NASA CR-175025

Under Distribution Limitation Until December 31, 1987

NASA

ANALYSIS AND TEST EVALUATION OF THE DYNAMIC STABILITY OF THREE ADVANCED TURBOPROP MODELS AT ZERO FORWARD SPEED

By Arthur F. Smith

HAMILTON STANDARD DIVISION UNITED TECHNOLOGIES CORPORATION WINDSOR LOCKS, CONNECTICUT 06096

December, 1985

National Aeronautics and Space Administration Lewis Research Center Cleveland, Ohio 44135 Contract NAS3-22755 .

•

Ē

1

_

1. Report No. NASA CR-175025	2. Government Access	ion No.	3. Recipient's Catalog	No.
4. Title and Subtitle Analysis and Test Evaluation of the Dynamic Stability of Three Advanced Turboprop Models at Zero Forward Speed			5. Report Date December, 198	35
			6. Performing Organiz	ation Code
7. Author(s)			8. Performing Organiza	ation Report No
Arthur F. Smith*			HSER 11054	
9. Performing Organization Name and Address Hamilton Standard Division United Technologies Corporation Windsor Locks, Conn. 06096			11, Contract or Grant No. NAS 3-22755	
12. Sponsoring Agency Name and Address				
National Aeronautics & Space Administration Washington, D.C. 20546			 Sponsoring Agency 	Code
15. Supplementary Notes				
Final Report, Project Technical Monitor, O. Mehmed, NASA Lewis Research Center, Cleveland, Ohio 44135				
*Now with: Hirock Corporation, 1 Main Road, Granville, MA 01034				
Results of static stability wind tunnel tests of three 62.2 cm (24.5 in) diameter models of the Prop-Fan are presented. Measurements of blade stresses were made with the Prop-Fans mounted on an isolated nacelle in an open 5.5 meter (18 foot) wind tunnel test section with no tunnel flow. The tests were conducted in the United Technology Research Center Large Subsonic Wind Tunnel. Stall flutter was determined by regions of high stress, which were compared with predictions of boundaries of zero total viscous damping. The structural analysis used beam methods for the model with straight blades and finite element methods for the models with swept blades. Increasing blade sweep tends to suppress stall flutter. Comparisions with similar test data acquired at NASA/Lewis are good. Correlations between measured and predicted critical speeds for all the models are good. The trend of increased stability with increased blade sweep is well predicted. Calculated flutter boundaries generally coincide with tested boundaries. Stall flutter is predicted to occur in the third (torsion) mode. The straight blade test shows third mode response, while the swept blades respond in other modes.				
17. Key Words (Suggested by Author(s)) Advanced Turboprop Propellers Prop-Fan Energy Efficient Blade Stall Stall Flutter Tests		18. Distribution Statement Unit1 December 31, 1987		
19. Security Classif. (of this report) Unclassified	20. Security Classif. (c Unclassified	of this page)	21. No. of Pages 11.4	22. Price*

NASA-C-168 (Rev 10-75)

.

.

.

.

, . -•

-

=

FOREWORD

All of the testing reported herein was performed at the United Technologies Research Center facilities in East Hartford, Connecticut, under the direction of personnel from Hamilton Standard, a Division of United Technologies Corporation. The assistance of UTRC personnel in the performance of this testing is gratefully acknowledged. This work was accomplished under contract NAS3-22755 for the NASA-Lewis Research Center in Cleveland, Ohio. Mr. Oral Mehmed of the NASA-Lewis Research Center was the Project Technical Monitor for this contract.

The data reduction was performed by Mr. Donald J. Marshall, and the analysis and reporting was conducted by Mr. Arthur F. Smith. Mr. Bennett M. Brooks was the Hamilton Standard Project Manager.

1

PRECEDING PAGE BLANK NOT FILMED

-----\$.

TABLE OF CONTENTS

_ ____

	ABSTRACT	i
	FOREWORD	111
	TABLE OF CONTENTS	v
	SUMMARY	vii
	SYMBOLS	iх
1.0	INTRODUCTION	1
2.0	DESCRIPTION OF EXPERIMENTAL PROGRAM	3
	2.1 Model Description	- 3 4 5 5 6 7 7
3.0	ANALYTICAL TECHNIQUES	9
	3.1 Method Description	9 10
4.0	TEST DATA EVALUATION AND COMPARISON WITH CALCULATIONS	11
	 4.1 Response Frequencies 4.2 Total Stress Results 4.3 Spectral Analyses 4.4 Modal Response for the SR-3 4.5 Comparison with NASA-Lewis Tests 	11 11 14 16 17
5.0	CONCLUSIONS	19
6.0	RECOMMENDATIONS	21
7.0	REFERENCES	23
	TABLES	25
	FIGURES	30
	APPENDIX A - TOTAL VIBRATORY STRESS PLOTS	67
	APPENDIX B - SR-3 STRESS PEAK FREQUENCY TABULATION	93
	APPENDIX C - SR-3 CAMPBELL DIAGRAMS	105
	·	

.

. . . ÷

SUMMARY

Static stall flutter tests were conducted in an unattached open 5.5 meter (18 foot) test section of the UTRC wind tunnel on three Prop-Fan models. These models are designated the SR-2, SR-3 and SR-5 with the blades characterized by increasing sweep, from the unswept (straight) SR-2 blade to the highly swept SR-5 blade. The tests were conducted at zero flight speed, over a large range of blade angles and rotational speeds (RPM), including all areas of deep stall. Blade vibratory stress measurements were recorded for all operating conditions. Extensive analysis of these data was performed.

Perhaps the most significant test result seen is that increased blade sweep is beneficial in suppressing the high stress which is indicative of stall flutter. The unswept SR-2 model is the most susceptible to stall, responding with the highest stress levels. The moderately swept SR-3 and the highly swept SR-5 models remained stable at increasingly higher blade angles and RPM's than the SR-2, and also responded with lower stresses. As expected, all three models encountered high stressing at the highest blade angles and rotational speeds. It is believed that these were forced excitation responses due to vortex shedding, or buffeting.

The test data show that the strain gages were properly located to allow the various blade vibratory modes to be distinguished. Data analysis indicates that stall flutter responses occur in the third mode (torsion) for the SR-2 model and in the second mode for the SR-3 and SR-5.

Vibratory blade stresses measured during a similar independent test conducted in the NASA/Lewis lOxlO wind tunnel show very good agreement with the UTRC test data.

Stall flutter calculations were made using a recently developed flutter analysis method that can determine the stability of thin, highly swept blades, such as those used on Prop-Fans. The onset of stall flutter is analytically determined to be at operating conditions for which blade damping goes to zero. Negative damping indicates an unstable condition.

Flutter predictions for the three Prop-Fan models were made and compared to test data. Flutter boundaries were determined from the test data, based on the occurrence of steeply rising stresses with increasing blade angle or rotor RPM, since damping was not measured. The calculations show negative damping occurring at generally the same operating conditions for which high stresses were encountered during test. Very good agreement was seen for the SR-2 and SR-3 models, with less agreement for the SR-5 model which did not give strong flutter indications during test. However, the tested trend showing stability to increase with blade sweep was well predicted. The theory predicts that stall flutter will occur in the third mode for all three models. This agrees with the SR-2 test data, but not with SR-3 and SR-5 measurements. ·

AF	Blade Activity Factor = $\frac{100,000}{16} = \frac{1.0}{\int_{-D}^{D} x^3 dx}$ 0.2
b	Blade Section Chord Width, m
C1	Blade Section Design Lift Coefficient
СР	Power Coefficient = SHP/p n²D ⁵
D	Rotor Diameter, m
N	Rotor Speed, RPM
n	Rotor Speed, revolutions/sec
Q	Rotor Torque, N-m
SHP	Shaft Horsepower
х	Non-Dimensional Blade Radius
BREF.	Reference Blade Angle, deg

B.75 Blade Angle at 3/4 Radius, deg

ρ Air Density, kg/m³

SI units of measurement used throughout unless specified otherwise.

i i haka kalmakan

. ·

1.0 INTRODUCTION

The occurrence of fuel shortages, increased fuel cost and the threat of future worsening conditions for air transportation has caused NASA to sponsor studies of new, more efficient, aircraft and propulsion systems. One of the promising concepts established by these studies is the advanced high speed turboprop, or Prop-Fan. This propulsion system differs from existing turboprops. The Prop-Fan has greater solidity than a turboprop, achieved by more blades of larger chord. The turboprop has straight blades with relatively thick airfoil sections; the Prop-Fan has swept back blades with thin airfoil sections to enhance performance and reduce noise. The turboprop cruises at no more than 0.65 Mach number; the Prop-Fan is designed to cruise at 0.7 to 0.8 Mach number. The diameter of the Prop-Fan is about 40 to 50% smaller than that of the turboprop. For maximum performance the Prop-Fan makes use of advanced core engines of the kind being used in modern turbofan engines. Performance is also enhanced by use of a spinner and nacelle aerodynamically contoured to reduce compressibility losses by retarding the high velocity flow through the root sections of the Prop-Fan blades.

Utilizing predicted and measured aerodynamic performance data, weight estimates, and noise projections, several Government sponsored studies by both engine and airframe manufacturers have concluded that a fuel savings of approximately 20 to 40% depending on operating Mach number should be achieved by a Prop-Fan aircraft, as compared with a high bypass ratio turbofan aircraft. With these encouraging results, a research technology effort has been instituted to establish the design criteria for this new propulsion system.

A major objective in the development of Prop-Fan configurations is to insure the structural integrity of the rotor. Since the Prop-Fan is such a significant departure from conventional propellers, with its highly swept, thin blades, the structural demands are substantial. The high speed operation of highly swept blades imparts large forces to the limited material inherent to the thin airfoil sections needed for efficient performance. It is imperative that the rotor be able to absorb the aerodynamic loads at all operating conditions, as well as the centrifugal loads associated with its unique shape and construction. The steady-state dynamic response of the blades must be low and flutter instabilities must be avoided, for safe operation.

As part of the continuing studies of Prop-Fan structural stability being conducted by Hamilton Standard, under contract to NASA-Lewis Research Center, static stall flutter tests were conducted on the SR-2 8-bladed, SR-3 8-bladed, and SR-5 10-bladed model Prop-Fan configurations. These tests were conducted during September and October, 1981 at the United Technologies Research Center.

This report summarizes the results of this static stability investigation. Included are trends of the measured blade stress test data with operating conditions for the three models. Blade vibratory stress data were analyzed for the peak stress amplitudes of the total signal as well as for the frequencies and amplitudes of the spectral components. In addition, stall flutter stability boundaries were predicted using a theoretically based calculation procedure for comparison to test results. The comparisons were used to evaluate the accuracy of the prediction methods and to recommend improvements to increase their effectiveness as Prop-Fan design tools. .

-

·

2.0 DESCRIPTION OF EXPERIMENTAL PROGRAM

2.1 Model Description

Three Prop-Fan models were installed on an isolated nacelle in the United Technologies Research Center wind tunnel and were tested to determine the dynamic stability in stall (see Ref. 1). The models were designated SR-2, SR-3 and SR-5 and are shown installed in Figures 1 through 3, respectively. The blades are made with a solid metal construction, and the planforms are characterized by increasing sweep, from the straight bladed SR-2 model Prop-Fan to the highly swept SR-5 model Prop-Fan. Figure 4 is a schematic showing these planforms along with strain gage locations which will be discussed later.

The SR-2 is an eight-bladed model constructed of steel. The SR-3 is an eight-bladed model and the SR-5 is a ten-bladed model, both of which were constructed of titanium. Table I shows some of the design parameters for these configurations. All of these configurations are derived from full scale designs that are intended to operate at a rotational tip speed of 800 ft./sec. and at 0.8 Mach number flight speed. Figure 5 shows the variations of many of the geometric parameters of each design.

2.2 Test Models

Each of the three test models comprised an approximate 1/8 scale, variable pitch (ground adjustable), 62 cm (24.5 in.) diameter Prop-Fan configuration. Each model consisted of a unique hub, blades, and spinner as well as a common nacelle afterbody. The blades, hub, and spinner were designed and fabricated by Hamilton Standard. The nacelle afterbody was fabricated by UTRC per Hamilton Standard design. Each model was designed for counterclockwise rotation (viewing upstream).

The blade roots were equipped with a gear-sector that engaged a common ring gear in the hub, which assured blade pitch angle synchronization and simplified blade angle changes. The gear-section mechanism permits an infinite adjustment in blade angle over approximately a 90 degree range. However, a locking pin, which is inserted in the ring gear and indexing plate holes, results in incremental settings of 1 degree. The maximum blade pitch angle settings for all three models was limited to 80 degrees. The minimum setting varied for each of the three models and was limited by mechanical interference at the blade roots to -14.3 degrees for the SR-2, -8 degrees for the SR-3, and +11 degrees for the SR-5 model. Blade pitch angle was measured by placing the particular blade in a horizontal position and employing an inclinometer fixture on the face side of the blade at 0.78 radius, known as the reference station. Blade pitch angle is defined as the acute angle between the blade chord and the plane of rotation. Prior to installation, each model rotor was statically balanced on knife edges, and material was removed from the heavy side of the hub by drilling holes to provide a static balance.

2.3 Wind Tunnel Facility

The United Technologies Research Center (UTRC) Large Subsonic Wind Tunnel (LWST) shown in Figure 6 is a single-return, closed-throat facility with interchangeable 5.5 and 2.4 meter (18 and 8-ft.) octagonal test sections. Maximum tunnel velocity is approximately 90 m/s (200 MPH) in the 5.5 m (18-ft.) test section and near sonic Mach numbers can be obtained in the 2.4 m (8-ft.) test section.

For the subject static test program, the tunnel circuit was arranged (Figure 7) to reduce tunnel wall effects and to minimize recirculating flow through the plane of the propeller. This was accomplished by locating the 5.5 m (18-ft.) diffuser in its normally stowed position, thus permitting unobstructed airflow to enter the downstream end of the test section. Flow recirculation through the tunnel circuit was minimized by blocking the open circuit which normally mates to the diffuser and by exhausting the propeller airflow through the air exchanger valves which were set in the 1 m (3-ft.) open position.

The LSWT has available both static and dynamic data acquisition and recording systems. This test program used the static system called Online Computer Controlled Acquisition Recording (ONCOAR). Its minicomputer initialized and controlled that data acquisition equipment, acquired data, displayed and recorded the acquired data, and transmitted the data via a Multi-Serial Transmission (MST) line to another high speed digital minicomputer system for online processing. The reduced data were then displayed in tabular form on a computer terminal or in graphical form on a cathode ray tube. ONCOAR is capable of acquiring analog data on up to 25 different channels, using up to eight scanivalve or temperature scanner solenoids. In addition, the system was set up to accept input from up to 14 digital channels. This list includes six channels for the main balance, one each for model pitch and yaw attitudes, barometric pressure, test section pressure differential, tunnel stagnation temperature, two channels for Events Per Unit Time (EPUT) signals and one for a precision pressure transducer/regulator. ONCOAR is capable of recording and storing up to 1200 pieces of analog or digital data in any combination within the above limits.

In this test, ONCOAR recorded a total of 219 pieces of data per point on nine analog channels and four digital channels. Approximately 30 seconds were required to acquire the data, and an additional 10-15 seconds were needed (depending on computer workload) to transmit, reduce, and display the on-line data for a total of approximately 40-45 seconds per data point. The raw data, which had been recorded on floppy disc by ONCOAR, were transferred to a nine-track magnetic tape in large computer compatible format for further processing off-line. This off-line processing can be used for correcting data as well as for refining processing procedures.

A dynamic data recording system supplied by Hamilton Standard was used to monitor and acquire time variant blade stress data. This system provides eight channels of signal conditioning and amplification, FM recording and playback capability, oscilloscope monitor, and switching gear to acquire up to 16 channels of strain gage type data.

2.4 Propeller Dynamometer

The Prop-Fan model was driven by the UTRC Prop-Fan test rig dynamometer (PTR). It uses two variable-speed motors housed within a streamline caststeel pod with an integral support strut (Figure 8). The motors are mounted in hydrostatic bearings to restrain all motion except axial and rotational motion about the longitudinal axis of the dynamometer. These motions are restrained by load cells which measure thrust and torque of the model Prop-Fan. Each motor has a nominal rating of 280 kW (375 hp) at 12,000 RPM; together they provide a maximum torque of up to 450 N-m (330 lb-ft.) over the entire speed range. Model speed is controlled by variable frequency power supplied by two motor generator sets and measured with an events per unit time meter and a 60-tooth gear signal generator. Prop-Fan rotational direction for this test was counterclockwise looking upstream. The dynamometer is faired such that there is a minimal axial static pressure gradient through the plane of the Prop-Fan and so that the Prop-Fan rotor and spinner surfaces are the only portions of the metric system exposed to the airstream. Pressure instrumentation is provided within the dynamometer to correct measured thrust for any differential pressure between the front face of the hub and an equal area in the rear fairing.

The Prop-Fan dynamometer was mounted on the floor at the downstream end of the 5.5 m (18-ft.) test section (facing south). This positioned the models within 25 cm (10-in.) of the open tunnel circuit (Figure 9). The Prop-Fan drew air from the courtyard in an area unconfined by tunnel walls and discharged it into the tunnel circuit. With the tunnel circuit blocked at the extreme south end of the courtyard and the air exchanger valves open approximately 1 m (3-ft.), the flow created by the Prop-Fan passed out the air exchanger valves and could not recirculate through the plane of the propeller. The relationship of the dynamometer, test section, courtyard, and blocked off tunnel circuit is shown in Figures 10 and 11.

Dynamometer instrumentation consisted of: thrust and torque load cells, a l/rev reference signal, a 60/rev signal for RPM, vertical and lateral plane vibration transducers, bearing and motor thermocouples, and internal cavity pressure taps. The instrumentation electrical and pneumatic lines were routed down through the hollow PTR pylon to the tunnel floor and from there to appropriate monitoring and recording devices in the control room.

2.5 Model Instrumentation

Each of the three test model Prop-Fans was instrumented with strain gages on the camber surface to measure bending and torsional stresses on four blades. The strain gages were located at the maximum principle stress locations of the natural modes, as determined by analysis. The locations of these strain gages for each blade model are documented in Figure 4. The blade strain gage configuration for each of the three rotors is described in Table II. Blades were numbered sequentially around the rotor in a clockwise direction when viewed from the rear. Blade strain gages are identified by BGx-y, where BG designates blade gage, x is the blade number and y is the gage number. The electrical lead wires were routed from the strain gages along the trailing edges of the blades and through the hub to a slip ring assembly mounted on the upstream surface of the hub. An electronic, two-position switch on the rotating portion of the slip ring assembly permitted the selection of either of two groups of five strain gages to be monitored. The electrical leads from the stationary portion of the slip ring assembly were routed out the front end of the spinner (Figures 2 and 3) through a pneumatic air cooling line and from there to the appropriate HSD monitoring equipment in the tunnel control room. Air cooling was provided to each of the eight rotating elements of the slip ring through a 1.3 cm (0.5-in.) diameter tube connected to a 138 kPa (20 psig) filtered air supply.

A static pressure probe was mounted in the plane of the airflow entrance to the 5.5 m (18-ft.) test section approximately 218 cm (86-in.) radially from the prop centerline (Figures 9, 10 and 11) to provide an indication of tunnel through flow as a result of propeller thrust. This probe was connected to a high accuracy, low pressure transducer, SETRA 140 Pa (0.02 psig) capability, which provided wind gust data to the dynamic data system, as well as steadystate data to the static ONCOAR data system. In addition, a tunnel spanning pressure rake was mounted 109 cm (43-in.) starboard of the prop centerline (Figures 9, 10 and 11) to provide steady-state wind speed data. The 13 elements on this rake were routed to a water manometer board in the tunnel control room. However, due to the low velocities, and hence low pressures, this system could not provide the desired resolution. For most of the tests, local tunnel velocity was measured solely by the static probe/SETRA system. Also, a conventional, vertical axis, cup anemometer was used for visual reference of the ambient wind condition (Figure 10).

2.6 Test Procedures

The primary objective of the test program was to define the stall-flutter boundaries, if any, of the SR-2, SR-3, and SR-5 Prop-Fan models under static flow conditions. This was accomplished by conducting rotational speed sweeps from 2000 RPM to maximum and back to 2000 RPM, at fixed blade pitch angles, while continuously monitoring blade stresses and recording these stresses on FM tape. Performance data, including rotor thrust, torque, total pressure rise, and nacelle surface pressure distribution, were acquired at regular, discrete rotor speed intervals.

Typically, a test run was conducted as follows: the blade pitch angle, at 0.78 radius, was set using the appropriate fixture and inclinometer; water cooling, oil lubrication, and hydrostatic pressure and scavenge systems were activated; a start zero was acquired on both ONCOAR and on the FM system; the rotor was brought on-line at a rotor speed of approximately 2000 RPM; all ten strain gages were monitored prior to rotor acceleration; rotor speed was increased from 2000 RPM to maximum in a slow, continuous sweep while blade stresses were monitored.

The rotor speed sweep was restricted by blade stress limits which differed for each of the three models. In addition, a speed sweep could be limited by the maximum available electric rotor torque. For this program, this appeared to be approximately 410 N-m (300 ft-lb.). The ultimate limit in rotor speed if stresses and power permitted was 9000 rpm, which corresponds to a rotor tip speed of approximately 293 m/s (960 fps). Steady-state and dynamic data were recorded at the maximum rotational speed and then in increments of 500 RPM between the maximum speed and 2000 RPM. This procedure was repeated at different blade pitch angles and model configurations for approximately 55 data runs. The conditions at which the three models were tested are summarized in Table III. Also summarized in Table III are the conditions for which calculations were performed and will be discussed later.

Since the test program was conducted under static (no flow) conditions, thrust and torque tare data were not acquired nor applied to the actual performance data.

2.7 Operating Conditions

The operating conditions used for the calculations cover a large range of blade angle settings and rotational speed settings. These conditions are presented in Table III for the test runs as well as those for the computations. Since the calculations involve the use of the lengthy MSC NASTRAN program for the mode shapes and frequencies, the number of runs was minimized in order to reduce the computer usage. The MSC NASTRAN program was therefore run at blade angles of -10° and 55°. The frequencies used in the stability analysis were interpolated for conditions with blade angles other than those calculated using MSC NASTRAN. The mode shapes of the nearest MSC NASTRAN case were used for the stability analysis.

The blade angle schedules in Table III for the static test conditions are different for each of the models. The RPM schedule is the same for each model except that the upper limit is restricted by either a power limit or a stress limit. All test points and calculations were at sea level conditions.

2.8 Data Reduction

Blade vibratory stress data were displayed and monitored, on-line, on a multichannel oscilloscope. Hamilton Standard personnel interpreted these time-variant data in a continuous, on-line manner throughout the test program. Test conditions were selected and operational limits were observed as a result of this (on-line) monitoring. In addition, stress data, for each steady state data point and all rotor accelerations, were recorded on FM tapes which were retained for comprehensive, detailed analysis.

The analog tapes were analyzed by obtaining total vibratory stress amplitudes using electronic peak stress converters and recording the resulting signals on strip charts. As a second step, samples 30 seconds in length from the magnetic tape were processed using a real time analyzer. These samples were time averaged to produce spectral analyses of the data. This information, in turn, was then stored on tape for a permanent record of each case. The data were then transmitted to a high speed digital mini-computer for processing. At this point, a computer program was used to pick out the peak amplitudes and the associated frequencies. These were then tabulated and printed according to case number and condition. Automatic routines were developed that produce Campbell diagrams and vibratory stress vs. RPM for each blade angle. These items are discussed further in the spectral analysis section (see 4.3) of this report. -

.

· · · ·

3.0 ANALYTICAL TECHNIQUES

3.1 Method Description

The method used to estimate stall flutter boundaries involves several parts. The various computer programs used are listed by designation and purpose in Table IV. The primary analysis used to calculate these boundaries is the F2O3 analysis, and the other programs are used to generate data for or from this analysis.

The F203 stability analysis was developed by J. Turnberg (Reference 2) primarily for classical flutter. It is a linear eigen-value solution that uses unsteady aerodynamics accounting for compressibility effects and blade sweep. For classical flutter, the quasi-steady lift analysis uses the value of 2π for the lift curve slope. The computer program has a separate portion for stalled conditions that is used to calculate stall flutter. Here the unsteady aerodynamic analysis uses a parabolic pressure distribution for determining the unsteady forces. For the quasi-steady terms in stall, the program uses the lift curve slope at the local angle of attack for a particular operating condition. In addition, the analysis uses a method developed in Reference 3 for stalled flow. This method complements the eigen-solution and gives results that are very similar. It uses an energy balance that relates the energy developed by the aerodynamic forces to the strain energy in order to determine the damping of the system. It employs the same unsteady aerodynamic terms as are used in the stall flutter eigen-solution.

The stability analysis F2O3 is also a modal analysis that requires threedimensional modes, developed in the blade chord coordinate systems, at each blade spanwise station. Generally, other linear aeroelastic analyses describing rotating aeroelastic surfaces will approximate the geometric blade angle relative to the plane of rotation using small angle assumptions. In static operation, this angle is very large, up to 70 degrees for a Prop-Fan. The F203 analysis uses the blade chord as a coordinate system such that the small angle is made on the section angle-of-attack, which is small for most applications. The input requires that the mode-shapes and modal masses be transformed to the above mentioned coordinate system. Generally, the mode shapes and frequencies are developed by the beam analyses, HO25 and HO27, or the finite element methods, NASTRAN or BESTRAN. A program called F214 makes the necessary transformations from finite element methods while approximating the blade motions by three-dimensional beam type displacements. Chordwise deformations are approximated by a rigid section. The methods used in the present analysis are discussed in more detail in Reference 2.

Figure 12 shows a block diagram of the procedure used in the stall flutter analysis. It can be seen in this diagram that the output from the finite element methods are input for the F214 coordinate transformation program. (It should be mentioned that there is an earlier modification to the F.E. data by a program called "MODES". This rotates the data for each element into the shaft plane and modifies the format. It is not shown on the block diagram.) The operation of the F214 program can be implemented by the CLIST Control Program as shown by the block diagram in Figure 12. An output file from F214 is created containing the transformed mode shapes, modal masses and freguencies. • The aerodynamic properties used for the F203 stability analysis are initiated in a data bank accessed by the H444 performance analysis, where the data for several airfoil shapes are stored. Once the performance has been determined at the operating condition of interest, the lift and moment slopes are then determined as a function of angle of attack at each radial station for this operating condition. These slopes determine the unsteady and quasi-steady loads in the stability analysis.

As shown in Figure 12, the running of the F2O3 stability module is controlled by the F2O3CL CLIST. Here the transmission of the input and output files is managed, and the plot program is executed. The plot program PLT2O3 was created to run from a file that consists of data for many F2O3 runs. The results of this program are plots of the printed output, where damping and freguency are plotted as functions of blade angle.

It is suggested here that the stall flutter boundaries predicted by this analysis may be conservative. This is partially due to the fact that stall flutter is a limit amplitude phenomenon, and can exist at small amplitudes. If the limit amplitude is small enough, then it is possible that flutter will not be noticed experimentally, because it will be lost in stresses due to turbulence or other causes. The present analysis is a linear analysis and can, therefore, predict only the onset of flutter, which could be at low stress levels. Thus, the predicted boundary would appear conservative, in relation to the point of measured high stresses.

3.2 Calculated Instabilities

Calculations to estimate stability boundaries were made for the SR-2, SR-3 and SR-5 model blades using the F2O3 stability analysis. Values of total damping were calculated for 5000, 7000 and 9000 RPM, at many blade angles, as shown in Table III. Figures 13 and 14 show the damping to critical damping ratio for all three models as a function of blade angle at 7000 and 9000 RPM, respectively. The onset of stall flutter is assumed to be at the point where the damping goes through zero. At 7000 RPM, it is seen that increasing the sweep is beneficial in delaying the stall flutter to a higher blade angle. Note that the SR-5 does not flutter at 7000 RPM but is delayed until 9000 RPM. All of the stall flutter predictions are third mode instabilities. No instabilities were calculated for the first or second modes. Figure 15 shows the typical damping ratio relationships between the modes for the SR-3 model Prop-Fan blade. The flutter boundaries, as functions of blade angle and RPM, will be shown later in discussions of the test results.

4.0 TEST DATA EVALUATION AND COMPARISON WITH CALCULATIONS

4.1 Response Frequencies

The calculated blade response frequencies for the SR-2, SR-3 and SR-5 model blades are shown in Figure 16, where blade frequency is plotted as a function of rotational speed. Also shown in this figure are data points taken from spectral analyses of the analog blade stress data, some of which will be discussed later. As previously mentioned, the SR-2 blade frequencies were calculated using the beam methods HO25 and HO27, while the SR-3 and SR-5 blade frequencies were calculated using the MSC NASTRAN analysis.

It is seen that good agreement exists in all modes between the test results and the computations for the SR-2. Note that the slopes of the second and third mode show good agreement. For the swept models, the SR-3 and SR-5, good correlation is made for the first two modes with poorer correlation occurring for the third, fourth and fifth modes. However, good agreement is seen for the slopes of the higher modes for these two models. Both swept blade models show a measured response between the second and third calculated mode. The nature of this response is not understood at this time.

4.2 Total Stress Results

As previously indicated, total peak vibratory stress was recorded on strip charts for the SR-2, SR-3 and SR-5 model Prop-Fan blades. The stress data from those charts were tabulated and selected data were plotted on curves of total vibratory stress (infrequently repeating peak stress*) as a function of RPM for various blade angles. These plots are shown in Appendix A for the three Prop-Fan models. Additionally, cross plots were made to produce stress contour plots for the model Prop-Fan blades. These are contours of constant total vibratory stress, plotted on curves of reference blade angle vs. RPM, and are shown in Figure 17 through 19. Note that the takeoff design operating point for each blade is shown for reference.

<u>Isostress Contour Plots</u> - Figure 17 shows the total stress contours for the tip bending gage and the shear gage outputs of the SR-2 model (blade number 5). Both gages show the highest stress at a reference blade angle of 40 degrees and 7000 RPM. From Figure 16, it is seen that this is very close to the third mode 5P critical speed. The buildup seems gradual with increasing RPM and less gradual with increasing blade angle. This effect is probably due to the fact that a change in reference blade angle has a greater effect on the blade angle of attack than a change in RPM. These results are typical for conventional propellers that encounter high stresses in the static condition. Since the third mode is the torsion mode, it is not surprising that stall conditions combined with critical speed effects would cause a stress buildup. It is also noted that the gradual buildup makes it difficult to find a precise definition of a stall flutter boundary, especially one where the damping might be considered as having a value of zero.

^{*}The infrequently repeating peak is defined as the maximum stress peak that repeats itself two or three times during the stress data sample period.

The calculated flutter boundaries for the SR-2 are also shown in Figure 17. The calculated boundaries represent the torsion (third) mode while the measured total stress represents all the modes. A spectral method by which the modal stresses can be separated will be discussed in the next section.

Similar isostress contour plots are presented in Figure 18 for the SR-3 model Prop-Fan. This figure represents the output from the inboard bending, the shear and the tip bending gages, respectively. In order to smooth out some of the irregularities in the data, the values of stress were averaged between blades 1, 2, 5 and 6 for the shear and tip bending gages, and between blades 1 and 5 for the inboard bending gage. These curves show three entirely different patterns. For example, the shear gage shows a very gradual increase in stress with varying RPM and blade angle. However, the inboard bending gage shows a sharp increase in stress near 40 degrees blade angle and 6000 RPM. The tip bending gage indicates a sharp rise in stress near 30 degrees blade angle, but shows a gradual increase with RPM.

Subsequent viewing of oscillograph records clearly shows different predominant frequencies of similar amplitude occurring on different gages of the same blade for some records. This indicates that stalled flow can excite several different modes simultaneously. It can also be concluded that the strain gages were effectively placed to measure the response of each mode. Interestingly, the flutter indications predicted for the shear gage seem to occur experimentally for the tip bending gage. Spectral studies made for the SR-3, and discussed later in this report, shed more light on this apparent discrepancy.

Figure 19 shows stress contour plots for the SR-5 model blade. They represent the output from the inboard bending gage and the shear gage, respectively. The shear gage shows a very high stress peak at 6500 RPM. This can be attributed to the fact that it is very close to a 6 per revolution critical speed for the 4th experimental mode, as shown in the Campbell diagram in Figure 16. This mode coincides with the 3rd predicted mode. High 4th mode response is also indicated on spectral plots, to be shown later in the report.

The calculated stall flutter boundary predictions are also shown in Figure 19. These were developed for the 3rd mode and represent the boundary of zero damping. It is seen that this predicted boundary occurs at very high RPM and does not coincide with any sudden stress rise. Some of the lack of correlation between test and prediction might be due to the fact that the test results include aerodynamic excitation other than stall flutter, such as buffeting. Also, it may be difficult, in some cases, to distinguish between stall flutter response and a critical speed crossover.

12

<u>Stall Flutter vs. Buffet</u> - It may be useful to discuss the differences between stall flutter and buffeting. Buffeting is defined as a forced excitation due to an instability of the air, such as vortex shedding, shock oscillation, or turbulence. Stall flutter is an instability due to the interaction between the air and the blade. In stall flutter conditions, the motion of the blade and the aerodynamic loading on the blade are strongly interdependent. In buffet conditions, the motion of the blade has little effect on the loading.

Generally, as blade angle is increased the Prop-Fan progresses from normal load conditions to stall and then to deep stall. Stall flutter can occur as the Prop-Fan becomes stalled and buffet occurs in deep stall. At a specific operating condition, the local angles of attack along to blade span increase as the blade angle is increased, with stall first occurring inboard and then progressing outboard.

In order to define when the Prop-Fan is stalled, the blade reference station (0.78 radius) is generally a good point to consider as being a stall control station. The conditions at which the current Prop-Fan blades stall was not investigated for this analysis. However, from preliminary estimates it is thought that stall occurs at a reference blade angle between 30 and 35 degrees, for Prop-Fans at static (zero forward speed) conditions. Although the boundary between stall flutter and buffet regions is not clear, it is thought that buffet occurs at blades angles which are substantially higher than blade angles for which stall flutter occurs. For this discussion, the buffet region is defined to be at blade angles of approximately 45 degrees and larger.

<u>Blade Stall vs. Rotor Torque</u> – Prop-Fan rotor torque can be an indication of the loading condition on the blades. Figure 20 shows the measured shaft torque, as a function of reference blade angle for various RPM, for the SR-2, SR-3, and SR-5 model Prop-Fan configurations. Each plot shows a variation in RPM from 5500 to 8500 RPM.

Generally the torque increases with blade angle and RPM for all configurations. It is seen from these curves that there is a change in the torque at or near the blade angles where stall might be expected. The SR-2 shows the greatest effect, where the torque increases rapidly near a blade angle of 28 degrees, peaking at 30 degrees and returning to the torque curve at 33 degrees.

The SR-3 data show a decrease in torque near a blade angle of 31.5 degrees. It is not known if there is a torque rise just before this point because of insufficient data. The change in torque seems less severe than that observed for the SR-2.

The SR-5 data show a small depression at a blade angle of 34 degrees for the higher RPMs. This is a lesser effect than that seen for the SR-3. The low RPM SR-5 data show little of this effect.

The effect of stall on the torque curves is most severe for the SR-2 and least severe on the SR-5 with the SR-3 falling in between. This indicates that the influence of stall on the torque is affected by blade sweep, since the major difference between the configurations is sweep, the SR-2 being non-swept and the SR-3 and SR-5 having increasing sweep, respectively.

It is also noted that the torque change occurs at an earlier blade angle on the SR-2 and progressively later on the SR-3 and SR-5, respectively. The test data discussed above (Figures 17 to 19) show that a high stress rise occurs at blade angles near where the torque inflections occurred. Also, the highest stresses occurred on the SR-2, with progressively lower stresses on the SR-3 and SR-5. This indicates that stall and/or stall flutter occurs at similar conditions as the inflections on the torque curves. It is therefore concluded that the torque curves can indicate the presence of stall or stall flutter conditions.

It is recommended that in future static tests on Prop-Fan models, fine variations be made in RPM and blade angle in the area just below, in and above the stall condition, and that torque measurements be made at each steady state condition. This would be helpful in defining the condition of blade stall onset and its relation to blade stress.

<u>Blade Stress vs. Damping</u> - It should be noted that some of the difficulty, in comparing calculated stall flutter boundaries to the experimental results, is due to the nature of the parameters which are used to define the boundary for each. The calculated stall flutter boundaries are linearly determined to be at the point where the critical damping ratio goes zero. The experimental flutter point is determined to be where there is a sudden rise in vibratory stress with increasing RPM, usually to a high stress value. This ignores the fact that in a non-linear system, the damping can go to zero at flutter onset but can also be zero at some limit amplitude. It is conceivable that the limit amplitude could be small, while the damping is zero. It may be misleading to investigate stall flutter conditions by comparing the two different parameters of damping and stress, as was done here. A better result may be expected if a non-linear aeroelastic analysis is used to produce stress predictions that could be compared to the experimental stresses. At the time of this work, however, a reliable analysis of this nature was not available.

4.3 Spectral Analyses

Measurements of total stress cannot be used to fully characterize blade dynamic behavior. For example, total stress values do not allow the stress contributions of each mode or P-order response to be distinguished. Spectral information is helpful in evaluating modal stresses. This is examined in the form of spectral plots of vibratory stress as a function of frequency. <u>SR-2 Results</u> - Figure 21 is a spectral plot of measured stress for the blade tip bending gage output on the SR-2 model operating at 7000 RPM and a reference blade angle of 36.2 degrees. Figure 22 is a spectral stress plot of the shear gage at 8500 RPM and a reference blade angle of 31.5 degrees. These two figures represent conditions in the high stress areas for each gage, as seen in Figure 17. They are not the conditions of highest stress, but are located in the area of steep stress rise.

The indications from Figures 21 and 22 are that, for the SR-2, the flutter occurs in the third mode at or near 600 Hz. This mode is considered the primary torsional frequency (See Figure 16). The third mode response level seen in Figure 21 is large due to its proximity to the 5P critical speed. Figure 22 shows substantial twice per revolution response. This is unexplained, except that it is a relatively low stress, and this condition may be close enough to the 2P critical speed to give some magnification to the 2P stress. Figure 23 shows a spectral plot for the mid-blade bending stress at 5000 RPM and reference blade angle of 50.3 degrees. Here the response is substantially in the first mode. This may be a buffet condition exciting the first mode with some 2P magnification due to the nearness of the 2P critical speed (See Figure 16).

<u>SR-3 Results</u> - Spectral plots from SR-3 testing are shown in Figures 24, 25 and 26. Tip bending stress is shown in Figure 24 for a condition of 9050 RPM and 31.7 degrees reference blade angle. This condition is in a steep stress rise area (See Figure 18) that is indicative of stall flutter. Figure 24 shows the tip bending to have a high 3P response accompanied by a moderate second mode contribution. The 3P response seems exaggerated by low damping associated with the 2nd mode response. The 4P, 5P and 6P responses could also be critical speed related (See Figure 16).

A more clear example of stall flutter response is shown in Figure 25. The tip bending gage spectrum in this figure is for a condition of 32.7 degrees blade angle and 7020 RPM. This is not near any critical speed and is also in the steep stress rise area. Figure 25 shows substantial second mode response with no apparent excitation. This is a strong indication of stall flutter response. There is also response present in the third, fourth and fifth experimental modes. Recall from Figure 16 that what is termed the fourth experimental mode is shown near the third predicted mode. This mode shows the least response in Figure 25, which is contrary to the stall flutter predictions discussed earlier.

Figure 26 represents a 5010 RPM and 50.3 degree blade angle condition. This is considered to be in a high stress buffet region due to the large blade angle, as discussed earlier. This is probably not a stall flutter condition. Figure 26 shows primarily 1st mode response. The contour plots in Figure 18 also show mostly inboard and tip bending at this condition. Spectral plots of the shear gage signals (not shown) indicate comparatively little stress. <u>SR-5 Results</u> - Two SR-5 spectral stress samples are shown in Figures 27 and 28. The first represents the output of a shear gage at 8500 RPM and a reference blade angle of 35.7 degrees, and the second is the output of an inboard bending gage at 6500 RPM and a reference blade angle of 49.8 degrees. All the stress peaks shown for these two curves indicate relatively low stresses, but the shear gage seems to be responding to white noise type excitations. This indicates the possibility of buffeting, and there seems to be no evidence of a self excited response. This is also seen in Figure 19, in that there is no sudden stress rise in either the shear or bending gage. The inboard bending spectral curve (Figure 28) shows a low level second mode response, and little of anything else.

The indications from these data are that the highly swept SR-5 Prop-Fan model has little or no stall flutter problem, the SR-3 has a moderate stall flutter response, while the SR-2 has a strong stall flutter response. Thus, sweep seems to have a suppressing effect on stall flutter.

4.4 Modal Response for the SR-3

The stress peaks that were obtained from the spectral analysis and used in the Campbell diagram of Figure 16 can be categorized as to frequency and mode. Table V indicates the frequency range assumed for each mode, based on the experimental responses. Plots of stress vs. RPM for various blade angles can be made for each mode and each gage. Diagrams of constant vibratory stress contours can be plotted from crossplots of these curves. For this report, only the isostress contour plots for the SR-3 model will be shown.

Figure 29 shows the modal isostress contour plots for the SR-3 model Prop-Fan stall flutter tests at the UTRC. Here, the measured modal stress is plotted as a function of rotational speed and reference blade angle. Each mode is shown for the particular gage that generally has the highest response. Only the first five modes are shown in Figure 29; one contour plot for each. For the first plot (1st mode), it is seen that the high stresses occur at a reference blade angle of about 50 degrees and at RPM's greater than 6000. This is well above what is considered stall, possibly indicating that these stresses are due to buffeting, which involves mostly the 1st bending mode. Note that the identifying gage is the inboard bending gage, which is most responsive to the first mode. Also shown on this curve are the operational limits of the test. These limits were established by drive power limits, RPM limits and blade allowable total stress limits.

The second mode is characterized by high stress, probably under conditions for which the blade first encounters strong stall over most of its span. This indicates stall flutter responding in the second bending mode. These data corroborate the spectral results, discussed earlier. Note that the high stresses are found primarily in the tip gage. Also, the stress does not seem to be related to a critical speed, whereas the high stress observed in the first mode could indicate the 2P crossover; see Figure 16. The higher modes (3, 4 and 5) show little response. It should be noted that the calculated results indicate that stall flutter should occur in the third mode. This is inconsistent with the test results which show high stress occurring in the second mode.

4.5 Comparison with NASA-Lewis Tests

Low speed stall flutter tests were conducted at NASA-LeRC in the 10 x 10 wind tunnel during October 1981, and are reported in Reference 4. Some of the tests were run at static conditions with a small component of velocity due to induction in the tunnel. Assuming this effect is negligible, the total vibratory stress results observed at the UTRC were compared with those obtained at NASA-LeRC. These comparisons are shown in Figures 30 through 32, where total vibratory stress is plotted as a function of rotational speed for various blade angles.

Figure 30 shows the total blade vibratory stresses for the SR-2 model Prop-Fan. Shown are the outputs from the mid-blade bending, the shear and the tip bending gages for reference blade angles of approximately 32 degrees and 40 degrees. Generally, the test results at the UTRC give stresses that are similar to those obtained at NASA, except near or at critical speeds, where the UTRC results show higher stresses. This may be due to the fact that, at the UTRC the rotor was subject to the effects of turbulence due to weather conditions, since the test was open to the atmosphere.

Figure 31 shows the results from the inboard bending, the shear and the tip bending gages of the SR-3 model Prop-Fan blade. The comparisons are made for reference blade angles of approximately 32 degrees and 60 degrees for shear and tip-bending, and approximately 32 degrees and 50 degrees for the inboard bending. Note that the vibratory stresses are lower for the SR-3 model than for the SR-2 (Figure 30) due to the benefits of sweep. The correlation between the results from the NASA-Lewis tests and the results from the UTRC tests, for the SR-3, is also very good. For the SR-3 bending gages, the vibratory stresses obtained from UTRC are somewhat higher than the NASA measurements, which is the opposite from the SR-2 results. However, the UTRC results for the SR-3 indicate higher response near the critical speeds than the NASA results, as also occurred for the SR-2 model.

Figure 32 shows the results from the inboard bending, the shear, and the chordwise bending gages on the SR-5 model Prop-Fan. Shown are the results for the approximate reference blade angles of 32 degrees and 50 degrees. Again, the UTRC vibratory stress results are somewhat higher than the NASA data but the correlation is still very good. As for the other blade models, the UTRC SR-5 tests show higher response in the critical speed regions probably due to higher turbulence.

. .

-

5.0 CONCLUSIONS

As a result of the test and analysis program summarized in this report, the following conclusions were reached regarding the static stability of the SR-2 straight blade, the SR-3 moderately swept blade and the SR-5 highly swept blade Prop-Fan models:

- 1. Increased sweep tends to suppress the high blade stresses caused by stall flutter and buffet.
- 2. Correlation between tested and predicted Campbell diagram modal frequencies was excellent for the first and second modes for all blade models.
- 3. Correlation between tested modal frequencies and beam method calculations for the SR-2 model, at the higher frequencies, was good. Finite element method frequency modal calculations for the SR-3 and SR-5 models showed less agreement with test data at the higher frequencies.
- 4. Comparisons were made between measured stall flutter boundaries, based on steeply rising stresses with RPM and blade angle, and calculated boundaries based on zero blade damping. Good agreement between test and prediction was indicated for the SR-2 and SR-3 models, while less agreement was seen for the SR-5 model, which did not give strong flutter indications during test.
- 5. Tested stall flutter response for the SR-2 straight blade occurred in the torsional third mode, as was predicted. Test data for the SR-3 and SR-5 swept blades show stall flutter response primarily in the second bending mode while the calculated results predict that stall flutter should occur in the torsional third mode.
- Modal isostress contour data indicate that stall flutter and buffet occur in different operating regions, with buffet occurring for very high blades angles.
- 7. Total vibratory stresses measured at static conditions at the UTRC were compared to those obtained in the 10 x 10 wind tunnel at NASA-LeRC, for the SR-2, SR-3 and SR-5 models. Both the absolute stress amplitudes and the trends with varying RPM agree very well for these two independent tests.

· · ·

6.0 RECOMMENDATIONS

- 1. Since it was shown that there was little difference between testing in the wind tunnel at NASA-Lewis or testing in the atmosphere at UTRC, it is suggested that future static tests can be conducted in a wind tunnel. This will eliminate duplication of rig setup.
- 2. It is recommended that in future static tests on Prop-Fan models, fine variations be made in RPM and blade angle in the area just below, in and above the stall condition, and that torque measurements be made at each steady state condition. This would be helpful in defining the condition of blade stall onset and its relation to blade stress.
- 3. The tests reported herein show variations of measured blade stress with rotational speed (RPM) and with blade angle. It was observed that at or near critical speeds, the testing was limited to those RPM's for which the stresses were below the limits. If the test condition envelope was increased to include rotational speeds beyond these critical speed areas, the scope of the data could be increased. Additional understanding of the phenomena of stall flutter and buffeting would develop if this could be achieved.
- 4. The correlation between the current stall flutter theoretical predictions and the experimental results can be improved. Deficiencies in the analysis may be due to its linearity. The analysis is linear in both the aerodynamics and structural dynamics by assuming small amplitude displacements. The actual blade response in stall flutter very often has large amplitude displacements. This behavior requires that non-linear aerodynamics as well as non-linear structural response be included in the analysis for proper representation. Also, Coriolis forces due to rotation are non-linear for large amplitude vibrations.

It is recommended that a non-linear analysis be developed that can model the behavior described above. It is suggested that this analysis be a modal time step analysis and that it include the following features:

- Three-dimensional modes obtained from finite element methods.
- Curved beam description of modes.
- Large displacement equations of motion, to include four or five bending and twisting degrees of freedom with the capability of including chordwise bending for future growth.
- Complete induced flow capability such that various methods of induction can be selected, from momentum methods to vortex and pressure potential methods.
- Non-linear aerodynamics for steady state operation, including high angles of attack.
- Non-steady aerodynamic effects to include non-steady coefficients, accounting for phasing, to be added to the steady state description with the ability to substitute empirical data or theory (synthesizing of data).
- Three dimensional treatment of airloads, including radial and interblade effects.

- 5. It is also recommended that wind tunnel tests be conducted on twodimensional Prop-Fan airfoil sections, to provide data for use in improving the theoretical analyses. These tests should include investigations of the following:
 - Steady state data.
 - Unsteady data (synthesis).
 - High angle of attack.
 - High Mach number effects (compressibility).
 - Effects of sweep.

7.0 REFERENCES

- Goepner, B.W., "Static Flutter Tests of HSD Prop-Fan Models", United Technologies Research Center Report R81-335414, February, 1982 (controlled circulation).
- Turnberg, J., "Classical Flutter Stability of Swept Propellers." Proceedings of the AIAA/ASME/ASCE/AHS 24th Structures, Structural Dynamics and Materials Conference, May, 1983, Lake Tahoe, Nevada.
- Steinman, D.B., "Aerodynamic Theory of Bridge Oscillations", American Society of Civil Engineers, Transactions, Paper No. 2420, October, 1949.
- Smith, A.F., "Analysis and Test Evaluation of the Dynamic Response and Stability Of Three Advanced Turboprop Models at Low Forward Speed", NASA CR 175026, December 1985.

•

.

I ABLE 1.	IABLE I. PROF-FAN MODEL SUMMAN		
	SR-2	SR-3	SR-5
NO. BLADES	œ	8	10
MATERIAL	STEEL	TITANIUM	TITANIUM
DIAMETER	24.5 IN	24.5 IN	24.5 IN
DESIGN CL	0.084	0.214	0.271
AF (TOTAL)	1632	1880	2100
AF (PER BLADE)	204	235	210

TABLE 1. PROP-FAN MODEL SUMMARY

,

:

PROP-FA		RADIAL STATION, IN.	BLADE	NO2		DESIGN 4		6	_7	8	9	10
SR-2	Mid-Blade Bending	7.0	BG]-2	BG2-2	•	•	BG5-2	8G6-2	•	•	•	•
SR-2	Shear-V Gage	7.5	BG1-3	BG2-3	•	•	8G5-3	8G6-3	•	•	•	•
SR-2	Tip Bending	10.0	BG1-4	, ·	•		BG5-4	•			•	
SR-3	Inbd. Bending	4.4	BG1-1			,	8G5-1	•		•	•	
SR-3	Shear-V Gage	9.6	8G1-4	BG2-4	•	•	BG5-4	BG6-4	•	•	•	•
SR-3	Tlp Bending	10.7	BG1-6	5 BG2-6			8G5-6			•		
SR-5	Inbd. Bending	5.3		BG2-1						BG8-1	•	·
SR-5	Shear-V Gage	8.9	BG1-9	5 ·	•	•	•	BG6-5	•	·	•	
SR-5	Tip Bending	10.4	BG1-1	3 ·	•	•		8G6-3	•			•

TABLE II: STRAIN GAGE DESIGNATION MODEL PROP-FAN UTRC STATIC STALL FLUTTER TESTS

TABLE III. OPERATING SCHEDULES

OPERATING SCHEDULE FOR COMPUTER RUNS*

MACH NO.: 0.0

BLADE ANGLE = β .75^{•••}: -20 DEG. TO 70 DEG. IN 5 DEG. INCREMENTS FOR F203 ROTATIONAL SPEED: 5000, 6000, 7000, 8000, & 9000 RPM FOR F203 -10 DEG. AND 55 DEG. FOR MSC NASTRAN

5000, 7000, & 9000 RPM FOR MSC NASTRAN

SEA LEVEL CONDITIONS

· FOR ALL MODELS

** AT 75% RADIUS

OPERATING SCHEDULE FOR THE MODEL PROP-FAN STATIC TESTS AT UTRC

ROTATIONAL SPEED (ALL MODELS): 2000 TO 9000 RPM IN 500 RPM INCREMENTS (END POINTS ARE MODIFIED DEPENDING ON POWER OR STRESS LIMITS AND

WINDMILL CONDITIONS)

BLADE ANGLE (DEG) = β REF*** SEA LEVEL CONDITIONS

<u>SR-5</u> 3.7 10.0	12.0 16.4 19.5	23.8 28.0 31.9	35.7 39.9 49.8 59.6	69.6 79.7	
<u>-10.0</u> -12.0	15.9 19.9 23.6	27.6 31.7 32.7	34.0 35.7 38.0	50.3 50.3 60.0	69.9 80.0
<u>SR-2</u> -8.3 15.8	19.6 23.8 27.4	29.7 31.5 32.0	35.8 36.2 39.8	60.3 60.3 70 6	

••• FOR THE SR-2 AND SR-3: β REF = β .75 - 0.8 DEG. FOR THE SR-5: β REF = β .75 + 0.5 DEG.

TABLE IV

HAMILTON STANDARD COMPUTER PROGRAMS USED IN THE STALL FLUTTER ANALYSIS CODE

DESIGNATION	PURPOSE
MSC NASTRAN	Finite element analysis used to predict vibratory mode shapes and frequencies for swept, thin structures.
BESTRAN	Hamilton Standard finite element anal- ysis used to predict vibratory mode shapes and frequencies for swept, thin structures.
H025	Beam type analysis used to predict vi- bratory bending mode shapes and fre- quencies for straight propeller blades.
H027	Beam type analysis used to predict vi- bratory torsion mode shapes and fre- quencies for straight propeller blades.
H444	General Goldstein-type performance strip analysis for propellers. Pro- vides power, thrust, section force data and angles of attack. Section lift and moment curve slopes are determined for use in the stall flutter analysis, F2O3.
MODES	Converts mode shapes from finite ele- ment methods or beam methods to a beam type description for use in the F2O3 flutter analysis.
F214	This program transposes all co-ordinate system motions into the blade section co-ordinate system in order to take ad- vantage of small angle assumptions.
F203	Eigen-solution modal stability anal- ysis. Calculates damping and frequency using unsteady aerodynamics.
PLT203	Plots the damping and frequency results obtained in F203.

OF THE SR-3 MODEL BLADE RESPONSE DURING TABLE V. FREQUENCY RANGES FOR THE VARIOUS MODES THE STATIC STALL FLUTTER TESTS AT UTRC

RESPONSE FREQUENCY RANGE, HZ 160 - 260 380 - 450 605 - 640 670 - 755 815 - 900
--

ORIGINAL PAGE IS OF POOR QUALITY

FIGURE 1. SR-2 MODEL PROP - FAN STATIC TEST INSTALLATION AT UTRC

e e

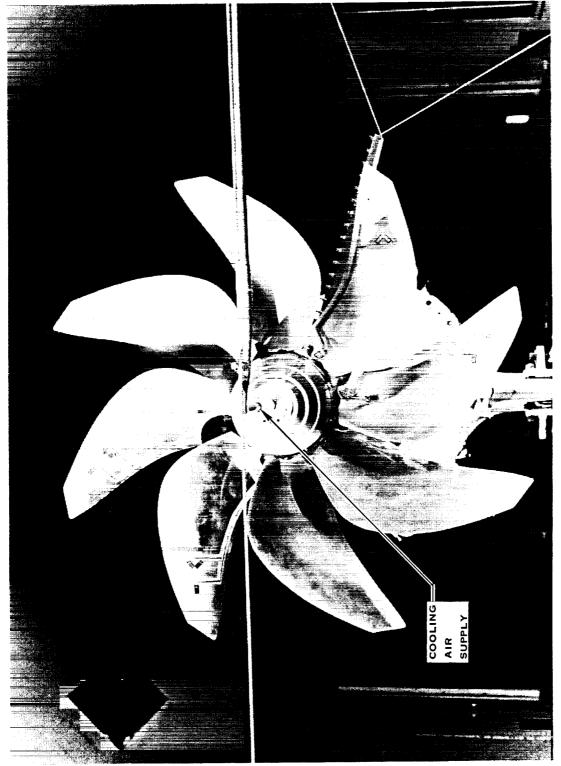
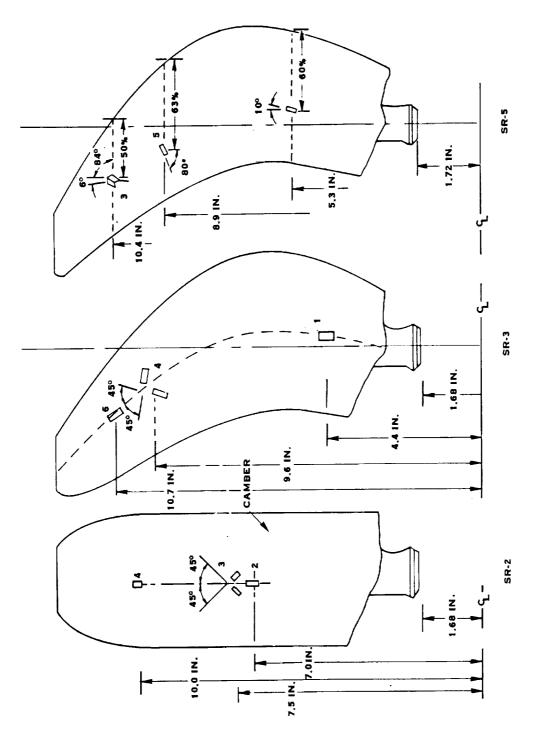



FIGURE 2. SR-3 MODEL PROP - FAN STATIC TEST INSTALLATION AT UTRC

ORIGINAL PAGE IS OF POOR QUALITY ORIGINAL PAGE 15 OF POOR QUALITY

- 1 8

Ţ

the second

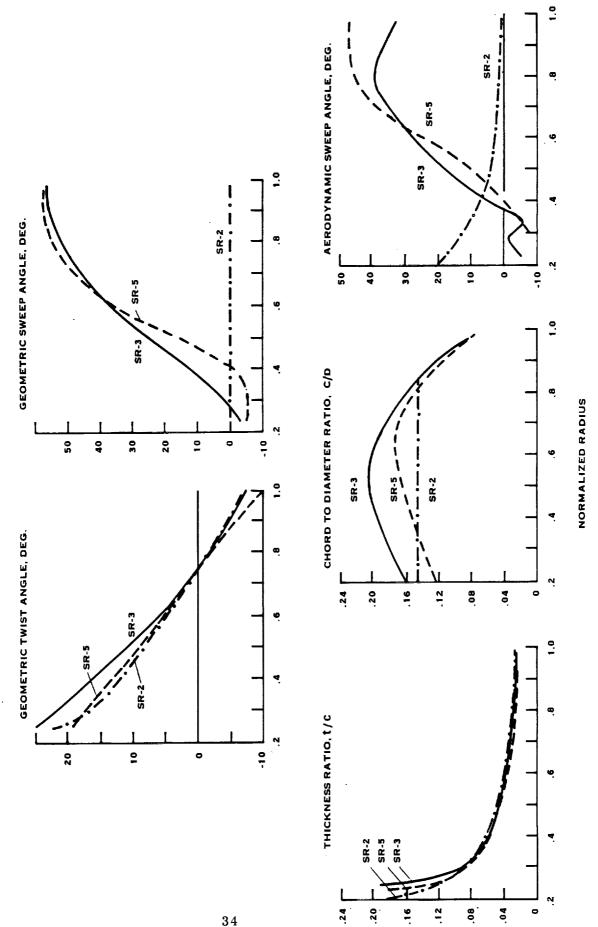


FIGURE 5. PROP - FAN MODEL CHARACTERISTICS

34

ORIGINAL PAGE IS DE POOR QUALITY

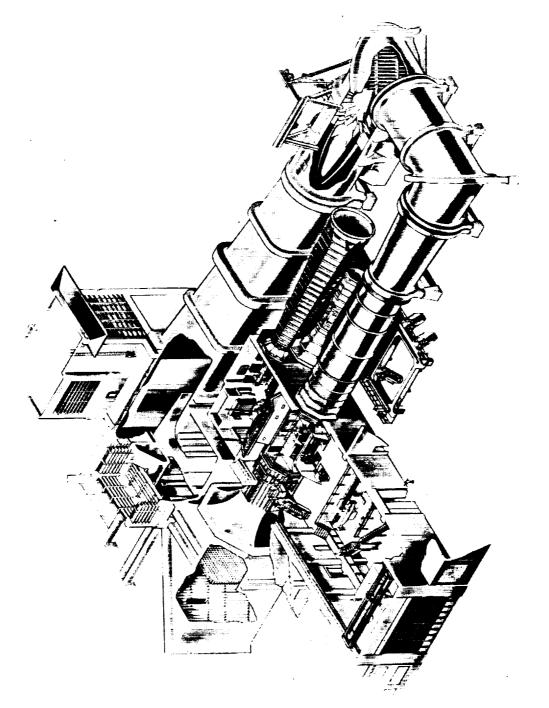
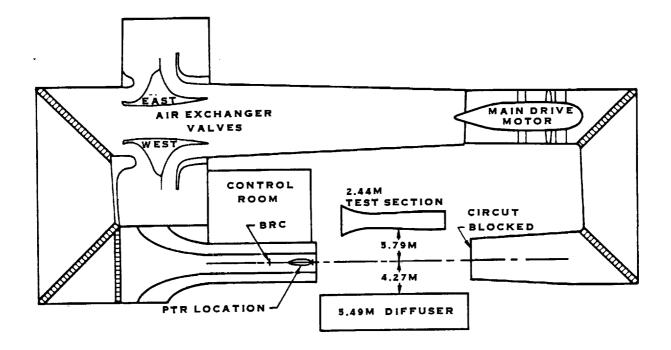



FIGURE 6. UTRC LARGE SUBSONIC WIND TUNNEL

N

FIGURE 7 WIND TUNNEL CIRCUIT

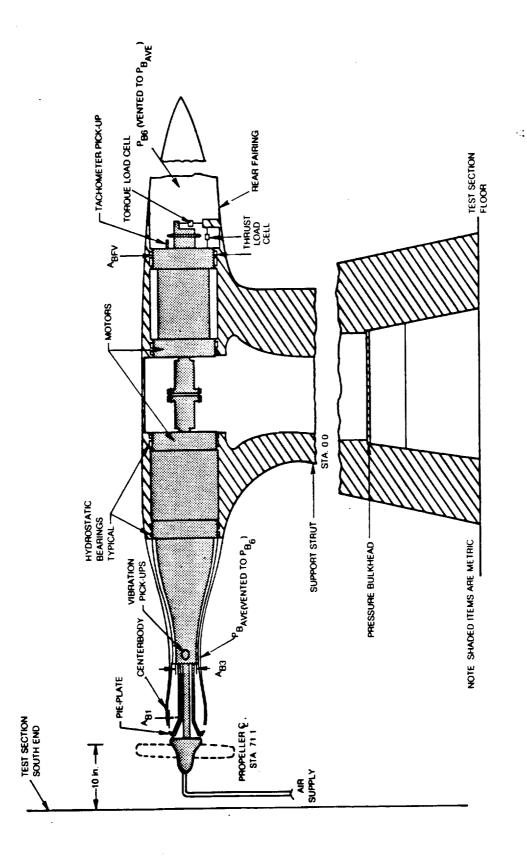
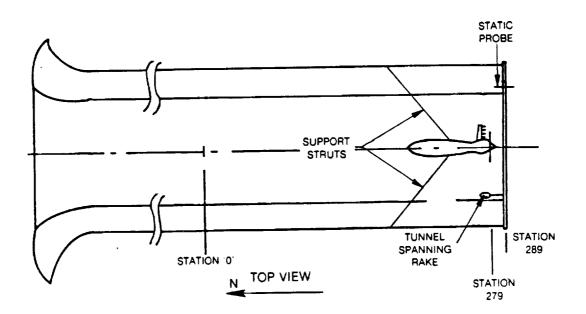
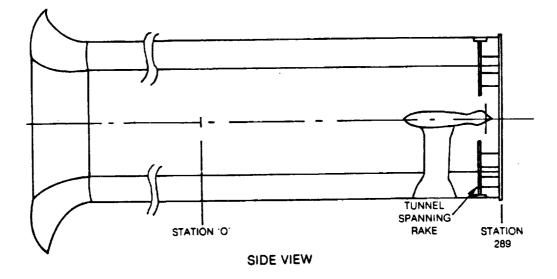




FIGURE 8 PROPELLER DYNAMOMETER DETAIL

37

FIGURE 9 PROPELLER DYNAMOMETER INSTALLATION

•

ORIGINAL PAGE IS OF POOR QUALITY

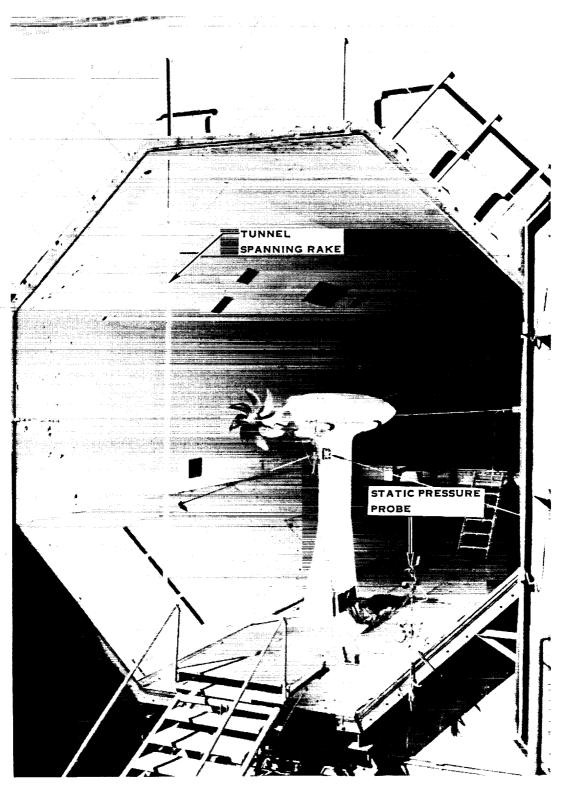
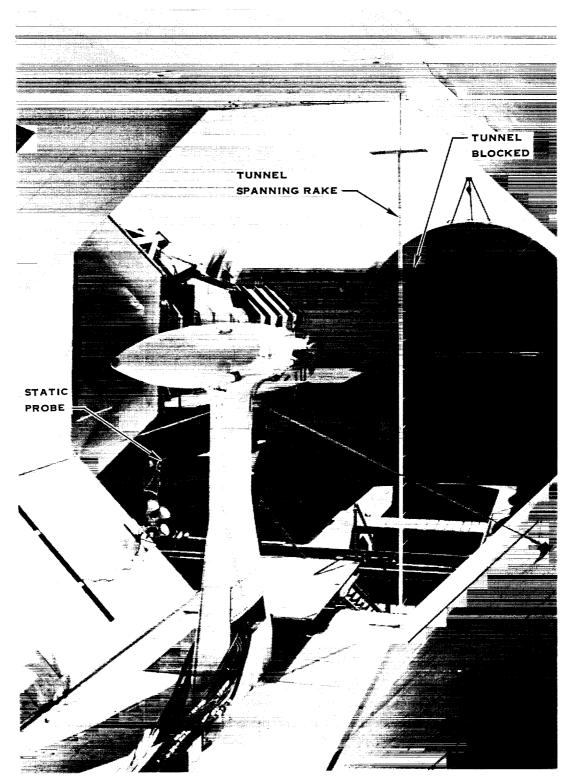
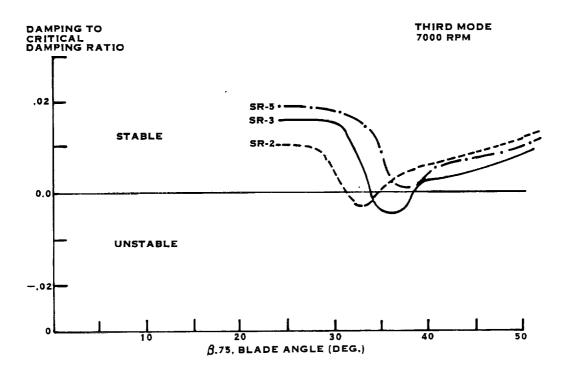


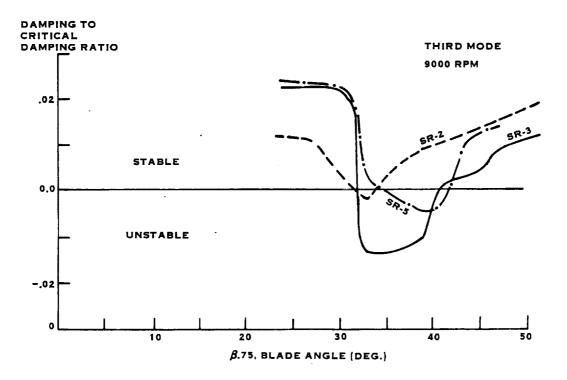
FIGURE 10. PROP - FAN MODEL INSTALLATION LOOKING DOWNSTREAM

ORIGINAL PAGE IS OF POOR QUALITY




FIGURE 11. PROP - FAN MODEL INSTALLATION LOOKING UPSTREAM

<u>_123</u>+4<u>_</u>2



e iel seguidênî

FIGURE 12. BLOCK DIAGRAM FOR STALL FLUTTER ANALYSIS

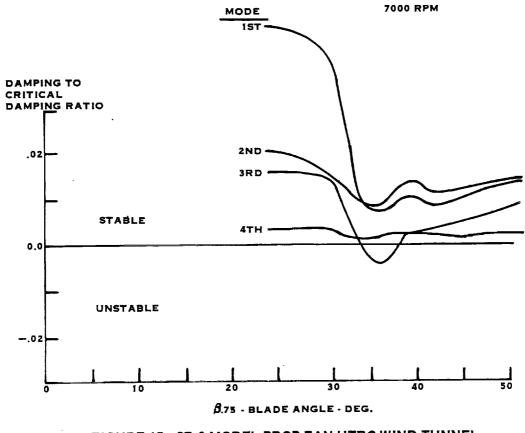
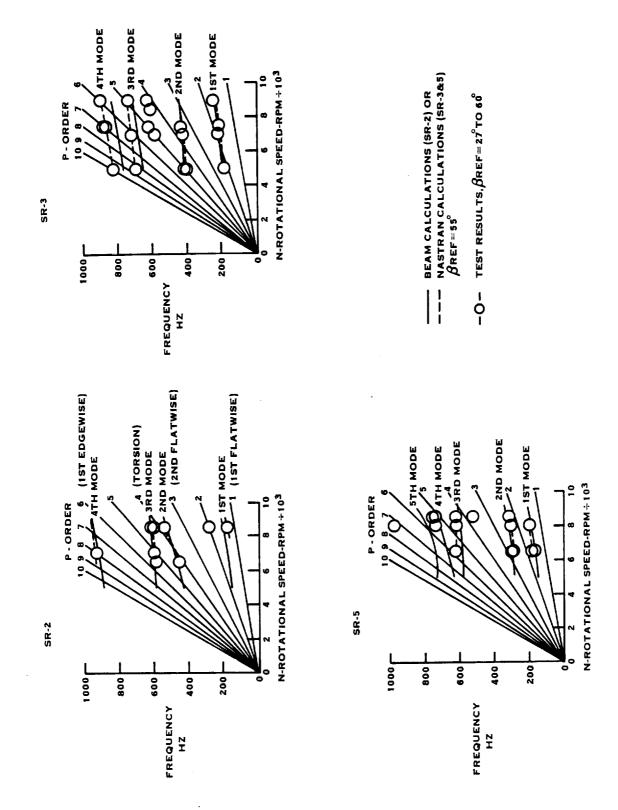
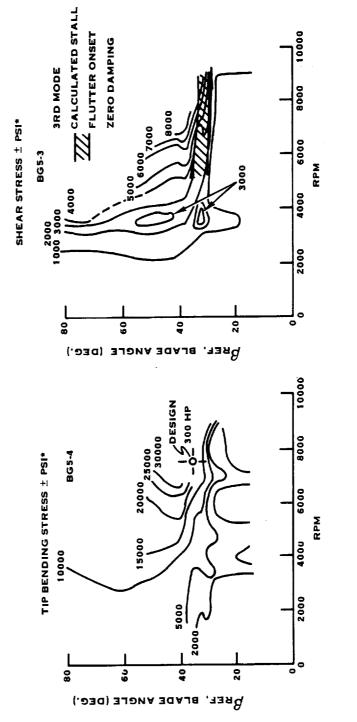
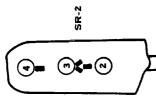
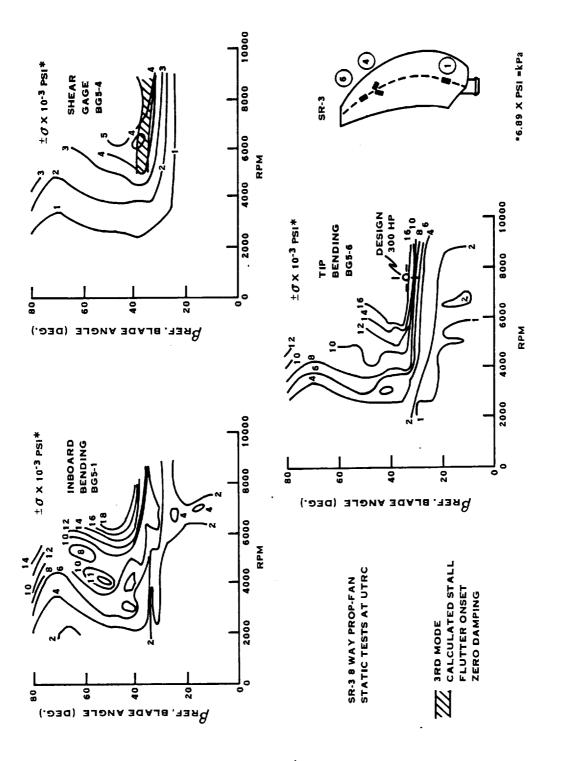




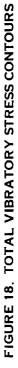
FIGURE 15. SR-3 MODEL PROP-FAN UTRC WIND TUNNEL STATIC TESTS STABILITY PREDICTIONS

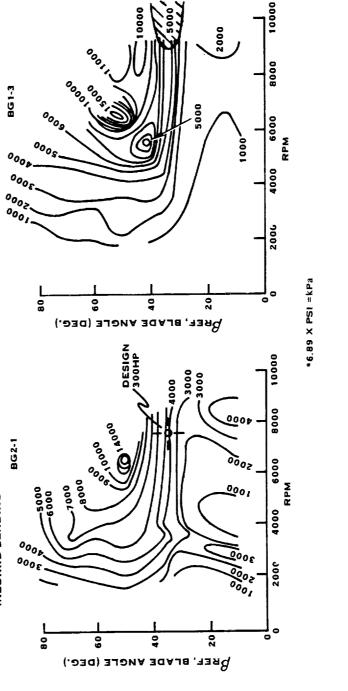


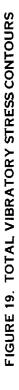
-

-


.....


*6.89 X PSI = kPa




SR-2 8 WAY PROP-FAN STATIC TESTS AT UTRC

46

48

SR-5 5

SR-5 10 WAY PROP-FAN STATIC TESTS AT UTRC (±PSI)*

ZZZ 3RD MODE CALCULATED STALL FLUTTER ONSET ZERO DAMPING

SHEAR

•

INBOARD BENDING

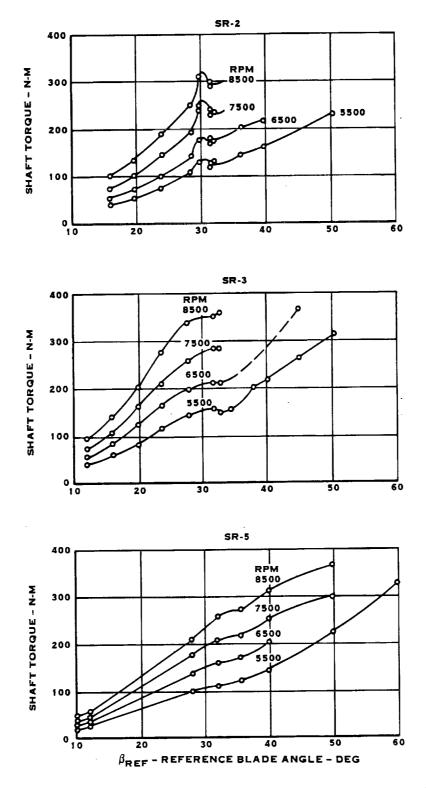


FIGURE 20. TORQUE VS. REFERENCE BLADE ANGLE FOR THE UTRC PROP-FAN STATIC TESTS, SR-2, SR-3 AND SR-5 MODELS

.

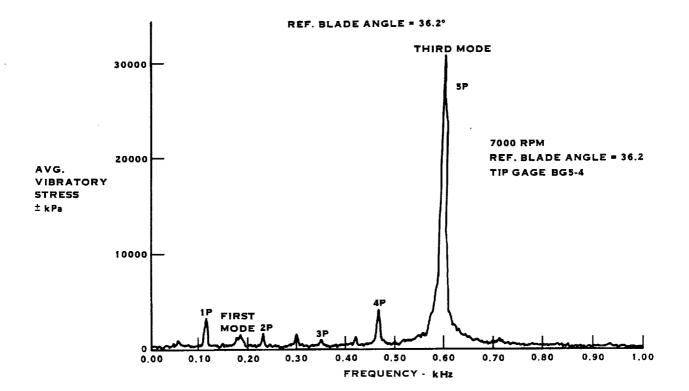
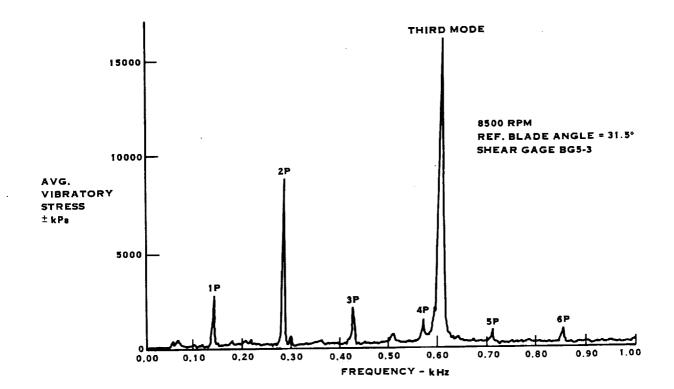
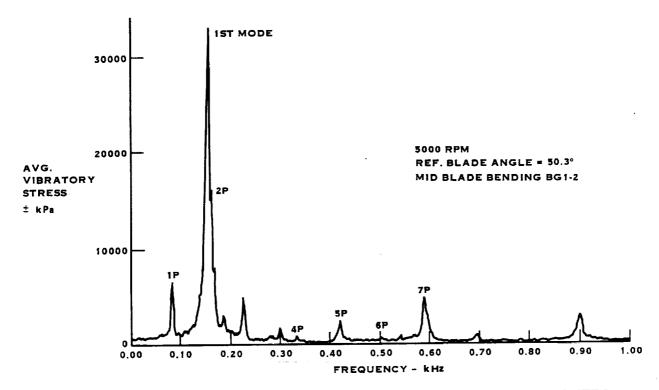




FIGURE 21. SR-2 PROP-FAN MODEL BLADE STALL FLUTTER TESTS AT UTRC

ŝ

Ę

=

-

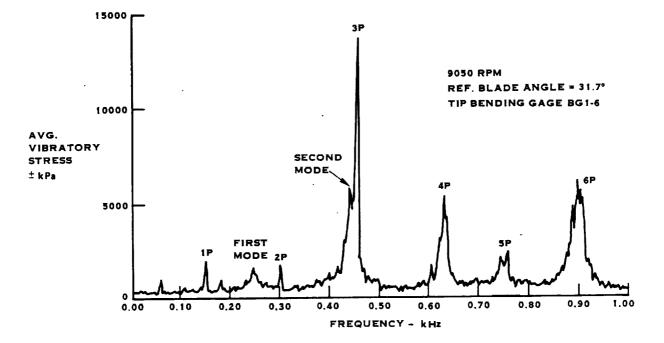


FIGURE 24. SR-3 PROP-FAN MODEL BLADE STALL FLUTTER TESTS AT UTRC

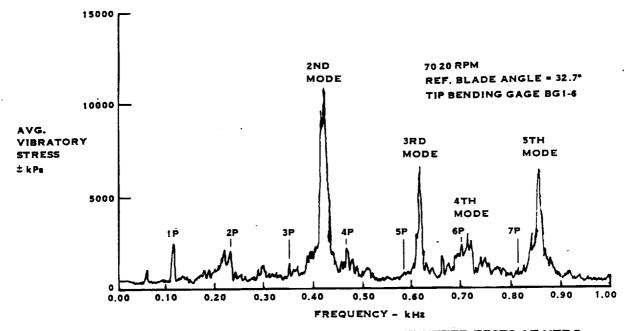


FIGURE 25. SR-3 PROP-FAN MODEL BLADE STALL FLUTTER TESTS AT UTRC

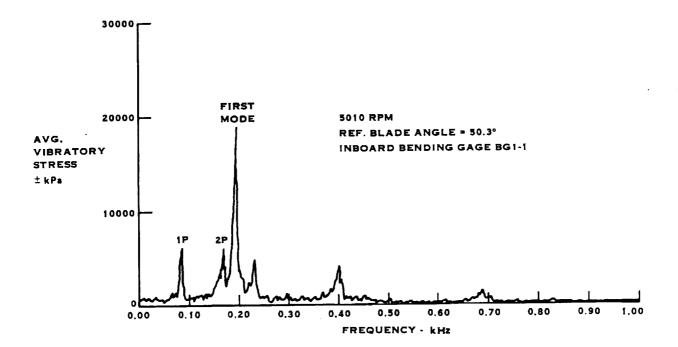
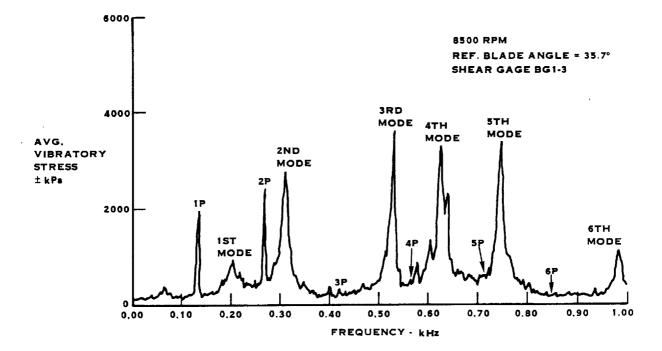
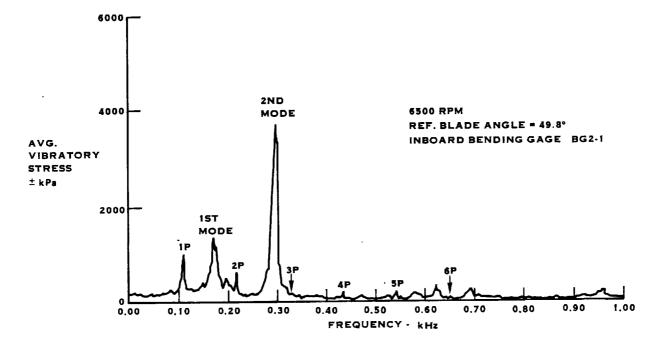



FIGURE 26. SR-3 PROP-FAN MODEL BLADE STALL FLUTTER TESTS AT UTRC



÷

.

.

FIGURE 27. SR-5 PROP-FAN MODEL BLADE STALL FLUTTER TESTS AT UTRC

.

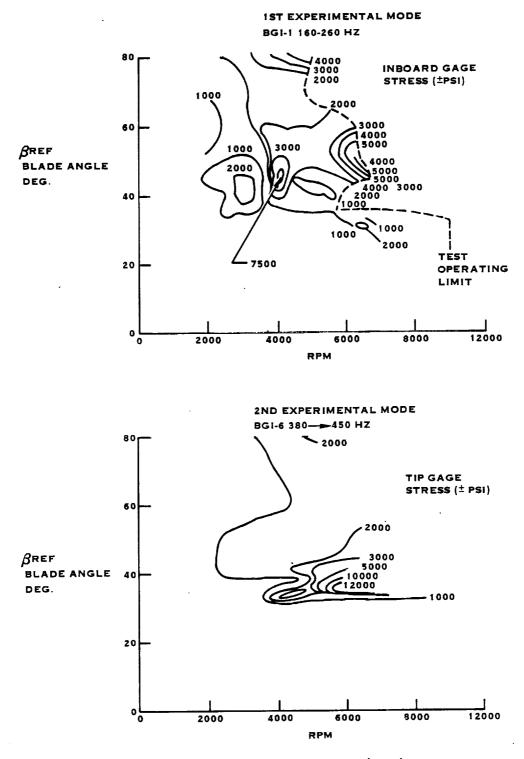


FIG. 29 MODAL VIBRATORY STRESS (±PSI)* CONTOURS FROM THE SR-3 MODEL BLADE STALL FLUTTER TESTS AT UTRC *(6.89 X PSI = kPa)

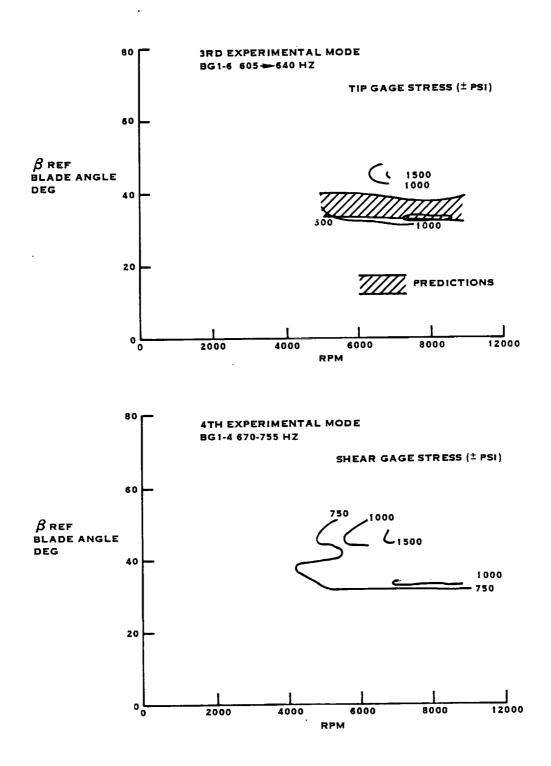
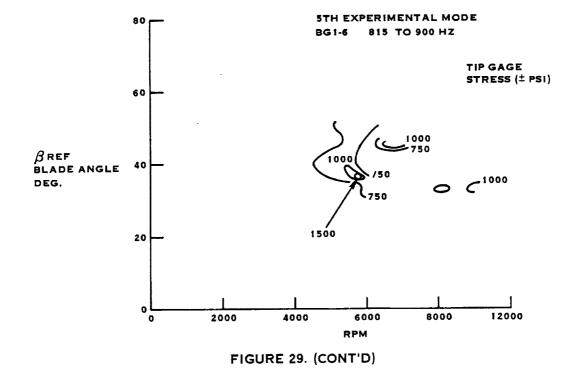
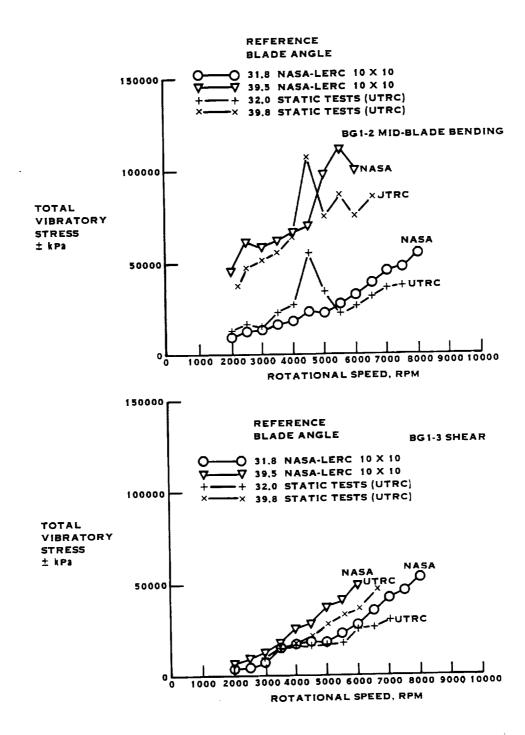




FIGURE 29. (CONT'D)

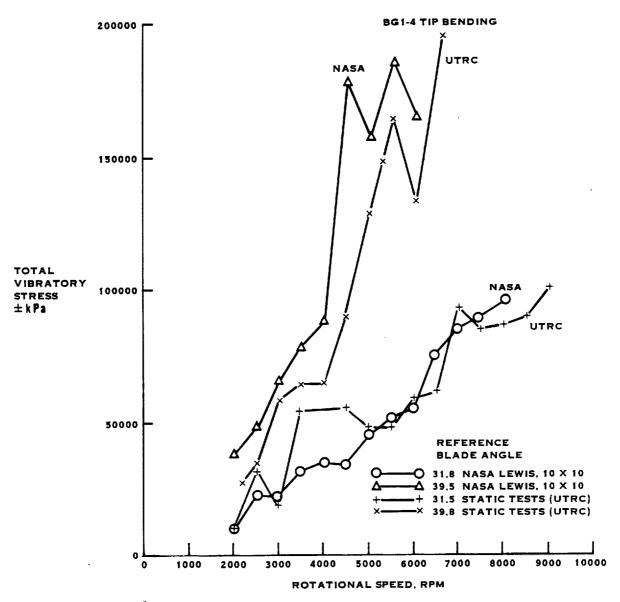


FIGURE 30. (CONT'D). SR-2 MODEL PROP-FAN COMPARISON OF TESTS MACH NO. = 0.0 NO TILT

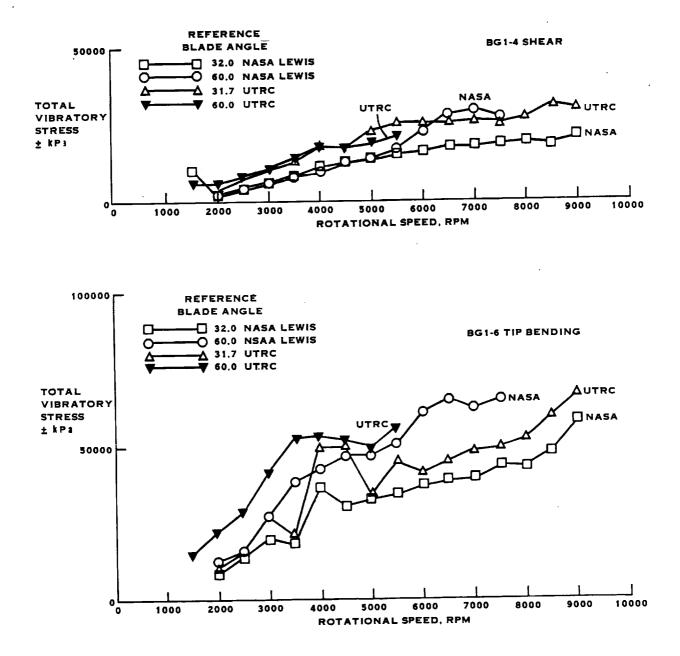


FIGURE 31. SR-3 MODEL PROP-FAN COMPARISON OF TESTS MACH NO. = 0.0 NO TILT

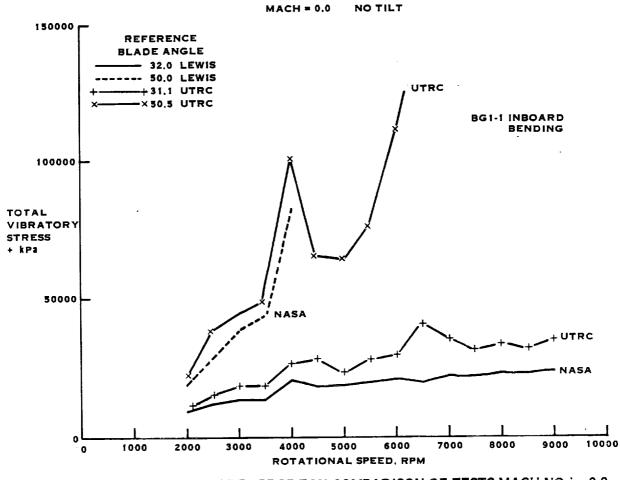


FIGURE 31. CONT'D. SR-3 MODEL PROP-FAN COMPARISON OF TESTS MACH NO.] = 0.0 NO TILT

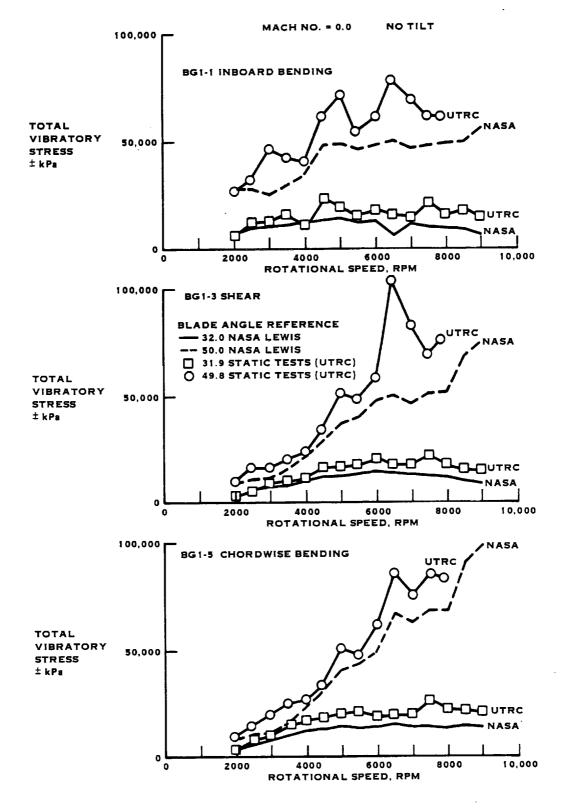


FIGURE 32. SR-5 MODEL PROP-FAN COMPARISON OF TESTS

APPENDIX A

TOTAL VIBRATORY STRESS* PLOTTED AS A FUNCTION OF RPM FOR VARIOUS BLADE ANGLES AS OBSERVED IN THE UTRC STATIC STALL FLUTTER TESTS ON THE SR-2, SR-3 AND SR-5 MODEL BLADES

· .

*Infrequently repeating peak stress as taken from brush charts.

· · · · · · .

APPENDIX A TABLE OF CONTENTS

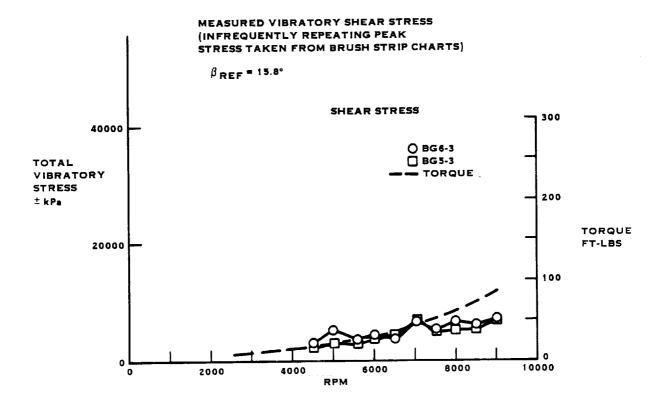

.

FIG NO	PROP-FAN MODEL	BLADE ANGLE, DEG	STRESS TYPE
A-1	SR-2	15.8, 19.6	SHEAR
A-2	SR-2	23.8, 27.4	SHEAR
A-3	SR-2	29.7, 32	SHEAR
A-4	SR-2	31.5, 36.2	SHEAR
A-5	SR-2	39.8, 50.3	SHEAR
A-6	SR-2	60.3, 69.9	SHEAR
A-7	SR-2	79.6	SHEAR
A-8	SR-2	15.8 through 32	TIP-BENDING
A-9	SR-2	36.2 through 79.6	TIP-BENDING
A-10	SR-3	10.0 through 32.7	TIP-BENDING
A-11	SR-3	34.0 through 44.9	TIP-BENDING
A-12	SR-3	50.3 through 80.0	TIP-BENDING
A-13	SR-3	10.0 through 32.7	TORSION
A-14	SR-3	34.0 through 80.0	TORSION
A-15	SR-5	10.0, 12.0	INBD. BENDING TIP BENDING SHEAR
A-16	SR-5	28.0, 39.1	INBD. BENDING TIP BENDING SHEAR
A-17	SR-5	35.7, 39.9	INBD. BENDING TIP BENDING SHEAR
A-18	SR-5	49.8, 59.6	INBD. BENDING TIP BENDING SHEAR

APPENDIX A TABLE OF CONTENTS (Continued)

FIG NO	PROP-FAN MODEL	BLADE ANGLE, DEG	STRESS TYPE
A-19	SR-5	69.6, 79.7	INBD. BENDING TIP BENDING SHEAR
A-20	SR-5	10.0 through 59.6	INDB. BENDING
A-21	SR-5	59.6 through 79.7	INDB. BENDING

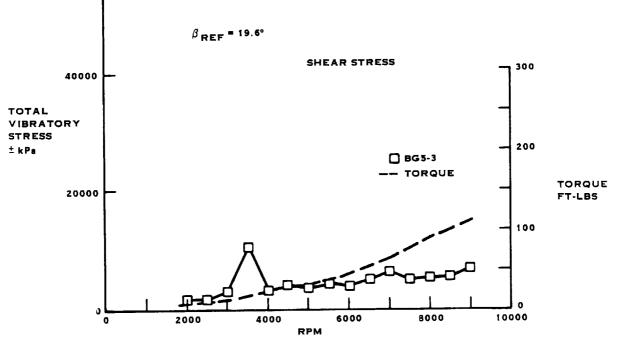


FIGURE A-1. SR-2 8 WAY STATIC PROP-FAN TESTS AT UTRC

71

•

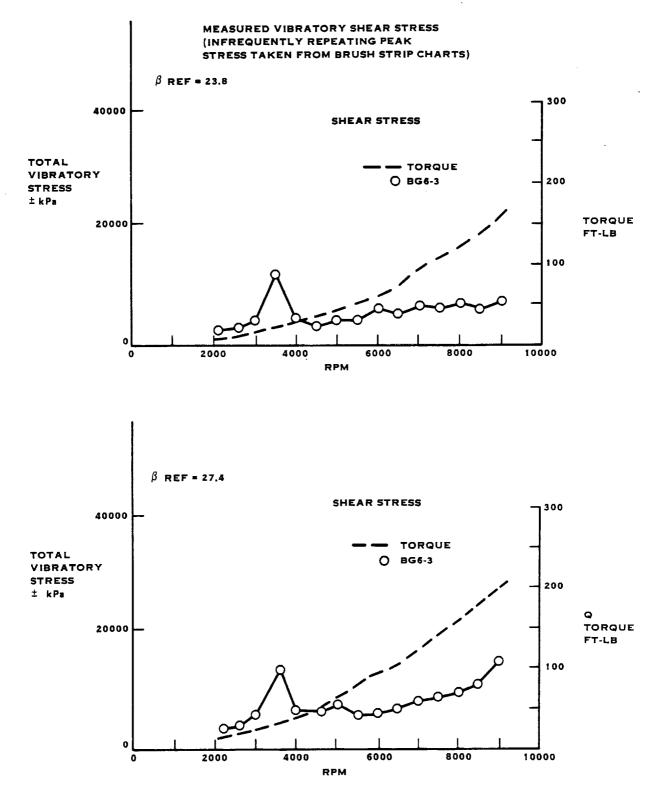
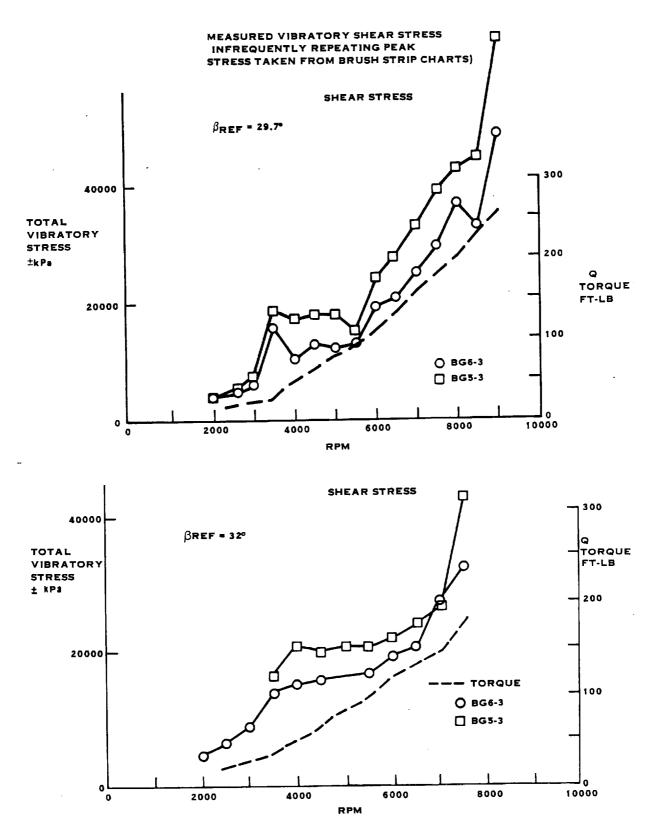
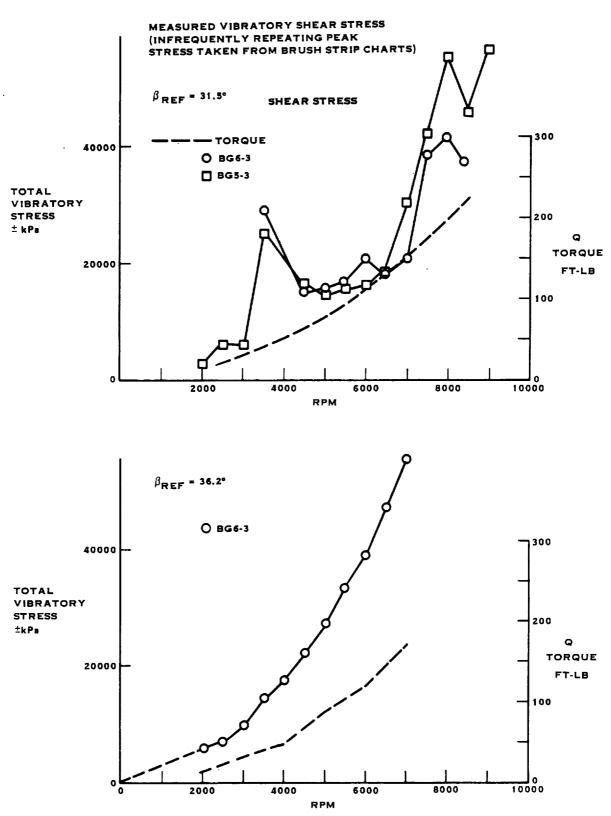




FIGURE A-2, SR-2 8 WAY STATIC PROP-FAN TESTS AT UTRC

FIGURE A-3. SR-2 8 WAY STATIC PROP-FAN TESTS AT UTRC

101 1.1.

. . .

ļ

FIGURE A-4. SR-2 8 WAY STATIC PROP-FAN TESTS AT UTRC

 $\mathbf{74}$

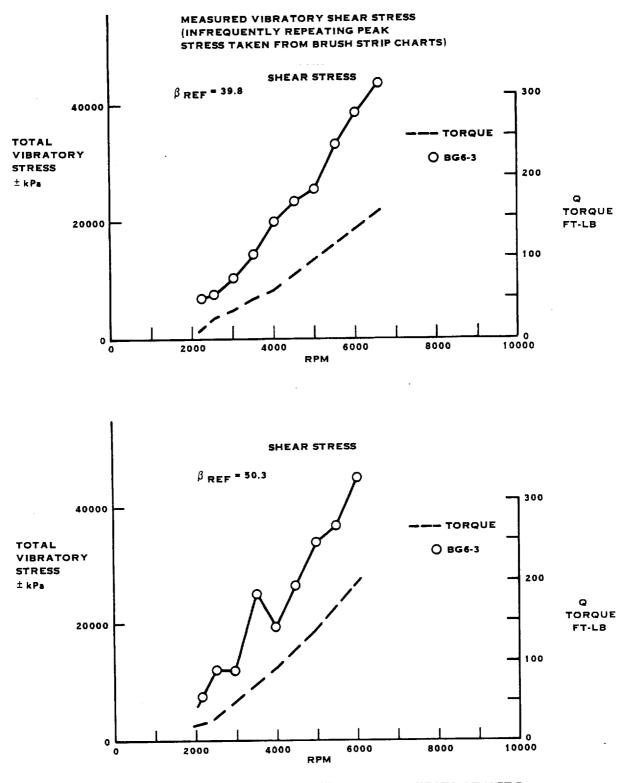
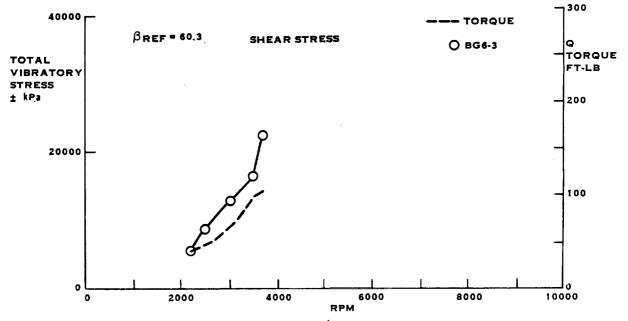
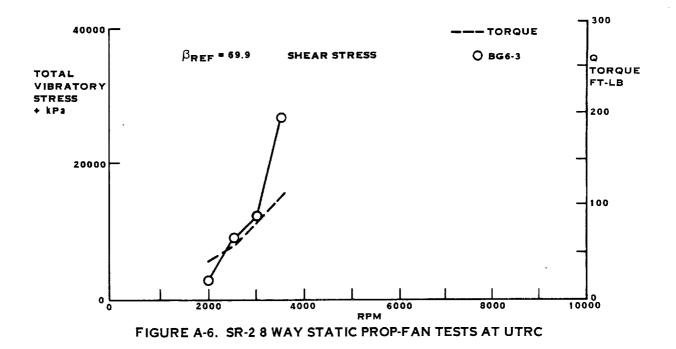
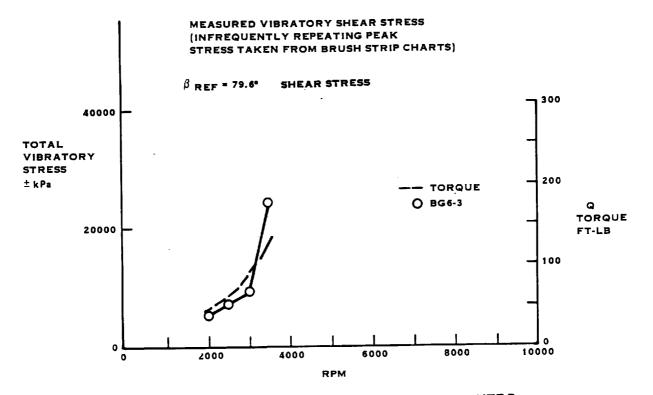
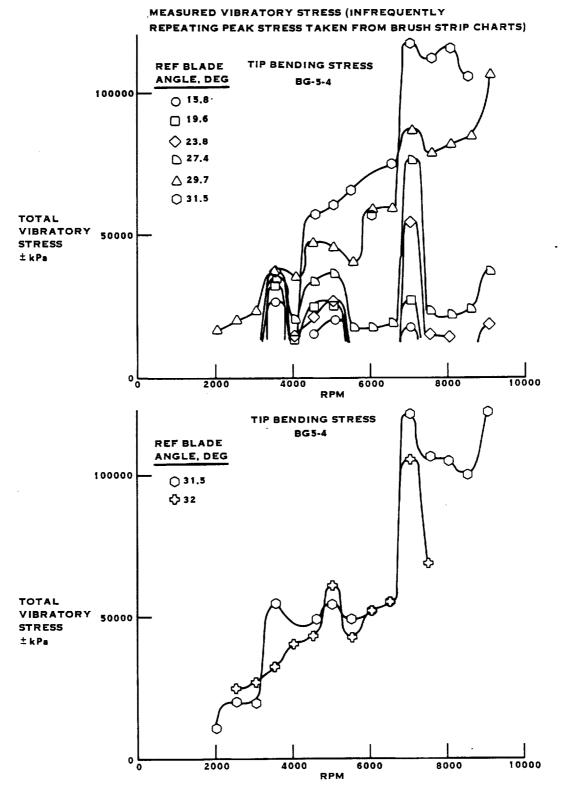
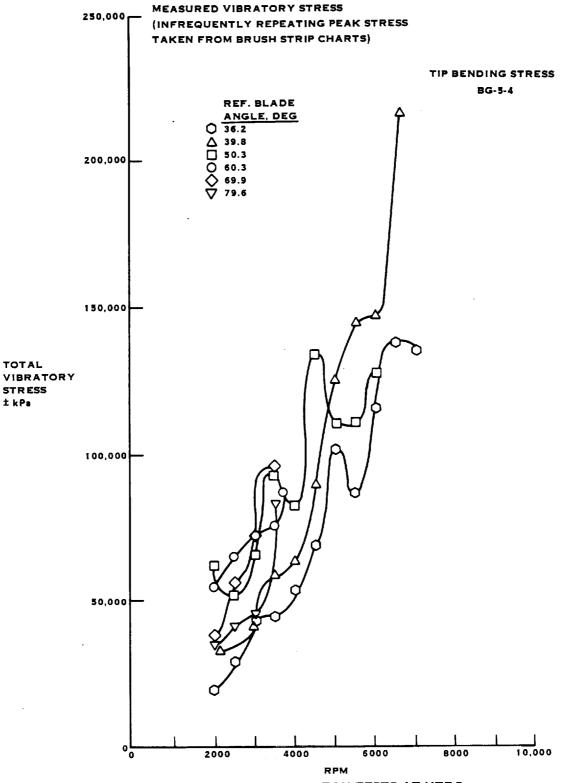
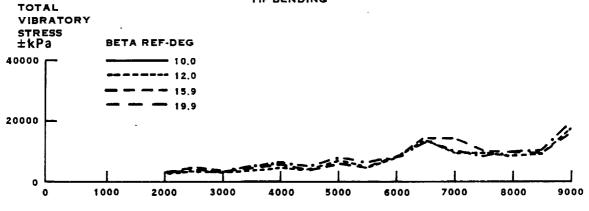





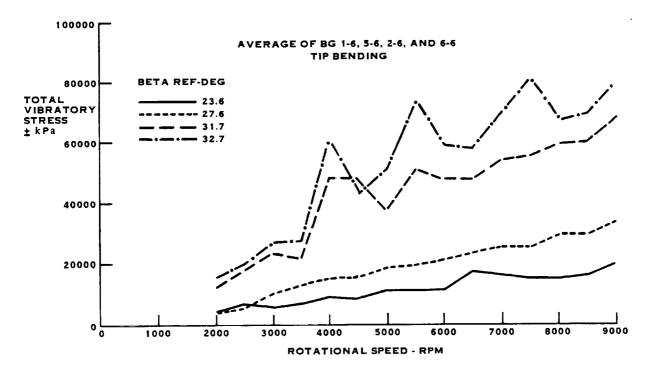
FIGURE A-5. SR-2 8 WAY STATIC PROP-FAN TESTS AT UTRC



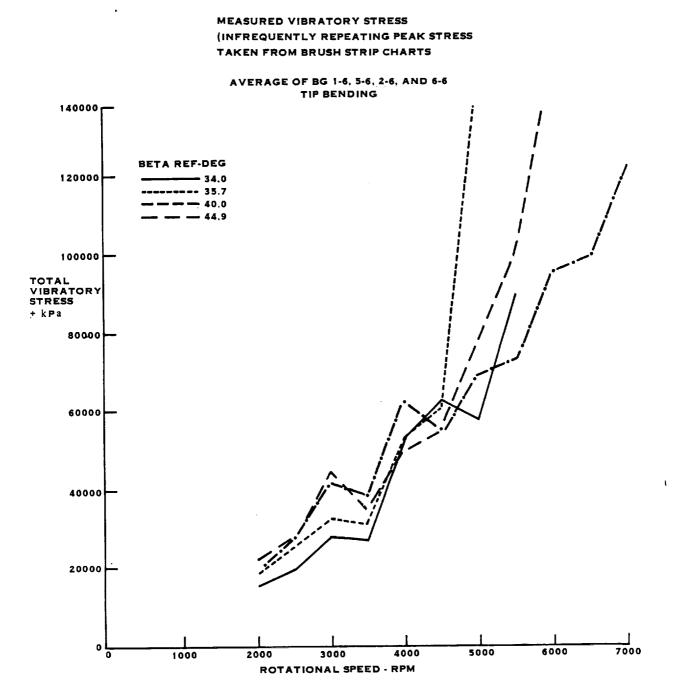
Ξ

FIGURE A-8. SR-2 MODEL PROP-FAN TEST AT UTRC

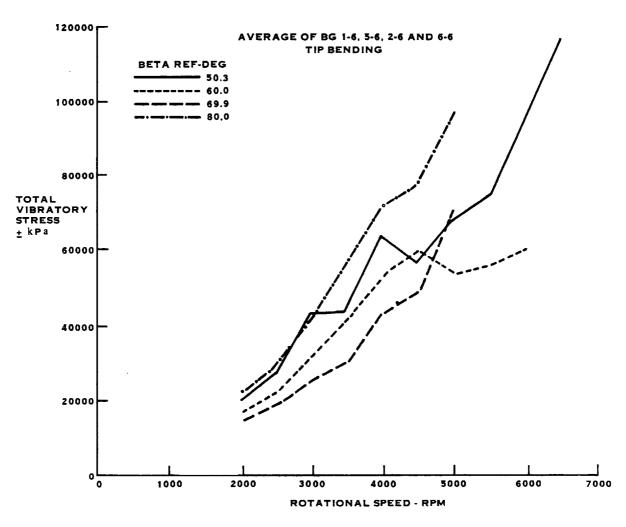



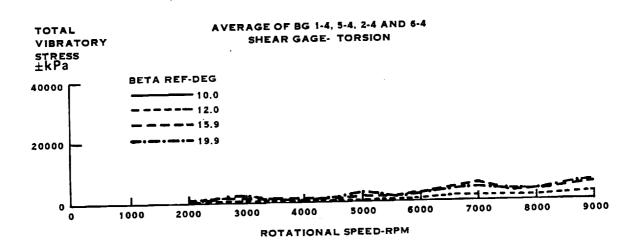

FIGURE A-9. SR-2 MODEL PROP-FAN TESTS AT UTRC

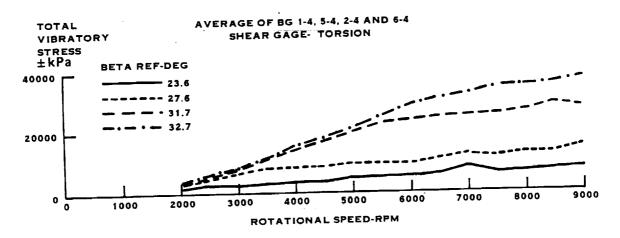
MEASURED VIBRATORY STRESS (INFREQUENTLY REPEATING PEAK STRESS TAKEN FROM BRUSH STRIP CHARTS)

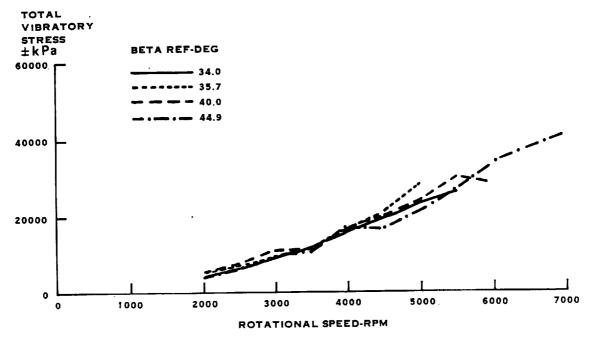


ROTATIONAL SPEED-RPM






MEASURED VIBRATORY STRESS (INFREQUENTLY REPEATING PEAK STRESS TAKEN FROM BRUSH STRIP CHARTS)



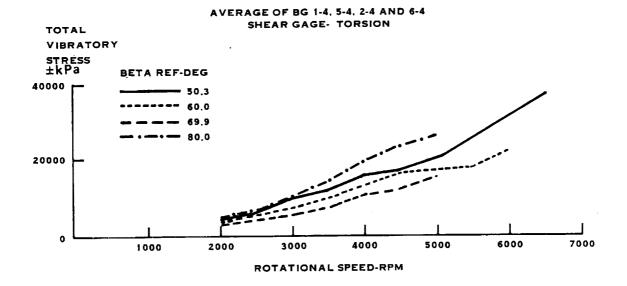


FIGURE A-13. SR-3 MODEL STATIC TESTS AT UTRC

MEASURED VIBRATORY STRESS (INFREQUENTLY REPEATING PEAK STRESS TAKEN FROM BRUSH STRIP CHARTS

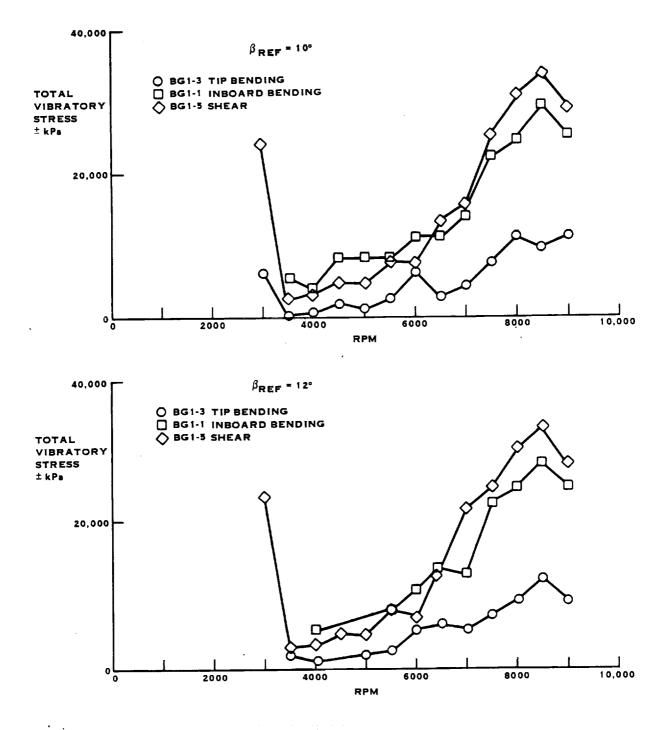

AVERAGE OF BG 1-4, 5-4, 2-4 AND 6-4 SHEAR GAGE- TORSION

FIGURE A-14. SR-3 MODEL STATIC TESTS AT UTRC

MEASURED VIBRATORY STRESS (INFREQUENTLY REPEATING PEAK STRESS TAKEN FROM BRUSH STRIP CHARTS)

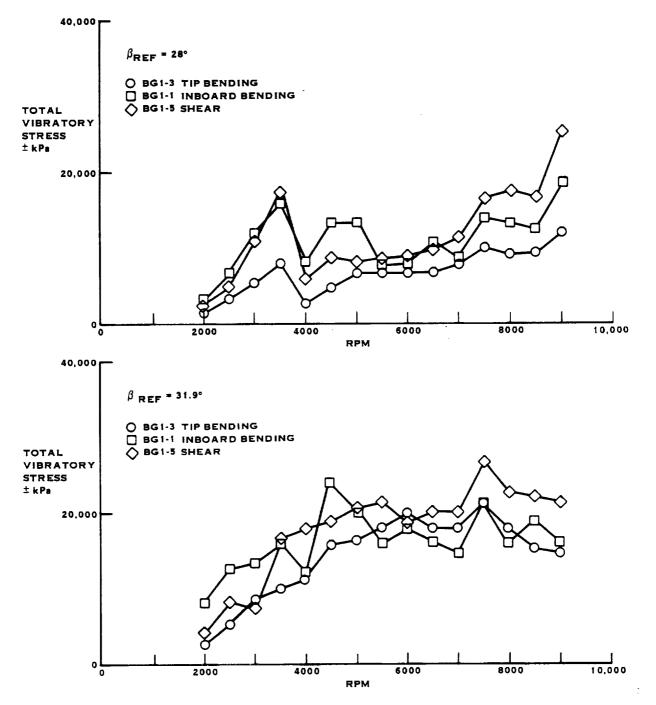

1

FIGURE A-15. SR-5 10 WAY STATIC PROP-FAN TESTS AT UTRC

85

• .

ŧ

FIGURE A-16. SR-5 10 WAY STATIC PROP-FAN TESTS AT UTRC

.

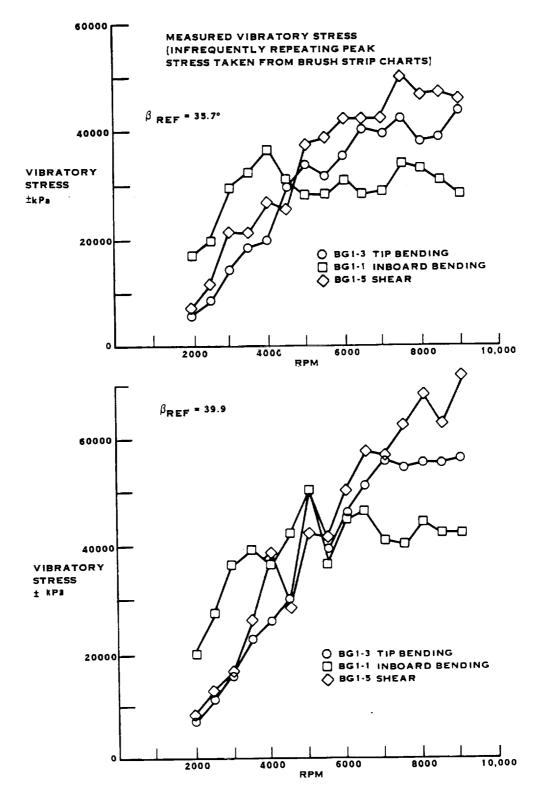
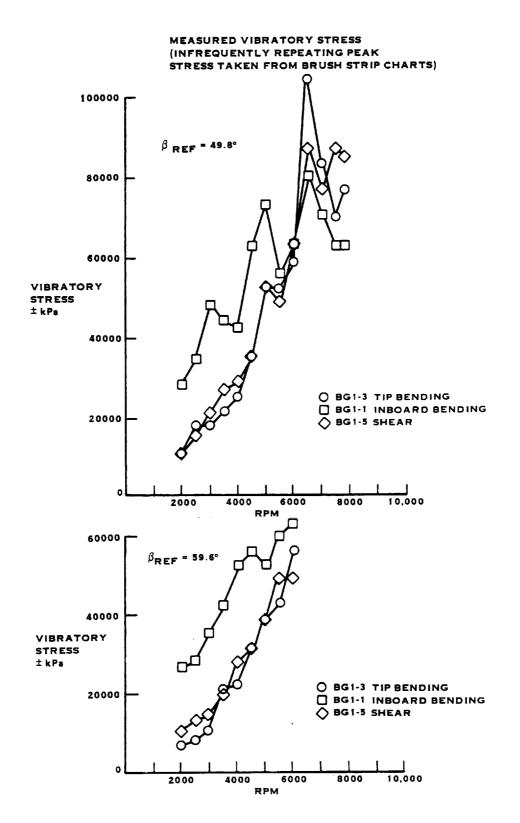



FIGURE A-17. SR-5 10 WAY STATIC PROP-FAN TESTS AT UTRC.

Ξ

FIGURE A-18. SR-5 10 WAY STATIC PROP-FAN TESTS AT UTRC

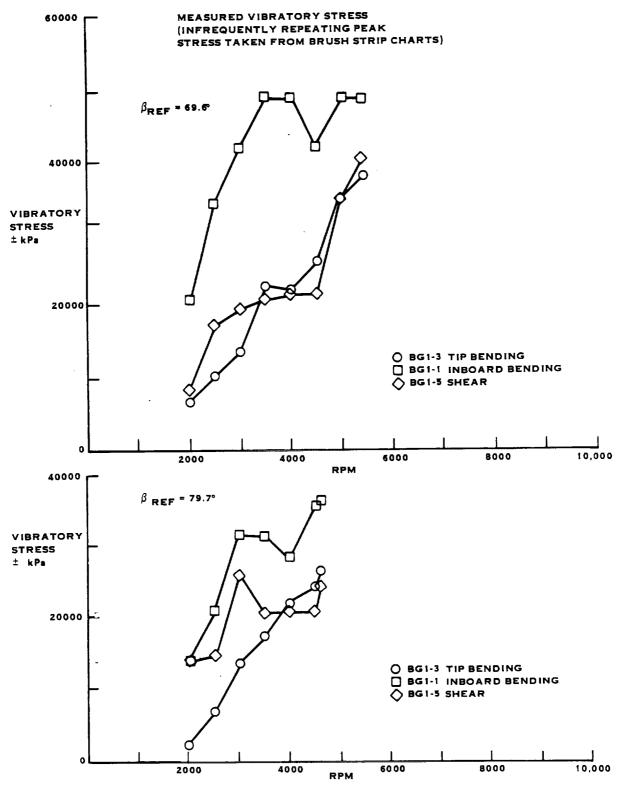


FIGURE A-19. SR-5 10 WAY STATIC PROP-FAN TESTS AT UTRC

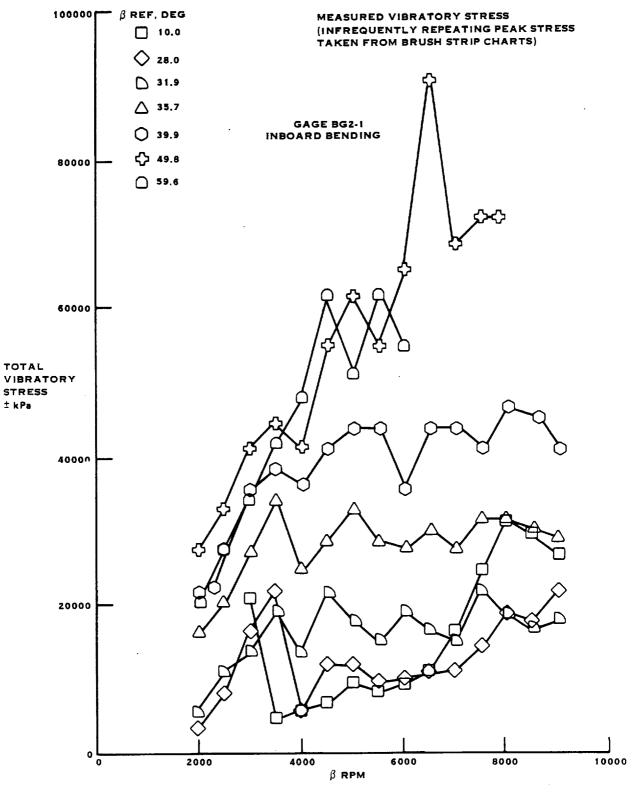


FIGURE A-20. SR-5 10 WAY STATIC PROP-FAN TESTS AT UTRC

MEASURED VIBRATORY STRESS (INFREQUENTLY REPEATING PEAK STRESS TAKEN FROM BRUSH STRIP CHARTS)

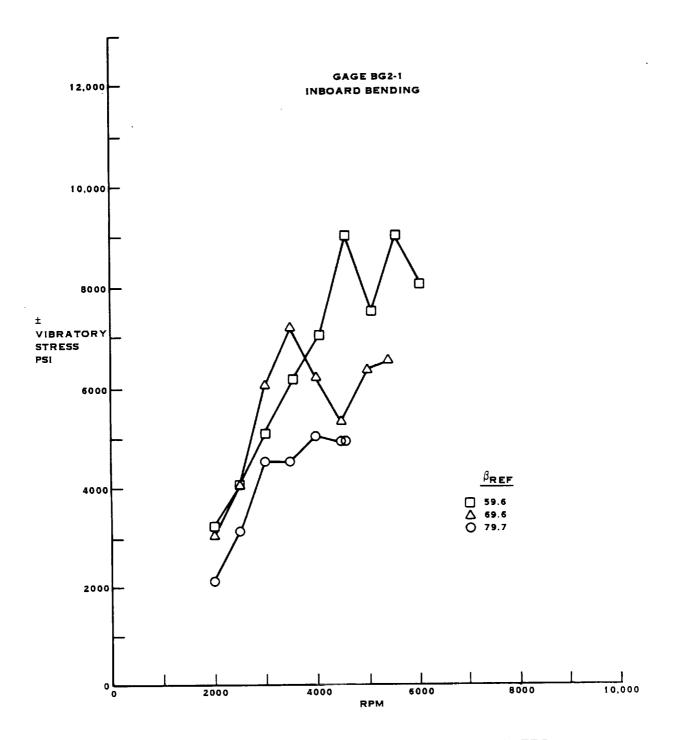


FIGURE A-21. SR-5 10 WAY STATIC PROP-FAN TESTS AT UTRC

. -• 1 •

-

APPENDIX B

STRESS PEAK TABULATION FOR THE SR-3 MODEL PROP-FAN

This table contains data obtained from spectral analyses using the computerized peak picking routines developed by Hamilton Standard. Listed are the predominant frequencies measured for each strain gage signal, followed by the stress amplitude. These are listed for each operating condition defined by:

,

REF. BLADE ANGLE RPM TORQUE POWER COEFFICIENT

. .

.

ORIGINAL PAGE IS OF POOR QUALITY

TABLE B-1. SR-3 PROP-FAN MODEL STATIC TESTS AT UTRC SPECTRAL STRESS PEAKS AND FREQUENCIES

	SPECTRAL STRESS PEAKS AND FREQUENCIES						
	Ref.						
	Blade						
B	Angle			Power	Gage	No. of	
Run		RPM	Torque	Coeff	No.	Peaks	Spectral Frequencies(HZ)/Vibratory Stress (psi)
No.	Deg.			.2617	BG1-4	0	
2 3 4 5	12 12 12	9050 8630	80 70	.2617	BG1-4 BG1-4	0	
4	12	8025	65	.2518	BG1-4	õ	
5	12	7500	55	.262	BG1-4	0	
6 7	12	7025	48	.2606	BG1-4	0	
Z	12 12	6500	42	.2663	BG1-4 BG1-4	0	
8 7	12	6025 5500	35 30	·2583 ·2457	BG1-4	ŏ	
10	12	5000	25	.2679	BG1-4	ŏ	
ii	12	4490	20	.2658	BG 1 - 4	٥	
12	12 12 12 12 12	3990	18	.3029	BG1-4	0	
13	12	3525	12	.2587 .2977	BG1-4 BG1-4	ô	
14 15	12	3000 2550	10 9	.3708	BG1-4	ŏ	
16	12	2140	ź	.4095	BG1-4	0	
23	12	9030	80	.2617	BG1-1	0	
	12	8630	70	.2518	BG1-1	0	
4	12 12	8025	65	.2704	BG1-1	0	
5	12	7500 7025	55 48	.262 .2606	BG1-1 BG1-1	1	234 1128
6 7	12	6500	42	.2663	BG1-1	î	108 677
é	12	6025	35	.2583	BG1-1	0	
9	12	5500	30	,2657	BG1-1	0	
10	12	5000	25	+2679	BG1-1	0	
11	12	4490	20	.2658 .3029	BG1-1 BG1-1	0	
12 13	12	3990 3525	18 12	.2587	BG1-1	ŏ	
14	. 12	3000	10	.2977	BG1-1	ō	
15	12	2550	9	.3708	BG1-1	0	
16	12	2140	7	.4095	BG1-1	0	
2 3	12	9050	80	.2617	BG1-6 BG1-6	1	454 1011
3	12	8630 8025	70 65	.2518 .2704	BG1-6	1	134 502
5	12 12 12	7500	55	.262	BG1-6	ō	
5	12	7025	48	.2606	BG1-6	0	
7	12	6500	42	.2663	8G1-6	1	108 583
8	12	6025	35	.2583	9G1-4	0	
9	12	5500 5000	30 25	.2657 .2679	9G1-6 9G1-6	0	
10	12 12	4490	20	.2658	BG1-6	ŏ	
12	12	3990	18	.3029	9G1-6	o	
13	12	3525	12	2587	9G1-6	0	
14	12	3000	10	.2977	961-6 961-6	0	
15	12 12	2550 2140	9 7	.3708 .4095	BG1-6	0	
18	15.9	9030	115	,377B	BG1-4	ō	
19	15.9	8540	105	.3857	BG1-4	0	
20	15.7	B015	95	. 3962	BG1-4	0	
21	15.9	7540	80	.377	BG1-4 BG1-4	0	
-22	15.7 15.9	7040 6520	70 62	.3784 .3907	BG1-4	ŏ	
24	15.9	6012	55	.4077	BG1-4	ŏ	
25	15.7	5520	45	. 3957	BG1-4	ò	
25 26 27	15.9	5030	40	. 4236	BG 1 - 4	0	
27	15.9	4515	32	. 4206	BG1-4	0	
28	15.9	4005	25	.4176 .4349	BG1-4 BG1-4	0	
29 30	15.9	3510 3023	20 15	.4349 .4398	BG1-4 BG1-4	ŏ	
31	15.9	2505	10	4267	BG1-4	õ	
32	15.9	2140	8	,468	BG1-4	0	
18	15.9	9030	115	.3778	BG1-4	0	
19	13.9	8540	105	.3857	BG1-4 BG1-4	0	
20	15.9	8015	95	.3962	801-4	v	

ORIGINAL PAGE IS OF POOR QUALITY

TABLE B-1 (CONTINUED)

	Ref.							
	81ade							
				D	D = = =	No. of		
Run	Angle		_	Power	Gage	No. of	_	
No.	Deg.	RPM	Torque	Coeff	No.	<u>Peaks</u>	Spectra	al Frequencies(HZ)/Vibratory Stress (psi)
18	15.9	9030	115	.3778	B01-1	1	148 521	
19	15.9	8540	105	.3857	BG1-1	ō	1.0 011	
20	15.9	8015	95	. 3962	BG1-1	0		
20 21	15.9	7540	80	. 377	BG1-1	2	126 558	252 568
22	15.9	7040	70	.3784	BG1-1	2 2	118 812 108 786	234 1243 218 982 -
23	15.9	6520 6012	62 55	.3907 .4077	BG1-1 BG1-1	ő	100 /00	218 762
24 25	15.9 15.9	5520	45	. 3957	BG1-1	ŏ		
26	15.9	5030	40	, 4236	BG1-1	0		
27	15.9 15.9	4515	32	.4206	BG1-1	<u>o</u>		
28	15.9	4005	25 20	.4176	BG1-1 BG1-1	0		
29 30	15.9 15.9	3510 3023	15	.4349 .4398	BG1-1	ŏ		
31	15.9	2505	10	. 4269	BG1-1	ō		
32	15.9	2140	8	.468	BG1-1	0		
19	15.9	9030	115	.3778	BG1-6	2	148 749 142 520	448 682
19	15.9	8340 8015	105 95	.3857 .3962	BG1-6 BG1-6	1	134 560	•
20 21	15.9 15.9	7540	80	.377	BG1-6	i	126 619	
22	15.9	7040	70	.3784	BG1-6	1	118 894	
23	15.9	6520	62	.3907	BG1-6	2	108 690	218 588
24	15.9	6012	55	. 4077	BG1-6	0		
25	15.7	5520	45 40	.3957 .4236	BG1-6 BG1-6	0		
26 27	15.9 15.9	5030 4515	32	.4236	BG1-6	ŏ		
29	15.9	4005	25	.4176	BG1-6	ō		
29	15.9	3510	20	,4349	BG1-6	0		
30	15.9	3023	15	.4398	BG1-6	0		
31	15.9	2505	10 8	. 4269 . 468	BG1-6 BG1-6	0		
32 33	15.9 19.9	2140 9020	165	.5433	BG1-4	ŏ		
34	19.9	8500	150	.5562	BG1-4	ō		
34 35	19.9	8000	135	.5651	BG1-4	0		
36	19.9	7542	120	.5652	BG1-4	0		
37	19.9 19.9	7030 6525	100 92	.5421 .5789	BG1-4 BG1-4	0		
~ .38 39	19.9	6010	75	.5563	BG1-4	ŏ		
40	19.9	5520	60	.5276	BG1-4	0		
41	19.9	5025	50	.5305	BG1-4	0		
42	19.9	4510	42	.5532	BG1-4 BG1-4	0		
43 44	19.9 19.9	4010 3510	35 29	.5831	BG1-4	ő		
45	19.9	3000	21	.6306	BG1-4	ŏ		
46	19.9	2500	15	.643	BG1-4	0		
47	19.9	2140	11	. 6435	BG1-4	0	453 458	
33	19.9 19.9	9020 8500	165 150	•5433 •5562	BG1-1 BG1-1	1 2	452 659 142 552	284 521
34 35	19.9	8000	135	.5651	BG1-1	ī	266 529	
36	19.9	7542	120	.5652	BG1-1	0		
37	19.9	7030	100	-5421	BG1-1	2	11B 657	234 862
-30	19.9	6525	92 75	5789	BG1-1	2 1	108 739 200 509	218 608
39	19.9 19.9	6010 5520	60	.5563	BG1-1 BG1-1	0	200 307	
40 41	19.9	5025	50	.5305	BG1-1	ŏ		
42	19.9	4510	42	.5532	BG1-1	0		
43	19.7	4010	35	.5831	BG1-1	0		
44	19.9	3510	29	.6306 .5433	BG1-1 BG1-6	0 2	150 582	452 860
33 34	19.9 19.9	9020 8500	165 150	.5562	BG1-6	i	142 532	
35	19.9	8000	135	.5651	BG1 - 6	ō		
36	19.9	7542	120	.5652	9G1-6	0		
37	19.9	7030	100	.5421	BG1-6	1	118 600	
- 38	19.9	6525	92 75	.5789	9G1-6	1	108 678	
39 40	19.9 19.9	6010 5520	40	.5563 .5276	BG1-6 BG1-6	0		
41	19.9	5025	50	.5305	BG1-6	õ		
••					-			

÷

5

.

TABLE B-1 (CONTINUED)

Ref.

	Blade						
Run	Angle		_	Power	Gage	No. of	E English (UZ) (UI) second Street (oci)
<u>No.</u>	Deg.	RPM	Torque	Coeff	No.	Peaks	Spectral Frequencies(HZ)/Vibratory Stress (psi)
42 43	19.9 19.9	4510 4010	42 35	.5332	BG1-6 BG1-6	0	
44	19.9	3510	29	.6306	BG1-6	0	
53 54	23.6 23.6	9035 8570	230 205	.7349 .7478	BG1-4 BG1-4	0	
55 56 57	23.6	8025	180	.7488	BG1-4	0	
56	23.6 23.6	7520 7010	155 130	.7343 .7088	BG1-4 BG1-4	0	
58	23.6	6540	120	.7517	BG1-4	0	
59	23.6	5970	100	.7317	BG1-4 BG1-4	0	
60 61	23.6 23.6	5535 5000	85 70	.7433 .7502	BG1-4	ŏ	
62	23.6	4500	55	.7277	BG1-4	0	
63 53	23.6 23.6	4025 9035	45 230	.7442 .7549	BG1-4 BG1-1	0 1	452 553
54	23.6	8570	205	.7478	BG1-1	1	142 542
55	23.6	8025	180	.7488	BG1-1 BG1-1	0	
56 57	23.6 23.6	7520 7010	155 130	.7343 .7088	BG1-1	0 2	118 647 234 819
58	23.6	6540	120	.7517	BG1-1	2 2	108 767 218 900
59 60	23.6 23.6	5970 5535	100 85	.7517 .7433	BG1-1 BG1-1	1	200 551
61	23.6	5000	70	,7502	BG1-1	0	
62	23.6 23.6	4500 4025	55 45	.7277 .7442	BG1-1 BG1-1	0	
63 64	23.6	3510	35	.7611	BG1-1	ŏ	
65	23.6	2995	25	.7467	BG1-1	0	
66 67	23.6 23.6	2510 2080	18 10	.7654 .6192	BG1-1 BG1-1	0	
53	23.6	9035	230	.7549	BG1-6	2	150 527 452 983
54 55	23.6	8570	205 180	,7478 ,7488	BG1-6 BG1~6	1 0	142 580
56	23.6 23.6	8025 7520	155	,7343	BG1~6	ŏ	
57	23.6	7010	130	·708B	BG1-6	ĩ	118 612
58 59	23.6 23.6	6540 5970	120 100	.7517 .7517	BG1-6 BG1-6	1	108 707
60	23.6	5535	85	.7433	BG1-6	0	
61 62	23.6 23.6	5000 4500	70 55	.7302 .7277	BG1-6 BG1-6	0	
63	23.6	4025	45	.7442	BG1-6	0	
64	23.6	3510	35	.7611	BG1-6	0	
53 54	23.6 23.6	9035 8570	230 205	.7549 .7478	BG1-1 BG1-1	ŏ	
55	23.6	8025	180	.748B	BG 1 - 1	1	134 68B
56 57	23.6 23.6	7520 7010	155 130	.7343 ,7088	BG1-1 BG1-1	1	126 933 118 1134
58	23.6	6540	120	.7517	BG1-1	2	110 792 218 1469
59 60	23.6 23.6	5970 5535	100 85	.7517 .7433	BG1-1 BG1-1	2	100 659 200 328 92 340
61	23.6	5000	70	.7502	BG1-1	ò	+2 J+0
62	23.6	4500	55	.7277	BG1-1	0	
63 64	23.6 23.6	4025 3510	45 35	.7442 .7611	BG1-1 BG1-1	0	
65	23.6	2995	25	.7467	BG1-1	0	
66 67	23.6 23.6	2510 2080	18 10	.76 54 .6192	BG1-1 BG1-1	0	
53	23.6	9035	230	.7549	BG1-6	2	150 578 454 811
54	23.6	8570	205	.7478	BG1-6	1	144 682
55 56	23.6 23.6	8025 7520	180 155	.7488 .7343	BG1-6 BG1-6	1 1	134 B60 126 970
57	23.6	7010	130	.7088	BG1-6	1	118 1031
58 59	23.6 23.6	6340 5970	120 100	.7517 .7517	BG1-6 BG1-6	1	110 621 100 552
60	23.6	5535	85 70	.7433	BG1-6	ĩ	92 516
61	23.6	5000		.7502	BG1-6	0	
62	23.6	4500	55	.7277	BG1-6	0	,

TABLE B-1 CONTINUED

TABLE B-1 CONTINUED											
	Ref.										
	Blade										
-				n	6	No. of					
Run	Angle		_	Power	Gage	No. of					
<u>No.</u>	Deg.	<u>RPM</u>	Torque	Coeff	No.	<u>Peaks</u>	Spectr	<u>ral F</u>	requencies(HZ)/Vibratory Stress (psi)		
43	23.6	4025	45	.7442	BG1-6	0					
64 65 66 67	23.6	3510	35	.7611	BG1-6	0					
65	23.6	2995 2510	25 18	.7467 .7654	BG1-6 BG1-6	õ					
67	23.6 23.6 27.6	2080	10	.6192	BG1-6	ŏ					
68	27.6	9000	275	.9096	BG 1 - 4	0					
69 70	27.6	8555	250	.9151	BG1-4 BG1-4	0					
70	27.6 27.6	8050 7585	220 190	.9095 .8848	BG1-4	ě					
72	27.6	6960	165	.9126	BG1-4	ŏ					
73 74 75	27.6	6570	145	.9195	BG1-4	0					
74	27.6 27.6	6015 5520	125 105	.9256 .9232	BG1-4 BG1-4	0					
76	27.6	4780	90	.9722	BG1-4	ŏ					
77	27.6	4530	72	.94	BG1-4	0					
78	27.6	4040	55	,9028	BG1-4 BG1-4	0					
79 80	27.6	3505 3020	45 30	.9814 .8812	BG1-4 BG1-4	0					
81	27.6	2570	25	1.0141	BG1-4	ŏ					
. 82	27.6	2145	15	.8734	BG1-4	0					
68	27.6	9000	275	.9096	BG1-1	0	142 849	286 7	A 1		
69 70	27.6 27.6	8555 8050	250 220	.9151 .9095	BG1-1 BG1-1	ź	134 561	268 5	04		
71 .	27.6	7585	190	.8848	BG1-1	ĩ	126 659 116 709	200 0	•••		
72 73	27.6	6960	165	.9126	BG1-1	2	116 709	232 7			
73	27.6	6570	145	.9195	BG1-1	2	110 744	220 1	644		
74 75	27.6	4015 5520	125 105	.9256 .9232	BG1-1 BG1-1	1	184 596				
76	27.6	4980	90	.9722	BG1-1	ī	166 633				
77	27.6	4530	72	.94	.BG1-1	0					
78	27.6	4040	55	.9028	BG1-1 BG1-1	0					
79 80	27.6 27.6	3505 3020	45 30	.9814 .8812	BG1-1 BG1-1	ŏ					
81	27.6	2570	25	1.0141	BG1-1	ŏ					
82	27.6	2145	15	.8734	BG1-1	0					
68	27.4	9000	275 250	.9096 .9151	8G1-6 8G1-6	2 2	150 890 142 1096	452 1 428 9	V28 K7		
69 70	27.6	8555 8050	220	.9095	BG1-6	1	134 778	1.0 /	<i>3,</i>		
71	27.6	7585	190	.8848	BG1-6	1	134 661 116 751				
72	27.6	6760	165	.9126	BG1-6	1 n	116 751	770 (10		
73 74	27.6	6570 6015	145 125	.9195 .9256	BG1-6 BG1-6	2	110 518	220 6	18		
75	27.6	5520	105	.9232	BG1-6	ŏ					
76	27.6	4780	90	.9722	BG1-6	0					
77	27.6	4530	72 55	.94 .9028	9G1-6 9G1-6	0					
78 79	27.6	4040 3505	55 45	.9028	BG1-6	ŏ					
79	27.6	3505	45	.9814	BG1-6	0					
80	27.6	3020	30	.8812	BG1~6	0					
81	27.6 27.6	2570 2145	25 15	1.0141 .8734	PG1-6 PG1-6	0					
82 83	31.7	9030	290	.9486	BG1-4	ŏ					
84	31.7	8570	260	.9484	BG1-4	0					
84	31.7	8570	260	.9484	BG1-4	1	740 680				
83	31.7	9050 8055	290 240	.9486 .991	BG1-4 BG1-4	1	752 737 734 738				
85 86	31.7 31.7	7535	210	.9909	BG1-4	i	734 738 722 643				
87	31.7	7030	180	.9758	BG1-4	1	716 625				
88	31.7	6505	155	.9814	BG1-4	1	704 736 694 760				
87 90	31.7 31.7	6010 5505	135 115	1.0013	9G1-4 9G1-4	1	686 612				
91	31.7	5005	95	1.016	BG1-4	2	680 571	684 5	54		
92	31.7	4520	75	.9835	BG1-4	0					
93	31.7	4055	65	1.0591	BG1-4	0					
94 95	31.7 31.7	3550 3045	45 35	.9566 .9982	BG1-4 BG1-4	0					
75	31./	3083	20	. 7 7 0 4	501 4	~					

TABLE B-1 (CONTINUED)

	_			٦	TABLE	E B-1	(CON	1TI	NUE	D)									
	Ref.						•			-									
	Blade																		
Run	Angle			Power	Gage	No	. of			_		_					•		()
No.	Deg.	RPM	Torque	Coeff	No.	Pe	aks	Spe	ectra	<u>1 Fr</u>	eque	ncl	es (Ha	<u>()/V</u>	Ibra	tory	Str	ess	(ps1)
76	31.7	2525	25	1.0505	BG1-4		0				-								
97	31.7	2130 9050	15 290	· 8838 · 7486	BG1-4 BG1-1		3-	152	570	252	472	454	718						
- 83 84	31.7 31.7	8570	260	.7484	BG1-1		3	238	585	244	582	286	536						
85	31.7	8055	240	.991	BG1-1		3 1	134 126		238	693	269	502						
84 197	31.7 31.7	7535 7030	210 180	.9909 .9758	BG1-1 BG1-1			118	572	220	644	234	612						
88	31.7	6305	155	.9814	BC1-1		3	108	937		1877								
87	31.7 31.7	6010 5505	135	1.0013	BG1-1 BG1-1		220	100	549 725	200 408	833								
90 91	31.7	5005	95	1.016	BG1-1														
92	31.7	4520	75	.9835	BG1-1		2 2 0	190 398	534	396 442	705								
93 94 ·	31.7 31.7	4055 3550	45 45	1.0591 .9566	BG1-1 BG1-1		ő	370	747		301								
95	31.7	3065	35	.9982	BG1-1		1	386	596										
76	31.7	2525	25 15	1.0505 .8858	BG1-1 BG1-1		0												
97 83	31.7 31.7	2130 9050	290	.9486	BG1-6		0 5 3	440			2004	630		888	708	898	920		•
84	31.7	8570	260	.7484	BG1-6		3	428	1050	626 434		890 624		878	811				
85 86	31.7 31.7	8055 7535	240 210	.991 .9909	9G1-6 8G1-6		4	126	672	426	871	432	806	438	983		1016	872 8	73
87	31.7	7030	180	.9758	9G1-6		5	116	948	426	910		922	632		874	623		
87	31.7	7030	180	.9738 .9814	BG1-6 BG1-6		4	118 108	806 819	424 216	903		606 694	862 620		848	522	854 6	03
88 87	31.7 31.7	6305 6010	155 135	1.0013	BG1-6		3	202	548	414	868	846	818						
90	31.7	5505	115	1.0167	BG1-6		5		601 718	408 406	1387	412	999 838	838 832		842	647		
91 92	31.7 31.7	5005 4520	95 75	1.016 .9835	BG1-6 BG1-6		1		1485	400	0/8	410	830	034	8 0 7				
72 73	31.7	4055	65	1.0591	BG1-6		2	398	1821	444	890								
74	31.7	3550	45	.9566	BG1-6		1		573 1073										
95 76	31.7 31.7	3045 2525	35 25	.9982 1.0505	BG1-6 BG1-6		1		529										
97	31.7	2130	15	.8858	BG1-6		0												
x 101 100	35.7	4750	105 105	1.2468 1.2468	BG1-4 BG1-4		2 2		974 777	684 680									
101 102	35.7 35.7	4750 4505	90	1.1081	BG1-4		1	680	830										
103	35.7	4010	70	1.1663	BG1-4		1	672	599										
104 105	35.7 35.7	3515 3005	50 40	1.0842	BG1-4 BG1-4		0					•							
105	35.7	2500	30	1.286	BG1-4		ō												
107	35.7	2170	18	1.0241 .3376	BG1-4 BG1-i		4	107	1140	204	1482	400	676	412	5419				
×100 101	35.7 35.7	5790 4750	145 105	1.2468	BG1-1		2		1105	400	3252								
102	35.7	4505	90	1.1881	9G1-1		4		1082	386		390	550	398	553				
103	35.7	4010 3515	70 50	1.1663 1.0842	BG1-1 BG1-1		2	184	891 845	392	087								
104 105	35.7 35.7	3005	40	1.1868	BG1-1		1	174	1330										
106	35.7	2500	30	1.286	BG1-1		2	170	1182 509	178	773								
107 ¥100	35.7 35.7	2170 3790	18 145	1.0241 .3396	BG1-1 BG1-6		1	6 6	95	(112	12170	824	1615	836					
101	35.7	4750	105	1.2468	9G1-6		4	192	680	386	12170	400	8247		635	826	E13		
102	35.7	4505	90 70	1.1881 1.1663	9G1-6 9G1-6		5 2		757 1041	386 400	1414	340	1453	420	525	040	314		
103 104	35.7 35.7	4010 3515	50	1.0842	BG1-6		3	388	602	396	670	816	504						
105	35.7	3005	40	1.1868	BG1-6		23	176	712 565	386	707	780	512						
106 107	35.7 35.7	2500 2170	30 18	1.286 1.0241	BG1-6 BG1-6		0	1/2	203	1/4	301	380	J12						
108	40	5670	170	1.4167	BG1-4		4		597	694			742	698	712				
109	40	5510	160 130	1.4119 1.3876	BG1-4 BG1-4		3 2		776 536	692 686		/00	596						
110	40 40	5010 4510	130	1.4487	BG1-4		2		615	680	707								
112	40	4000	85	1.4233	BG1-4		0			•									
113	40 40	3520 3015	65 45	1.4055 1.3263	BG1-4 BG1-4		0	174	530										
114 115	40	2530	35	1.4649	BG1-4		ō	••••											
116	40	2160	25	1.4356	BG 1 – 4		0												

TABLE B-1 (CONTINUED)

Ref.

	Blade				_							
Run	Angle			Power	Gage	No. of	_		/ .	· -> ///		rece (pel)
No.	Deg.	RPM	Torque	Coeff	<u>No.</u>	Peaks	Spectr			12)/VIDFa	406 2215	ress (ps1)
108	40	5670	170	1.4167	BG 1 - 1	5	94 620	188 527 198 1034	202 1934 398 1812	402 2309 406 1132	408 2215	
109	40	5510	160	1.4119	BG1-1	4	188 726 190 1184	402 1068	3/0 1012			
110	40	5010	130	1.3876	BG1-1 BG1-1	3	190 1282	202 675	396 811			
111	40	4510 4000	110	1.4233	BG1-1	2	180 2003	184 2435				
112	40 40	3520	65	1.4055	BG1-1	2	160 515	180 1090				
113 114	40	3015	45	1,3263	BG1-1	1	176 2839					
115	40	2530	35	1.4649	BG1-1	1	170 981					
116	40	2160	25	1.4356	BG1-1	1	168 993 94 399	202 656	402 7650	420 534	836 649	840 580
108	40	5670	170	1.4167	BG1-6 BG1-6	6 7	92 566	200 811	396 4004	406 2919	414 1571	834 791
109	40	5510	160	1.4119			842 902		386 558	402 2968	418 560	830 764
110	40	5010	130	1.3876	BG1-6	6	84 606 188 978	194 663 382 511	392 1115	398 1136	826 746	
111	40	4510	110	1.4489	BG1-6 BG1-6	5 2	182 1945	392 727	J/2 1110			
112	40	4000	85 65	1,4233	BG1-6	3	176 705	182 547	390 615			
113	40	3520 3015	45	1.3263	BG1-6	3	176 1955	378 519	384 782			
114	40 40	2530	35	1.4649	BG1-6	3	170 693	378 510	386 625		-	
115 116	40	2160	25	1.4356	BG1-6	1	168 663	340.010				
117	50.3	6225	280	1.9358	BG1-4	2	702 1012	710 810 704 1051				
118	50.3	6030	260	1.9157	BG1-4	2	690 749 690 542	696 800				
119	50.3	5520	230	2.0223	BG1-4 BG1-4	2	682 576	698 738				
-120	50.3	5010	190	2.028 2.0461	BG1-4	õ	001 0/4					
121	50.3	4505	155 125	2,0775	BG1-4	2	182 929	676 557				
122	50.3 50.3	4015 3520	95	2.0541	BG1-4	ō						
123 124	50.3	3025	70	2.0495	BG1-4	0						
125	50.3	2520	50	2.1094	BG1-4	0						
126	50.3	2136	35	2.0552	BG1-4	0	104 1383	184 660	202 4431	208 2753	404 858	412 730
117	50.3	6225	280	1.9358	BG1-1 BG1-1	4	100 1273	192 676	188 918	208 2753 202 5513	212 767	406 955
119	50.3	6030	260	1.9157	BG1-1	4	92 1432	184 1569	196 2464	212 533	402 607	406 614
117	50.3	5520 5010	230 190	2.028	BG1-1	8	84 908	158 512	162 590	168 926	192 2782	200 596
-120	50.3	5010					230 743 74 773	398 598 186 2145	194 776	200 771	206 839	394 537
121	50.3	4505	155	2.0461	BG1-1	6 3	180 3949	184 3686	392 617			
122	50.3	4015	125	2.0775	BG1-1 BG1-1	4	162 1066	174 1448	178 1840	388 541		
123	50.3	3520	95 70	2.0541 2.0495	961-1	i	174 1836	•				
124	50.3 50.3	3025 2520	50	2,1094	BG1-1	2	168 738	172 787				
125	50.3	2136	35	2.0552	BG1-1	1	168 820			430 516	618 727	840 650
117	50.3	6225	280	1.9358	BG1-6	7	202 2784	384 511	404,2026	430 318	910 /2/	910 500
						7	848 747 100 536	202 2333	388 641	406 2135	616 825	838 744
118	50.3	6030	260	1.9157	BG1-6	/	846 897	201 2000				
				2,0223	BG1-6	11	174 506	184 827	194 934	200 737	386 524	400 1368
119	50.3	5520	230	2,0223	501 0		404 1333	410 706	616 627	834 925	838 965	832 658
-120	50.3	5010	190	2.028	BG1-6	6	192 994	390 888	394 1032	404 722	828 686	975, 976
121	50.3	4505	155	2.0461	9G1-6	3	186 672	394 1122 390 1232	826 563			
122	50.3	4015	125	2.0775	BG1-6	2	182 3305 162 635	176 790	388 754	816 546		
123	50.3	3520	75	2.0541	BG1-6	4	172 824	384 837	300 / 31	••••		
124 125	50.3	3025	70	2.0495	BG1-6 BG1-6	1	170 913					
125	50.3	2520	50 35	2.1094 2.0552	BG1-6	ī	170 549					
126	50.3	2136 5280	290	2.7869	BG1-4	i	684 502					
127 129	60 60	5215	280	2.7583	BG1-4	1	686 520					
129	60	5000	260	2.7863	BG1-4	1	684 565					
130	60	4510	220	2.8978	BG1-4	1	678 570					
131	60	4025	180	2.9767	BG1-4	0						
132	60	3500	135	2,9525 2,8895	BG1-4 BG1-4	ŏ						
133	60	3045	100 65	2.8895	BG1-4	ŏ						
134	60 60	2510 2150	50	2.8979	BG1-4	ō						
135 127	60	5280	290	2.7869	BG1-4	3	176 901	190 1253				
129	60	5215	280	2.7583	BG1-4	2	174 512	190 1317				
129	60	5000	260	2,7863	BG1-4	1	188 1340					
130	60	4510	220	2.8978	BG1-4	•	104 2200	•				

ORIGINAL PAGE IS OF POOR QUALITY

100

,

TABLE B-1 (CONTINUED)

	Ref.			7	ABLE	B-1 (COI	NTINU	ED)				
	Blade				_							
Run	Angle			Power	Gage	No. of				11-1 MIL		(mail)
No.	Deg.	RPM	Torque	<u>Coeff</u>	<u>No.</u>	Peaks		ral Freq	uencies	(HZ)/VID	ratory	stress (psi)
131 132	60	4025	160	2.9767	801-4 801-4	1 1	180 1535 176 2022					
132	60 60	3500 3045	135	2.9525 2.8893	BG1-4	i	174 1289					
134	60	2510	65	2.7641	BG1-4	1	168 818					
135	60	2150	50	2.8979 2.7869	BG1-4 BG1-6	1 6	168 1139 194 792	396 843	402 579	616 618	622 528	832 734
127 128	60 60	5280 5215	290 280	2.7583	BG1-6	Å.	190 823	394 725	614 564	830 601		
129	60	5000	260	2.7863	BG1-6	1	188 1155	396 941	612 694	826 678		
130	60	4510	220 180	2.8978 2.9767	BG1-6 BG1-6	3 2	184 1614 180 1378	390 1019 386 974	452 510			
131 132	60 60	4025 3500	135	2.9525	BG1-6	2	176 1376	384 962				
133	60	3045	100	2.8875	BG1-6	2	172 726	382 735				
134	60	2510 2150	65 50	2.7641 2.8979	BG1-6 BG1-6	1	170 518 168 626					
135 135	60 60	2150	50	2.8979	BG1-4	1	676 510					
137	69.9	4500	260	3.4399	BG1-4	0						
138	69.9	4000 3510	205 140	3.4326 3.4793	BG1-4 BG1-4	0						
139	69.9 69.9	3025	118	3.4548	BG1-4	٥						
141	67.9	2510	63	3.5296	BG1-4	0						
142	67.9	2130 4785	58 290	3.425 3.3933	BG1-4 BG1-1	0 1	184 1640					
136 137	69.9 69.9	4500	240	3.4399	BG1-1	i	182 1630					
138	69.9	4000	205	3.4326	BG1-1	1	180 1022					
139	69.9	3510 3025	160 - 118	3.4793 3.4548	BG1-1 BG1-1	1	176 1331 170 869					
140 141	69.9 69.9	2510	83	3.5296	BG1-1	i	170 686					
142	69.9	2130	58	3.425	BG1-1	1	148 571	704 4007	444 571	824 350		
136	69.9	4785	290	3.3933 3.4399	BG1-6 BG1-6	4	184 887 180 891	394 1203 390 981	394 917	820 570		
137	69.9 69.9	4500 4000	260 205	3.4326	BG1-6	2	176 591	388 1125				
139	69.9	3510	160	3.4793	BG1-6	2	176 885	384 851				
140	69.9	3025	118 83	3.4548 3.5296	BG1-6 BG1-6	2	172 590 376 532	382 912				
141 142	69.9 69.9	2510 2130	58	3,425	BG1-6	ò						
143	80	5000	280	3.0006	BG1-4	1	672 760					
144	80	4520 4020	230 185	3.0161 3.067	BG1-4 BG1-4	1	664 544					
145 146	80 80	3530	140	3.01	BG1-4	0						
147	80	3025	100	2.9278	BG1-4	ò						
148 149	80 80	2510 2150	70 48	2,97 47 2,782	BG1-4 BG1-4	. O						
143	80	5000	280	3.0006	BG 1 - 1	4	166 1576	184 3451	200 670	392 947		
144	80	4520	230	3.0161	BG1-1	3	150 701 134 587	182 3280 176 3306	392 620 386 820			
145 146	80 80	4020 3530	185 140	3.067 3.01	BG1-1 BG1-1	3	118 548	172 2355	384 524			
147	80	3025	100	2.9278	BG 1 - 1	1	170 1472					
148	80	2510	70	2.9767	BG1-1	2	166 1104 168 911	172 1057				
149 143	80 80	2150 5000	48 290	2.782 3.0006	BG1-1 BG1-6	1 9	166 1066	182 2046	372 539	392 2299	414 511	430 541
143	80	2000					436 710	610 702	822 945			
144	80	4520	230	3.0161	BG1-6	5	168 500 176 2054	180 2341 384 1433	390 1652	398 766	820 706	
145 146	80 80	4020 3530	185	3.067 3.01	BG1-6 BG1-6		172 1274	384 1120				
147	80	3025	100	2.9278	BG1-6	2 2	168 1033	378 730				
148	80	2510	70	2.9767	BG1-6	1	166 B10 166 971					
149 150	80 34	2130 3700	48 115	2.782 .9483	BG1-6 BG1-4	2	410 1013	684 954				
151	34	5010	100	1.0674	BG1-4	2	682 805	686 796				
152	34	4525	78	1.0206	BG1-4 BG1-4	1	678 640 672 524					
153 154	34 34	4015 3515	62 45	.9758	BG1-4	ò						
155	34	3015	32	.9431	BG 1 - 4	ò						
156	34 34	2520 2167	22 15	.9281 .8558	BG1-4 BG1-4	õ						
157 150	34	216/	15	.7483	BG1-1	ž	204 1064	400 561	410 4352			
	• ·				•							

TABLE B-1 (CONTINUED)

					IADEE	0-1 (00												
	Ref.																	
	Blade											-						
•				B	C	No. of												
Run	Angle			Power	Gage					-								
No.	Deg.	RPM	Torque	Coeff	No.	Peaks	S	pectr	<u>a i</u>	Freq	uenc	les	<u>HZ)/</u>	VIDr	ator	Y S	tres	s(psi)
151	34	5010	100	1.0674	BG1-1	2		564		3 578								
152	34	4525	78	1.0204	BG1-1	3		724		787		524						
153 154	34	4015	42	1.0304	BG1-1	4		583 664	188	3 744	392	1084	378	543				
154 155	34 34	3515 3015	45 32	.9758 .9431	BG1-1 BG1-1	1 2		655	175	3 614								
155	34	2520	22	.9281	BG1-1	ī		949										
157	34	2167	15	.8558	9G1-1	1	168	699										
150	34	5700	115	.9483	BG1-6	4		12449		2 694		672	840	570				
151	34	5010	100	1.0674	BG1-6	3		1532 2932	420) 553) 1026	834	708 705						
152	34	4525 4015	78 62	1.0206	BG1-6 BG1-6	3		2632	400	/ 1020	027	/05						-
153 154	34 34	3315	45	.9758	BG1-6	i		875										
155	34	3015	32	.9431	BG1-6	ĩ	386	700										
156	34	2520	22	.9281	BG1-6	1	172	578										
157	34	2167	15	.8558	BG1-6	0					744			762				
158	32.7	9025	280 265	.921 .9787	BG1-4 BG1-4	4 2		516 1252		2 507 5 817	/ 40	867	/34	/82				
159 160	32.7	8517 8030	230	.9556	BG1-4	2		770		2 805								
161	32.7	7530	210	.9922	BG1-4	2		636		5 629								
162	32.7	7020	175	.9514	BG1-4	2		514	714	959								
163	32.7	6585	155	.9577	BG1-4	1		765										
164	32.7	6025	135	.9963	BG1-4	2		661 547		5 772 5 753								
145	32.7 32.7	5530 5040	110 100	.9637 1.0547	BG1-4 BG1-4	2		573		3 537								
166 167	32.7	4510	75	.9879	BG1-4	ī		648	00.	,,								
168	32.7	3990	60	1.0097	861-4	1		673										
169	32.7	3470	45	1.0013	BG1-4	0												
170	32.7	3055	35	1.0047	BG1-4	0												
171	32.7	2485	20	.8677	BG1-4 BG1-4	0												
172 158	32.7 32.7	2110 9025	15 280	.9026 .921	8G1-4 8G1-1	4	150	802	24/	5 541	250	573	442	510				
159	32.7	8517	265	.9787	BG1-1	ŝ		581		5 644		754	248		284	500		
160	32.7	8030	230	.9556	BG1-1	4	134	655	222	2 568	232	616	238	790				
161	32.7	7530	210	.9922	BG1-1	3	230	827		2 736	426	538		F 70	420			
-162	32.7	7020	175	.9514 .9577	BG1-1 BG1-1	5 3		540 738		5569 1003		712 1051	410	529	420	514		
163 164	32.7 32.7	6585 6025	155 135	.9963	BG1-1	4		703		2 1201	208	850	410	505				
165	32.7	5530	110	.9637	BG1-1	3		996	204	747	404	1147						
166	32.7	5040	100	1.0547	BG1-1	2		775		509								
167	32.7	4510	75	.9879	BG1-1	2	192	665		5 637								
168	32.7	3990	60	1.0097	BG1-1 BG1-1	3	182	688	396	6 1338	440	518						
169 170	32.7 32.7	3470 3055	45 35	1.0013	BG1~1	2	174	870	184	\$ 521								
171	32.7	2485	20	.8677	9G1-1	ī		623	00									
172	32.7	2110	15	.9026	BG1-1	1		671										
158	32.7	9025	280	.921	BG1-6	9		618		527		553	4 3B	764	448	944	628	1437
			- · -			-		1064		5 748 3 1160		615 859		833	742	75.4	882	045
159	32.7	8517	265	.9787	\$G1-6	7		656 748	428	5 1160	430	827	020	013	/42	/34	00-	743
160	32.7	8030	230	.9556	BG1-6	9		638	430	792	440	617	446	512	452	518	622	772
100	5217	0000					870	686		3 1105	888	718						
-161	32.7	7530	210	.9922	BG1-6	7		507	426	5 1126	440	920	622	1115	856	550	864	762
						-		716					4.70		858	047		
162	32.7	7020	175	.9514 .9577	BG1-6 BG1-6	5	414	1396 753) 1579) 764		550 911	612	942 630	620		852	545
163 164	32.7 32.7	6585 6025	155 135	.9963	BG1-6	6		612		3 1080		1313		793	614		842	
165	32.7	5530	110	.9637	BG1-6	4		647		5 2063		519		618				
166	32.7	5040	100	1.0547	BG1-4	2	404	1022	830	610	-							
167	32.7	4510	75	.9879	BG1-6	3	384	839		1060	402	641						
168	32.7	3990	60	1.0097	BG1-6	2		3191	443	2 1490								
169	32.7	3470	45	1.0013	BG1-6 BG1-6	1 2		678 836	701	2 552								
170 171	32.7 32.7	3055 2485	35 20	1.004/	BG1-6	ő	300	930	374									
172	32.7	2110	15	.9026	BG1-6	ŏ												
176	44.9	6800	280	1.6223	BG1-4	4		720		690		1537	732	503				
177	44.9	6520	270	1.7016	BG1-4	3	706	690	71(926	720	626						

-

	Blade					(
Run	Angle			Power	Gage	No. of		-	_		/	MIL.		c		(asi)
No.	Deg.	RPM	Torque	Coeff	No.	Peaks				uencies	(HZ)	/ 10	rate	ry s	LIE:	55 (1951)
178	44.9	6045	235	1,7229	801-4	2	700 1032	710		· · · · · · · · · ·						
179	44.9	3500	195	1.727	BG1-4	3	689 664	696	754	706 535						
180	44.9	5000	165	1.7682	9G1-4	1	688 991									
181	44.9	4500	135	1.7861	BG1-4	1	682 709									
182	44.9	4000	105	1.7582	BG1-4	1	184 670									
183	44.9	3495	80	1,7546	BG1-4	0										
184	44.9	3018	60	1.7648	BG1-4	0										
185	44.7	2505	40	1.7078	BG1-4	Ō										
186	44.9	2157	28	1.6123	BG1-4	0										
176	44.9	6800	280	1.6223	BG1-1	12	114 1349 396 610		677 1001	198 749 412 994		5158 632	226 428			582 533
177	44.9	6520	270	1.7016	BG1-1	9	110 971 412 1369	190 422	682 513	204 3497	208	3683		1804	390	629 1173
178	44.9	6045	235	1.7229	BG1-1	6	100 1668		1609	202 2028		1458	220	1945		1031
179	44.9	5500	195	1.727	BG1-1	9	92 915		502	176 570	184	897	174	1440	204	1031
							254 542	396	584	406 761	200	669	774	800	704	903
180	44.9	5000	165	1.7682	BG1-1	7	166 607 402 727	182	546	190 1593					374	703
181	44.9	4500	135	1.7861	BG1-1	5	74 685	198	1062	200 759	206	1055	394	599		
182	44.9	4000	105	1.7582	BG1-1	2	66 680	182	7468							
183	44.9	3495	80	1.7546	BG1-1	3	160 1106	170	534	180 914						
184	44.9	3019	60	1.7648	BG1-1	1	174 2515									
185	44.9	2505	40	1,7078	BG1-1	1	170 1549									
186	44.9	2157	28	1.6123	BG1-1	1	168 1402								_	
176	44.9	6800	280	1.6223	BG1-6	13	212 1933	220	619	384 509	390	725				1662
1/8		0000	200				414 2519 856 1042		2121	432 512	624	1640	696	525	716	617
177	44.7	6520	270	1.7016	BG1-6	14	204 3036 416 1568		839 715	368 551 434 640		896 1109		997 1001		1640 649
	44.7	6045	235	1.7229	BG1-6	10	844 661 100 538	850	1100	196 517		1058	392	59B	404	1809
178				1.727	BG1-6	9	412 2464 196 1046	620	745 565	838 628 388 727		897 1474	406	1407	414	1125
179	44.9	5500	195			, 7	422 525 174 581	616	660 547	838 907 396 1906		664	456	543	830	541
180	44.9	5000	165	1.7682	BG1-6		934 617 184 917		517	386 523		1444		652		
181	44.9	4500	135	1.7861	BG1-6	5			665	394 712	570		020	001		
182	44.9	4000	105	1.7582	BG1-6	3	184 3039 178 866		689	374 /14						
183	44.9	3495	80	1.7546	BG1-6	23	172 1330		832	386 1418						
184	44.9	3018	60	1.7648	BG1-6	2	170 757		725	300 1410						
185	44.9	2505	40	1.7078	BG1-6		168 856	390	/23							
186	44.9	2157	28	1.6123	BG1-6	1	408 672	400	913	694 717	498	573				
169	38	5725	165	1.3487	BG1-4	4	490 708		599	a, 4 , 1,	0,0	3/3				
190	38	5520	150	1.3189	BG1-4	2			667							
191	38	5020	125	1.3289	BG1-4	2	682 867		644							
192	38	4518	100	1.3125	BG1-4		676 655	004	044							
193	38	3995	80	1.3429	BG1-4	1	676 743									
174	38	3520	60	1.2974	BG1-4	1	670 610									
195	38	3000	45	1.3396	BG1-4	2										
196	38	2510	33	1.3922	BG 1 - 4	0										
197	38	2180	21	1.1839	BG 1 - 4	õ			3/3	204 785	310	582	400	3816		
189	38	5725	165	1.3487	BG 1 - 1	5	190 606		762	394 757		2583	400	3010		
190	38	5520	150	1.3189	BG 1 - 1	4	184 613		1185	402 748	402	2003				
191	38	5020	125	1.3289	BG1-1	3	84 551		1336	402 /48						
192	38	4518	100	1.3125	BG1-1	2	188 1346	348	702							
193.	38	3995	80	1.3429	BG 1 - 1	1	180 1728									
194	38	3520	60	1.2974	BG1-1	1	178 933									
175	38	3000	45	1.3396	BG 1 - 1	. 1	174 2263									
196	38	2510	33	1.3922	BG1-1	1	172 1049									
197	38	2180	21	1.1839	BG 1 - 1	1	168 746			100 01/0	640	774				
189	38	5725	165	1.3487	BG1-6	1	190 532		1996	408 9162	840	774				
190	38	5520	150	1.3187	8G1-6	3	200 640		7823	838 840		3001		999	410	507
191	38	5020	125	1.3287	BG1-6	7	84 546 832 1068		650	392 598		2091				
192 193	38 38	4518 3995	100 80	1.3125	BG1-6 ∋G1-6	6 4	190 744 100 1153		850 906	390 971 390 951		1096 912	446	515	0.0	593

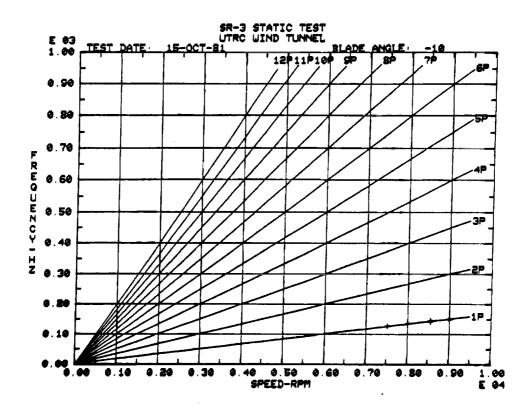
TABLE B-1 (CONTINUED)

Ref.

TABLE B-1 (CONTINUED)

Ref.

Blade Power Gage No. of Run Angle Power Gage No. of No. Deg. RPM Torque Coeff No. Peaks Spectral Frequencies(HZ)/Vibrato 194 38 3520 60 1.2974 B01-6 2 178 532 390 840 195 38 3000 45 1.394 B01-6 2 178 432 390 840 195 38 2510 33 1.3922 B01-6 2 172 780 382 527 197 38 2180 21 1.1839 B01-6 1 170 606 197 -10 9500 11 .0402 B01-4 0 0 197 -10 8540 11 .0402 B01-4 0 200 -10 8520 10 .0417 861-4 0	mu Strang (not
No. Deg. RPM Torque Coeff No. Peaks Spectral Frequencies (HZ)/Vibrato 194 38 3520 60 1.2974 B01-6 2 178 632 390 840 195 38 3000 45 1.3394 B01-6 2 178 632 390 840 195 38 3000 45 1.3394 B01-6 2 174 1312 386 738 196 38 2510 33 1.3922 B01-6 2 174 1312 386 738 197 38 2180 21 1.1839 B01-6 1 170 606 197 -10 9010 12 .0396 B01-4 0 170 606 197 -10 8560 11 .0402 B01-4 0 0	my Strang (not
194 38 3520 60 1.2974 B01-6 2 178 432 390 840 195 38 3000 45 1.3396 B01-6 2 178 432 390 840 195 38 3000 45 1.3396 B01-6 2 174 1312 386 738 196 38 2510 33 1.3922 B01-6 2 172 780 382 527 197 38 2180 21 1.1839 B01-6 1 170 606 198 -10 9010 12 .0396 B01-4 0 107 606 199 -10 850.0 11 .0402 B01-4 0 0	
194 38 3520 60 1.2974 B01-6 2 178 632 390 840 195 38 3000 45 1.3396 BG1-6 2 174 1312 386 738 196 38 2510 33 1.3922 BG1-6 2 174 1312 386 738 197 38 2180 21 1.1837 BG1-6 1 170 606 198 -10 9010 12 .0376 BG1-4 0 1 10 6042 BG1-4 0 197 -10 9010 12 .0376 BG1-4 0 1 10 4042 BG1-4 0	TY SLIESS (DSI
195 38 3000 45 1.3396 801-6 2 174 1312 386 738 196 38 2510 33 1.3922 801-6 2 172 780 382 527 197 38 2180 21 1.1839 801-6 1 170 606 198 -10 9010 12 .0396 801-6 0 199 -10 8560 11 .0402 801-4 0	
196 38 2510 33 1.3922 861-6 2 172 780 382 527 197 38 2180 21 1.1839 861-6 1 170 606 198 -10 9010 12 .0396 861-4 0 199 -10 8560 11 .0402 861-4 0	
197 38 2180 21 1.1839 801-6 1 170 606 198 -10 9010 12 .0396 801-4 0 199 -10 8560 11 .0402 801-4 0	
198 -10 9010 12 .0396 BG1-4 0 199 -10 8560 11 .0402 BG1-4 0	
199 -10 8540 11 .0402 BG1-4 0	
200 -10 B020 10 .0417 BG1-4 0	
201 -10 7525 9 .0426 BG1-4 0	
203 -10 6500 8 .0507 BG1-4 0	
204 -10 5985 7 .0524 BG1-4 0	
205 -10 5540 6 .0524 BG1-4 0	
206 -10 5010 5 .0534 BG1-4 0	
207 -10 4530 4 .0522 BG1-4 0	
208 -10 3790 3 .0505 BG1-4 0	
209 -10 3510 3 .0652 BG1-4 0	
209 -10 3510 3 .0452 BG1-4 0 210 -10 3005 2 .0593 BG1-4 0	
211 -10 2100 0 0 BG1-4 0	
178 -10 9010 12 .0396 BG1-1 1 150 668	
199 -10 B540 11 .0402 BG1-1 1 142 590	
200 -10 8020 10 .0417 RG1-1 1 134 520	
201 -10 7525 9 .0426 BGI-1 1 126 507	
203 -10 6500 8 .0507 BG1-1 .0	
204 -10 5785 7 .0524 BG1-1 0	
205 -10 3540 & .0524 BG1-1 0	
206 -10 5010 5 .0534 BG1-1 0	
207 10 4530 4 .0522 BG1-1 0	
208 -10 3770 3 .0505 BG1-1 0	
209 -10 3510 3 .0652 RGI-1 0	
210 -10 3005 2 .0552 BG1-1 9 .	
211 -10 2100 0 0 B61-1 0	
178 -10 7010 12 .0396 B61-6 1 150 528	
199 -10 8550 11 .0402 BG1-6 1 144 517	
200 -10 8020 10 .0417 861-6 0	
200 -10 7525 9 .0426 B01-6 0	
201 -10 4500 B .0507 BG1-6 0	
204 -10 5985 7 -0524 BG1-6 0	
205 -10 5540 6 .0524 BB1-6 0	
20610 5010 5 -0534 BGI-6 0	
207 -10 4530 4 -0522 BG1-6 0	
207 -10 3990 3 .0505 BG1-6 0	
211 -10 2100 0 0 BG1-6 0 P	


APPENDIX C

SR-3 CAMPBELL DIAGRAMS

This appendix contains Campbell diagrams from the zero forward speed SR-3 model Prop-Fan tests conducted at UTRC, given in terms of response frequency vs. RPM for various blade angles. These Campbell diagrams were generated from the data obtained from the spectral analyses data using computerized peak-picking routines. These are the same data that are tabulated in Appendix B and were plotted automatically by computer. Shown are plots of frequency versus rotational speed. A plot is generated for each blade angle. Modal response frequencies are evident at the higher blade angles.

FIGURE NO.	REFERENCE BLADES-ANGLES, DEG
C-1	-10.0, 12.0
C-2	15.9, 19.9
C-3	23.6, 27.6
C-4	31.7, 32.7
C-5	34.0, 35.7
C-6	38.0, 40.0
C-7	60.0, 69.9
C-8	80.0

. . . **.**

÷.

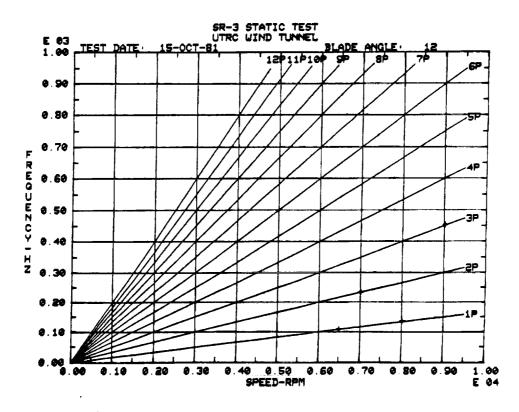
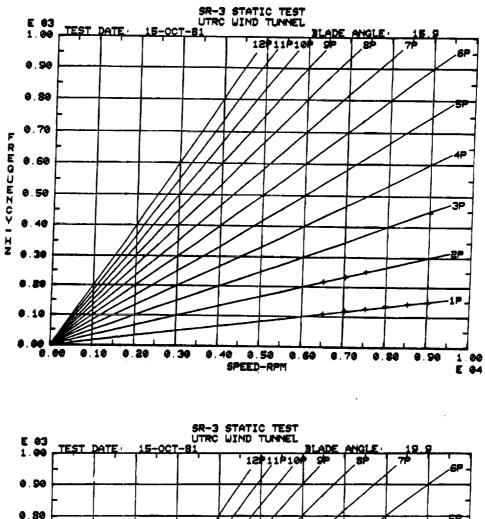



FIGURE C-1. SR-3 PROP-FAN STATIC TESTS, CAMPBELL DIAGRAMS FOR REFERENCE BLADE ANGLES OF -10 DEG'S AND 12.0 DEG'S

DRIGINAL PAGE IS

OF POOR QUATITY

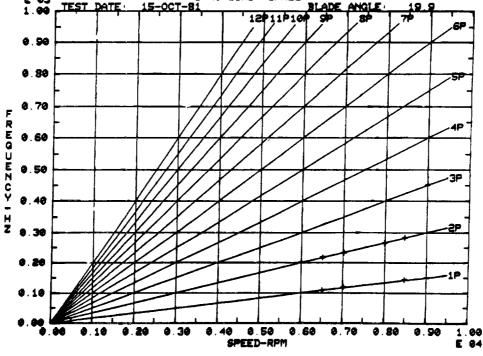
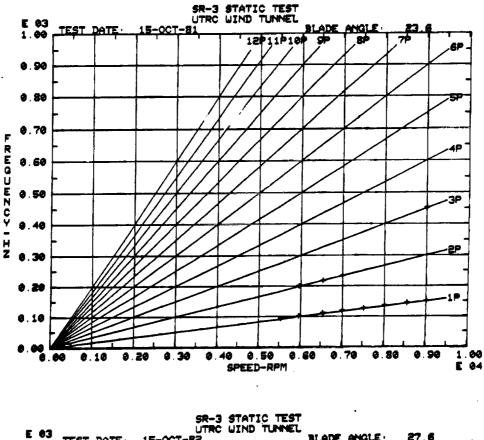



FIGURE C-2. SR-3 PROP-FAN STATIC TESTS, CAMPBELL DIAGRAMS FOR REFERENCE BLADE ANGLES OF 15.9 DEG'S AND 19.9 DEG'S

.

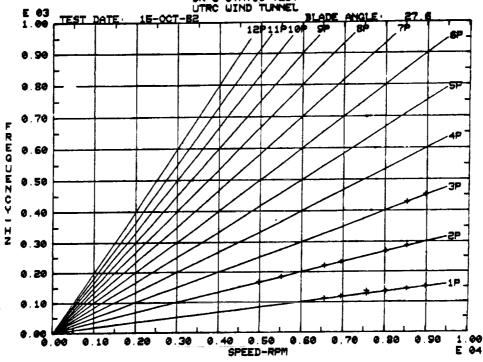


FIGURE C-3. SR-3 PROP-FAN STATIC TESTS, CAMPBELL DIAGRAMS FOR REFERENCE BLADE ANGLES OF 23.6 DEG'S AND 27.6 DEG'S

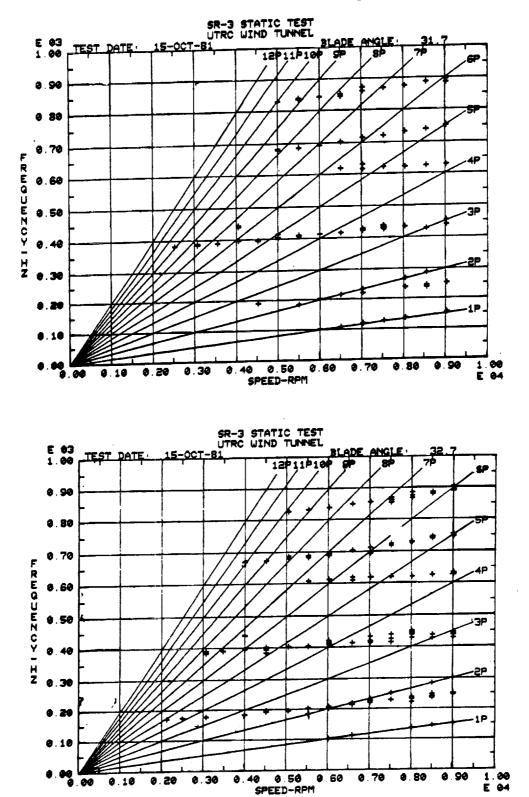


FIGURE C-4. SR-3 PROP-FAN STATIC TESTS, CAMPBELL DIAGRAMS FOR REFERENCE BLADE ANGLES OF 31.7 DEG'S AND 32.7 DEG'S

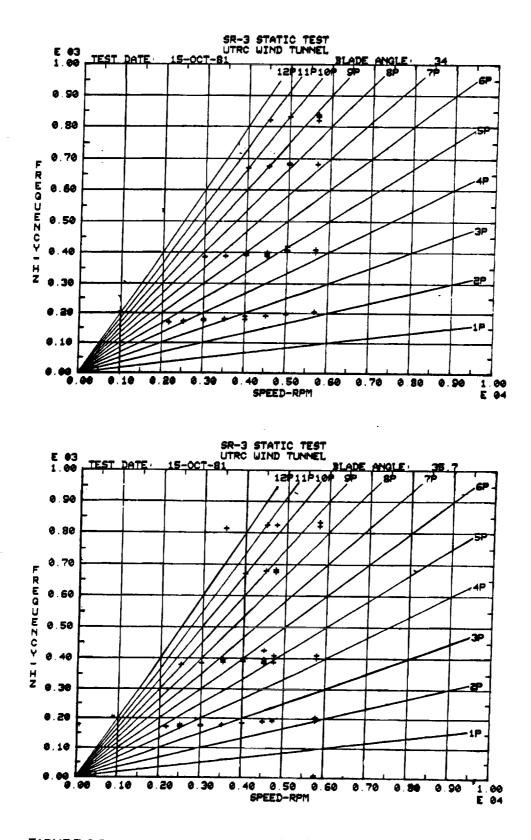


FIGURE C-5. SR-3 PROP-FAN STATIC TESTS, CAMPBELL DIAGRAMS FOR REFERENCE BLADE ANGLES OF 34 DEG'S AND 35.7 DEG'S

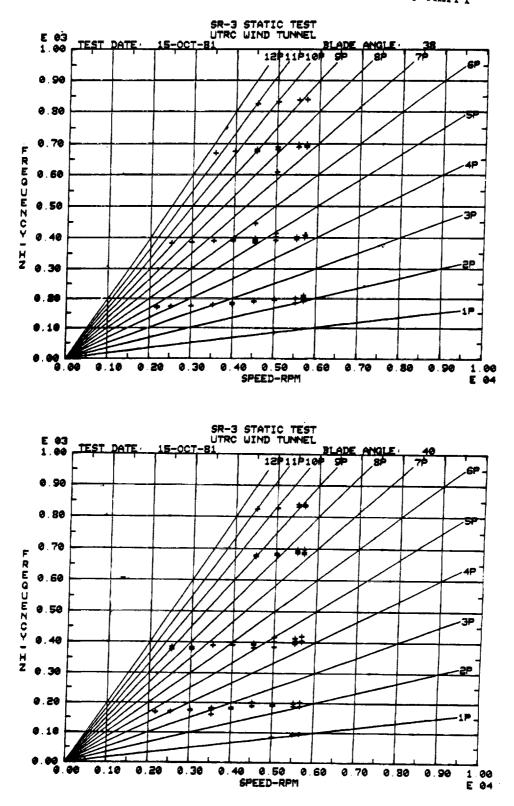


FIGURE C-6. SR-3 PROP-FAN STATIC TESTS, CAMPBELL DIAGRAMS FOR REFERENCE BLADE ANGLES OF 38 DEG'S AND 40 DEG'S

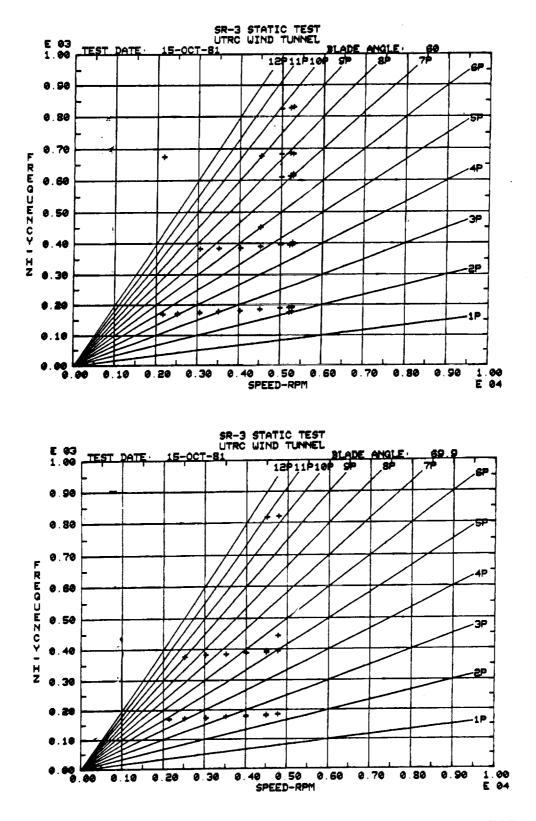


FIGURE C-7. SR-3 PROP-FAN STATIC TESTS, CAMPBELL DIAGRAMS FOR REFERENCE BLADE ANGLES OF 60 DEG'S AND 69.9 DEG'S

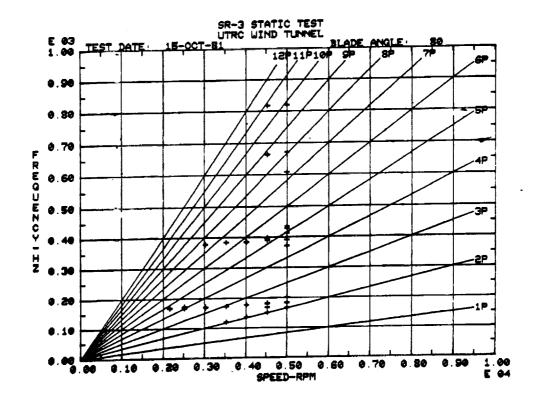


FIGURE C-8. SR-3 PROP-FAN STATIC TESTS, CAMPBELL DIAGRAMS FOR REFERENCE BLADE ANGLES OF 80.0 DEG'S