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Foreword 

Nutrient overenrichment from anthropogenic sources is one of the major stresses on coastal 
ecosystems. Generally, excess nutrients increase algal production and the availability of organic 
carbon within an ecosystem-a process known as eutrophication. Scientific investigations in the 
northern Gulf of Mexico have documented a large area of the L,ouisiana continental shelf with - 
seasonally depleted oxygen levels (< 2 mg/l). Most aquatic species cannot survive at such low oxy- 
gen levels. The oxygen depletion, referred to as hypoxia, forms in the middle of the most impor-- 
tant commercial and recreational fisheries in the cor~terrninous United States and could threaten 
the economy of this region of the Gulf. 

As part of a process of considering options for responding to hypoxia, the U.S. Environmental 
Protection Agency (EPA) formed the Mississippi River/Gulf of Mexico Watershed Nutrient 
Task Force during the fall of 1997, and asked the White House Office of Science and Technol- 
ogy Policy to conduct a scientific assessment of the causes and consequences of Gulf hypoxia 
through its Committee on Environment and Natural Resources (CENR). A Hypoxia Working 
Group was assembled from federal agenq representatives, and the group developed a plan to 
conduct the scientific assessment. 

The National Oceanic and Atmospheric Administration (NOAA) has led the CENR assess- 
ment, although oversight is spread among several federal agencies. The objectives are to provide 
scientific information that can be used to evaluate management strategies, and to identify gaps in 
our understanding of this complex problem. While the assessment focuses on hypoxia in the 
Gulf of Mexico, it also addresses the effects of changes in nutrient concentrations and loads and 
nutrient ratios on water quality conditions within the Mississippi-Atchafdaya River system. 

As a foundation for the assessment, six interrelated reports were developed by six teams with ex- 
perts from within and outside of government. Each of the reports underwent extensive peer re- 
view by independent experts. T o  facilitate -chis comprehensive review, an editorial board was 
selected based on nominations from the task force and other organizations. Board members were 
Dr. Donald Boesch, University of Maryland; Dr. Jerry Hatfield, U.S. Department of Agricul- 
ture; Dr. George Hallberg, Cadmus Group; Dr. Fred Bryan, Louisiana State University; Dr. 
Sandra Batie, Michigan State University; and Dr. Rodney Foil, Mississippi State University. The 
six reports are entitled: - 

Topic 1: Characterization ofHypoxia. Describes the seasonal, interannual, and long-term 
variations of hypoxia in the northern Gulf of Mexico and its relationship to nutrient load- 
ings. Lead: Nancy N. Rabalnis, Louisiana Universities Marine Consortium. 

xiii 



xiv Characterization of Hypoxia 

Topic 2: Ecological and Economic Consequences of Hypoxia. Evaluates the ecological and 
economic consequences of nutrient loading, including impacts on the regional economy. Co- 
leads: Robert J. Diaz, Virginia Institute o f  Marine Science, and Andrew Solow, Woods Hole 
Oceanographic Institution, Center for Marine Policy. 

Topic 3: Flux and Sources of Nutrients in the Mississippi-Atchafalaya River Basin. Identi- 
fies the sources of nutrients within the Mississippi-Atchafalaya system and Gulf of Mexico. 
Lead: Donald A. Goolsby, U. S. Geological Survey. 

Topic 4: Efects of Reducing Nutrient Loads to Suface Waters Within the Mississippi River 
Basin and GulfofMexico. Estimates the effects of nutrient-source reductions on water qual- 
ity. Co-leads: Patrick L. Brezonik, University of Minnesota, and Victor J. Bierman, Jr., Lim no- 
Tech, Inc. 

Topics: Reducing Nutrient Loads, EspecialIy Nitrate-Nitrogen, to Suface Water, Ground 
Water, and the Gulfof Mexico. Identifies and evaluates methods for reducing nutrient loads. 
Lead: William J. Mitsch, Ohio State University. 

Topic 6: Evaluation of the Economic Costs and Benefits of Methods for Reducing Nutrient 
Loads to the Gulf of Mexico. Evaluates the social and economic costs and benefits of the 
methods identified in Topic 5 for reducing nutrient loads. Lead: Otto C. Doering, Purdue 
University. 

These six individual reports provide a foundation for the final integrated assessment, which the 
task force will use to evaluate alternative solutions and management strategies called for in Public 
Law 105-383. 

As a contribution to the Decision Analysis Series, this report provides a critical synthesis of the 
best available scientific information regarding the ecological and economic consequences of hy- 
poxia in the Gulf of Mexico. As with all of its products, the Coastal Ocean Program is very in- 
terested in ascertaining the utility of the Decision Analysis Series, particularly with regard to its 
application to the management decision process. Therefore, we encourage you to write, fax, call, 
or e-mail us with your comments. Our address and telephone and fax numbers are on the inside 
front cover of this report. 

David Johnson, Director 
Coastal Ocean Program 

Donald Scavia, Chief Screntist 
National Ocean Service 



Executive Summary 

Nutrient overenrichment from human activities is one of the major stresses affecting coastal 
ecosystems. There is increasing concern in many areas around the world that an oversupply of 
nutrients from multiple sources is having pervasive ecological effects on shallow coastal and estu- 
arine areas. These effects include reduced light penetration, loss of aquatic habitat, harmfid algal 
blooms, a decrease in dissolved oxygen (or hypoxia), and impacts on living resources. The largest 
zone of oxygen-depleted coastal waters in the United States, and the entire western Atlantic 
Ocean, is found in the northern Gulf of Mexico on the Louisiana-Texas continental shelf. This 
zone is influenced by the freshwater discharge and nutrient flux of the Mississippi River system. 

This report describes the seasonal, interannual, and long-term variability in hypoxia in the 
northern Gulf of Mexico and its relationship to nutrient loading. I t  also documents the relative 
roles of natural and human-induced factors in determining the size and duration of the hypoxic 
zone. 

GENERAL D I M E N S I O N S  

Hypoxia covers broad regions of the shelf for extended periods in mid-summer. In  1985-92, the 
mid-summer bottom areal extent of hypoxic waters k 2 mg/l O,, or ppm) averaged 8,000-9,000 
km2; in 1993-97 it increased to 16,000-18,000 krn2. The estimated extent was 12,500 km2 in 
mid-summer of 1998. 

A compilation of 13 mid-summer shelf-wide surveys (1985-97) demonstrates that the frequency 
of occurrence of hypoxia is higher to the west of the discharges of the Mississippi and Atcha- 
falaya Rivers in a down-current direction from their influence. The areal extent of mid-summer 
hypoxia is a minimal estimate and provides little information on the persistence of the zone over 
large areas, or the temporal sequence of physical and biological processes that preceded the map- 
ping. Surveys along a transect off Terrebonne Bay on the southeastern Louisiana shelf on a 
monthly basis from 1985 to 1998 provide better temporal resolution and a time series suitable for 
examining monthly- and seasonal-scale differences and relationships with variability in Missis- 
sippi River system discharge and nutrient flux. 

Hypoxic waters are most prevalent from late spring through late summer, and hypoxia is more 
widespread and persistent in some years than in others. Hypoxic waters are distributed from 
shallow depths near shore (4 to 5 m) to as deep as 60 m, but are present more typically between 5 
and 30 m. Hypoxia occurs mostly in the lower water column but encompasses as much as the 
lower half to two-thirds of the column. 

Continuous time-series data for the bottom waters in the core of the hypoxia region show (1) 
the gradual decline in oxygen in the spring with interruptions due to wind-mixing events, (2) 
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persistent hypoxia and often anoxia for extended parts of the record from May through Septem- 
ber, (3) occasional summer upwelling of oxygenated water from the outer shelf, and (4) the sea- 
sonal disruption of low oxygen in the fall from tropical storms or cold fronts. 

The Mississippi Rtver system encompasses 41% of the conterminous United States and delivers 
an avera e of 580 km3 of fresh water to the Gulf of Mexico yearly, along with sediment yields of % 210 x 10 t/yr, 1.6 x lo6 dyr nitrate (N), 0.1 x lo6 t/yr phosphorus (P), and 2.1 x lo6 dyr silica 
(Si). The best current knowledge is that the outflows of the Mississippi and Atchafalaya Rwers 
dominate the nutrient loads to the continental shelf where hypoxia is likely to develop. 

The 1820-1992 average discharge rate (decadal time scale) for the Mississippi Ever  at Vicksburg 
is remarkably stable near 14,000 m3/s, despite significant interannual variability and some decadal 
trends. Since the 1700s humans have altered the morphology and flow of the Mississippi Rtver 
so that now 30% is diverted to the Atchafalaya that also captures the flow of the Red Ever. T h e  
discharge of the Atchafalaya increased during the period 1900-1992, primarily as a result of the 
tendency for the Atchafalaya to capture more of the flow of the Mississippi (until stabilized at 
30% in 1977). An effect likely to occur in the offshore region as a result of increased flow 
through the Atchafalaya Delta is an increase in stratification west of Atchafalaya Bay and fur- 
ther westward into Texas. Managing the birdfoot delta for greater discharge through Southwest 
Pass may have increased inputs to the Mississippi Rtver Bight and offset siphoning of discharge 
to the Atchafalaya. A slight increase in Mississippi River discharge for 1900-1992 is accounted 
for by an increased discharge in September through December, a period that is much less im- 
portant in the coastal ocean than spring and summer in the timing of important biological proc- 
esses that lead to the development of hypoxia or the physical processes important to its 
maintenance. 

Mississippi Ever nutrient concentrations and loading to the adjacent continental shelf have 
changed dramatically this century, with an acceleration of these changes in the last four decades, 
depending on the constituent of concern. The mean annual concentration of nitrate was ap- 
proximately the same in 1905-6 and 1933-34 as in the 1950s, but it has doubled (or tripled, de- 
pending on the comparative periods) from the 1950s to 1960s. The increase in total nitrogen is 
almost entirely due to changes in nitrate concentration. The mean annual concentration of sili- 
cate was approximately the same in 1905-6 as in the early 1950s, then it declined by 30-SO%, 
depending on the analysis or period of record. Concentrations of nitrate and silicate appear to 
have stabilized, but trends are masked by increased variability in the 1980s and 1990s data. There 
are no substantial records of total phosphorus concentrations in the lower Mississippi River be- 
fore 1973, and subsequent values vary greatly among years. However, application of a linear least- 
squares regression on the 1973-87 data indicates a twofold increase in the total phosphorus con- 
centration. While there was no pronounced seasonal peak in nitrate concentration before 1960, 
there was a spring peak from 1975 to 1985. Before the 1960s, nitrogen flux closely paralleled 
river discharge-a pattern that still holds, but the load of nitrogen per volume discharge is greater 
than historically. There is no doubt that the concentration and flux of nitrogen (per unit volume 
discharge) have increased from the 1950s to 1960s, especially in the spring. 

The proportions of dissolved Si, N, and P in the lower Mississippi River have changed histori- 
cally such that they now closely approximate the Redfield ratio (Si:N:P = 16:16:1). Thus any 
single nutrient is more likely to be limiting to phytoplankton production now than historically. 
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Another reasonable hypothesis that follows a more balanced nutrient composition is that surface 
offshore primary productivity has increased. Fluctuations in the Si:N ratio within the riverine 
effluents and the bffshore waters can affect diatom production and are believed to be major de- 
terminants in the coastal food web structure on a seasonal basis, with major implications for oxy- 
gen and carbon cycling. Thus, long-term effects in the offshore ecosystem are likely a result of 
changes in constituents, primarily nitrogen as nitrate, and not the amount of freshwater dis- 
charge or alterations in freshwater delivery. 

INTERACTION OF PHYSICS AND BIOLOGY 
The physics of the coastal ecosystem and its biological processes are linked and related to the 
freshwater discharge and nutrient flux of the Mississippi kver  system. The physics of the near- 
shore Gulf of Mexico define where hypoxia can occur, and the biological processes of carbon 
production, flux, and respiration that lead to oxygen depletion. The high freshwater discharge, 
general circulation patterns of the Louisiana shelf, and the presence of the Louisiana Coastal 
Current dictate a stratified system for much of the year, interrupted on occasion by wind-mixing 
events, notably tropical storms and winter cold fronts. 

The evidence for nutrient-enhanced primary production in the northern Gulf of Mexico and its 
linkage with oxygen depletion in the lower water column comes from information on a variety 
of scales-experiments for a parcel of water from a particular locale over a limited time to more 
integrative measures of ecosystem response (e.g., net production, carbon flux and respiration) and 
change over broader spatial and temporal scales. The concentrations, total loads, and ratios of 
nutrients (nitrogen, phosphorus, and silica) delivered to the coastal ocean influence the produc- 
tivity of the phytoplankton community as well as the types of phytoplankton that are most likely 
to grow. 

The nutrient most relevant to overall phytoplankton production over the broad region fueling 
hypoxia is nitrogen, and nitrate-nitrogen makes up approximately two-thirds of the total nitro- 
gen input from the Mississippi hver.  Silica and phosphorus may also be limiting at some times 
and places. There is clear evidence that primary production in shelf waters near the delta and 
some distance from it are significantly correlated with nutrient inputs (nitrate + nitrite and or- 
thophosphate). Similar relationships exist with net production (an indicator of the amount of 
carbon available for export to the lower water column and sediments) and nitrate flux. There is 
also a strong relationship between the net production in surface waters, the amount of carbon 
exported, the accumulation rates of carbon, and the depletion of oxygen in bottom waters. Spa- 
tial and temporal variability in these components is closely related to the amplitude and phasing 
of Mississippi kver  discharge and nutrient fluxes. Thus, there are clear lines of evidence for ni- 
trogen- (particularly nitrate-) driven phytoplankton production that leads to hypoxia. Although 
the Mississippi and Atchafalaya kvers discharge organic matter to the shelf, the principal source 
of carbon reaching the bottom waters in the northern Gulf influenced by the river effluent and 
characterized by hypoxia is from in situ phytoplankton production. 
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LONG-TERM CHANGES IN THE COASTAL ECOSYSTEM 

I t  follows, and is supported with evidence from long-term data sets and the sedimentary record, 
that increases in riverine dissolved inorganic nitrogen concentrations and loads are highly corre- 
lated with indicators of increased productivity in the overlying water column-i.e., eutrophica- 
tion of the continental shelf waters, and subsequent worsening of oxygen stress in the bottom 
waters. Evidence comes from changes in diatom production, increased accumulation of diatom 
remains in the sediments, increased carbon accumulation in the sediments, decreased diversity of 
selected benthic fauna, and relative changes in selected benthic fauna that indicate a worsening 
oxygen environment. 

Human activities in the watershed undoubtedly changed the natural functioning of the Missis- 
sippi River system. Century-long patterns of freshwater discharge are not evident; thus, the 
long-term changes on the Louisiana shelf are linked to the quality of the discharge (nutrient 
loads and ratios of nutrients) and not the amount. Century-long changes are evident in some of 
the retrospective analyses; however, the most dramatic and accelerating changes have been since 
the 1950s, when nitrogen loads began to increase, primarily from nitrate inputs, and eventually 
doubled to tripled over their historic values. The fact that the most dramatic changes in the con- 
tinental shelf ecosystem have occurred since the 1950s and are coincident with an increase in 
nitrate load points to that aspect of human ecology for future management scenarios. 

Evidence associates increased coastal ocean productivity and worsening oxygen depletion with 
changes in landscape use and nutrient management that resulted in nutrient enrichment of re- 
ceiving waters. Nutrient flux to coastal systems, while essential to the overall productivity of 
those systems, has increased over time due to anthropogenic activities and has led to broad-scale 
degradation of the marine environment. 

The northern Gulf of Mexico adjacent to the discharge of the Mississippi k v e r  system is an ex- 
ample of a coastal ocean that has undergone eutrophication (an increase in the rate of primary 
production) as a result of increasing nutrients and that has worsened hypoxic conditions on 
century-long and accelerating recent decadal time scales. Models that link Mississippi kver  dis- 
charge with Gulf of Mexico hypoxia demonstrate worsening hypoxia in bottom waters with in- 
creased freshwater discharge, and even worse hypoxia with additional nitrogen accompanying 
the increased discharge. Conversely, the models show that a reduction in oxygen demand in the 
lower water column will result from a reduction in the nitrogen (and to a lesser degree the phos- 
phorus) load to the surface waters. In other words, hypoxia in the northern Gulf of Mexico can 
be alleviated to some degree by a reduction in the nutrient loading. 

Whole-system management of the entire watershed where most of the changes have occurred 
over the last several decades is a necessary step in alleviating the problems in the Gulf of Mexico. 
The ability to detect changes in the coastal system (given any nutrient reductions) will be com- 
plicated by an inherently variable biological system and extreme events. In addition, the eutro- 
phic state may be persistent and recovery may be slow. Still, there are several success stories for 
improvement of estuarine and coastal ecosystems in response to nutrient abatement in the wa- 
tershed or in direct discharges to the system, and similar activities on larger coastal systems with a 
much larger watershed, while daunting, are worthwhile and achievable. 



CHAPTER I 

Introduction 

Nutrient overenrichment from human activities is one of the major stresses affecting coastal 
ecosystems. There is increasing concern in many areas around the world that an oversupply of 
nutrients from multiple sources is having pervasive ecological effects on shallow coastal and estu- 
arine areas. These effects include reduced light penetration, loss of aquatic habitat, harmful algal 
blooms, a decrease in dissolved oxygen (or hypoxia), and impacts on living resources. 

Prolonged oxygen depletion can disrupt benthic and demersal communities and cause mass 
mortalities of aquatic life (Diaz and Rosenberg 1995). Hypoxia affects living resources, biological 
diversity, and the capacity of aquatic systems to support biological populations. When oxygen lev- 
els fall below critical values, organisms capable of swimming (e.g., demersal fish, portunid crabs, 
and shrimp) usually evacuate the area. The stress on less mobile fauna varies, but they also experi- 
ence stress or die as oxygen concentrations fall to zero. Important fishery resources are variably 
affected by direct mortality, forced migration, reduction in suitable habitat, increased susceptibil- 
ity to predation, changes in food resources, and disruption of life cycles (Diaz and Solow 1999). 

Hypoxia occurs in many parts of the world's aquatic environments. Hypoxic and anoxic (oxygen- 
deprived) waters have existed throughout geologic time, but their occurrence in shallow coastal 
and estuarine areas appears to be increasing, most likely accelerated by human activities. T h e  
largest zone of oxygen-depleted coastal waters in the United States, and the entire western At- 
lantic Ocean, is in the northern Gulf of Mexico on the Louisiana-Texas continental shelf. 
From 1993 to 1997, the size of the Gulf of Mexico hypoxic zone was consistently greater than 
16,000 krn2 in mid-summer, but covered 12,480 km2 in mid-summer of 1998 (Rabalais et al. 
1998, unpublished data). The zone ranks third in area behind the northwestern shelf of the 
Black Sea and the Baltic basins (Boesch and Rabalais 1991). The hypoxic zone in the northern 
Gulf of Mexico (average for 1993-97) is about the size of the state of New Jersey or the states of 
m o d e  Island and Connecticut combined. Its total extent on the bottom is twice the total sur- 
face area of the whole Chesapeake Bay, and its volume is several orders of magnitude greater 
than the hypoxic water mass of Chesapeake Bay (Rabalais 1998a). For a comparison with a por- 
tion of geography from the middle of the United States, the distance across the hypoxic zone 
from the Mississippi River onto the upper Texas coast is equal to the distance between Des 
Moines, Iowa, and Chicago, Illinois. - 
The watershed that drains through the Mississippi and Atchafalaya Rivers is also immense. T h e  
Mississippi kver  system ranks among the world's top 10 rivers in length, freshwater discharge, 
and sediment delivery and drains 41% of the lower 48 United States (Milliman and Meade 1983; 
Meade 1995). Thus, the dimensions of the problem and the drainage system that affect it are of 
much greater magnitude than most nutrient-driven eutrophication problems elsewhere. Model 
simulations, research studies, empirical relationships, and retrospective analyses of the sedimen- 
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tary record have produced considerable evidence that nutrient loading from the Mississippi River 
system is the dominant factor in controlling the extent and degree of hypoxia. 

This report describes the seasonal, interannual, and long-term variations in hypoxia in the 
northern Gulf of Mexico, and its relationship to nutrient loading. I t  also documents the relative 
roles of natural and human-induced factors in determining the size and duration of the hypoxic 
zone. 



CHAPTER 2 

This synthesis was generated from a review of the scientific literature, reports, and compilation 
of numerous data sets. Primary data are from the hypoxia studies of Rabalais, Turner, and 
Wiseman beginning in 1985 and the phytoplankton community studies of Dortch beginning in 
1990. The National Oceanic and Atmospheric Administration's (NOAA's) Nutrient Enhanced 
Coastal Ocean Productivity (NECOP) program generated a tremendous amount of data on 
Mississippi River/Gulf of Mexico interactions (Atwood et al. 1994). Another study with signifi- 
cant hydrographic and biological data was the Louisiana-Texas Physical Oceanography Program 
(LATEX) (Murray 1998). Details of data collection and methodology are provided in the cited 
papers and reports or accompany the various data sets as submitted to NECOP data manage- 
ment (Hendee 1994) or to NOAA's National Oceanographic Data Center for both N E C O P  
and LATEX data. Additional analyses of existing data were not conducted for this synthesis, but 
several needed data syntheses are identified throughout the text. 

Hypoxia is operationally defined as dissolved oxygen levels below 2 mg/l, or ppm, for the north- 
ern Gulf of Mexico. This is the level below which trawlers usually do not capture any shrimp or 
demersal fish (Leming and Stuntz 1984; Pavela et al. 1983; Renaud 1986). When dissolved oxy- 
gen values are below 2 mg/l, they are often less than 1 mg/l-a severe level that is stressful or le- 
thal to benthic macroinfauna. Dissolved oxygen of 2 mg/l equates to 1.4 mYl, and approximates 
20% oxygen saturation in northern Gulf of Mexico waters. Oxygen-deficient (less than 100% 
oxygen saturation) waters are more widespread than indicated by the 2 mg/l cutoff, but for con- 
sistency a value of 2 mg/l is used throughout this synthesis. 

Surveys of the mid-summer extent of hypoxia over a standard station grid (Figure 2.1) provide a 
broad-scale view of the extent of the hypoxic zone for interannual comparisons. A single cruise 
of this nature in mid-summer, however, provides little information on the persistence of the 
zone over large areas, or the temporal sequence of physical and biological processes that preceded 
the cruise. Surveys along transect C on the southeastern shelf off Terrebonne Bay from near- 
shore to 30-m water depth on a monthly or twice monthly basis from 1985 to 1998 provide 
better temporal resolution over a more limited area of the shelf. Transect C data provide a time 
series suitable for examining monthly- and seasonal-scale differences over a representative area of 
the Louisiana shelf and relationships with variability in Mississippi River discharge and nutrient 
flux. Station C6* (includes data from C6A, C6B, and C6) in the core of the hypoxic zone on 
transect C in 20-m water depth is the site of an instrument mooring and more detailed data 
collection and experiments. The temporal resolution for selected parameters is the best for sta- 
tion C6* and can be extrapolated for a portion of the Louisiana shelf, but not the entire shelf. 
Logistical or funding constraints and/or technology improvements altered data acquisition 
through the years, but the data are consistent, precise, and accurate. 
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Standard data collections included hydrographic profiles for temperature, salinity, dissolved oxy- 
gen, and optical properties. Water samples for chlorophyll a and phaeopigments, nutrients, sa- 
linity, suspended sediment, and phytoplankton community composition were collected from the 
surface, near-bottom, and variable middle depths. 



FIGURE 2.1. Distribution of stations for mid-summer shelf-wide surveys and mwe frequent sampling along transect C. 
NOTE: Stations C6A and C6B are locations of moored instruments; station C6, not shown, is between C6A and C6B. 
Composite data for stations C6A, C6B, and C6C comprise values for station C6*. Starred stations represent those 
that approximate the 20-m isobath. 



CHAPTER 3 

Dimensions and Variability of H y  

Hypoxic waters are distributed from shallow depths near shore (4-5 m) to as deep as 60 m, but 
are present more typically between 5 and 30 m. The distance offshore that bounds hypoxic water 
masses is contoured by the slope of the continental shelf. On  the southeastern Louisiana shelf, 
where the shelf slopes more steeply toward the Mississippi Canyon, hypoxia extends only 55 km 
from shore. O n  the central and southwestern Louisiana shelf, where the continental shelf is 
broader and the depth gradient is more gradual, hypoxic bottom waters may extend as far as 130 
km offshore. 

Hypoxia occurs not only at the bottom near the sediments, but well up into the water column 
(see Sections 3.2 and 3.4). Depending on the depth of the water and the location of the pycno- 
cline(s), hypoxia may encompass from 10% to over 80% of the total water column, but normally 
encompasses 2040%. Hypoxia may reach to within 2 m of the surface in a 10-m water column, 
or to within 6 m of the surface in a 20-m water column. Anoxic bottom waters can occur, along 
with the release of toxic hydrogen sulfide from the sediments. 

3.1 MID-SUMMER EXTENT 

Since 1985 the distribution of hypoxia on the Louisiana shelf has been mapped during mid- 
summer cruises (usually mid-July to early August, during the expected maximal extent of hy- 
poxia). (Appendix A presents contours and hypoxic areas for each year.) The sampling grid is 
similar from year to year (abbreviated cruises were conducted in 1988 and 1989) and covered 
within a five-day period. On  any cross-shelf transect, sampling is conducted from about 5-m 
water depth, or as nearshore as the research vessel can safely navigate, to as far offshore as neces- 
sary to delineate the distribution of hypoxia. 

For the period 1985-92, the zone of hypoxia was usually in a configuration of disjunct areas situ- 
ated to the west of the deltas of the Mississippi and Atchafalaya Rivers, and the bottom area av- 
eraged 7,000-9,000 km2. The area of hypoxia in mid-summer 1988 was confined to a single 
station off Terrebonne Bay. A reduced area was mapped in 1989 as part of a NURC (National 
Undersea Research Center) cruise. Bottom-water hypoxia was continuous~across the Louisiana 
shelf in mid-summer of 1993-97, and the bottom area (16,000-18,000 krn2) was twice as large 
as the 1985-92 average. The estimated bottom area mapped in mid-summer 1998 was compara- 
ble to the size in 1991. The 1998 hypoxia was concentrated on the eastern and central Louisiana 
coast from the Mississippi River Delta to Marsh Island near Atchafalaya Bay and in deeper water 
than usual (up to 50+ m deep). 
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A compilation of 13 mid-summer shelf-wide surveys (1985-97) (Figure 3.1) demonstrates that 
the frequency of occurrence of hypoxia is higher to the west of the discharges of the Mississippi 
and Atchafalaya Rwers in a down-current direction from the influence of the freshwater dis- 
charge and nutrient flux. Other gradients in biological parameters and processes are also evident 
in a decreasing gradient away from the river discharges (see Chapter 6). 

Hypoxia on the upper Texas coast is usually an extension of the larger hypoxic zone off Louisiana 
(maps in Section 3.2), although isolated areas may be found farther to the south (e-g., off Free- 
port and Matagorda Island areas) (Harper et al. 1981, 1991). Isolated conditions may be an arti- 
fact of the sampling, and very few systematic surveys have been conducted in this area, with the 
exception of the summer SEAMAP cruises (Gulf States Fisheries Commission 1982 et seq.). 
 id-summer SEAMAP cruises documented hypoxia on the Texas coast in small, isolated areas 
in 1983, none in 1984-85, and in most years during 1991-97 (K. Craig, unpublished data). 
Most instances of hypoxia along the Texas coast are infrequent, short-lived, and limited in ex- 
tent. There are no records of hypoxia south of the Matagorda Island, Texas, area (Rabalais 1992, 
updated with unpublished SEAMAP data of K. Craig personal communication). 

Hypoxia has been documented off Mississippi Sound during high stages of the Mississippi River 
and off Mobile Bay in bathymetric low areas (Rabalais 1992). There are usually more reports in 
flood years or when more Mississippi River water moves to the east of the birdfoot delta. This 
was the case in 1993 off Mobile Bay and Mississippi Sound (M. Van Hoose, personal communi- 
cation; Waller 1998). Of the 2,659 trawl, plankton, and videotaped trap stations occupied in the 
north-central Gulf of Mexico from the Mississippi River to Mobile Bay during SEAMAP 
cruises from 1984 to 1996 (Gulf States Marine Fisheries Commission 1982 et seq.), only 32 (or 
0.012%) had bottom oxygen readings less than 2 mg/l (Waller 1998). While similar physical and 
biological processes are important in the development and maintenance of hypoxia on both sides 
of the Mississippi kver  Delta, the occurrence is much more widespread, persistent, and severe to 
the west of the delta. From limited data where both sides of the delta were surveyed for hydro- 
graphic conditions, including dissolved oxygen (Ragan et al. 1978; Turner and Allen 1982a), 
there is no evidence that the area of low oxygen forms a continuous band around the delta. 

Atchafalaya R 
22- ." 

FIGURE 3.1. Distribution of frequency of occurrence of mid-summer hypoxia over the 60- to 
80-station grid from 1985 to 1997. (Data from Rabalais, Turner, and Wiseman hypoxia 
monitoring cruises.) 
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A comparison of annual estimated areal extent (Figure 3.2) was generated from data collected 
along the standard 60- to 80-station grid of the Rabalais, Turner, and Wiseman hypoxia studies. 
(See Appendix A for station locations for each year.) The entire grid was seldom fully sampled, 
and additional stations were occasionally added to the grid. Time or other logistical constraints 
often prevented the complete mapping of the extent of hypoxia, either in the offshore direction 
or to the west. Thus, the areal extent of hypoxia generated from these surveys was a minimal es- 
timate. The area estimations varied within a summer, and they should not be overinterpreted in 
making year-to-year comparisons or for identifying trends (Section 3.7). 

FIGURE 3.2. Histogram of estimated areallextent of bottom-water hypoxia (C 2 mgll) for 
mid-summer cruises in 1985-97. (Modified from Rabalais e t  al. 1 998.) 

While single mid-summer surveys provide a broad-scale description of the extent of hypoxia, they 
do not provide information on the temporal persistence of the zone over a large area. Multiple 
mid-summer surveys of hypoxia were conducted in 1993 and 1994 with funding from N E C O P  
and the LATEX Mississippi Rwer plume hydrography study (Rabalais 1998b).' Although the 
cruise tracks differed, the data provide evidence of the persistence of hypoxia on a broad scale, 
with some changes in intensity or distribution related to specific hydrographic processes. T h e  
same general area from the Mississippi River Delta to the upper Texas coast was surveyed on the 
NECOP cruises. LATEX station grids were chosen to define the coastal plumes of the Missis- 
sippi and Atchafalaya Rivers. Closure of oxygen isopleths at 2 mg/l was not feasible during the 
LATEX cruises, but was mostly accomplished for the NECOP cruises. Portions of transect C 
(NECOP) and line S1 (LATEX) and other cross-shelf transects overlapped and were suitable 
for comparisons. A third cruise was conducted during the NECOP study in July 1993 
(Bratkovich et al. unpublished data) (Figure 3.3) and provided one more example of the persis- 
tence of hypoxia over large areas (at least in 1993) with the configuration of the areas changing 
over the course of a month. 



Chapter 3: Dimensions and Variability of Hypoxia 9 -- 

1 NECOP, Bratkovich et el., JUG 1 1 2  

. . . . .  1 LATEX-B, P93-1, Rabalais, July 13-22 

,: ,..... ..'. 
@$ s2.0 (mgll) dissolved oxygen ( NECOP, Rabalais et a,., July 24-28 . . . .. . , . I 

FIGURE 3.3. Comparison of bottom-water oxygen less than 2 mgll for three cruises on the 
Louisiana-Texas shelf in July 1993. (Top panel, Bratkovich et al. unpublished data; middle 
panel, Rabalais 1998b; lower panel, Rabalais et al. 1998.)  
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There were extensive areas of hypoxia during multiple mid-July cruises in 1993 and 1994. During 
the 13-21 July 1993 cruise, the area of hypoxia extended from the transects off Terrebonne and 
Timbalier Bays on the east to the western end of the study area off Freeport, Texas (Figure 3.4). 
During the 24-28 July 1993 cruise, the hypoxic water mass did not extend as far to the west as 
during the previous cruise. Persistent winds from a southerly and southwesterly direction dis- 
placed much of the surface waters to the east (along with lower salinity and higher nutrients) as 
well as bottom water and the bottom-water hypoxia (Rabalais et al. 1998; Murray 1998). Al- 
though hypoxia was extensive during the 13-21 July cruise, it was located near the seabed and 
was somewhat patchy in distribution. One week later, hypoxia had become well developed, was 
present in much of the lower water column, was severe (well below 0.5 mg/l) at many stations, 
and was a continuous water mass. Data from stations along the C,  D', and D transects reoccu- 
pied during the first week of August 1993 (Rabalais et al. unpublished data) revealed: (1) a more 
extensive area of bottom-water hypoxia, (2) an increase in the frequency of dissolved oxygen < 
0.5 mg/l and (3) a greater prevalence of anoxic conditions-i.e., detection of hydrogen sulfide in 
bottom-water samples. 

Equally extensive and severely depleted oxygen zones were documented in mid- to late July 1994 
(Figures 3.5 and 3.6). Hypoxic bottom waters extended farther to the west off the Calcasieu and 
Sabine estuaries during the 12-18 July cruise and also at stations off Galveston. The 24-29 July 
cruise documented low oxygen conditions as far west as the Calcasieu estuary in 1994 that were 
very similar to the late July 1993 distribution. Hypoxia was displaced somewhat farther offshore 
during late July 1994 compared to the previous week. Cross-shelf transect comparisons between 
the 1994 LATEX and NECOP cruises revealed fairly consistent distributions of hypoxic waters 
and water-column structure through time. 

Differences in 1993 from 13-21 July LATEX and 24-28 July N E C O P  cruises were evident as 
(1) increasingly more depleted oxygen concentrations, (2) a hypoxic zone encompassing more of 
the lower water column, (3) an eastward shift of the lower salinity surface waters from Atcha- 
falaya Bay to off Terrebonne Bay, and (4) a shift eastward of the bottom-water hypoxia on the 
southwestern Louisiana shelf. Strong winds and high waves were present in the study area in 
mid-June because of the passage of a tropical storm across the Bay of Campeche. This wind- 
mixing event resulted in a reaeration of the water column that persisted into early July. During 
the progression of the LATEX and N E C O P  cruises, high flow of the Mississippi hver  per- 
sisted, winds calmed, stratification became re-established, and oxygen-consuming processes in 
the lower water column led to progressively lower oxygen concentrations in more of the water 
column. Figures 3.7-3.11 provide specific examples illustrating the above scenarios. 

3.3 SHELF-WIDE DISTRIBUTION IN SPRING A N D  FALL 

In addition to shelf-wide surveys during the maximal development of hypoxia, similar cruises 
(both LATEX and NECOP) were conducted in April, September, and October of selected 
years. Results from these surveys provide information on hypoxia over a large geographic region 
during the periods when it is likely to be developing or dissipating. 
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LATEX July 13-21,1993 
Bottom Dissolved Oxygen (mglL) 

30. 

29. 

29. 

28. 

NECOP July 2630,1993 
Bottom Dissolved Oxygen (mglL) 

FIGURE 3.4. Bottom-water dissolved oxygen for July 1993 LATEX and NECOP cruises. 
(Modified from Rabalais 1 998b.) 
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LATEX July 4994 
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FIGURE 3.5. Areal extent of hypoxia (5 2 mgll, stippled) for July 1994 LATEX and NECOP 
cruises. NOTE: Upper panel outlines the t w o  study areas. (Modified from Rabalais 1998b.) 
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LATEX July 1248,1994 
Bottom Dissolved Oxygen (mglL) 

NECOP July 24-29,1994 
Bottom Dissolved Oxygen (mglL) 

FIGURE 3.6. Bottom-water dissolved oxygen for July 1994 LATEX and NECOP cruises. 
(Modified from Rabalais 1 998b.) 
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LATEX 'Transect B" '711 3/93 Dissolved Oxygen (mglL) 
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FIGURE 3.7. Cross-shelf contours (transect B) for dissolved oxygen for July 
1993 LATEX and NECOP cruises as indicated. (From Rabalais 1 9986.) 
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FIGURE 3.8. Cross-shelf contours ($1 line) for dissolved oxygen and salinity 
for July 1993 LATEX and NECOP cruises as indicated. (From Rabalais 1998b.) 
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FIGURE 3.9. Cross-shelf contours (S2 line and transect E) for dissolved oxygen for July 
1993 LATEX and NECOP cruises as indicated. (From Rabalais 1 998b.) 
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FIGURE 3.10. Cross-shelf contours (S3 line and transect G) for dissolved oxygen and 
salinity for July 1993 LATEX and MECOP cruises as indicated. (From Rabalais 19986.) 
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FIGURE 3.1 1. Cross-shelf contours (S4 line and transect I; S5 line and transect K) for dis- 
solved oxygen for July 1993 LATEX and NECOP cruises as indicated. (From Rabalais 1998b.) 
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The oxygen concentration was slightly below 2 mg/l in the near-bottom waters at only one sta- 
tion off Terrebonne Bay during the LATEX April 1992 cruise (Figure 3.12). However, there 
was an area of oxygen concentration approaching hypoxia in a band along the mid- to outer sta- 
tions of the S1 and S2 lines from Terrebonne Bay to Point au Fer Island, respectively. Isolated 
areas of near-bottom waters low in oxygen but not hypoxic (2 < x < 4'mg/l) were located off the 
Sabine and Galveston estuaries. The low-oxygen conditions were confined to the lower 2 m of 
the water column, compared to a much thFcker layer of oxygen deficiency in mid-summer. 
Comparable shelf-wide NECOP data were not available for April 1992, but a cross-shelf com- 
parison between the LATEX S1 line (4/22/92) and NECOP transect C (4110-11/92) indicated 
the persistence of a mid-transect oxygen-depletion feature on both dates and a similar density 
structure. 

Hypoxic near-bottom waters were not documented in the LATEX 13-22 April 1993 cruise 
(Figure 3.12). Oxygen-deficient, but not hypoxic, waters (2 < x < 4 mg/l) were located along the 
S1, S2, and S3 lines from offshore Terrebonne Bay to offshore Atchafalaya Bay (Figures 3.12 
and 3.13). Lower oxygen concentrations were present along most of the length of the S1 line in 
the lowest 2 to 3 m of the water column. The remainder of the LATEX study area was gener- 
ally well aerated. 

In contrast, several distinct patches of hypoxic bottom waters were observed during the NECOP 
26-30 April 1993 cruise the following week that were not evident during the prior LATEX 
cruise (Figure 3.14). The distribution of the low-oxygen area off Terrebonne Bay (NECOP, 27 
April) was consistent with the lower concentrations of dissolved oxygen along the S1 line in 
mid-April (LATEX, 13 April) (Figure 3.13). Reduced winds and calm seas were conducive to 
the hrther development of hypoxia off Terrebonne Bay during the interim. 

The minimal distribution of oxygen-depleted bottom waters during April 1992 and 1993 is con- 
sistent with the long-term database for transect C off Terrebonne Bay (see Sections 3.4 and 
3.5). Mississippi k v e r  discharge was unusually low in April 1992 (approximately 15,000 m3/s), 
compared to normal high spring discharge in April 1993 (30,000 m3/s). The surface salinity field 
was fresher in the region of the S1 and S2 lines in April 1993 than in April 1992, and the den- 
sity stratification was stronger. Less oxygen deficiency in April 1992 compared to 1993 may be 
related to reduced flow, less stratification, nutrient flux, and surface net production, but may also 
result from the passage of two cold fronts during that cruise, compared to moderate southeasterly 
winds off Louisiana during April 1993 (i.e., less likely to disrupt the density structure). Continu- 
ous oxygen measurements (Appendix C) from 1992 vs. 1993 indicated that development of hy- 
poxia in 1992 was frequently disrupted by mixing events every 7-10 days. In 1993 a gradual 
decline in oxygen throughout the whole month of April indicated the lack of mixing events. 

There are no shelf-wide data for the months of May, June, or mid- to late August. 

A cruise on 10-13 September 1985 followed a series of hurricanes on August 14 and 29. Stratifi- 
cation had redeveloped in the Mississippi Rwer Bight, and a single station-was hypoxic (Figure 
3.15). The remainder of the stations were well mixed and well aerated. 

A single shelf-wide LATEX cruise in October 1992 documented a well-mixed water column 
and well-oxygenated waters throughout the column (Figure 3.12). The  period prior to and dur- 
ing the cruise was characterized by strong winds and rough seas. These results were consistent 
with the long-term database for transect C off Terrebonne Bay (see Sections 3.4 and 3.5). Hy- 
poxia has not been recorded later than the first week of October and is not likely to occur after 
strong cold fronts move across the area and/or thermal cooling destabilizes the density structure. 
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April 1992 

April 1993 

October 1992 

FIGURE 3.1 2. Bottom-water dissolved oxygen for April and October LATEX cruises as indi- 
cated. (From Rabalais 1 9 98b.) 
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FIGURE 3.1 3. Cross-shelf 
cruises as indicated. (From 

contours for dissolved oxygen for April 1 993 LATEX and NECOP 
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NECOP April 26-30,1993 
Bottom Dissolved Oxygen 1 2 mglL 

30. 

29. 

29. 

28. 

FIGURE 3.14. Bottom-water dissolved oxygen for April 1993 NECOP shelf-wide cruise (upper 
panel) and areal extent of hypoxia (5 2 mgll, stippled) (lower panel). (From Rabalais et a/. u n -  
published data.) 
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10-1 3 September 1985 
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FIGURE 3.1 5. Bottom-water dissolved oxygen for September 1 985 and areal extent of hy- 
poxia (5 2 mgll). (Drawn from data in Rabolais et al. / 986.) 
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3.4 c ROSS-SHELF SPATIAL AND TEMPORAL VARIABILITY, 
SOUTHEASTERN LOUISIANA 

The maps of the mid-summer extent of hypoxia provide a benchmark for yearly comparisons, 
even though they are minimal estimates of the total seabed area subjected to hypoxia and not 
necessarily representative of conditions throughout the summer. Also, the persistence of these 
broad areas is unknown except for limited data in 1993-94 (Section 3.2), because sequential 
mapping cruises have not been conducted throughout the year. Better temporal data that define 
the extent, persistence, and important biological and physical processes are available from the 
southeastern Louisiana shelf, where monthly data have been collected since 1985 and continu- 
ously recording oxygen meters were deployed near the bottom in water 20 m deep (Section 3.5). 

Critically depressed dissolved oxygen concentrations occur below the pycnocline from as early as 
late February through early October and nearly continuously from mid-May through mid- 
September. In March, April, and May hypoxia occurs across less of the seabed along transect C 
and is not continuous. Hypoxia is most widespread, persistent, and severe in June, July, and 
August (Rabalais et al. 1991). The persistence of extensive and severe hypoxia into September 
and October depends primarily on the breakdown of the stratification by winds from either 
tropical storm activity or passage of cold fronts. Hypoxia is rare in the late fall and winter. 

Once hypoxia occurs, much of the onshore-offshore variability, especially in mid-summer, can 
be attributed to wind-induced cross-shelf advection. Cross-shelf oxygen isopleths in Figure 3.16 
and Appendix B illustrate the changes in oxygen contours in response to different wind condi- 
tions. The low-oxygen water mass is displaced into deeper water under downwelling favorable 
conditions. Upwelling favorable conditions push the hypoxic mass closer to the barrier shore. 

Comparisons of the cross-shelf transects demonstrate that hypoxia is more widespread and severe 
in some years than in others (for transect C on the southeastern shelf). Hypoxia developed as 
early as April in 1986 and persisted through mid-October, and was extensive across the bottom 
and well up into the water column for most of the spring and summer (Figure 3.16). Similarly 
extensive and severe low oxygen was observed in 1990, 1992, 1993, 1995, and 1996 but not in 
1991 and 1994 (Appendix B); data for 1997 and 1998 are not yet compiled. 

Continuously recording (15-min intervals) oxygen meters were deployed near the bottom at 
Station C6A or C6B during the spring and fall of 1990-98. The mooring was also instrumented 
with near-surface and near-bottom current meters. (Time-series bottom-oxygen concentration 
data for 1989-97 are in Appendix C.) There is variability within and between years, but the pat- 
terns generally depict (1) gradual decline of bottom-oxygen concentrations through the spring, 
with reoxygenation from wind-mixing events; (2) persistent hypoxia and often anoxia for ex- 
tended periods of the record in May-September; (3) isolated wind-mixing events in mid- 
summer that reaerate the water column, followed by a decline in oxygen sjmilar to that seen in 
the spring; (4) isolated upwelling of higher oxygen-content waters from deeper water during 
upwelling favorable wind conditions, then a relaxation of the winds and a movement of the 
low-oxygen water mass back across the bottom at the site of the oxygen meter; and (5) wind- 
mixing events, either tropical storms/hurricanes or cold fronts in the late summer and fall that 
mix the water column sufficiently to prevent prolonged instances of dissolved oxygen concentra- 
tions less than 2 mg/l. 
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Distance (km) 
FIGURE 3.16. Cross-shelf (transect C) distribution of dissolved oxygen less than 2 mgll 
(stippled) and less than I mgll (black) for 1986. (Drawn from data in Rabalais et al. 1986.) 
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Comparative bottom-oxygen records were obtained from two locations 77 krn apart in water 20 
m deep (Rabalais et al. 1994), one of which was at the seasonally persistent hypoxic station C6A 
and illustrative of bottom oxygen conditions in the core of the hypoxic zone (Figure 3.17). T h e  
second station was closer to the Mississippi River Delta in the vicinity of station A3 (Figure 2.1). 
The oxygen meters recorded considerably different oxygen conditions for a four-month deploy- 
ment from mid-June through mid-October. At  station C6A, bottom waters were severely de- 
pleted in dissolv~d oxygen and often anoxic for most of the record from mid-June through mid- 
August, and there were no strong diurnal or die1 patterns. At the station 77 krn to the east and 
closer to the Mississippi k v e r  Delta (WD32E), hypoxia occurred for only 50% of the record, 
and there was a strong diurnal pattern in the oxygen time-series data. There was no statistically 
significant coherence between the oxygen time series at the two stations. Coherence of both 
oxygen records with wind records was weak. The dominant coherence identified was between 
the diurnal peaks in the WD32E oxygen record and the bottom-pressure record from a gauge 
located at the mouth of Terrebonne Bay. This suggested that the dissolved oxygen signal at 
WD32E was due principally to advection of the interface between hypoxic and normoxic water 
by tidal currents. 

S t a t i o n  C 6 A  
1 7  J u n e  - 1 5  O c t o b e r  1 9 9 0  

611 5 6 1 3 0  711 6 713 1  811 5 8 / 3 0  911 4 9 I 2  9  1 0 1 1  5 

D a t e  

S t a t i o n  W D 3 2 E  
1 5  J u n e  - 1 7  O c t o b e r  1 9 9 0  

D a t e  

FIGURE 3.17. Time-series plots of near-bottom dissolved oxygen concentration (mgll in I -h 
intervals) at stations C6A and WD32E. (From Rabalais et al. 1 9 94.) 
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3.6 AVERAGE CONDITIONS 

The more frequent data collections at station C6* (combined data for C6A, C6, and C6B, see 
Figure 2.1) provide a description of seasonal changes in hypoxia and related physical and biologi- 
cal variables. The data from C6* have also allowed for the development of oxygen budgets and 
models and identification of changes over an annual cycle in relation to Mississippi Rwer dis- 
charge and nutrient flux (see Sections 6.9 and 6.11). Data for surface and bottom waters for sta- 
tion C6* are illustrated in Figures 3.18 and 3.19, with the average conditions for 1985-92 
compared to the deviations from the norm during the 1993 flood conditions. Data frequency is 
greater during March-October than during November-February. 

Surface waters at station C6* reflect seasonal changes in the discharge of the Mississippi and 
Atchafalaya Fhers and seasonally variable currents that move the surface plume into the area. 
Surface salinity is normally 25-30 ppt and somewhat lower in late spring and summer. Bottom- 
water salinity averages 30-35 ppt, so that surface-to-bottom water differences and strength of 
the stratification are also greatest in late spring and summer. The concentration of lssolved in- 
organic nitrogen (NO3-, NO,:, and NH,') is highest in the spring, and the makeup of the dis- 
solved nitrogen pool is primarily NO,- in the spring, with a higher proportion of NH,' in the 
summer. Dissolved orthophosphate is generally higher in the spring, but quite variable. 
Dissolved silicate SiO; is also quite variable through the year (indicative of riverine flux and up- 
take and regeneration by diatoms). 

Surface chlorophyll a concentration as an indicator of phytoplankton biomass follows a seasonal 
trend similar to that of the dissolved inorganic nitrogen but lagged in time. Primary production 
is sustained through the summer and fall by regenerated nitrogen. Surface phaeopigment con- 
centrations follow the same pattern as chlorophyll a, but at much lower values (approximately 
five times less). There is a seasonal progression of phytoplankton taxonomic groups, with dia- 
toms being more abundant in the spring and picocyanobacteria peaking in the summer (see Sec- 
tions 3.7 and 6.4). Bottom-water chlorophyll levels follow the spring peak in the surface waters, 
and bottom phaeopigment levels (an indicator of fluxed phytoplankton and fecal pellets) are 
highest in the summer. The seasonal cycle in bottom-water oxygen is well defined, with highest 
values in the fall and winter, a decline in the spring, and lowest values in the summer. The long- 
term monthly average bottom-water oxygen concentration falls below 2 mg/l in June-August. 

Representative, average mid-summer conditions for selected stations in the core of the hypoxic 
zone were derived from the long-term averages at stations along the 20-m isobath (Figure 3.20). 
Mid-summer surface-water salinity is usually 25-30 ppt, with the values being somewhat lower 
on the southeastern shelf, especially adjacent to the Mississippi Rmer Delta (transect A'). Cou- 
pled with long-term bottom salinity values of 35 ppt, the result is a strong salinity stratification 
across the shelf (at least within the 20-m isobath). Mid-summer surface-water nutrient values 
are usually low, with slightly higher values on transects near the Mississippi and Atchafalaya 
Deltas (an example of dissolved inorganic nitrogen appears in Figure 3.20). Similarly, surface 

chlorophyll a concentrations for the 20-m stations are generally less than 5-pg/l across the shelf, 
except adjacent to the Mississippi Rwer Delta). Bottom-water dissolved oxygen levels at 20 m 
are lowest west of the Mississippi and Atchafalaya hvers (see Figure 3.1). 
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FIGURE 3.18. Surface-water quality for station C6* (composite data for Stations C6A, C6B, 
and C6) for 1985-92 average conditions (2 s.e.) compared with 1993. NOTE: n for average 
condition ranges 10-30 in March-October and 2-6 in November-February. n for 1993 is I o r  
2. (From Rabalais et al. 1998.) 
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FIGURE 3.19. Bottom-water quality for station C6* (composite data for Stations C6A, C6B, 
and C6) for 1 985-92 average conditions (5 s.e.) compared with 1993. NOTE: n for average 
condition ranges 10-30 in March-October and 2-6 in November-February; n for 1993 is I o r  
2. (From Rabalais et al. 1998.) 

Conditions during extreme events, such as the 1993 flood or the 1988 drought, can be compared 
to the long-term average conditions (see Section 3.6) or more "typical" flow years to identify 
factors that are important in influencing the distribution of hypoxia. These comparisons, how- 
ever, cannot be isolated from the physical and biological conditions occurring weeks or months 
prior to those documented during a cruise, or from the physics of the system during the surveys. 

The influence of Mississippi fiver system discharge and flux of nutrients was magnified during 
the 1993 flood (Dowgiallo 1994). Above-normal freshwater inflow and nutrient flux from the 
Mississippi and Atchafalaya fivers from late spring well into mid-summer'and early fall (Figure 
3.21) were clearly related in time and space to the seasonal progression of hypoxic water forma- 
tion and maintenance and its increased severity and areal extent on the Louisiana-Texas shelf in 
1993 (Rabalais et al. 1998). Long-term average flow of the Mississippi River (as measured at 
Tarbert Landing, Mississippi, downstream of the Old fiver Control Structure where 30% of the 
flow is diverted into the Atchafalaya fiver) exceeded both the long-term averages for March- 
July and the long-term maximum daily record between August 5 and September 10 (Boyles and 
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Humphries 1994). Flow from mid-September through December continued well above the 
long-term averages. The higher-than-average flows during late spring continued through the 
summer and early fall of 1993. Several researchers documented either higher concentrations of 
riverine nutrients or flux of nutrients to the Gulf of Mexico in 1993 (Goolsby et al. 1993; Gool- 
sby 1994; Whitledge 1994; JustiC et al. 1997; Rabalais et al. 1998). Nitrate flux during the spring 
of 1993 was two times higher than the previous eight-year average and three- and fourfold 
higher in July and August, respectively, than the long-term average (JustiC et al. 1997). 

Surface-water salinity at station C6B was much lower during May-October 1993 than the aver- 
age value for the previous eight years (Figure 3.18). Bottom-water salinity was similar to the 
long-term average and resulted in greater surface-to-bottom salinity differences during May- 
October in 1993. Nitrate concentrations in surface waters that are normally elevated in spring 
were also elevated in the spring of 1993 and continued at higher-than-normal levels through 
October (exception in September). Total dissolved inorganic nitrogen in surface waters in 1993 
paralleled normal elevated levels in spring and additionally high values in October 1993. Silicate 
concentrations were well above the long-term average in July, August, and October 1993. Phos- 
phate levels in 1993 were generally lower than the long-term spring averages, but higher than 
the summer and fall averages, except in September. 
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FIGURE 3.20. Surface- and bottom-water quality data for 20-m depth stations on each tran- 
sect from the Mississippi River (Transect A') to the upper Texas coast (Transect K) for the 
long-term average conditions of 1985-92 (? s.e.) compared with 1993 (stations shown in Fig- 
ure 2.1. NOTE: n for the average conditions ranges 6-9; n for 1993 is  I or 2 (resampling o f  
station C6B). (From Rabalais et a/. 1998.) 
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FIGURE 3.2 1.  Daily discharge of the Mississippi River at Tarbert Landing. (Data from U .  S. 
Army Corps of Engineers.) - 



3 2 Characterization of Hv~oxia  

Surface-water chlorophyll a concentrations peaked in April and May 1993, similar to the long- 
term average, but continued well above average during June-October (Figure 3.18). Phaeopig- 
ment concentrations in surface waters for 1993 were similar to the long-term average. Total 
phytoplankton numbers were approximately an order of magnitude greater in August-October 
1993 than the 1990-92 average (Figure 3.22). Most of this increase in abundance was due to in- 
creases in small (1- to 2-pm), coccoid cyanobacteria. Summertime shelf phytoplankton abun- 
dance is typically dominated by cyanobacteria, but diatoms that are much larger (5-100 pm) 
usually dominate the biomass (see Section 6.4). During July-September 1993, however, esti- 
mated cyanobacterial biomass was two times greater than the estimated diatom biomass (Dortch 
1994). Although cyanobacterial numbers and biomass increased the most, diatom numbers also 
increased threefold during July-September 1993 compared to the 1990-92 average. In contrast 
to the increases in cyanobacteria and diatoms, there was an order of magnitude decrease in dino- 
flagellate numbers. Chlorophyll a levels in bottom waters during June-September 1993 were 
lower than the long-term average. Bottom-water phaeopigment concentrations (as an indicator 
of fluxed degraded surface-water chlorophyll a biomass) were generally higher than the long- 
term averages for most spring, summer, and fall months in 1993. Bottom-water oxygen in 1993 
followed the long-term seasonal decline through spring and summer until the peak in summer 
flooding in August and September, when near-anoxic conditions prevailed (Figure 3.19). 
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FIGURE 3.22. Comparisons of abundance of total phytoplankton, total cyanobacteria, total 
diatoms, and total dinoflagellates in 1993 at stations C6A or C6B compared to average data 
for 199 1-92. NOTE: n for average conditions for most months is 3; n for 1993 is I. (From Ra- 
balais et al. 1998.)  
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Surface-water signatures in July 1993 of less saline, nutrient-rich, and high chlorophyll a 
biomass waters reflected the sustained and high freshwater outflow of the flooded Mississippi 
River system (Figure 3.20). Persistent southerly and southwesterly winds were typical for much 
of July through mid-August 1993 (Walker et al. 1994), causing the retention of large amounts 
of fresh water on the Louisiana shelf and upper Texas coast. Surface-water salinity along the 20- 
m isobath in 1993 was consistently and usually much lower than the long-term, mid-summer 
average, except on transects J and K to the west (Figure 3.20). Elevated concentrations compared 
to long-term averages were demonstrated for nitrate (transects A'-D), ammonium (transects 
A'-B), silicate (transects A'-D), and phosphate (transect A'). Substantially lower-than-average 
bottom-water dissolved oxygen values were found over most of the Louisiana inner shelf in 
1993. 

The size of the hypoxic zone in 1993 (estimated from N E C O P  data, 60- to 80-station grid) was 
two times greater in areal extent than the 1985-92 summer average (Figure 3.2). Results from 
three cruises in July 1993 that mapped bottom-water hypoxia (Figure 3.3) indicated that the hy- 
poxic zone extended onto the upper Texas coast in early to mid-July, but was pushed back onto 
the Louisiana shelf in late July. These results are consistent with the winds and the acoustic 
Doppler current profiler data during mid- and late July (Murray 1998). 

A 52-year low river flow of the Mississippi k v e r  occurred in 1988, and the response of the ma- 
rine ecosystem was documented (Rabalais et al. 1991). Discharge began at normal levels in 1988 
and quickly dropped to some of the lowest levels on record during the summer months (Figure 
3.21). Normal flow in August is 8,000 m3/s; but from June through August 1988, flow dropped 
to 4,000 m3/s. In  early June, hydrographic conditions on the southeastern Louisiana shelf were 
similar to those observed in previous years-i.e., a stratified water column and some areas of oxy- 
gen-deficient bottom waters. By mid-July, few areas of lower surface salinity were apparent, 
there was little density stratification, and low-oxygen conditions were virtually absent. Reduced 
summer flows in 1988 also resulted in reduced suspended sediment loads and increased water 
clarity across the continental shelf. The  critical depth for photosynthesis was well below the 
depth of the seabed (in depths of 15-30 m), and photosynthetic production of oxygen in bottom 
waters was likely. A typical seasonal sequence of nutrient-enhanced primary production and flux 
of organic matter progressed in the spring and led to the formation of hypoxia. However, with 
the lack of stratification and the addition of oxygen in bottom waters via photosynthesis, hypoxia 
was not maintained. 

The difference in hypoxia in a drought versus a flood year suggests a relationship between river 
discharge and the extent of hypoxia. A simple linear regression of mid-summer area and mean 
Mississippi k v e r  discharge for the preceding year produced an R2 of 0.934 for nine years of data 
from 1985 to 1993 (Wiseman et al. 1997). This relationship, however, fails to hold for the addi- 
tional years of 1994-98. Thus, a comparison of mid-summer area (a minimal and rough esti- 
mate) versus discharge is not entirely satisfactory. There is evidence, for example, that carbon 
burial in 1993 was sufficient to support the extensive 1994 hypoxic zone despite "normal" flow 
conditions Uustic' et al. 1997). There is variability in the mid-summer extent of hypoxia due to 
physical conditions at the time of sampling-for example, the reduced mid-summer size in 1997 
and 1998 due to the passage of a hurricane on the southeastern portion of the study area and the 
current regime, respectively. Stronger relationships are evident for hypoxia versus river discharge 
and nutrient flux with time and spatial lags (see Sections 6.2 and 6.11). A needed analysis is the 
regression (cross-correlation with time lags) of more precise volume estimates of shelf-wide hy- 
poxia in mid-summer and for transect C through the year with river discharge and nutrient flux. 



CHAPTER 4 

Physical ceanography 

Two principal factors lead to the development and maintenance of hypoxia: a physically stratified 
water column and decomposition of fluxed organic matter. The physics of the system define 
where hypoxia can occur, and the biological processes of carbon production, flux, and respiration 
lead to oxygen depletion. The relative influence of these factors varies among environments with 
hypoxia, and within an environment over an annual cycle. In the northern Gulf of Mexico the 
two are complexly interrelated and directly linked with the dynamics of the Mississippi and 
Atchafalaya River discharge. The physical features of the system (described below) and the bio- 
logical processes (described in Chapter 6) cannot be separated from each other and must be con- 
sidered within the overall context of a large river interacting with a coastal sea. 

Hypoxia in the northern Gulf of Mexico occurs on the inner to mid-continental shell; rather 
than in a confined bight, enclosed sea, or estuary. The physical features that influence it are, 
therefore, of a shelf-wide scale. Also, the river flow that influences nutrient levels and freshwater 
inputs is large. The Mississippi River and its distributaries contribute 580 km3/yr of fresh water 
to the Gulf of Mexico, along with sediment yields of 210 x lo6 dyr, 1.6 x lo6 t/yr nitrate, 0.1 x 
lo6 dyr  phosphorus, and 2.1 x lo6 dyr silica (Mihman and Meade 1983; Goolsby et al. 1999). 
The Mississippi River system discharge is a dominant factor in the physical oceanography and 
ecology of the northern Gulf. 

4.1 PLUMES AND COASTAL CIRCULATION 

The Mississippi and Atchafalaya Rivers are the primary riverine sources of fresh water to the 
Louisiana continental shelf (Dinnel and Wiseman 1986) and to the Gulf of Mexico. Combined, 
they account for 80% of freshwater inflow from U.S. rivers to the Gulf (Dunn 1996). The dis- 
charge of the Mississippi River system is controlled such that 30% flows seaward through the 
Atchafalaya River Delta, and 70% through the Mississippi River Delta. The former enters 
through two outlets into Atchafalaya Bay, a broad shallow embayment; the latter enters the 
Gulf through multiple outlets, some in deep water and some in shallow water. Approximately 
53% of the Mississippi River Delta discharge flows westward onto the Louisiana shelf (U.S. 
Army Corps of Engineers 1974; Dinnel and Wiseman 1986), and the general flow of the 
Atchafalaya River effluent is to the west. The amount of water flowing eastward onto the Mis- 
sissippi-Alabama shelfis unclear. Mississippi River influence, however, may be seen as far east as 
the Atlantic seaboard, under combinations of major floods and appropriate oceanographic con- 
ditions (Atkinson and Wallace 1975; Tester and Atkinson 1994; Walker et al. 1994). 
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The less dense, fresh-river discharge floats atop and mixes with the ambient coastal sea water. 
Initially, water enters the shelf as a buoyant plume near the river mouth. The plumes from 
Atchafalaya Bay and Southwest Pass of the Mississippi k v e r  Delta (and possibly other outlets of 
the Mississippi Delta) turn anticyclonically until they encounter the Louisiana coast (Wiseman 
et al. 1975). At this point they merge into the highly stratified Louisiana Coastal Current, often 
referred to as the "extended plume." The current flows westward along the Louisiana coast much 
of the year. The buoyant, low-salinity waters are separated from the waters of the mid-shelf re- 
gion by a strong surface-to-bottom frontal zone that typically intersects the bottom near the 10- 
15 m isobath. This depth is somewhat deeper than expected from theory, because the winds are 
generally downwelling-favorable in the region and tend to force the lighter water against the 
coast. The significant depths of water (30-80 m) over which the Mississippi k v e r  plume flows 
for most of its journey before attaching to the coast tend to preclude the development of hypoxia 
in all but the worst conditions. Once merging into the Louisiana Coastal Current, the nutrient- 
laden, buoyant waters respond to a different set of dynamics. 

Cochrane and Kelly (1986) described the seasonal mean circulation and surface salinity patterns 
within the Louisiana Coastal Current. Down-coast flow occurs throughout most of the year in 
response to both the buoyancy forcing from river discharge and the winds that are generally 
from the east in spring, fall, and winter over the Louisiana-Texas shelf (Gutierrez de Valasco 
and Winant 1996). A narrow band of low-salinity surface water extends from the Mississippi 
River Delta to, at least, the Texas-Mexican border (Smith 1980). Winds along the south Texas 
coast are up-coast in summer and push water northward and eastward toward the Louisiana 
shelf. A nearshore convergence zone occurs and low-salinity waters flow offshore as a jet 
(Murray et al. 1998). This convergence zone is believed to migrate up the coast until mid- 
summer. The flow reversal can extend as far east as Terrebonne Bay (Kimsey and Temple 1963, 
1964; Figure 4.1). 

By late summer, the winds relax and return to a more southeasterly and easterly flow over the 
Texas shelf, and the low-salinity surface band near the coast again extends into Texas waters. 
Hurricanes and tropical storms affect the hypoxic region during the summer and fall. The strong 
stirring and increased currents associated with these storms often vertically homogenize the wa- 
ter column, but stratification quickly returns following the storm. During the winter, the domi- 
nant synoptic weather pattern is cold-air outbreaks that affect the region every three to ten days 
(DiMego et al. 1976), blowing the waters offshore and up the coast. Cold-front activity is 
minimal during the summer. 

The salinity signals associated with pulses of river discharge appear to travel westward along the 
coast at significant speeds (Wiseman and Kelly 1994). If the highly energetic, wind-driven sig- 
nal is filtered from consideration, the cross-shelf dynamical balance at periods longer than ten 
days appears to be in geostrophic balance (Wiseman et al. 1997). The swiftest currents observed, 
however, are associated with storm winds. Except when under the direct influence of a hurri- 
cane, these winds are the result of cold-air outbreaks. Current speeds can exceed 50 cm/s in the 
surface layers. During the winter, similar speeds are observed in the near-bottom waters (Crout 
et al. 1984). In the stratified season, however, long-term-averaged, near-bottom speeds at station 
C6B in 20 m suggest a mean speed of 1 cm/s to the west, although instantaneous velocities can 
be significantly higher (Figure 4.2). 

Besides mass and buoyancy, the effluent plumes from the Mississippi River carry suspended 
sediments and nutrients that are important to the productivity of the shelf. The  nutrients fuel 
phytoplankton growth, while the suspended sediments alter the available light field. 
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FIGURE 4.1. Acoustic Doppler current profiler data from mid-July 1993 at 4.7-m (upper 
panel) and 1 1.7-m (lower panel) depths in the water column. NOTE: The current direction is 
away f rom the open circle. (From Wiseman et al. unpublished data). 

At the river mouth, suspended sediment concentrations in the plume are variable, but generally 
range from a few to a few hundred mg/l (Wright 1970; Walker 1996). The heavier grains settle 
rapidly from suspension, and only the fine silts and clays are carried greater distances. The associ- 
ated suspended sediment can be observed in satelhte images, and its variability has been used to 
map the spatial characteristics of the plume from Southwest Pass under differing conditions of 
discharge and wind (Walker 1996). The highest suspended sediment concentrations are ob- 
served relatively close to the river mouth, within a few tens of lulometers of the mouth, at most. 
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FIGURE 4.2. 1994 near-bottom current meter data from station C6B in 20-m water depth. 
NOTE: A 25-hour running mean filter has been applied to  the data. The upper plot is  east- 
ward (along-shore) speed, and the lower plot is northward (cross-shore speed). (From Wise- 
man et al. unpublished data). 

The general westward flow of the river effluent has an obvious effect on water quality west of 
the Mississippi Rwer Delta. Data from numerous hydrographic cruises in all months between 
850W (just east of Cape San Blas, Florida) to 950W (just west of Galveston Bay, Texas) in water 
10-100 m deep were compiled by Rabalais et al. (1996) (Figure 4.3). Lower surface salinity values 
and shallower Secchi disk depths are apparent to the west of the Mississippi River Delta, with 
additional influences apparent near the Atchafalaya kver  Delta (920W). A more pronounced 
decrease in concentration of silicate over an equal distance from the deltas when compared to the 
salinity plot indicates a nonconsenrative mixing due to biological uptake. Similar plots of nitrate 
and phosphate (not illustrated) indicated the same biological uptake processes. 
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FIGURE 4.3. Plots of surface salinity, Secchi disk depth, and silicate concentrations from a 
series of hydrographic cruises in 10-1 00-m water depth for 1972-9 1 ,  for the months and lon- 
gitudes indicated. NOTE: The Mississippi River delta is  at  90°W; the Atchafalaya River delta is 
at 92"W. (From Rabalais et al. 1996.) 

Freshwater discharge dictates, along with seasonal atmospheric warming, a strong seasonal 
pycnocline that is necessary for the development and maintenance of hypoxia. The  relationships 
between hypoxia and stratification (either surface-to-bottom differences in sigma t or 6 sigma 
t/depth) within the Louisiana Coastal Current are correlated in time and space (Figure 4.4). 
This relationship does not always hold, and the depth of the main pycnocline does not always 
track the depth of the oxycline (Figure 4.5). 

The existence of a strong near-surface pycnocline is a necessary condition for the occurrence of 
hypoxia, while a weaker, seasonal pycnocline guides the morphology of the hypoxic domain 
(Figures 4.6 and 4.7) (Wiseman et al. 1997). The height above the bottom of the 2 mg/l oxygen 
isopleth is closely correlated with the height above bottom where the density gradient first 
achieves a minimum value of 0.01 kg/m3/m (Figure 4.5). Short-term variability in stratification is 
due to atmospheric forcing and vertical mixing (Wiseman et al. 1992, 1997); under weak forc- 
ing, this variability is largely due to advection (Rabalais et al. 1994). 
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FIGURE 4.4. Differences in surface- to bottom-water values for sigma t and dissolved oxygen - - 
concentration by month for station C5 during 1986. (From ~abalaTs et al. 1 99 I.) 
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FIGURE 4.5. Left panel: Scatter plot of the depth of the main oxycline against the depth of 
the main pycnocline for 1985-93 data. Right panel: Scatter plot of the height of the 2 mgn 
dissolved oxygen content surface above the bottom against the height of the 0.01 kg/m3hn 
density gradient above the bottom. (From Wiseman et al. 1 99 7.) 
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Stratification goes through a well-defined seasonal cycle that generally exhibits maximum strati- 
fication during the summer and weakest stratification during the winter. This is due to the 
strength and phasing of river discharge, wind stirring, regional circulation, and air-sea heat ex- 
change processes. Beginning in early autumn, the summer stratification is disrupted by the first 
strong cold-air outbreaks. Vertical homogenization of the water column allows reoxygenation of 
bottom waters, but after the frontal passage, the water column often restabilizes and hypoxic 
conditions reoccur. These same cold-air outbreaks that cause mechanical stirring of the water by 
wind stress are accompanied by significant air-sea heat exchanges due to evaporation. The heat 
loss to the surface waters tends to destabilize the water column. This is partly counterbalanced by 
fall discharges from the Mississippi and Atchafalaya Rivers. The strongest cold-air outbreaks 
generally occur during January through March, when river discharge is low or increasing from 
an earlier minimum. The strong wind and intense heat losses from the surface waters of the 
coastal ocean result in vigorous stirring of the waters and convective overturning. 

In the spring, cold-air outbreaks diminish, river flow is high, and thermal heating begins to sta- 
bilize the water column. Stratification develops rapidly, and strong, shore-parallel frontal 
boundaries associated with the Louisiana Coastal Current develop (Wiseman and Kelly 1994; 
Murray 1998). During the mid-summer wind reversal along the Texas and Louisiana shelves, 
strong synoptic weather patterns are infrequent. The wind reversals and associated current re- 
versals, respectively, spread light coastal waters across the shelf due to Ekman coastal divergence 
and return fresher water initially carried into Texas waters back to the Louisiana shelf. Summer 
solar heating is intense and contributes to stratification. These processes result in a strong pycno- 
cline that is spread broadly across the shelf. Strongest stratification, however, is associated with 
the coastal current near shore. 

4.3 ELATIVE lf MPORTANCE OF PHYSICAL FACTORS 
No one factor predicted all elements of the physical structure of the water column during 
monthly sampling in 1992, but those explaining most of the variability were bottom temperature 
and salinity, depth, and vertically integrated volume of fresh water (McNaughton 1998). T h e  
potential energy anomaly (PEA)is the amount of energy per unit volume that is required to 
completely homogenize the water column and is a measure of the strength of stratification 
(Simpson et al. 1993). The strongest relationship among the physical measurements was that of 
PEA and the thickness of the hypoxic layer, and indicates that as stratification increased, the 
hypoxic layer thickened (McNaughton 1998). Physical parameters, however, explained less than 
40% of the shelf-wide variance of the distribution of dissolved oxygen for the study period of 
1992 (McNaughton 1998). Although understanding the physical structure of the water column 
is relevant to the study of dissolved oxygen cycling, the impact of biological activity on dissolved 
oxygen concentrations is essential and must be complemented with physical measurements. A n  
integrated and coordinated surveying program is essential for the documentation of oxygen con- 
centrations and the extent of shelf hypoxia and the relevance of physical and biological processes 
in its formation and maintenance. 
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FIGURE 4.6. Cross-shelf contours of density, salinity, and dissolved oxygen for I 2  July 1995, 
with vertical profiles of salinity, temperature, and dissolved oxygen for station C6B. (Rabala is  
et al. unpublished data.) 



42 Characterization of Hypoxia 

ower Water Column Thermocline 
Cross-Shelf Con tours Stations CI-9 

Temperature 
("C> 

Salinity %O and Temperature OC 
~ ? 2 2 + ~ ~ ~ 3 2 3 l 3 5  

> 
i 

._.I 

0 1 2 3 4 5 6 7 8  

Dissolved Oxygen (nag&) 

FIGURE 4.7. Cross-shelf contours of density, salinity, and dissolved oxygen for 19 August 
1995 with vertical profiles of salinity, temperature, and dissolved oxygen f ~ r  station C7. 
(Rabalais et ol. unpublished data.) 



CHAPTER 5 

River Discharge and Flux of 

The combined discharges of the Mississippi and Atchafalaya Rivers account for 80% of the total 
freshwater input to the U.S. Gulf (calculated from U.S. Geological Survey stream-flow data for 
37 U.S. streams discharging into the Gulf of Mexico, Dunn 1996). A conservative estimate for 
the 1930-97 dscharge of the Mississippi River system, estimated as the sum of the discharges at 
Tarbert Landing and Simmsport, is slightly over 19,000 m3/s (Bratkovich et al. 1994). 

Spectra of the discharges exhibit a strong, well-defined annual peak and a broad, flat plateau out 
to frequencies of about 0.01 cycles per day (cpd). The Atchafalaya and Mississippi River dis- 
charges are highly coherent (coherence squared 2 0.9) out to frequencies of 0.01 cpd, and the 
phase between the two signals remains near zero degrees. The long-term peak flow occurs in 
March, April, and May, and the long-term low flow is in summer and early fall (Figure 3.21). 
Monthly average flow of the Mississippi River above the diversion point for the Atchafalaya 
River is a little over 14,000 m3/s in spring and decreases to below 8,500 m3/s in August (Rabalais 
et al. 1991). Although flow is reduced in summer, large-scale circulation patterns facilitate the 
retention of the fresh water on the shelf (see Section 4.1). 

There is significant interannual variability in discharge (Figure 3.21), but the 1820-1992 average 
rate (multi-decadal time scale) for the Mississippi River at Vicksburg is remarkably stable near 
14,000 m3/s (Figure 5.1) (Turner and Rabalais 1991). Within decades there are upward and 
downward trends in river discharge; but the long-term average does not differ from zero. 

Since the early 1700s humans have altered the morphology and flow of the Mississippi River. 
Levee construction began around 1717 and increased gradually until the 1880s when the rate 
was accelerated. Following the 1927 flood, the river levee system was greatly extended and stabi- 
lized, and the U.S. Army Corps of Engineers began an extensive flood-control program of 
channelization and construction of levees and storage reservoirs. As a result, there has been a no- 
ticeable decrease in peak discharges since the 1920s and an increase in accumulated water storage 
in the basin (Everett 1971). Captain Henry Shreve created Old River 80 miles north of Baton 
Rouge in 1831 to cut off a loop of the Mississippi River to shorten navigation. The upper por- 
tion eventually silted up, with the lower limb remaining as a link connecting the Mississippi, 
Atchafalaya, and Red Rivers. The direction of flow in Old River varied, depending on the 
height of the Mississippi and Red Rivers. Reversals in flow, however, became less frequent as the 
Atchafalaya River began enlarging itself through the capture of increasingly greater amounts of 
the Mississippi's flow. No eastward flow occurred in Old River after 1945. T o  prevent the 
Atchafalaya River from becoming the main channel of the Mississippi below Old River, con- 
struction was authorized in 1954 for the Old River Control Structure that dammed the Old 
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k v e r  and controlled the amounts of water into the Atchafalaya Basin. Flood damage to the 
control structure in 1972-73 lead to an auxiliary structure that was completed in December 1987. 
Since 1977 the U.S. Army Corps of Engineers has maintained the amount of water delivered 
from the Mississippi River to the Atchafalaya Basin at 30%. Some variability occurs in the ob- 
served Atchafalaya discharge because of contributions from the Red River to the Atchafalaya. 

 annual e l 0  Year Moving Average 
0 T I 

Year 
FIGURE 5.1. Annual discharge of the Mississippi River at Vicksburg, Mississippi, with 10-year 
running average superimposed. (Data from U.S. Army Corps of Engineers.) 

Bratkovich et al. (1994) reported that the discharge of the Atchafalaya increased during the 
course of the record examined by them (1900-1992) (Figure 5.2). This trend was statistically 
significant when tested with a seasonal Kendall tau test for trend (Hirsch et al. 1982) and was 
associated with the tendency of the river to increasingly capture flow from the Mississippi River 
proper (up to the 1977 mandate for 30%). An effect likely to occur in the offshore region as a 
result of increased flow through the Atchafalaya Delta is an increase in stratification west of 
Atchafalaya Bay and further westward into Texas waters, and a reduction in stratification be- 
tween the present birdfoot delta and Atchafalaya Bay. Further human-caused or natural capture 
of more flow down the Atchafalaya would magnify these effects in the offshore area. 

Less obvious is a statistically significant and increasing trend in the Mississippi k v e r  discharge 
for 1900-1992 as measured at Tarbert Landing (Bratkovich et al. 1994). I t  appears to be due to a 
tendency for increasing discharge in September through December. This period, however, is 
much less important in the coastal ocean than are spring and summer in the timing of impor- 
tant biological processes that lead to the development of hypoxia or the physical processes im- 
portant in its maintenance (see Chapters 4 and 6). If a longer period of annual discharge were 
considered (e.g., Figure 5.1 for the early 1800s to present), the trends since the 1950s are obvious 
but are concealed within high interannual variability and no long-term change over a century 
and a half. Whether there are differences or not in long-term trends for freshwater discharge is 
clearly attributable to the period of record examined. When considering changes to the offshore 
ecosystem related to physical forcing and/or biological processes stimulated by nutrients, it is im- 
portant to consider the river discharge for the particular period of concern. 
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Figure 5.2. The 92-year annual average water discharge time-series data for the lower Missi s- 
sippi River, Atchafalaya River, and combined flow. NOTE: The lower panel shows the flow r a -  
t io for the same time period; Atchafalaya River t o  total flow. Asterisks are centered, decadal 
running-mean-averaged values (last values are partly extrapolated). Dashed horizontal lines 
are 92- year average values. The Atchafalaya River t o  total f low has been strictly regulated 
at -30% since 1977. (From Bratkovich et a/. 1994.) 

The light regime in the coastal regions has an effect on phytoplankton populations and vice 
versa and is affected by changes in the quantity, composition, and timing of flux of particulate 
materials. The suspended sediment loads carried by the Mississippi k v e r  to the Gulf of Mexico 
have decreased by one-half since the Mississippi Valley was first settled by European colonists 
(Meade et al. 1990). Alterations occurred as a result of deforestation and agriculture, changes in 
land management, and construction of dams, diversions, and levees. The decrease in suspended 
sediments has happened mostly since 1950 when the largest natural sources of sediments in the 
drainage basin were cut off from the Mississippi River mainstem by the construction of large res- 
ervoirs on the Missouri and Arkansas hvers (Meade and Parker 1985). This large decrease in 
sediments from the western tributaries was counterbalanced somewhat by a five- to tenfold in- 
crease in sediment loads in the Ohio kver  as a result of deforestation and row-crop farming 
(Keown et al. 1986). The composition of particulate material discharged by the Mississippi k v e r  
system has also changed during the past century (Kesel1988). 
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The high suspended sediment load of the Mississippi Rtver should be an important source of ni- 
trogen to the adjacent Gulf of Mexico (Mayer et al. 1998). Organic nitrogen desorbs from sedi- 
ment particles in the freshwater/seawater mixing zone and eventually contributes to the total 
nitrogen load of the river to the Gulf that influences phytoplankton growth. A decrease in 
sediment load could affect both the particulate and the dissolved organic nitrogen flux. Because 
Mississippi Rwer suspended sediment load has decreased (Meade 1995) and the dissolved inor- 
ganic nitrogen pool has increased from anthropogenic influences (Turner and Rabalais 1991), 
the relative importance of the organic nitrogen associated with the suspended sediment load may 
be less for the Mississippi River than for other large world rivers (Mayer et al. 1998). Long-term 
changes in organic nitrogen flux cannot be documented because that component has been 
measured only since 1972 (Goolsby et al. 1999). There are indications, however, that organic 
nitrogen may have contributed to increased production offshore during the 1800s' clearing of 
land in the Midwest (see Chapter 7). 

Because turbidity limits primary production in the plume of the Mississippi Rwer, any reduction 
in the suspended sediment load could be manifested in clearer water and enhanced productivity. 
In fact, productivity has increased (see Sections 7.4 and 7 .9 ,  but the overall turbidity of the wa- 
ter column has increased in response to increased chlorophyll biomass (Figure 5.3; Turner and 
Rabalais 1998b). A decade-long change in the light regime is possible for two reasons. First, the 
suspended load of the Mississippi Rwer has changed with land use, water-control structures, and 
water-delivery patterns. These changes would be limited to waters < 20 ppt salinity because of 
the sedimentation of suspended inorganic sediments. The second basic influence on decadal 
light regime changes involves the doubling or tripling of nitrogen concentration in the Missis- 
sippi River since the 1950s-60s (Turner and Rabalais 1991; JustiC et al. 1995a; Goolsby et al. 
1999)' whereas the concentration of silicate declined by 40-50%. These nutrient changes affect 
the quantities and quality of phytoplankton in the adjacent shelf and, therefore, the pigments. I t  
is noteworthy that the decline in the Secchi disk depth was 3-4% annually, which is about the 
same rate of increase in nitrate concentration in the Mississippi River (2.5% annually) during the 
same period (Turner and Rabalais 1991). 

5.3 NUTRIENT FLUX 

Three nutrients in various forms are important for freshwater and marine phytoplankton 
growth and production. The pervasive relationships between phosphorus and the biomass and 
species of freshwater phytoplankton in North America are well established (e.g., Shindler 1977, 
1978; Vollenwider and Kerekes 1980). Nitrogen is considered a more dominant influence than 
phosphorus in estuarine and marine communities (e.g., D'Elia et al. 1986; Harris 1986; Valiela 
1984), but not all coastal systems are nitrogen limited (e.g., the Huanghe in China, Turner et al. 
1990). Diatoms, an important food group for fish and invertebrates, require silicon to build their 
cell walls (frustules). Diatoms are the dominant biomass component of many marine and estu- 
arine phytoplankton communities, particularly in the spring. If silica is limited, other non- 
siliceous forms, such as dinoflagellates or cyanobacteria, may become prbportionally more im- 
portant in the phytoplankton community. Some of these forms are harmful or toxic in bloom 
proportions. The concentration and relative proportion of these three nutrients to each other are 
important in phytoplankton production and composition, and subsequent effects on food webs, 
energy flow, and trophodynamics (Dortch and Whitledge 1992; JustiC et al. 1995a, 1995b; 
Turner et al. 1998). 
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Figure 5.3. Preliminary analysis of the average Secchi disk measurements on the Louisiana 
shelf west of the Mississippi River Delta. NOTE: The data are restricted t o  stations wi th sur- 
face-water salinity between 20 and 25 psu and depths between 10 and 100 m. The slope o f  
the regression line is significant at the 8% level of significance. The e r ro r  bars are +I s.e. (From 
Turner and Rabalais 1 998b.) 

5.3.1 Contribution of Mississippi and Atchafalaya 
Rivers versus Other Sources 

Dunn (1996) calculated the nutrient inflows from 37 U.S. streams discharging into the Gulf of 
Mexico from Texas through Florida for water years 1972-93. The combined flows of the Mis- 
sissippi and Atchafalaya Rivers account for 80% of the annual freshwater discharge and 91% of 
the total nitrogen load. If only streams between Galveston Bay (Texas) and the Mississippi k v e r  
Delta are considered (i.e., those most likely to influence the zone of hypoxia), the combined 
flows of the Mississippi and Atchafalaya Rivers account for 96% of the annual freshwater dis- 
charge and 98.5% of ;he total nitrogen load. Similar calculations for annual total phosphorus 
load are 88% of the total 37 streams and 98% of the streams between Galveston Bay and the 
Mississippi River Delta for the relative contribution of the Mississippi and Atchafalaya Rwers. 

The relative contribution of direct atmospheric deposition of nitrogen to the nitrogen load af- 
fecting the area of hypoxia was estimated by R. Artz (see Goolsby et al. 1999) for an area twice 
the size of the hypoxic zone. The contribution of the Mississippi and Atchafalaya Rivers is 1,500 
metric tondyear, and the contribution of atmospheric deposition is 15 metric tondyear, or 1%. 

There are no studies of ground-water discharge to coastal waters for the coastlines of Texas, 
Louisiana, Mississippi, or Alabama (J. Cable, personal communication). Studies do exist from 
Florida and the Yucatan Peninsula, but these environs differ substantially in geologic formation 
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(karsts). Ground-water sources to the area affected by hypoxia are unlikely to be important be- 
cause of the lack of shallow aquifers along the Louisiana coast. Any contributions of ground 
water to the coastal waters of the northern Gulf would probably become entrained in the Lou- 
isiana Coastal Current, where strong, shore-parallel frontal boundaries develop and where net 
flow is generally to the west alongshore, except for reversals in mid-summer. For comparisons 
with other sources-eg., riverine and atmospheric-it may be worthwhile to provide some in- 
formation from other areas. 

For the northeastern Gulf of Mexico, the total N input from ground water to Apalachee Bay 
was estimated to be 11 kg/ha/yr 0. Cable, personal communication), which slightly exceeded the 
combined flux of total nitrogen from the Ochlockonee and Sopchoppy bvers (calculated from 
data in Fu and Winchester 1994). Ground-water inputs to the South Atlantic Bight were esti- 
mated (based on summer conditions) to be about 40% of the river-water flux to the coastal wa- 
ters (Moore 1996). These estimates demonstrate the potential importance of ground-water flux 
to coastal waters. O n  the scale of contributions from the Mississippi and Atchafalaya Rivers, 
however, estimates.for the northeastern Gulf of Mexico (11 kg/ha/yr) would be a minimal con- 
tribution (if similar values were to be expected from the central and northwestern Gulf), com- 
pared to the Mississippi and Atchafalaya River flux. The contribution of ground water as a 
nutrient source fueling hypoxia is unknown but unlikely, and the potential for transfer in a 
cross-shelf direction is minimal. 

The relative contribution of offshore sources of nutrients from upwelled waters of the conti- 
nental slope is unknown. Onwelling of nitrate from deeper waters may be important in shelf- 
edge (100-m depth range) cycling of carbon and nitrogen (Walsh 1988, 1991). Occasionally, 
mixing diagrams of riverine nutrients with the saline, nutrient-poor Gulf of Mexico waters are 
nonlinear in a way that implies another source of nutrients. The source has been suggested to be 
offshore nutrients from deeper-water intrusion (Lopez-Veneroni and Cifuentes 1994; Lorenz et 
al. in press). Preliminary studies of total dissolved nitrogen and particulate nitrogen using natu- 
rally occurring nitrogen isotopes are under way (L. Cifuentes, personal communication), and the 
relative contribution is unknown. 

The Mississippi and Atchafalaya l v e r s  contribute, by far, the major sources of fresh water and 
nutrients from stream flow to the northern Gulf of Mexico. Direct atmospheric deposition is 
minimal, ground-water contributions are unlikely, and the contribution of upwelled nutrients is 
unknown. The best current knowledge is that the outflows of the two rivers dominate the nu- 
trient loads to the continental shelf where hypoxia is likely to develop. 

5.3.2 Flux and Concentration of Nutrients 

Several researchers have documented changes in Mississippi l v e r  nutrient concentration and 
flux over varylng periods (Smith et al. 1987; Turner and Rabalais 1991, 1994a, 1994b; JustiC et 
al. 1995a, 1995b; Rabalais et al. 1996; Meade 1995; see CENR Topic 3 report by Goolsby et al. 
1999). Differences in results from these studies come from analysis of -different time periods, 
different analytical methods, and different calculations of flux. There are also differences, de- 
pending on whether the concentration of a constituent in the lower Mississippi as it approaches 
the Gulf or its flux to the Gulf is under consideration. Results generally concur that Mississippi 
Rwer nutrient concentrations and loading to the adjacent continental shelf have changed dra- 
matically this century, with an acceleration of these changes in the last four decades, depending 
on the constituent of concern. 
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Turner and Rabalais (1991) and JustiC et al. (1995b) examined water quality data for the lower 
Mississippi River for dissolved inorganic nitrogen (as nitrate), phosphorus (as total phosphorus), 
and silicon (as silicate). The mean annual concentration of nitrate was approximately the same 
in 1905-6 and 1933-34 as in the 1950s) but has doubled (or tripled, depending on the compara- 
tive periods) from the 1950s and 1960s values (Figures 5.4 and 5.5 and Table 5.1). The flux of 
nitrogen has also increased over the last three decades (Figure 5.6). These results were corrobo- 
rated by Goolsby et al. (1999), who documented that the average mean nitrate concentration at 
St. Francisville during 1980-96 was more than double the average concentration during 1955- 
70. The mean annual nitrogen flux (determined by Goolsby et al. 1999 from discharge weighted 
regression models) approximately tripled in the last 30 years, with most of the increase occurring 
between 1970 and 1983. The mean annual N flux has changed little since the early 1980s) but 
there are large year-to-year variations in N flux because of variations in precipitation. The in- 
crease in total nitrogen is almost entirely due to changes in nitrate concentration. _ 2001 St. Francisville 

160 o New Orleans 

Year 

FIGURE 5.4. Changes in nitrate and silicate and the Si:N ratio from 1905 through 1994. 
NOTE: 0 for St. Francisville, o for New Orleans; bars are t- s.e. of the average of m o n t h l y  
means. (Modified from Turner and Rabalais 1991 in Rabalais et al. 1996.) 

The mean annual concentration of silicate in the lower Mississippi River was approximately the 
same in 1905-6 as in the early 1950s; then it declined by 50% (Turner and Rabalais 1991). JustiC 
et al. (1995b) documented a 30% decrease in silicate concentrations between the periods 1960- 
62 and 1981-87. Goolsby et al. (1999) noted a 40% decline in silicate concentrations from the 
1950s to the mid-1970s when they stabilized. They further noted that there was no long-term 
trend in silicate flux as observed for nitrate. Concentrations of nitrate and silicate appear to have 
stabilized, but trends are masked by increased variability in the 1980s and 1990s data. 
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There are no substantial records of total phosphorus concentrations in the lower Mississippi 
River before 1973, and subsequent values vary greatly among years. Goolsby et al. (1999) found 
no long-term trend in orthophosphate or total P from 1973 to 1996. Turner and Rabalais 
(1991) noted a trend for an increase in orthophosphate but stated that extreme variability in the 
data made it unlikely that a statistical trend could be identified. JustiC et al. (1995b) applied a lin- 
ear least-squares regression on the 1973-87 total P data and estimated (p < 0.01) that the total P 
concentration increased twofold between 1960-62 and 1981-87 (Table 5.1). This result was 
corroborated with current measurements and historical data from coastal waters adjacent to the 
Mississippi kver  discharge (Thomas and Simmons 1960). 

Thus, there is agreement that nitrate concentration and flux have either doubled or tripled since 
the turn of the century and the 1950s-60s, and that levels have plateaued but exhibit variability 
from year to year. The increase in total N is due to the increase in the nitrate component. There 
is also agreement that the concentration of silicate has decreased, anywhere from 30% to 50%, 
depending on the period of record. The phosphorus data are of shorter duration and less robust 
for determining long-term trends, for which there is disagreement of "no trend" to "increase of 
twofold" from the 1960s to the 1980s, based on a regression of the 1973-87 total P data and 
parallel data from the coastal system. 
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Figure 5.5. Average annual concentration (k s.e.) of nitrate and silicate in the Mississippi 
River at New Orleans. (From Turner et a/. 1 998.) 
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TABLE 5.1. Historical changes in concentrations and atomic ratios of nitrogen, phosphorus 
and silica in the lower Mississippi River and the northern Gulf of Mexico. Note: p < 0.00 I- 
highly significant difference in nutr ient concentrations between the t w o  periods, based on a 
two-sample t-test. (From Rabalais et a/. 1996, and modified from just ic 'et al. 1995b.) 

Nutrient Concentrations Mississippi River Northern Gulf of Mexico 
and Average Atomic Ratios 1 960-624 198 1-87 1960' 198 1-87 

Nutrient Concentrations (pM) 

M e a n  
Ni t rogen ' No.  o f  Data 

Standard E r ro r  

M e a n  
Phosphorus2 No.  o f  Data 

Standard E r ro r  

M e a n  
si l ica3 No.  o f  Data 

Standard E r ro r  

Average Atomic Ratios 

'N-NO, for the Mississippi River, dissolved inorganic nitrogen (DIN = NO, + NH, + NO,) for the northern Gulf. 
'Total P for the Mississippi River, reactive P for the northern Gulf of Mexico. 
Reactive Si. 

4Turner and Rabalais 1991 for N and Si, reconstructed for P. 
Reconstructed data. 

Year 

Figure 5.6. Nitrogen and phosphorus loading from the Mississippi and Atchafalaya Rivers t o  
the Gulf of Mexico from 1954 t o  1987. (From Turner and Rabalais 199 1 .) 
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Figure 5.7 shows the relationship between the concentration of nitrate and total nitrogen at St. 
Francisville. Both the average nitrate and the total nitrogen concentrations have increased in re- 
cent decades (Turner and Rabalais 1991), but the percent nitrogen as nitrate has varied between 
30% and 60%. This percentage leveled off in the 1980s-90s at 60%. From 1977 to 1994, the per- 
cent of the total nitrogen pool averaged 59% nitrate and 37% organic nitrogen. The remaining 
4% was ammonium (3%), nitrite (I%), and unidentified dissolved organic nitrogen molecules. 
The importance of dissolved forms other than nitrate and the dissolved organic and particulate 
organic nitrogen components is not being dismissed, but less is known about their relative con- 
tribution to the total flux over a longer time frame and the related biological processes on the 
adjacent shelf. Studies from the Mississippi River plume support the view of an active microbial 
population capable of utilization of organic nitrogen and rapid rates of regeneration of inorganic 
nutrients (Gardner et al. 1994, 1997; Pakulski et al. 1995; Bode and Dortch 1996). 

FIGURE 5.7. Relationship between the concentration of nitratenitrogen and total nitrogen 
in the lower Mississippi River at St. Francisville, Louisiana. (Turner and Rabalais 1 99 1 .) 

The effluent of the Atchafalaya kver  at Morgan City (0.5 lun from the terminus of the river) 
varies somewhat from the Mississippi Rwer mainstem (Turner and Rabalais 1991). The con- 
centrations of nitrate, silicate, and total phosphorus at Morgan City (Atchafalaya River) were 
69%, 94%, and 130%, respectively, of that in the Mississippi k v e r  at St. Francisville for the 
combined data for the years 1973-87. Differences between nutrient concentrations of the two 
discharges are presumably a consequence of differences in the water quality of the Red River 
(which mixes with the Mississippi to form the Atchafalaya), compared with that of the Missis- 
sippi, inputs within the Atchafalaya Basin, processing and transformations within the basin, or 
combinations of these. 

5.3.3 Seasonality 

The seasonal patterns in nitrate and silicate concentrations have also changed during this cen- 
tury (Figure 5.8) (see also Goolsby et al. 1999, Topic 3 report). There was no pronounced peak 
in nitrate concentration prior to 1960, whereas there was a spring peak from 1975 to 1985. Be- 
cause there was no seasonal peak in nitrate prior to the 1960s, nitrogen flux closely paralleled 
river discharge. Currently, a similar pattern (flux is related to discharge) holds (Alexander et al. 
1996; Goolsby et al. 1999), but the flux of nitrogen per volume discharge is greater than histori- 
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cally. The relationship of nutrient flux with discharge is not perfect, however, because there is 
some seasonality of nitrate flux independent of river discharge (Justid et al. 1997) (see Section 
8.3). In contrast, a historical seasonal summer-fall maximum in silicate concentration is no 
longer evident. Currently, there is nearly a twofold difference in nitrate supply over the course of 
the year (Turner and Rabalais 1991), but only small annual variatioris in the silicate and total 
phosphorus supply (Figure 5.9). 
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FIGURE 5.8. Monthly average concentrations of nitrate and silicate, and Si:N ratio in the 
lower Mississippi River for the periods indicated. (Modified and updated from Turner and 
Rabalais 1991, 1994a; from Rabalais et al. 1996.) 

5.3.4 Nutrient Ratios 

The proportions of dissolved Si, N, and P in the lower Mississippi River have changed histori- 
cally such that they now closely approximate the Redfield ratio (Si:N:P = 16:16:1; Figures 5.4, 
5.5,5.8, and 5.10) (Justid et al. 1995a, 1995b). The Si:N atomic ratio was approximately 4:l at 
the beginning of this century, dropped to 3:l in 1950, and then rose to approximately 4.5:l 
during the next 10 years, before plummeting to 1: l  in the 1980s. The ratio appears stable at 1:l 
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through 1997 with little variation (Figures 5.4 and 5.5). The Si:P ratio decreased from 40 to 14, 
and the N:P ratio increased from 9 to 15. 

By applying the Redfield ratio as a criterion for stoichiometric nutrient balance, one can distin- 
guish between P-deficient, N-deficient, and Si-deficient rivers and those having a well-balanced 
nutrient composition. The annual nutrient ratios for the Mississippi (1981-87 database) show 
an almost perfect coincidence with the Redfield ratio and suggest a balanced nutrient composi- 
tion (Figure 5.10). With nutrient concentrations so closely balanced, Justid et al. (1995b) pro- 
posed that any nutrient can become limiting, perhaps in response to small differences in nutrient 
supply ratios. 

The water quality changes in the Mississippi Rwer are not unique among world rivers ('Justid et 
al. 1995a; Howarth et al. 1996). The Mississippi is one of several rivers in which the concentra- 
tions and proportions of nitrogen, phosphorus, and silicate have changed over many decades as a 
result of anthropogenic activity in the watershed. Justid et al. (1995a) examined nutrient data 
from 10 large world rivers. Pristine rivers (e.g., the Yukon, Mackenzie, Amazon, and Zaire) de- 
liver silicate to the coastal ocean in great stoichiometric excess over nitrogen and phosphorus, 
relative to the Redfield ratio (Si:N:P = 16:16:1), and nutrient requirements of diatoms (Figure 
5.10). Consequently, they tend to have nitrogen- or phosphorus-deficient plumes and support 
nitrogen or phosphorus limitation in the coastal waters. 
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FIGURE 5.9. Monthly variation in average ( 1  975-85) nitrate, silicate, and total phosphorus 
concentrations in the Mississippi River at St. Francisville, Louisiana. (Redrawn from Figure 4, 
Turner and Rabalais 1991.) 
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FIGURE 5.10. Lefk panel: Clustering of mean atomic ratios of dissolved inorganic nitrogen 
(N), phosphorus (P), and silica (Si) in the Amazon, Changjiang, Huanghe, Mackenzie, Missis- 
sippi, Po, Rhine, Seine, Yukon, and Zaire Rivers. Right panel: Changes in the atomic ratios of 
N, P, and Si between 1960-62 and 198 1-87 in the Mississippi River and between 1968-70 
and 1981-84 in the Po River. NOTE: The Redfield ratio, Si:N:P = 16: 16: 1 in both diagrams. 
(Modified from ]ust ic '  et a/. 1 995b.) 

In anthropogenically affected rivers-such as the Po, Mississippi, Rhine, and Seine- 
proportions of the nutrients have changed in such a way that they now approximate the Red- 
field ratio. Thus, in the coastal waters affected by these rivers, the silicate excess has diminished, 
and a more balanced nutrient structure has resulted. Expected consequences would be an increase 
in surface primary productivity and possibly increased frequency of hypoxia. These effects have 
been clearly demonstrated in the northern Adriatic Sea adjacent to the Po River (Justid 1991a) 
and also in the Mississippi River (Chapters 7 and 8). Rwers with increased nitrogen and phos- 
phorus in relation to silicate may affect a limitation to the productivity of diatoms while increas- 
ing productivity. The result would be a shift in dominance from diatoms to nonsiliceous taxa. 
Proportions of nutrients in some European rivers, e.g., the Rhine and Seine, already indicate 
silicate deficiency with respect to the nutrient requirements of diatoms. The increasing fre- 
quency of nondiatom blooms in the coastal waters of northwestern Europe (Smayda 1990; 
Hallegraeff 1993) is consistent with the progression toward silicate deficiency. 

Although the concentrations of nitrate-N and silicate currently average near 100 pM on an an- 
nual basis, there is much variability about this average, but a remarkable coherence since the early 
1980s (Figure 5.5) near a ratio of 1:l .  Total P averages 7.4 pM at the mouth of the Mississippi 
River and is lowest in the spring. Thus, the nutrient supply ratios vary around the Redfield ratios 
on a seasonal basis, with silicate and phosphorus in the shortest supply during the spring, and 
nitrogen more likely to be limiting (based on ratios) during the rest of the year (Figure 5.11). 
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FIGURE 5.1 I. Monthly variation in average ( 1  975-85) nutrient ratios in the Mississippi River 
at St. Francisville, Louisiana. (Data from Figure 4, Turner and Rabalais 1 99  1 .) 

5.3.5 Antkropogenic Influences 

Over recent decades and the last century and a half, the landscape of the Mississippi Ever and 
human activities in it have changed dramatically, with implications for changes in nutrient con- 
centration, flux and relative proportions, coastal ecosystem change (nutrient-enhanced produc- 
tivity), and worsening oxygen stress. Major alterations in the morphology of the main river 
channel, delivery of water (see Section 5.1), and widespread landscape alterations and land-use 
patterns in the watershed have altered the natural processing of nutrients (Goolsby et al. 1999). 

Better than half of the original wetlands in the United States have been lost to drainage prac- 
tices (Zucker and Brown 1998). Much of this wetland loss is related to agricultural production in 
areas that were swampy and too wet to farm. Within the Mississippi Ever  Valley, 56% of the 
wetlands have been lost to agriculture, navigation, reservoirs, and leveeing (Winger 1986). 

Drainage systems may have a positive impact on some nonpoint-source pollution problems in 
comparison to agricultural land without drainage. For example, under certain conditions, artifi- 
cial drainage lowers soil erosion by increasing the movement of water through the soil profile 
and thus reducing runoff. The reduction in loss of phosphorus ranges up to 45%. Subsurface 
drainage, however, expedites the transport of nitrate-N from the soil zone to surface waters. 
This management practice, coupled with the increase in fertilizer applications (see below), can 
only increase the flux of nitrate-N from agricultural fields to the receiving waters of the Missis- 
sippi Rwer watershed. 
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In addition to landscape changes, anthropogenic inputs of nitrogen and phosphorus have in- 
creased from agriculture, point sources, and atmospheric deposition. The estimate of current ni- 
trogen export from the Mississippi River watershed over "pristine" river (pre-agricultural and pre- 
industrial condition) nitrogen export is a 2.5- to 7.4-fold increase (Howarth et al. 1996). Fertil- 
izer accounts for well over two-thirds of the estimated increase in their analysis, and atmospheric 
deposition, the remainder. According to Goolsby et al. (1999), agricultural activities are the lar- 
gest contributor of nitrate to streams, and of all the major nitrogen inputs to croplands, only fer- 
tilizer and legumes have increased since the 1950s. 

Data on the nitrogen and phosphorus fertilizer use and form in the United States and the world 
are available in annual reports of the United Nations (year = July through June) and the U.S. 
Department of Agriculture (year = January through December). U.S. nitrogen and phosphorus 
fertilizer use began in the mid-1930s and climbed to a peak around 1980 (Figure 5.12) Nitrogen 
fertilizer use in the United States appears to have reached a plateau beginning in the 1 9 8 0 ~ ~  
whereas phosphorus fertilizer use stabilized in 1980 and then dropped slightly. 

FIGURE 5.12. Nitrogen (as N) and phosphorus (as P,O, equivalent) fertilizer use this century 
in the United States up to 1996-97. (Modified from Turner and Rabalais 199 1 . )  

The form of nitrogen and phosphorus fertilizers used has changed during the last several decades 
(Turner and Rabalais 1991). In 1929, nitrogen fertilizer was 48% ammonia, 19% nitrate, and 
the balance mostly organic nitrogen. By 1949, the proportion was 79.5% ammonia and 12% ni- 
trate, and the percent ammonia has remained the same or increased slightly since then. During 
1981-85, 42% of the nitrogen fertilizer and 37% of the phosphorus fertilizer used annually in the 
U.S. was applied in states that are partly or completely in the Mississippi River watershed, where 
it equaled 4.2 million mt of nitrogen (as N) and 0.53 million mt of phosphorus (as P). 

The rise in nitrate concentrations in the lower Mississippi Rwer since 1960 was strongly related 
(R2 = 0.74) to increased nitrogen fertilizer application in the watershed (Turner and Rabalais 
1991) (Figure 5.13). The change in silicate since 1960 is strongly and inversely correlated with 
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phosphorus fertilizer use (R2 = 0.79). The decrease appears to be a consequence of upstream 
phosphorus additions that stimulated freshwater diatom production and an eventual burial in 
freshwater sediments of silica in diatom remains (e.g., Schelske and Stoermer 1971; Schelske et 
al. 1986), thus reducing the annual supply of riverine silicate to coastal waters. Fertilizer use 
reached a plateau in the late 1980s. At  the same time, both the rise in river nitrate concentration 
and the fall in silicate concentration stopped. 

Decreases in suspended sediments or damming of the distributaries within the Mississippi ILver 
system have been proposed as an alternative explanation for the observed decrease in silicate con- 
centration in the lower Mississippi Rwer. Silicon may be lost from the water column because it 
becomes attached to sediments or deposited in the sediments that collect behind dams or in res- 
ervoirs and is subsequently not recycled to the water column. This explanation seems unaccept- 
able because (1) suspended sediment concentrations stabilized in the mid-1950s (Kesel 1988), 
whereas the silicate concentrations continued to decline; (2) silicate concentrations changed co- 
incidentally with phosphorus fertilizer use; and (3) the silicon-depletion hypothesis has proven 
an acceptable interpretation ofwater quality changes in lakes (e.g., Schelske et al. 1983, 1986). 

N Fertilizer ( I000 mt/yr) 

FIGURE 5.13. Relationship between fertilizer use and water quality at St. Francisville, Louisi- 
ana. Top panel: Nitrogen (as N) fertilizer use in the United States and average annual nitrate 
concentrations from 1960 to 1985. Bottom panel: Phosphorus (as P,O,) fertilizer use in the 
United States and average annual silicate concentrations from 1950 to 1987. NOTE: Fert i l -  
izer use and water  quality f o r  the same years are compared, because wate r  re tent ion on  t h e  
watershed is less than one year. (From Turner and Rabalais 199 1 .) 
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The longer retention time in freshwater areas, however, may exacerbate the silicon depletion 
scenario due to nutrient enrichment. The slow decrease in silica concentration in the Mississippi 
River is consistent with a biological mechanism, as a result of P enrichment, increased water 
residence time, or both. Loss in silicate delivery to the northwestern Black Sea, with subsequent 
eutrophication and harmful algal blooms, was attributed to damming, on the Danube River and 
sequestering of silicate on sediments (Humborg et al. 1997). These authors, however, failed to 
acknowledge the known acceleration of both phosphorus and nitrogen loads in the Danube. 
Also, their "step" reduction in silicate concentration attributed to the building of the Iron Gates 
is in reality a gradual decline similar to that seen in the Mississippi River silicate concentration 
(see Section 5.3.2). Also, there are several hypotheses concerning changing Si:N ratios within 
the watershed related to changes in land-use patterns, cropping systems, and types of crops. 

Justidet al. (1994, 1995a, 1995b) analyzed extensive nutrient data sets from the northern Gulf of 
Mexico to examine how the coastal nutrient structure may reflect long-term changes in the pro- 
portions of dissolved Si, N, and P in riverine loads. Because fully reliable long-term data sets to 
examine the nutrient composition 30 years ago were not available, the authors reconstructed the 
past coastal nutrient composition for the last 30 years by assuming that the relative proportion of 
nutrients in the river-dominated coastal waters reflects changing composition of riverine nutri- 
ents (Table 3.1, Justid et al. 1995a). This assumption was made in view of the fact that the Mis- 
sissippi Rwer is the most important source of nutrients to the northern Gulf of Mexico. 

Comparison of the reconstructed data with the available historical nutrient data (Thomas and 
Simmons 1960; Turner and Rabalais 1994a) showed a reasonable agreement between the meas- 
ured and reconstructed nutrient ratios. A similar reconstruction technique for the northern 
Adriatic Sea produced results that closely paralleled the real data (Tustid et al. 1995a, 1995b). 
Comparison of measured and reconstructed nutrient ratios for the northern Gulf adjacent to the 
Mississippi River outflow revealed long-term changes in proportions of nutrients in the surface 
waters (Table 3.1). The reconstructed nutrient ratios for 1960 were farther removed from the 
Redfield ratio (Si:N:P = 16:16:1). 

Probable nutrient limitation was assessed by Dortch and Whitledge (1992) and Justid et al. 
(1994), who compared the ambient nutrient concentrations with the k, for nutrient uptake and, 
in the case of Si, a threshold value for uptake. Plots of relative frequencies (Figure 5.14) showed 
that dissolved N concentrations in the surface layer of the northern Gulf of Mexico during the 
period 1985-92 were lower than 1 pM in about 13% of the cases. Reactive P was below 0.1 pM 
in 17% of the cases, while reactive Si concentrations lower than 2 pM occurred in 25% of the 
cases. In contrast, the corresponding frequencies were 39%, 41%, and lo%, respectively, in 1960. 
These findings are important because studies of nutrient uptake kinetics (i.e., Rhee 1973; Har- 
rison et al. 1977; Goldman and Glibert 1983; Nelson and Brzezinski 1990) indicate that con- 
centrations of 1 pM, 0.1 pM, and 2 pM may be considered as threshold values for N, P, and Si 
uptake, respectively. Thus, it appears that overall nitrogen and phosphorus nutrient limitation 
has decreased, while the probability of silicate limitation may have increased. 

Fluctuations in the Si:N ratio within the riverine effluents and the offshore waters can affect 
diatom production and are believed to be major determinants in estuarine and coastal food web 
structure on a seasonal and annual basis, with major implications to oxygen and carbon cycling 



60 Characterization of Hypoxia 

FIGURE 5.1 4. Relative-frequency polygons showing temporal changes in the surface nutrient 
structure of the northern Gulf of Mexico. NOTE: 1985-9 1 are field data; 1960 data are  t h e o -  
retical values calculated f rom the 1985-9 1 data (Justic'et al. 1995b), assuming that the rela- 
tive rates of change in nutr ient concentrations over the intervening period were the same as 
in the Mississippi River ( A N  = +8.0%/yr, AP = +4.3%/yr, 6Si = -. 14%/yr). Vertical lines indicate 
threshold values fo r  nutrient uptake based on  l i terature data. (From justic'et al. 1994.) 
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(Turner et al. 1998). Deviations from the 16:16:1 Si:N:P ratio in nutrients available in the water 
column may be a limiting factor for diatoms, as well as for other phytoplankton groups (Hecky 
and Glham 1988; Dortch and Whitledge 1992). Also, a decreasing Si:N ratio may exacerbate 
eutrophication by reducing the potential for diatom growth in favor of noxious flagellates 
(Officer and Ryther 1980). Another reasonable hypothesis that follows a more balanced nutrient 
composition, as evidenced in the Mississippi kver  and in the coastal waters as well, is that sur- 
face primary productivity has increased under these conditions. 

Although the Mississippi River discharges organic matter, whose decomposition could consume 
oxygen in the coastal ecosystem, the principal source of organic matter reaching the bottom wa- 
ters of the northern Gulf of Mexico influenced by the Mississippi h v e r  effluent and character- 
ized by hypoxia is from in situ phytoplankton production (Rabalais et al. 1992b; Turner and 
Rabalais 1994b; Eadie et al. 1994; Justid et al. 1996, 1997). These results are verified by data 
from studies of the sedimentary environment, retrospective sediment analysis, empirical rela- 
tionships of nutrient flux to primary production and net production, carbon flux studies, linkages 
of surface-water net production with oxygen uptake in the lower water column, and modeling 
experiments. The amount of organic loading in the Mississippi River is not large enough to ac- 
count for the observed decline in oxygen over such a large area and volume (Turner and Allen 
1982b). Also, the 613C signature of the particulate organic matter found in the sediments of the 
Mississippi kver  Bight indicates that terrestrial carbon sources are localized near the delta and 
nearshore sediments, and the bulk of carbon in the sediments of the hypoxic zone is from a ma- 
rine origin (Rabalais et al. 1992b; Turner and Rabalais 1994b; Eadie et al. 1994; see Section 7.2). 

Nutrient ratios of material flux from the Mississimi k v e r  also indicate that direct contributions 
1 1  

of organic matter could account for much less of the sedimented carbon than marine phyto- 
plankton production fueled by Mississippi Rwer nutrients. Sedimenting marine phytoplankton 
generally have a C:N ratio (as atoms) of 9.5-9.9:l (Meybeck 1982), whereas the C:N ratio of 
Mississippi Rwer flux is about 2.3-3.7:l (Leenheer 1982; Meybeck 1982; Telang et al. 1991; 
Trefry et al. 1994; Howarth et al. 1996). Therefore between 2.7 and 4.3 times as much organic 
matter (on average) could be supplied to marine hypoxic zones by marine algae grown with Mis- 
sissippi Rwer nitrogen than could be supplied directly by riverine organic matter. When the recy- 
cling of N within the coastal system is considered, the marine supply of organic matter would be 
greater than the allochthonous by an order of magnitude. 

The decrease in suspended sediment load and associated organic nitrogen was discussed in Sec- 
tion 5.2. Mayer et al. (1998) pointed out that because the Mississippi River suspended sediment 
load has decreased (Meade 1995) and the dissolved inorganic nitrogen pool has increased (see 
Section 5.3), the relative importance of the organic nitrogen associated with the suspended 
sediment load might be less for the Mississippi Rwer than for other large world rivers (Mayer et 
al. 1998). Thus, sediment-associated constituents may exacerbate hypoxia, but several lines of 
evidence show that sedimentation of marine organic matter resulting from increased river nutri- 
ents plays a preeminent role. 

The contribution of nutrients and carbon from erosion of coastal wetlands in Louisiana has 
been proposed as a potential source of materials that fuels the development of hypoxia and its in- 
crease over time. Several lines of evidence discount this hypothesis. The land-loss rates were high 
from 1955156 to 1978 (20% for marsh, equals a loss of 255,684 hectares; 16% for swamp, equals 
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32,730 hectares) and have decreased since then (Turner 1997). Indicators of eutrophication and 
worsening oxygen stress have continued to increase; thus there is no correlative link between 
land-loss rates and rates of eutrophication or increasing hypoxia. Carbon isotope signatures in 
nearshore sediments indicate that carbon emanating from marsh detritus is localized close to 
shore and does not become incorporated into the continental shelf food web (Fry et al. 1984; see 
also Section 7.2). Also, the amount of carbon released from erosion of wetlands is not sufficient 
to account for the observed decline in oxygen over such a large area and volume (similar to the 
allochthonous riverine carbon source argument, above), nor is the nitrogen released. 

Estuarine exchanges with offshore waters clearly exist. Evidence for this is the inverse relation- 
ship between estuarine salinity and Mississippi Rtver discharge (Wiseman et al. 1991). There- 
fore, the exchange of nutrients from inshore to offshore (and vice versa) is possible. If there were 
a significant dominance of nutrients in either direction, the sedimentary record of diatom pro- 
duction and eutrophication in estuarine and nearshore sediments would be similar (see Section 
7.4). Biogenic silica (BSi) remnants in sediment cores from estuaries adjacent to the hypoxic 
zone (Turner et al. unpublished data) do not follow the same pattern of increases as offshore 
sediments (Turner and Rabalais 1994b). The accumulation rate of BSi in estuarine waters re- 
flects the use of fertilizer in the estuarine basin, and the accumulation in offshore waters is coin- 
cidental with the nutrient loading of the Mississippi Rtver. Thus, there is no coherence between 
nutrient loading in the estuarine and offshore waters, and offshore waters are dominated by in 
situ loading stimulated by Mississippi River nutrients and not estuarine nutrients. 

The presence of multiple toxic chemicals in the effluent of the Mississippi River is perceived to 
be a potential cause for hypoxia in the Gulf. The carbon equivalents of these chemicals in the 
river's total dissolved and particulate carbon flux of insignificant and should not contribute to the 
depletion of oxygen. Also, some pollutants have increased this century, while others have de- 
clined in the last several decades (Meade 1995). Millie et al. (1994) suggested that the increased 
atrazine (herbicide) levels in the 1993 flood discharge (Goolsby 1994) could be detrimental to 
phytoplankton growth, as demonstrated in laboratory experiments. Although atrazine flux in- 
creased during the 1993 flood, the abundance and biomass of cyanobacteria (phytoplankton af- 
fected in laboratory experiments) increased (Dortch 1994). Therefore, concerns about the 
increased flux of atrazine were not supported by the 1993 picocyanobacterial abundance. 

Time-series analysis disclosed significant declines in p H  and alkalinity and increases in strong 
acid anions (phosphoric, nitric and sulhric acid) in the lower 300 krn of the Mississippi River 
(Bryan et al. 1992). In surface waters of the Gulf inner shelf, p H  levels vary mostly between 8.1 
and 8.5, with no clear seasonal signal or gradient with distance from the river effluents. T h e  
large, natural buffering capacity of seawater makes the effects of p H  changes in the Wssissippi 
Rtver unlikely to be an effect in the open Gulf. 
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Because there is great daily, weekly, and seasonal variability in current flow and stratification on 
the shelf, there is no simple description of the couplings between nutrient delivery, carbon pro- 
duction in surface waters, and delivery and recycling in bottom waters. There is, however, evi- 
dence of an ecological "signal" (couplings) amid the "noise" (the variability), when more 
extensive data sets and longer time periods are examined. These couplings implicate changes in 
riverine nutrients and nutrient ratios with the overall effects on productivity, carbon accumula- 
tion at the seabed, and low oxygen conditions on this shelf. 

The data synthesized in this chapter describe how the coastal ecosystem functions and the com- 
ponents within that ecosystem relevant to hypoxia are drawn from detailed hydrographic, 
chemical, and biological data; empirical relationships; process studies; and modeling experiments. 
The data provide information on a variety of scales, from experiments for a parcel of water from 
a particular locale over a limited time, to more integrative measures of ecosystem response and 
change over broader spatial and temporal scales. The data are drawn from the area of concern on 
the Louisiana continental shelf and from similar ecosystems worldwide. 

6.1 DILUTION, UPTAKE, AND REGENERATION OF NUT 

Despite the extremely high nutrient inputs to the shelf, nutrients are depleted to low, and some- 
times undetectable, concentrations within a short distance of the river mouth (Lohrenz et al. 
1990, 1997, 1999; Rabalais et al. 1991, 1996, 1998; Dortch and Whitledge 1992; Nelson and 
Dortch 1996). Nitrate, the major form of nitrogen supplied by the river, decreases quickly. Con- 
sequently ammonium, resupplied by regeneration (Bode and Dortch 1996)) is the only available 
nitrogen source over much of the shelf, but it is present at much lower concentrations than ni- 
trate is initially. Dissolved organic nitrogen (DON) is supplied by the river, but its dynamics in 
the outflow of the Mississippi River are complex, and it is unclear if it is a source or a sink for ni- 
trogen available to phytoplankton (Lopez-Veneroni and Cifuentes 1994). Silicate can be de- 
pleted to extremely low levels. In  fact some of the lowest concentrations of silicate observed in 
any ocean were measured on the Louisiana shelf (Nelson and Dortch 1996). Dissolved inorganic 
phosphate concentrations also decrease to low levels, but are usually detectable. The importance 
of dissolved organic phosphorus has not been fully assessed, although it may be recycled rapidly 
(Ammerman 1992; Ammerman et al. 1995). The area with high nutrient concentrations varies, 
depending on river flow and season, but is much smaller than the total area of the Louisiana- 
Texas shelf affected by the Mississippi River. High phytoplankton biomass and productivity can 
be maintained due to high rates of nitrogen and phosphorus regeneration (Ammerman 1992; 
Gardner et al. 1994; Ammerman et al. 1995; Bode and Dortch 1996). Short-term rates of Si 
regeneration are generally much lower, which increases the potential for Si limitation. 
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rapid depletion of nutrients is due to biological uptake and conservative mixing between 
-nutrient Mississippi river water and low-nutrient, high-salinity Gulf of Mexico water, 
the relative importance of these processes depending on the season and river flow. At most - 

times there are large negative deviations from the conservative mixing line in estuarine mixing 
diagrams of nutrient concentration vs. salinity, which are indicative of high biological removal 
(Figure 4.2; Dortch and Whitledge 1992; Turner and Rabalais 1994a; Nelson and Dortch 1996; 
Lohrenz et al. 1999). Rapid rates of nitrogen and silicate uptake have been confirmed by direct 
measurements (Bode and Dortch 1996; Nelson and Dortch 1996). 

Nonlinear mixing diagrams (Lohrenz et al. 1999) suggest other sources of nutrients, such as 
low-salinity nutrient sources (desorption from sediments or production of dissolved organic ni- 
trogen) or intrusion of deeper offshore nutrients (see Section 8.1.1) (Fox et al. 1985; Lopez- 
Veneroni and Cihentes 1994). Although the N:P ratio in river water is near the Redfield ratio 
and suggests that either may be limiting primary production in receiving Gulf waters, the effi- 
cient remineralization of P in marine systems coupled with the inevitable losses of N due to 
denitrification probably means that N is the limiting nutrient (of N and P) beyond the immedi- 
ate plume and may explain some of the nonlinear mixing diagrams in Fox et al. (1985), Hitch- 
cock et al. (1997), and Lohrenz et al. (1999). 

6.2 NUTRIENT- NHANCED PRIMARY PRODUCTION 
High biological productivity in the immediate (320 g C m2/yr) and extended plume (290 g C 
m2/yr) of the Mississippi k v e r  (Lohrenz et al. 1990; Sklar and Turner 1981; respectively) is me- 
diated by high nutrient inputs and regeneration and by favorable light conditions. Small-scale 
and short-term variability in productivity are the consequence of various factors, such as nutrient 
concentrations, temperature, salinity, and light (Lohrenz et al. 1990, 1994), but are also clearly 
influenced by Mississippi hver  flow and nutrient flux to the system ('Justid et al. 1993, 1997; 
Redalje et al. 1994; Lohrenz et al. 1997; Rabalais and Turner 1998). "New" nutrients become 
depleted along the river-to-ocean mixing gradient through dilution and biological uptake, and 
regenerated water column nutrients support primary production for great distances from the river 
mouth (Bode and Dortch 1996; Nelson and Dortch 1996). Additional nutrients become avail- 
able through regenerative processes in the sediments (see Section 6.10). Surplus nitrogen is con- 
sidered the primary cause of coastal eutrophication in most systems, including the Mississippi 
Rwer, but there is evidence for limitation by phosphorus and silica at times (Ammerman 1992; 
Nelson and Dortch 1996; see Section 6.3). In addition to the role of nutrients, the importance 
of other factors, such as light availability and mixing rates, must be considered in attempts to un- 
derstand the temporal and spatial patterns in primary production. 

Lohrenz et al. (1997) clearly demonstrated that primary production in shelf waters near the delta 
and some distance from it was significantly correlated with nitrate and nitrite concentrations 
and fluxes over the six-year period 1988-94 (Figure 6.1). Light limitation was likely an important 
factor during winter months, but a positive correlation was demonstrated between river inputs of 
nitrate and nitrite from other times of the year. The relationships between riverine flux and con- 
centration for those stations on the western end of their study area (i.e., near the transect C 
study area of Rabalais, Turner, and Wiseman, as shown in Figure 2.1) were improved when the 
riverine input data were lagged one month. These results were consistent with those of JustiC et 
al. (1993, 1997) for a one-month lag between net production in surface waters and river dis- 
charge and nitrate flux. Even stronger correlations were observed between the concentration of 
orthophosphate and primary production, but these were not significant (smaller sample size). 
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FIGURE 6.1. Relationship between mean primary production for the combined central and 
eastern regions of the Mississippi River Bight and (a) river-borne nitrate and nitrite flux, @) 
nitrate and nitrite concentration at Venice, and (c) orthophosphate concentrations at Belle 
Chase. NOTE: Historical primary production data from Thomas and Simmons (1960) are in- 
cluded in (a) and (b) for comparison (0). Error bars are + I s.e. (From Lohrenz et a/. 1997.) 

There was a high degree of coherence between Mississippi h v e r  nitrate fluxes and net produc- 
tion rates at Station C6* for 1985-92 Uustid et al. 1997). Mississippi River discharge for 1985-92 
had a typical sinusoidal seasonal pattern consistent with longer records (Bratkovich et al. 1994). 
Rwerine nitrate flux was highest in April and lowest in September, also consistent with 
Bratkovich et al. (1994). Although the monthly cycle of Mississippi k v e r  nitrate flux generally 
resembled the monthly cycle of freshwater runoff, the peak in nitrate flux was somewhat delayed 
with respect to the peak in freshwater runoff and was the result of a seasonal pattern in riverine 
nitrate concentrations (Figure 6.2). The net production rates for the upper water column (Justid 
et al. 1997) showed a well-defined seasonal cycle, with a minimum of -0.2 g C m2/d in Decem- 
ber and a maximum of 1.2 g C/m2/d in April. A cross-correlation function of net production 
and riverine nitrate flux showed that the two series were highly correlated (CCF = 0.73, p < 
0.01) and that a seasonal maximum in net production lags with respect to a riverine nitrate 
maximum by one month (Figure 6.3). 

Maximum values of biomass (Rabalais and Turner 1998) and primary production (Lohrenz et al. 
1990, 1999) are typically observed at intermediate salinities and coincide with nonconservative 
decreases in nutrients along the salinity gradient (i.e., biological uptake). Surface chlorophyll a 
concentrations peak at intermediate salinities where light conditions improve due to decreased 
suspended sediment concentrations and where nutrient concentrations are sufficient for phyto- 
plankton growth (Figure 6.4). There is a consistent westward and downstream transition away 
from the discharges of the Mississippi and Atchafalaya Rwers along the coastal plume in lower 
to higher salinities, higher to lower nutrients, and higher to lower surface chlorophyll concen- 
trations (Rabalais and Turner 1998) (Figures 6.5-6.7 cf. Figure 4.3). Ultimately, nutrients be- 
come limiting to phytoplankton productivity. These gradients away from the riverine sources are 
further reflected in the flux of organic material as seen in surface-to-bottom pigment ratios and 
accumulation of phaeopigments in the lower water column. Respiration rates are higher in 
shallower waters and are related to chlorophyll a concentrations (Turner and Allen 1982b; 
Turner et al. 1998; Turner and Rabalais 1998a). Therefore, there is a consistent transition away 
from the river discharges along the coastal plume in flux of organic material, respiration rates, 
and incidence of bottom-water hypoxia. 
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FIGURE 6.2. Monthly averages (1  985-92) of Mississippi River runoff at Tarbert Landing (a), 
Mississippi nitrate flux at Tarbert Landing @), and Mississippi nitrate concentration at S t  
Francisville (c). NOTE: Vertical bars represent 2 I s.e. (Modified from justic'et a/. 1997.) 

FIGURE 6.3. Left panel: Cross-correlation function (CCF) for Mississippi River nitrate flux a t  
Tarbert Landing and net productivity of the upper water column ( 1 - 1 0 m at station C6*). 
Right panel: Best-fit time-delayed linear model for the regression of net production (NP) on 
nitrate load. NOTE: The model is NP, = 0.34 + 3.93 x 1 0-7 nitrate ,, where t and t-l denote 
values for the current and preceding months, respectively. Symbols denote monthly averages 
for the period 1985-92. (From justic' et a/. 1997.) 
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FIGURE 6.4. Relationship of surface chlorophyll a and salinity for six LATEX cruises (Apr. '92, 
Oct. '92, Apr. '93, Jul. '93, Apr. '94, Jul. '94) from 89.5OW to 97OW. NOTE: Maximum value of 
209 1.1811 was deleted from the plot. (From Rabalais and Turner / 998.)  

The distribution of low dissolved oxygen in bottom waters is related to high surface net produc- 
tion, but this relationship is lagged in time and space (JustiC et al. 1993; Rabalais et al. 1994). 
Phytoplankton and fecal pellets in surface waters fall into the bottom layers quickly, perhaps in a 
few days or less (see Sections 6.5 and 6.6), but surface and bottom currents are not traveling in 
the same direction or at the same speed. Most of the organic matter reaching the bottom is 
consumed in many days (and probably weeks), rather than hours (see Section 6.7 on respiration). 
The depletion of oxygen is cumulative and depends also on the reaeration rate. Therefore, no 
consistint patterns sLuld be expected between surface phytoplankton pigments in surface wa- 
ters and low oxygen in bottom waters for one specific location in time. This is contrary to the 
pattern reported in Leming and Stuntz (1984), who suggested that satellite imagery of surface- 
water chlorophyll levels could describe the distribution of hypoxia. The lack of such a pattern was 
verified by Rabalais et al. (1991) and Rabalais (1998b) with several data sets (Figure 6.8). 



6 8 Characterization of Hypoxia 

FIGURE 6.5. Concentration of dissolved inorganic nutrients (pM) in surface waters at the 
LATEX sampling stations (Figures 3.4 and 3.5). NOTE: Total depth at these stations was 10- 
100 m. The arrows indicate the source and relative contributions o f  freshwater inputs. (F rom 
Rabalais and Turner 1998.)  
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FIGURE 6.6. Relationship between the concentration of phytoplankton pigments (total, chlo- 
rophyll a, and phaeopigments (pg/l)) and longitude in surface and bottom waters at the 
LATEX sampling stations (Figures 3.4 and 3.5). NOTE: Total depth at these stations was 10- 
100 m. (From Rabalais and Turner 1 998.) 

Longitude (w) 

FIGURE 6.7. Relationship between the ratio of the concentration of total phytoplankton 
pigments (MI) in surface to bottom waters with longitude at the LATEX sampling stations 
(Figures 3.4 and 3.5). NOTE: Total depth at these stations was 10- 100 m. (From Rabalais a n d  
Turner 1998.) 
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FIGURE 6.8. Comparison of bottom-water dissolved oxygen with surface-water chlorophyll 
a, bottom-water chlorophyll a, and bottom-water phaeopigments for all stations and all 
cruises May-September 1985-96. (Rabalais unpublished data.) 
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There is also no clear pattern between hypoxia and the concentration of chlorophyll a in bottom 
waters. One might predict that viable phytoplankton in bottom waters would produce oxygen at 
a sufficient rate to offset consumptive processes and thus prevent anoxia (Dortch et al. 1994). A 
compilation of data (Figure 6.8) reveals that hypoxic bottom waters may have negligible chloro- 
phyll a levels, but others ranged up to 45 W l .  In many instances, elevated phaeopigments in hy- 
poxic waters were usually associated with very low oxygen concentrations (< 0.5 mg/l). 

Patterns of nutrient depletion provide evidence that riverine inputs of nutrients and their pattern 
of regeneration ultimately limit the extent of river-enhanced productivity and biomass. The nu- 
trient most relevant to the overall production of phytoplankton production over the broad region 
heling hypoxia is nitrogen. It follows, and is supported with evidence from long-term data sets 
(Turner and Rabalais 1994a) and the sedimentary record (Turner and Rabalais 1994b; Eadie et 
al. 1994), that increases in riverine dissolved inorganic nitrogen loads are highly correlated with 
indicators of increased productivity in the overlying water column, i.e. eutrophication of the 
continental shelf waters. Phosphorus and silicon limitation have been identified as well, along 
with multiple limitations of combinations of N, P, and Si. The importance of understanding 
nutrient limitation is that nutrient management in the watershed, constituents, and timing 
need to be related to biological processes on the shelf and long-term ecosystem responses. 

A variety of methods (not without their inherent problems) have been used to determine which 
nutrients are limiting and to show the temporal and spatial variations in their limitation (Table 
6.1). The most widely used indicator is the simultaneous comparison of ambient nutrient con- 
centrations and ratios (Table 6.1; JustiC et al. 1994, 1995b; Turner 1998b). A nutrient is consid- 
ered limiting if its concentration is less than a generally accepted affinity coefficient (kJ for its 
uptake and if ratios of concentrations between all nutrients indicate that nutrient is in shortest 
supply by comparison with the Redfield ratios (Fisher et al. 1988; Dortch and Whitledge 1992). 
Additional information has been provided by bioassay experiments in which possible limiting 
nutrients are added singly and in combination with natural plankton (Smith and Hitchcock 
1994; Dortch et al. unpublished data; Turner unpublished data) or phytoplankton cultures in 
filtered natural sea water (Smith and Hitchcock 1994). Growth over time is monitored by 
fluorescence or cell counts. The limiting nutrient or nutrients are those that stimulate the 
growth of all phytoplankton or particular groups of phytoplankton in comparison with controls. 

Although no single approach can give a definitive answer, some understanding of this system's 
nutrient limitation has emerged from the following multiplicity of approaches (Table 6.1): 

1. P and Si limitation, and sometimes multiple limitation, have all been identified at many 
times and places in this region (Table 6.1; Justid et al. 1994, 1995b; Turner unpublished 
data). This is consistent with the hypothesis of JustiC et al. (1995b) that the system is in 
stoichiometric balance, so that any nutrient can become limiting. What Table 6.1 does 
not show is that the area where nutrient limitation is observed in any period is highly 

, variable and can range from most stations sampled to only a few 

2. Most indicators of nutrient limitation give results consistent with other indicators, but 
there are some discrepancies. For example, in July 1993 nutrient concentrations and ratios 
indicated overwhelming P limitation, but alkaline phosphatase assays did not. 
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TABLE 6.1. Summary of studies identifying nutrient limitation along the Louisiana coast infl u- 
enced by the Mississippi River. 

Nutrient s ~ = N > P ~  Si>P>N4n8 N>Si Si at Low S P>>Si>N8; N>>P=Si P >Si8 N5 Si5 p>>Si= 
Con- & S i o r N  P&SiI0 'N&Si1° N 
centrations at High S3; 
and Ratios p>>~=Si '  

Fluorescence P&Sil" N & S i a t  P &  Not  Si 
Bioassays, High S1' S i lo  or N6 
Natural 
Plankton 

Cell Count 
Bioassays, 
Natural 

Diatoms: 
Si & N6 

Plankton 

Fluorescence N & S i a t  P &  
Bioassays, High S ' O  Silo 
Cultured 
Phytoplankton 

Phytoplankton Diatoms Si  
Species Limited at 
Composition High S3" 

Taxon-Specific Growth all 
Growth Rates phyto- 

plankton 
correlated 
with N & 

Si7 

Alkaline P at Low S'  No t  No t  Not P2 
Phosphatase PI P2 

Phosphate P at Low S'  No t  

Amino Some N Some N 
AcidIProtein 
Ratio 

Si Uptake No t  Si at High 
Kinetics Si9 S9 

NOTE: Relative ranking of frequency of limitation shown where possible by > and =. Some studies focus on limitation by 
only one or two nutrients, indicated in parentheses after sources: P = phosphorus, N = nitrogen, Si  = silicate, and S = 
salinity. 
Sources: 'Ammerman 1 992 (P); 'Ammerman et al. 1995 (P); 3Dortch et al. 1992b (Si & N); 4Dortch & Whitledge 1992; 
Dortch et al. 1995 (Si & N), Dortch et al. unpublished data (Si & N); 7Fahnenstiel et al. 1995 (Si & N); 'Lohrenz et al. 
1999; Nelson and Dortch 1996 (Si); "Smith & Hitchcock 1994. 
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N generally limits overall productivity in this system (Turner and Rabalais 1994b; Lo- 
hrenz et al. 1999). N limitation occurs most often at higher salinities and during low- 
flow periods. 
P limitation is much more likely than was originally expected. I t  occurs most often at 
intermediate salinities and during periods of high freshwater input, as in other estuarine 
systems (Fisher et al. 1995). Although high flow and P limitation would usually occur in 
the spring in the plume front, extraordinarily high flow in the late spring of 1993 re- 
sulted in some indicators suggesting pervasive P limitation over a large area during that 
summer. 
Si limitation obviously affects diatoms, the only abundant siliceous autotrophs in this 
system, but diatoms are a large fraction of the biomass (Dortch 1998). The occurrence of 
Si limitation appears to be more spatially and temporally variable than P or N limitation. 
Dortch and Whitledge (1992) initially observed, and Nelson and Dortch (1996) con- 
firmed, that Si limitation was more prevalent in spring than summer. However, the data 
in Table 6.1 indicate that Si limitation of diatoms does occur in the summer, even in  
years when river flow is not anomalously high (for example, 1994). Further, severe Si de- 
pletion was observed in the late fall and winter of 1997, perhaps after cold-front passage 
followed by sunny, calm weather that stimulated diatom blooms (Parsons and Dortch 
unpublished data). Clearly, the prevalence of Si limitation is not easily predicted and re- 
quires methods targeted specifically at diatoms. 

Not all phytoplankton are limited by the same nutrient. This is intuitively obvious for 
differences between diatoms and nondiatoms, but also occurs at the species level. 

There is considerable interannual variation in the degree, kind, and seasonality of nutri- 
ent limitation, which is related to variations in riverine input, but also to conditions and 
weather in the outflow area. 

Besides the usual criticisms of using nutrient concentrations and ratios to assess limitation, a 
methodological caveat is necessary for this region. Almost all of the nutrient analyses were con- 
ducted on unfiltered samples. There is a debate over the need for filtration. Some believe that 
filtration results in contamination or loss due to adsorption onto filter holders. Others believe 
that nutrients bound to sediments or biogenic silica are released by chemicals used in the assays, 
resulting in higher concentrations of nutrients, which may or may not be biologically available. 

Because of the impact that sediment-adsorbed nutrients would have on assessing nutrient limi- 
tation in turbid estuaries, Dortch et al. (unpublished data) examined this problem for ammonium 
and silicate. They found that, on average, ammonium concentrations in filtered samples were 
60% of those in unfiltered samples, but that the variation around 60% was so great that a single 
correction factor could not be applied. The cause of the discrepancy was not contamination, ad- 
sorptive losses during analysis, or ammonium bound to particles, but solely light absorption by 
particles in samples. 

Although this is correctable in future analyses, it means that ammonium concentrations in older 
data sets may be overestimated. Because residual ammonium keeps dissolved inorganic nitrogen 
(DIN) concentrations and DINIP and SiIDIN ratios from being low enough to indicate N 
limitation, overestimating ammonium could have underestimated N limitation. Phosphate 
analyses may also be subject to the same problem (Fisher et al. 1995). For silicate analyses, the 
differences between filtered and unfiltered samples were much less (Dortch et al. unpublished 
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data). Most silicate analyses for waters of the hypoxic area have been conducted with assays op- 
timized for the large range of concentrations encountered and have not been optimal for meas- 
uring the low concentrations that signal Si limitation (Nelson and Dortch 1996). Consequently, 
Si limitation may also have been underestimated. 

Riverine nutrient inputs, ambient nutrient concentrations and ratios, bioassay experiments, and 
other indicators of nutrient limitation all suggest that N, P, or Si may be limiting at some times 
and places in the outflow of the Mississippi River. The details of when and where particular nu- 
trients are limiting and the severity of limitation are not completely known. P limitation, how- 
ever, occurs mostly at a lower salinity and is probably a factor mainly in the mixing zones of the 
river plumes. N is the nutrient limiting production overall and the nutrient for which loading 
has increased in recent decades. Lohrenz et al. (1999) suggested that although N is the overall 
limiting nutrient, reduction of diatom blooms in the plume front can be accomplished by de- 
creasing phosphorus loading. This area, however, is not the only-or necessarily the prime-area 
for source of organic deposition to the benthic layers over the broader hypoxic area. 

-4 PHYTOPLANKTON SPECIES COMPOSITION AND 
CHANGES IN RESPONSE TO NUTRIENT LIMITATION 

Phytoplankton in the region can be divided into three groups: picocyanobacteria, diatoms, and 
others (Table 6.2, Figure 6.9). Others include mostly small flagellates, although dinoflagellate 
blooms do occur sporadically (Dortch 1998; Dortch et al. accepted). Although the small flagel- 
lates can be numerically abundant, they are much less abundant than picocyanobacteria and so 
much smaller than most diatoms that they are unlikely to dominate the biomass. Further, there 
is relatively little seasonal variation in flagellate abundance (Figure 6.9). Thus, picocyanobacteria 
and diatoms are the most important phytoplankton groups in the hypoxic region. Picocyano- 
bacteria are most abundant in the summer and early fall, whereas diatoms are most abundant in 
the spring (Table 6.2, Figure 6.9). In terms of estimated biomass, diatom biomass usually domi- 
nates, especially in the spring. The exception was during the flood in July 1993, when all phyto- 
plankton were elevated, but especially picocyanobacteria (Rabalais et al. 1998; see Section 3.7). 

TABLE 6.2. Average abundance, % relative abundance (Abundance GrouplAbundance Total 
Phytoplankton x 1 OO), and estimated biomass for six cruises along the Louisiana-Texas shelf. 

Total Phytoplankton 
Abundance (#Cells11 x 10') 84.60 226.00 34.00 72 1.00 59.30 3 18.00 

% Phytoplankton 
Diatoms 6.97 0.38 9.75 0. I 2  . 10.26 1 .OO 
Picocyanobacteria 82.90 95.33 74.52 97.12 72.87 95.94 
Other 10.13 4.29 15.73 2.76 16.87 3.06 

Estimated Biomass (&$/liter) 
Diatoms 200.00 33.00 127.00 14.90 600.00 36.00 
Picocyanobacteria 7.1 1 2 1 .OO 2.80 69.00 4.74 30.30 

Note: The number of samples ranged from 79 in April and October 1992 to 124 in luly 1994. 
Source: From Dortch 1998. 
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FIGURE 6.9. Average monthly surface layer phytoplankton major taxa composition at C6A 
and C6B from 1990 to 1995. NOTE: Number of samples ranges from 14 to 41 for all months, 
except February (n = 5) and December (n = 2). (Dortch unpublished data.) 

O n  the Louisiana shelf in the area influenced by the Mississippi River, the prevalence of Si 
limitation, indicated by nutrient concentrations and ratios (Table 6.1), suggests that diatoms 
may at times be Si limited, whereas nondiatoms are not. Several lines of evidence support this 
contention: 

The annual average abundance of diatoms is inversely proportional to the prevalence of Si 
limitation in the same year (Figure 6.10), except 1992, which was unusual for other reasons. 

* Cell count bioassay experiments show that diatoms are limited by Si, N, or Si + N availability, 
sometimes when other phytoplankton are limited by another factor. 

* A shortage of silicate does not just modify the relative abundance of diatoms and nondia- 
toms. It also influences the diatom species composition so that when Si is limiting, diatoms 
with low Si requirements, as manifested by light silicification of the frustule (Dortch et al. 
1992b; Fahnenstiel et al. 1995) or lower & for silicate uptake (Nelson and Dortch 1996), 
predominate. 
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FIGURE 6.10. Average annual diatom abundance versus average annual % Si limitation in the 
surface layer at C6A and C6B from 1990 to 1995. NOTE: The % Si Limitation = (# samples 
with [Si] < 5 pM and [Si]/[DIN] < I)/Total # Samples. All the data except 1992 are described 
by the line: Diatom Abundance = (- 1.01 x lo5) x % Limitation + 8.67 x 1 06, r2 = 0.8990. 

Officer and Ryther (1980) originally proposed that increasing eutrophication would decrease the 
Si:N ratio and diatom abundance and enhance nondiatom growth. Smayda (1989, 1990) hy- 
pothesized that decreased Si inputs in relation to increasing inputs of other nutrients would 
stimulate harmful algal blooms (HABs). Although there are certainly many HAB species in this 
region (Dortch et al. 199%; Dortch et al. in press; Parsons et al. in press; Dortch et al. accepted), 
the historical data are insufficient to assess whether their incidence has increased (Dortch et al. 
accepted). The exception is Pseudo-nitzschia spp., a group of toxic diatoms whose increased 
abundance over time has been linked to increasing nutrient inputs from the Mississippi River 
(Rabalais et al. 1996; Dortch et al. 199%) (see Section 7.3). 

Although the effect of Si limitation on species composition has been investigated because l a -  
toms dominate the biomass and play a pivotal role in trophodynamics and carbon flux in this 
system (Turner et al. 1998), the effects of N and P limitation on species composition in this re- 
gion have not been investigated. From studies in marine and freshwater systems elsewhere (e.g., 
Tilman et al. 1986; Makulla and Sommer 1993; Sommer 1989, 1993, 1994, 1995, 1996; Reig- 
man 1992), N and P limitation will also strongly influence phytoplankton species composition, 
possibly in ways that will affect the function of the ecosystem (e.g., Reigman 1992). 
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6.5 ARBON FLUX 

The production of carbon via photosynthesis in surface waters eventually contributes to the flux 
of carbon to the bottom and decline of oxygen through aerobic respiration. The fallout of sur- 
face material to bottom waters along the inner to middle continental shelf should be high for 
two reasons. First, primary production in these waters is high (290 to > 300 g C/m2/yr) (SMar 
and Turner 1981; Lohrenz et al. 1990). Second, Suess' (1980) empirically derived formula relat- 
ing phytoplankton production in surface waters to the amount of material falling into sediment 
traps at  depth predicts that 50% or more of the surface production reaches the bottom in depths 
equal to those of the hypoxic zone and that the percentage decreases as depth increases. T h e  
amount of phytoplankton biomass in the bottom waters across the Louisiana inner and middle 
continental shelf is high, often exceeding 30 pg/l, and a high percentage is composed of 
phaeopigments. This relationship holds for the hypoxic zone and for differences related to 
depth. The respiration rate is proportional to phytoplankton pigment concentration (Turner 
and Allen 1982b); thus, more oxygen is taken up where higher flux of materials reaches the 
lower water column and sediments. 

Studies of particle flux on the Louisiana shelf are limited to floating (Redalje et al. 1994) and 
moored traps (Qureshi 1995). Redalje et al. (1994) deployed free-floating MULTITFUP sys- 
tems in both river plume and adjacent shelf regions. They determined that vertical flux was 
highest in the plume (1.8 g C m2/d) and the shelf (0.4 g C/m2/d) during May 1992 and lowest 
in the plume (0.29 g C/m2/d) and shelf (0.18 g C/m2/d) during July-August 1990. Qureshi's 
traps were deployed on an instrument mooring at depths of 5 m and 15 m in a 20-m water col- 
umn in spring, summer, and fall (station C6B, see Figure 2.1). They were baffled traps with an 
aspect ratio of 3:l. Collections were funneled into a tube with brine solution (45 ppt) and 1% 
glutaraldehyde, and were retrieved at one- to three-week intervals, depending on weather. Phy- 
toplankton and fecal pellets were enumerated; carbon was estimated from volume calculations 
(verified with experimental data); and total C, H, and N were analyzed on an elemental analyzer. 

The material that sank into the sediment traps was composed of fecal pellets, directly sinking 
phytoplankton, and other unidentified carbon (Figure 6.11). The unidentified carbon consisted 
of molts, dead zooplankton (it is impossible to distinguish between swimmers and dead 
zooplankton that fell into the traps), marine snow, and particles with adsorbed organic carbon. 
Carbon flux was high, i.e. approximately 500-600 mg C/m2/d in 15-m water depth (Qureshi 
1995; Redalje et al. 1994). The total carbon flux was much lower in 1992 than in 1991, and the 
seasonal pattern of the sources of carbon flux was also quite different between both years and 
depths. A large portion of the particulate organic carbon flux that reached the bottom was in- 
corporated in zooplankton fecal pellets (55%; Qureshi 1995), but also as individual cells or in ag- 
gregates. Overall, the flux of fecal pellet carbon and other carbon exceeded that of phytoplankton 
direct-sinking carbon. Both phytoplankton and zooplankton carbon fluxes were a larger per- 
centage in the spring and fall. 

A rough estimate of the fraction of production exported from the surface waters (compared to 
seasonal primary production data of SMar and Turner 1981) was highly variable and ranged from 
10% to 200%, with higher percentages in spring (Qureshi 1995); estimates of Redalje et al. 
(1994) were also quite variable. The high particulate organic carbon flux was sufficient to fuel 
hypoxia in the bottom waters below the seasonal pycnocline (Qureshi 1995; Justid et al. 1996). 
The carbon fluxed via fecal pellets was usually sufficient to deplete the bottom-water oxygen re- 
serve in the spring, thus creating hypoxic conditions that then prevailed through the stratified 
summer period. While the flux of organic material in summer contributes to hypoxia, it is in- 
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consequential to the majority flux of particulates in the spring (Qureshi, 1995). Turner et al. 
(1998) combined the sediment trap fecal pellet carbon data, chlorophyll data, and seasonal and 
depth-related respiration rate experiments in an analysis of how these relationships varied around 
a Si:DIN ratio of 1:1, as delivered by the Mississippi River (lagged three months). They showed 
that (1) there is a strong vertical, rather than horizontal, coupling between oxygen consumption 
in bottom waters and organic loading from surface waters; and (2) higher water-column respira- 
tion rates are driven by river-derived nutrients stimulating in situ organic production that sinks 
to the bottom layers. They also showed that respiration rates in bottom waters were responsive 
to zooplankton fecal pellet production (as predicted by Qureshi 1995) and to diatom production. 
The trophodynamics of carbon production, zooplankton, carbon flux, and respiration were sen- 
sitive to the Si:DIN ratio in the riverine waters (see Section 6.8). 

A. 1991 SIIrfi3ce Trap OFecal Pellet EPhytopianMon =Other B. 1991 Bottom Trap OFecal Pellets mPhytoplankton mother 

C. 1992 Surface Trap OFecal Pellets E PhytoplanMon mother D. 19BZ B0ttom Trap OFecal Pellets Phytoplankton Wler 

FIGURE 6.1 1 .  Percent total carbon flux comprised of fecal pellets, phytoplankton, and 
other material. NOTE: Fecal pellet carbon obtained from counts and volumes, using an 
empirically determined C/volume ratio (Qureshi 1995). Phytoplankton- carbon calculated 
from chlorophyll using the CIChl ratio for surface traps and bottom traps in 1991, calcu- 
lated from counts and volumes of phytoplankton, converted to C. (From Dortch 1994; 
Rabalais et al. 1998.) 
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Because the sediment traps were serviced by divers, they were not deployed from late fall through 
early spring, when high fluxes of diatoms might have occurred (based on subsequent analysis of 
phytoplankton biomass and composition during that season). Our understanding of fluxes of 
carbon is currently limited to the spring through early fall period and to the two years of data 
that have been analyzed for the four years of trap collections. The diffdrences in the two years of 
data indicate high interannual variability. One difference in the two years was the timing and 
discharge of the river. The flow in 1992 was much lower than in 1991. Correlations that existed 
between flux in 1991 with indicators of riverine discharge (low salinity, high chlorophyll a 
biomass) were not present in 1992. 

6.6 COMPOSITION OF SINKING MATERIAL AND THE 
RELATIONSHIP TO NUTRIENT AVAILABILITY 

Despite the limited carbon flux data, there were some clear links between different sources of 
carbon flux and nutrient availability in the coastal zone. In Figure 6.10 (and associated text) it 
was shown that both diatom abundance and the types of diatom species present were related to 
silicate availability in the water. Because of its effect on diatom abundance, silicate availability 
may also be a factor controlling phytoplankton and fecal pellet carbon flux. Diatoms comprised a 
much higher percentage of the total phytoplankton sinking into sediment traps than their per- 
centage of the total phytoplankton in the surface water (Table 6.3), suggesting selective sinking 
of diatoms. The other phytoplankton found in sediment traps were primarily picocyanobacteria 
that did not contribute substantially to the carbon flux because of their small size. 

TABLE 6.3. Abundance of diatoms relative to other phytoplankton in sediment traps moored 
in the hypoxic region's core (C6A and C6B) from March to September 1990 ( 1  I deployments) 
and April to December 199 1 ( 1  5 deployments) and in surface water. 

% DiatomlTotal Phytoplankton 
1990 1991 

Top Trap 3 1 74 

Bottom Trap 4 2 6 6 

Surface Water 13 10 

Because the peak in cyanobacterial flux was greater in spring when diatom abundance was great- 
est than it was summer and fall when cyanobacterial abundance was highest, it has been pro- 
posed that the cyanobacteria sink as part of diatom aggregates (Dortch et al. 1997a, 1998). T h e  
diatom species that did sink represent only part of the total diatom community, including heavily 
to moderately silicified species and excluding lightly silicified species that were present in the 
water column (Table 6.4) (Dortch et al. 1992b; Fahnenstiel et al. 1995; Dortch et al. 1997a, 
1998). Thus, Si must be available for high sinking flux of heavily to moderately silicified diatoms. 
These results have an apparent contradiction. The greatest sinking fluxes occur when diatom 
abundances are high, which is also when Si limitation is much more likely to occur. Other data 
suggest that Si limitation triggers sinking in many diatom species ( e g ,  Bienfang et al. 1982). 
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TABLE 6.4. Abundance of diatoms relative to total phytoplankton and abundance of sinking 
diatom species relative to total diatoms in sediment traps moored in the core of the hypoxic 
region (C6A and C6B) from March to September 1990 ( 1  1 deployments) and in surface wa- 
ter. 

% Diatoms1 % Sinking Diatoms1 
Total Cells Total Diatoms 

High Runoff 
Water 4 8 
Top Trap 3 0 
Bottom Trap 3 9 

Low Runoff 
Water I 
Top Trap 3 2 
Bottom Trap 44 

Many zooplankton feed on diatoms, which are the most abundant food in the larger size range 
in this system. Fecal pellet production is often proportional to the availability of food (e.g., Cor- 
ner et al. 1972; Butler and Dam 1994). In 1991 there was a close correspondence between fecal 
pellet flux and diatom abundance (Figure 6.12, left panel), although in 1992 there was not 
(Figure 6.12, right panel). With carbon flux data for only two years, one year cannot be labeled 
as unusual, but other data (Figure 6.10) suggest that 1992 may have been unusual. Because dia- 
tom abundance is dependent on silicate availability (Figure 6.10), Si availability may be a factor 
controlling fecal pellet production and flux; data from multiple years identified the link between 
Si availability, diatom abundance, and fecal pellet flux (Turner et al. 1998; see Section 6.8). 

1 .Et07 10000 
Dlatom Abundance, I.E+OB 

Dlatom Abundance 

* i  
' , 

, 1 ' 

I .  

I I ' 7 
I c ,  ' I .' . , , *  I ,! -,". 

,; ; r 
Fecal Pellet C Flux u *  

1 L. 

.I 

FIGURE 6.1 2. Diatom abundance and fecal pellet carbon flux at C6A and C6B in 1 99 1 and 
1992. (From Qureshi 1995; Dortch unpublished data.) 
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6.7 RESPIRATION 

The oxygen consumption rates in near-bottom waters of the seasonally oxygen-deficient conti- 
nental shelf were measured during several spring and summer cruises of multiple years (Turner et 
al. 1998; Turner and Rabalais 1998a). Rates varied between 0.0008 knd 0.29 mg O,/l/hr, and 
were sufficient to reduce the in situ oxygen concentration to zero in less than four weeks. T h e  
rates were inversely related to depth and decreased westward of the Mississippi ILver Delta, con- 
sistent with the decrease in nutrients and pigment concentrations. Respiration rates per unit 
phytoplankton pigment were highest in the spring, in shallower waters, and also closest to the 
Mississippi River Delta. These results indicate a strong vertical, rather than horizontal, coupling 
between oxygen consumption in bottom waters and organic loading from surface waters, and are 
consistent with the hypothesis that the higher water column respiration rates are driven by river- 
derived nutrients stimulating in situ organic production that sinks to the bottom layers. -- 
Respiration in sediments is an additional oxygen sink for these waters. Rowe (in Dortch et al. 
1994) suggested that this oxygen sink may sometimes equal respiration in the overlying waters, 
but most results (field and modeling experiments) indicate that the sediment consumption is sel- 
dom more than one-third of the total oxygen uptake below the pycnocline. 

Dortch et al. (1994) suggested that photosynthesis on or near the sediment-water interface may 
occur and offset oxygen uptake processes at least to the point that anoxia does not occur more 
frequently. The low oxygen concentration observed in the samples for respiration experiments 
(average 3.4 mg/l, n = 40), however, suggested that benthic oxygen production was relatively 
low. Also, because of the high turbidity of the continental shelf waters near the Mississippi 
ILver, primary productivity is low below a depth of 10 m (Lohrenz et al. 1990). 

Light conditions, however, could be an influential factor determining where hypoxic water 
masses were not located (Bierman et al. 1994). That is, the extinction coefficients might be im- 
proved sufficiently at the edge of the hypoxia water masses to affect oxygen production and 
consumption. 

6.8 NUTRIENT RATIOS AND l MPLlCATlONS TO 
BIOGEOCHEMICAL CYCLES AND VROPHODYNAMICS 

The availability of dissolved silicate and its ratio to total inorganic nitrogen are important in 
controlling the extent of diatom production and the composition of the diatom community, 
with implications for carbon flux and control of oxygen depletion (Dortch and Whitledge 1992; 
Nelson and Dortch 1996; Turner et al. 1998). The lower concentration of silicate and a ratio of 
Si:N closer to the Redfield ratio could favor nonsiliceous forms of phytoplankton, such as dino- 
flagellates or cyanobacteria. O n  the other hand, it is plausible with the increase of N that larger, 
more heavily silicified diatoms that sink more readily and add to the oxygen demand of bottom 
waters would be competitively superior. Evidence supports both of these hypotheses in varying 
degrees (see discussion in Chapter 7 on historical changes in biological indicators). 

Turner et al. (1998) demonstrated the coupling between oxygen consumption in bottom waters 
and vertical flux of carbon from nutrient-enhanced surface-water primary production. They also 
showed that carbon production, zooplankton, carbon flux, and respiration were sensitive to the 
Si:DIN ratio in the riverine waters. The percentage of copepods in the total mesozooplankton 
assemblage changed dramatically as the average Si:DIN ratio approached 1:l .  Copepods made up 
about 30% of the mesozooplankton at a Si:DIN ratio of 0.5 and 75% at 1.0. Both the percent- 
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age of fecal pellet carbon in the top trap and the estimated primary production captured as fecal 
pellets were high when the average Si:N atomic ratio in the river was greater than 1:l. These 
two patterns were consistent with the expectation that copepod density and grazing rates would 
be higher when the production of the principal prey-diatoms-was higher. When the Si:DIN 
ratio was high, respiration rates declined with depth more slowly than when this ratio was low. 
This result is consistent with the idea that faster sinking rates will result in less organic matter 
consumption in transit to the bottom and a more uniform distribution of respiration rates in 
near-bottom waters of different depths. 

Because the diatom-rich fecal pellets travel more quickly to the bottom than diatom-poor fecal 
pellets, the respiration rate per chlorophyll a accelerates with increasing Si:DIN ratio of the fresh 
water entering the system. The heavily silicified diatoms, produced mainly in high-discharge 
spring conditions, sink faster than diatoms with lightly silicified frustules produced in low-flow 
summer conditions, especially when packaged as fecal pellets. The proportion of primary pro- 
duction formed into fecal pellets, the water column respiration rate, and near-bottom respiration 
rates were sensitive to the Si:DIN ratio in the riverine waters, and changed dramatically near the 
Redfield ratio. 

The patterns identified by Turner et al. (1998) were consistent with the hypothesis of Officer 
and Ryther (1980) that a shift in the Si:N atomic ratio from above 1:l  to below 1:l would alter 
the marine food web by reducing the diatom-to-zooplankton-to-higher trophic level food web, 
and increasing the proportion of flagellated algae, including those that are potentially harmful. 
Turner et al. (1998) speculated on the implications of pivoting around the Si:N ratio of 1:l. The 
system appears to be poised to exhibit two very different food webs (Table 6.5). If flagellated al- 
gae become dominant, it does not mean that hypoxia will end. The blooms of flagellated algae, 
for example, may contribute to hypoxic water formation if sufficient biomass sinks from the sur- 
face to the bottom layer. 

TABLE 6.5. Summary of observations and probable consequences with Si:DIN atomic ratios 
near I : I and less than I : I. 

Observations and Implications Si:DIN 
< I:/  / : I  or > /:I 

Observations 

% of mesozooplankton that are copepods Low Dominant 

% of carbon in sediment traps that is  in fecal pellets Low High 

% of primary production that is  in fecal pellets 

Sinking rate of surface carbon produced 

Respiration per Chl a in bottom waters 

Respiration losses in bottom waters 

Implications 

Low Dominant 

Slower Faster 

Lower 

Lower - 

Potential for flagellated algal blooms, including Higher I HABs 

Higher 

Higher 

Lower 

Bottom-water hypoxia zone Less severe, more Continuing severity 
sporadic 
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Oxygen profiles and calculations of oxygen anomalies (Figure 6.13) for station C6* off Terre- 
bonne Bay on the southeastern Louisiana shelf over the period 1985-92 were used to define oxy- 
gen and carbon budgets for an area that is consistently hypoxic on a seasonal basis UustiC et al. 
1993, 1996, 1997). This area is suitable for the development of a coupled biological-physical 
two-box model for several reasons. Vertical oxygen transport is likely to be more important than 
horizontal oxygen transport for this area, because the data suggest a relatively high coherence 
between changes in vertical temperature gradients and changes in bottom oxygen concentration 
(Rabalais et al. 1992a) and a strong tidal signal of any hnd,  which would indicate horizontal 
transport is not present in the periodograms of oxygen data from station C6* (Rabalais et al. 
1994). Also, maximum lateral displacement of only 3 krn can be expected due to diurnal and 
semidiurnal currents (Rabalais et al. 1994). 

Oxygen anomaly (mg/l) 

FIGURE 6.13. Oxygen anomaly (difference between measured oxygen and expected oxygen 
concentration at 100% saturation) for station C6* in 1 985-92. 

The surface-water layer, above the prevalent pycnocline at 10 m, shows an oxygen surplus during 
February-July, with the maximum in April and May, which coincides with mean peak Missis- 
sippi River flow (Figure 6.14). The bottom layer, below the pycnocline to 20 m, exhibits an oxy- 
gen deficit throughout the year (Figure 6. IS), but reaches its highest value in July when surface- 
to-bottom density differences are greatest. 

Based upon Figures 6.14 and 6.15,90% of the annual net oxygen production at station C6* oc- 
curs between February and June (Justid et al. 1996, 1997) (Figure 6.16). The  integrated annual 
net productivity (NP) of the upper water column (0-10 m) at station C6* is 423 g 02/m2. If an 
oxygen-to-carbon ratio of 3.47 by weight (mol 02:mol C = 138:106; P Q =  1.3) is assumed for 
the photosynthetic process, then the total net carbon production is 122 g C m2/y .  The excess of 
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FIGURE 6.14. Mean monthly oxygen surplus or deficit at I-meter intervals for station C6* 
for January-June 1985-92. (From Justic' et al. unpublished data.) 
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FIGURE 6.15. Mean monthly oxygen surplus or deficit at I-meter intervals for station C6* 
for July-December 1985-92. (From Justic' et al. unpublished data.) 
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organic matter, derived from primary production, is redistributed within the system and eventu- 
ally decomposed in the lower water column and in the sediments. Integrated oxygen uptake rates 
for the lower water column (10-20 m) are significantly higher between January and June than 
the rest of the year. This correlates well with the seasonal changes in N P  in the upper water col- 
umn. The integrated annual oxygen uptake rate in the lower water column at station C6* is 197 
g 02/m2/yr, which converts to a value of 57 g C/m2/yr, if an RQvalue of 0.77 (mol C:mol 0, = 

106:138) is used for the respiration process. Thus, on an annual basis, 47% of the surface net or- 
ganic production at station C6* is decomposed in the lower water column and in the sediments 
(TR:NP = 0.47), a value that compares well with estimates of fxed carbon exported from surface 
waters to the lower water column (Qureshi 1995). 

Surface 
(0 - 10 m) 

Pycnocline 

Bottom 
(10 - 20 m) 

FIGURE 6.16. Global oxygen fluxes (g 02hn21d) at Station C6* for the periods 1985-92 and 
1993 and model projections for a doubled CO, climate. Note: F,, denotes the total air-sea 

oxygen flux; NP is the net productivity of the upper water column (0-10 m); Do is the diffusive 
oxygen flux through the pycnocline; and TR is  the total oxygen uptake in the lower water 
column (10-20 m). Carbon equivalents, computed from the Redfield stoichiometric model 
(C:O, = 0.288, by weight), are given in parentheses. (From justic'et a/. 1997.) 

A high degree of coherence exists between the Mississippi Fher  nitrate flux and net production 
rates at Station C6*. This allowed Justid et al. (1997) to predict that the net productivity of the 
upper water column has increased since the 1950s, coiniident with increased river nitiate flux 
and concentration-a relationship verified with sediment cores (see Sections 7.4 and 7.5). If one 
assumes that the riverine nitrogen input was 50% lower than at present, the monthly nitrate flux 
during the 1950s did not exceed 1.6 x lo6 kg/d. Based on the relationships of the model Uustid et 
al. 1996, 1997), that flux would be sufficient to support net productivity of about 0.29 g C/m2/d, 
which is only 25% of the peak NP value for 1985-92 (1.15 g C/m2/d). Consequently, the inte- 
grated annual net was substantially lower than at present, and probab~ybid not ex- 
ceed 25 g C/m2/yr. Even if losses due to export and burial were insignificant, and the total 
annual production of 35 g C/m2/yr was decomposed in the lower water column and sediments, 
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the annual total oxygen uptake value (TR) would have been around 121 g 02/m2/yr. This result 
is substantially lower when compared with the estimates for 1985-92 (197 g O,/m /yr) and 1993 
(195 g 0,/m2/yr). Thus, the net productivity of the upper water column appears to be an impor- 
tant factor controlling the accumulation of organic matter in coastal sediments and development 
of hypoxia in the lower water column. 

The model for Station C6*, calibration data, experimental results from the 1993 flood, and dou- 
bled CO, climate scenario projections, as well as modifications to coastal carbon and oxygen 
budgets under anthropogenic nutrient enrichment throughout the world, indicate a close cou- 
pling between river-borne nutrients, net productivity, vertical carbon flux, and hypoxia on de- 
cadal time scales. 

In general, the relationship between oxygen concentration and the concentration of dissolved 
inorganic nitrogen, phosphate, and silicate is inverse (Figure 6.17). At the lowest oxygen con- 
centrations, the nutrient concentrations were generally higher. Nutrients are released during de- 
composition of organic matter that has settled into the lower water column from the surface. I f  
dissolved oxygen is extremely low, N will remain in the more reduced state. Nitrification takes 
place until it becomes oxygen-limited as sediments approach anoxia. 

For July 1993 LATEX data, there were elevated concentrations of NH,', NO3-, NO,., and 
in hypoxic bottom waters, especially where oxygen levels were less than 0.5 mg/l (Rabalais 

and Turner 1998). Hypoxia was not as widespread and severe in July 1994 (LATEX data) as in 
1993, but there were elevated levels of NH,', NO,.,. and PO,I in water less than 0.5 mg/l oxy- 
gen. Most of the inorganic nitrogen is present as nltrate, but there were significant amounts of 
NH,' and NO,. at the lowest oxygen concentrations, indicating organic decomposition in sedi- 
ments and nutrient release (similar to hypoxic/anoxic environments in the mid-reaches of 
Chesapeake Bay (Cowan and Boynton 1996). Some of the NH,' could have been converted to 
NO3- through nitrification. 

Higher phosphate concentrations at the lower dissolved oxygen levels are consistent with a 
strong flux of P as sediments become anoxic (sulfide out-competes phosphate for iron-binding 
sites), as also seen in Chesapeake Bay. Higher dissolved silicate fluxes out of the sediments in hy- 
poxic bottom waters in mid-Chesapeake Bay were related to the flux of organic matter from 
surface waters, but only after a temporal lag of one month was added between deposition events 
(shown as elevated sediment chlorophyll a concentrations) and sediment nutrient releases. One 
could predict then that those stations with higher SiO; concentrations (Figure 6.17) received a 
greater flux of silicate-based organic material in prior months. 

Both the physical structure and the biological processes of the Louisiana continental shelf are 
influenced by the nutrient-rich freshwater discharge of the Mississippi River system. Freshwater 
discharge peaks in spring, as does nutrient flux, but the relationship of the two is not perfect. 
Physical differences in salinity from the surface to the bottom increase in the spring as well, and 
are strengthened in the summer with solar heating and reduced waves in calmer weather. There 
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are time and spatial lags with nutrient delivcq~ and production in the surface waters, and a s~bse -  
quent lag in flux of carbon to the lower water column and oxygen uptake in the lower water col- 
umn and sediments. Spatial and temporal variability in the distribution of hypoxia is related, at 
least partly, to the amplitude and phasing of the Mississippi River discharge and nutrient fluxes 
(Pokryfki and Randall 1987; JustiC eta!. 1993, 1996, 1597; Rabalais et al. 1996; M7isernan et al. 
1997): A series of experiments, empirical relationships, seasonal oxygen and carbon budgets, 
time-series analyses, models, and corr,parisons with other regions of the world's coastal ocean 
indicate a close coupling between river-borne nutrients, net productivity., vertical carboc flux, and 
hypoxia on short (d$) to long (deca,dai to cmtury) time scales (Table 6.6). 
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FIGURE 6.1 7. Comparison of bottom-water dissolved oxygen concentration and bo ttnm- 
water dissolved inorganic nutrient concentrations for all stations and all depths for May- 
September 1985-96. (From Rabalais and Turner unpublished data.) 
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TABLE 6.6. Evidence for nitrogen-driven phytoplankton production. 

Days 

Temporal 
Scale 

Bioassay experiments. 
Simulated in situ measurements of primary production across a range of dissolved 

inorganic nitrogen concentrations. 
Short-term primary production models. 
Correlation of N-NO, with primary production. 
Depletion of NO, and Si along a salinity dilution gradient. 
In situ Redfield ratios. 

Evidence 

- -  - 

Months 

Years 

Correlation of primary production w/ time-lagged nutrient concentration & flux. 
Correlation of surface-water net production with time-lagged nutrient flux. 
Correlation of surface-water net production and bottom-water oxygen stress 

with I-month and 2-month, respectively, lagged freshwater discharge. 
Response of mass-balance model to  reductions in nitrogen load. 
Oxygen and carbon budgets. 
Carbon flux relationships with indicators of river discharge and surface-water 

increased production. 

Sediment cores and coincidental timing with increased nitrogen loading. 
lncrease in accumulation of increased marine-source carbon. 
lncrease in silicate-based productivity. 
lncrease in foraminiferan index of A/E (increased carbon accumulation and wors- 

ening oxygen stress). 
1998, 1992, or other low-discharge years for nonevents; variability in spring dis- 

charge, predicted C flux, or  stratification, or combination. 

Net productivity (a surrogate for excess carbon available for export) of the upper water column 
appears to be an important factor controlling the accumulation of organic matter in coastal 
sediments and development of hypoxia in the lower water column. Seasonal dynamics of net 
productivity in the northern Gulf of Mexico are coherent with the dynamics of freshwater dis- 
charge (Justid et al. 1993). The surface layer (04.5 m at station C6*) shows an oxygen surplus 
relative to the saturation values during February-July; the maximum occurs during April and May 
and coincides with the maximum flow of the Mississippi Rtver (Figure 6.18). In contrast, the 
bottom layer (approximately 20 m) exhibits an oxygen deficit throughout the year, but reaches its 
highest value in July. Bottom hypoxia in the northern Gulf is most pronounced during periods 
of high water column stability when surface-to-bottom density differences are greatest (Section 
4.2) (Rabalais et al. 1991; Wiseman et al. 1997). The correlation between Mississippi Rtver flow 
and surface oxygen surplus peaks at a time lag of one month, and the highest correlation for 
bottom oxygen deficit is for a time lag of two months (Justid et al. 1993) (Figure 6.18). These 
findings suggest that the oxygen surplus in the surface layer following high flow depends on 
nutrients ultimately coming from the river but regenerated many times. 

Annual mass-balance calculations (Turner and Rabalais 1991; Dortch et al. 1992a) and N up- 
take measurements in the fall suggest that N atoms are recycled on the average about four times, 
although recycling may be less important in the spring (Dortch et al. 1992a; Bode and Dortch 
1996). This finding is important, because a surplus of oxygen relative to the saturation value is a 

good indicator of net productivity in the surface waters. An oxygen surplus also means that there 
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FIGURE 6.18. Left panel: Seasonal changes in river flow, stability, surface oxygen surplus, 
and bottom oxygen deficit for station C6*. NOTE: The solid lines represent the monthly 
means for 1985-9 1 .  Surface-oxygen surplus and bottom-oxygen deficit are 0,- 0,' and -(0,- 
O,'), respectively, where the 0, was the measured oxygen concentration and 0,' was the oxy- 
gen concentration at 1 00% saturation. Right panel: Cross-correlation analysis of the data on 
river flow versus surface oxygen surplus and bottom oxygen deficit. (Modified from justic' e t 
a/. 1993.) 
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is an excess of organic matter derived from primary production that can be redistributed within 
the system; much of this will eventually reach the lower water column and sediments. The de- 
velopment of summer hypoxia in the northern Gulf of Mexico is associated with the decay of 
organic matter accumulated during spring phytoplankton blooms (Qureshi 1995) (see Sections 
6.5 and 6.6 on carbon flux). These findings demonstrate a close coupling between river-borne 
nutrients, net productivity, and hypoxia, as well as implicate the effects of anthropogenic nutri- 
ent loads on a coastal marine ecosystem. 

Nutrients clearly stimulate primary production in the Mississippi River Bight region (Lohrenz et 
al. 1997). The relationships between dissolved inorganic nitrogen flux and concentration and 
orthophosphate concentration were strongest for the eastern and central parts of the bight. T h e  
relationship was equally strong within the western region of the study area, but the strength of 
the relationship improved with a lag in the delivery of the nutrients from the river delta. Justid et 
al. (1997) demonstrated a strong relationship between dissolved inorganic nitrogen flux and net 
production in the surface waters of station C6* (the western region of the Lohrenz et al. 1997 
study), with a stronger relationship at a one-month lag for river flux. These two separate analyses 
clearly show the enhancement of primary production and net production with nutrient (N and 
P) increases. 

Similar relationships with freshwater discharge and oxygen depletion in bottom waters at sta- 
tions in a location west of the Atchafalaya River Delta and expected direction of materials and 
freshwater flux were identified by Pokryflu and Randall (1987) (Figure 6.19). Time lags were 
apparent between values of river discharge, bottom dissolved oxygen, and salinity. The highest 
cross-correlation coefficient between bottom-water dissolved oxygen (in the area off the Cal- 
casieu Estuary) and river discharge (from the Atchafalaya) was -0.51 at a lag of two months. 
These results are similar to those of Justid et al. (1993) for station C6* on the southeastern shelf. 
The linear-regression model developed by Pokryflu and Randall (1987) did not include any fac- 
tors for biological processes, and the accuracy would have been improved by "incorporating a 
biological component into the time series." 
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Bottom contours of dissolved oxygen values (mglliter) for the Northwestern Gulf of Mexico on July 9-10, 1984 
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and river discharge was -0.51 at a lag of two months. 
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FIGURE 6.19. Upper panel: Location of bottom-water hypoxia on the southwestern Louisiana 
shelf in July 1984. Left panel: Comparison of actual and predicted bottom dissolved oxygen values 
from the linear regression model. Right panel: Comparison of actual and predicted bottom 
dissolved oxygen values from the time series model. (From Pokryfki and Randall 1 98 7.) 



CHAPTER 7 

Long-Term Coastal cosystem 

Given the high volume of fresh water delivered by the Mississippi River and associated nutrients 
and the stratified coastal system, one might expect a propensity for the ecosystem to develop hy- 
poxia naturally. In other words, has hypoxia always been a feature of the northern Gulf of Mex- 
ico adjacent to the discharge of the Mississippi River? 

There is a general consensus that the eutrophication of estuaries and enclosed coastal seas 
worldwide has increased over the last several decades. Evidence from many coastal seas suggests a 
long-term increase in frequency of phytoplankton blooms, including noxious forms (Smayda 
1990; Hallegraeff 1993). Also, an increase in the areal extent and/or severity of hypoxia was ob- 
served, for example, in Chesapeake Bay (Officer et al. 1984), the northern Adriatic Sea UustiC et 
al. 1987), some areas of the Baltic Sea (e.g., Andersson and Rydberg 1987), and many other ar- 
eas in the world's coastal ocean (Diaz and Rosenberg 1995). Therefore, given the magnitude of 
changes in the nutrient flux to the Gulf, it would not be surprising that the northern Gulf of 
Mexico has experienced eutrophication and ecosystem-level responses to increased nutrients, 
changing nutrienr ratios, and carbon flux. Unfortunately, the long-term data sets that demon- 
strate changes in surface-water productivity and bottom-water dissolved oxygen, such as those 
available for the northern Adriatic Sea and areas of the Baltic and northwestern European coast, 
do not exist for the northern Gulf of Mexico. Data from oceanographic cruises prior to 1985 
with which to test these hypotheses are limited. Other sources of information, therefore, must 
be sought that record whether changes in marine ecosystem-level indicators have occurred as 
Mississippi River nutrients have changed. 

7.1 HISTORICAL DOCUMENTATION 

7.1 . I  Oxygen inimurn Layer 
The oxygen minimum layer is a permanent feature of the open Gulf of Mexico at 400-700-m 
depths. The mention of low oxygen conditions from the northern Gulf of Mexico for the mid- 
1930s can be traced to Conseil Permanent International pour 1'Exploration de la Mer (1936) 
Bulletin Hydrographique for 1935. These conditions were also identified in Hedgpeth's Treatise 
on Marine Ecoloa and Paleoecology (Brongersma-Sanders 1957; Richards 1957) as records from 
the oxygen minimum layer. The data from the M/V Atlantis surveys for the Gulf of Mexico in 
1935 (all stations north of 27"N indicated in Figure 7.1 top panel, including some shelf stations) 
were reviewed, and those with characteristic mid-water oxygen minimum zone measurements 
were plotted (bottom panel of Figure 7.1) and compared to present-day shelf hypoxia (shaded 
area represents 1996 bottom hypoxia distribution). 
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FIGURE 7.1. Upper panel: Stations from the 1 935 M N  Atlantis surveys of the Gulf of Mex- 
ico north of 27"N. Bottom panel: M N  Atlantis stations with mid-water dissolved oxygen con- 
centrations less than 3 cm311 (N.T.P.) (= 4.3 mgll), compared to the hypoxic zone of July 1996. 
(MIV Atlantis data from Conseil Permanent International pour /'Exploration de la M e r  
(1 936); july 1996 data from Rabalais et al. unpublished data.)  

The stations with mid-water oxygen concentrations less than 3 cm3/l (= 4.3 mg/l) were used as a 
very conservative measure of the occurrence of low-oxygen conditions. There were no values of 
oxygen less than 2 cm3/1 (= 2.8 mg/l) or less than 1.4 cm3A (= 2 mg/l), which more closely ap- 
proximate the hypoxic conditions of the Louisiana continental shelf. Further, oxygen values less 
than 3 cm3/l (= 4.3 mg/l) were well off the continental shelf and in water depths of 250-600 rn 
of a total water column that was usually much deeper. Oxygen concentrations for Atlantis sta- 
tions less than 50-m deep on the northern Gulf shelf (measured in February and March) were 
all above 5 cm3/l. The months of February and March are less likely to be hypoxic, but not ex- 
clusively, because values below 2-3 mg/l have been recorded in these months (Rabalais et al. un- 
published data). Thus, the idea that low-oxygen conditions have been reported from the Gulf 
since the 1930s is clearly erroneous. The oxygen minimum layer in deeper waters is disjunct from 
the continental shelf hypoxia that has been documented since the 1970s (Figure 7.1). 

Earlier researchers cited in Turner and Allen (1982a) proposed that intrusion of the oxygen 
minimum layer from deeper waters onto the continental shelf, especially in the area of the Mis- 
sissippi Canyon, was the source of bottom water depleted of oxygen. Several authors have shown 
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that the oxygen minimum zone has no physical connection with the hypoxia on the inner to 
mid-continental shelf (Pokryflu and Randall 1987; Rabalais et al. 1991). Zones of hypoxic bot- 
tom waters are confined to the continental shelf, terminate well inshore of the shelf break, and 
are not continuous with the oxygen minimum layer of the Gulf of Mexico (see above). In addi- 
tion, the salinity, temperature, and respiration rates of water in the deep-water oxygen minimum 
zone in the Gulf of Mexico differ considerablv from the continental shelf hmoxic waters. T h e  , J I 

oxygen consumption rates in the oxygen minimum layer are insufficient (by several orders of 
magnitude) to account for the observed decline in oxygen concentrations on the shelf (Turner et 
al. 1997). 

7.1.2 Early Reports of Louisiana Shelf Hypoxia 
Continental shelf hypoxia was first reported in the northern Gulf of Mexico in the early 1970s 
off Barataria and TerrebonneITimbalier Bays as part of environmental assessments of oil pro- 
duction and transportation development studies (the Offshore Ecology Investigation (OEI), 
Ward et al. 1979; the Louisiana Offshore Oil Port (LOOP), Turner et al. in review) (Figure 
7.2). The OEI study was conducted in Timbalier Bay and on the southeastern Louisiana shelf 
near the present-day stations of transects B and C of the hypoxia studies of Rabalais, Turner, 
and Wiseman (Figure 2.1). Severely depleted bottom waters were documented in August 1972 
and July 1973 at stations in water 10-20 m deep. From May 1973 to May 1974, hypoxia was 
widespread between Barataria and Timbalier Passes in water 6-33 m deep and extended up to 30 
krn offshore. The years 1973 and 1974 marked consecutive 100-year floods of the Mississippi. 

Following the initial documentation of hypoxia in 1972-74, Ragan et al. (1978) and Turner and 
Allen (1982a) conducted shelf-wide surveys and surveys in 1975 and 1976 between Mobile Bay 
and Atchafalaya Bay, respectively. The 1975 and 1976 distribution maps were less extensive than 
those mapped since 1985 by Rabalais et al. (1991,1998), but the study area of Turner and Allen 
(1982a) at least was smaller than the current 60- to 80-station grid of the Rabalais et al. hypoxia 
studies. Turner and Allen (1982a) documented hypoxia (1) in March 1975 off Terrebonne Bay 
near the present-day Station C3, (2) in July 1975 over a fairly large area off Barataria and Terre- 
bonne Bays, and (3) in July 1976 at one station off Terrebonne Bay near the present-day station 
of C6 (Figure 7.1). Values of oxygen in the Turner and Allen (1982a) survey were not as low as 
those documented during studies conducted in 1973-74. Ragan et al. (1978) surveyed the Lou- 
isiana shelf in 1975-76 and documented hypoxia in September 1975, July 1975, and August 
1976 in the Mississippi fiver Bight and west of the Atchafalaya outflow (Figure 7.2). 

The Central Gulf Platform Study was conducted at selected oil and gas production platforms 
and "control" areas between the Mississippi and Atchafalaya Deltas during April 1978-January 
1979 (Bedinger et al. 1981). Stations were located in water depths of 10-200 m. Hydrographic 
measurements were taken at the surface and at 10-m intervals, so that the deepest measurements 
often did not reach near the bottom. Hypoxia was documented at several stations up to 27 m 
deep and was assumed to be present at others when benthic fauna were depauperate (June, July, 
and August 1978). A directed survey of bottom-water oxygen conditions conducted in August- 
September of 1978 outlined a moderately large area of hypoxia on the southeastern Louisiana 
shelf from the Mississippi fiver Bight to the Isles Dernieres and isolated areas off Atchafalaya 
Bay (Figure 7.2). The discharge of the Mississippi River was above average in 1978. 
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FIGURE 7.2. Summary of studies, locations, and dates for which hypoxia was recorded. 
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During 1978-84 several studies were conducted as part of the Strategic Petroleum Reserve Pro- 
gram to investigate the environmental conditions at several offshore locations for disposal of 
brine solution. These included the 1978-79 Texoma and Capline salt dome surveys off Louisiana 
(Jackson and Faw 1980) and the 1980-82 West Hackberry and Big Hill brine disposal sites off 
southwest Louisiana and the upper Texas coast (Harper et al. 1981, 1991; Kelly et al. 1983, 
1984; Gaston 1985; Gaston et al. 1985; P o w  and Randall 1987). The locations of these sites 
are marked by triangles in Figure 7.2, along with the dates during which bottom-water hypoxia 
was recorded. Occurrences were in the summer months and were usually confined to a thin 
bottom layer. 

The National Marine Fisheries Service SEAMAP (Southeast Area Monitoring and Assessment 
Program) cruises that began in 1982 provide some data concerning the distribution of hypoxia 
on the Louisiana and Texas shelves (Gulf States Marine Fisheries Commission 1982 et seq.). 
The locations of hypoxia in the cruises of 1982 (first week of July) and 1983 (June 30-July 6) are 
shown in Figure 7.3 (based on data in Stuntz et al. 1982; Leming and Stuntz 1984; Renaud 
1986). A preliminary analysis of SEAMAP data (K. Craig, unpublished data) documented hy- 
poxia in isolated locations on the Texas and Louisiana shelves in 1983 and 1984, and more ex- 
tensive areas in 1985 and in 1991-96. 

Documented shelf hypoxia dates back to 1972. Prior to the 1970s, there is anecdotal information 
from shrimp trawlers in the 1950s-60s of low or no catches, of "dead" or "red" water, with the 
assumption that the lack of catch was related to low oxygen. Low catches, however, may not be 
due to low oxygen. There is no systematic examination of these anecdotal data. The tendency 
has been to generalize that low-oxygen conditions have always been a feature of the system; 
however, measurements do not exist to substantiate this statement. Surrogates for changes in the 
ecosystem, either water column or benthic habitat, can be derived from analyses of the sedimen- 
tary record and other data sources; these surrogates show eutrophication of the shelf and an in- 
crease in oxygen stress. 

Long-term changes in productivity or changes in the severity and extent of hypoxia cannot be 
assessed directly from hydrographic data, because historic hydrographic data sets are limited, and 
systematic sampling of bottom-water dissolved oxygen concentrations did not begin until 1985. 
A few data sets from the 1950s to the present are suitable for comparisons of selected parameters. 
In addition, biological, mineral, or chemical indicators of surface-water production and hypoxia 
preserved in accumulating sediments record historical changes and provide clues to prior hydro- 
graphic and biological conditions. These many, disparate data sources provide a description of 
ecosystem-level changes that have occurred in the northern Gulf of Mexico within the frame- 
work of water quality changes in the Mississippi River. 

Sediments accumulating under the Mississippi fiver plume provide historical information not 
available from hydrographic data or water samples. Surficial sediments, directly downstream and 
beneath the surface riverine-Gulf dilution plume reflect the in situ primary production and sub- 
sequent transport of organic carbon from surface to bottom waters within the Mississippi fiver 
Bight (Rabalais et al. 1992b; Turner and Rabalais 1994b) (Figure 7.3). The abundance of dia- 
toms peaks at intermediate salinities down-current from fresh waters delivered from Southwest 
Pass and at intermediate distances from the pass (Turner unpublished data). The  distribution of 
diatoms in the surface waters parallels the distribution of phitoplankton pigments and remnants 
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of diatoms (biogenic silica) in the sediments beneath these surface features. These sedimentary 
habitats also represent a range of conditions relative to oxygen stress, from low frequency of oc- 
currence to high frequency in mid-summer surveys (Sen Gupta et al. 1996) (Figure 7.4). 
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FIGURE 7.3. Spatial distribution in April 1989 of total phytoplankton pigments, biologically 
bound silica (BSi), 6I3C signature, and total organic carbon in sediments beneath the Missis- 
sippi River Deltaplume. NOTE: Transect letters are identified in the lower right panel. There 
are seasonal peaks in pigments and BSi in spring and decreases in summer. (From Rabalais e t  
a/. 1992b; Turner and Rabalais 1994b.) 
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Sediment accumulation rates within 50 km of the Mississippi River Delta are 0.5-2.0 cm/yr 
(transects B-G in Figure 7.3) and generally c 0.3 crn/yr farther away (Turner and Rabalais 
1994b). The best detail from dated sediment cores, therefore, is gained from data collected at 
intermediate depths (27-50 m). Differences seen in cores from deeper water and from greater 
distance from the delta, however, demonstrate the relative importance of various factors in those 
environs. The information in dated sediment cores documents changes in the area of the Mis- 
sissippi River Bight under the direct influence of the discharge of the Mississippi River. Similar 
effects are expected in the influence of the plume of the Atchafalaya kver,  with suspected dif- 
ferences related to changes in discharge over time and/or differences in nutrient chemistry; how- 
ever, these data do not exist nor are they likely to be acquired because sediments do not 
accumulate there. 

FIGURE 7.4. Station locations within the Mississippi Bight for transect C, mooring locations 
(C6A and C6B), sediment core stations (closed triangles), and "Platform" and "Control" sta- 
tions of Fucik ( 1  974) and Ward et al. ( 1  979) (open squares marked with "C" and "P"). NOTE: 
Stippled intensity corresponds to frequency of occurrence of mid-summer hypoxia (1985-87, 
1990-83). Station 10 of Eadie e t  al. (1994) and Nelsen et al. (1994) is  close to E30. ( M o d i f i e d  
from Rabalais et al. 1996.) 
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The changes in riverine and coastal nutrient concentrations and ratios over time suggest that 
changes in phytoplankton species composition should be observable. The increasing N availabil- 
ity and decreasing Si:N ratios should lead to increases in dominance of lightly silicified diatoms 
and nondiatoms. 

Published reports of phytoplankton species composition for 1955-57 near the delta (Simmons 
and Thomas 1962) and for 1972-73 approximately 80 krn west of the delta (Fucik 1974; Ward 
et al. 1979) were compared with recent data (1990-93) from near the delta and at stations C6A 
and C6B in water 20 m deep off Terrebonne Bay (Dortch et al. unpublished data compiled in 
Rabalais et al. 1996) (Figure 7.4). This comparison was qualitative because of differences in loca- 
tions, seasons sampled, and methodology. The methodology used in earlier reports may have 
missed common nondiatoms, such as small coccoid cyanobacteria and phytoflagellates that now 
often dominate. Consequently, it was not possible to determine whether the dominance of these 
groups has increased. A conservative approach was taken in this comparative analysis. Data were 
compiled by matching season and location as closely as possible and by including in the recent 
data only phytoplankton types that would have been observed in the earlier studies. In addition, 
because of uncertainties of taxonomy, differences were only noted where organisms were identi- 
fied unambiguously. 

Demonstrable changes have occurred in the diatom and nondiatom species composition from 
the 1950s and 1970s to the present. Some heavily silicified diatom species are either not observed 
at all in recent samples or are much less dominant. For example, no Melossi species, which ap- 
pear heavily silicified, were observed in 1990-93, but were present in both 1955-57 and 1972-73. 
Asterionella japonica (= Asterionellopsis glacialis, Round et al. 1990) was observed at low salinities 
in spring of 1990-93, but was not a dominant species as it was in 1955-57. 

Similarly, more lightly silicified diatoms were documented for the 1970s and in 1990-93, espe- 
cially at higher salinities. Rhizosolenia fragilissima and Ceratulina pelagica, which are so lightly 
silicified they are sometimes difficult to see, were not reported for 1955-57. Two species of Lep- 
tocylindricus spp. were frequently dominant in 1990-93, but were a minor constituent in 1955- 
57. During 1972-73 lightly silicified diatoms were reported, including Rhizosolenia delicatula, 
Leptocylindricus danicus, and Ceratulina pelagica, but a more quantitative analysis would be re- 
quired to determine if their abundance was less than at present. 

The data suggest that a shift in dominant diatom composition toward less silicified species oc- 
curred between 1955-57 and 1972-73, but methodological differences preclude conclusions 
about changes in nondiatoms. Because Si availability continued to decrease after the early 1970s 
(Turner and Rabalais 1991)) a continued shift in species composition to nondiatoms would be 
expected. The phytoplankton at C6A and C6B in 1990-93 were often numerically dominated 
by small flagellates and cyanobacteria. They were not considered in this comparison, because it 
was not clear whether they would have been observed in the 1972-73 study, even if present in 
large numbers. I t  is also tempting to hypothesize that the presence of Trichodesmium sp. in 
1990-93, but not in the earlier studies, indicates decreased Si availability; however, this bloom- 
forming species has been previously reported for this region (Eleuterius et al. 1981). 

Several species important to human health are now present, but were either absent in the 1950s 
and 1970s samples or have increased in dominance. The dominance of Pseudo-nitzschia spp. on 
the Louisiana shelf appears to have increased dramatically since the 1950s, and concentrations 
now frequently exceed I x lo6 cells/l. Some forms of this species have been associated with am- 
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nesiac shellfish poisoning (reviewed in Shumway 1990; Hallegraeff 1993). Because this species is 
heavily silicified for a marine diatom (Conley et al. 1989), it is difficult to attribute its increase to 
decreasing Si:N ratios, although the species could be responding to increasing N availability 
(Dortch et al. 1997a). Dinophysis caudata, a dinoflagellate that may be associated with diarrhetic 
shewsh poisoning (Dickey et al. 1992), was not recorded in the earlier studies. I t  was often pres- 
ent in the 1990-93 samples at low to moderate concentrations, but was sometimes dominant 
and reached concentrations as high as I x 10' cellsll. 

Despite a probable decrease in Si availability, the overall productivity of the ecosystem appears to 
have increased in response to the increased nitrogen load. This is evidenced by (1) equal or 
greater net silicate-based phytoplankton community uptake of shca in the mixing zone, com- 
pared to the 1950s (Turner and Rabalais 1994a), and (2) greater accumulation rates of biogenic 
silica (BSi) in sediments beneath the plume (Turner and Rabalais 1994b). 

Bien et al. (1958) first documented the dilution and nonconservative uptake of silicate in the 
Mississippi River plume by sampling from the river mouth seaward in 1953 and 1955. A notable 
characteristic of the mixing diagram is that the concentration of silicate often falls below the 
conservative mixing line, thus indicating biological uptake. Uptake can be statistically modeled as 
a deviation from this mixing line, which Turner and Rabalais (1994a) did for 31 adequately sam- 
pled data sets obtained along a river to open Gulf salinity gradient. They found that the concen- 
tration of silicate at the 20 ppt mixing point declined in the last several decades during the 
winter-spring (January-April) and summer months Uune-August); however, there was no dis- 
cernible change during the fall-winter months (October-December). They normalized for the 
effects of varying concentrations in the riverine end-member (e.g., Loder and Reichard 1981) 
and compared the estimated net silicate uptake at 30 ppt as a function of silicate riverine end- 
member concentration (Figure 7.5). Nonconservative mixing (biological uptake) of silicate was 
indicated in all data collections. The net uptake (at 30 ppt) above dilution ranged from 1% to 
19% of the intercept concentration, and the data groups for before and after 1979 were remarka- 
bly similar. Further, the net silicate uptake appears to be even higher after than before 1979 
(Figure 7.5); these differences were apparent in the summer months during peak hypoxia devel- 
opment (June-August) as well. The results from this analysis suggested that net silicate uptake in 
the dilution gradient from river to sea has remained the same, or even increased, as the riverine 
concentration decreased. 

Turner and Rabalais (1994b) documented that surficial sediments, directly downstream and be- 
neath the surface riverinelestuarine dilution plume, reflected the in situ primary production and 
subsequent transport of organic carbon from surface to bottom waters within the Mississippi 
Rwer Bight (Rabalais et al. 1992a; Turner and Rabalais 1994b) (Figure 7.3). They further quan- 
tified the silica in the remains of diatoms sequestered as biologically bound silica (BSi) in dated 
sediment cores from the same region. Relative changes in the % BSi reflect changes in in situ 
production (Conley et al. 1993). The pattern in % BSi in dated sediment cores paralleled the 
documented increases in nitrogen loading in the lower Mississippi Rwer over the same period 
that silicate concentrations were decreasing (Turner and Rabalais 1994b). The increased % BSi 
in Mississippi Rtver Bight sediments was direct evidence for the increase in flux of diatoms from 
surface to bottom waters beneath the Mississippi River plume. 
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FIGURE 7.5. Upper panel: Example of the dilution of silicate in the Mississippi River plume 
(for June 1953) with sea water. Lower panel: Estimated net uptake of silicate above dilution 
losses at 30 ppt for all data but separated for time periods. (Modified from Turner and Ra- 
balais 1 994a.) 

The highest concentrations of BSi were in sediments deposited in water 25-50 m deep in the 
middle of the sampling area. The % BSi in sediments from deeper waters (110 and 200 m) was 
generally stable through time, but rose in the shallower stations (10 and 20 m) around the be- 
ginning of this century. At  intermediate depths (27-50 m), where both the % BSi concentra- 
tion and accumulation rates were highest, parallel changes in the % BSi with time were evident 
in the two cores, especially in the 1955-65 period (a rise and fall) and a post-1975 or 1980 rise 
that was sustained to the sampling date (1989) (Turner and Rabalais 1994b) (Figure 7.6). T h e  

& - 
general pattern that emerged was a steady accumulation of BSi from 1800 to 1908, then a slow 
rise, followed by a more dramatic rise in the 1970s and 1980s. Diagenesis of the BSi undoubtedly 
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occurred in these cores, but will be relatively low because the sedimentation rate was high (> 0.5 
cm/yr). Furthermore, others have found the record of BSi to be a good indicator of in situ pro- 
duction. Conley et al. (1993) summarized for freshwater lakes that, in general, accumulation of 
BSi in sediments mimics overlying water column productivity, and that, the more diatoms that 
are produced by nutrient-enhanced growth, the more BSi will be deposited. 

FIGURE 7.6. Average concentration of biologically bound silica (BSi) in sediments in each sec- 
tion of three dated sediment cores from stations in the Mississippi River Bight in depths of 
27-50 rn NOTE: Stations are in Figure 7.4. A 3-year running average is plotted by time deter- 
mined from Pb-2 I0 dating. The figure for station E50 is superimposed with a 3-year average 
nitrogen loading from the Mississippi River. (Modified from Turner and Rabalais 1994b.) 
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Conley et al. (1993) predicted that coastal marine systems would not see long-term depletion of 
dissolved silicate with eutrophication, as in enclosed lakes, because regeneration from the sedi- 
ments would maintain sufficient dissolved silicate levels to prevent silica limitation. The Turner 
and Rabalais (199413) results that show continued accumulation of biologically bound Si in sedi- 
ments beneath the plume and similar or higher net silicate uptake by phytoplankton in the 
plume surface waters, despite lower concentrations of Si delivered by the Mississippi River, sup- 
port this hypothesis. Further changes in Si:N ratios, however, may result in more severe Si limi- 
tation than at present, and Si limitation may not be alleviated by benthic Si regeneration, 
especially during periods of strong stratification. 
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The increase in BSi in sediments from the mid-1850s to the early 1900s also supports the hy- 
pothesis of Mayer et al. (1998) that organic nitrogen associated with the suspended sediment 
load may have been a relatively large proportion of the total nitrogen load in river-dominated 
coastal regions prior to human activities that lead to suspended sediment reductions. Mobiliza- 
tion of sediments and associated organic nitrogen during clearing of the land during westward 
expansion may have resulted in enhanced productivity on the continental shelf. This productivity 
(if that is the case) stabilized and then increased since the 1950s, consistent with the increased 
load of dissolved inorganic nitrogen. 

The organic accumulation in sediments in the middle of the Mississippi Rwer Bight during the 
1980s was 90 g C/m2/yr, based on sedimentation rates and percent carbon of the sediments 
(Turner and Rabalais 1994b). This was approximately 30% of the estimated annual phyto- 
plankton production (Sklar and Turner 1981; Lohrenz et al. 1990). If the assumption is made 
that the BSi:C ratio at the time of deposition remained constant this century, then the increased 
BSi deposition represented a significant change in carbon deposition rates (up to 43% higher in 
sections of cores dated after 1980 than those dated 1900-1960). 

These results were corroborated by the same rate of increase in marine-origin carbon in sediment 
cores also collected within the Mississippi Ever Bight at site 10 (Eadie et al. 1994) near station 
E30 of Turner and Rabalais 1994b (Figure 7.4). Eadie et al. (1994) estimated accumulation rates 
of about 30 g C/m2/yr in the 1950s to 50-70 g C/m2/yr at present. The rate of burial was signifi- 
cantly higher at site 10 within the area of chronic hypoxia (approximately 70 g C/m2/yr), in 
comparison to site 1, at which hypoxia was not documented (approximately 50 g C/m2/yr). T h e  
613C partitioning of organic carbon into terrestrial and marine fractions further indicated that 
the increase in accumulation of carbon in both cores was in the marine fraction (Figure 7.7). 
The accumulation of carbon in the sediments at station 10 of Eadie et al. (1994) was correlated 
with Mississippi Ever nitrate flux (Figure 7.8). 

Sediment cores analyzed for different constituents (Turner and Rabalais 1994b; Eadie et al. 
1994) documented eutrophication and increased organic sedimentation in bottom waters, with 
the changes more apparent in areas of chronic hypoxia and coincident with the increasing nitro- 
gen loads from the Mississippi River system. The depletion of bottom-water oxygen-its persis- 
tence and areal coverage on the shelf-is thus indicated to have been altered this century as well. 

7.6 CHANGES IN INDICATORS OF OXYGEN STRESS 

Glauconite, a sediment mineral indicative of reducing environments and geologic anoxic set- 
tings, was used to document changes in hypoxia. The average glauconite abundance accounted 
for -5.8% of the coarse fraction of sediments before a transition point in the early 1940s and ac- 
counted for -13.4% after (Figure 7.9) (Nelsen et al. 1994). These data suggested that hypoxia 
existed at some level at site 10 before 1940 and that subsequent anthropogenic influences have 
exacerbated the problem. Conditions before 1900 cannot be determined from this core. 



Chapter 7: Long-Term Coastal Ecosystem Changes 1 05 

Organic Carbon Accumt~lation 

FIG 

Drpmic Carbon Accumulation 

iURE 7.7. Organic carbon accumulation rates (mg C cm21yr) at 5 stations 10 (near E30, Fig- 
ure 7.4) and 2 (near D80 LaSER). NOTE: The part i t ionin o f  the organic matter into terres- 

15 trial (black) and marine (gray) fractions is  based on 6 C. The recent increase in organic 
accumulation is much larger in the core within the region of hypoxia. Accumulation o f  terres- 
trial organic matter is  also larger at station 10, implying it receives more river influence t h a n  
station 2. (From Eadie et al. 1994.) 
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FIGURE 7.8. Correlation of the organic carbon accumulated in each sediment section versus 
the Mississippi River nitrate flux for the same (Pb-2 10) interval. NOTE: The least-squares f i t  
for  core 10 is y = 3.3 + 0.22 x (r2 = 0.65). (From Eadie et al. 1 994.) 
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Glauconite (% of Coarse) Ostracods (SWDI) (1 O6 Tons) 

Transition Zone 

FIGURE 7.9. Glauconite grain abundance (A) and the Shannon-Wiener Diversity Index of 
ostracods (B) for station 10 compared to the application of fertilizer in the United States (C) 
for the years - 1  900-1 990. NOTE: A similar decline in SWDI for benthic foraminiferans was 
reported for selected sections of core 10 in Nelsen et at. (1994). (Modified from Nelsen et al. 
1994; Nelsen et al. unpublished data.) 

Dominance trends of benthic foraminifera and ostracods (single-celled organisms and metazo- 
ans, respectively, that produce a calcium carbonate shell that remains intact in buried sediments) 
were used as indicators of reduced oxygen levels andlor carbon-enriched sediments (Nelsen et al. 
1994; Blackwelder et al. 1996; Sen Gupta et al. 1996; Rabalais et al. 1996; Nelsen et al. unpub- 
lished data). Sen Gupta et al. (1996) and Rabalais et al. (1996) examined several cores in the 
Mississippi River Bight (Figure 7.5). Nelsen et al. (1994) and Blackwelder et al. (1996) analyzed 
a core from site 10 near station E30 (Figure 7.4). 
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Trends of benthic foraminifera are usehl as indicators of reduced oxygen levels and/or carbon- 
enriched sediments (Sen Gupta et al. 1981; Sen Gupta and Machain-Castillo 1993). The same 
series of Pb-210 dated sediment cores used for BSi analyses (Turner and Rabalais 1994b; Figure 
7.4) were used to determine benthic foraminifera (Sen Gupta et al. 1996; Rabalais et al. 1996). 
Benthic foraminifera1 density and diversity are generally low in this environment, but a com- 
parison of assemblages in surficial sediments from areas differentially affected by oxygen deple- 
tion indicated that the dominance of Ammonia parkinsoniana over E&hidium excauatum. (A-E 
index) was much more pronounced under hypoxia than in well-oxygenated waters (Sen Gupta 
et al. 1996). The abundance of A. parkinsoniana was correlated with phytoplankton biomass in 
surface waters and % BSi (i.e., a food source indicator) in sediments. The  A-E index also corre- 
lated strongly with the percentage of total organic carbon in surficial sediments. Thus, the index 
was affected by seasonal hypoxia produced by phytoplankton blooms that are recorded in the 
sediments in BSi and carbon content. 

In the context of modern hypoxia, species distribution in dated sediment cores revealed strati- 
graphic trends in the Ammonia/E&hidium ratio that indicated an overall increase in oxygen 
stress (in intensity or duration) in the last 100 years (Figure 7.10). In particular, the stress seemed 
especially severe since the 1950s. I t  was notable that there was no trend in the A-E index for 
station G50 outside the zone of persistent hypoxia and that the index in 1988 for station C10 
fell off the trend line (i.e., no low oxygen during the mid-summer 1998 cruise). 

In the last 100 years, both A. parkinsoniana and E. excavatum became less important compo- 
nents of the assdmblage, whi1e'~uliminella morgani showed an unusual dominake (Figure 7.10 
and Blackwelder et al. 1996). B. morgani, a hypoxia-tolerant species, is known only from the 
Gulf of Mexico and dominates the population (> 50%) within the area of chronic seasonal hy- 
poxia (Blackwelder et al. 1996). I t  increased markedly since 1900 in the sediments analyzed by 
Blackwelder et al. (1996) and since 1800 for station G27 of the Sen Gupta et al. (1996) study 
(Figure 7.10). Quinyueloculina sp. (a significant component of the mode;n assemblage only ih 
well-oxygenated waters) has been absent from the record of the G27 core since the 1870s, but 
was a conspicuous element of the fauna in the previous 200 years. The historical absence of 
Quinyueloculina sp. since 1900 at station G27 corroborates the presence of glauconite at site 10 
since 1900 (Nelsen et al. 1994). The occurrence of Quinyueloculina sp. at station G27 before 
1900, however, indicates that oxygen stress was not a problem before then. A decided decrease in 
the Shannon-Wiener diversity index since the early 1950s for foraminiferans (not illustrated) 
and ostracods (Figure 7.9) was documented for site 10 near E30 in the present-day hypoxic zone. 

These several surrogates for actual oxygen measurements indicate an overall increase in oxygen 
stress (in intensity or duration) in the last 100 years. Oxygen stress appears to be especially severe 
since the 1950s, is coincident with the onset of increases in riverine nitrogen loading, and paral- 
lels the increased carbon flux to the seabed. 

7.7 LINKAGES OF LONG-TERM COASTAL ECOSYSTEM 
CHANGES WITH M ISSISSIPPI RIVER CHANGES 

Mississippi River nutrient concentrations and loadings to the adjacent continental shelf changed 
dramatically this century, with an acceleration of these changes since the 1950s-60s. Concen- 
trations of dissolved N and P doubled and Si decreased by 50%; the dissolved Si:N ratio dropped 
from 4:l to 1:l; and nitrate concentration peaks in the spring, where it did not historically. T h e  
resulting nutrient composition in the receiving Gulf waters shifted toward stoichiometric nutri- 
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ent ratios closer to the Redfield ratio. N and P now appear to be less limiting for phytoplankton 
growth, while some increase in Si limitation is probable. Despite a decrease in Si availability, the 
overall productivity of the ecosystem in the Mississippi Bight (in both diatoms and total phyto- 
plankton) increased coincidentally with increased nitrogen loads. Finally, an analysis of benthic 
foraminifera and ostracods indicates an increase in oxygen deficiency stress within the Mississippi 
Bight this century, with a dramatic increase since the 1950s. 

FIGURE 7.10. Changes in benthic foraminiferan species with stratigraphic depth in Pb-2 10 
dated sediment cores from stations in the Mississippi River Bight. NOTE: A line connect ing 
three-year averages is superimposed on the data for  CIO. (Modified from Rabalais et a/. 
1996; Sen Gupta et a/. 1996.) 

The importance of the water column's physical structure to the development and persistence of 
hypoxia is clear, but the discharge of the Mississippi River (i.e., amount of flow) through the 
birdfoot delta since the 1800s has been relatively constant aside from normal decadal scale varia- 
tions. Increasing capture of Mississippi River water by the Atchafalaya kver,  until stabilized at 
30% in 1977 by the U.S. Army Corps of Engineers, most likely increased the strength of stratifi- 
cation down-plume (to the west) of the Atchafalaya effluent and may have aggravated hypoxic 
conditions there. Dated sediment cores do not exist for that area, nor do sediments accumulate 
such that similar studies can be conducted there. 
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A corollary to a scenario of worsening hypoxia down-plume from the Atchafalaya might be the 
potential for less hypoxia in the Mississippi Rwer Delta Bight as more water went to the Gulf via 
the Atchafalaya. Delivery of discharge through the birdfoot delta, however, has been altered this 
century as well. More flow has been sent down Southwest Pass-even with the Atchafalaya re- 
ceiving more, as opposed to Main Pass, South Pass, and Pass a'Loutre-to maintain navigational 
access. Thus, the Mississippi kver  Delta Bight has continued to be influenced by a significant 
proportion of the discharge through the birdfoot delta. The slight increasing trend for the main 
channel discharge (Bratkovich et al. 1994) occurred during September through December-a 
period less important to the formation and maintenance of hypoxia. 

The Mississippi River Bight provides the best available information for long-term changes on 
the Louisiana continental shelf. Although flows (measured at Vicksburg, Mississippi) have been 
stable for decades, the long-term delivery among distributaries and passes has been unstable. 
Despite the relative change in discharge through the many distributaries, most of the water 
flows west along the Louisiana coast and influences the area where hypoxia develops. Given the 
importance of stratification to the development and maintenance of hypoxia and the relation- 
ship of nutrient flux to river discharge, it is tempting to look at short-term changes in discharge 
volume and size of bottom-water hypoxia in mid-summer to identify relationships or trends in 
hypoxia. As pointed out in Chapter 3, the area estimates from mid-summer cruises should not be 
overinterpreted in making annual comparisons or identifying trends, and the relationship of the 
estimated mid-summer area and mean Mississippi River discharge is not robust. 

The best information from which to draw empirical relationships to hypoxia is derived from the 
more frequently collected data on transect C and at station C6*, and the long-term data provided 
by dated sediment cores from the Mississippi k v e r  Delta Bight. The transect studies demon- 
strate time and spatial lags of net production, carbon flux, and development of hypoxia in rela- 
tion to freshwater discharge and nutrient flux. There is much variability, but the long-term 
seasonal pattern is evident. 

T o  determine how the marine ecosystem has changed over longer periods, we must rely on sur- 
rogates for surface-water production and hypoxia in sediments. There is no doubt that the con- 
centration and flux of nitrogen have increased since the 1950s-60s, particularly in the spring, 
and that the flux of nitrogen per unit of volume discharge is greater now than historically. T h e  
patterns of biogenic silica (a surrogate for diatom production) and carbon accumulation in the 
Mississippi kver  Bight clearly follow nitrogen loading, which has increased disproportionately 
in relation to annual variability in river discharge. O n  the other hand, the long-term pattern of 
freshwater discharge is comparatively stable. Thus, the observed changes in biological responses 
are probably not due to changes in the amount or distribution of freshwater runoff and resultant 
stratification, but rather to increased nitrogen loads. 

The distributary landscape for delivery of water to the continental shelf, both through the Mis- 
sissippi kver  watershed and at the deltas, has changed over several centuries. Construction of 
navigation and flood-control levees along the lower Mississippi k v e r  system has potentially re- 
stricted the amount of water that flows over banks and through riparian and coastal wetlands, 
where some removal of nutrients is likely. Turner (1998a), however, estimated that less than 
10% of the historically low nutrient concentrations of the Mississippi k v e r  (prior to 1950) could 
be reduced before reaching the Gulf of Mexico by overland flow within the lower reaches of the 
river and the deltaic wetlands. Turner also calculated that the reduction of overbank flooding 
from flood protection did not significantly diminish nutrient loading to the continental shelf. 
Leveeing of the lower Mississippi River corridor was completed in the early 1920s, and most of 
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the changes in the continental shelf occurred since the 1950s, when nutrient loads and concen- 
trations changed dramatically. 

I t  is likely that multiple landscape changes throughout the Mississippi k v e r  system from the 
early to mid-1800s have contributed to changes in the ecology of the adjacent continental shelf 
ecosystem. These landscape changes, while they likely contribute to worsening eutrophication 
and oxygen stress on the Louisiana shelf, are diffuse, cumulative, and difficult to document. T h e  
most dramatic changes in eutrophication and oxygen stress have occurred since the 1950s, when 
nutrient delivery to the Gulf of Mexico changed two- to threefold over previous decades. 

Understanding the relationships of hypoxia to the physical setting, biological processes on the 
continental shelf, and nutrient delivery by the Mississippi River is important both in eventual 
and relevant management of nutrients and in implementation of landscape changes that may 
minimize the extent, duration, or severity of hypoxia on the adjacent continental shelf. Similarly, 
it is important to identify those factors that influence the development and maintenance of hy- 
poxia or a worsening of the conditions that are attributable to human activities in the watershed. 
Some are controllable; others are not. 



CHAPTER 8 

Worldwide Perspective 

Many coastal ecosystems around the world suffer from eutrophication and hypoxia (see the 
Topic 2 report by Diaz and Solow 1999; Diaz and Rosenberg 1995). Diaz and Rosenberg (1995) 
documented that many systems are hypoxic now that were not historically, and others have ex- 
panded the geographic extent or have increased in severity--in lower dissolved oxygen concen- 
trations, in prolonged periods of exposure, or both. Long-term increases in nutrient 
concentrations in coastal waters, along with increased primary production, have been docu- 
mented elsewhere in the world, e.g., the Baltic Sea (Larsson et al. 1985; Rosenberg 1986; Wulff 
and Rahm 1988); the Kattegat and Skaggerak (Rosenberg 1986; Andersson and Rydberg 1987); 
the sounds separating Sweden from Denmark (Rosenberg 1986); the northwestern shelf of the 
Black Sea (Tolmazin 1985); the northern Adriatic Sea (Faganeli et al. 1985; Justid et al. 1987); 
and the Dutch coast of the North Sea (Fransz and Verhagen 1985). In  their opinion (Diaz and 
Rosenberg 1995), no other environmental stressor has changed to the degree that oxygen deple- 
tion has changed in the last several decades. 

Smaller and less frequent zones of hypoxia than that of the northern Gulf of Mexico occur in 
U.S. coastal and estuarine areas, e.g., the New York Bight (Garside and Malone 1978; Swanson 
and Sindermann 1979; Falkowski et al. 1980; Swanson and Parker 1988); Chesapeake Bay 
(Officer et al. 1984; Malone 1991,1992; Boynton et al. 1995); Long Island Sound (Welsh and 
Eller 1991; Welsh et al. 1994; Parker and O'Reilly 1991); Mobile Bay (Loesch 1960; May 1973; 
Turner et al. 1987); and the Neuse River estuary (Paerl et al. 1998). Where sufficient long-term 
data exist ( e g ,  Chesapeake Bay) there is clear evidence for increases in nutrient flux, increased 
primary production, and worsening hypoxia. 

Thorough analyses of multiple indicators in sediment cores from Chesapeake Bay indicate that 
sedimentation rates and eutrophication of bay waters have increased dramatically since the Euro- 
pean settlement of the watershed (Cooper and Brush 1991, 1993; Cooper 1995). Results also 
Indicate that hypoxia and anoxia may have been more severe and of longe; duration in the last 50 
years than in the bay's previous history. Changes were documented in biogenic silica, pollen, 
diatom remains, estimates of degree of pyritization of iron, and increases in chlorophyll and N:P 
ratios. The sediment core findings corroborate long-term changes in Chesapeake Bay water col- 
umn chlorophyll biomass since the 1950s (Harding and Perry 1997). The parallels of the Chesa- 
peake Bay eutrophication and hypoxia to those of the Mississippi k v e r  watershed and Gulf of 
Mexico hypoxia are striking, in particular those of the last half century. Landscape alteration be- 
gan much earlier in Chesapeake Bay than in the Mississippi River watershed. 

Comparative analyses of riverine nutrient concentrations and loads and ecosystem-level changes 
in adjacent coastal waters were documented by Justid et al. (1994, 1995b) for the P o  
River/northern Adriatic Sea and the Mississippi Rivednorthern Gulf of Mexico. Nitrogen and 
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phosphorus loads to both rivers have increased significantly during the last 30 years, and their 
relative proportions and proportions to silicate have also changed. Nutrients in both riverine dis- 
charges are more balanced and overall less limiting for phytoplankton growth. There is evidence 
from both systems that primary productivity in surface waters has increased under these condi- 
tions and that bottom-water oxygen concentrations have decreased. Numerical comparisons of 
the two systems can be seen in comparisons of oxygen budgets (Figure 8.1). The evidence is clear 
for the northern Adriatic that the frequency of oxygen surplus at the surface > 1 ml/l has signifi- 
cantly increased from 6% in 1955-66 to 13% in 1972-82. The frequency of occurrence of bot- 
tom 'oxygen deficit > 1 ml/l has also changed significantly from 19% ;o 33% over the same 
interval Similar historic data are not availablk for ;he northern Gulf of Mexico hypoxic zone, but 
the sedimentary record clearly indicates an increase in oxygen stress. For comparative purposes, 
the changes in oxygen surplus and deficit in the northern Adriatic are compared to the current 
relative frequency in the northern Gulf of Mexico for 1985-91 (Figure 8.1). The Gulf data show 
a surface ~ $ ~ e n s u r ~ l u s  of > 1 ml/l in about 21% of the cases, w&le the bottom oxygen deficit 
of > 1 ml/l is about 87% of the cases, compared to similar frequencies of 13% and 36% for the 
northern Adriatic. 
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FIGURE 8.1. Relative-frequency spectra for surface oxygen surplus and bottom oxygen defi- 
cit in the northern Adriatic Sea ( I  955-65 and 1972-82) and in the northern Gulf of Mexico 
(1985-91). NOTE: Vertical lines indicate an arbitrary value o f  + I  mlll. Station locations and 
methods are in Justic' et al. (1994). (From justic'et al. 1994.) 

An analysis of seasonal oxygen cycling in the northern Adriatic between 1911 and 1982 (Justid 
et al. 1994) (Figure 8.2) shows that both the relative surface oxygen surplus and the relative bot- 
tom oxygen deficit have increased through time, indicating that the conditions are moving from 
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oligotrophy toward eutrophy oustit 1991b). The recent data tend to scatter below the line indi- 
cating a 1:l relationship, which means that the ecosystem in the northern Adriatic is in transi- 
tion toward heterotrophy. Recurring summer hypoxia is more severe in rhe northern Gulf of 
Mexico, which is predominantly heterotrophic throughout the year and clearly more eutrophic 
than the northern Adriatic (Figure 8.2). 
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FIGURE 8.2. Changes in relative surface oxygen surplus (xJ and relative bottom oxygen defi- 
cit (xb) in the northern Adriatic Sea and in the northern Gulf of Mexico during an annual cy- 
cle. Note: Symbols are monthly averages for the locations and time periods indicated. A I: I 
relationship is shown and separates relative autotrophy and relative heterotrophy along a 
gradient of oligotrophy to eutrophy. Station locations and methods are in Justid et al. 1994. 
(From Justic'et a/. 1994.) 



CHAPTER 9 

Scenarios of Change-The Future 

9.1 CLIMATE CHANGE 

The northern Gulf of Mexico is a coastal area likely to experience increased freshwater runoff as 
a result of global climate change. Miller and Russell (1992) used a general circulation model to 
predict increased precipitation of about 20% in the Mississippi River watershed, with runoff ex- 
pected to increase in most months, particularly from May through August. The resulting higher 
runoff in summer would likely affect water column stability, surface productivity, and oxygen cy- 
cling in the northern Gulf of Mexico, similar to the flood of 1993. 

JustiC et al. (1996) superimposed a 20% increase in freshwater runoff during May-August to es- 
timate monthly average runoff from the Mississippi River for the period 1985-92. Manipula- 
tions of their physical-biological two-box model UustiC et al. 1996), with depressed surface-water 
salinity and increased net production, revealed that there would be a 30-60% decrease in sum- 
mertime subpynoclinal oxygen content at reference station C6* relative to the 1985-92 average. 
The resulting seasonal decline in bottom-water oxygen levels in the model (Figure 9.1) very 
closely paralleled the actual sequence of events in 1993, when freshwater inputs and nutrient 
flux, especially nitrate and silicate, remained at elevated levels following the spring peak, as op- 
posed to declining to the usual summertime lows. 

The same model was used to examine increases in nutrient flux from the Mississippi River sys- 
tem in relation to net production of the system and bottom-water oxygen deficiency (Justid et al. 
1997). Model simulations for 1993 compared to the 1985-92 calibration data indicated that the 
surface-water net production at station C6* increased by 26%. Given similar carbon flux esti- 
mates and oxygen uptake rates in the lower water column for 1993 compared to 1985-92, less of 
the organic production was decomposed in the lower water column and sediments in 1993. 
Thus, more carbon (65 g C/m2/yr relative to the 1985-93 average, see Figure 6.17 in Section 
6.9) was available for burial and accumulation in the sediments. This projected increase is of the 
same magnitude as the one that has occurred since the 1940s due to the introduction of anthro- 
pogenic nutrients (Turner and Rabalais 1994b; Eadie et al. 1994). 

An increase in annual net production of 32 g C/m2/yr was observed during the flood of 1993, 
thus indicating the general validity of a doubled CO, scenario consistent with long-term 
changes in coastal water productivity (Turner and Rabalais 1994b) and measured or calculated 
carbon accumulation rates (Turner and Rabalais 1994b; Eadie et al. 1994). The total oxygen 
uptake in the lower water column (10-20 m), in contrast, is likely to remain the same at its pres- 
ent value of about 200 g 02/m2/yr, because the present total oxygen uptake in the inner section 
of the hypoxic zone has already reached the limit that is set by the availability of dissolved oxygen. 
Thus, carbon export and burial, rather than in situ respiration, are likely to be the dominant 
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processes balancing coastal carbon budgets, leading perhaps to an expanded extent of the hypoxic 
zone, as seen in the model prediction (Figure 9.1) and under flood conditions in 1993. 

Climate change will most likely affect other large-scale meteorological conditions, such as fre- 
quency and severity of tropical storms. Additionally, increased rainfall or temperature could affect 
nitrogen flux through cropping changes or in-stream processing of nutrients. Further analyses of 
offshore ecosystem responses and continued modeling efforts are warranted, with a refined as- 
sessment of climate change. 

8 0 , . , . , . , . , . , . z ,  

Observed 

Model Predictions 

1 = surface net productivity 
remains same 

2 = surface net productivity 
increases 10% 

Month 
FIGURE 9.1. Seasonal changes in the oxygen content of the lower water column during 
1985-92 and 1993 (top panel), and model predictions for a doubled CO, climate (bottom 
panel). NOTE: Two model predictions for total oxygen content of the lower water column are 
shown: (I) integrated net production remains the same as during 1985-92; and (2) the net  
production value for the May-August period is  increased by 35%. (From Justic'et al. 1996.) 

Changes in riverine end-member nutrient concentrations and ratios may affect coastal ecosys- 
tems in several ways. If nitrogen is in excess supply, diatoms often out-compete other algae if 
adequate silicate is available. When nitrogen increases and silicate decreases, flagellates may in- 
crease in abundance (Officer and Ryther 1980) and form blooms. Noxious blooms of flagellates, 
sometimes toxic, are increasingly common in coastal systems (Hallegraeff 1993). Zooplankton, 
the main diatom predator and a staple of juvenile fish diets, are thus affected by these nutrient 
changes in a cascading series of interactions (Turner et al. 1998). These interactions may also 
contribute to the formation of hypoxic water, which is unsatisfactory fish habitat (Coutant and 
Benson 1990). 
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An important consequence of eutrophication may be when a bloom occurs. Townsend and 
Cammen (1988) point out that the timing of the spring phytoplankton bloom in high latitudes 
affects significant benthic-pelagic couplings important to fisheries recruitment. Although the 
timing of a bloom is primarily determined by light conditions, an adequate nutrient supply is also 
required. Changes in the amount and timing of nutrient loading could affect recruitment success 
through a mismatch of larval recruitment and food supply, as well as an altered food chain. Early 
blooms with a greater sedimentation to the benthos could positively affect demersal fishes, but 
late blooms positively affect pelagic fisheries through a zooplankton food chain. 

Rabalais et al. (1996) predicted how nutrient concentrations and ratios might change under a 
variety of management and economic schemes, with subsequent consequences to the marine en- 
vironment. Their predictions assumed that stabilization would be reached in the Mississippi 
kver  Basin between the sequestering of diatoms from phosphorus-enhanced stimulation of 
blooms and regeneration of silicate and that silicate concentration in the river discharge would 
slowly increase over time. At present, and since the late 1980s, the Si:N ratio fluctuates near 1:l 
(the Redfield ratio), and silicate and nitrate concentrations fluctuate near 100 p M .  It  is not clear 
whether the silicate concentration will increase as predicted. 

Nutrient management scenarios may alter the amount of nitrogen and phosphorus entering the 
Gulf of Mexico. In a scenario of no change in current practices, nitrogen loading may plateau at 
the current 130 x lo6 kg atoms N/yr. This would most likely perpetuate the current severity of 
hypoxia on the Louisiana shelf. An increase in nitrogen resulting from increased anthropogenic 
inputs (e.g., increased cropland in cultivation, fertilizer applications, atmospheric deposition, 
sewage inputs, animal wastes) would clearly aggravate the hypoxia problem. A reduction in ni- 
trogen loading, particularly during the period of peak spring discharge, will return the system to a 
historic status of less production, carbon flux and accumulation, and hypoxia, but the length of 
time for the system response is unknown. 

Managing for a single nutrient is difficult for the large Mississippi kver  system because N and P 
may change together but not linearly, and Si is complexly interrelated with P dynamics and/or 
water retention in the watershed. Nitrogen is the limiting nutrient for overall productivity in the 
northern Gulf of Mexico (Table 6.6), but other nutrients at times can occasionally become lim- 
iting. Deficiency of Si in relation to N, and possibly P, can result in compensatory qualitative 
changes, including new phytoplankron communities with noxious or toxic species. The poten- 
tial direct and indirect effects of decreasing or increasing nitrogen, while ratios of Si:N fluctuate 
above or below the Redfield ratio of 1:1, are listed in Table 9.1. These are hypotheses based on 
documented responses of the system to changes in nutrient loads and ratios over the last several 
decades (Rabalais et al. 1996; Turner et al. 1998). The scenarios in Table 9.1 are clear that re- 
ducing N loading will decrease hypoxia, along with other possible effects when the Si:N atomic 
ratio exceeds that of Redfield. 

Two models link Mississippi k v e r  discharge and nutrient flux to Gulf of Mexico hypoxia 
(Bierman et al. 1994; Limno-Tech, Inc. 1995; JustiC et al. 1996, 1997). One is a mass-balance 
model of primary production and oxygen depletion, and the other is a coupled biological-physical 
two-box model with a temporal component. Each was developed based upon the long-term data 
set of Rabalais et al. (1991, 1996, 1998), and each has limitations as to parameterization, calibra- 
tion, and ability to predict spatial and temporal responses to changes in nutrients. Still, useful 
simulations and experiments have been conducted with each that show responses of the coastal 
ecosystem to changes in riverine discharge and nutrient loads that are verifiable with subse- 
quently collected hydrographic data. What these models demonstrate is the worsening of oxygen 
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depletion in bottom waters with increased freshwater discharge and nitrogen load, or conversely, 
a reduction in oxygen demand in the lower water column with a reduction in nitrogen load to 
the surface waters. In other words, hypoxia in the northern Gulf of Mexico can be alleviated 
measurably by a reduction in the nutrient load. The degree of nutrient limitation needed to af- 
fect substantial temporal and spatial diminishment in the hypoxic zone cannot yet be determined 
from the existing models. Alternatively, the potential for hypoxia to worsen with increasing 
nutrient loads is also a very likely scenario, whether due to increased loads from agriculture, the 
atmosphere, or point sources or from climate change (Table 9.1; Rabalais et al. 1996; Justid et al. 
1996, 1997). 

There are several success stories for improvement of estuarine and coastal ecosystems in response 
to nutrient abatement in the watershed or in direct discharges to the system. Nutrient manage- 
ment and intervention to reduce nutrient loads, particularly phosphorus, in Tampa Bay have met 
with successes in ecosystem restoration, including improved water clarity, reduced instances and 
biomass of cyanobacterial blooms, expansion of submerged aquatic vegetation (seagrass beds), in- 
creased catch of seagrass-dependent fishes (such as the highly valued commercial and recreational 
speckled sea trout), and improvement in dissolved oxygen conditions in bottom waters 
Uohansson and Lewis 1992). Retention reservoirs and weirs in upstream channels of Bayou 
Texar near Pensacola, Florida, were coupled with improved sewage treatment for improved wa- 
ter quality. There was almost a total reduction in fiih kills, a 90% reduction in phytoplankton 
primary production, a virtual elimination of algal blooms, and re-establishment of public use 
(Moshri et al. 1981). Nutrient reductions by half have lead to a decrease in the frequency of red 
tides in Japan's Seto Inland Sea (Cherfas 1990). Sewage improvements led to water quality im- 
provements in Kaneohe Bay, Hawaii (Smith 1981). There are many examples of small-scale hy- 
poxia reversals associated with improvements in treatment of sewage and pulp mill effluents 
(Rosenberg 1972, 1976). 

The magnitude of restoration needed to affect changes in much larger coastal systems with 
much larger watersheds, such as the Chesapeake Bay, Long Island Sound, the Baltic Sea, and 
the northern Gulf of Mexico, is daunting. Still, multi-state and multi-national agreements and 
cooperation are aimed at just that in the case of the first three. 

Chesapeake Bay has been the focus of both intensive research on cultural eutrophication, in- 
cluding hypoxia, and extensive efforts to reduce nutrient inputs responsible for it (Malone et al. 
1993; Boesch et al. in press). Boesch et al. (in press) outlined the process of developing and im- 
plementing nutrient controls in Chesapeake Bay. Although the causes, trends, and effects of 
eutrophication were incompletely known at the time, a regional commitment was made in 1987 
by the states in the Chesapeake Bay watershed to reduce inputs of nitrogen and phosphorus by 
40% by the year 2000. Subsequent research and modeling justified this commitment, and the 
reduction by 40% of those nutrient sources deemed controllable would improve water quality, but 
less than originally thought. 

Strong public support and political commitment have allowed for progress in reducing nutrient 
inputs to Chesapeake Bay, particularly from point sources. The information to date is encourag- 
ing in that reduced concentrations of N and/or P in stream flow have been observed in several 
major rivers. In the open waters of the bay, however, there have been no statistically significant 
trends in nutrient concentrations. O n  the other hand, nutrient concentrations have declined in 
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TABLE 9.1. Possible scenarios for primary production, food web dynamics, and hypoxia in 
relation to changes in nitrogen loading (higher and lower) and Si:N ratios < I : I and > I : I. 

Primary Production High Low, but higher than receiving 
waters 

Diatoms Low Low 

Bloom Strength High Low 

Bloom Frequency Episodic Almost none 

Bloom Quality Many toxic and/or noxious Almost no toxic blooms 

Hypoxic Area Severe at times, more sporadic; Contracted in size 
expand into Texas regularly 

Fisheries 
Bottom feeders Catastrophic loss Catastrophic loss 
Pelagic Replacement and loss Loss and some replacement 

Commercial Fisheries Very disruptive; gear changes; Catastrophic loss? Species re- 
more travel time; irregular stocks; placement 
some collapses; health warnings 

Recreational Fisheries Smaller-sized; many species shifts; Very disruptive 
frequent health warnings 

Si:N > 1.5: 1 

Primary Production Very high Low 

Diatoms Dominant Dominant 

Bloom Strength High and sustained Low 

Bloom Frequency Episodic Almost none 

Bloom Quality Some toxic and/or noxious; Almost no toxic blooms 
dominated by Pseudo-n i tzsch ia 

SPP. 
Hypoxic Area Widespread, severe, persistent; Contracted in size 

expand into Texas rkgu~ar~y 

Fisheries 
Bottom feeders Catastrophic loss Revival of 'K' selected species 
Pelagic I t  r selected species gain Revival of 'K' selected species 

'K' selected species loss 

Commercial Fisheries Disruptive, gear changes, more More stable than present 
travel time, irregular stocks; some (assuming same effort and tech- 
collapses; health warnings nology) 

Recreational Fisheries Smaller-sized, some species shifts; Large specimens possible; more 
health warnings stable than present 
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several tidal rivers where significant and demonstrable load reductions have been achieved. T h e  
monitoring data do not reveal any significant changes to date in dissolved oxygen concentrations 
in areas of summer hypoxia of deep bottom waters. In these areas (typically the middle reaches of 
the mainstem and several major tributaries), generally either modest or no significant improve- 
ments have been noted in nutrient concentrations or algal biomass. Because progress in load re- 
ductions for N have generally lagged behind those for P, and recent high freshwater loads have 
delivered higher nonpoint-source inputs of nutrients, it is reasonable to expect that several more 
years may be required to realize improvements in Chesapeake Bay's hypoxia problems. O n  the 
other hand, there are some encouraging signs of recovery in submersed aquatic vegetation. T h e  
lessons to be learned from the Chesapeake Bay experience and other areas of the world are: (1) 
the degradation of water quality and increase in oxygen stress occurred over decades; (2) multi- 
level and multi-institutional support is required to institute nutrient management schemes; (3) 
many years will pass before the results of implementation of nutrient controls will be seen in 
nutrient concentrations of aquatic systems, including the coastal ecosystem; (4) biological resto- 
ration will also require a long time to respond to the changes; (5) natural variability in climate 
may mask restoration because of fluctuations in freshwater discharge and the nonpoint sources 
of nutrients carried with it; (6) restoration of ecosystems following nutrient abatement is achiev- 
able; and (7) benefits accrue to multiple facets of society. 

Coastal ecosystems have inherent large interannual variability, so that management actions that 
reduce nitrogen and phosphorus loading may not lead to immediate recovery toward the unen- 
riched state. Riisgird et al. (1996) noted for the Kertinge Nor in Denmark that as external nu- 
trient loading to the system was reduced significantly in recent years, nutrient release from the 
sediments has become important in determining the biological structure of the system. 
kchardson (1996) noted that interannual environmental variability was considerable for Danish 
coastal waters, including year-to-year variability in oxygen concentrations. Thus, decades of data 
may be necessary to statistically demonstrate that remedial actions have helped recovery of oxygen 
concentrations (kchardson 1996). 

This view is most likely realistic, and is transferable to the northern Gulf of Mexico. Although 
eutrophication and hypoxia can be reversed by decreasing inputs of nutrients, the rates of recov- 
ery will be highly variable, the eutrophic state may be persistent, and recovery may be slow 
(Carpenter et al. 1998). The number of years required to obtain statistical evidence for a change 
in an ecosystem will vary and will be subject to inherently unstable biological systems and ex- 
treme events (e.g., weather conditions, algal blooms) that can and do change the direction of the 
system's development. The science of cultural eutrophication is past its infancy, but the science 
of restoration of enriched systems is not. Both need further refinement to identify and recom- 
mend courses of action to remediate anthropogenic additions of nutrients to coastal waters. 
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In the preparation of this synthesis, several ideas were not fully explored because of a lack of ei- 
ther data or time to do the necessary synthesis of available data. Where data were missing, there 
are useful avenues of research and model refinements that can supply them. Some issues cannot 
be resolved adequately without further data collection and analysis, or improved and different 
modeling approaches. These efforts will not happen soon or come to completion quickly. 

Additional insights can be gleaned from further examination of existing data for empirical rela- 
tionships between freshwater discharge, nutrient concentrations, nutrient ratios, and nutrient 
flux with either short- or long-term changes in: 

e areas of bottom-water hypoxia in mid-summer and through the seasonal cycle for tran- 
sect C, or station C6; 

e the volume of hypoxia and oxygen-deficient waters in mid-summer, and through the 
seasonal cycle for transect C, or station C6*; and 

e surrogates for surface-water productivity or bottom-water hypoxia in dated sediment 
cores. 

Suitable multivariate techniques and multiple-regression analyses should be applied to a thorough 
compilation of hydrographic data and indicators of Mississippi River system change. Where ap- 
propriate, cross-correlation analyses should be conducted on changes in the marine system with 
constituents of Mississippi River discharge. 

There can be no determination of a marine system response to any nutrient changes within the 
Mississippi River system without the continued acquisition of basic hydrographic, chemical, and 
biological data related to the development and maintenance of hypoxia over seasonal cycles. 
Continued monitoring is an absolute must if we are to learn anything about restoration efforts. 
The types of monitoring that are currently in place should be continued for continuation of the 
long-term data set so that relationships with changing river constituents and loads can be de- 
termined. The data acquisition must be consistent with that already collected and must be con- 
tinuous. The triad of mid-summer shelf-wide hypoxia surveys, monthly transects off Terrebonne 
Bay, and an instrumented array at  a station in the core of the hypoxic zone off Terrebonne Bay 
should be continued for an optimal combination of spatial and temporal scales of measurement. 
A better definition of the shelf-wide extent of hypoxia would necessitate additional shelf-wide 
cruises during the year. 

Understanding the physical structure of the water column is relevant to the study of dissolved 
oxygen cycling. Likewise, physical measurements alone do not provide the information on the 
biological and chemical processes leading to the development and maintenance of hypoxia. A n  
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integrated and coordinated survey program is essential for the documentation of oxygen concen- 
trations and the extent of shelf hypoxia and the relevance of physical and biological processes in 
its formation and maintenance. Finer-scale resolution of vertical mixing of oxygen in relation to 
winds and horizontal advection in relation to wind-induced currents are important components 
of the physical environment that with better understanding will help define the timing and lo- 
cation of hypoxia. Multiple-instrumented arrays with instruments in the vertical and spatially 
oriented cross-shelf and along-shelf directions will help better define the temporal and spatial 
development of hypoxia. 

Process-oriented experiments should be conducted to better define the processing of nutrients 
within the Mississippi kver  plume and in the extended plume over the broad area where hypoxia 
is most likely to develop. Much remains unknown concerning the flux of nutrients and their 
relative proportions in relation to productivity, the types of phytoplankton communities that de- 
velop, trophic consequences, and the subsequent flux of various carbon constituents that result in 
the depletion of oxygen. Experiments to determine the timing and relative contribution of vari- 
ous sources of carbon to the formation and maintenance of hypoxia over several annual cycles 
should be conducted at several sites along the Louisiana coast. 

The fate of fluxed carbon to the seabed within the zone of hypoxia is not known. Whether the 
carbon is buried, remineralized, resuspended, and transported from the area, or incorporated into 
benthic macrofaunal biomass and benthic food webs, or transformed by combinations of these 
processes is unknown. Many potential interactions within the seabed for nutrient cycling and 
carbon processing have the potential for both positive and negative feedback to the eutrophica- 
tion of the Louisiana shelf. These numerous processes, pelagic-benthic coupling, and aspects of 
external forcing, such as nutrient flux and ratios, are best studied at a more restricted number of 
locations rather than a strategy that favors spatial coverage at the expense of the necessary tem- 
poral coverage to define the natural processes within a broader context of climatic variability. 

Much progress has been made in determining long-term ecosystem responses by examination of 
surrogates of surface-water productivity and bottom-water hypoxia in dated sediment cores. 
These studies should be continued over the long term as comparative measurements of ecosystem 
response to changes in the Mississippi kver  system. The spatial resolution of these retrospective 
analyses can be increased. An attempt should be made to identify areas under the influence of 
the Atchafalaya Ever plume for similar studies, although the presence of accumulating sedi- 
ments is not likely, except in some bathymetric low areas. Additional surrogates for eutrophica- 
tion and hypoxia should be added to those components already studied. 

The process of coastal eutrophication in the northern Gulf of Mexico at the terminus of the 
Mississippi kver  system has taken many decades. While it is likely that remedial actions can alle- 
viate the hypoxia problem in the Gulf, the marine ecosystem response may be slow, and changes 
will be masked by the natural system's high variability. Decades of data may be necessary to sta- 
tistically demonstrate that remedial actions have helped recovery of oxygen concentrations. 
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The graphics in this appendix display the results from 1985-98 mid-summer shelf-wide surveys, 
oxygen isopleths, and area (stippled) of near-bottom hypoxia. The dots in the graphics represent 
the stations sampled. The contours were generated by SurferTM graphics, and the results are 
derived from unpublished data of Rabalais, Turner, and Wiseman. 
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Bottom Dissolved Oxygen (mg/L) 
July 15 - 20 1985 
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Bottom Dissolved Oxygen (mglL) 
July7- I 8  1986 
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Bottom Dissolved Oxygen (mg/L) 
July 1 - 5 1987 
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Bottom Dissolved Oxygen 
August 12 - 16 1988 
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Bottom Dissolved Oxygen (mg/L) 
August 4 - 10 1989 
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Bottom Dissolved Oxygen (mg/L) 
July 23 - 27 1990 
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Bottom Dissolved Oxygen (mgll) 
July 16 - 20 1991 



Bottom Dissdved Oxygen (mq/L) 
July 24 - 29 1992 
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Bottom Dissolved Oxygen (mglL) 
July 24 - 30 1993 



Bottom Dissolved Oxygen (mglL) 
July 24 - 29 1994 
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Bottom Dissolved Oxygen (rng/L) 
July 21 - 26 1995 



Appendix A 1 3 5 

Bottom Dissolved Oxygen (mg/L) 
July 23 - 28 1996 
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Bottom Dissolved Oxygen (mg/L) 
July 23 - 28 1997 



Bottom Dissolved Oxygen (mg/L) 
Juiy 21-25, 1998 

50 krn 



Appendix B 

The graphics in this appendix display monthly cross-shelf contours of < 2 mg/l (stippled) and < 1 
mg/l (black) (1990-94). Note that 1986 is shown in Figure 3.16 of this report. The data in the 
graphics are derived from unpublished data of Rabalais, Turner, and Wiseman. 
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Transect C 

Distance from shore (km) 



The graphics in this appendix display continuous oxygen data for station C6A or C6B (1989- 
97). Although measurements were made at 15-minute intervals, 1-hour intervals are depicted in  
this appendix. The results presented here are derived from unpublished data of Rabalais, Turner, 
and Wiseman. 
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Station C6A 1990 Bottom Oxygen (mglL) 
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Station C6B 1991 Bottom Oxygen (mgIL) continued 
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Station C6B 1992 Bottom Oxygen (mg/L) 
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Station C6B 1993 Bottom Oxygen (mglL) 
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Station C6B 1994 Bottom Oxygen (mglL) 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  I . , . , . . . , , . , . . , . , .  
1 2 3 4 5 6 7 8 9 10111213141516171818202122252425262728293031 1 2 3 4 5 8 7 8 0 101112131415161718192021222324252627282930 

Day D ~ Y  

I Jun 



Appendix C 1 49  

Station C6B 1995 Bottom Oxygen (mglL) 
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Station C6B 1996 Bottom Oxygen 
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Station C6B 1997 Bottom Oxygen (mglL) 
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