Characterization of 19.9% Efficient CIGS Absorbers

Ingrid Repins, Miguel Contreras, Manuel Romero, Yanfa Yan, Wyatt Metzger, Jian Li, Steve Johnston, Brian Egaas, Clay DeHart, John Scharf; National Renewable Energy Laboratory
Brian E. McCandless; Institute for Energy Conversion
Rommel Noufi; Solopower

This work was supported by the U.S. Department of Energy under Contract No. DE-AC36-99GO10337 with the National Renewable Energy Laboratory.

Thanks to: Craig L. Perkins, Bobby To, Device Performance Group, Falah Hasoon, Tim Gessert, and Ramesh Dhere of NREL.

NREL/PR-520-43247

Presented at the 33rd IEEE Photovoltaic Specialist Conference held May 11-16, 2008 in San Diego, California

A national laboratory of the U.S. Department of Energy Office of Energy Efficiency & Renewable Energy

Device	Area	Efficiency	Voc	J_{sc}	Ff	R	A	J_0
	(cm ²)	(%)	(mV)	(mA/cm^2)	(%)	$(\Omega - cm^2)$		(mA/cm^2)
C1068-2	0.450	18.8	678	35.2	78.7	0.41	1.30	5.3×10^{-8}
S2051-A1	0.408	19.2	689	35.7	78.1	0.27	1.48	5.2 x 10 ⁻⁷
C1675-11	0.406	19.3	668	36.2	79.6	0.14	1.29	6.5×10^{-8}
C1812-11	0.409	19.5	692	35.2	79.9	0.24	1.33	6.4×10^{-8}
M2992-11	0.419	19.9	690	35.5	81.2	0.37	1.14	2.1 x 10 ⁻⁹

- 19.9% CIGS devices with improved fill factor, reduced recombination
- •See Repins et al. Progress in Photovoltaics 16, 2008

Device	Area	η	Voc	FF	Jsc	Official
Name	(cm ²)	(%)	(mV)			Mst?
					cm ²)	
M2992-11#5	0.419	19.9	690	81.2	35.4	Yes
C2183-12#5	0.416	19.9	697	80.0	35.7	Yes
C2219-21#7	0.417	19.8	714	79.1	35.1	Yes
M2992-11#4	0.419	19.7	690	81.2	35.1	Yes
M2992-11#6	0.419	19.7	690	81.1	35.3	Yes
C2183-12#4	0.417	19.7	695	80.0	35.5	Yes
C2200-22#1	0.420	19.6	725	80.6	33.6	No
C2213-22#2	0.994	19.2	716	80.4	33.4	Yes

- Processing change: terminate three-stage CIGS deposition without Ga
- •Improved device performance demonstrated in two different evaporators and by three different operators
- •Why does this processing change improve device performance?

- Characterization:
 - Scanning tunneling luminescence (STL) mapping and cathodoluminescence (CL) mapping
 - Transmission electron microscopy (TEM)
 - Time-resolved photoluminescence (TRPL)
 - Capacitance-voltage (CV)
 - Grazing incidence x-ray diffraction (GIXRD)
- Note which results are typical of high-efficiency (>18%) CIGS, and which results are particular to most recent (>19.5%) CIGS.

STL and CL mapping

Measure intensity and wavelength of luminesced photons as a function of position

CL: electron beam excitation~ 1 μm penetration depth

STL: excitation confined to top 50 nm or less

Example: CL intensity as a function of position

SEM

Relatively low non-radiative loss at grain boundaries is typical of >18% devices.

CL map

19.9% device

1 μm

13.0% device

at grain boundaries

CL and STL comparison

Lack of red shift between CL and STL is unique to 19.9% material

TEM: Atomic number (Z) contrast

Decreased indication of nanodomains is unique to 19.9% material

TRPL

Relatively long lifetime is consistent with high efficiency and low recombination

Factors other than recombination (charge separation, intensity, fitting algorithm) also influence apparent lifetime. *See Metzger et al, E-MRS, May 2008*

Zero-bias depletion width less than 0.5 mm, doping density approaching 2×10^{16} cm⁻³, consistent with >19% devices.

GIXRD

- •Compared three samples
- •Narrow peaks are characteristic of high efficiency devices
- •Record device has largest peak shift
- •Not explained by Ga ratio (0.71 would be required)
- •Instead, decreased Cu content near surface is implied.

Summary	Consistent with high η (>18%) devices	Unique to recent 19.9% CIGS
Modified process termination		✓
Low nonradiative loss at grain boundaries	✓	
No red shift between CL and STL		✓
Decreased evidence of nanodomains in TEM		✓
Long lifetime (TRPL)	✓	
High doping density / short depletion width (CV)	✓	
Larger shift of GIXRD peak to high angle		✓

- •Techniques probing into the bulk are consistent with high efficiency devices.
- •Shallow probes indicate a more perfect and Cu-poor formation of the near-surface region.
- •Ga segregates preferentially to α -phase domains, Cu vacancies to β -phase domains (Stanbery et al.) Hypothesis: Denying Ga to surface encourages more perfect formation of Cu-deficient β -phase and thus the buried homojunction.