 232979	93 ± 6	K8 V	8.61	8.45	YD	weak CaIIem
180	LTT 2116	83 ± 6	M3	12．5P	12．1P	OD	．．．
9177	HD 33811	40 ± 14	G5	8.71	6.7	．．．	－
201	HD 35171	63 ± 5	dK5	7.97	7.0	YD	CaIIem

Gliese/ WEPP	Other Name	p+p.e. (0:0001)	Spectral		Age		Remarks
			Type	v	M	Group	
209	HD 37124	55 ± 11	G4 V	7.61	6.3	OD	...
9185	ED 37656	42 ± 12	K5 V	9.32	7.4	YD	
9186	HD 37495	46 ± 9	F4 V	5.28	3.6	YD	$v \sin 1=31$
216A	HD 38393	123 ± 8	F6 V	3.60	4.05	YD	AB $96.3,350^{\circ}, \mathrm{v}$ sin $i=11$
216B	HD 38392	123 ± 8	K2 V	6.15	6.60	YD	T
9191	HD 39194	47 ± 13	K0 V	8.09	6.5	OD	
9205	HD 42250	43 ± 11	dG7	7.43	5.6	OD	
9209A	HD 44120	42 ± 12	G3 v	6.44	4.6	OD	AB $40.66,302^{\circ}$, also 38:3 opt.
9209B	WD0615-591	42 ± 12	DB4	14.09	11.42	OD	
233A	HD 45088	64 ± 5	dK3	6.74	5.8	YD	T, AB 1:66,304 ${ }^{\circ}$
233B	ADS 5054B	64 ± 5	-••	13.8	12.8	YD	
234A	v577 Mon A	246 ± 3	dM4e	11.07 J	13.02 J	YD	T, $\mathrm{a}=0$ ".98
234B	V577 Mon B	246 ± 3	...	14.4	16.4	YD	
250A	HD 50281	104 ± 8	dX6	6.66	6.75	YD	T,AB $58,177{ }^{\circ}$
250B	LTT 2663	104 ± 8	M2	10.11	10.20	YD	...
263	NSV03363	60 ± 5	M5	11.4	10.3	-.	
283A	WD0738-172	125 ± 7	DZQ6	12.98	13.42	OD	T,AB 21 , $276{ }^{\circ}$
283B	LTT 2916	125 ± 7	M	17.68	18.4P	OD	
9248	$+14^{\circ}{ }^{1} 1802$	56 ± 12	dK8	10.30	- 9.0	YD	CaIIem
9265	+29 ${ }^{\circ} 1754$	43(S)	dK8	9.65	7.8
9269	HD 72769	40 ± 12	dGS	7.19	5.2	YD	-..
311	HD 72905	69 ± 5	G0 V	5.64	4.83	YD	$v \sin 1=4$
9275A	HD 74385	49 ± 12	K0	8.10	6.6	YD	AB $45^{\prime \prime}, 188^{\circ}$
9275B	LTT 3222	49 ± 12	M1	14.6P	13.1P	YD	
9276	HD 74772	49 ± 11	GS III	4.06	2.5	YD	AB 45 " $3,63^{\circ}$ opt
9278A	HD 74956	48 ± 7	AO V	1.95 J	0.4 J	YD	T, AB $2 \cdot 6,153^{\circ}$, v sin $1=40$
9278B	Yale 2098(B)) 48 ± 7	...	5.1	3.5	YD	
9278C	Yale 2098(C)) 48 ± 7	...	11.0	9.4	YD	AC 69:2,61 ${ }^{\circ}$
9878D	Yale 9098(D)) 48 ± 7	-..	13.5	11.9	YD	CD 6:2,102 ${ }^{\circ}$
323A	$+8{ }^{+} 131$	60 ± 5	dMOp	9.08 J	8.0 J	YD	AB 216.119°
323B	ADS 7044B	60 ± 5	...	9.9	8.8	YD	
324A	HD 75732	74 ± 7	G8 V	5.97	5.32	YD	T, AB $85{ }^{\prime \prime}, 129^{\circ}$
324 B	LTT 12311	74 ± 7	M5	13.15	12.50	YD	
$331 \mathrm{~A}(\mathrm{ab})$	NSV04329	66 ± 6	A7 V	3.14	2.24	YD	$\mathrm{T}, \mathrm{AB} 4: 5,16^{\circ}, \mathrm{SB10}, \mathrm{v}$ sin $1=151$
331 B	LTT 12348	66 ± 6	dM1	11.4	10.5	YD	...
331C	ADS 7114 C	66 ± 6	-••	11.7	10.8	YD	$a=0.680$
9298	$+40^{\circ} 2208$	42(S)	dK8	9.88	8.0	OD	...
346	$-8^{\circ} 2689$	53(S)	dMO	10.49	9.1
363	LFT 672	71 ± 11	M5	14.2P	13.5P	. ${ }^{\text {c }}$	
9316B	HD 87884	41 ± 14	K 1 V	8.14	6.2	YD	AB 177,307 ${ }^{\circ}$
9316C	ADS 7654C	41 ± 14	...	13.5	11.6	YD	BC $21.5,86^{\circ}$
9316 D	ADS 7654D	41 ± 14	\cdots	. \cdot	...	YD	AD $2177^{\prime \prime} 274^{\circ}$ (WEPP a, δ incorrect)
384A	HD 88746	66 ± 13	G8 V	8.12 J	7.2J	YD	AB 5 " $3^{\prime \prime}, 127^{\circ}$
384 B	Yale 2403 (B)	66 ± 13	...	10.8	9.9	YD	...
9322	HD 88725	43 ± 6	G1 V	7.76	5.9	OD	
9324	NSVO4822	51 ± 12	F6 IV	4.80	3.3	YD	v sin $i=16,8$ Sct var.?
394	+56'1458	77 ± 5	K7 V	8.69	8.1	YD	T, AB 120', 304 ${ }^{\circ}$, 394=395(B), c.p.m.
395(A)	HD 90839	77 ± 5	F8 V	4.84	4.27	YD	AC 139", v sin $\mathrm{i}=0$

TABLE 1－Continued

Gliese／ WEPP	Other Name	P＋p．e．Spectral				Age	
		（0．0001）	）Type	V	M	Group	Remarks
395（C）	$+57^{\circ} 1266$	77 ± 5	－．．	8.2	7.6	YD	Am：Hoffleit and Jaschek（1982）
417	HD 97334	42（S）	G0 V	6.3	4.4	YD？	WAB 138：7 opt．，v sin $1<6$
9357	HD 98281	54 ± 7	G8 V	7.30	6.0	OD	
427	WD1121＋216	78 ± 3	D27	14.12	13.58	OD	．．．
428A	HD 99279	90 ± 6	K7 V	7.21 J	6.98 J	YD	AB 5＂8
428B	Yale 2645B	90 ± 6	MO V	8.6	8.4	YD	CaIIem
450	＋36 ${ }^{\circ} 2219$	125士9	M1 V	9.78	10.26	YD	CaIlem
9394	HD 106038	41 ± 11	F6 V－VI	110.18	8.2	OD	．．．
9404	＋292279	51 ± 10	M2 v	10.62	9.2	OD	－••
461	$+1{ }^{\circ} 2684$	60（S）	dMO ${ }^{\text {－}}$	10.2	9.1	YD	CaIIem
464	HD 107888	50 ± 10	dM2	10.4	8.9	YD	
471	＋9 ${ }^{\circ} 2636$	69 ± 7	dM1	9.78	8.97	OD	C．p．m．with 469
475（ab）	NSV85725	109 ± 6	G0 V	4.27	4.46	YD	SBIO，v sin $1 \leq 3$
9418	＋71 632	40 ± 9	K8	9.5	7.5	OD	
490A	＋36 ${ }^{\circ} 2322$	48 ± 6	dMOe	10.60	9.01	YD	AB 17＂，CaIlem
490B	NSV06039	48さ6．	dMe	13.16	11.57	YD	CaII strong em
9427	＋35 ${ }^{\circ} 2406$	$51(5)$	dK8	9.34	7.9	YD	
9441	HD 115892	51 ± 7	A2 V	2.73	1.3	YD	$v \sin 1=85$
509A	HD 116495	54 ± 5	dMO	8.90 J	7．6J	YD	AB 0：7
509B	ADS 8887B	54 ± 5	dK6	9.7	8.4	YD	．．．
513	LTT 13924	55士12	M5	13．5P	12．2P	OD	－••
9447	Ross 476	47 ± 20	dM6	14.34	12.6		c．p．m．with Gl 515（T），AB 500＂
516A	vW Com	57 ± 8	dM4e	11.39 J	10．2J	OD	$A B 3: 0,22^{\circ}$
516B	Vyss 144B	57 ± 8	dM4e	11.5	10.3	OD	
527A	NSV06444	57 ± 9	F7	4.50	3.3	YD	$\mathrm{T}, \mathrm{AB} 5.4,7^{\circ}, \mathrm{v} \sin 1=14$
527B	ADS 9025B	57 ± 9	M2	10.6	9.4	YD	
528A	HD 120476	87 ± 7	dK6	7.04 J	6.71 J	YD	AB $2: 4$
528B	ADS 9031B	87 ± 7	dK6	8.2	7.9	YD	
534（ab）	HD 12.1370	102 ± 5	GO IV	2.68	2.72	YD	T851，SB10， v sin 1＝13，
536	HD 122303	92 ± 8	dMO	9.8	9.6	．${ }^{\circ}$	．．．
9468	HD 123505	40 ± 5	G9 V	9.68	7.7	OD	－．
547	HD 126053	61 ± 5	G1 V	6.27	5.20	OD	$v \sin i=1$
548A	＋24 2733	65 ± 7	dM1	9.71	8.77	OD	AB $45.4,74^{\circ}$
548B	BDS 6869B	65 ± 7	dM2	9.9	9.03	OD	
549A	NSV06669	68 ± 6	F6 V	4.06	3.22	OD	$\mathrm{T}, \mathrm{AB} 69.2,182^{\circ} \mathrm{v}$ v sin $\mathrm{i}=34$
549B	LTT 14246	68 ± 6	M3	11．8P	11．08	OD	．．．
9480	＋2402735	50 ± 8	dMO	10.91	9.4	OD	．．．
561	＋27 ${ }^{\circ} 2411$	52 ± 18	G5	9.5	8． 1	YD	\cdots
566A	HD 131156	153 ± 4	G8 V	4.54 J	5．46J	YD	T10418，$a=4: 9$, CaIIem，v sin $i=3$
566B	ADS 9413B	153 ± 4	K5 V	6.91	7.70	YD	CaIlem
567（ab）	NSY06847	84 ± 7	K1 V	6.04	5.66	YD	SB（25）
9515	$+8^{\circ} 3000$	42（S）	dM0	10.6	8.7	－••	．．．
9516	HD 135379	52 ± 10	A3 V	4.07	2.7	YD	$v \sin 1=59$
584 A	NSV07054	61 ± 4	G2 V	4.98 J	3.91 J	YD	$\mathrm{a}=0$＇839，AC 58＂opt．
584B	ADS 9617B	61 ± 4	G2 V	5.9	4.8	YD	$A B=S B 20$
9533	HD 1 1 3291	44 ± 5	K0 V	8.02	6.2	YD	－••

TABLE 1-Continued

TABLE 1-Continued

Gliese/ WEPP	Other Name	p+p.e. (0'001)	Spectral			Age	
			Type	v	M_{v}	Group	Remarks
9658	HD 183650	49 ± 7	dG5	6.97	5.4	OD	
765A	HD 185395	56士9	F5 IV	4.47	3.2	YD	T, AB 4 ,2,53 ${ }^{\circ} \mathrm{AC}=40.4$ opt.
765B	ADS 12695B	56 ± 9	...	13.0	11.7	YD	
766A	Ross 165	94 ± 5	dM4e	12.7	12.6	...	AB 0.9, 247°
766B	Yale 4646(B)	94 ± 5	\cdots	13.7	13.6	-	
9699(ab)	HD 195987	51 ± 5	G9 V	7.09	5.65	YD	SB(29)
9705	Ross 766	40 ± 7	dM3	11.5	9.5	OD	
9707A(ab)	HD 197989	46 ± 8	K0 III	2.46	0.8	YD	T,SB,CaIIem, $\mathrm{AB} 54: 9,272^{\circ}$ opt.
9707C	LTT 16072	46 ± 8	dM4 .	13.4	11.7	YD	AC 78\%1, 265°
830	HD 204587	61 ± 7	MO V	9.10	8.0	OD	...
9747	Rogs 201	44 ± 13	M4	16.3P	14.5P	\cdots	...
849	-5 5715	112 ± 5	dM3	10.42	10.67	YD	-
851	Ross 271	83 ± 5	dM2	10.1	9.7	YD	CaIIem
9779(ab)	NSV 14132	42 ± 5	A0 V	3.85	2.0	YD	SB, AB 37\%4,140 ${ }^{\circ} \mathrm{opt}$.
889	HD 218294	53(S)	dMO	9.68	8.3	OD	-..
9812A	HD 218641	40 ± 10	G2 V	4.68 J	2.75	YD	AB 0:4,70
9812B	HD 218640	40 ± 10	A2	5.6	3.6	YD	...
894	$-43^{\circ} 16263$	62 ± 11	K5	10.3	9.3	-••	\cdots
900	+0 5017	59さ10	dM1	9.59	8.4	YD	CaIIem
9842	LTT 17032	50 ± 12	M5	17.0	15.5P	\cdots	
909A(ab)	HD 223778	93 ± 4	K3 V	6.40	6.24	YD	T,SB20, AB 4:6,95 ${ }^{\circ}$
909 B	ADS $\mathrm{O}_{1}^{17062 \mathrm{~B}}$	93 ± 4	MO	11.8	11.6	YD	\cdots

table 2
The IPC Detecitions

9278BCD	8	43	20.3	＋1．2	－54	31	24	＋8	（6．9 $\pm 0.1)-13$	$(3.6 \pm 0.6)+28$	79 Jul 19
324B	8	49	36.9	＋1．0	＋28	30	26	＋51	（5．5士1．4）－14	$(1.2 \pm 0.3)+27$	79 Oct 28
331BC	8	55	49.8	＋3．1	＋48	13	53	－24	（5．5士1．4）－13	$(1.5 \pm 0.4)+28$	79 Oct 30
9298	9	24	20.2	－0．2	＋39	42	40	－46	（3．9 $\pm 0.7)-13$	（2．6 $\pm 0.5)+28:$	79 Oct 19
9316BC	10	05	31.4	－1．1	＋12	13	57	＋33	（3．0さ0．9）－13	（2．1）0．7）＋28	79 May 23
384AB	10	10	55.9	－0．6	－47	13	59	－16	（3．0：066）－13	$(8.2 \pm 1.8)+27$	79 Dec 15
395（AC）	10	27	12.6	－12．8	＋56	15	14	＋57	（7．141．4）－13	$(1.4 \pm 0.3)+28$	80 May ＇ 2 L
417	11	09	49.2	－0．9	＋36	， 05	38	＋25	（5．0 $\pm 1.0)-13$	$(3.4 \pm 0.6)+28:$	79 May 25
450	11	48	31.5	＋0．8	＋35	33	44	＋49	（2．4 $\pm 0.6)-13$	$(1.8 \pm 0.4)+27$	i9 Jec 12
9404	12	17	01.2	＋6．6	＋28	39	16	－17	（8．0さ2．6）－14	（3．7士1．2）＋27	80 Jun 2？
475（ab）	12	31	24.7	＋4．6	＋41	38	14	＋23	（1．0さ0．4）－13	$(1.1 \pm 0.4)+27$	79 Dec 8
490AB	12	55	19.1	＋0．8	＋35	29	48	＋6	（1．4士0．2）－12	$(7.3 \pm 1.3)+28$	78 Dec 18
490AB	12	55	17.4	－0．9	＋35	29	50	＋8	（1．2さ0．04）－12	（6．0さ0．2）＋28	80 Jun 30
509AB	13	21	12.6	－0．4	＋29	28	16	－93	（1．4 $\pm 0.5)-13$	$(5.6 \pm 2.1)+27$	79 Dec 13
516 AB	13	30	19.9	＋1．3	＋17	04	10	＋4	（2．1£0．7）－13	$(7.6 \pm 2.5)+27$	79 Dec 20
527 B	13	44	52.9	＋1．0	＋17	42	18	－1	（2．3さ0．2）－12	$(8.6 \pm 0.7)+28$	81 Jan 26
534（ab）	13	52	17.0	－0．9	＋18	38	40	－3	（3．9さ0．8）－13	（ 4.5 ± 0.9 ）+27	81 Jaq 11
549B	14	25	29.7	＋0．5	＋52	04	42	0	（6．7士0．2）－12	$(1.7 \pm 0.05)+29$	80 Jan 2
566AB	14	49	05.7	＋0．4	＋19	18	26	＋5	（9．6さ0．5）－12	（4．9さ0．2）＋28	80 Aug 12
567（ab）	14	51	07.0	＋1．0	＋19	21	47	＋29	（2．0さ0．3）－12	（3．5 $\pm 0.5)+28$	81 Jan 24
584AB	15	21	09.8	＋1．5	＋30	27	51	－3	（2．6さ0．6）－13	（8．4土1．9）+27	81 Jan 11
9537	15	59	07.3	－0．2	＋33	24	47	－122	（2．8さ0．7）－13	$(1.9 \pm 0.5)+28$	79 Aug 15
9537	15	59	06.7	＋1．2	＋33	24	32	－137	（4．4土1．0）－13	（3．0 $\pm 0.7)+28$	80 Jan 20
9550B	16	12	48.3	＋0．9	＋33	59	08	＋11	（4．3さ0．1）－11	（2．8さ0．1）+30	79 Jan 23
9550A（ab）B	16	12	48.8	＋1．5	＋33	59	01	＋4	（2．0士0．3）－11	（1．3さ0．2）+30	81 Jar 10
9584 BC	17	04	17.4	＋0．7	＋54	32	12	＋4	（2．8さ0．2）－12	$(1.7 \pm 0.1)+29$	79 Jul 25
9584ABC	17	04	17.8	＋1．1	＋54	32	25	＋17	（2．0さ0．2）－12	$(1.2 \pm 0.1)+29$	80 Mar 12

9584ABC	17		10．0－6．7		$+54$	32	21	＋13	$(2.3 \pm 0.2)-12$	$(1.4 \pm 0.1)+29$	80	Apr 8
659AB	17	09	$13.1+4.8$		＋54	32	53	－27	（1．9土0．7）－13．	$(9.3 \pm 3.5)+27$	80	Mar 14
659AB	17	09	$11.8+3.5$		$+54$	32	59	－21	$(5.5 \pm 1.1)-13$	$(2.6 \pm 0.5)+28$	80	Apr ${ }^{8}$
669AB	17	17	$55.2+1.7$		＋26	32	53	－7	$(3.0 \pm 0.2)-12$	$(3.7 \pm 0.3)+28$	79	Mar 27
687（ab）	17	36	$49.6+9.6$		＋68	22	38	＋10	（1．0土0．3）－12	$(2.7 \pm 0.7)+27$	80	May 29
695 BC	17	44	$30.5+3.2$		＋27	44	52	＋32	$(1.8 \pm 0.4)-13$	$(1.3 \pm 0.3)+27$	79	Aug 27
698（AB）	17	53	$34.1+0.1$		＋18	30	07	－16	（2．9土0．9）－13	$(3.2 \pm 1.0)+28$	79	Oct 11
9619	18	13	$41.9+4.3$		＋64	23	22	＋33	（1．1士0．3）－12	$(6.0 \pm 1.7)+28$	80	May 25
725B	18	42	$10.6+1.8$		＋59	． 34	47	＋54	（3．9土1．1）－13	$(5.8 \pm 1.7)+26$	79	Nov 8
9652AB	19	12	$32.1+4.4$		＋19	$\cdot 13$	33	－56	（1．4土0．2）－12	$(9.6 \pm 1.2)+28$	81	Apr 10
765B	19	35	$06.4+0.5$		＋50	06	24	－1	（8．0土1．5）－13	$(3.1 \pm 0.6)+28$	79	Oct ${ }^{28}$
9705	20	41	$00.0+2.2$		＋35	17	35	－85	（2．1さ0．6）－13	$(1.5 \pm 0.5)+28$	80	Apr 30
849	22	06	59．0－3．2	．．．	－04	54	26	－74	（2．1 $\pm 0.5)-13$	（2．0土0．5）＋27	80	Msy 31
900	23	32	$27.5+0.8$		＋01	19	10	．-33	（1．2士0．2）－12	$(4.0 \pm 0.7)+28$	79	Dec 20
909B	23	49	51．9－7．7		＋75	16	17	＋21	$(1.2 \pm 0.3)-12$	$(1.6 \pm 0.4)+28$	80	Oct 12
909B	23	49	50．9－8．7		＋75	16	42	＋46	（1．6さ0．4）－12	$(2.2 \pm 0.5)+28$	80	Oct 4
909 B	23	49	48．3－11．3		＋75	15	38	-18	$(1.0 \pm 0.2)-12$	$(1.4 \pm 0.3)+28$	81	Febl

TABLE 3

The IPC Upper Limits

Oliese/ WEPP	$\left.\begin{array}{c} \stackrel{\mathrm{F}}{-x} \\ \left(\text { ergs } \mathrm{cm}^{-2} \mathrm{~g}-1\right. \end{array}\right)$	$\begin{gathered} \operatorname{L}_{x} \\ \left(\operatorname{ergs}^{-1}\right) \end{gathered}$	Epoch
9006	<7.1-14	$<4.2+27$	80 Jan 1
9006	<3.6-14	$<2.1+27$	80 Jun 15
9006	<5.3-14	$<3.1+27$	81 Jañ 2
28	<6.6-14	<1.5+27	79 Jan 23
33	<1.9-13	<1.1+27	79 Jun 27
35	<1.9-13	<4.2+26	81 Jan 5
38	<1.2-12	$<4.7+28$	79 Jul 12
9035	<6.6-14	$<4.9+27$	80 Mar 20
70	<2.1-13	<2.0+27	79 Jul 23
9067AB	<1.2-13	$<7.6+27$	80 Jul 13
9073AB	<2.9-13	$<2.2+28$	80 Jan 18
9074	<1.4-13	$<7.8+27$	80 Jul 26
9092AB	<1.2-13	$<7.6+27$	80 Jul 14
121	<1.5-13	$<5.3+27$	80 Aug 12
147	<6.2-14	$<2.0+27$	79 Jan 27
147	<2.1-13	$<6.8+27$	79 Jul 29
147	, $<1.8-13$	$<5.8+27$	79 Aug 13
9126	<1.1-13	$<4.9+27$	81 Feb 7
9131	<1.5-13	$<7.8+27$	80 Feb 16
9131	<2.5-13	<1.3+28	81 Feb 7
9131	<2.3-13	<1.2+28	81 Feb 7
9131	<1.4-13	$<7.5+27$	81 Feb 8
9131	<2.2-13	$<1.1+28$	81 Feb 8

9131	<1.3-13	$<6.9+27$	81 Feb
9132	<1.8-13	<1.0+28	80 Feb 16
9132	<2.2-13	<1.3+28	81 Feb 8
9135	<1.6-13	<1.0+28	81 Feb 7
9137	<2.2-13	$<9.2+27$	80 Feb 19
913;	<3.1-13	<1.3+28	80 Aug 11
9849	<1.2-13	<3.0+27	80 Feb 15
9849	<1.5-13	$<3.8+27$	81 Feb 10
9850	<1.1-13	$<3.9+27$	80 Feb 15
9157(ab)	<1.8-13	$<7.9+27$	79 Sep 10
9157(ab)	<4.3-13	$<1.9+28$	79 Sep 11
9157(ab)	<6.5-14	$<2.9+27$	81 Jan 31
9158	<6.1-14	<3.9+27	79 Mar 8
9158	<3.9-14	$<2.5+27$	79 Aug 15
9158	<1.9-13	<1.2+28	79 Aug 15
9159B	<1.9-13	$<9.3+27$	80 Mar 2
180	<1.7-13	<3.0+27	79 Aug 17
9.7	<3.9-13	<2.9+28	80 Apr 8
209	<1.3-13	<5.3+27	80 Oct 12
9185	<5.4-13	<3.7 27	80 Dec 12
9191	<3.0-13	<1.6+28	79 Apr 8
9191	<4.6-13	<2.5+28	79 Apr 10
9191	<2.4-13	<1.3+28	80 Feb 11
9205	<1.6-13	<1.0+28	80 Mar 9
9209AB	<7.3-14	<5.0+27	79 Nov 6
263	<1.0-13	<3.5+27	79 Oct 29
263	<1.0-13	<3.5+27	81 Apr 24

-25-

9609	<2.3-13	$<1.7+28$	79 Sep 26
9615AB	<1.8-12	<1.4+29	80 Oct 8
707	<3.9-13	$<8.7+27$	80 Mar 9
9628	<1.2-13	$<9.0+27$	80 Mar 21
9628	<1.6-13	$<1.2+28$	80 Mar 23
720A	<1.0-13	$<2.7+27$	79 Oct 8
720B	<1.1-13	$<2.9+27$	79 Oct 8
9651 AB	<1.2-12	<6.6+28	80 Oct 8
9653 A	<1.7-13	<1.8+27	79 Oct 22
9658	<1.6-13	$<7.9+27$	79 Apr 11
766	<2.6-13	<3.5+27	79 Nov 20
9699(ab)	<1.2-13	<5.5+27	78 Dec 17
9707 C	<1.3-13	<7.5+27	79 Nov 23
830	<4.3-13	<1.4+28	80 Jun 10
9747	<2.7-13	<1.7+28	80 Jul 8
851	<2.3-13	<4.0+27	80 Jun 15
9779(ab)	<2.3-13	<1.6+28	79 Mey 20
889	<2.3-13	<9.8+27:	79 May 24
889	<5.1-13	<2.2+28:	79 May 25
9812AB	<1.5-13	<1.1+28	79 May 24
9812AB	<1.4-13	<1.0+28	79 May 25
894	<2,6-13	<8.1+27	79 Nov 20
894	<2.2-13	$<6.7+27$	79 Nov 21
894	<2.0-13	<6.4+27	80 May 15
894	<2.2-13	$<6.9+27$	80 May 17
894	<1.3-13	$<3.9+27$	80 Jun 6
9842	<9.0-14	<4.3+27	80 Jan 10
910	<2.8-13	<9. $2+27$	79 Jan 8
910	<3.7-13	<1.2+28	79 Jun 16

TABLE 4
The HRI Dections and Upper Limits ${ }^{\text {a }}$

TABLE 5
IPC Luminosity Function of 193 Untargeted Individual WEPP Stars

$\begin{aligned} & \stackrel{L}{-x} \\ & \left(\operatorname{ergs} s^{-1}\right) \end{aligned}$	Number of Detected Stars	Number of Undetected Stars	Redistributed Undetected Stars	Effective Number of Stars
$(2.56-5.12)+29$	3	0	0	3
(1.29-2.56)+29	0	0	0	0
$(6.4-12.8)+28$	5	0	0	5
$(3.2-6.4)+29$	11	7	0	11
$(1.6-3.2)+28$	11	7	1	12
$(8-16)+27$	10	13	2	12
$(4-8)+27$	12	28	7	19
(2-4)+27	12	28	16	28
$(1-2)+27$	7	19	22	29
$(5-10)+26$	5	7	30	35
(2.5-5)+26	3	2	33	36
(1.25-2.5)+25	0	2	-••	-••
(6.25-12.5)+25	0	0	-••	-••
$(3.12-6.25)+25$	0	1	-••	-•

TABLE 6
IPC Luminosity Function of 126 Untargeted WEPP Systems

$\begin{aligned} & \underline{L} \\ & \left(\text { ergs } s^{-1}\right) \end{aligned}$	Number of Detected Syoteme	Number of Undetected Systems	Redistributed Undetected Systems:	Effective Nunber of Systems.
$(1.02-2.05)+30$	1 ,	0	0	1
(5.12-10.2)+29	0	0	0	0
(2.56-5.12) +29	0	0	0	0
($1.28-2.56$) 29	0	0	0	0
(6.4-12.8) +28	5	1	0	5
$(3.2-6.4)+28$	10	6	1	11
(1.6-3.2)+28	4	7	0	4
$(8-16)+27$	4	12	1	5
$(4-8)+27$	4	28	5	9
($2-4$) 27	6	22	22	28
$(1-2)+27$	4	9	56	60
$(5-10)+26$	0	1	-••	-•
(2.5-5)+26	0	1	-••	-••
(1.25-2.5)+26	0	0	-••	- \cdot
$(6.25-12.5)+25$	0	0	-••	- \cdot
$(3.12-6.25)+25$	0	1	-••	-••

TABLE 7
IPC Luminosity Function of 63 Untargeted WEPP M Dwarfs

| | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |

REFERENCES

Avni, Y., Soltan, A., Tananbaum, H., and Zamorani, G. 1980, Ap.J., 238, 800.

Cash, W., Charles, P., and Johnson, H. M. 1980, Ap.J. (Letters), 239, 123.
Eggen, O. J. 1969, Pub.A.S.P., 81, 553.
Gliese, W. 1969, Catalog of Nearby Stars (1959 ed.; Heidelberg:
Veryff. Astr. Rechen-Inst.), No. 22.
----. 1981, Bull. Inf. CDS, No. 20.
Gliese, W., and Jahreiss, H. 1979, Astr. Ap. Suppl., 38, 423.
Harris, D. E., and Irwin, D. 1984, Einstein Observatory Revised Users 1 Vanual (Cambridge: Center for Astrophysics).

Harris, D. E., and Johnson, H. M. 1985, Ap.J., 294, 649.
Hoffleit, D., and Jaschek, C. 1982, The Bright Star Catalogue, 4th ed. (New Haven: Yale University Obs.).

Johnson, H. M. 1983, Ap.J., 273, 702.
-----. 1984, Bull. A.A.S., 16, 472.
Kahn, S. M., Wesemal, F., Liebert, J., Raymond, J. C., Steiner, J. E., and Shipman, H. L. 1984, Ap.J., 278, 255.

McCook, G. P., and Sion, E. M. 1984, A Catalogue of Spectroscopically Identified White Dwarfs, 2nd ed. (Villanova: Villanova Press).

Raymond, J. C., and Smith, B. W. 1979, private communication.
Seward, F. D., and Yacdenald, A. 1993, Einstein (بE40-2) Observing Catalog; Lth ed., CFA/FEA 83-039.

Swank, J. H., and Johnson, H. Y. 1952, Ap.J. (Let.ters), 259, L67. van Altena, W. F. 1585, private commnication.

Woclley, R., Epps, E. A., Penston, M. J., and Pocock, S. B. 1970, Royal Obs. Ann., No. 5 (WEPP).

Hugh M. Johnson: Department 91-20, Building 255, Lockheed Missiles and Space Company, 3170 Porter Drive, Palo Alto, CA 94304

