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• To integrate the accomplishments of battery modeling 
activities in national lab programs and make them 
accessible as design tools for industry

• To shorten time and cost for design and development of 
EDV battery systems

Industry/University Participation (RFP)
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1. Introduction to the NREL’s MSMD model
• Multiphysics multiscale lithium battery model framework 

2. Model application to large Li-ion battery performance
• Stacked prismatic cell response simulation

• Spiral wound cylindrical cell response simulation

3. Model application to large Li-ion battery degradation
• Large tab-less cylindrical cell degradation simulation

4. Model application to large Li-ion battery safety
• Multiphysics internal short circuit simulation

5. Summary
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Performance, Durability and Safety
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Physics of Li-Ion Battery Systems in Different 
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Charge Conservation
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Porous Electrode Performance Model

5

( ) qTk
t
Tcp ′′′+∇⋅∇=
∂
∂ρ

• Pioneered by Newman group (Doyle, Fuller, 
and Newman 1993)

• Captures lithium diffusion dynamics and charge 
transfer kinetics 

• Predicts current/voltage response of a battery
• Provides design guide for thermodynamics, 

kinetics, and transport across electrodes
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Charge Transfer Kinetics at Reaction Sites

Species Conservation

Energy Conservation • Difficult to resolve heat and electron current 
transport in large cell systems
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Mesoscale Modeling Approach
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Wang and Sastry, JES, 2007

• Model addresses correlation of composition, 
morphology, and processing conditions by 
resolving mesoscale geometry

• Captures mesoscale geometry impact on 
transport properties of composite electrodes

• Computationally expensive 

Liu and Siddique, 218th ECS , 2010

Micro-Structure Reconstruction

Computational domain generated by 
quasi-random reconstruction process

P.R. Shearinga et. al, Electrochemistry Communication, 2010

X-Ray Tomography (Nano CT)
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NREL’s Multi-Scale Multi-Dimensional Model Approach
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Design of Materials

Design of 
Electrode Architecture

Design of Transport at
Electrode/Electrolyte

Design of Electron &
Heat Transport Operation & Management

MSMD-µ
NREL

MSMD-c

ξ1

ξ2
ξ3

x1

x2
x3

X1

X2
X3

particle domain dimension electrode domain dimension cell domain dimensionξ x X
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NREL’s Multi-Scale Multi-Dimensional Model Approach
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Design of Materials

Design of 
Electrode Architecture

Design of Transport at
Electrode/Electrolyte

Design of Electron &
Heat Transport

MSMD-µ
NREL

MSMD-c

ξ1

ξ2
ξ3

x1

x2
x3

X1

X2
X3

particle domain dimension electrode domain dimension cell domain dimensionξ x X

• Introduce multiple computational domains for corresponding 
length scale physics 

• Decouple geometries between submodel domains
• Couple physics in two-way using predefined inter-domain 

information exchange
• Selectively resolve higher spatial resolution for smaller 

characteristic length scale physics
• Achieve high computational efficiency
• Provide flexible & expandable modularized framework
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The Model has Hierarchy Structure
MSMD: Modularized Framework: Flexible & Expandable
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Model Prediction for a Large Stacked Prismatic Cell 
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ξ1

ξ2
ξ3

x1

x2
x3

X1

X2
X3

1D spherical particle 
representation model 

particle domain dimension electrode domain dimension cell domain dimensionξ x X

r

1D porous electrode model 3D SPPC model

 Stacked prismatic design
 200 x 140 x 7.5 mm3 form factor
 20 Ah PHEV10 application
 Single side cooling 25W/m2K 25oC

SVM

Sub-model Choice                                                                                                                

Solution Method Choice                                                                                                       

SVM FVM
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Cell Design Evaluation
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Case Description Lx [mm] Ly [mm] Lz [mm] Tab width [mm] Tab configuration 
ND Nominal design  200 140 7.5 44 Adjacent tabs 
CT Counter tab design 200 140 7.5 44 Counter tabs 
ST Small tab design 200 140 7.5 20 Adjacent tabs 
WS Wide stack-area design 300 140 5.0 44 Adjacent tabs 

 

Nominal Design

Small Tab Design

Counter Tab Design

Wide Stack-area Design

ND

ST

CT

WS

Tab Location

Stack Area
Tab Size
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5C Discharge Voltage Response
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• Identical discharge capacity: 18.9 Ah at 
5C

• Several mV difference in discharge 
voltage among the compared designs

• Tendency of a few millivolts voltage 
difference with design change cannot be 
easily confirmed by testing only
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SOC Deviation during Discharge
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• Results imply that
 Flat voltage slope would promote cell internal SOC imbalance
 HEV cycling at “flat section” would cause larger internal imbalance

• Modifying thermodynamics vs Optimizing electrical/thermal configuration 

CT WSND ST
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Thermal Response during Discharge
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STCT WS

Temperature

• Similar average temperatures: ND, CT, ST
• Smaller ∆T at CT
• Larger ∆T at ST
• Heat generation is highest with WS, but the 

EOD  average T is lowest

ND

Single side cooling on top surface
 With h = 25 W/m2K
 At Tamb= 25 oC
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CT

WS

Temperature Imbalance at EOD
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Pulse Power Response Comparison
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• HPPC at 20% SOC at 25oC initial temperature
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Vehicle Use Evaluation
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• PHEV10 mid-size sedan 
• 15 minutes US06 Driving Profile
• Battery power from Vehicle simulation

Thermodynamics + Cell Design + System Control
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Thermal Response during Driving
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• Similar average temperatures: ND, CT, ST
• Smaller ∆T at CT
• Larger ∆T at ST
• WS: lower average T during CS mode drive, but significant ∆T
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Cell Internal Kinetics Non-Uniformity 
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Model Prediction for a Spirally Wound Cylindrical Cell 
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ξ1

ξ2
ξ3

x1
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x3

X1

X2
X3

1D spherical particle 
representation model 

particle domain dimension electrode domain dimension cell domain dimensionξ x X

r

1D porous electrode model 3D SWC model

 Spirally wound cell design
 D40, H100 mm form factor
 10 Ah PHEV10 application

SVM

Sub-model Choice                                                                                                                

Solution Method Choice                                                                                                       

SVM FVM
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Spirally Wound Cell (SWC) Model

Stacking process: Forming a pair between inner electrodes 

current collector

current collector
Separator

Winding process: Forming a second pair between outer electrodes

electrode

electrode

Spirally Wound Cell :   

Paring Inner 
electrodes

Separator

electrode

electrode

Paring Outer 
Electrodes

• One pair of wide current collector foils
• Two pairs of wide electrode layers
• Complex electrical configuration

23
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Model Case
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 Diameter 40mm, inner diameter 8mm, height 100 mm form factor
 Positive tabs on the top side, negative tabs on the bottom side
 10 Ah capacity

5C constant current discharge
socini = 90%
Natural convection :

hinf = 5 W/m2K
Tamb = 25oC 
Tini = 25oC 
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the winding direction 

More energetic reactions 
near tabs
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State of charge

Temperature
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 High rate of discharge with a moderate 
heat transfer condition

 Heat generation dominates temperature 
distribution in the system

 Temperature difference in the system is 
relatively small

- More usage of electrode 
near tabs
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Discharge kinetics rate comparison

- Discharge KineticsImpact of # of tabs
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- TemperatureImpact of # of tabs

X [m]

Y
 [m

]

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.05

0.1

X [m]

Y
 [m

]

 

 

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.05

0.1

-0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4
T-Tavg[°C]

Temperature comparison

0.19°C

0.37°C

0.78°C

3.25°C

2 tabs

5 tabs

Continuous tab

10 tabs

ΔT
at 5 min discharge



Innovation for Our Energy Future

Performance, Durability and Safety
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Physics of Li-Ion Battery Systems in Different 
Length Scales

Li diffusion in solid phase
Interface physics
Particle deformation & fatigue
Structural stability

Charge balance and transport
Electrical network in 
composite electrodes
Li transport in electrolyte 
phase

Electronic potential &
current distribution
Heat generation and 
transfer
Electrolyte wetting
Pressure distribution

Atomic Scale

Particle Scale

Electrode Scale Cell Scale

System Scale
System operating 
conditions
Environmental conditions
Control strategy

Module Scale
Thermal/electrical
inter-cell configuration
Thermal management
Safety control

Thermodynamic properties
Lattice stability
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Transport properties
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Model Prediction for Cylindrical Cell Degradation
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X2
X3

1D spherical particle 
representation model 

particle domain dimension electrode domain dimension cell domain dimensionξ x X

r

1D porous electrode model
+ empirical life model 2D SPPC model

 Spirally wound cell design
 D40, H100 mm form factor
 10 Ah PHEV10 application

SVM

Sub-model Choice                                                                                                                

Solution Method Choice                                                                                                       

SVM FVM
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Life Modeling Approach
NCA datasets fit with empirical, yet physically justifiable formulas
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Resistance
Growth

Relative
Capacity

•Data shown above: J.C. Hall, IECEC, 2006.
•Model also fit to DOE/TLVT, Southern CA Edison & NASA data

Qactive = e0 + e1 N

R  =  a1 t1/2 +  a2 N

Calendar fade
• SEI growth (partially

suppressed by cycling)
• Loss of cyclable lithium 
• a1, d1 = f(∆DOD,T,V)

Q  = min (  QLi ,  Qactive )

QLi = d0 + d1 t1/2

Cycling fade
• active material structure 

degradation and 
mechanical fracture

• a2, e1 = f(∆DOD,T,V)

• Portability + Physical interpretation
• Applicable to complex real-world storage and cycling scenarios 
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US06 – Nonuniform Capacity Loss
• Regions near terminals 

suffer most significant 
capacity loss
Large overpotential  Excessive cycling

• Inner core loses capacity 
faster than outer cylinder 
wall
High temperature  Material degradation0 months:

8 months:
16 months:

+

-

+

-

+

-

US06

32
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US06 – Ah Imbalance (Nonuniform Cycling)
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0 months:
0.7% Ah Imbalance 8 months:

1.7% Ah Imbalance 16 months:
4.8% Ah Imbalance

• Later in life, those same areas are 
most degraded and are cycled least

+

-

+

-

+

-

Preferentially cycled regions shift early in life

Imbalance continually grows throughout life

• Early in life, inner 
core and terminal 
areas are cycled 
the most
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Modeling Thermal Runaway

35

 Constructed empirical reaction models using calorimetry data for 
component decompositions: approach practiced by J. Dahn’s group

 Enhanced understanding of the interaction between heat transfer 
and exothermic abuse reaction propagation for a particular 
cell/module design 

 Provided insight on how thermal characteristics and conditions can 
impact safety events of lithium-ion batteries

20 40 sec8 28

Total Volumetric Heat Release from Component Reactions

4 2416 3612 32

Internal T External T

(°C)

0 20 40 (sec)

SEI decomposition positive/electrolyte negative/electrolyte
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Multi-Physics ISC Model
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• Developed an integrated model for multi-physics internal short circuit 
(ISC) of lithium-ion cells by linking and integrating NREL’s unique 
electrochemical, electrothermal, and abuse reaction kinetics models

• Performed 3D multi-physics internal short simulation study to 
characterize an internal short and its evolution over time

Current Density

Temperature

Electrothermal Model

Abuse Kinetics Model Electrochemical Model
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40 mm

35 mm

3 mm

Shorted Spot

Shutdown Separator for Large Cells ?

37

Short Between Al & Cu Metal Foils
Al

Cu

• Cell Capacity: 20 Ah 0.4 Ah

Rshort ~ 10 mΩ
Ishort ~ 300 A (15 C-rate)

Rshort ~ 7 mΩ
Ishort ~ 34 A (85 C-rate)

Joule Heat for Short Temperature @10 sec after short
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Summary

38

1. Introduction to the NREL’s MSMD model

• The MSMD model is a modularized multiphysics multiscale lithium battery 
model framework 

2. Model application to large Li-ion battery performance

• The model enhances understanding of interactions among varied scale physics 
beyond what’s possible with experimentally measurable quantities only

• Thermal/electrical design variation of a cell impacts internal battery kinetics

3. Model application to large Li-ion battery degradation

• Internal imbalance of cell use grows continually throughout life

4. Model application to large Li-ion battery safety

• Cell heating pattern is affected by cell characteristics (e.g. Ah, rate)
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