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SUMMARY AND INTRODUCTION 

Resul ts  of s tud ies  i n  which p r e c i s i o n  departures and missed approaches were 
simulated us ing  FILS guidance techniques are presented i n  t h i s  repor t .  The 
study was conducted under t-he Terminal Configured Vehic le  ( T V C )  Program, and 
i s  an ex tens ion  o f  a prev ious NASA Advanced Transpor t  Operat ing Systems 

(ATOPS) cont rac t ,  NASl-18028, (Reference 1 ) i n  which complex approach paths 
were evaluated. 

coverage has prov ided add i t i ona l  performance data. I n  add i t ion ,  missed 
approaches, which i nc lude  t r a n s i t i o n i n g  from f r o n t  MLS coverage t o  back 

azimuth operat ion,  have been simulated. 
e l e v a t i o n  antenna used f o r  f r o n t  MLS coverage has been loca ted  on the  runway 

cen te r l i ne .  I n  p rac t i ce ,  t h i s  antenna w i l l  be d isp laced l a t e r a l l y ,  so t h e  

r e s u l t i n g  equat ions f o r  the  a i r c r a f t  p o s i t i o n  coord inates w i l l  be somewhat 
more compl icated than those assumed i n  t h i s  study. 

S imu la t ion  of p rec i s ion  departures us ing MLS back azimuth 

For  purposes o f  t h i s  s imulat ion,  t h e  

As i n  the  prev ious studies,  an MD-80 a i r c r a f t  was simulated us ing  i t s  present  

r o l l  and p i t c h  a u t o p i l o t  i n n e r  loop conf igurat ions.  
of i n p u t s  from the  MLS guidance algor i thms t h a t  prov ided the r o l l  and p i t c h  

s t e e r i n g  commands. Wi th  on ly  minor changes, these a lgor i thms are  the  same as 
those p rev ious l y  devel oped (References 1 and 2). Th is  simul a t i o n  imp1 emented 

the  MLS guidance laws i n  con junc t ion  w i t h  t h e  MD-80 take o f f  and go around 
p i t c h  a u t o p i l o t  modes. 
o f f  mode, whereas the  l a t e r a l  guidance was under MLS curved pa th  con t ro l .  
missed approaches, normal MLS v e r t i c a l  and l a t e r a l  approach guidance was used 

p r i o r  t o  go around i n i t i a t i o n .  A t  t h a t  time, the  p i t c h  a u t o p i l o t  was changed 
t o  go around mode, and the  l a t e r a l  guidance remained i n  i t s  approach mode. 

Swi tch ing t o  MLS back azimuth mode occurred when the  a i r c r a f t  f i r s t  passed 
i n t o  back azimuth coverage. 

simulated. 

The ou ter  loops cons is ted  

F o r  departures, the p i t c h  guidance was the  normal take 
Fo r  

For  missed approaches, no l a t e r a l  maneuvers were 

Th is  e f f o r t  cons is ted of departures and missed approaches a t  an a i r p o r t  where 

MLS, when i n s t a l l e d ,  would prov ide an operat ional  bene f i t .  

no ise abatement take  o f f  procedures which otherwise would n o t  be poss ib le  due 

t o  weather cons t ra in ts .  Several no ise abatement depar ture paths were 
s imulated and inc luded the  e f f e c t s  o f  MLS noise, winds, and turbulence on 
performance. Two missed approach procedures were s imulated t o  assess the  

v e r t i c a l  and l a t e r a l  pa th  t rack ing  accuracies o f  the  system. 

MLS would a l l ow  

1 



CONCLUSIONS AND RECOMMENDATIONS 

CON C L U S I ON S 

Generally, the simulated precision departures f o r  the MD-80 provided 
acceptable lateral tracking performance, except i n  cases where bank angles led 
t o  operation near autopilot inner loop  command limits.  
tracking errors up t o  1500 f ee t  occurred, and the la teral  guidance system was 
not capable of controlling these e r rors  when t a i l  and crosswinds were 
simulated. 
bank  angles of 25-30 degrees may pose a problem. 

I n  those cases, 

Also, speed reduction d u r i n g  climbout as a resul t  of t u r n i n g  a t  

be l e s s  
tracking 
accepta b 

guidance 
guidance 

Results from a l l  the  missed approach cases indicate la teral  tracking er ror  t o  

t h i n  
i n  

han  20 f ee t  for  b o t h  f r o n t  and back azimuth coverage. 
errors d u r i n g  the descent p a r t  of the missed approach are well w 
e limits. No problems were encountered when s imula t ing  a switch 
implementation i n v o l v i n g  a1 t i tude.  During descent, the vertical  
a1 gori  t h m  used the MLS-deri ved a1 t i  tude. C a p t u r i n g  a barometric 

Vertical 

a l t i tude ,  and switching the guidance algorithm t o  track t h i s  constant 
a l t i tude ,  occurred w i t h o u t  t ransients  or disruption i n  operation. 

RECOMMENDATIONS 

Several areas o f  continued analysis and simulation have been identified as  a 
d i rec t  result  of the present study. Additional follow-on tasks are 
recommended tha t  re la te  t o  different  aspects of MLS operations other than 
departures and missed approaches. 

The tasks recommended as a resul t  of this study are: 

0 Investigate the problems w i t h  large bank angles d u r i n g  departures, 
especially w i t h  winds. 

2 



Provide f o r  speed c o n t r o l  dur ing  the p r e c i s i o n  departures w i t h  turns.  

Formulate and analyze o t h e r  s i t u a t i o n s  i n v o l v i n g  the  swi tch  from MLS 
a1 t i t u d e  t o  barometr ic a l t i t u d e .  

E s t a b l i s h  i f  t h e r e  i s  an optimum time t o  sw i tch  from f r o n t  azimuth 
coverage t o  back azimuth, and evaluate performance under these 

cond i t ions .  

I n v e s t i g a t e  any problems encountered when l e a v i n g  back azimuth coverage 

and e n t e r i n g  en-route nav igat ion.  

Develop a lgor i thms t h a t  can cope with l e a v i n g  back azimuth guidance then 

re -en ter ing  f r o n t  azimuth coverage dur ing  a go around. 

A d d i t i o n a l  fo l low-on tasks inc lude:  

0 Simula t ing  the  con ica l  azimuth and e l e v a t i o n  angle scan geometry o f  the 

MLS w i t h  t h e  e l e v a t i o n  antenna o f f s e t  l a t e r a l l y  from t h e  runway 
center1 i ne. 

0 Eva lua t ing  the  t r a c k i n g  performance when enroute nav iga t ion  e r r o r s  cause 
i n i t i a l  l a t e r a l  and v e r t i c a l  o f fsets  a t  e n t r y  t o  MLS coverage. 

0 I n v e s t i g a t i n g  changes t o  the  guidance a lgor i thms when t h e  a i r c r a f t  i s  

ordered t o  change t o  another p a t h  wh i le  making an approach. 

0 Eva lua t ing  the  l a t e r a l  and v e r t i c a l  guidance laws using a f ixed-base 

s imu la to r  w i t h  a p i l o t  i n  t h e  loop. 

3 



MLS OPERAT IONS 

D i f f e r e n t  modes o f  opera t ion  o f  t he  MLS are  employed f o r  departure guidance 
and f o r  t he  missed approach guidance. For  departure, p r e c i s i o n  d is tance 

measuring equipment (DME/P) i s  employed f o r  range in fo rmat ion ,  and a back 
azimuth (BAZ) t r a n s m i t t e r  prov ides the  azimuth angular in fo rmat ion .  F igure  1 
i s  a sketch o f  t h e  departure geometry assumed f o r  t he  present  study. F o r  
missed approaches, the same DME/P i s  used w i t h  a f r o n t  azimuth (AZ) 

t r a n s m i t t e r  and an e l e v a t i o n  (EL) t ransmi t te r .  

When the  a i r c r a f t  crosses the y -ax is ,  the  f r o n t  azimuth mode i s  switched t o  

the  back azimuth mode. 
e l e v a t i o n  in format ion ava i lab le .  Consequently, f o r  purposes o f  the present  

study, i t  was assumed t h a t  a l t i t u d e  would be a v a i l a b l e  t o  the  MLS guidance 
computer. 

determined f o r  back azimuth operat ion.  The f o l l o w i n g  sec t ions  descr ibe the  
c a l c u l a t i o n s  requ i red  t o  determine the a i r c r a f t  p o s i t i o n  f o r  bo th  f r o n t  and 

back azimuth modes o f  opera t ion  as a f u n c t i o n  o f  the  angular and range 
in fo rmat ion .  

F igu re  2 shows t h i s  geometry. 

It i s  noted t h a t  back azimuth opera t ion  does n o t  have 

I n  t h i s  way, the  coord inates o f  the  a i r c r a f t  can be un ique ly  

4 



P R E C I S I O N  DEPARTURE GEOMETRY 

P o s i t i o n  coord ina tes  ($,, 
c a l c u l a t e d  from t h e  range, back azimuth angle, and t h e  a l t i t u d e .  

expressions f o r  those coord inates have been der ived  us ing the  assumed geometry 

o f  Figure  1. 
compl icated because the x-coord inate requi res  the  sol u t i o n  t o  a quadrat ic  
equation. This  f a c t  necess i ta tes l o g i c  t o  determine the  s ign  on t h e  r a d i c a l  

i n  the  equat ion f o r  Xm' t o  assure the  co r rec t  so lu t ion .  I n  the  fo l low ing '  
equations, t he  a l t i t u d e  h i s  assumed ava i l ab le  f r o m a  source ex terna l  t o  t h e  
MLS. 
l o c a t i o n s  a t  t h e  12000 f o o t  runway a t  San Francisco. 

yA3 z;) o f  the a i r c r a f t  MLS antenna may be 
The 

Although st ra ight forward,  these c a l c u l a t i o n s  are  somewhat 

The values o f  the  d is tance XB and XD represent  the  t r a n s m i t t e r  

where : 

xB = -1700 FT 

x = 12000 FT D 

5 



Steps i n  t h e  development o f  the  above equations are  g i ven  i n  Appendix A. 

The s i g n  on the rad i ca l  i n  Equation ( 2 )  depends on t h e  p o s i t i o n  o f  t h e  
a i r c r a f t  r e l a t i v e  t o  the  DME t ransmi t te r .  T h i s  s ign  reverses when the  

q u a n t i t y  under t h e  r a d i c a l  passes through zero. Logic i n  t h e  guidance 

computer i s  used t o  se t  and change t h i s  s i g n  au tomat ica l l y .  

s imulat ion,  the p o s i t i o n  coord inates of t h e  a i r c r a f t  CG (Xm, ym, Zm) a r e  
computed t o  account f o r  t h e  o f f s e t  o f  the  a i r c r a f t  MLS antenna from the  CG. 

I n  the  

FIISSED APPROACH GEOMETRY 

F o r  missed approaches, t he  p o s i t i o n  coord inates are  computed from t h e  azimuth 
angle, e l e v a t i o n  angle, and DME range when t h e  a i r c r a f t  i s  i n  t h e  f r o n t  
azimuth sector. 
sw i tch ing  t o  t h e  departure guidance equat ions occurs. 

missed 

As the  a i r c r a f t  passes t o  the  back azimuth coverage, 

approach geometry from which the  f o l l o w i n g  equations have been der ived: 
F igu re  2 shows t h e  

tan  eEL 

The distance, R D p p  i s  obtained i n  bo th  p r e c i s i o n  departures and missed 

approaches from t h e  same t ransmi t te r ,  which i.s c o l l o c a t e d  w i t h  the  f r o n t  
azimuth t ransmi t te r .  The above equations a re  Val i d  f o r  the e l e v a t i o n  antenna 
loca ted  on the runway c e n t e r l i n e  as shown i n  F igure  2.  Ac tua l l y ,  t h i s  

antenna w i l l  be d isp laced l a t e r a l l y ,  which w i l l  r e s u l t  i n  somewhat more 
complicated equations. 
performance i s  s l i g h t  as compared t o  the r e s u l t s  obtained i n  t h i s  study. 

The e f f e c t  o f  such a geometry on t r a c k i n g  

6 



PRECISION DEPARTURE PATH DESCRIPTION 

A s p e c i f i c  a i r p o r t  and departure procedure was chosen t o  i l l u s t r a t e  t h e  

perfe-ance o f  a p r e c i s i o n  departure using t h e  NLS. 
was se lected and a noise abatement takeof f  procedure was employed. 

procedure requ i res  a sharp r i g h t  t u r n  j u s t  a f t e r  t a k e o f f  t o  avoid t e r r a i n .  
Then, a p a t h  i s  f lown over a sparsely populated area u n t i l  over-water f l i g h t  

i s  a t ta ined.  

San Francisco runway 28R 
Th is  

DEPARTURE PATHS 

Waypoints were def ined t h a t  r e s u l t e d  i n  l a t e r a l  paths s u i t a b l e  f o r  #LS 

implementation. 
departure. 

p r e c i s i o n  departure. 

Three s t r a i g h t  legs  and two tu rns  were used i n  t h e  

F igure  3 dep ic ts  a t y p i c a l  ground t r a c k  f o r  t h i s  s imulated MLS 

MLS v e r t i c a l  guidance was no t  used f o r  t h i s  departure. Instead, two e x i s t i n g  
MD-80 a u t o p i l o t  modes, t a k e o f f  and speed se lect ,  were employed. 

t h e  p i t c h  a u t o p i l o t  was s e t  i n  take-o f f  mode and the gear was down. 
f e e t  a l t i t u d e ,  t h e  gear was ret racted.  

a u t o p i l o t  was switched t o  speed s e l e c t  mode where a t a r g e t  speed o f  250 KT was 
input .  A t  165 KT, t h e  f l a p s  were retracted, and a t  197 KT t h e  s l a t s  were 

r e t r a c t e d .  

A t  takeof f ,  

A t  100 
A f t e r  t h e  f i r s t  turn,  the  p i t c h  

A summary o f  events f o r  t h i s  departure are given i n  Table 1. 

When f lown v i s u a l l y ,  t h i s  departure requi res a r i g h t  t u r n  w i t h  a r e l a t i v e l y  
l a r g e  bank angle t o  be made as soon as feas ib le .  

mountainous t e r r a i n  near t h e  a i r p o r t .  
paths are prescr ibed c i r c u l a r  arcs defined by the  ground speed and t u r n  

radius.  
v a r i a t i o n s  dur ing  the turns.  

angles of 15, 20, 25, and 30 degrees. Waypoint data f o r  these f o u r  cases are 
shown i n  Table 2. Resul ts f o r  these cases, under var ious wind condi t ions,  are 

discussed i n  d e t a i l  i n  l a t e r  sections. 

Th is  t u r n  i s  t o  avoid some 

When f lown us ing t h e  MLS, t h e  departure 

Four paths were s imulated t o  compare t r a c k i n g  accuracy and speed 
These paths r e s u l t e d  i n  nominal, no-wind bank 
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LATERAL GUIDANCE CONCEPTS 

La te ra l  guidance f o r  p r e c i s i o n  departure, as w e l l  as f o r  back azimuth coverage 

du r ing  missed approaches, i s  i d e n t i c a l  t o  t h e  approach guidance as documented 
i n  Reference 2 (p. 6-12). 
t h a t  i s  i n p u t  t o  t h e  r o l l  a u t o p i l o t  i n n e r  loop. Dur ing  tu rns ,  t h i s  s igna l  i s  

based on the nominal bank angle ( f o r  a g i ven  t u r n  r a d i u s  and ground speed) and 

on e r r o r  s igna ls  t h a t  a re  f u n c t i o n s  o f  l a t e r a l  t r a c k i n g  e r r o r  and e r r o r  ra te .  
Dur ing  s t r a i g h t  l e g  segments, t h e  s t e e r i n g  s igna l  i s  on l y  a f u n c t i o n  o f  
l a t e r a l  t r a c k i n g  e r r o r  and e r r o r  ra te .  

The concept used i s  t o  generate a s tee r ing  s igna l  

The on ly  d i f f e r e n c e  i n  departure opera t ion  l i e s  i n  t h e  way i n  which t h e  

waypoints are def ined. 
and WP1 i s  a r b i t r a r i l y  se lec ted  along t h e  des i red  r a d i a l .  I n  t h i s  way, t he  

r o l l  s tee r ing  commands can be computed i n  t h e  same manner as f o r  approaches 
simulated i n  p rev ious  s tud ies  (Reference 2). 

F o r  example, F igu re  3 shows WP6 t o  be a t  t h e  o r i g i n ,  
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MISSED APPROACH PATH DESCRIPTION 

The same runway a t  San Francisco used f o r  departures was a l s o  used f o r  t h e  
missed approach cases. 

types used MLS l a t e r a l  guidance throughout, swi tch ing t o  back azimuth when 

appropr ia te.  V e r t i c a l  MLS guidance was used p r i o r  t o  go around i n i t i a t i o n ,  
then MD-80 p i t c h  a u t o p i l o t  modes were selected as appropr iate.  

Two types of missed approaches were simulated. Both 

APPROACH PATH 

I n  the  f i r s t  se t  o f  cases, the  a i r c r a f t  was descending under l a t e r a l  and 

v e r t i c a l  MLS guidance. A t  a s p e c i f i e d  a l t i t u d e ,  a missed approach was 

i n i t i a t e d .  A t  t h a t  time, the  p i t c h  a u t o p i l o t  was set  i n  go-around mode 

whereas 1 a t e r a l  MLS guidance was maintained. 

l a t e r a l  t r a c k i n g  accuracy dur ing  go around i n  the presence o f  noise and 

winds. F i g u r e  4 i s  a sketch o f  t h e  v e r t i c a l  p r o f i l e  f o r  t h i s  se t  o f  cases. 

This  procedure a1 1 owed study o f  

I n  t h e  second s e t  o f  cases, p i t c h  up t o  l e v e l  f l i g h t  was i n i t i a t e d  a t  a 

s p e c i f i e d  a l t i t u d e .  L a t e r a l  and v e r t i c a l  guidance dur ing  t h i s  t ime was under 
MLS c o n t r o l .  

i n i t i a t e d  i n  t h e  p i t c h  a u t o p i l o t  (F igure 5). 
f r o n t  azimuth coord inates (Equations (1) - ( 3 )  1, was maintained u n t i l  passing 

i n t o  t h e  back azimuth sector. A t  t h a t  time, l a t e r a l  guidance was switched and 
t h e  back azimuth coord inates were used (Equations ( 4 )  - (6)). 

A t  a s p e c i f i e d  d is tance f r o m  the runway, go-around mode was 
La tera l  guidance, us ing t h e  
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LATERAL AND VERTICAL GUIDANCE CONCEPTS 

No changes t o  the  v e r t i c a l  guidance law (as descr ibed i n  Reference 2, p.  13, 
14) were necessary f o r  use i n  t h e  missed approach s tud ies.  

guidance law a lso was usable w i thou t  change. Add i t i ona l  sw i tch ing  l o g i c  was 
requ i red  t o  change f r o m  f r o n t  azimuth coord inates t o  back azimuth 
coordinates.  Th is  swi tch ing was programmed t o  occur a t  the  y - a x i s  crossover, 
when t h e  X coordinate changed sign. 
f r o n t  and back azimuth coverage, so sw i tch ing  cou ld  occur anywhere i n  t h i s  

region. Fo r  the present  study, sw i tch ing  was chosen t o  be a t  t he  y a x i s  f o r  

con ve n i  e nc e. 

The l a t e r a l  

It i s  noted t h a t  t he  runway i s  i n  bo th  



SI MULAT I ON RESULTS 

SIMULATION DESCRIPTION 

The basic simulation used for these studies i s  the same MD-80 program as used 
i n  previous studies (Reference 1 and 2) w i t h  only minor modifications for the 
missed approach cases. The existing MD-80 program was developed f o r  landing  
only, and d i d  not  have the capabi l i ty  for takeoff when the aircraft was on the 
ground. Consequently, f o r  precision departures, the aircraft was started a t  a 
low altitude and takeoff continued from t h a t  poin t .  

Lateral and vertical steering signals were generated and i n p u t  t o  the 
appropriate autopilot inner loops. 
i n  the simulation. 
were external t o  the autopilot. 

No changes t o  these inner loops were made 
All required calculations, and the waypoint da ta  storage, 

Wind and Turbulence Models 

Winds (simulated as a function of altitude) and turbulence were used in the 
simulation. 
landing studies Appendix B contains the details of these models, (Reference 
2). 

These models are the same as those used i n  the previous MLS 

MLS Noise Models 

Noise levels used i n  the departure and missed approach simulations are based 
on the models given i n  Reference 2. 
elevation and azimuth angles, and for DME range. 
study contained this MLS noise. 

Appendix C shows these models f o r  
All cases simulated fo r  this 
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DEPARTURE CASES 

Seven departure cases have been simulated us ing  the  San Francisco a i r p o r t  

runway 28R. 
departure, the  f i r s t  t u r n  must be executed as soon as f e a s i b l e  a f t e r  takeof f  
and be t i g h t  enough t o  avo id  nearby t e r r a i n .  

d i f f e r e n t  wind c o n d i t i o n s  compare pa th  t r a c k i n g  accuracy. 
cases f o r  d i f f e r e n t  departure pa ths  under t h e  same wind environment were a l s o  
simulated. 

cases. The second tu rn ,  a f t e r  a s h o r t  s t r a i g h t  leg,  i s  n o t  c r i t i c a l  and was 
selected t o  be nominal ly 15 degrees f o r  a l l  cases. 

I n  o r d e r  t o  r e a l i z e  t h e  noise abatement b e n e f i t s  o f  t h i s  

Resu l ts  o f  f o u r  cases under 

Three a d d i t i o n a l  

Table 3 de f ines  the  bank angle and wind cond i t i ons  f o r  these seven 

Case 1 - Path 1, No Wind 

Shown i n  Figure 6 i s  t he  bank angle t ime h i s t o r y  f o r  Path 1 ( a  20 degree 

nominal bank tu rn ) .  
due t o  the  t rack ing  e r r o r  i nhe ren t  i n  t h e  a i r c r a f t  r o l l  response. 

o f  t h e  f i r s t  tu rn ,  t h e  bank angle tends t o  zero f o r  t he  s h o r t  s t r a i g h t  l eg .  
Then, the  15 degree bank t u r n  i s  executed t o  p lace  t h e  a i r c r a f t  a long the  

des i  red  rad ia l .  

Some overshoot i s  experienced i n  t h e  no-wind case and i s  
A t  the  end 

A t  t he  end o f  t h e  f i r s t  t u r n  (about 70 seconds), t he  p i t c h  a u t o p i l o t  i s  

switched t o  a speed command mode, where 250 knots i s  se t  as t h e  t a r g e t  speed. 

Flaps and s l a t s  are r e t r a c t e d  as g iven i n  t h e  schedule o f  Table 2. 

r e s u l t i n g  speed p r o f i l e  i s  shown i n  F igu re  7. 
speed v a r i e s  about 2 t o  3 knots from the  des i red  158 KT, then increases up t o  

the 250 KT t a r g e t  speed. Th is  run  was terminated a r b i t r a r i l y  a t  150 seconds, 

which was before t h e  speed had reached steady s ta te .  

The 
Dur ing  t h e  f i r s t  tu rn ,  t h e  

During t h i s  e n t i r e  t ime, MLS l a t e r a l  guidance was employed t o  keep t h e  
a i r c r a f t  on the des i red  l a t e r a l  path. F igu re  8 shows t h i s  l a t e r a l  t r a c k i n g  

e r r o r ,  bo th  f o r  t h e  t u r n s  and f o r  t h e  s t r a i g h t  legs. 
s t r a i g h t  p o r t i o n  ( a t  about 22 and 36 seconds), there  i s  an abrupt  change i n  

the  e r ro r .  
t r a c k  t o  a l i n e a r  t rack .  

A t  t he  t r a n s i t i o n  t o  t h e  

This change i s  due t o  sw i tch ing  guidance laws from a c i r c u l a r  



This  t r a c k i n g  e r r o r  can be expressed i n  terms o f  dots i n  a s i m i l a r  manner t o  

l a n d i n g  approaches. F igure  9 i s  the assumed l a t e r a l  t r a c k i n g  e r r o r  
s e n s i t i v i t y  d e f i n i t i o n .  It 
i s  d e f i n e d  as a func t ion  o f  a long-track d is tance (i.e., the  actual  curved pa th  

t h e  a i r c r a f t  i s  f l y i n g )  as opposed t o  the s t r a i g h t  extended runway c e n t e r l i n e  
as used f o r  present  ILS approaches. Figure 10 shows t h e  t r a c k i n g  e r r o r  as a 

func t ion  o f  a long-track d is tance f o r  a f u l l  scale o f  - + 2 dots. A t  t h e  end o f  
t h e  runway, 2 do ts  represents 350 feet. The s e n s i t i v i t y  var ies  l i n e a r i l y  
a long a 3 deg slope, u n t i l  a t  about 33000 fee t ,  2 dots represents 1500 feet.  

A t  d is tances g r e a t e r  than t h i s  value, the s e n s i t i v i t y  remains a t  1500 fee t .  
As can be seen from F igure  10, t r a c k i n g  f o r  t h i s  case i s  w i t h i n  + 1/4 d o t  

d u r i n g  t h e  e n t i  r e  departure. 

The envelope shown def ines the  - + 2 do t  boundary. 

- 

Shown i n  F i g u r e  11 i s  t h e  r e s u l t i n g  ground t r a c k  f o r  case 1. Back azimuth 
coverage i s  l i m i t e d  t o  - + 40" from antenna boresight.  

t h e  back azimuth antenna w i l l  have t o  be skewed approximately 20" from the  
runway c e n t e r l i n e  t o  p rov ide  coverage f o r  t h e  second t u r n  and s t r a i g h t  leg. 

For  t h e  28R departure, 

Case 2 - Path 1 w i t h  L e f t  Cross wind 

I n  t h i s  case, a t a i l  and cross wind were added as external  d isturbances (Table 

3). 
t o  t h e  no-wind case o f  F igure  6, one sees t h e  increased bank angle response 

due t o  t h e  wind components. 

angle v a r i e s  accordingly.  The second turn i s  now a t  a bank angle o f  about 18" 

i n s t e a d  o f  15". 
F i g u r e  13. A 6 knot  decrease i n  speed occurs near the end o f  the  f i r s t  turn,  

then t h e  speed increases due t o  t h e  p i t c h  a u t o p i l o t  swi tch ing t o  a speed ho ld  
mode. L a t e r a l  t r a c k i n g  e r r o r s  a re  l a r g e r  than the  no-wind case. F igure  14 

shows peak e r r o r s  t o  be w i t h i n  - + 200 f e e t  as  compared t o  t h e  somewhat smal ler  
peaks f o r  t h e  no-wind case. This  e r r o r  tends t o  zero as the  second s t r a i g h t  
l e g  i s  be ing  t racked ( a t  d is tances of 35000 f e e t  and grea ter ) .  

t r a c k i n g  degradat ion can a l s o  be seen by comparing the e r r o r  i n  dots o f  F igure  
15 w i t h  F i g u r e  10. Th is  p a r t i c u l a r  wind c o n d i t i o n  produces t r a c k i n g  e r r o r s  on 

t h e  order  o f  - + 1/2 dot. 

The r e s u l t i n g  bank angle i s  g iven i n  F igure  12. Comparing t h i s  response 

As t h e  a i r c r a f t  t u r n s  i n  t h i s  wind, the  bank 

A l a r g e r  speed v a r i a t i o n  occurs f o r  t h i s  case as shown i n  

L a t e r a l  
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Case 3 - Path 1 with Wind and Turbulence 

Turbulence, as defined i n  Appendix B ,  was added to  the steady portion of the 
t a i l  and cross winds fo r  t h i s  path. Comparing the bank angle, velocity, and 

tracking error, Figures 16-19 (Case 31, w i t h  Figures 12-15 (Case 2 )  shows only 
a s l ight  increase in act ivi ty  due t o  the turbulence. 
analysis was not performed due t o  time constraints,  this i s  the only case i n  
which turbulence was simulated. I t  was included to  give a general idea of 
response i n  a t u r b u l  ent  envi ronment 

Since a s t a t i s t i ca l  

Case 4 - P a t h  1 w i t h  R i g h t  Crosswind. 

In  t h i s  case, the direction of the cross wind i s  reversed from the wind i n  the 
previous cases, b u t  has the same t a i l  wind. 
resul ts  i n  a smaller bank angle d u r i n g  the second part of the f i rs t  t u r n  
(Figure 20) .  

This opposite direction wind 

The second bank angle i s  also smaller d u r i n g  the f i r s t  p a r t  of the t u r n .  
Speed variation d u r i n g  the f i r s t  t u r n  (Figure 21) i s  somewhat l e s s  than Case 2 
(Figure 13). 

Tracking errors (Figures 22 and 23) are on the same order of magnitude as Case 
2 w i t h  the l e f t  crosswind (Figure 14  and  15). 
of the f i r s t  t u r n  f o r  the l e f t  crosswind i s  about 150 feet  to  the l e f t  of 
desired track. 
considerations. A right cross wind  causes a 100 foot error  t o  the r i g h t  of 
desired track a t  the end of the f i r s t  t u r n .  
simulated as being the more c r i t i c a l  direction i n  the remaining cases where 
other paths are flown. 

However, the e r ro r  a t  the end 

T h i s  i s  a more c r i t i c a l  case from te r ra in  avoidance 

The l e f t  cross wind  will be 
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Cases 5, 6, and 7 - Paths 2, 3 and 4 

These th ree  cases are inc luded so a comparison o f  performance can be made when 

o t h e r  bank angles are employed f o r  t h e  f i r s t  turn.  The bank angle f o r  Path 2 

( a  15 degree nominal bank) i n  F igure 24A appears reasonable i n  t h e  wind 
environment, b u t  Paths 3 and 4 (25 and 30 degree nominal banks), F igures  24 B 
and C, show bank angle responses t h a t  are a r e s u l t  o f  exceeding e x i s t i n g  
command 1 i m i t s  i n  t h e  a u t o p i l o t .  
l a r g e  t r a c k i n g  e r r o r s  f o r  these two cases (F igure 25 B and C). 
v i s u a l  departure a t  28 R are f lown a t  these bank angles, use o f  t h e  a u t o p i l o t  

would cause excessive er ro rs .  

angles cou ld  be implemented w i t h o u t  changing the  a u t o p i l o t  i n n e r  loop l i m i t s  
and p o s s i b l y  some gains. 

t h e  present  study. It i s  noted t h a t  r e s u l t s  shown f o r  Path 4 d i d  n o t  have t h e  
t a i l  o r  crosswinds present.  T h i s  wind case was simulated, b u t  the  wind l e v e l s  
were such t h a t  t h e  a u t o p i l o t  saturated due t o  i t s  i n t e r n a l  bank command 

l i m i t s .  Such a t u r n  would n o t  be poss ib le  w i t h  these assumed winds. 

study o f  ga in  and/or l i m i t  changes i n  the a u t o p i l o t  f o r  t h i s  case i s  ind icated.  

Consequently, non-1 i n e a r  operat ion causes 

Even though 

It i s  not considered l i k e l y  t h a t  these l a r g e  

No at tempt t o  make such changes was considered i n  

F u r t h e r  

A sketch o f  the  ground t r a c k s  dur ing  the f i r s t  t u r n  f o r  the  f o u r  paths i s  

shown i n  F igure  26. This  f igure,  which i s  approximately t o  scale, shows Path 

2 passing over the  mountainous t e r r a i n .  The s imu la t ion  r e s u l t s  f o r  t h i s  case 

g i v e  t h e  a l t i t u d e  near t h e  end o f  t h e  f i r s t  t u r n  t o  be 2800 fee t .  It appears 

t h a t  Path 1 would r e s u l t  i n  a departure t h a t  avoids t h e  t e r r a i n  problem w i t h  

reasonable t r a c k i n g  er ro rs .  

MISSED APPROACH CASES 

S i x  cases were simulated a t  San Francisco 28R f o r  missed approach c o n d i t i o n s  

(Table 4).  
sectors  and s ignal  swi tch ing occurred between the coverages. I n  a l l  cases, 

t h e  a i r c r a f t  was i n i t i a l l y  descending along a 3" g l ides lope.  

Guidance f o r  these cases used both f r o n t  azimuth and back azimuth 
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The f i r s t  three cases simulated a go around a t  200 f e e t  a l t i t u d e .  

time, v e r t i c a l  guidance was switched from MLS c o n t r o l  and the  p i t c h  a u t o p i l o t  

was placed i n  t h e  go around mode (see F igure  4). 
a long t h e  extended runway c e n t e r l i n e  and l a t e r a l  guidance was under MLS 

c o n t r o l  f o r  the e n t i r e  s imulated m i  ssed approach. 

A t  t h a t  

The des i red  l a t e r a l  pa th  was 

The second three cases represent  a change i n  the  approach procedure as migh t  
be d i r e c t e d  by a i r  t r a f f i c  con t ro l .  Level f l i g h t  i s  des i red  a t  an a l t i t u d e  o f  

1000 fee t ,  so a p i t c h  up i s  i n i t i a t e d  a t  t h a t  time. Th is  pa th  i s  mainta ined 

u n t i l  go around i s  d i r e c t e d  a t  a s p e c i f i e d  d is tance from th resho ld  (see F igu re  

5). MLS l a t e r a l  

guidance i s  used throughout, w i t h  sw i tch ing  t o  back azimuth coverage when the  

a i r c r a f t  crosses t h e  y axis.  

V e r t i c a l  MLS guidance i s  maintained u n t i l  go around. 

I n  a l l  cases simulated f o r  these missed approaches, the bank angle e r r o r  was 

l e s s  than 1". S i m i l a r l y ,  t h e  l a t e r a l  t r a c k i n g  e r r o r  was always l e s s  than 10 

fee t .  As a r e s u l t ,  v e r t i c a l  t r a c k i n g  i s  o f  more i n t e r e s t ,  so the f o l l o w i n g  

d iscuss ions w i l l  focus on t h e  v e r t i c a l  e r r o r s  r a t h e r  than on l a t e r a l  
performance. 

Case 8 - No Wind 

Th is  case contains no ex terna l  wind disturbances b u t  does conta in  MLS angle 

and range noise. 
a i r c r a f t  p i tches  up t o  a new a t t i t u d e  near 20" (F igure  27). 
a l t i t u d e  changes are  shown i n  F igure  28. 
were simulated f o r  an a r b i t r a r y  100 second per iod.  

Go around i s  i n i t i a t e d  a t  a t ime o f  25 seconds, and t h e  

The corresponding 
Th is  case, and subsequent cases, 

V e r t i c a l  t rack ing  e r r o r  i s  computed and used by the  MLS v e r t i c a l  guidance 
a lgo r i t hm u n t i l  go around i s  i n i t i a t e d .  A t  t h a t  time, t h i s  e r r o r  i s  no l onger  
updated o r  used s ince the  p i t c h  a u t o p i l o t  i s  now i n  go around mode. F igu re  29 

i s  a p l o t  of the  v e r t i c a l  e r r o r  as a func t ion  o f  t ime f o r  t h i s  case. 
corresponding e r r o r  r a t e  i s  shown i n  F igure  30. The d i spe rs ion  i n  these p l o t s  

i s  due t o  the MLS noise on the  angle and range s igna ls  used by the guidance 

a1 g o r i  thm. 

The 

16 



Track ing e r r o r  and e r r o r  r a t e  may be p l o t t e d  a l so  as a func t i on  o f  d is tance t o  

go. Th is  d is tance i s  measured along the x a x i s  t o  the  a i r c r a f t ,  and i s  always 
considered p o s i t i v e .  F igures  31 and 32 show t h e  v e r t i c a l  e r r o r s  as a f u n c t i o n  

o f  t h e  d is tance t o  go. Fo r  comparison purposes, t he  remaining missed approach 
cases Will show the  t r a c k i n g  e r r o r  as a func t i on  o f  t h i s  distance. 

Case 9 - T a i l  and Cross winds 

Peak t r a c k i n g  e r r o r s  f o r  t h i s  case w i t h  winds increased by about a f a c t o r  o f  2 

over  Case 8, whereas t h e  peak e r r o r  ra tes remained about the  same (F igures 33 
and 34). 

small even i n  a wind environment. 

Th i s  increase i s  no t  s i g n i f i c a n t  s ince the  t rack ing  e r r o r s  remain 

Case 10 - T a i l  and Cross Winds w i t h  Turbulence 

Add i t i on  o f  turbulence t o  t h e  steady winds increased the  peak t r a c k i n g  e r r o r s  
by another f a c t o r  o f  2, so now t h e  peak i s  near 25 f e e t  as compared t o  14 f e e t  

f o r  no turbulence and 6 f e e t  w i t h  no wind a t  a l l .  
t he  t r a c k i n g  e r r o r  i s  about 23 f e e t  (Figure 35). 

A t  go around i n i t i a t i o n ,  

Case 11 - P i t c h  Up - No Wind 

Th is  case represents  a procedure as p i c tu red  i n  F igu re  5 where p i t c h  up from a 

3" descent i s  made a t  1000 f e e t  a l t i t u d e .  Go around i s  i n i t i a t e d  a t  a 
s p e c i f i e d  distance, and the  p i t c h  a u t o p i l o t  i s  engaged a t  t h a t  time. 

r e s u l t i n g  a l t i t u d e  i s  shown i n  F igure  36. P i t c h  a t t i t u d e  i s  g iven  i n  F igu re  

37, and the  v e r t i c a l  t r a c k i n g  e r r o r  (dur ing MLS guidance) i s  shown i n  F igure  

38. A t  a d is tance t o  go o f  about 2000 feet, t r a n s i t i o n  t o  l e v e l  f l i g h t  i s  
made as marked by the  abrupt  change i n  t rack ing  e r ro r .  A f t e r  capture, the 

e r r o r  i s  w i t h i n  a few f e e t  u n t i l  t h e  MLS mode i s  terminated and go around i s  

The 

i n i t i a t e d .  



Case 12 - P i t ch  Up Wi th T a i l  and Cross Winds 

V e r t i c a l  t r a c k i n g  e r r o r  i s  somewhat increased f o r  t h i s  case, b u t  the  a l t i t u d e  
i s  nea r l y  the  same (F igure  39) i n  t h i s  s imulated wind environment as compared 

t o  t h e  no wind case shown i n  F igure  36 (Case 11). 

Case 13 - P i t ch  Up Using Barometr ic A l t i t u d e  

I n  t h i s  case, t he  MLS-computed a l t i t u d e  i s  used w h i l e  descending along t h e  3" 
g l ides lope.  A t  the  t ime of p i t c h  up, barometr ic a l t i t u d e  i s  used ins tead  of 
t he  MLS a l t i t u d e .  
t o  determine when the  t r a n s i t i o n  i s  made as w e l l  as dur ing  the  a l t i t u d e  ho ld  
per iod.  

The barometr ic a l t i t u d e  i s  used i n  both the  swi tch ing  l o g i c  

F igu re  40 i s  a p l o t  of the r e s u l t i n g  a l t i t u d e  f o r  t h i s  case. 
d i f f e r e n c e  between t h i s  t r a c e  and the  a l t i t u d e  r e s u l t i n g  when no swi tch ing  
occurred (F igure 39). 

appears swi tch ing t o  barometr ic a l t i t u d e  a t  some p o i n t  i n  t h e  approach can be 
made smoothly. 

There i s  l i t t l e  

No problems were encountered i n  t h i s  case, and i t  
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1. 

2. 

3. 

4. 

5.  

6. 

7. 

TABLE 1 

SEQUENCE OF EVENTS FOR DEPARTURE 

I n i t i a l  c l imb w i t h  p i t c h  a u t o p i l o t  i n  t a k e o f f  mode. 

Re t rac t  gear a t  100 f e e t  a l t i t u d e .  

S t a r t  r i g h t  t u r n  a t  end o f  runway t o  a 030" heading. 

A t  end o f  tu rn ,  swi tch p i t c h  a u t o p i l o t  t o  speed mode and s e l e c t  250 KT 
speed. 

Re t rac t  f l a p s  a t  165 KT, r e t r a c t  s l a t s  a t  197 KT. 

Make 15" l e f t  t u r n  t o  i n t e r c e p t  t he  r a d i a l  R-342. 

Return wings l e v e l  and main ta in  des i red course u n t i l  end o f  s imulated 

run. 

20 
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TABLE 3 

DEPARTURE CASES 

CAS E 
NUMBER 

PATH 
NUMBER 

T A I L  WIND 
( KNOTS 1 

CROSS WIND 
(KNOTS) TURBULENCE 

NONE 

NONE 

YES 

NONE 

NONE 

NONE 

NONE 

1 1 NONE NONE 

2 1 10 15 

10 15 3 

4 10 -1 5 

5 2 10 15 

15 6 

7 

3 

4 

10 

NONE NONE 
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TABLE 4 

MISSED APPROACH CASES 

CASE 1 TAIL  WIND 1 CROSS WIND i 
NUMBER I (KNOTS) I (KNOTS) I TURBULENCE I NOTES 

I I I I I 
I I 1 I GO AROUND 

8 I NONE I NONE I NONE I AT 200' ALT 
I I 
I NONE I A T  200' ALT 

1 I 
I 10 I 15 9 

I 
I AT 200' ALT 

I I I 

I I I I 
I I I I 

10 I 10 I 15  I YES 

I 11 I NOiJE I NONE I NONE I P ITCH UP 

13 I 10 I 15 
I I 

1 
I NONE 
I 
I NONE 
I 

I 
I P ITCH UP 
I 
I P I T C H  UP 
I (BAR0 ALT)  
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Figure 1. Departure Geometry 

MLS ANTENNA POSITION 

\ \ 
Figure 2. Missed Approach Geometry 

24 



W 

X 

25 



ALT 

Figure 4. Typical Vertical Path for Missed Approach (Go-Around) 
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Figure 5. Typical Vertical Path for Missed Approach (Altitude Hold - Go-Around) 
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Figure 6. Bank Angle Time History for Path 1 (Case 1) 

TIME (SECONDS) 

Figure 7. Velocity Time History for Path 1 (Case 1) 
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Figure 10. Lateral Tracking in Dots for Path 1 (Case 1) 
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Figure 11. Ground Track for Path 1 (Case 1) 
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Figure 12. Bank-Angle Time History for Path 1 (Case 2) 
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Figure 13. Velocity Time History for Path 1 (Case 2) 
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Figure 16. Bank-Angle Time History for Path 1 (Case 3) 
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Figure 17. Velocity Time History for Path 1 (Case 3) 
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Figure 18. Lateral Tracking Error for Path 1 (Case 3) 

Figure 19. Lateral Tracking Error in Dots for Path 1 (Case 3) 
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Figure 20. Bank-Angle Time History for Path 1 (Case 4) 
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Figure 21. Velocity Time History for Path 1 (Case 4) 
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Figure 248. Bank-Angle Time History for Path 3 (Case 6) 
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Figure 24C. Bank-Angle Time History for Path 4 (Case 7) 

Figure 25A. Lateral Tracking Error for Path 2 (Case 5) 
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Figure 27. Pitch-Angle Time History (Case 8) 
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Figure 28. Altitude Time History (Case 8) 
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Figure 29. Vertical Tracking Error Time History (Case 8) 
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Figure 30. Vertical Tracking Error Rate (Case 8) 
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Figure 34. Vertical Tracking Error Rate as a Function of Distance to Go (Case 9) 
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Figure 35. Vertical Tracking Error as a Function of Distance to Go (Case 10) 

Figure 36. Altitude Time History (Case 11) 
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Figure 37. Pitch-Angle Time History (Case 11) 
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Figure 39. Altitude Time History (Case 12) 
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Figure 40. Altitude Time History (Case 13) 
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APPENDIX A - D E R I V A T I O N  OF BACK AZIMUTH COORDINATES 

, 

From the geometry of Figure 1,  one may write the following expression for  the 
tangent of the azimuth angle, 8BAZ: 

An expression containing the DME range i s  obtained from the t r iangle  
containing RDME and z;: 

2 ' 2  = yC2 + (xo - x;) 2 
R~~~ - 'rn 
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Solve both ( A l )  and (A21 f o r  Y A 2  and equate t h e  r e s u l t s :  

F r o m  (AI : y ~ 2  = [ z~ 2 + ( x ~  - xB)’] tan  2 eBAZ 

F r o m  (A2): yA2 = R2 DME - ‘m l 2  - (XD - x;)2 

Hence 

l 2  - ( XD - x$)Z - 2 
- R~~~ - ‘m p&~+ (xh - xB)2 ] tan  2 eBAZ 

Expansion o f  (A5) w i l l  y i e l d  a quadrat ic  i n  X A .  

t r igonometr ic  i d e n t i t y  w i l l  s i m p l i f y  the r e s u l t :  

Use o f  t h e  f o l l o w i n g  

Equation (A51 reduces t o  t h e  form 

x i 2  + bx; + c = 0 

where b & c are def ined by: 
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The above equat ions may be r e w r i t t e n  i n  terms o f  on ly  one t r i g  func t i on :  

The s o l u t i o n  t o  ( A 6 1  i s  

x '  - m 

and the  expression f o r  YA i s  obta ined from (A3) :  

Yrn ' = + (.e - x B ) 2 y  tan %AZ 

The va lue f o r  z i  must be suppl ied from a source ex terna l  t o  the  MLS back 

azimuth equipment. 

I n  implementing ( A 9 1  f o r  $, , one must determine the proper  s ign  on the  
rad i ca l .  
a i r c r a f t  on approach ( i n  f r o n t  azimuth coverage). 
q u a n t i t y  under t h e  r a d i c a l  i n  ( A 9 )  passes through zero. Logic i n  the  computer 

au tomat i ca l l y  se lec ts  the c o r r e c t  sign. 

study o n l y  contended w i t h  one swi tch o f  sign. However, i n  general, a d d i t i o n a l  

s ign  changes can occur depending on the a i r c r a f t  p o s i t i o n  r e l a t i v e  t o  the  back 

azimuth and DME t r ansmi t te rs .  

account f o r  the  most general case. 

Fo r  t h e  geometry assumed here, t he  s ign  w i l l  be negat ive f o r  an 

The s ign  switches when the  

It should be noted t h a t  the  present  

More soph is t i ca ted  l o g i c  would be requ i red  t o  
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APPENDIX B - WIND AND TURBULENCE MODELS 

0 

Inc luded i n  t h e  s imu la t i on  a re  op t ions  f o r  winds, whose magnitudes are  a 

func t i on  of a l t i t u d e ,  and f o r  turbulence as a d d i t i v e  terms t o  the  winds. 

f a c t o r  t h a t  i s  a f u n c t i o n  o f  a l t i t u d e  i s  denoted W and i s  de f ined by 
The 

- 
1 + ss 

W = 0.43 l o g  h + 0.35 

where h i s  the  a l t i t u d e  i n  feet .  

wind magnitudes i n  knots )  when t h e  a i r p l a n e  i s  on t h e  ground a re  used t o  
compute the  th ree  wind components a t  a l t i t u d e :  

I n p u t  values f o r  S,, Sy, and S, ( t h e  

w, = w s, 

wy = w sy 

iJ, = w s, 

The t a i l  wind component S, was s imulated as 10 knots, and t h e  c ross  wind 

S Value f o r  S, was assumed 
Y 

zero. 
was +15 o r  -15 kno ts  depending on the  case. 

Turbulence i s  a random v a r i a b l e  t h a t  may be added t o  t h e  above winds. 

no ise  i s  passed through f i r s t  o rde r  f i l t e r s  whose parameters a re  f u n c t i o n s  o f  

t h e  wind components as shown i n  t h e  f o l l o w i n g  f i g u r e :  

White 

OWN = 1.0 

FILTER PARAMETERS 

LATER A L LONG I T U  DI N A L  V ERTl CA L 

dSEC) 6O0/VTAs 600/V,,, 
30/vTAS 

o ( K T )  0 . 1 5 W x  0.1 5 wy 1.5 
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Outputs o f  the  f i l t e r s  a re  denoted U 
t o t a l  simulated winds : 

V , W and are used t o  form the  9’ 9 9 

9 WTX = w, + u 

WTY = w + vg 

WTZ = w, + wg 

Y 
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APPENDIX C - MLS ANGLE AND RANGE NOISE 

Angle and range s igna ls  as ou tpu t  from t h e  MLS r e c e i v e r  w i l l  con ta in  noise. 

Fo r  s imu la t ion  purposes, a d d i t i v e  no ise has been inc luded i n  the  azimuth, 

e leva t ion ,  and DME range va r iab les  eAZ, BEL, 81 RDbiE respec t ive ly .  

var iab les  were mod i f ied  t o  i nc lude  t h i s  a d d i t i v e  noise:  

The 

- 
'EL - 'EL(TRUE) + ~EL(NOISE) 

For  purposes o f  s imulat ion,  wh i te  no ise  was shaped by f i l t e r s  t o  ob ta in  the 

angle and range noise components. The f i g u r e  below shows how these noise 

components were ca l cu la ted  ( A l l  cases i n  t h i s  study used these components) : 

I I 
GAIN SHAPING FILTER RECEIVER 

FILTER 

DME 

wp = 0.001 RADISEC wQ = 0.001 RADISEC 

w,, = 0.16RADlSEC wh = 0.34RADlSEC wh = 0.245 RADISEC 

- AZIMUTH ELEVATION 

wQ = 0,001 RADISEC 

a = 154.7 
WN 

u = 53.4 FT 
REC 

aWN = 0.064 aWN = 0.024 

aREC = 0.02DEG aREC = 0.0097 DEG 
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