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Abstract

A computational scheme is described which is second-order accurate 1in
time and fourth-order accurate in space (2-4). This method is applied to
study the stability of compressible boundary layers. The laminar compressible
Navier-Stokes equations are solved with a time harmonic inflow superimposed on
the steady state solution. This results in spatially unstable modes. It is
shown that the second-order methods are inefficient for calculating the growth
rates and phases of the unstable modes. In contrast the fourth-order method

yields accurate results on relatively course meshes.
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I. Introduction

This paper is concerned with a fourth-order accurate finite difference
scheme for the compressible, unsteady Navier-Stokes equations. The primary
interest is the computation of spatially unstable disturbances 1into the
nonlinear regime and the active control of such disturbances. Due to the
wavelike nature of these disturbances, this problem has features of both wave
propagation and fluid dynamics and the numerical scheme must be chosen to
accurately compute waves propagating in an unstable, high Reynolds number mean
flow. The application of this scheme to study the active control of spatially
growing disturbances has been described previously [l]. This paper describes
the numerical scheme and the advantages that can be obtained by the use of
fourth—-order accuracy.

Higher order accurate methods, in particular spectral methods, have been
successfully used in the computation of incompressible flows. Examples of
such calculations can be found in [2] - [4]. Generally, spectral methods
assume that problem is periodic in the streamwise direction so that Fourier
(as opposed to Chebyshev) collocation can be used. (Spatially unstable
disturbances were considered, however in [4].) The use of higher order
methods for the numerical computation of waves has also been extensively
considered in the literature. Examples can be found in [5] - [7].

In section 2, we describe the numerical scheme and discuss certain
implementation details. In section 3 the performance of this scheme on a
variety of problems 1is illustrated. Finally, 1in section 4 we discuss these

results and draw conclusions.



II. Numerical Scheme

The numerical scheme is an extension of the second-order MacCormack
scheme due to Gottlieb and Turkel [8]. For the one-dimensional equation
Ut = Fx where F = F(U), we have (letting the superscripts denote the time

level and the subscripts denote the spatial grid points)

= _ 0, _At n _ .ny .0 _ D

Ui - Ui * 6Ax [7(Fi+l Fi) (Fi+2 Fi+1)] (2.1a)
ntl _ 1)m _ = _At _ = = =

uy o= 7{U1 + U+ i [7(Fi F,_)-(Fy Fi_z)” (2.1b)

There is an obvious symmetric variant of (2.1) starting with a backwards
predictor and then a forwards corrector,

If F depends only on U it is shown in [8] that the scheme (2.1) 1s
second-order accurate in time and fourth-order accurate in space ((2-4)
scheme). Specifically, 1f At 1s the time step and Ax the space step, then the
truncation error is O(At((Ax)4 + (At)z)). Thus the scheme is fourth-order
accurate provided At = 0((Ax)2) as AX > 0. For nonlinear problems this is true
only if the two variants of (2.1) are alternated.

Although true fourth-order accuracy is obtained only for At = 0((Ax)2) it
has been found that (2.1) is considerably more efficient than second-order
schemes (see for example [6], [9-10]). For two—dimensional problems (2.1) can
be used together with operator splitting [1l1] to maintain the (2-4) accuracy.

Specifically, for the equation

= +
Ut Fx Gy

we have
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where L, and L, are one-dimensional solution operators corresponding to the

y
scheme (2.1) applied to the equations U, = F;, and U, = G respectively.

X y
Alternatively, one can consider an unsplit version of (2.1) [12].

The explicit nature of the scheme (2.1) makes it well suited for current
vector computers such as the CDC Cyber 205 and the Cray 1-S and XMP series.
The scheme has been implemented on the CDC VPS 32 at NASA Langley Research
Center using vector operations over a two—dimensional grid (vector lengths
~ 20,000). The explicit nature of the scheme makes it relatively inefficient
to compute steady flow, unless acceleration techniques are incorporated
(13]. For the unsteady flows considered here, a time step restriction is
necessary in order to accurately resolve the fluctuations in time and so
explicit schemes become efficient.

The implementation of the scheme (2.1) is straightforward if the flux
function F depends only on the unknown U. For the Navier—Stokes equations we
have F = F(U,Ux,Uy) and in the evaluation of F; 1t 1s necessary to approximate
U, [8]. For a forward sweep, 1.e., (2.la) U, is approximated by a two-point
backwards difference, i.e., Uy ~ Uj - Ui_l/Ax and conversely for a backwards
sweep. It is shown in [8] that for a general, non—constant coefficient
problem this results in a scheme that is only third-order accurate. However,
it can be shown that the third-order truncation error is eliminated by
alternating the sweeps and the resulting scheme is fourth-order accurate for
both the inviscid and viscous terms. Mixed derivatives, i.e., terms of the
form Uy in an x sweep are approximated by second-order central differences.

In many applications these terms are relatively small. We have not

experimented with fourth—-order differences for these terms.



In order to complete the description of the numerical scheme, 1t 1is
necessary to describe the implementation of boundary conditions. We
distinguish between boundary conditions which must be imposed as part of the
problem and those boundary conditions which are necessary because the
straightforward application of the difference formula (2.l) is not valid at
boundary points. In this section we consider only the latter.

Consider the forward predictor (2.la). If 1 = N denotes a boundary point

then the values of Fi are not available for i > N and thus the scheme (2.1)

can not be applied at the points i = N-1 and i N. The most satisfactory

boundary treatment that we have found 1s to define F, for i > N by third-order

extrapolation from the interior (see [6] and [8]). Hence, Fy,; and Fy,, are
defined by

N+l N N-1

(2.2)

N+2 = TN+l

In (2.2) the extrapolated fluxes include both the viscous and inviscid terms.
The scheme (2.1) has a five-point stencil. Implicit fourth-order schemes
with a three—point stencil can be constructed by using Pade approximations.
It 1is well known that compact schemes are more accurate than five-point
schemes [l14], however, they are more expensive because of the implicit nature
of the scheme. One way to increase the accuracy of the scheme (2,1) is to use
a scheme which is sixth-order accurate in space. The scheme (2.1) can be

easily extended to sixth-order. The resulting scheme 1is
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The suitability of (2.3) for the unsteady Navier-Stokes equations is currently

being investigated.,

III. Numerical Examples

In this section we describe some numerical examples illustrating the
effects that can be expected from the fourth-order accurate differencing. The
present program 1s primarily designed to compute unsteady flows and does not
make use of any acceleration techniques which destory the consistency 1n time
[13]. The first numerical example will, however, illustrate the effect of the
higher-order differencing on steady flows.

Specifically, we consider a supersonic boundary 1layer over a flat
plate. The free stream Mach number 1s 4.5 and the unit Reynolds number 1s
2.3 x 109, The inflow data 1s generated by a boundary layer program [15] at
0.5 ft. from the leading edge. The computational domain is 2,0 ft. in x
and 11 § in y where § is the boundary thickness at 1inflow. An exponentially
stretched grid 1s used normal to the plate with the Jacobians evaluated
analytically. Figure 1 illustrates the computational domain.

In addition to the numerical boundary treatment described previously, 1t

is necessary to discuss the boundary conditions which must be imposed. For



the supersonic case all quantities are imposed at the inflow while the
solution at the outflow boundary is obtained by zeroth-order extrapolation
from the i1interior. We have verified that the solution 1s very 1insensitive to
the treatment of the outflow boundary as would be expected since the
linearized characteristic variables are convected out of the computational
domain. At the plate, the two velocity components are set to zero and the
temperature is specified. Several different techniques have been used to
obtain the pressure. These 1include different orders of extrapolation 1in the
normal direction and the use of the normal momentum equation. The accuracy of
the solution 1s 1nsensitive to the boundary treatment (probably because of the
stretched grid). At present we simply use first—order extrapolation for the
pressure.

The treatment of the upper boundary (see Fig. 1) is based on the
linearized characteristics in the normal direction.

The Navier—Stokes equations can be written 1in the generic form

U =F + G (3.1)

where U 1s the vector (p, pu, pv,E)T, p is the density, u and v are the x and
y velocities, respectively and E is the total energy. The functional forms of
F and G are standard and are omitted for brevity. In the normal direction we
consider only the system

Uu_=6G_. (3.2)

In the applications the vertical velocity v 1s small and positive at the upper

boundary. Upon linearizing (3.2) we find that the three characteristic



variables
P - pzz (3.3a)
p + pev (3.3b)
u (3.3¢)

are convected to the boundary from the interior. These three variables are
obtained by zeroth-order extrapolation from the interior. Since we consider
the linearized characteristics, the quantities with a = in (3.3), are taken
from the previous time step. The final boundary condition is obtained from
setting

-pcv,. =0 (3.3d)

corresponding to the characteristic variable entering the computational
region. The use of the radiation condition (3.3d) was previously found to
considerably accelerate the convergence to the steady state and to permit the
upper boundary to be brought closer to the plate [16].

A typical comparison between the second and fourth-order schemes is shown
in Fig. 2. The streamwise velocity is plotted against y at a location of 1.0
ft. from the leading edge (Red* = 17174), where Re , is the Reynolds number
based on displacement thickness. The results are :Lown for the fourth-order
scheme (2.1), the second-order MacCormack scheme and the solution obtained
from the boundary 1layer equations. The finite difference results were
obtained from the same grid (21 x 31) and the improvement in accuracy of the
fourth-order scheme is evident. It should be noted that we do not obtain a

similar improvement for more viscous boundary layers. The reason for this is

not understood and 1s currently being investigated.



For our next example, we consider an unsteady disturbance in a relatively
low speed subsonic boundary layer. The mean flow is a boundary layer with
free stream Mach number 0.4 and a unit Reynolds number of 3.0 x 107, At
inflow we have ReG* = 998 and the computational domain 1s chosen so that at
outflow Res* = 1730, A fluctuating disturbance 1s introduced at the 1inflow
with nondimensional frequency F = (anv)/Ui of .8 x 104, f 1s the frequency
in Hertz, v the kinematic viscosity, and U_ the free stream velocity. This
flow 1s nearly incompressible. Based on linear, incompressible stability
theory it is known that this frequency 1s unstable at inflow but becomes
stable at Res* = 1450. Since this 1s a subsonic flow, three boundary
conditions must be 1mposed at the inflow. These conditions are obtained by
computing an eigenfunction of the Orr-Sommerfeld equations (using a program
developed by R. Dagenhart of NASA Langley Research Center). The real part of
the solution (times eiFt), 1s then used to compute the three linearized
characteristic variables which enter the computational domain from the

outside. Specifically,

p +peu
p - pc” p= mean + ¢ (values obtained from Orr-Sommerfeld equation) (3.4a)
v
where ¢ determines the strength of the disturbance. The outgoing

characteristic variable p - pcv is obtained from the interior by zeroth-order
extrapolation.
The outflow boundary condition 1s treated similarly. The 1incoming

characteristic variable 1s set equal to zero by i1mposing the condition



- pcu, = 0, (3.5)

The use of the condition (3.5) and more accurate radiation condition to
compute unsteady disturbances 1n subsonic flows 1s discussed in [16].
Characteristic radiation boundary conditions of the form (3.5) are commonly
used 1n two-dimensional linear wave propagation problems (for example, see
[(17D. The boundary condition (3.5) has been found to be sufficiently
accurate for the present calculations, This 1s based on comparisons with
linear stability theory.

In Fig. 3 we plot the computed growth rate as a function of ReG*. The

growth rates are computed by calculating the RMS ='V/ (pu)2 - (pu)iean and
integrating in y. The inflow data 1s chosen so that the maximum perturbation
1s 2% of the free stream. In this case the (2-4) scheme shows a significant
amount of nonlinear growth while the (2-2) scheme, for the same grid, shows
significantly less growth. Mesh refinements verify the accuracy of the fourth-
order code.

Reducing the i1nflow perturbation to 0.2% of the free stream the fourth-
order results reproduce the linear theory results very closely and in
particular, show that the perturbation becomes stable at Red* ~ 1450 as
predicted by linear theory.

In Figs. 4a and 4b we plot pu as a function of time for ReG* = 1263 and
y = 0.0034 ft, In Fig. 4a the (2-4) scheme is shown for two different grids
and shows that a further grid refinement does not yield any additional
information. In Fig. 4b the (2-2) scheme is compared with the (2-4) scheme.
At this location the disturbance 1s basically linear and the figures 1indicate

significant amplitude and phase errors for the (2-2) scheme.
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Figures 5a and 5b contaln similar results further downstream at the
location Reé* = 1481 and y = 0.0011 ft. At this location the disturbance
exhibits some nonlinear effects which are not found by the second-order scheme
with this mesh.

In Fig. 6 the computed growth rates are shown for a disturbance in higher
speed flow where compressibility effects would be expected to be important.
The free stream Mach number 1s 0.7 and the unit Reynolds number is 300,000,
The computational domain 1is chosen so that at inflow we have Reé* = 900, The
nondimensional frequency F = 0.8 x 10*. The 1nflow data was generated from
the 1incompressible stability program, however, we have not compared growth
rates with those predicted by the 1incompressible stability theory. The
results in Fig. 6 show a significant reduction 1n the growth rate using the
second-order scheme. Finally, in Fig. 7 we plot the mean of pu across the
boundary layer for Rea* = 1400, It is apparent that the second-order scheme

misses significant features of the flow.

V. Conclusion

There are several types of errors that appear in the computation of
unsteady waves and stability analysis. These include both amplitude and phase
errors. These errors frequently simulate an apparent lower Reynolds number
and 1ndicate that the flow 1is more stable than it physically ais. These
effects are seen 1in the results presented here, It 1s shown that second-order,
in space, schemes are not efficient in simulating nonlinear stability of high
Reynolds number flows. The existing program solves the two—dimensional

laminar compressible Navier—-Stokes equations and 1s currently being extended
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to three dimensions. Both subsonic and transonic stability regions can be

calculated using the improved fourth-order method.
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Fig. 2. Comparison between the second and the fourth-order

schemes for a steady state. M= 4.5,
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Fig. 7. RMS amplitude distribution across the boundary layer.
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