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Abstract 
A simple method for an unsteady aerodynamic model tuning is proposed in this study. This method is 

based on the direct modification of the aerodynamic influence coefficient matrices. The aerostructures test 
wing 2 flight-test data is used to demonstrate the proposed model tuning method. The flutter speed margin 
computed using only the test validated structural dynamic model can be improved using the additional 
unsteady aerodynamic model tuning, and then the flutter speed margin requirement of 15 percent in 
military specifications can apply towards the test validated aeroelastic model. In this study, unsteady 
aerodynamic model tunings are performed at two time invariant flight conditions, at Mach numbers of 
0.390 and 0.456. When the Mach number for the unsteady aerodynamic model tuning approaches to the 
measured fluttering Mach number, 0.502, at the flight altitude of 9,837 ft, the estimated flutter speed is 
approached to the measured flutter speed at this altitude. The minimum flutter speed difference between 
the estimated and measured flutter speed is -0.14 percent. 

Nomenclature 
aij  the i-th row and j-th column element of the real part of A 
A  aerodynamic influence coefficient matrix 
AIC aerodynamic influence coefficient 
ATW aerostructures test wing 
bij  the i-th row and j-th column element of the imaginary part of A 
CG  center of gravity 
DFRC Dryden Flight Research Center 
eij  design variable for aij 
f  aeroelastic frequency, Hz 
fij  design variable for bij 
FEM finite element model 
FTF flight test fixture 
g  structural damping 
GVT ground vibration test 
G(x) constraints 
m  number of degrees of freedom 
n  number of modes 
NASA National Aeronautics and Space Administration 
O3  object-oriented optimization 
V  aircraft speed, KEAS 
Vd  dive speed, KEAS  
VFEM test-validated-structural-dynamic finite element model 

Introduction 
The primary objective of this study is to reduce uncertainties in the unsteady aerodynamic model of 

an aircraft to increase the safety of flight. To this end, a new flutter analysis procedure using the validated 
aeroelastic model is proposed, and the block diagram of this new procedure is shown in figure 1. 
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Figure 1a. Previous procedure. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 1b. Proposed new procedure. 

 
Figure 1. Flutter analysis procedure at NASA Dryden Flight Research Center. 
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Significant efforts (refs. 1–3) have been made in developing corrections to linear aerodynamic models 
to improve correlation with steady-state wind tunnel and flight test data. There has been a limited amount 
of effort in the correction of unsteady aerodynamics for aeroservoelastic applications, which has been 
relatively sparse and ad-hoc when compared to the steady-state work that has been performed. 

 
The aerostructures test wing (ATW) 2 test article, shown in figure 2, was developed and flown at the 

National Aeronautics and Space Administration (NASA) Dryden Flight Research Center (DFRC) on the 
F-15B (McDonnell Douglas, now The Boeing Company, Chicago, Illinois) test bed aircraft on 
December 15, 2009. To support the envelope expansion, a test-validated-structural-dynamic finite 
element model (VFEM) was used for the flutter analysis of the ATW2. Flutter boundaries of the ATW2, 
before and after the structural dynamic model tuning (ref. 4), are compared with the flight envelopes as 
shown in figure 3 (ref. 5). In this figure, the solid line bounds the ATW2 test envelope that is planned for 
flight, and the dashed line is the 15 percent margin of the ATW2 test envelope. This 15 percent margin 
line was designed to match the numerical flutter boundaries computed using the VFEM with the 3 percent 
structural damping, the solid line with circular marker. The solid line with the diamond marker represents 
flutter boundaries using the VFEM with the measured structural damping (ref. 5). The measured flutter 
point of the ATW2 is also shown in figure 3, using the x marker. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 2. Aerostructures test wing 2 mounted on the F15-B pylon for flight-testing. 
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Figure 3. Flutter boundaries before and after structural dynamic model tuning. 
 
Required flutter margins for the safety of flight were computed and summarized in table 1 and 

figure 3. It should be noted that the series of ground vibration tests (GVT) and structural dynamic model 
tuning has been performed (refs. 5–7) resulting in the computed flutter boundaries, based on the ATW2 
configuration in figure 2 and the corresponding VFEM, shown in figure 3. The GVT for the final ATW2 
configuration was performed while the ATW2 was mounted to the flight test fixture (FTF) (ref. 8) in the 
FTF ground handling cart as shown in figure 4. The FTF was sufficiently massive when compared to the 
ATW2 so that cantilevered boundary conditions were used. It may be concluded from table 1 and figure 3 
that when only the structural dynamic model is validated with respect to GVT data, the flutter margin 
required for the flutter certification of the ATW2 should be approximately 40 percent. In addition to the 
historically stand-alone structural dynamic model, the unsteady aerodynamic model should also be 
validated with the test data to use the 15 percent flutter margin in the military specification (ref. 9). 

 
Table 1. Required flutter margins for different types of structural dynamic models. 

 
Flutter boundaries Flutter margins 

Measured/1.15 (= Vd)  0 % 
Measured (= 1.15 Vd) 15 % 
Test validated FEM; after model tuning with measured damping 32 % 
Test validated FEM; after model tuning with 3% structural damping 41 % 
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Figure 4. Flight test fixture and the ATW2 on a ground-handling cart. 

Unsteady Aerodynamic Model Tuning Procedure 
A simple technique has been proposed and developed to update unsteady aerodynamic models. The 

technique is based on matching the measured and numerical aeroelastic frequencies of an aircraft 
structure. In defining the optimization problem to match the measured aeroelastic frequencies, the 
variation of the unsteady aerodynamic force was selected as the design parameter. The unsteady 
aerodynamic force is a function of Mach number, reduced frequency, and dynamic pressure; which can be 
obtained based on any aerodynamic model. ZAERO (ZONA Technology Incorporated, Scottsdale, 
Arizona) (ref. 10) code is used in this study. If the Mach number is constant, the reduced frequency and 
dynamic pressure become variables for changing the unsteady aerodynamic force. 

 
Supporting the Aeronautics Research Mission Directorate guidelines, NASA DFRC has developed an 

object-oriented optimization (O3) tool (ref. 11), which leverages existing tools and practices, and allows 
the easy integration and adoption of new state-of-the-art software. Unsteady aerodynamic model tuning 
used in this study is based on the minimization of the discrepancies in numerical and measured aeroelastic 
frequencies. A computer code for unsteady aerodynamic model tuning has been developed using the O3 
tool together with the pre-processor, ZAERO, and post-processor codes shown in figure 5. 
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Figure 5. Unsteady aerodynamic model tuning using the object-oriented optimization tool. 

Pre–processor code 

This code reads in design variables generated by the O3 tool, and then reads modal aerodynamic 
influence coefficient (AIC) matrices that were computed and saved using ZAERO code. Modified modal 
AIC matrices are then created as shown in figure 6. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 6. Flow chart of the pre-processor. 
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Design variables in this unsteady aerodynamic model tuning are scaling factors for each element in the 
AIC matrices. The AIC matrix at a reduced frequency can be written as: 

 

    

A =

a11 a12 ... a1n
a21 a22 ... a2n
   

am1 am2 ... amn

⎡

⎣

⎢
⎢
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+ i
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⎦

⎥
⎥
⎥
⎥
⎥
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Design variables, e11, e12, …, e21, e22, …, emn, f11, f12, …, f21, f22, …, fmn are defined as: 
 

    

e11a11 e12a12 ... e1na1n
e21a21 e22a22 ... e2na2n
   

em1am1 em2am2 ... emnamn

⎡
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⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦
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⎥
⎥
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⎥

 

 
The following design variable linking options are available for the unsteady aerodynamic model tuning. 
 
Option 1: single design variable 
 d=e11=e12=…=emn=f11=f12=…=fmn 

Option 2: two design variables 
 d1=e11=e12=…=emn; real part 

 d2=f11=f12=…=fmn ; imaginary part 

Option 3: columnwise the same design variables (total n design variables) 
 d1=e11=e21=…=em1= f11=f21=…=fm1 

 d2=e12=e22=…=em2= f12=f22=…=fm2 

 … 

 dn=e1n=e2n=…=emn=f1n=f2n=…=fmn;  

Option 4: columnwise the same design variables (total 2n design variables) 
 d1=e11=e21=…=em1 

 d2=e12=e22=…=em2 

 … 

 dn=e1n=e2n=…=emn; real parts 

 dn+1=f11=f21=…=fm1 

 dn+2=f12=f22=…=fm2 

 … 
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 d2n=f1n=f2n=…=fmn; imaginary parts 

Option 5: No design variable linking; total 2mn design variables. 

ZAERO Flutter Analysis 

Flutter analyses in this study are based on ZAERO code. This code acquires the modified modal AIC 
matrices and performs the matched flutter analysis as shown in figure 7. This computer simulation 
requires the natural frequencies and mode shapes of the aircraft, and in this study these modal data are 
computed using MSC/NASTRAN (MSC Software Corporation, Santa Ana, California) code (ref. 12). 
The V-g and V-f data are computed and saved for the next post-processing step. 

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7. Flow chart of the flutter analysis procedure. 

Post–processor code 

This program reads in the V-g and V-f data and the target altitude where the flight test was 
performed. Based on the velocity information V in the V-g and V-f data, corresponding altitudes at fixed 
Mach numbers are computed. Numerical aeroelastic frequencies are computed from target and computed 
altitudes using the cubic splining procedure.  

 
This program also computes the frequency difference between the numerical and measured 

aeroelastic frequencies. Frequency difference will be an objective function, which will be minimized 
through the use of the O3 tool. The proposed tuning technique is an unconstrained optimization problem 
that can be solved using a gradient based optimizer (ref. 13), a genetic algorithm (ref. 14), or a 
big-bang-big-crunch algorithm (refs. 15 – 17). A flow-chart of this post-processor code is shown in 
figure 8.  
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Figure 8. Flow chart of the post-processor. 

Application 
During the flight test of the ATW2, a classical bending and torsion type of flutter, as shown in 

figure 9, was observed near a Mach number of 0.502 and a flight altitude of 9,837 ft. Measured Mach 
number, flight altitude, and acceleration at the middle and leading edge of the wing tip boom after 
take-off, near flutter, and during flutter are shown in figures 10 and 11, respectively. Measured aeroelastic 
frequencies during the flight test as well as natural frequencies computed using the VFEM and measured 
during GVT are shown in table 2. 

 
Table 2. Numerical and measured frequencies (Hz) of the ATW2 during the flight test. 

 
Natural frequencies Measured aeroelastic frequencies 

Mode 
VFEM GVT After take off* Near flutter** During flutter*** 

1 17.45 17.45 (0.623)†    
2 43.48    43.72 (0.610) 40.45 38.99 37.69 
3 82.98 83.66 (0.778)    
4 133.60 N/A    
5 153.80 142.30 (0.674)    

*  Time steps 83,742 to 83,745 (Mach = 0.390; altitude = 9,934 ft; time invariant) 
**  Time steps 84,668 to 84,672 (Mach = 0.456; altitude = 9,858 ft; time invariant) 
***  Time steps 84,683 to 84,684 (Mach = 0.502; altitude = 9,837 ft; time varying) 
( )† Measured damping (%) 
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Figure 9. Classical bending and torsion flutter during flight test. 

 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 10a. Mach number. 
 

Figure 10. Measured Mach number, flight altitude, and acceleration at the middle and the leading edge of 
the boom after take off (time steps 83,720 s to 83,750 s). 
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Figure 10b. Flight altitude. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 10c. Acceleration at middle of boom. 

 
Figure 10. Continued. 
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Figure 10d. Acceleration at leading edge of boom. 

 
Figure 10. Concluded. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 11a. Mach number. 
 

Figure 11. Measured Mach number, flight altitude, and acceleration at the middle and the leading edge of 
the boom just before and during flutter (time steps 84,660 s to 84,690 s). 
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Figure 11b. Flight altitude. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 11c. Acceleration at middle of boom. 
 

Figure 11. Continued. 
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Figure 11d. Acceleration at leading edge of boom. 
 

Figure 11. Concluded. 
 
The first model tuning is performed using flight data after take-off, from 83,742 s to 83,745 s as 

shown in figure 10. The ATW2 in this time period is a time invariant system. The average flight Mach 
number and altitude during this time period were 0.39 and 9,934 ft, respectively. Unfortunately, measured 
acceleration data in figure 10 was noisy, and it was quite difficult to estimate the first and third aeroelastic 
frequencies because of high aerodynamic damping. The second measured aeroelastic frequency is 
40.45 Hz as shown in table 2. An initial aeroelastic frequency of 41.12 Hz is computed using ZAERO 
code as shown in table 3. 

 
Table 3. The second aeroelastic frequency before and after unsteady aerodynamic model tuning 
and corresponding scaling factors. 
 

Mach Measured   
(Hz) 

Altitude       
(ft) 

Before tuning 
(Hz) 

Scaling factor 
(design variable) 

After tuning 
(Hz) 

0.390 40.45 9934 41.12 1.2579 40.45 
0.456 38.99 9858 40.10 1.2719 38.99 

 
In this model tuning procedure, the aeroelastic frequency difference in the second mode is minimized 

using the design variable linking option 1. The number of target aeroelastic frequencies to be matched is 
one, and therefore the simplest option is selected. In other words, there is an unconstrained optimization 
problem with a single design variable. After model tuning, the second aeroelastic frequency of 41.12 Hz 
becomes 40.45 Hz, and the corresponding scaling factor (single design variable) is 1.2579 as shown in 
table 3. 
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The saved AIC matrices at Mach = 0.502 is updated using the scaling factor of 1.2579, and the 
updated flutter boundary at this Mach number is summarized in table 4 and figure 12. The tuned flutter 
speed, corresponding altitude, and flutter frequency are 277.3 KEAS, 9,670 ft, and 37.69 Hz, respectively. 
It should be noted in table 4 that flutter speed and frequency difference after the unsteady aerodynamic 
model tuning are 0.33 percent and 0.00 percent, respectively. 

 
Table 4. Measured and computed flutter boundaries at Mach = 0.502. 

 
Flutter speed  Flutter frequency  

Comment 

Scaling 
factor 

(design 
variable) 

KEAS Difference 
% 

Altitude, 
ft Hz Difference 

% 

Measured N/A 276.4 0.00 9836.9 37.69 0.00 
Before tuning 1.0000 311.3 13.00 3561.5 37.67 -0.05 
Use M = 0.390 aero 1.2579 277.3 0.33 9670.0 37.69 0.00 
Use M = 0.456 aero 1.2719 276.0 -0.14 9912.5 37.68 -0.03 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 12. Flutter boundaries at Mach = 0.502 before and after unsteady aerodynamic model tuning. 
 
The second model tuning is performed using another time invariant system, between time steps of 

84,660 s and 84,690 s. Relatively flat time histories of flight Mach numbers and altitude, between time 
steps of 84,668 s and 84,672 s, are observed as shown in figure 11. In this time period, the average flight 
Mach number and altitude were 0.456 and 9,858 ft, respectively. 

 
The second measured aeroelastic frequency in these time steps is 38.99 Hz as shown in table 2. The 

corresponding aeroelastic frequency computed from the ZAERO simulation with Mach 0.456 
aerodynamics is 40.10 Hz as shown in table 3. Unsteady aerodynamic model tuning is performed using 
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these two numerical and measured frequencies, and a scaling factor of 1.2719 based on the design 
variable linking option 1, which is also given in table 3. 

 
Flutter analysis at Mach 0.502 is performed using this new scaling factor, and the flutter speed and 

frequency are summarized in table 4 and figure 12. Flutter speed difference of 13 percent before the 
unsteady aerodynamic model tuning becomes -0.14 percent after tuning.  

 
In case of the ATW2, computation time required for completing an unsteady aerodynamic model 

tuning based on option 1 was less than 7 min. Once the scaling factor (design variable) is computed, an 
additional 1 or 2 min is needed for the Fast Fourier Transformation, one more flutter analysis at a higher 
Mach number to compute the updated V-g and V-f data, and automatic computations of updated flutter 
speed and frequency. Therefore, less than 9 min are enough to predict more accurate flutter speed based 
on the current flight test data. 

Conclusion 
A simple unsteady aerodynamic model tuning based on the direct AIC modification is proposed in 

this study. The value of the unsteady aerodynamic model tuning procedure has been shown with the 
application to the ATW2 flight test data. 

 
Flutter boundaries and the ATW2 flight test envelope were computed using the VFEM (ref. 5, 6). The 

flutter margins required for the safety of flight were approximately 40 percent when only the structural 
dynamic model was validated. Excellent flutter speed matching is accomplished when the simple 
unsteady aerodynamic model tuning is applied resulting in flutter speed differences of 0.33 
and -0.14 percent. The flutter margin requirement of 15 percent in the military specification can now be 
used with the test validated aeroelastic model, that is test validated structural dynamic and unsteady 
aerodynamic models. The modeling uncertainties associated with the unsteady aerodynamics can be 
easily minimized through the use of the simple model tuning procedure proposed in this study. 

 
Unsteady aerodynamic model tunings are performed at two time invariant flight conditions, at Mach 

numbers of 0.390 and 0.456. When the Mach number for the unsteady aerodynamic model tuning 
approaches to the measured fluttering Mach number, 0.502, at the flight altitude of 9,837 ft, the estimated 
flutter speed is approached to the measured flutter speed at this altitude. Therefore, we may conclude that 
the Mach number selected for the unsteady aerodynamic model tuning is closer to the measured fluttering 
Mach number at the same flight altitude, and we may get a more accurate scaling factor for the precise 
flutter prediction. 
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