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Abstract 
In this report, we will investigate two common approaches to model development for robust control 

synthesis in the aerospace community; namely, reduced order aeroservoelastic modelling based on 
structural finite-element and computational fluid dynamics based aerodynamic models, and a data-driven 
system identification procedure. It is shown via analysis of experimental SuperSonic SemiSpan Transport 
(S4T) wind-tunnel data that by using a system identification approach it is possible to estimate a model at 
a fixed Mach, which is parsimonious and robust across varying dynamic pressures. 

Nomenclature 
 a   parameter of the output 
 A(q)   polynomial in a 
 AIC  Akaike’s information criterion 
 ASE   aeroservoelastic 
 ARMA  AutoRegressive, Moving Average 
 ARMAX AutoRegressive, Moving Average eXogenous 
 ARX  AutoRegressive eXogenous input 
 b  parameter of the input 
 B(q)  polynomial in b 
 BJ  Box Jenkins 
 c  parameter of the noise model numerator 
 C(q)  polynomial in c 
 D(q)  polynomial in d 
 e(n)  an unobservable white-noise disturbance 
 F(q)  polynomial in f 
 FE  finite element 
 FIR  finite impulse response function 
 FPE  final prediction error 
 G(q)  B(q)/A(q) 
 H(q)  1/A(q) 
H∞   H-infinity 
 MDL  minimal description length 
na   previous values of the output 
nb   previous values of the input 
 N  number of data points 
 p  number of model parameters 
 PEI  prediction error identification 
 POD  proper orthogonal decomposition 
 Q  dynamic pressure 
 ROM   reduced order model 
 S4T   SuperSonic SemiSpan Transport 
 TPWL  trajectory piecewise linearization 
 u(n)  an accessible input 
 V  the prediction error or the residual sum of squares 
 y  measured system output 
ŷ   predicted model output 
 y(n)  measured output 
 %QF  percent quality of fit 
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1. Introduction 
Undesirable aeroservoelastic (ASE) interactions are a major concern in modern aircraft design. ASE 

interactions between aircraft structure, aerodynamics, and flight control systems can lead to divergent 
oscillations resulting in catastrophic failure (ref. 1). As such, analytical model development is an 
important step in the design and certification of aircraft. Accurate models allow for robust control design, 
which is critical for aircraft safety, gust-load alleviation, ride quality, et cetera. 

 
Finite element (FE) based models are used in the design process of aircraft to aid in the description of 

complex elastic and structural components (refs. 2–3). FE based models that accurately characterize the 
aerodynamic and structural components are of very high order (for example, thousands of degrees of 
freedom) and computationally intensive. To reduce the ASE model order, a modal approach is used. This 
approach can reduce the state-space model order to several tens of states. The robustness of this model 
type highly depends on the accuracy of the FE structural and aerodynamic models, and on the number of 
states applied to the modelling. Models of high complexity inhibit their use for control synthesis because 
their real-time implementation is difficult or not possible (ref. 4). This difficulty has led to considerable 
activity in the areas of model and controller reduction techniques in the last decade. The literature is rich 
with many reduced order model (ROM) techniques, which would require a review paper to properly 
discuss them. As such, in this report, we limit ourselves to a handful of approaches. 

 
A leading strategy to FE based model reduction is the proper orthogonal decomposition (POD), which 

is also known as the Karhunen-Loeve procedure (refs. 5). The so-called POD technique is well known in 
the statistical literature as principal-component analysis (ref. 6). The reduced basis method was first 
proposed in references 7 and 8 for structural analysis, and it has been used for structural problems in 
references 9 through 11. This technique uses synthetic data from a high fidelity FE based model to 
capture the dominant characteristic information utilising an orthogonalisation process. This allows the 
POD approach to accurately describe a system using a few basis terms, which gives it an advantage 
compared to other numerical procedures (ref. 12). These reasons have allowed POD to become a popular 
technique for the implementation of real-time control (ref. 13). Moreover, POD has been successfully 
used in a variety of fields including signal analysis and pattern recognition (ref. 14), fluid dynamics and 
coherent structures (refs. 15–17), control theory (refs. 18–20), civil engineering (ref. 21) and inverse 
problems (ref. 22). 

 
More recently the ROM techniques utilising POD were developed for aeroelastic systems analysis 

(ref. 23). This methodology was introduced to the aerospace community for the reduction of aeroelastic 
equations (ref. 24). As a follow-on to this technique, frequency-domain approaches were developed which 
efficiently compute POD basis functions for linearised aeroelastic systems (refs. 25–26). Due to its 
popularity and utility, POD methodology has been proposed and implemented for static and dynamic 
continuous-time nonlinear aeroelastic problems. Subsequent developments lead to extensions to 
encompass discrete Euler equations (refs 27–28). Successful application of this approach has been 
demonstrated for the analysis of limit-cycle oscillation of an airfoil with a nonlinear structural coupling in 
the transonic regime (ref. 29). 

 
Nevertheless, it has been observed that standard POD procedures are less robust for nonlinear 

problems and typically require more basis functions as the function complexity increases (refs. 23 and 
30). To address this limitation, a linearisation strategy, the trajectory piecewise linearisation (TPWL), was 
proposed (refs. 31–32). The TPWL technique combines reduced-order modelling with linearisation of the 
governing equations as a solution to this problem (ref. 23). 
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Although POD offers a significant reduction of the full FE based model, it is often too large to lend 
itself to efficient control design. An alternative approach is to use data driven techniques to let the data 
dictate what the optimal model should be. Such a procedure is commonly known as system identification. 

 
This area, as with ROM methods, also has an extensive base of literature for both linear and nonlinear 

system identification techniques and is too large to give a proper review here. As such we refer the reader 
to an often-cited authoritative treatise in the area, which provides an excellent overview and references 
(ref. 33). Below, we provide a brief and incomplete introduction. 

 
There are two broad classes of techniques that can be pursued to accomplish the task of system 

identification: (1) nonparametric and (2) parametric methods. The finite impulse response function (FIR) 
has been widely used for modelling linear time-invariant systems. This type of system description is 
known as nonparametric because it is a numeric representation of the system’s impulse response or kernel 
(refs. 33–35). Although nonparametric methods can be used to represent many classes of systems, they do 
so at the expense of introducing an excessive number of unknown coefficients, which must be estimated. 
Most expansions map the past inputs into the present output and so require a very large number of 
coefficients to characterize the process. Moreover, the parameters are not readily linked to the underlying 
system, except in special cases where significant a priori knowledge of the system has been assumed.  

 
Due to this shortcoming, parametric identification methods have been developed for use in the design 

of better control systems. Parametric models have some advantages in applications. They: (1) are easier to 
understand and interpret, (2) can simplify forecasts (e.g., obtaining forecast intervals), and (3) model 
comparison in a parametric context (i.e., parameter estimates, model order, and model structure) has been 
well studied. Hence, the difficulty of model comparison encountered using nonparametric tools can be 
avoided (ref. 36). 

 
A parametric model consists of a set of differential or difference equations describing the system 

dynamics. Such equations usually contain a “small” number of parameters, which can be varied to alter 
the behavior of the equation. In this report, we only consider the discrete-time case since in any practical 
experimental situation the data available to the experimenter is in discrete-time. As such, most systems 
for identification purposes are represented in discrete-time. In addition, we assume the ROM with which 
we compare our data-driven model is available and as such we do not discuss its development. 

 
The organization of this report is as follows. In section 2 we formulate the identification problem 

addressed here. Section 3 describes the experimental SuperSonic SemiSpan Transport (S4T) test-bed 
(ref. 37) and methods used for model development. Section 4 illustrates the results of our study on three 
flight conditions; namely, model robustness to fixed Mach but varying dynamic pressure. Section 5 
provides a discussion of our findings, and section 6 summarises the conclusions of our study. 

2. Problem Statement 
System identification is the process of developing or improving a mathematical representation of a 

physical system based on observed data. Often the observed data consists of an external user selected 
input, used to perturb the system and elicit an output response. In any experimental situation the system 
output is a sum of the true unknown system output and observation or measurement noise. Given this 
paradigm there are several model structures that can be explored to model a system’s dynamics and noise. 

2.1 Model Structures 

After preprocessing the recorded data, the first step in system identification is to select a model 
structure to describe the observations. There are a number of model forms to select from when developing 
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a data-driven model (ref. 33). However, the problem often dictates the model form(s) that are reasonable 
to consider. This insight may come from a priori knowledge of the physical process or previous 
morphological modelling efforts. In this report, we use knowledge gained from previous work to limit the 
model sets considered; namely, linear, time-invariant processes where both input-output are available to 
the user (38–39). 

2.1.1 ARX Model Structure 
The simplest input-output polynomial model is the AutoRegressive eXogenous (ARX) input model, 

represented in equation (1) as (refs. 33, 40, and 41): 
 
 

 
 
y n( ) =  −  a1y n −1( )−− ana y n − na( )  

 
 
+ b1u n −1( ) + b2u n − 2( ) ++ bnbu n − nb( )  

 + e n( )  (1) 
 
where y n( )  is the measured output, u n( )  is an accessible input, and e n( )  is an unobservable white-noise 
disturbance. The current output depends on nb  previous values of the input, na  previous values of the 
output, and the current disturbance. 
 

This structure can be represented more compactly as shown in equations (2), (3), and (4): 
 

 A q( ) y n( ) = B q( )u n( ) + e n( )   or (2) 
 

 y n( ) = G q( )u n( ) + H q( )e n( )   where (3) 
 

 
G q( ) = B q( )

A q( ) ,H q( ) = 1
A q( )  (4) 

 
where 

 
A q( ) = 1+ a1q−1 ++ ana q

−na ,B q( ) = b1q−1 ++ bnb q
−nb ,q−1  is the backward shift operator, 

and a’s and b’s are the parameters of the output and input, respectively. 
 

When there is evidence of significant noise in the system a more flexible noise model may be 
required to model the dynamics and noise using different polynomials. 

2.1.2 ARMAX Model Structure 
For linear systems, the relationship between input-output and noise can be written as a linear 

difference equation, and is shown in equation (5): 
 

 
 
y n( ) =  −  a1y n −1( )−− ana y n − na( )  

 
 
+ b1u n −1( ) + b2u n − 2( ) ++ bnbu n − nb( )  

 
 
+ e n( ) + c1e n −1( ) ++ cnc e n − nc( )  (5) 
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This is known as the AutoRegressive, Moving Average eXogenous (ARMAX) model. In this model 
structure the current output, y n( ) , depends on an exogenous input, u n( ) , an innovation process, e n( ) , 
and past values of the output. This structure can be represented more compactly as shown in equation (6): 

 
 A q( ) y n( ) = B q( )u n( ) +C q( )e n( )  (6) 
 
Substituting equation (6) into equation (3) yields equation (7): 
 
 

G q( ) = B q( )
A q( ) ,  H q( ) = C q( )

A q( )  (7) 

 
where 

 
C q( ) = 1+ c1q−1 ++ cnc q

−nc , and the c’s are parameters of the noise model numerator. The 

extra polynomial, C q( ) , gives the ARMAX structure additional flexibility to model additive disturbance. 

When additional complexity is needed to model noise H q( )  can be fully parameterised independent of 
the system dynamics. 

2.1.3 Box–Jenkins Model Structure 
A natural development of the ARMAX model structure is to parameterise the noise process as an 

AutoRegressive, Moving Average (ARMA) model as shown in equation (8): 
 

 
y n( ) = B q( )

F q( ) u n( ) + C q( )
D q( ) e n( )  (8) 

 

where 
 
F q( ) = 1+ f1q

−1 ++ fn f q
−n f , and 

 
D q( ) = 1+ d1q−1 ++ dnd q

−nd  model the poles of the 

system and noise separately. Note that, n f = na . This model structure is known as the Box-Jenkins (BJ) 
model due to their seminal work proposing this model form (ref. 42). 

2.2 Model Order Selection 

Once a model structure is selected, the dynamic order of the system needs to be determined. Although 
there are many techniques that offer a solution to this problem, below we describe three commonly used 
techniques to estimate model order. 

2.2.1 Final Prediction Error 
The Final Prediction Error (FPE) measure estimates the error in model fit when it is used to predict 

new outputs (ref. 43). The FPE defines an optimal model as one that minimises as shown in equation (9): 
 

 
FPE =V 1+ 2p

N − p
⎛
⎝⎜

⎞
⎠⎟

 (9) 

 
where N is the number of data points, V is the prediction error, or the residual sum of squares, and p is the 
number of model parameters. 
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2.2.2 Akaike’s Information Criterion 
Akaike’s Information Criterion (AIC) is a weighted estimation error based on the unexplained 

variation of a given time series with a penalty term when exceeding the optimal number of parameters to 
represent the system (ref. 44). Utilising AIC, an optimal model is defined as one that minimises as shown 
in equation (10): 

 
 

AIC =V 1+ 2p
N

⎛
⎝⎜

⎞
⎠⎟

 (10) 

 
According to Akaike’s theory, the most accurate model has the smallest prediction error. 

2.2.3 Minimal Description Length 
Rissanen’s Minimal Description Length (MDL) approach is based on V plus a penalty for the number 

of terms used (ref. 45). With MDL, an optimal model is one that minimises as shown in equation (11): 
 

 
MDL =V 1+ p lnN

N
⎛
⎝⎜

⎞
⎠⎟

 (11) 

 
A model that minimises the MDL allows the shortest description of measured data. 

2.3 Cross–Validation 

Model validation is an important step in developing strategies for robust control. This step is typically 
preceded by system identification. Model validation is concerned with assessing whether a given nominal 
model can reproduce data from a plant, collected after some initial experiments to obtain estimation data 
(ref. 46). The model validation problem is really one of model invalidation since a given model can only 
be said to be not invalidated with the current evidence. Future evidence may invalidate the model. 

 
We cross-validate the parameter estimates of the model dynamics using a 1-step-ahead predictor 

(ref. 33). Model goodness is assessed by computing the percent quality of fit (%QF) as shown in equation 
(12): 

 
 

%QF  = 1−

1
N

yn − ŷn( )2n=1
N∑

1
N

yn( )2n=1
N∑

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
×100  (12) 

 
where y is the measured system output, and ŷ  the predicted model output. 
 

In the sequel, we show that by implementing these well-known identification strategies it is possible 
to develop a model, which is parsimonious and a robust predictor of measured data and, hence, represent 
the physical process more accurately. 

3. Experimental S4T Wind–Tunnel Data 
The modelling and identification techniques were applied to experimental wind-tunnel data from the 

S4T project conducted at NASA Langely Research Center (Ref. 37). Figure 1 shows a scale model of the 
S4T test bed in the wind tunnel. 
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Figure 1. S4T model. 
 
The data analysed for this study used horizontal tail position input and structural accelerometer response 
output. 

3.1 Data Collection 

Wind-tunnel data was gathered during transonic clearance of the S4T. At each flight condition the 
aircraft model was perturbed with a log sine sweep input which had a frequency content of 0.5–25 Hz, 
mean value of 3.5 deg, and ± 0.3 deg amplitude. The inputs were applied to the horizontal tail. The 
accelerometer output was collected from a sensor located at the nacelle inboard aft position. Wind-tunnel 
tests were conducted at subsonic, transonic, and supersonic conditions; and varying dynamic pressures. 
The input-output were antialiasing, filtered by an eighth-order Bessel filter with a cut-off at 200 Hz and 
recorded at 1,000 Hz. Data was collected for a range of Mach numbers from M = 0.6 to 1.2 and dynamic 
pressures Q = 20 to 65 psf. 

3.2 Data Analysis 

In this study, the objective was to develop a parsimonious model for control synthesis to improve 
gust-load alleviation and ride quality. As such, we focused our identification efforts on data collected at 
Mach 0.80, 0.95, and 1.10; and Q = 30, 55, 60, and 65 psf. At each Mach we used Q = 30 psf as the 
estimation data; and Q = 55, 60, and 65 psf as the cross-validation data. At M = 0.95 data was not 
collected at Q = 65 psf, and, therefore, the estimated model could only be cross-validated at Q = 55 and 
60 psf. This approach of modeling and validation was taken to assess the model’s predicative capability 
and robustness. 

 
Data was preprocessed to remove the linear trend, mean, and outliers. The preprocessing step ensured 

that all unwanted low-frequency disturbances, offsets, trends, and drifts were removed and allowed for an 
accurate representation of the system dynamics. 
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3.3 Identification Procedures 

The identification process was performed in four stages to assess the full range of models discussed in 
section 2. In all cases the model order was estimated using the FPE, AIC, and MDL approaches. The 
optimal model order was deemed as one that produced the lowest prediction error of the aforementioned 
techniques. Once the model order was fixed, prediction error identification (PEI) was used to estimate the 
unknown parameters, and its predictive capability was computed for a cross validation set as described 
previously (see section 2.3). 

 
1. The ARX structure’s ability to model wind-tunnel data was assessed because it is the simplest 

input-output model invoking the principle of parsimony. For the ARX model the order was 
determined by preselecting a range of model orders to search over. Specifically, 
na = 2 − 5, nb = 1− 5 and nk = 1−10  was chosen as the search range, where nk  denotes input 
delay. This range was selected to allow sufficient model complexity whilst maintaining an 
efficient system description. 

2. Further complexity was added to the ARX model to assess whether the same model structure could 
account for significantly greater output variance with na = 2 −10, nb = 1−10 and nk = 1− 20 . 

3. Using the best-fit ARX model order to fix na  and nb , we searched for an ARMAX order, namely, 
nc = 1− 20  that provided the smallest prediction error as the optimal ARMAX order. 

4. The same procedure was followed to assess whether the BJ model structure could account for more 
of the output variance than the ARMAX model with nd = 1− 20 . 

4. Results 

4.1 ARX Model 

Two ARX model orders were evaluated. Specifically, a model with order na = 5,  
nb = 1, nk = 1 and na = 10, nb = 1, nk = 1  were used for model development. The model order was 
estimated as discussed in section 2.2. This analysis allowed for us to assess whether adding complexity to 
the same structure could account for significantly more of the output variance. The models were estimated 
using wind-tunnel data measured at Mach 1.10, Q = 30 psf which yielded structures of the form shown in 
equations (13) and (14). 

 
 ARX5: 

 
Â q( ) y n( )  = B̂ q( )u n( ) + e n( )   where 
 

       Â q( )  = 1+ â1q
−1 + â2q

−2 + â3q
−3 + â4q

−4 + â5q
−5   and 

 

       B̂ q( )  = b̂1q
−1  (13) 
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 ARX10: 

 

 
A q( ) y n( )  = B q( )u n( ) + e n( )   where 

 
        

A q( )  = 1+ a1q
−1 + a2q

−2 + a3q
−3 + a4q

−4 + a5q
−5  

  
                  + a6q

−6 + a6q
−6 + a6q

−6 + a6q
−6 + a10q

−10   and 
 
         

B q( )  = b1q
−1  (14) 

 
Figures. 2a–2c shows representative results for the ARX structure’s (eqs. (13) and (14)) ability to 

represent S4T wind-tunnel data by evaluating it with cross-validation data at Mach 1.10, and Q =55, 60, 
65 psf. 

 

 
 

Figure 2(a). Cross-validation fit: Mach 1.10, Q = 55 psf. 
 

Figure 2. Measured and predicted output for ARX5 and ARX10 models at Mach 1.10; (a): Q = 55 psf, 
(b): Q = 60 psf, and (c): Q = 65 psf. Solid line (“—”) measured output. Dash-dash line (“– –”) predicted 
ARX10 model output. Dot-dot line (“...”) predicted ARX5 model output. 
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Figure 2(b). Cross-validation fit: Mach 1.10, Q = 60 psf. 
 

 
 

Figure 2(c). Cross-validation fit: Mach 1.10, Q = 65 psf. 
 

Figure 2. Concluded. 
 

This figure compares %QF of the predicted output for the ARX5 and ARX10 models superimposed 
on top of measured data. The %QF’s obtained for the ARX5 model at Q =55, 60, 65 psf are 82.97%, 
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84.94% and 84.94%, respectively. For the ARX10 model the QF’s percentage are 86.61%, 88.24 and 
88.05%. 

 
Figures 2a–2c demonstrate that adding complexity to the ARX model improves the %QF. As such, 

we deem that the ARX10 model (eq. (14)) is the better fit model due to its predicative capability. 

4.2 ARMAX Model 

Next, we used the ARX10 model order as a starting point to develop a more complex ARMAX model 
to assess whether it could account for more output variance whilst maintaining an efficient model 
description. The model was estimated at Mach 1.10, Q = 30 psf and yielded a structure of the form shown 
in equation (15): 

 
 ARMAX: 

 

 
A q( ) y n( )  = B q( )u n( ) + C q( )e n( )   where  

 
        

C q( )  = 1+ c1q
−1 + c2q

−2 + c3q
−3 + c4q

−4 + c5q
−5  

 
                 + c6q

−6 + c7q
−7 + c8q

−8 + c9q
−9 + c10q

−10  (15) 
 
Figures 3a–3c shows representative results for the ARMAX structure’s (eq. (15)) ability to represent 

S4T wind-tunnel data by evaluating it with cross-validation data at Mach 1.10, and Q =55, 60, 65 psf. 
 

 
 

Figure 3(a). Cross-validation fit: Mach 1.10, Q = 55 psf. 
 

Figure 3. Measured and predicted output for ARMAX model at Mach 1.10; (a): Q = 55 psf, (b): 
Q = 60 psf, and (c): Q = 65 psf. Solid line (“—”) measured output. Dot-dot line (“...”) predicted ARMAX 
model output. 
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Figure 3(b). Cross-validation fit: Mach 1.10, Q = 60 psf. 
 

 
 

Figure 3(c). Cross-validation fit: Mach 1.10, Q = 65 psf. 
 

Figure 3. Concluded. 
 
Figures 3a–3c illustrate %QF of the predicted output for the ARMAX model superimposed on top of 

measured data. The %QF’s obtained for the ARMAX model at Q =55, 60, 65 psf are 87.38%, 88.86%, 
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and 88.67%, respectively. Notice that although this model structure adds complexity, it accounts for 
incrementally more of the output variance. 

4.3 Box-Jenkins Model 

Lastly, we used the ARMAX model (eq. (15)) order as a starting point to develop a more complex BJ 
model to assess whether it could account for more output variance whilst maintaining an efficient model 
description. The model was estimated at Mach 1.10, Q = 30 psf, and yielded a structure of the form 
shown in equation (16): 

 
 BJ: 

 

 
y n( )  = 

B q( )
F q( ) u n( ) +

C q( )
D q( ) e n( )   where 

 

 
F q( )    A q( )   and 

 

 
D q( )  = 1+ d1q

−1 + d2q
−2 + d3q

−3 + d4q
−4 + d5q

−5  
 
           + d6q

−6 + d7q
−7 + d8q

−8 + d9q
−9 + d10q

−10  (16) 
 
Figures 4a–4c shows representative results for the BJ structure’s (eq. (16)) ability to represent S4T 

wind-tunnel data by evaluating it with cross-validation data at Mach 1.10, and Q =55, 60, 65 psf. 
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Figure 4(a). Cross-validation fit: Mach 1.10, Q = 55 psf. 
 

        
 

Figure 4(b). Cross-validation fit: Mach 1.10, Q = 60 psf. 
 

Figure 4. Predicted output of the BJ model at Mach 1.10 superimposed on top of measured output; 
(a): Q = 55 psf, (b): Q = 60 psf, and (c): Q =65 psf. Solid line (“—”) measured output. Dot-dot line (“...”) 
predicted BJ model output. 
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Figure 4(c). Cross-validation fit: Mach 1.10, Q = 65 psf. 
 

Figure 4. Concluded. 
 
Figures 4a–4c illustrate %QF of the predicted output for the BJ model superimposed on top of 

measured data. The %QF’s obtained for the BJ model at Q =55, 60, 65 psf are 87.17%, 88.70%, and 
88.48%, respectively. Although the BJ model offers greater complexity to model the observed data, it 
offers a slightly lower %QF. Using validation data, if the fit of a higher order deteriorates, it is an 
indication that the model complexity is too high (ref. 33). Table 1 summarises the findings of our 
analysis. 

 
Table 1. Summary of cross-validation results with Mach number and dynamic pressure versus model 
structure. 

 
 Quality of fit, % 

Mach 
Dynamic 

pressure, psf ARX5 ARX10 ARMAX BJ 
 55 86.04 87.63 88.26 88.05 

0.80 60 86.81 88.25 88.87 88.61 
 65 86.16 87.33 87.79 87.66 
 55 83.31 85.56 86.80 86.05 

0.95 60 83.60 85.97 87.11 86.36 
 65 X X X X 
 55 82.97 86.61 87.38 87.17 

1.10 60 84.94 88.24 88.86 88.70 
 65 84.94 88.05 88.67 88.48 

 
The results from table 1 illustrate that model fit increases with added complexity for the ARX model 

structure, improves incrementally for the ARMAX structure, but decreases for the BJ. From these results 
we conclude that the higher-order ARX model may be sufficient for our purposes, and as such we 
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compare the predictive capability of this model to the FE based ASE model used for control design during 
wind-tunnel test (refs. 38–39). 

4.4 Comparison of Tenth–Order ARX and ASE Models 

Lastly, we compared the ARX10 (eq. (14)), and ASE model’s ability to predict measured data. The 
original FE based model had 17,196 degrees of freedom. Using a modal approach an eightieth-order ASE 
model was developed and used for comparison (refs. 38–39). The ASE model contained 60 structural and 
20 unsteady aerodynamic lag states. 

 
Figures 5a–5h illustrate results of how accurately, as %QF, the two models correspond to wind-tunnel 

data at Mach 0.80, 0.95, 1.1 and, Q =55, 60, 65 psf. 
 

 
 

Figure 5(a). Cross-validation fit: Mach 0.80, Q = 55 psf. 
 

Figure 5. Predicted outputs of the ASE and ARX10 model superimposed on top of measured output; 
(a-c): Mach 0.80, Q = 55-65 psf; (d–e): Mach 0.95, Q = 55-60 psf; and (f–h): Mach 1.10, Q = 55-65 psf. 
Solid line (“—”) measured output. Dot-dot line (“...”) predicted ARX10 model output. Dash-dot line    
(“–..”) predicted ASE model output. 
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Figure 5(b). Cross-validation fit: Mach 0.80, Q = 60 psf. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 5(c). Cross-validation fit: Mach 0.80, Q = 65 psf. 

 
Figure 5. Continued. 
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Figure 5(d). Cross-validation fit: Mach 0.95, Q = 55 psf. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 5(e). Cross-validation fit: Mach 0.95, Q = 60 psf. 

 
Figure 5. Continued. 
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Figure 5(f). Cross-validation fit: Mach 1.10, Q = 55 psf. 
 

 
 

Figure 5(g). Cross-validation fit: Mach 1.10, Q = 60 psf. 
 

Figure 5. Continued. 
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Figure 5(h). Cross-validation fit: Mach 1.10, Q = 65 psf. 
 

Figure 5. Concluded. 
 
Figures 5a–5h shows the predicted output for the ARX10 and ASE models superimposed on top of 

measured data. The %QF’s obtained for the ARX10 model, at all Mach numbers and Q’s, range from 
85% to 88%. For the ASE model the %QF’s, for all Mach numbers and Q’s, range from 2% to 7%. 
Although the FE ASE has many more degrees of freedom, it was not able to provide better predictive 
capability than the data-driven ARX model. Clearly, the tenth-order ARX model obtained using system 
identification methodology outperforms the FE ASE model. 

5. Discussion 
This study explored the utility of system identification techniques to develop robust models for 

control synthesis. Initially, at each Mach number, an ARX model with maximum order of five was posed 
to the AIC, FPE and MDL techniques to estimate optimal lag and dynamic order. Next the ARX models 
were allowed greater flexibility with a maximum order of ten to assess whether the same structure could 
explain more of the output variance. Analysis of these results indicated that the tenth-order ARX models 
provided sufficient improvement in model fit to justify the added complexity. Therefore, at each Mach 
number the tenth-order ARX models were used as a starting point for ARMAX model development. The 
best fit ARMAX models were then used to develop BJ models. 

 
The results show whilst the ARMAX models provide an improved fit, it was less than 1% for each 

case. The predictive capability of the BJ models was less than that of the ARMAX structures, which is a 
symptom of too much complexity. As such, these results indicate that the tenth-order ARX models were 
optimal in terms of parsimony and predictive capability to describe the dynamics of recoded wind-tunnel 
data. 

 
A comparison of the tenth-order ARX and 80th-order ASE model’s ability to explain the output 

variance revealed that the more complex ASE model was not able to achieve as high of a fit. The ARX 
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model was able to attain a higher fit because the model was developed using measured data, which often 
contains dynamics that are not captured in a FE based model. Conversely, the ASE model was developed 
from idealised assumptions about mass, damping, et cetera, which are idealisation and often do not 
closely hold with observations under experimental conditions. 

 
Although a different ASE model was developed for each Mach and Q, they yielded significantly 

reduced fits to measured data compared with the tenth-order ARX model. Notice that the ARX model at 
each Mach number was developed with estimation data at Q =30 psf but was able to accurately predict 
the measured data at higher Q’s, namely, Q = 55-65 psf. This is the power of utilising a data driven 
approach to model development. 

 
Often a model, which yields a minimum system description yet provides good predictive capabilities, 

is deemed as the best or optimal model. This is a trade-off between the ability to describe the system 
behaviour and parsimony. If two models can describe the system behaviour almost equally well, why 
choose the more complex one? For example, in H∞ -control synthesis the order of the controller is equal 
to the order of the model plus the order of the performance weights. Of course, it is not as 
computationally demanding to compute a controller of lower order. Moreover, selecting a model with 
greater complexity may lead to numerical issues if the model order is too high. Hence, minimum 
complexity often renders control synthesis more tractable (33, 47).  

 
A future study will utilise these data-driven models to develop control laws to assess model and 

controller design robustness. Initially, this study will be performed in a simulation environment but with 
data collected from the wind-tunnel tests described in this report. The successful demonstration of this 
work may lead to comparison of the robustness of control law design based on the two approaches, 
FE ASE and system identification models, on a supersonic flight test vehicle. 

6. Conclusion 
This study demonstrates the application of system identification techniques to develop parsimonious 

and robust models directly from data with excellent predictive capability. The results show that a 
data-driven model is capable of predicting observed data for a larger operating point. This robust 
predictive power was demonstrated with models developed at Q = 30 psf, but able to accurately predict 
the measured output at higher Q’s. This superior predictive capability allows for simpler control solutions 
and reduced modelling effort, whilst traditional ASE based control strategies rely on computationally 
expensive models with little predictive power rendering control law design more expensive. 
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