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SUMMARY

Static stall flutter tests were conducted in an unattached open 5.5 meter
(18 foot) test section of the UTRC wind tunnel on three Prop-Fan models.

These models are designated the SR-2, SR-3 and SR-5 with the blades

characterized by increasing sweep, from the unswept (straight) SR-2 blade to

the highly swept SR-5 blade. The tests were conducted at zero flight speed,
over a large range of blade angles and rotational speeds (RPM), Including all

areas of deep stall. Blade vibratory stress measurements were recorded for
all operating conditions. Extensive analysis of these data was performed.

Perhaps the most significant test result seen is that increased blade sweep

is beneficla] In suppressing the hlgh stress which Is indicative of sial]

flutter. The unswept SR-2 model is the most susceptible to stall, responding
with the highest stress levels. The moderately swept SR-3 and the highly
swept SR-5 models remained stable at increasingly higher blade angles and

RPM's than the SR-2, and also responded with lower stresses. As expected,
all three models e.ncountered high stressing at the highest blade angles and

rotatlonal speeds. It is believed that these were forced excitation re-

sponses due to vortex shedding, or buffeting.

The test data show that the strain gages were properly located to allow the
various blade vibratory modes to be distinguished. Data analysis indicates

that stall flutter responses occur in the third mode (torsion) for the SR-2
model and in the second mode for the SR-3 and SR-5.

Vibratory blade stresses measured during a similar independent test conducted
in the NASA/Lewls lOxIO wind tunnel show very good agreement with the UTRC
test data.

Stall flutter calculations were made using a recently developed flutter anal-

ysls method that can determine the stability of thin, highly swept blades,
such as those used on Prop-Fans. The onset of stall flutter is analytically

determined to be at operating conditions for whlch blade damping goes to
zero. Negative damplng indicates an unstable condition.

Flutter predictions for the three Prop-Fan models were made and compared to
test data. Flutter boundaries were determlned from the test data, based on

the occurrence of steeply rlslng stresses with increasing blade angle or ro-

tor RPM, since damping was not measured. The calculations show negative
damplng occurring at generally the same operating conditions for which high

stresses were encountered during test. Very good agreement was seen for the
SR-2 and SR-3 models, with less agreement for the SR-5 model which did not

give strong flutter indications dur!ng test. However, the tested trend show-
ing stability to increase with blade sweep was well predicted. The theory
predicts that stall flutter will occur in the third mode for all three mod-

els. This agrees wlth the SR-2 test data, but not with SR-3 and SR-5 mea-
surements.
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SYMBOLS

Blade Actlvlty Factor

I00,000

Blade Sectlon Chord N1dth, m

Blade Sectlon Deslgn Lift Coefflclent

Power Coefficient = SHP/p n2D 5

Rotor Diameter, m

Rotor Speed, RPM

Rotor Speed, revolutlons/sec

Rotor Torque, N-m

Shaft Horsepower

Non-Dimensional Blade Radius

Reference Blade Angle, deg

Blade Angle at 3/4 Radlus, deg

Air Denslty, kg/m 3

1.0

bx3dx
O

0.2

Sl units of measurement used throughout unless speclfied otherwise.
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1.0 INTRODUCTION

The occurrence of fuel shortages, increased fuel cost and the threat of fu-
ture worsening conditions for alr transportation has caused NASA to sponsor

studies of new, more efficlent, aircraft and propulslon systems. One of the

promising concepts estabTished by these studies is the advanced high speed
turboprop, or Prop-Fan. This propulsion system differs from existing turbo-

props. The Prop-Fan has greater solidlty than a turboprop, achleved by more

blades of lar_er chord. The turboprop has straight blades with relatively
thick alrfoll sections; the Prop-Fan has swept back blades with thin airfoil

sections to enhance performance and reduce noise. The turboprop cruises at
no more than 0.65 Math number; the Prop-Fan is designed to cruise at 0.7 to
0.8 Mach number. The diameter of the Prop-Fan Is about 40 to 50% smaller

than that of the turboprop. For maximum performance the Prop-Fan makes use

of advanced core engines of the kind being used in modern turbofan engines.
Performance Is also enhanced by use of a spinner and nacelle aerodynamlcally

contoured to reduce compressibility losses by retarding the high velocity
flow through the root sections of the Prop-Fan blades.

Utilizing predicted and measured aerodynamic performance data, weight estl-

mates, and noise projections, several Government sponsored studies by both
engine and airframe manufacturers have concluded that a fuel savings of ap-

proximately 20 to 40% dependlng on operating Mach number should be achleved

by a Prop-Fan aircraft, as compared with a high bypass ratlo turbofan alr-
craft. With these encouraging results, a research technology effort has been

instituted to establlsh the deslgn criteria for this new propulsion system.

A major objective In the development of Prop-Fan configurations Is to insure
the structural integrity of the rotor. Slnce the Prop-Fan is such a signifi-

cant departure from conventional propellers, with its highly swept, thln
blades, the structural demands are substantial. The high speed operatlon of

highly swept blades imparts large forces to the llmlted materlal Inherent to
the thin airfoil sections needed for efficlent performance. It is imperative
that the rotor be able to absorb the aerodynamic loads at all operatlng con-

dltlons, as well as the centrifugal loads associated wlth its unique shape

and construction. The steady-state dynamic response of the blades must be
low and flutter instabilities must be avoided, for safe operation.

As part of the continuing studies of Prop-Fan structural stability being con-
ducted by Hamilton Standard, under contract to NASA-Lewls Research Center,
static stall flutter tests were conducted on the SR-2 8-bladed, SR-3

8-bladed, and SR-5 lO-bladed model Prop-Fan conflguratlons. These tests were

conducted during September and October, 1981 at the United Technologies
Research Center.

Thls report summarizes the results of this static stabllity investigation.

Included are trends of the measured blade stress test data with operating
conditions for the three models. Blade vibratory stress data were analyzed

for the peak stress amplltudes of the total signal as well as for the
frequencies and amplitudes of the spectra] components. In addition, stall

flutter stability boundaries were predicted using a theoretically based cal-
culation procedure for comparison to test results. The comparisons were used

to evaluate the accuracy of the prediction methods and to recommend improve-
ments to increase their effectiveness as Prop-Fan design tools.
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2.0 DESCRIPTION OF EXPERIMENTAL PROGRAM

2.1 Model Description

Three Prop-Fan models were Installed on an isolated nacelle In the United

Technologies Research Center wlnd tunnel and were tested to determine the
dynamic stabil|ty in stall (see Ref. l). The models were designated SR-2,
SR-3 and SR-5 and are shown installed In Figures l through 3, respectlvely.
The blades are made wlth a solld metal construction, and the planforms are

characterized by increasing sweep, from the straight bladed SR-2 model

Prop-Fan to the highly swept SR-5 model Prop-Fan. Figure 4 is a schematic
showing these planforms along wlth strain gage locations which wlll be
discussed later.

The SR-2 is an elght-bladed model constructed of steel. The SR-3 Is an

elght-bladed model and the SR-5 is a ten-bladed model, both of which were
constructed of tltanlum. Table I shows some of the deslgn parameters for

these conflguratlons. All of these configurations are derived from full

scale designs that are intended to operate at a rotational tlp speed of 800
ft./sec, and at 0.8 Mach number f11ght speed. Figure 5 shows the variations

of many of the geometric parameters of each deslgn.

2.2 Test Models

Each of the three test models comprised an approximate I/8 scale, variable

pitch (ground adjustable), 62 cm (24.5 in.) diameter Prop-Fan configuration.
Each model consisted of a unique hub, blades, and splnner as well as a common

nacelle afterbody. The blades, hub, and spinner were designed and fabricated

by Hamilton Standard. The nacelle afterbody was fabricated by UTRC per
Hamllton Standard design. Each model was deslgned for counterclockwise rota-

tlon (vlewlng upstream).

The blade roots were equipped with a gear-sector that engaged a common ring

gear in the hub, which assured blade pitch angle synchronlzatlon and slmpIi-
fied blade angle changes. The gear-sectlon mechanlsm permits an infinite ad-

justment In blade angle over approximately a 90 degree range. However, a
locking pln, which is inserted in the ring gear and Indexing plate holes,
results in incremental settings of l degree. The maximum blade pitch angle

settings for all three models was limited to 80 degrees. The minimum setting
varied for each of the three models and was limited by mechanical

interference at the blade roots to -14.3 degrees for the SR-2, -8 degrees for

the SR-3, and +ll degrees for the SR-5 model. Blade pitch angle was measured

by placing the partlcular blade in a horizontal posltlon and employing an
inclinometer fixture on the face side of the blade at 0.78 radius, known as

the reference station. Blade pitch angle Is defined as the acute angle
between the blade chord and the plane of rotation. Prior to installation,

each model rotor was statically balanced on knife edges, and materlal was

removed from the heavy side of the hub by drilllng holes to provide a static
balance.



2.3 Wind Tunnel Faciltty

The United Technologles Research Center (UTRC) Large Subsonic Wind Tunnel
(LWST) shown in Figure 6 is a single-return, closed-throat facility with In-
terchangeable 5.5 and 2.4 meter (18 and 8-ft.) octagonal test sections. Max-
imum tunnel velocity is approximately 90 m/s (200 MPH) in the 5.5 m (18-ft.)
test section and near sonic Mach numbers can be obtalned in the 2.4 m (8-ft.)
test section.

For the subject statlc test program, the tunnel circuit was arranged (Figure
7) to reduce tunnel wall effects and to mlnlmlze reclrculatlng flow through

the plane of'the propeller. This was accomplished by locatlng the 5.5 m
(I8-ft.) diffuser In its normally stowed position, thus permitting unobstruc-
ted airflow to enter the downstream end of the test section. Flow recircula-

tlon through the tunnel circuit was mlnlmlzed by blocking the open circuit

which normally mates to the diffuser and by exhaustlng the propeller airflow

through the air exchanger valves which were set In the l m (3-ft.) open pos-
|tion.

The LSWT has available both static and dynamic data acquisition and recording

systems. This test program used the static system called Online Computer
Controlled Acquisition Recording (ONCOAR). Its mlnlcomputer inltialized and
controlled that data acquisition equipment, acquired data, displayed and re-

corded the acquired data, and transmitted the data via a Multi-Serlal Trans-
mission (MST) line to another high speed digital minicomputer system for on-

llne processing. The reduced data were then displayed in tabular form on a

computer terminal or In graphical form on a cathode ray tube. ONCOAR is cap-
able of acquiring analog data on up to 25 dffferent channels, using up to

eight scanlvalve or temperature scanner solenoids. In addition, the system
was set up to accept input from up to 14 digital channels. Thls list
Includes six channels for the main balance, one each for model pitch and yaw

attitudes, barometric pressure, test section pressure dlfferential, tunnel

stagnation temperature, two channels for Events Per Unit Time (EPUT) signals
and one for a precision pressure transducer/regulator. ONCOAR is capable of

recording and storing up to 1200 pieces of analog or digital data in any
combination within the above llmits.

In this test, ONCOAR recorded a total of 219 pieces of data per polnt on nine

analog channels and four digital channels. Approximately 30 seconds were

required to acquire the data, and an additlonal I0-15 seconds were needed
(depending on computer workload) to transmit, reduce, and display the on-line
data for a total of approximately 40-45 seconds per data point. The raw

data, which had been recorded on floppy disc by ONCOAR, were transferred to a

nlne-track magnetic tape in large computer compatible format for further

processlng off-line. This off-11ne processing can be used for correcting
data as well as for refining processing procedures.

A dynamic data recording system supplled by Hamilton Standard was used to
monitor and acquire time variant blade stress data. This system provides

eight channels of signal condltionlng and amplification, FM recording and

playback capability, oscilloscope monitor, and switching gear to acquire up
to 16 channels of strain gage type data.



2.4 Propeller Dynamometer

The Prop-Fan model was driven by the UTRC Prop-Fan test rig dynamometer
(PTR). It uses two varlable-speed motors housed withln a streamline cast-

steel pod with an integral support strut (Figure B). The motors are mounted

In hydrostatlc bearlngs to restrain all motion except axial and rotational
motion about the longitudinal axis of the dynamometer. These motions are re-

strained by load cells which measure thrust and torque of the mode! Prop-
Fan. Each motor has a nominal rating of 280 kW (375 hp) at 12,000 RPM; to-

gether they provide a maximum torque of up to 450 N-m (330 Ib-ft.) over the
entire speed range. Model speed is controlled by variable frequency power

supplied by two motor generator sets and measured with an events per unit

tlme meter and a 60-tooth gear signal generator. Prop-Fan rotational dlrec-
tion for this test was counterclockwise looking Upstream. The dynamometer is
falred such that there is a minimal axial static pressure gradient through

the plane of the Prop-Fan and so that the Prop-Fan rotor and splnner surfaces

are the only portions of the metric system exposed to the alrstream. Pres-

sure Instrumentation is provided withln the dynamometer to correct measured
thrust for any differential pressure between the front face of the hub and an

equal area in the rear fairing.

The Prop-Fan dynamometer was mounted on the floor at the downstream end of
the 5.5 m (I8-ft.) test section (facing south). This posltloned the models
within 25 cm (lO-in.) of the open tunnel circuit (Figure 9). The Prop-Fan

drew air from the courtyard in an area unconfined by tunnel walls and dis-

charged it Into the tunnel circuit. With the tunnel circuit blocked at the
extreme south end of the courtyard and the alr exchanger vaTves open approxl-

mately l m (3-ft.), the flow created by the Prop-Fan passed out the a|r ex-
changer valves and could not reclrculate through the plane of the propeller.

The relationship of the dynamometer, test section, courtyard, and blocked off
tunnel circuit is shown in Figures lO and If.

Dynamometer Instrumentation conslsted of: thrust and torque load cells, a

I/rev reference slgnal, a 60/rev slgnal for RPM, vertical and lateral plane
vibration transducers, bearing and motor thermocouples, and internal cavity

pressure taps. The instrumentatlon electrlcal and pneumatic lines were rout-
ed down through the hollow PTR pylon to the tunnel floor and from there to
appropriate monitoring and recording devices in the control room.

2.5 Model Instrumentatlon

Each of the three test model Prop-Fans was instrumented with straln gages on

the camber surface to measure bending and torslonal stresses on four blades.
The strain gages were located at the maximum principle stress locations of

the natural modes, as determlned by analysls. The locations of these straln
gages for each blade model are documented in Figure 4. The blade strain gage
configuration for each of the three rotors Is described in Table II. Blades

were numbered sequentlally around the rotor in a clockwise directlon when

viewed from the rear. Blade strain gages are Identified by BGx-y, where BG
designates blade gage, x Is the blade number and y is the gage number. The



electrical lead wires were routed from the strain gages along the trailing
edgesof the blades and through the hub to a slip ring assemblymountedon
the upstream surface of the hub. An electronic, two-positlon switch on the
rotating portion of the slip ring assembly permitted the selection of either
of two groups of five strain gages to be monitored. The electrical leads
from the stationary portion of the slip ring assembly were routed out the
front end of the spinner (Figures 2 and 3) through a pneumatic air cooling
llne and from there to the approprlate HSDmonitoring equipment in the tunnel
control room. Air cooling was provided to each of the eight rotating
elements of the sllp ring through a 1.3 cm (0.5-1n.) diameter tube connected
to a 138 kPa (20 pslg) filtered alr supply.

A static pressure probe was mounted In the plane of the airflow entrance to

the 5.5 m (18-ft.) test section approximately 218 cm (86-In.) radially from

the prop centerllne (Figures 9, lO and ll) to pcovlde an indication of tunnel
through flow as a result of propeller thrust. This probe was connected to a

high accuracy, low pressure transducer, SETRA 140 Pa (0.02 psig) capability,
which provided wind gust data to the dynamic data system, as well as steads-
state data to the static ONCOAR data system. In addition, a tunnel spannlng

pressure rake was mounted 109 cm (43-In.) starboard of the prop centerline

(Figures 9, lO and ll) to provide steady-state wind speed data. The 13 ele-
ments on thls rake were routed to a water manometer board In the tunnel con-

trol room. However, due to the low velocities, and hence low pressures, thls

system could not provide the desired resolution. For most of the tests, lo-
cal tunnel velocity was measured solely by the static probe/SETRA system.

Also, a conventional, vertical axis, cup anemometer was used for visual re-
ference of the ambient wind condition <Figure IO).

2.6 Test Procedures

The primary objective of the test program was to define the stall-flutter
boundaries, if any, of the SR-2, SR-3, and SR-5 Prop-Fan models under static
Flow conditions. This was accomplished by conducting rotational speed sweeps

from 2000 RPM to maximum and back to 2000 RPM, at Fixed blade pitch angles,

while continuously monitoring blade stresses and recording these stresses on
FM tape. Performance data, including rotor thrust, torque, total pressure
rise, and nacelle surface pressure distribution, were acquired at regular,

discrete rotor speed intervals.

Typically, a test run was conducted as follows: the blade pitch angle, at
0.78 radius, was set using the appropriate fixture and inclinometer; water

cooling, oll lubrication, and hydrostatic pressure and scavenge systems were
activated; a start zero was acquired on both ONCOAR and on the FM system; the

rotor was brought on-llne at a rotor speed of approximately 2000 RPM; all ten
strain gages were monitored prior to rotor acceleration; rotor speed was
increased from 2000 RPM to maximum in a slow, continuous sweep while blade
stresses were monitored.



The rotor speed sweep was restricted by blade stress limits which differed
for each of the three models. In addition, a speed sweep could be limited by

the maximum available electric rotor torque. For thls program, thls appeared

to be approximately 410 N-m (300 ft-lb.). The ultlmate llmlt In rotor speed
if stresses and power permitted was 9000 rpm, whlch corresponds to a rotor

tip speed of approximately 293 m/s (960 Fps). Steady-state and dynamic data
were recorded at the maximum rotational speed and then in increments of 500

RPM between the maximum speed and 2000 RPM. Thls procedure was repeated at

different blade pitch angles and model configurations For approximately 55
data runs. The conditions at which the three models were tested are summa-

rized in Table III. Also summarized in Table III are the conditions for

which calculations were performed and will be discussed later.

Since the test program was conducted under static (no flow) conditions,

thrust and torque tare data were not acquired nor applied to the actual per-
formance data.

2.7 Operating Conditions

The operatlng conditions used ?or the calculations cover a large range of

blade angle settings and rotational speed settings. These conditlons are
presented in Table III for the test runs as well as those for the computa-
tions. Since the calculations involve the use of the lengthy MSC NASTRAN

program for the mode shapes and Frequencles, the number of runs was mlnimlzed
in order to reduce the computer usage. The MSC NASTRAN program was therefore

run at blade angles of -lO ° and 55°. The Frequencies used in the stability

analysis were Interpolated For conditions wlth blade angles other than those
calculated using MSC NASTRAN. The mode shapes of the nearest MSC NASTRAN
case were used For the stability analysls.

The blade angle schedules in Table III For the static test conditions are
different For each of the models. The RPM schedule is the same For each mod-

el except that the upper llmit Is restricted by either a power limit or a
stress limit. All test polnts and calculations were at sea level conditions.

2.8 Data Reduction

Blade vibratory stress data were displayed and monitored, on-line, on a
multichannel oscilloscope. Hamilton Standard personnel interpreted these
time-varlant data In a continuous, on-line manner throughout the test pro-

gram. Test condltlons were selected and operational limits were observed as
a result of this (on-line) monitoring. In addltlon, stress data, For each

steady state data point and a11 rotor acceleratlons, were recorded on FM
tapes which were retained For comprehensive, detailed analysls.

The analog tapes were analyzed by obtaining total vibratory stress amplitudes
using electronic peak stress converters and recordlng the resulting slgnals on

strip charts. As a second step, samples 30 seconds In length from the mag-
netic tape were processed using a real tlme analyzer. These samples were time
averaged to produce spectral analyses of the data. This information, in turn,

was then stored on tape for a permanent record of each case. The data were
then transmitted to a high speed digital mlnl-computer for processing. At

this point, a computer program was used to pick out the peak amplitudes and
the associated frequencles. These were then tabulated and printed according
to case number and condition. Automatic routlnes were developed that produce

Campbell diagrams and vibratory stress vs. RPM For each blade angle. These
items are discussed Further In the spectral analysls section (see 4.3) of

this report.
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3.0 ANALYTICAL TECHNIQUES

3.1 Method Descrlption

The method used to estimate stall flutter boundaries involves several parts.

The various computer programs used are listed by designation and purpose in
Table IV. The primary analysis used to calculate these boundarles is the

F203 analysls, and the other programs are used to generate data for or from

this analysis.

The F203 stabillty analysls was developed by J. Turnberg (Reference 2) prl-

marlly for classical flutter. It is a linear elgen-_alue solutlon that uses

unsteady aerodynamics accounting for compresslbillty effects and blade
sweep. For classical flutter, the quasl-steady llft analysls uses the value
of 2_ for the lift curve slope. The computer program has a separate por-
tlon for stalled conditions that is used to calculate stall flutter. Here

the unsteady aerodynamic analysis uses a parabolic pressure dlstrlbutlon for
determining the unsteady forces. For the quasl-steady terms In stall, the

program uses the lift curve slope at the local angle of attack for a particu-

lar operating condition. In addition, the analysis uses a method developed
In Reference 3 for stalled flow. This method complements the eigen-solutlon

and gives results that are very slmllar. It uses an energy balance that re-
lates the energy developed by the aerodynamic forces to the straln energy in
order to determine the damplng of the system. It employs the same unsteady

aerodynamic terms as are used in the stall flutter elgen-solution.

The stability analysis F203 is also a modal analysis that requires three-
dlmensional modes, developed in the blade chord coordinate systems, at each

blade spanwlse station. Generally, other linear aeroelastic analyses de'

scribing rotating aeroelastic surfaces will approximate the geometric blade

angle relative to the plane of rotatlon using small angle assumptlons. In
static operation, this angle is very large, up to 70 degrees for a Prop-Fan.
The F203 analysis uses the blade chord as a coordinate system such that the

small angle is made on the section angle-of-attack, which is small for most
applications. The input requlres that the mode-shapes and modal masses be
transformed to the above mentioned coordinate system. Generally, the mode

shapes and frequencles are developed by the beam analyses, H025 and H027, or
the finite element methods, NASTRAN or BESTRAN. A program called F214 makes

the necessary transformatlons from finlte element methods while approximating
the blade motions by three-dlmenslonal beam type displacements. Chordwlse

deformations are approximated by a rigid section. The methods used In the

present analysis are discussed In more detail in Reference 2.

Figure 12 shows a block diagram of the procedure used In the stall flutter
analysis. It can be seen in thls dlagram that the output from the finite el-
ement methods are Input for the F214 coordinate transformation program. (It
should be mentioned that there Is an earller modification to the F.E. data by

a program called "MODES". This rotates the data for each element Into the

shaft plane and modifies the format. It is not shown on the block dlagram.)
The operation of the F214 program can be implemented by the CLIST Control

Program as shown by the block diagram in Figure 12. An output file from F214
is created containing the transformed mode shapes, modal masses and fre-

quencies.



The aerodynamicproperties used for the F203stabillty analysis are initiated
in a data bank accessed by the H444performance analysis, where the data for
several airfoil shapesare stored. Oncethe performance has been determined
at the operating condition of interest, the lift and momentslopes are then
determined as a function of angle of attack at each radial station for this
operating condition. These slopes determine the unsteady and quasi-steady
loads In the stablllty analysis.

As shownIn Figure 12, the runnlng of the F203stability module is controlled
by the F203CLCLIST. Here the transmission of the input and output files is
managed,and the plot program is executed. The plot program PLT203was
created to run from a file that consists of data for manyF203 runs. The re-
sults of thls programare plots of the printed output, where dampingand fre-
quency are plotted as functions of blade angle.

It is suggested here that the stall flutter boundaries predicted by this
analysis maybe conservative. Th|s is partially due to the fact that stall
flutter is a limit amplitude phenomenon,and can exist at small amplitudes.
If the limit amplitude is small enough, then it is posslble that flutter will
not be noticed experimentally, because It will be lost in stresses due to
turbulence or other causes. The present analysis Is a linear analysis and
can, therefore, predict only the onset of flutter, which could be at low
stress levels. Thus, the predicted boundary would appear conservative, in
relation to the point of measuredhigh stresses.

3.2 Calculated Instabilities

Calculations to estimate stability boundaries were made for the SR-2, SR-3

and SR-5 model blades using the F203 stability analysis. Values of total

damping were calculated for 5000, ?000 and 9000 RPM, at many blade angles, as

shown in Table Ill. Flgures 13 and 14 show the damping to critical damplng
ratlo for all three models as a function of blade angle at 7000 and 9000 RPM,

respectively. The onset of stall flutter is assumed to be at the point where
the damping goes through zero. At 7000 RPM, it is seen that increasing the

sweep is beneficial in delaying the stall flutter to a higher blade angle.
Note that the SR-5 does not flutter at 7000 RPM but is delayed until 9000

RPM. All of the stall flutter predictions are third mode instabilities. No
instabilities were calculated for the first or second modes. Figure 15 shows

the typical damplng ratio relationships between the modes for the SR-3 model

Prop-Fan blade. The flutter boundaries, as functions of blade angle and RPM,
will be shown later in discusslons of the test results.

T
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4.0 TEST DATA EVALUATION AND COMPARISON WITH CALCULATIONS

4.l Response Frequencies

The calculated blade response Frequencies for the SR-2, SR-3 and SR-5 model

blades are shown In Figure 16, where blade frequency Is plotted as a function

of rotational speed. Also shown in this Figure are data points taken from
spectral analyses of the analog blade stress data, some of which will be dis-
cussed later. As previously mentioned, the SR-2 blade frequencies were cal-

culated using the beam methods H025 and H027, while the SR-3 and SR-5 blade

Frequencies were calculated using the MSC NASTRAN analysis.

It is seen that good agreement exists In all modes between the test results

and the computations for the SR-2. Note that the slopes of the second and

third mode show good agreement. For the swept models, the SR-3 and SR-5,
good correlation Is made for the first two modes wlth poorer correlation oc-

curring for the third, fourth and Fifth modes. However, good agreement is

seen for the slopes of the higher modes for these two models. Both swept
blade models show a measured response between the second and thlrd calculated

mode. The nature of thls response Is not underst_d at thls tlme.

4.2 Total Stress Results

As prevlously indicated, total peak vibratory stress was recorded on strip

charts for the SR-2, SR-3 and SR-5 model Prop-Fan blades. The stress data

from those charts were tabulated and selected data were plotted on curves of
total vibratory stress (infrequently repeating peak stress*) as a function of

RPM for various blade angles. These p}ots are shown In Appendix A For the
three Prop-Fan models. Additionally, cross plots were made to produce stress

contour plots for the n_de] Prop-Fan blades. These are contours of constant
total vibratory stress, plotted on curves of reference blade angle vs. RPM,

and are shown In Figure ]7 through 19. Note that the takeoff design oper-
atlng point for each blade is shown for reference.

Isostress Contour Plots - Figure 17 shows the total stress contours for the

tip bending gage and the shear gage outputs of the SR-2 model <blade number
5). Both gages show the highest stre_s at a reference blade angle of 40 de-

grees and 7000 RPM. From Figure 16, It is seen that thls Is very close to
the third mode 5P critical speed. The buildup seems gradual with Increaslng

RPM and less gradual with Increasing blade angle. This effect Is probably
due to the fact that a change in reference blade angle has a greater effect

on the blade angle of attack than a change in RPM. These results are typical
for conventional propellers that encounter high stresses in the statlc condi-

tlon. Since the third mode is the torsion mode, it Is not surprising that
stall conditions combined with critical speed effects would cause a stress
buildup. It Is also noted that the gradual buildup makes It difficult to

find a precise definition of a stall flutter boundary, especially one where
the damping might be considered as having a value of zero.

*The Infrequently repeating peak Is defined as the maximum stress peak that
repeats itself two or three times during the stress data sample period.
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The calculated flutter boundaries for the SR-2are also shownIn Figure 17.
The calculated boundaries represent the torslon (third) modewhile the mea-
sured total stress represents all the modes. A spectral methodby which the
modal stresses can be separated will be discussed in the next section.

Similar Isostress contour plots are presented In Figure 18 for the SR-3 model

Prop-Fan. This figure represents the output from the Inboard bending, the
shear and the tip bending gages, respectlvely. In order to smooth out some

of the Irregularities In the data, the values of stress were averaged between
blades I, 2, 5 and 6 for the shear and tlp bending gages, and between blades

I and 5 for the inboard bending gage. These curves show three entirely dif-

ferent patterns. For example, the shear gage shows a very gradual Increase
In stress with Varying RPM and blade angle. However, the Inboard bending

gage shows a sharp Increase in stress near 40 degrees blade angle and 6000
RPM. The tip bending gage indicates a sharp rise in stress near 30 degrees

blade angle, but shows a gradual increase with RPM.

Subsequent viewing of osci11ograph records clearly shows different predomi-

nant frequencies of similar amplltude occurring on different gages of the
same blade for some records. This indicates that stalled flow can excite

several different modes slmultaneously. It can also be concluded that the
strain gages were effectlvely placed to measure the response of each mode.

Interestingly, the flutter indications predicted for the shear gage seem to
occur experlmentally for the tip bending gage. Spectral studies made for the

SR-3, and discussed later In this report, shed more light on this apparent
discrepancy.

Figure 19 shows stress contour plots for the SR-5 model blade. They repre-

sent the output from the inboard bending gage and the shear gage, respective-
ly. The shear gage shows a very high stress peak at 6500 RPM. This can be

attributed to the fact that it Is very close to a 6 per revolution critical
speed for the 4th experlmental mode, as shown In the Campbell diagram in

Figure 16. This mode colncldes with the 3rd predicted mode. High 4th mode
response Is also indicated on spectral plots, to be shown later in the report.

The calculated stall flutter boundary predictions are also shown in

Figure 19. These were developed for the 3rd mode and represent the boundary
of zero damping. It Is seen that this predicted boundary occurs at very high

RPM and does not coincide with any sudden stress rlse. Some of the lack of
correlation between test and prediction might be due to the fact that the

test results Include aerodynamic excitation other than stall flutter, such as
buffeting. Also, it may be difficult, In some cases, to distinguish between

stall flutter response and a critlcal speed crossover.
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Stall Flutter vs. BufFet - It may be useful to discuss the differences be-

tween stall flutter and buffeting. Buffeting is defined as a for_ed excita-

tion due to an instability of the air, such as vortex sheddlng, shock oscil-
lation, or turbulence. Stall flutter Is an instability due to the Interac-
tion between the alr and the blade. In stall Flutter conditions, the motion

of the blade and the aerodynamic loading on the blade are strongly interde-

pendent. In buffet conditions, the motion of the blade has little effect on

the loading.

Generally, as blade angle is increased the Prop-Fan progresses From normal
load conditions to stall and then to deep stall. Stall flutter can occur as

the Prop_Fan becomes stalled and buffet occurs in deep stall. At a specific

operating condition, the local angles Of attack along to blade span increase
as the blade angle is increased, with stall first occurring inboard and then

progressing outboard.

In order to define when the Prop-Fan Is stalled, the blade reference station

(0.78 radius) Is generally a good point to consider as being a stall control
station. The conditions at which the current Prop-Fan blades stall was not

investigated for this analysls. However, from preliminary estimates it Is
thought that stall occurs at a reference blade angle between 30 and 35

degrees, For Prop-Fans at statlc (zero Forward speed) conditions. Although
the boundary between stall flutter and buffet regions is not clear, it Is

thought that buffet occurs at blades angles which are substantially higher
than blade angles for which stall flutter occurs. For thls discussion, the

buffet region Is defined to be at blade angles of approximately 45 degrees
and larger.

Blade Stall vs. Rotor Torque - Prop-Fan rotor torque can be an Indicatlon of

the loading condition on the blades. F_gure 20 shows the measured shaft
torque, as a function of reference blade angle for various RPM, for the SR-2,
SR-3, and SR-5 model Prop-Fan configurations. Each plot shows a variation In
RPM From 5500 to 8500 RPM.

Generally the torque increases with blade angle and RPM for a11 configura-
tions. It is seen from these curves that there is a change In the torque at

or near the blade angles where stall might be expected. The SR-2 shows the

greatest effect, where the torque increases rapidly near a blade angle of 28
degrees, peaking at 30 degrees and returning to the torque curve at 33

degrees.

The SR-3 data show a decrease in torque near a blade angle of 31.5 degrees.
It Is not known if there Is a torque rlse just before this polnt because of

Insufficient data. The change in torque seems less severe than that observed
for the SR-2.

The SR-5 data show a small depression at a blade angle of 34 degrees for the

higher RPMs. This Is a lesser effect than that seen for the SR-3. The low
RPM SR-5 data show llttle of thls effect.

13



The effect of stall on the torque curves is most severe for the SR-2 and
least severe on the SR-5 with the SR-3 falllng in between.. This indicates
that the Influence of stall on the torque is affected by blade sweep, since
the major difference between the conflguratlons is sweep, the SR-2 being
non-swept and the SR-3 and SR-5 having increasing sweep, respectively.

It is also noted that the torque change occurs at an earlier blade angle on

the SR-2 and progressively later on the SR-3 and SR-5, respectively. The
test data discussed above (Figures 17 to 19) show that a high stress rise

occurs at blade angles near where the torque inflections occurred. Also, the

highest stresses occurred on the SR-2, with progresslvely lower stresses on
.the SR-3 and SR-5. Thls indicates that stall and/or stall flutter occurs at

similar conditions as the inflections on the torque curves. It is therefore

concluded that the torque curves can indicate the presence of stall or stall
flutter condltlons.

It is recommended that in future static tests on Prop-Fan models, fine varla-

tions be made in RPM and blade angle in the area Just below, in and above the

stall condition, and that torque measurements be made at each steady state
condition. This would be helpful in defining the condition of blade stall
onset and its relatlon to blade stress.

Blade Stress vs. Damping - It should be noted that some of the difficulty, in
comparing calculated stall flutter boundaries to the experlmental results, is
due to the nature of the parameters which are used to define the boundary for
each. The calculated stall flutter boundarles are linearly determined to be

at the point where the critlcal damping ratio goes zero. The experimental

flutter point is determined to be where there is a sudden rlse in vibratory
stress with increaslng RPM, usually to a high stress value. This Ignores the

fact that in a non-linear system, the damping can go to zero at flutter onset
but can also be zero at some llmit amplitude. It Is conceivable that the

limit amplitude could be small, while the damping Is zero. It may be mis-
leading to investigate stall flutter condltlons by comparing the two differ-

ent parameters of damping and stress, as was done here. A better result may

be expected if a non-linear aeroelastlc analysis is used to produce stress
predictions that could be compared to the experimental stresses. At the time
of this work, however, a reliable analysis of this nature was not available.

4.3 Spectral Analyses

Measurements of total stress cannot be used to fully characterize blade

dynamic behavior. For example, total stress values do not allow the stress
contributions of each mode or P-order response to be distinguished. Spec-

tral informatlon is helpful in evaluating modal stresses. This is examined

in the form of spectral plots of vibratory stress as a function of frequency.



SR-2 Results - Figure 21 Is a spectra] plot of measured stress For the blade

tip bending gage output on the SR-2 model operating at 7000 RPM and a refer-
ence blade angle of 36.2 degrees. Figure 22 Is a spectral stress plot of the

shear gage at 8500 RPM and a reference blade angle of 31.5 degrees. These

two Figures represent condltlons In the high stress areas For each gage, as
seen in Figure 17. They are not the conditions of highest stress, but are

located In the area of steep stress rlse.

The Indications from Figures 21 and 22 are that, for the SR-2, the flutter
occurs In the third mode at or near 600 Hz. Thls mode Is considered the pri-

mary torslonal frequency (See Figure 16). The th|rd mode response level seen

In Figure 21 Is large due to its proximity to the 5P critical speed. Figure
22 shows substantial twlce per revolution response. This is unexplained,

except that it Is a relatively low stress, and this condition may be close
enough to the 2P critical speed to give some magnification to the 2P stress.

Figure 23 shows a spectral plot for the mld-blade bending stress at 5000 RPM

and reference blade angle of 50.3 degrees. Here the response Is substan-
tially In the first mode. This may be a buffet condition excitlng the first

mode wlth some 2P magnlfication due to the nearness of the 2P crltica] speed
(See Figure 16).

SR-3 Results - Spectral plots from SR-3 testing are shown In Figures 24, 25

and 26. Tlp bending stress Is shown In Figure 24 for a condition of 9050 RPM
and 31.7 degrees reference blade angle. This conditlon Is In a steep stress

rlse area (See Figure 18) that Is indicative of stall flutter. Figure 24
shows the tip bending to have a high 3P response accompanied by a moderate

second mode contribution. The 3P response seems exaggerated by low damping
assoclated with the 2ridmode response. The 4P, 5P and 6P responses cou]d

also be critical speed related (See Figure 16).

A more clear example of sta]1 Flutter response Is shown In Figure 25. The
tip bending gage spectrum In thls figure Is for a condition of 32.7 degrees

blade angle and 7020 RPM. This Is not near any crltlcal speed and is also in

the steep stress rise area. Figure 25 shows substantial second mode response
with no apparent excitation. Thls isa strong indication of stall Flutter
response. There Is also response present in the third, Fourth and Fifth ex-

perlmental modes. Recall From F|gure 16 that what is termed the Fourth ex-
perlmental mode is shown near the third predicted mode. This mode shows the

least response In Figure 25, which is contrary to the stall flutter predic-
tions discussed earller.

Figure 26 represents a 5010 RPM and 50.3 degree blade angle condit_on. This

is considered to be In a hlgh stress buffet reglon due to the large blade
angle, as d_scussed earlier. Th_s Is probably not a stall Flutter condl-

tion. Flgure 26 shows primarily Ist mode response. The contour plots In
Flgure 18 also show mostly Inboard and tip bending at this conditlon. Spec-
tral plots of the shear gage signals (not shown) Indicate comparatively
little stress.
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SR-5 Results - Two SR-5 spectral stress samples are shown in Figures 27 and

28. The first represents the output of a shear gage at 8500 RPM and a refer-
ence blade angle of 35.7 degrees, and the second is the output Of an inboard

bending gage at 6500 RPM and a reference blade angle of 49.8 degrees. All
the stress peaks shown for these two curves indicate relatively low stresses,

but the shear gage seems to be responding to whlte noise type excitations,
This indicates the possibility of buffetlng, and there seems to be no evi-

dence of a self excited response. This is also seen in Figure 19, In that
there is no sudden stress rise in either the shear or bending gage. The in-

board bending spectral curve (Figure 28) shows a low level second mode re-
sponse, and little of anything else.

The indications from these data are that the highly swept SR-5 Prop-Fan model

has little or no stall flutter problem, the SR-3 has a moderate stall flutter

response, while the SR-2 has a strong stall flutter response. Thus, sweep

seems to have a suppressing effect on stall flutter.

4.4 Modal Response for the SR-3

The stress peaks that were obtained from the spectral analysis and used in
the Campbell diagram of Figure 16 can be categorized as to frequency and

mode. Table V indicates the frequency range assumed for each mode, based on

the experimental responses. Plots of stress vs. RPM for various blade angles
can be made for each mode and each gage. Diagrams of constant vibratory
stress contours can be plotted from crossplots of these curves. For this

report, only the Isostress contour plots for the SR-3 model will be shown.

Figure 29 shows the modal isostress contour plots for the SR-3 model Prop-Fan
stall flutter tests at the UTRC. Here, the measured modal stress is plotted

as a function of rotatlona] speed and reference blade angle. Each mode is

shown for the particular gage that generally has the highest response. Only
the first five modes are shown in Figure 29; one contour plot for each. For

the first plot (lst mode), it is seen that the high stresses occur at a re-
ference blade angle of about 50 degrees and at RPM's greater than 6000. This
is well above what is considered stall, possibly indicating that these stres-

ses are due to buffeting, which involves mostly the 1st bending mode. Note

that the identifying gage is the inboard bending gage, which is most respon-
sive to the first mode. Also shown on this curve are the operational limits
of the test. These limits were established by drlve power limits, RPM limits
and blade allowable total stress limits.

The second mode is characterized by high stress, probably under conditions
for which the blade first encounters strong stall over most of its span.

This indicates stall flutter responding in the second bending mode. These

data corroborate the spectral results, discussed earlier. Note that the high
stresses are found prlmarily in the tip gage. Also, the stress does not seem

to be related to a critical speed, whereas the high stress observed in the
flrst mode could indicate the 2P crossover; see Figure 16. The higher modes

(3, 4 and 5) show little response. It should be noted that the calculated
results indicate that stall flutter should occur in the third mode. This is

inconsistent with the test results which show high stress occurring in the
second mode.
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4.5 Comparison with NASA-Lewls Tests

Low speed stall flutte'r tests were conducted at NASA-LeRC in the lO x lO wind

tunnel during October 198l, and are reported In Reference 4. Some of the
tests were run at static conditions with a small component of velocity due to

Induction in the tunnel. Assuming this effect Is negligible, the total vi-

bratory stress results observed at the UTRC were compared with those obtained
at NASA-LeRC. These comparisons are shown in Figures 30 through 32, where

total vibratory stress is plotted as a function of rotational speed for var-

1ous blade angles.

Figure 30 shows the total blade vibratory stresses for the SR-2 model Prop-
Fan. Shown are the outputs from the mld-blade bending, the shear and the tip

bendlng gages for reference blade angles of approximately 32 degrees and 40
degrees. Generally, the test results at the UTRC give stresses that are

similar to those obtained at NASA, except near or at crltlcal speeds, where
the UTRC results show higher stresses. This may be due to the fact that, at

the UTRC the rotor was subject to the effects of turbulence due to weather
conditions, slnce the test was open to the atmosphere.

Figure 3l shows the results from the Inboard bending, the shear and the tip

bending gages of the SR-3 model Prop-Fan blade. The comparisons are made for

reference blade angles of approximately 32 degrees and 60 degrees for shear
and tip-bending, and approxlmately 32 degrees and 50 degrees for the Inboard
bending. Note that the vibratory stresses are lower for the SR-3 model than

for the SR-2 (Figure 30) due to the benefits of sweep. The correlation be-
tween the results from the NASA-Lewis tests and the results from the UTRC

tests, for the SR-3, Is also very good. For the SR-3 bending gages, the vi-

bratory stresses obtained from UTRC are somewhat higher than the NASA mea-
surements, which Is the opposite from the SR-2 results. However, the UTRC

results for the SR-3 indicate higher response near the critical speeds than
the NASA results, as also occurred for the SR-2 model.

Figure 32 shows the results from the inboard bending, the shear, and the

chordwise bending gages on the SR-5 model Prop-Fan. Shown are the results
for the approximate reference blade angles of 32 degrees and 50 degrees.

Again, the UTRC vibratory stress results are somewhat higher than the NASA
data but the correlation Is still very good. As for the other blade models,
the UTRC SR-5 tests show higher response in the critlcal speed regions proba-

bly due to higher turbulence.
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S.O CONCLUSIONS

As a result of the test and analysis program summarized in this report, the

following conclusions were reached regarding the static stabllity of the SR-2

straight blade, the SR-3 moderately swept blade and the SR-5 highly swept

blade Prop-Fan models:

I. Increased sweep tends to suppress the hlgh blade stresses caused by
stall flutter and buffet.

2. Correlatlon between tested and predicted Campbell dlagram modal frequen-
cies was excellent for the first and second modes for all blade models.

, Correlatlon between tested modal frequencies and beam method caIculatlons
for the SR-2 model, at the higher frequencies, was good. Finite element

method frequency modal calculations for the SR-3 and SR-5 models showed

less agreement with test data at the higher frequencies.

, Comparisons were made between measured stall flutter boundaries, based on
steeply rising stresses wlth RPM and blade angle, and calculated bound-

aries based on zero blade damping. Good agreement between test and pre-
diction was indicated for the SR-2 and SR-3 .models, while less agreement

was seen for the SR-5 model, which did not give strong flutter indica-
tions during test.

. Tested stall flutter response for the SR-2 straight blade occurred In the

torsional third mode, as was predicted. Test data for the SR-3 and SR-5
swept blades show stall flutter response primarily In the second bending

mode while the calculated results predict that stall flutter should occur
in the torsional third mode.

, Modal Isostress contour data Indicate that stall flutter and buffet occur

in different operating regions, with buffet occurring for very high

blades angles.

, Total vibratory stresses measured at static conditlons at the UTRC were
compared to those obtained in the lO x lO wind tunnel at NASA-LeRC, for
the SR-2, SR-3 and SR-5 models. Both the absolute stress amplitudes and

the trends with varying RPM agree very well for these two independent
tests.
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6.0 RECOMMENDATIONS

l . Since it was shown that there was l_ttle difference between testing In

the wlnd tunnel at NASA-Lewls or testing in the atmosphere at UTRC, it is

suggested that future static tests can be conducted in a wind tunnel.
This will eliminate duplicatlon of rig setup.

° It is recommended that in future static tests on Prop-Fan models, fine

variations be made In RPM and blade angle In the area Just below, In and
above the stall condition, and that torque measurements be made at each

steady state condition. This would be helpful in defining the condition
of blade stall onset and its relation to blade stress.

, The tests reported herein show varlations of measured blade stress wlth
rotatlonal speed (RPM) and with blade angle. It was observed that at or
near critical speeds, the testlng was limited to those RPM's for which
the stresses were below the limits. If the test condition envelope was

increased to include rotational speeds beyond these critical speed areas,

the scope of the data could be Increased. Additional understanding of

the phenomena of stall flutter and buffeting would develop if this could
be achieved.

, The correlation between the current stall flutter theoretical predictlons

and the experimental results can be improved. Deficlencles in the analy-

sis may be due to its ]inearity. The analysis is linear in both the
aerodynamlcs and structural dynamics by assumlng small amplitude dis-

placements. The actual blade response in stall flutter very often has
large amplitude displacements. This behavior requires that non-linear

aerodynamlcs as well as non-linear structural response be included in the
analysis for proper representation. Also, Corlolls forces due to rota-
tlon are non-llnear for large amplitude vlbratlons.

It is recommended that a non-linear analysis be developed that can model
the behavlor described above. It is suggested that this analysis be a

modal time step analysis and that it include the foIIowlng features:

• Three-dimenslonal modes obtained from finite element methods.

• Curved beam description of modes.

Large displacement equations of motion, to Include four or five

bending and twisting degrees of freedom with the capability of in-
c1udlng chordwise bending for future growth.

Complete induced flow capab111ty such that various methods of Induc-
tlon can be selected, from momentum methods to vortex and pressure

potential methods.

Non-llnear aerodynamics for steady state operation, Includlng high

angles of attack.

Non-steady aerodyn_mlc effects to include non-steady coefficlents,

accounting for phaslng, to be added to the steady state descrlptlon
with the ability to substitute emplrlcal data or theory (synthe-

slzlng of data).

Three dimensional treatment of alrloads, including radial and inter-

blade effects.
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5_ It is also recommended that wind tunnel tests be conducted on two-

dimensional Prop-Fan airfoil sections, to provide data for use in

Improving the theoretlcal analyses.
tigatlons of the Followlng:

These tests should include Inves-

Steady state data.

Unsteady data (synthesis).

High angle of attack.

High Mach number effects (compressibility).

Effects of sweep,
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TABLE I1: STRAIN GAGE DESIGNATION MODEL PROP-FAN

UTRC STATIC STALL FLUTTER TESTS

PROP-FAN RADIAL BLADE NO GAGE DESIGNATION

MODEL DESCRIPTION STATIONrlN. 1 2 3 _ 5

SR-2 Mid-Blade Bending 7.0 BG]-2 BG2-2 BGS-2 BG6-2

SR-2 Shear-V Gage 7.5 BGI-3 BG2-3 BGS-3 BG6-3

SR-2 Tip Bending lO.O BG1-4 BGS-4

6 7 8 _. lo

SR-3 Inbd. Bending 4.4 BGI-1 BGS-1

SR-_ Shear-V Gage 9.6 BGI-4 BG2-4 BGS-_ BG6-4

SR-3 Tlp Bending 10.7 BGI-6 BG2-6 BGS-6 BG6-6

SR-5 Inbd. Bending 5.3 BGI-I BG2-1 BG3-1 BG6-! BG7-1 BGB-1

SR-5 Shear-V Gage 8.9 BGI-5 BG6-5

SR-5 Tip Bending 10.4 BG1-3 BG6-3

26



u. _ I... I -._

u. r_ _ _1o _ _0i_ _,_ _ _; _ _,_ o o _ _

• _ '_ _-o_ _.o

_ i_1 1_. _ 0

I- olm u.u.

2?



DESIGNATION

MSC NASTRAN

BESTRAN

H025

H027

H444

MODES

F214

F203

PLT203

TABLE IV

HAMILTON STANDARD COMPUTER PROGRAMS USED IN THE
STALL FLUTTER ANALYSIS CODE

PURPOSE

Finite element analysls used to predict

vibratory mode shapes and frequencies

for swept, thin structures.

Hamilton Standard finite element anal-

ysls used to predict vibratory mode

shapes and frequencies for swept, thin
structures.

Beam type analysis used to predict vl-

bratory bending mode shapes and fre-

quencles for straight propeller blades.

Beam type analysis used to predict vi-

bratory torsion mode shapes and fre-

quencies for stralght propeller blades.

General Goldstein-_ype performance

strip analysis for propellers. Pro-
vides power, thrust, section force data

and angles of attacK. Section lift and
moment curve slopes are determined for

use in the stall flutter analysls, F203.

Converts mode shapes from finite ele-
ment methods or beam methods to a beam

type description for use In the F203

flutter analysis.

Thls program transposes all co-ordlnate
system motions into the blade section

co-ordlnate system In order to take ad-
vantage of small angle assumptions.

Eigen-solution modal stability anal-

ysls. Calculates damping and frequency

using unsteady aerodynamics.

Plots the damping and frequency results
obtained in F203.

28



I,U Z

0:3 h.

o__

I,I. co _o _o

I,i.

W
.,!

I-

29



1

W
l-
¢J
I-
<
l-
¢ncj

!-

'I-

n_Z
a-O

Q.j
O-
:E<

ILl
ty

m

30



OF POOR QUALITY

F-
(/1
i,i
h-
_J

<

mu
Z n_

,I-

J_

I-

O_Z
ffl--

e,i
w

h

31



ORIGINAL F,:,,_L:,_,S-
OF POOR (_MUAU_

32



Q <
- U

S

• z

0 • • °

- i..____i______

N

le

<

Z

0

Z

11.

.I

Q
0

Z

o£

wOO

ZU
,_,

_9

I,LI

e

33



0

.c _ I

u_ -,_" _ I -

! I I l I ,_
0 0 0 O o 0 o

in q' m e,I -- .-_

d
W

n

_/...Y
l 1 1 I
0 O 0
N

0

L/I¢0

m

m @

0

'T

o /°

w /
'el I 1 k" I

O O O O O
I_ q _q N

34

O

u

c_
I-
,<
re

re
bl

l-

I,d

_r

o

o
i-

r_
n,
o
z
¢J

f.J

4_

c_
I-

U)

J

t

I ! 1 \_ _ I

i

N

0 0

"T

0
m

m ¢,0

q

N

0

¢n

° /u

| I _._.T.-""- ! I I

r4 ¢d _" -- O O

O
m

I ¢0

m

i

(n

n"

G

.I

<
:[
n,
0
z

Ul
O

l--

n-
Ld
l-
¢J
<
n-
<
"I-
O

..I
El

0

Z
<
la.

!

0
n,

_d
LI.I
n,

b.



_ORIG!_JALpOORQUALITyF_GE |_

\

i .J
hi
Z
Z

i-
n
Z

U

Z

ffl
w

J

I,,-

w

35



/

AIR E:XCHANGER

VALVES

/- •

f-/-- _/
PTR LOCATION I

A,N O R,V [_

Z,44M
_TEST sECTION

CIRCUT

5.79M _ o--l'O C K E D

÷ -_- ------
4.27M

t

5.49M DIFFUSER I

N

FIGURE 7 WIND TUNNEL CIRCUIT
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SPANNING
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STATION

27g

STATION
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FIGURE 9 PROPELLER DYNAMOMETER INSTALLATION
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FIGURE 10. PROP- FAN MODEL INSTALLATION LOOKING DOWNSTREAM
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FIGURE 13. MODEL PROP-FAN UTRC WIND TUNNEL
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FIGURE 21, $R-2 PROP-FAN MODEL BLADE STALL FLUTTER TESTS AT UTRC
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FIGURE 22. SR-2 PROP-FAN MODEL BLADE STALL FLUTTER TESTS AT UTRC
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.52



AVG.

VIBRATORY

ST R ESS

-+ kPa

15OOO

10000

5000

0

0.00

3P

9050 RPM

REF, BLADE ANGLE : 3 !.7 °

TIP BENDING GAGE BGI-6

SECOND

FIRST rl _ sp f I

0.10 0.20 0.30 0.40 0.50 0.60 0,70 0.80 0.90 1.00

FREQUENCY- kHz
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FIGURE 26. SR-3 PROP-FAN MODEL BLADE STALL FLUTTER TESTS AT UTRC
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FIGURE 28. $R-5 PROP-FAN MODEL BLADE STALL FLUTTER TESTS AT UTRC
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APPENDIX A

TOTAL VIBRATORY STRESS" PLOTTED AS A FUNCTION

OF RPM FOR VARIOUS BLADE ANGLES AS OBSERVED IN

THE UTRC STATIC STALL FLUTTER TESTS ON THE SR-2,
SR-3 AND SR-5 MODEL BLADES

*rnfrequently repeating peak stress as taken from brush charts.
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APPENDIX B

STRESS PEAK TABULATION FOR THE SR-3 MODEL PROP-FAN

This table contalns data obtained from spectral analyses using the computer-

ized peak picking rout|nes developed by Hamilton Standard. Listed are the

predominant frequencles measured for each straln gage signal, followed by the
stress amplitude. These are listed for each operating condition defined by"

REF. BLADE ANGLE
RPM

TORQUE
POWER COEFFICIENT
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POOR QUAUTY
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]4
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5
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7
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19
20

TABLE B-I. SR-3 PROP-FAN MODEL STATIC TESTS AT UTRC

SPECTRAL STRESS PEAKS AND FREQUENCIES
Ref.

Blade

Angle Power

RP.._MM_ CoefF
12 9050 BO ,2617

12 8630 70 .2518

12 8025 65 ,2704
12 7500 55 .262

12 7025 48 .2606

12 6500 42 .2663

12 6025 35 .2583

12 5500 30 ,2657
12 5000 25 .2679

12 4490 20 .2658

12 3990 18 .3029
12 3525 12 ,25E7

12 3000 10 .2977

12 2550 9 .3708
12 2140 7 .4095

t2 9050 80 .2617

12 8630 70 ,2518
12 0025 65 .2704

12 7500 55 .262

12 7025 48 .2606

12 6500 42 .2663
12 6025 35 .2583

12 5500 30 ,2657

12 5000 25 .2679
12 4490 20 .2658

12 3990 18 .3029

12 3525 12 .2587

12 3000 10 .2977

12 2550 9 .3708

12 2140 7 .4095
12 9050 80 .2617

12 8630 70 ,2518
12 8025 65 ,2704

12 7500 55 .262

12 7025 48 ,2606

12 6500 42 ,2663
12 _025 35 ,25B3

12 5500 30 ,2657

12 5000 25 .2679
12 4490 20 ,2658

12 3990 18 ,3029

12 3525 12 ,25B7
12 3000 10 ,2977

12 2550 9 ,3708

12 2140 7 .4095

15.9 9030 115 ,3778
15.9 8540 105 .3857

15.9 8015 95 .3962

15.9 7540 80 ,377

15.9 7040 70 ,3784
15.9 6520 62 ,3907

15.9 6012 55 .4077

15.9 5520 45 ,3957

15.9 5030 40 .4236
15.9 4515 32 ,4206

15.9 4005 25 ,4176

15.9 3510 20 ,4349

15.9 3023 15 ,4398
15.9 2505 10 ,4269

15.9 2140 8 ,468

15.9 9030 115 ,3778
15.9 8540 105 .3857

15,9 8015 95 .3962

Gage No. of

No. Peak_ Spectral

881-4 0
881-4 0

881-4 0

881-4 0

BQI-4 O
8(]1-4 0

801-4 0

801-4 0

801-4 0
801-4 0

BGI-4 0

901-4
801-4

801-4 0
801-4 0

801-1 0

801-I 0
801-1 0

801-1 0

801-I 1 234 1128

801-1 I lOB 677

801-1 0
861-1 0

801-1 0

801-I 0

801-1 0

801-1 0
801°1 0

B01-1 0

BGI-1 0
B01-6 1 454 1011

Bn1-6 0

BG1-6 1 134 502
881-6 0

801-6 0

BG1-6 1 108 583
801-6 0

BG1-6 0

801 -_
801-6 0

801-6 0

801-6 0

B81-6 0
901-6 o

BGi -_ o

801-4 o

B01-4 0
801-4 0

B01-4 0

801-4 o

BG1-4 0
801-4 0

B81-4 0

B01-4 0

801-4 0

BG1-4 o
901-4 0

801-4 0

_01-4 0

BQI-4 o
801-4 0

801-4 0
B01-4 0

Frequencles(HZ)/Vlbratorv Stress (osl)

95



ORIGINALPAGE IS
OF POORQUALITY

Run

No.

18

19

20

21

22
23

24

25
26

27
29

29

30
31

32

18

19
20

21

22

23

24
25

26

27

29
29

30
31

32

33

34
35

36

37

39
39

40

41

42

43
44

45

46
47

33

34
35

36

37

-38
39

40

41
42

43

44
33

34

35

36

37

-38
39

40

41

TABLE B-1 (CONTINUED)
ReF.

Blade

Angle Power Gage No. of

Deg. RP._H Tor_._.rrrr_ Coeff No. Peaks

15.9 9030 115 .3778 B01-1 1

15,9 8540 105 ,3857 B81-1 0

15.9 8015 95 .3962 BGI-I 0

[5.9 7540 80 .377 961-1 2

15.9 7040 70 ,3784 DO1-[ 2

15.9 6520 62 .3907 981-I 2
[S,9 6012 55 .4077 B01-1 0

15.9 5520 45 ,3957 B01-1 0

15.9 5030 40 ,4236 _61-1 0
15,9 4515 32 ,4206 B81-1 0

15.9 4005 25 .4176 981-1 0

15.9 3510 20 .4349 BGI-1 0
15.9 3023 15 .4398 BGI-1 0

15.9 2505 10 .4269 B81-1 0

15.9 2140 8 .468 901-[ 0

15.9 9030 115 .3778 981-6 2
15.9 9540 105 .3857 981-6 I

15.9 B015 95 .3962 901-6 I

15.9 7540 80 .377 981-6 I

15.9 7040 70 .3794 BG1-6 |
15.9 6520 62 .3907 BGI6 2

15.9 6012 55 ,4077 BGI-6 0

15,9 5520 45 .3957 981-6 o

15.9 5030 40 .4236 BGI-6 0
15.9 4515 32 .4206 901-6 o

15.9 4005 25 .4176 981-6 0

15.9 3510 20 .4349 901-6 0

15.9 3023 15 ,4398 981-6 0
15.9 2505 10 ,4269 901-6 0

15o9 2140 8 ,469 B01-6 0
19.9 9020 165 .5433 981-4 0

[9.9 8500 150 ,5562 901-4 0

19.9 8000 135 .5651 B81-4 0

[9.9 754_ 120 ,5652 981-4 0

19,9 7030 100 .542[ 901-4 0
19.9 6525 92 .5789 BGI-4 0

19.9 6010 75 ,5563 981-4 0

19.9 5520 60 ,5276 B81-4 0

19.9 5025 50 ,5305 BG1-4 0
i9,9 4510 42 ".5532 901-4 0

19,9 4010 35 .5831 B81-4 0

19,9 3510 29 ,6306 BGI-4 0
19,9 3000 21 .6251 981-4 0

19.9 2500 15 .643 981-4 0

19.9 2140 11 .6435 B81-4 0

19.9 9020 165 ,5433 861-1 1
19.9 8500 150 .5562 881-1 2

19.9 8000 135 .5651 861-I I

19.9 7542 120 ,5652 861-1 0
19.9 7030 I00 .5421 881-1 2

19.9 6525 92 ,5789 901-1 2

19.9 6010 75 ,5563 881-1 1

19.9 5520 60 ,5276 BOJ-I 0
19.9 5025 50 .5305 981-1 o

19.9 4510 42 ,5532 BGl-I 0

19.9 4010 35 .5831 901-I 0
19.9 3510 29 .6306 801-1 0

19.9 9020 165 .5433 9G1-6 2

19.9 8500 150 .5562 981-6 1

19.9 8000 135 ,5651 901-6 0

19.9 7542 120 .5652 801-6 0
19.9 7030 I00 .5421 88[-6 [

19.9 6525 92 .5789 88[-6 1

19.9 6010 75 .5563 80[-6 o

19.9 5520 60 .5276 88[-6 0

19.9 5025 50 .5305 BOi-6 0

Spectral Frequencles(HZ)lVlbratory, Stress (ps;)

148 521

126 558 252 568
118 812 234 [243

108 786 218 982

148 749 448 692

142 520

134 560

126 619
118 894

108 690 218 588

452 659
142 552 284 521

266 529

118 657 234 862

108 759 218 688

200 509

150 582 452 860

142 532

118 600
108 678
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Run

No.

42
43

44
53

54

55

56
57

58

59

60
61

62

63
53

54

55

56
57 "

58

59
60

61

62

63
64

65

66

67

53
54

55

56
57

58

59

6O
61

62
63

64

53

54
55

56

57

58
59

60

61
62

63

64

65
66

67

53
56

55

56
57

58

59
60

61

62

Ref.

Blade

Angle

19.9 4510

19,9 4010

19.9 3510
23.6 9035

23.6 8570

23.6 8025

23.6 7520
23.6 7010

23.6 6540

23,6 5970
23.6 5535

23.6 5000

23.6 450O

23,6 4025
23,6 9035

23.6 8570

23.6 8025

23.6 7520
23.6 7010

"23.6 6540
23.6 5970

23.6 5535

23,6 5000
23.6 4500

23.6 4025

23.6 3510

23.6 2995

23.6 2510

23.6 2080
23,6 9035

23.6 8570

23.6 8025

23.6 7520
23.6 7010

23,6 6540

23.6 5970
23.6 5535

23.6 5000

23.6 4500
23.6 4025

23.6 3510

23.6 9035
23.6 R570

23.6 8025

23.6 7520

_3°6 7010
23.6 6540

23.6 5970

23.6 5535

23.6 5000
23.6 4500

23.6 4025

23,6 3510
23.6 2995

23.6 2510

23.6 2080
23.6 9035

23.6 8570

23.6 8025

23.6 7520
23.6 7010

23.6 6540

23.6 5970
23,6 5535

23.6 5000

23.6 4500

TABLE B-1 (CONTINUED)

Power Gage Ho. of

Torque Coeff No. Peaks Spectral Frequencles(HZ)/Vlbratory Stress (psi)
42 .5532 8191-6 0

35 .5831 801-6 0
29 .6306 801-6 0

230 .7549 BG1-4 0

205 .7478 901-4 0

180 °7488 801-4 0

155 .7343 801-4 0
130 .7088 861-4 0

120 .7517 801-4 0

100 .7517 801-4 0
85 °7433 801-4 0

70 .7502 801-4 0

55 .7277 801-4 0
45 .7442 BG1-4 0

230 .7549 801-1 1 452 553

205 .7478 861-I 1 142 542

180 .7488 801-1 0
155 .7343 801-I 0

130 .7088 BGI-I 2 I18 647 234 819

120 ,7517 B01-I 2 108 767 218 900
100 .7517 BGI-! I 200 551

85 .7433 BGJ-I 0
70 °7502 B01-1 0

55 .7277 801-I 0

45 .7442 801-1 0

35 .7611 B01-1 0

25 .7467 B01-1 0

18 .7654 B01-1 0

I0 .6192 861-1 0
230 .7549 801-6 2 150 527 452 983

205 .7478 BGI-6 I 142 580

180 ,7488 B01-6 0

155 ,7343 801-6 0
130 .7088 BGI-6 I 118 612

120 ,7517 801-6 I 108 707

100 ,7517 B01-6 0
85 ,7433 801-6 0

70 ,7502 801-6 0
55 ,7277 801-6 0

45 .7442 801-6 0

35 ,7611 BGI-6 0

230 .7549 B01-I 0
205 ,7478 B01-I 0

100 .748B 801-1 1 134 688

155 .7343 BGI-t I 126 033
t30 ,708B BGI-i I 118 1134

120 .7517 B01-1 2 110 792 21B 1469

100 .7517 801-1 2 100 659 200 520

B5 .7433 BGI-I I 92 540
70 .7502 B01-1 0

55 ,7277 801-1 0

45 .7442 801-I 0
35 ,7611 801-I 0

25 *7467 801-I 0

18 ,7654 801-1 0

10 .6192 901-1 0
230 ,7549 801-6 2 150 578 454 811

205 ,7478 801-6 I 144 682

180 .7488 BGI-6 1 134 860

155 .7343 801-6 1 126 970
130 .7088 B01-6 1 118 1031

120 .7517 801-6 1 II0 621

100 .7517 801-6 I I00 552
85 .7433 801-6 I 92 516

70 .7502 BGI-6 0

55 .7277 801-6 0
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Run

No.

63

64

65
66

67
68

69

70

71
22

73

74

75
76

77

78
79

80

81

82
68

69

70

71
72

73

?4
75

76

77
78

79

80

81

82
68

69

70
71

72

?3

74
75

76

77
78

79

79
80

81

82

83
84

84

83

85
86

87

88
89

90

91

92
93

94

95

Ref.
Blade
Angle

23.6
23.6

23.6

23.6

23,6
27.6

27.6

27.6

27.6
27.6

27.6

27.6
27.6

27.6

27.6
27.6

27.6

27.6
27.6

27.6

27.6

27.6

27.6
27.6

27.6

27,6

27,6
27.6

27.6

27.6
27,6

27,6

27.6

27.6
27.6

27.6

27.6

27.6
27.6

27,6

27.6
27.6

_7.6

27.6
27.6

27.6

27.6
27.6

27.6

27.6

27.6
31.7

31.7

31.7

31,7

31.7
31.7

31.7

31.7
31.7

31.7

31.7
31.7

3L.7

31,7

31.7

RP___.
4025

3510

2995

2510

2080
9000

8555

8050
7585

6960

6570

6015
5520

4980

4530
4040

3505

3020
2570

2145

9000

8555
8050

7585

6960

6570
6015

5520
4980

4530

4040

3505

3020

2570
2145

9000
8555

8050

7585

6960

6570
6015

5520
4980

4530

4040

3505
3505

3020

2570

2145
9050

8570

8570

9050
8055

7535

7030
6505

6010

5505

5005
4520

4055

3550

3065

45

35

25

18
10

275

250
220

190

165

145
125

105

90

72
55

45
30

25

15

275
250

22O

190

165
145

125
105

90

72

55

45

30
25

15

275
250

220

190
165

145

125

105
90

72

55
45

45

30

25
15

290

260

260
290

240

210

180
155

135

115
95

75

65

45

35

Power

Coeff
.7442

.7611

.7467

.7654
,6192

.9096

.9151

.9095

.0848

.9126

.9195

.9256

.9232

,9722
,94

,9028
,9814

,8812

1.0141

,8734
,9096

.9151

.9095

.8848

.9126
,9195

.9256
,9232

.9722

,94

.9028

,9814
,8_12

1.0141

.8734

.9096

.9151

,9095

,8848
.9126

.9195

.9256

.9232

.9722

,94
.9028

.9814

.9814

.8812
1.0141

.0734

.9486

.9404

.9484

.9486

.991

.9909

.9758

,9814

1.0013

1.0167
1,016

.9835

1.0591

,9566
,9902

ORIGINAL PAGE IS

OF. POOR QUALITY

TABLE B-! CONTINUED

Gage
No.

901-6

801-6

901-6
801-6

901-6
881-4

BG1-4

901-4

801-4
801-4

901-4

801-4

901-4
B01-4

B01-4

801-4
B01-4

801-4

BG1-4
881-4

801-1

_01-1

881-1

BGI-1
B01-1

881-1

981-1
881-1

BGI-1

.BGI-I

881-I
881-1

801-I

BGI-1
881-1

801-6

BGI-6

881-6
BGI-6

801-6

BGI-6

BGI-&
881-6

881-6

BGI-6
BGI-6

881-6

B01-6
801~6

BOl-6

BOl-6

_01-4

981-4
B81-4

801-4

801-4

B81-4
801-4

801-4

901-4

901-4
801-4

901-4

801-4

881-4
BO1-4

No. of

Peak__s
0
0

o

o

o
o

o

0

0
0

0

0
o

0

0
o

o

o
o

o

o

2
2

1

g
0

1

I

o
0

o

o

0
o

2

2

SEectral

142 849 286 701
134 561 268 504

126 659

116 709 232 711
110 744 220 1644

184 596

166 633

150 890 452 1028
142 1096 428 957

134 778

134 661

116 751
110 518 220 618

740 680

752 737
734 738

722 643

716 625

704 736
694 760

686 612

680 571 684 554

Frequencles(HZ)/Vlbratory Stress (psi)
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Ref.
Blade

Run Angle
No_._.. Deg. RPH

96 31.7 2525

97 31.7 2130

--83 31,7 9050
84 31.7 8570

85 31.7 8055

86 31.7 7535
--57 31.7 7030

88 31.7 6505

89 31.7 6010
90 31.7 5505

91 31.7 5005

92 31.7 4520

93 31,7 4055
94 31.7 3550

95 31.7 3065

96 31.7 2525
97 31.7 2130

_83 31.7 9050

84 31.7 8570

85 31.7 8055
86 31.7 7535

87 31.7 7030

87 31,7 7030
88 31.7 6505

89 31.7 6010

90 31.7 5505

91 31.7 5005
92 31.7 4520

93 31.7 4055

94 31.7 3550

95 31.7 3065
96 31.7 2525

97 31.7 2130

X_lO0 35.7 4750
101 35.7 4750

102 35.7 4505

103 35.7 4010
104 35.7 3515

105 35.7 3005

106 35.7 2500
107 35.7 2170

'100 35.7 5790

101 35.7 4750

102 35.7 4505

I03 35.7 4010

104 35.7 3515
105 35.7 3005

106 35.7 2500

107 35.7 2170
_100 35.7 5790

101 35.7 4750

102 35,7 4505

103 35.7 4010
104 35.7 3515

105 35.7 3005

106 35.7 2500
107 35.7 2170

108 40 5670

109 40 5510
110 40 5010

111 40 4510

112 40 4000

113 40 3520
114 40 3015

115 40 2530

116 40 2160

TABLE B-1 (CONTINUED)

Power Gage No. of

Torque Coeff _N°" Peaks
25 1. 0505 1;01-4 0

15 .8858 B01-4 0
290 .9486 I;01-1 "_-

260 ,9484 B01-I 3

240 .991 881-1 3

210 .9909 1:131-1 1
280 .9758 8t31-1 3

155 .9814 881-1

135 1.0013 881-i 2
115 1.0167 881-1 2

95 1,016 BOI-1 0

75 .9835 801-1 2

65 1.0591 1101-I 2
45 •9566 JO 1 - I 0

35 .9982 BGI-I I

25 1.0505 801-I 0

15 •8858 BG 1 - I .9--.
290 .9486 801-6 5

260 . 9484 801-6 3

240 .991 801-6 4
210 .9909 801-6 6

180 ,9758 BG1-6 5

180 .9758 901-6 4

155 .9814 081-6 6
135 I.0013 BG1-6 3

115 1.0167 881-6 5

95 1.016 881-6 4
75 ,9835 801-6 i

65 I , 0591 BO I-6 2

45 .9566 881-6 I

35 .9982 881-6 I
25 1.0505 B0i-6 1

15 .8858 801-6 0

105 1 , 2468 801-4 2

105 1 , 2468 8G 1-4 2
90 1 • 1081 881-4 I

70 1 • 1663 881-4 1

50 1.0842 E_01-4 0
40 1.1868 801-4 0

30 1.286 001-4 0

18 1.0241 801-4 0

145 .3596 801-I 4
105 1.2468 861-1 2

90 1.1881 801--i 4

70 I • 1663 Bgl- I 2

50 1.0842 8Gi-! i

40 I • 1868 1101 - I 1
30 1 • 286 801-1 2

18 1.0241 B81-I i
145 .3596 801-6 4

105 1.2468 80i-6 4

90 1 • 1081 801-6 5
70 I • 1663 801-6 2

50 1.0842 801-6 3

40 1 • 1868 I_ 1-6 2

30 1 • 286 881"6 3
18 1. 0241 881-6 0

170 1,4167 801-4 4
160 1,4119 801-4 3

130 1.3876 BOI-4 2

110 1. 4489 801-4 2

85 1.4233 981-4 0

65 1,4055 881-4 0

45 1.3263 B01-4 1

35 1,4649 801-4 0
25 1 *4356 881-4 0

Spectral Frequencles(HZ)/VlbratorT Stress (psi)

152 570 252 672
238 585 244 582

134 922 238 693

126 550

11J 572 _ 644
108 937 216 1877

tO0 549 200 853
184 7_5 4_0 549

190 _34 396 705

390 947 442 501

386 596

454 718

286 536

268 502

254 6t2

440 863 454 2004 630 766

428 2050 626 859 890 870

134 910 434 931 624 651
126 672 426 871 432 806

116 948 426 910 430 922
118 806 424 903 610 606

108 819 216 879 418 694

202 548 414 868 846 818
184 601 408 1387 412 999

400 718 406 678 416 838
396 1485

398 1821 444 890

390 573

388 1073

382 529

410 974 684 649

676 777 680 855
680 830

672 599

888 708 898 920

878 831

438 883 624 1016
632 569 874 623

862 607
620 521 848 522

838 610 842 649

832 607

872 873

854 603

192 1140 204 1482 400 676 412 5418

192 1105 400 3252

190 1082 386 572 390 550 398 553

184 891 392 689

178 845

174 1338
170 1162 178 773

170 509

6 685 _824 1615 836 643

192 680 388 604 400 8247 826 635

188 757 386 1414 390 1453 426 525
392 1041 400 517

388 602 396 670 816 504

176 712 386 707
172 565 176 561 380 512

404 597 684 617 690 742 698 712

686 776 692 618 700 596

680 536 686 697

676 615 680 709

026 512

174 530
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Run

No.

108

109

110

111
112

113

114
115

116

108
109

110

111
112

113

114
115

116

117

118
119

_120

t21

122
123

124

125
126

117

118

119
-120

121

122
123

124

125
126

117

t18

--120
121

122

123

124
125

126
127

128

129

130
131

132

133
134

135

127

128
129

130

Ref.
Blade
Angle

40

10

40

40
40

40
40

40

40
40

40

40

40
40

40
4O

40

40

50.3

50.3
50.3

50.3

50.3

50.3
50.3

50.3

50.3
50.3

50,3

50.3

50.3
50.3

50.3

50.3
50.3

50.3

50.3
50.3

50.3

50.3

50.3

50.3
50.3

50.3

50.3

50.3
50.3

50.3

60
&O

60

60
60

60

60
60

60

60

60
60

60

5670

5510

5010

4510
4000

3520

3015
2530

2160

5670
5510

5010

4510
4000

3520

3015
2530

2160

6225

6030
5520

5010

4505

4015
3520

3025

2520
2136

6225

6030

5520

5010

4505

4015
3520

3025

2520
2136

6225

6030

5520

5010

4505

4015

3520

3025
2520

2136

5280
5215

5000

4510
4025

3500

3045
2510

2150

5280

5215
5000

4510

TABLE B-1 (CONTINUED)

Power Gage No. of

Torque Coeff No. Peak.___L
17o 1.416_ 801-1 5
160 1.4119 8G1-1 4

130 1. 3876 80 I- I 2

110 1. 4489 BG1 - 1 3
85 1. 4233 801-1 2

6_ I. 4055 BGI- I 2

45 I, 3263 881-1 I
35 I • 4649 8 tl I - 1 I

25 I. 4356 801 - I I

170 1.4167 801-6 6

160 1.4119 881-6 7

130 1 • 3876 801-6 6

110 1,4489 BD1-6 5
85 1. 4233 B81-6 2

65 I • 4055 881-6 3

45 1,3263 BG1-6 3
35 1.4649 BGl-6 3

25 1,4356 881-6 I

280 I •9358 B81-4 2

260 1.9157 B81-4 2
230 2. 0223 801 +4 2

190 2.028 861-4 2

155 2,0461 BG1-4 0

125 2,0775 861-4 2

95 2.0541 BGI-4 0
70 2,0495 BGI-4 0

50 2.1094 B81-4 0
35 2.0552 BGI-4 0

280 1.9358 BGI-I 6

260 1.9157 861-I 6

230 2.0223 801-1 6

190 2.028 801-1 8

155 2,0461 8Gi- 1 6

125 2.0775 801-1 3
9'5 2,0541 BG1-1 4

70 2,0495 801-1 1
50 2.1094 881-1 _.

35 2.0552 881-I I

280 1 •9358 BG I-6 7

260 1.9157 B01-6 7

230 2 •0223 BG 1-6 11

190 2,028 88l -_ 6
155 2,0461 Bnl-6 3

125 2 , 0775 BG I-6 2

95 2.0541 881-6 4

70 2 , 0495 BG1-6 2
50 2 , 1094 801-6 !

35 2,0552 801-6 1

290 2,7869 8G1-4 1
280 2,7583 801-4 1

260 2. 7863 881-4 1

220 2,8978 881-4 1
180 2,9767 881-4 0

135 2.9525 BGI-4 0

100 2 ,8895 BG 1-4 0

65 2 • 7641 881-4 0
50 2 • 8979 BG 1-4 0

290 2 . 7869 801-4 3

280 2 , 7583 801-4 2

260 2 • 7863 801-4 1

220 2,8978 881-4 I

Spectral Frequencles(HZ)/V[bratorv Stress (gsl)
94 620 188 5:7 202 1934 402 2309 406 2215

188 726 198 1034 398 1812 406 1132

19o 1184 4o2 1o68
19o 1282 :o2 675 396 811
180 2003 184 2435
160 515 180 1090

176 2839
170 981

I_ 993

94 599 202 656 402 7650 420 534 836 649 840 580

92 566 200 811 396 4004 406 2919 414 1571 834 791
842 902

84 606 194 663 386 558 402 2968 418 560 830 764

188 978 382 511 392 1115 398 1136 826 746

182 1945 392 727
176 705 182 547 390 615

176 1955 378 519 384 782

170 693 378 510 386 625
168 663

702 1012 710 810

690 749 704 1051
690 542 696 800

682 576 688 738

182 929 676 557

104 1383 184 660 202 4431 208 2753 404 858 412 730
100 1273 182 676 188 918 _._02 5513 212 767 406 955

92 1432 184 1569 196 2464 21 _2 533 402 607 406 614

84 908 158 512 162 590 168 926 192 2782 200 596
230 743 398 598

74 773 186 2145 194 276 200 771 206 839 394 537

180 3949 184 3686 392 617
[62 I066 174 I448 178 1840 388 541

174 1836,

168 738 172 787

168 820
202 2784 384 511 404 2026 430 516 618 7_7 840 _50

848 747

100 536 202 2333 388 641 406 2135 616 825 838 744

846 897
174 506 184 827 194 934 200 737 386 524 400 1368

404 1333 410 706 616 627 834 925 838 965

192 994 390 888 394 1032 404 722 8_8 686 83_ 658
186 672 394 1122 826 563

182 3305 390 1232

162 635 176 790 388 754 816 546

172 824 384 839
|70 913

170 549

684 502
686 520

684 565

678 570

176 901 190 1253 194 972

174 512 190 1317

188 1340

184 2268

ORIGINAL P/iGE |:_
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Run

No.

131
132

133
134

135

127

128
129

130

131
132

133

134
135

135

137

138
139

140

141

162
136

137

138
139

140

141

142

136
137

138

139
140

141

142

143
144

145

146
147

148

149
143

144

145

146
147

148

149
143

144

145
146

147

140
149

150

151
152

153

154
155

156

157

150

Ref.

Blade

Angle

60
60
60

60

60

60
60

60

60
60

6O

60
60

6O

60
69.9

69.9

69.9

69.9

69.9
69.9

69.9

69.9
69.9

69.9

69.9

69.9
69.9

69.9

69.9

69.9
69.9

69.9

69.9

69.9
B0

B0

80
80

80

B0

B0
8O

80

80
80

80

80

80
80

80

80

80

80
80

80

34
34

34

34

34
34

34

34
34

Re___M
4025

3500
3045

2510

2150
5280

5215

5000

4510
4025

3500

3045
2510

2150

2150
4500

4000

3510

3025

2510
2130

4785

4500
4000

3510

3025
2510

2130

4785

4500
4000

3510

3025

2510
2130

5000

4520

4020
3530

3025

2510
2150

5000
4520

4020
3530

3025

2510
2150

5000

4520

4020

3530
3025

2510

2150
5700

5010

4525

4015
3515

3015

2520
2167

5700

180
135

100

65
50

290

280

260
220

189
135
100

65
50

50

260

205

160
118

83

58
290

260

205

160
• 118

83

58

290

260
205

160

118
83

58

28O
230

185

140

100
70

48

280
230

185

140

100
70

48

280

230

185
140

100

70

48
115

IO0

78
62

45

32

22
15

115

TABLE B-1 (CONTINUED)

Powe r

Coeff

2.9767
2.9525

2.8895
2.7641

2.8979

2.7869

2.7503
2.7863

2.8970

2.9767
2.9525

2.8895

2.7641
2,8979

2.8979

3.4399

3.4326
3.4793

3.4548

3.5296

3.425
3.3933

3.4399

3.4326
3.4793

3.4548

3.5296

3.425
3.3933

3.4399

3.4326

3.4793
3.4548

3.5296

3,425
3.0006

3.0161

3.067

3.01
2.9278

2.9767

2.782
3.0006

3.0161

3.067

3.01
2.9278

2.9767

2.782
3.0006

3.0161

3.067
3.01

2.9278

2.9767
2.782

.9483

1.0674
1.0206

1.0304

.9758

.9431

.9281

.8558

.9483

Gage No. oF

No. Peak._Ls Spectral Frequencles(HZ)/Vlbratory Stress (l_si)
_G l.-e L 1_10 1535

_81-4 1 176 2022
881-4 1 174 1289

881-4 1 168 818

901-4 i 168 1139
201-6 6 194 792 396 843 402 579 616 618 622 528 832 734

N|-6 4 190 823 394 725 614 564 830 601

801-6 4 188 1155 396 941 612 694 826 678

101-6 3 184 1614 390 1019 452 510
!01-6 2 llO 1378 386 974

801-6 2 176 1376 384 962

801-6 2 172 726 382 735
801-6 I 170 518

BGI-6 1 168 626

801-4 1 676 510

801-4 0
8GI-4 0

BG1-4 0

881-4 0

801-4 0
8G1-4 0

881-I I 184 1640

BGI-1 1 182 1630
BGI-t 1 180 1022

BGI-I I 176 1331

881-1 1 170 869
Br:l-I I 170 686

881-I 1 16e 571

80i-6 4 184 887 394 1203 444 571 824 550
801-6 4 180 891 390 981 394 917 820 570

801-6 2 176 591 388 1125

BOI-6 2 176 885 384 851

80i-6 2 i72 590 382 912
801-6 I 376 532

801-6 0

801-4 I 672 760

801-4 1 664 544

BG1-4 0

801-4 0
801-4 0

BG1-4 0
801-4 0

861-I 4 166 1576 184 3451 200 670 392 947
801-1 3 150 701 182 3280 392 620

BGI-1 3 134 587 176 3306 386 820

801-1 3 118 548 172 2355 384 524

BGI-I 1 170 1472
881-1 2 166 1104 172 1057

8G1-1 1 168 911

801-6 9 166 1066 182 2046 372 539 392 2299 414 511 430 541
436 710 610 702 822 945

168 500 180 2341 390 1652 398 766 820 706BGI-6 5

B81-6 2 176 2054 384 1433

BDI-6 2 172 1274 384 1120
801-6 2 168 1033 378 730

801-6 1 166 810

801-6 I 166 971

801-4 2 410 1013 684 954
801-4 2 682 805 686 796

BQI-4 1 678 640

BQI-4 1 672 524

801-4 o
BQi -4 0

801-4 b

801-4 0
901-1 3 204 1064 400 561 410 4352

IOI



Run

No.
i

151

152

153

154
155

156

157
15o

151

152

153
154

155

156
157

158

159

16o
161

162

163

i64
t65

L66

162
168

tb9

i70
171

[72

158

159
160

|61

--162
163

164

165

166

167
168

169

170
171

172

158

159

160

--161

162

163

164

165

166
167

168

169

170
171

172

176

177

Ref.

Blade

Angle

34

34

34
34

34
34

34

34

34
34

34

34
34

34

32.7

32.7
32.7

32.7

32.7

32.7
32.7

32.7

32,7

32.7
32.7

32.7

32.7

32.7
32.7

32.7

32.7
32.7

32.7
32.7

32.7

32,7

32,7

32.7
32,7

32.7

32.7

32.7
32.7

32.2

32,7

32.7

32.7

32.7

32.7

32.7

32.7

32,7
32.7

32.7

32.7

32.7
32.7

32.7

33.7

44.9
44,9

TABLE B-1 (CONTINUED)

Power Gage No. of
RPM Torque Coeff No. Peaks

100 I.0""_74 _ot-1 2
4525 7s 1.o2o+ 901-1 3
4015 62 1.0304 801-i 4

3515 45 .9758 981-1 1
3015 32 .9431 BOI-I 2

2520 22 .9281 901-1 1
2167 15 .8558 881-I 1

5700 115 .9483 BGI-6 4

5010 100 1.0674 801-6 3
4525 78 1,0206 981-6 3

4015 62 1.0304 881-6 I

3515 45 .9758 B01-6 1

3015 32 .9431 801-6 1
2520 22 .92gl 981-6 1

2167 15 .8558 901-6 0

9025 280 .92i 981-4 4
0517 265 .9787 801-4 2

8030 230 .9556 B01-4 2

7530 210 ,9922 961-4 2

7020 175 .9514 901-4 2
6585 155 ,9577 801-4 1

6025 135 .9963 901-4 2

5530 110 ,9637 BG1-4 2
5040 100 1.0547 981-4 2

4510 75 .9879 B01-4 I

3990 60 1.0097 901-4 1

3470 45 1.0013 981-4 0

3055 35 1.0047 981-4 0
2485 20 .8677 BGI-4 0

2110 15 .9026 901-4 0

9025 290 ,921 801-1 4
8517 265 ,9787 881-1 5

8030 230 .9556 901-1 4

7530 210 .9922 9GI-1 3

7020 175 .9514 881-1 5

&595 155 .9577 961-I 3

6025 135 .9963 BGl-I 4

5530 110 ,9637 9GI-I 3
5040 100 1.0547 901-1 2

4510 75 ,9979 861-I 2

3990 60 1,0097 BG1-1 3

3470 45 1.0013 BGI-1 o
3055 35 1.0047 881-1 2

2485 20 .8677 901-I I

2110 15 .9026 BGI-I I
9025 280 .921 981-6 9

8517 265 .9787 BG1-6 7

8030 230 .9556 B01-6 9

7530 210 .9922 BG1-6 7

7020 175 .9514 901-6 5

6585 155 .9577 801-6 6
6025 135 .9963 B01-6 6

5530 110 .9637 BGI-6 4

5040 I00 1,0547 _81-6 2

4510 75 .9879 881+6 3

3990 60 1.0097 BGI-6 2

3470 45 1.0013 BGI-6 I
3055 35 1.0047 BGI-6 2

5495 20 .8677 B01-6 0

3110 15 .9026 881-6 0

6800 280 1.6223 881-4 4
6520 270 1.7016 981-4 3

Spectral Frequencies(HZ)/VlbratoryStress (pst)
196 564 408 578
190 724 388 789 396 524

178 583 188 744 392 1084 398 543

180 664
174 655 178 614

170 949
168 699

410 12449 822 694 "834 672 840 570

404 1532 420 553 834 708
390 2932 400 1026 824 705

392 2655

388 875

386 700

172 578

628 516 632 507 746 867 754 ?62

740 1252 746 817
728 770 732 805

720 636 726 629

696 514 714 959

706 765
690 661 696 772

684 547 690 753

680 573 688 537
674 648

672 673

150 802 246 541 250 573 442 510

142 581 236 644 240 754 248 813 284 500
134 655 222 568 232 616 238 790

230 827 252 736 426 538
220 540 226 569 234 712 416 529 420 514

110 738 214 1003 220 1051
100 703 202 1201 208 850 410 505

184 996 204 747 404 1147

194 775 404 509
192 665 196 637

182 688 396 1338 440 518

176 870 384 521

174 623

170 691

150 618 300 527 430 553 438 764 448 _44 62R 1437
892 1064 896 948 908 615

142 656 428 1160 438 859 626 833 742 754 882 94,5

888 748
134 638 430 792 440 617 446 512 452 518 622 772

870 686 878 1105 888 718
416 507 426 1126 440 920 622 1115 856 550 864 762

872 716

414 1396 420 1579 434 550 620 942 858 942

110 753 220 764 414 911 612 630 620 750 852 565

200 612 408 1080 416 1313 422 793 614 607 842 818

184 647 406 2063 610 519 836 618

404 1022 830 610
384 839 394 1060 402 641

396 3191 442 1490

392 678

386 836 392 552

704 720 710 690 716 1537 732 503

706 690 710 926 720 626

ORiGLNAL pF._Z IS

OF POOR QUALITY
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O_iGINAL Pt_GE L-3

OF POOR Q;_ALITY

Run

No.

17ff
179

180

181
182

183

184
185

1 B6

176

177

178
179

180

181

182

183
184

185

186

176

177

Ref.

Blade

Angle

44.9

44.9

44°9
44.9

44.9

44.9

44.9
44,9

44.9

44,9

44,9

44.9
44,9

44.9

44.9

44.9

44.9
44.9

44.?

44.9

44*9

44.9

TABLE B-1 (CONTINUED)

Power Gage No. of

RPH Torque Coeff No. Peaks
604"S 2_ 1,7_J9 SOt-4 2

5500 195 1.727 861-4 3
5000 165 1 • 7682 BG 1-4 1

4500 135 1.7861 801-4 1
4000 105 1. 7582- 801-4 1
3495 80 1. 7546 801-4 o
3018 60 1,7648 801-4 0

2505 40 1 , 7078 BOl-4 0

2157 28 1.6123 DG1-4 0
6800 280 I • 6223 BG1 - i 12

6520 270 1 • 7016 801-1 B

6045 235 1 . 7229 B81 - 1 6

5500 195 J • 727 BG1-1 9

5000 165 1 . 7682 881-1 7

4500 L35 I • 7861 BGI-1 5
4000 L05 1 • 7582 BG 1-1 Z

3495 80 1 , 7546 881 - 1 3

3018 60 1 , 7648 881 - 1 1
2505 40 I . 707B BG1-1 I

2157 28 1.6123 881-1 1

6800 2B0 L • 6223 BG 1-6 13

270 1,7016 801-6 146520

178 44.9 6045 235 1.7229 8G1-6 10

179 44.9 5500 195 1,727 BOI-6 9

180 44.9 5000 165 1.7682 B01-6 7

181 44,9 4500 135 1.7861 B01-6 5
182 44.9 4000 105 1.7582 BGL-6 3

I83 44.9 3495 80 1*7546 BG1-6 2

184 44.9 3018 60 1.7648 881-6 3
185 44.9 2505 40 1.7078 B01-6 2

186 44.9 2157 28 1.6123 B81-6 1

189 38 5725 165 1.3487 B01-4 4

1_0 38 5_20 150 1.3189 B01-4 2

191 38 5020 125 1.3289 BG1-4 2
192 38 4518 100 1.3125 881-4 2

193 38 3995 BO 1o3429 881-4 1
3B 3520 60 1.2974 BGI-4 _ t194

195 38 3000 45 1.3396 BQI-4 0

L96 38 2510 33 1.3922 BGI-4 0

197 3B 2180 21 1,1839 BGI-4 b
189 38 5725 165 1.3487 B01-1 S

190 38 5520 L50 1.3189 881-I 4

191 38 5020 L25 1.3289 BGI-L 3

192 38 4518 LO0 1.3125 801-1 2

193 38 3995 BO 1.3429 B01-1 I
194 38 3520 60 1,2974 BG1-1 1
195 38 3000 45 1,3396 801-1 1
196 38 2510 33 1,392_ 881-1 I

197 38 2180 21 1.1839 881-1 I

IB9 38 5725 165 1.3487 801-6 4
190 38 5520 150 L.3189 BGI-6 3
191 38 5020 125 1,3289 801-6 7

192 38 4518 100 1,3125 801-6 6
193 38 3995 80 1,3429 801-6 4

S,pectral Freq,uenctes(HZ)/Vibratory Stress (psi)
700 1032 710 645

68B 664 696 754 706 535
688 991

682 709

184 670

114 1349 194 677 198 749 210 5158 226 912 318 582

396 610 404 1001 412 994 420 632 428 511 718 533

110 971 190 68 "_ 204 3497 208 3883 218 1804 390 629
412 1369 422 513

100 1668 190 1609 202 2028 208 1458 220 511 410 1173

P2 915 170 502 176 570 I84 897 194 1945 204 1031
254 542 396 584 406 761

166 607 182 546 190 1593 200 669 234 800 394 903

402 "727

74 685 188 1062 200 759 206 1055 394 599
66 6130 182 7468

160 1106 170 534 180 914

174 2515

170 1549
168 1402

212 1933 220 619 384 509 390 725 400 2340 "406 1662

414 2519 420 2121 432 512 624 1640 696 525 716 619

856 1042
204 3036 216 839 368 551 382 896 402 997 408 1640

416 1568 424 715 434 640 616 1109 624 1001 690 649

844 661 850 1100
100 5_J8 L88 770 196 517 202 1058 392 598 404 1809

412 2464 620 745 838 628 848 897

196 1046 202 565 388 727 398 1474 406 1407 414 1125

422 525 616 660 838 907
194 581 388 549 396 L906 406 664 456 543 830 541

834 617

184 817 206 517 386 523 396 1444 828 652

184 3059 390 665 394 712
178 866 390 689

172 1330 380 832 386 1418
170 757 380 725

168 856

408 672 690 913 694 717 698 573

690 708 698 599

682 867 690 667
676 655 682 644

676 743

670 610

190 606 196 762 204 785 210 582 408 3816

184 613 198 1185 394 757 402 2583
84 551 194 1336 402 748

188 1346 398 702

18o 1728
178 933

174 2263
172 1049

168 746

190 532 400 1996 408 9162 840 774

200 640 400 7823 838 840

84 546 194 650 392 _98 40_ 2091 414 999 610 507
832 1068

190 744 384 850 390 971 396 1096 446 515 826 593

180 1153 184 906 390 951 3_:_ _12
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Ref.

Blade

Run Angle

No.....= _ RP._M_M
194 38 3520

195 38 3000

196 38 2510

197 38 2180
198 -10 9010

199 -10 8560
200 -10 8020

201 -10 7525

203 -10 6500

204 -10 5985
205 -10 5540

2O6 -10 5010

207 -10 4530
208 -10 3990

209 -10 3510

210 -10 3005
211 -10 2100

198 -10 9010

199 -I0 8560

200 -10 g020
20[ -I0 7525

203 410 6500

204 -10 5985

205 -1o 5540
206 -10 5010

207 10 4530

208 -10 3990
209 -lO 3510

210 -10 3005

211 tO 2100

L98 -t0 9010

199 -I0 8560
200 -10 B020

201 -10 7525

203 -10 6500
204 -10 5985

205 -1o 5540

206 . -10 5010

207 -i0 4530
208 -10 3990

209 -tO 35t0

210 -tO 3005
211 -to 2100

Torque
60

45

33
21

12

11
10

9

8
7

6

5
4

3
3

2

0

12
11

lO

9

8
7

6

5
4

3

3

2

o
12

11

lO
9

8

7

4

3
3

2

0

Powe r

Coeff

1.2974

1 • 3396

1,3922
I • 1839

• 0396
.0402

.0417

.0426

.0507
• 0524

.0524

.0534

.0522

.0505

.0652

• 0593

0

.0396

.0402

.0417

.0426
•0507

.0524

.0524

.0534

.0522

.0505

• 0652

.0593

0
.0396

• 0402

.0417
•0426

.0507

• 0524

.0524
• 0534

,0522

• 0505
.065_

.0593

0

TABLE B-1

Gage
No.

801-6

BOI-6

gOI-6
801-6

801-4
BGI-4

B01-4

801-4
Bnl-4

801-4

B01-4
801-4

801-4
BIBI-4

801-4

801-4

801-4

BGI-i
B81-t

801-1

BGI -t
BGllt

BG1 -t

BGI-I

BGI-I
BGI-I

801 -I

BG1-1

BG| -I

BO1-1
801-6

801-6

BGI-6
BO1-6

BG1-6

BG1-6

B01-6
801 - 6

BGI-6

BG1-6
BGi -6

BGI 6

B01-6

(CONTINUED)

ORIGINAL PAGE IS

.OF..POOR QUALITY

No. of

Peaks

2

2
2

1

0
0

0
0

0

0
0

0

0
0

0

0

0
1

1

1

1
0

0

0

0
0

0

o

0
o

1

]

o
0

0

0

0
o

0

0
0

0

0

Spectral Freq_encles(HZ)/Vlbratory Stress

17B 632 390 840

174 1312 386 738
172 780 382 527

170 606

150 668

142 590

134 520

126 507

150 528

144 517

(Dsl)
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APPENDIX C

SR-3 CAMPBELL DIAGRAMS

Thls appendix contains Campbell diagrams from the zero forward speed SR-3

model Prop-Fan tests conducted at UTRC, given In terms of response frequency
vs. RPM for various blade angles. These Campbell diagrams were generated

from the data obtained from the spectral analyses data using computerized

peak-plcklng routines. These are the same data that are tabulated in
Appendix B and were plotted automatically by computer. Shown are plots of

frequency versus rotational speed. A plot Is generated for each blade
angle. Moda] response frequencies are evldent at the higher blade angles.

FIGURE NO.

C-1

C-2

C-3

C-4

C-5

C-6

C-7

C-8

REFERENCE BLADES-ANGLES, DEG

-I0.0, 12.0

15.9, 19.9

23.6 27.6

31.7, 32.7

34.0, 35.7

38.0. 40.0

60.0, 69.9

80.0

105/'106
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FIGURE c-i. SR-3 PROP-FAN STATIC TESTS, CAMPBELL DIAGRAMS FOR
REFERENCE BLADE ANGLES OF-10 DEG'S AND 12.0 DEG'S
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FIGURE C-2. SR-3 PROP-FAN STATIC TESTS, CAMPBELL DIAGRAMS FOR
REFERENCE BLADE ANGLES OF 15.9 DEG'S AND 19.9 DEG'S
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FIGURE C-3. SR-3 PROP-FAN STATIC TESTS, CAMPBELL DIAGRAMS FOR
REFERENCE BLADE ANGLES OF 23.6 DEG'S AND 27.6 DEG'S
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FIGUREC-4. SR-3PROP-FANSTATICTESTS, CAMPBELL DIAGRAMS FOR

REFERENCE BLADE ANGLES OF 31.7 DEG'S AND 32.7 DEG'S
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FIGURE C-5. SR-3 PROP-FAN STATIC TESTS, CAMPBELL DIAGRAMS FOR

REFERENCE BLADE ANGLES OF 34 DEG'S AND 35,7 DEG'S
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FIGUREC-6. SR-3 PROP-FAN STATIC TESTS, CAMPBELL DIAGRAMS FOR

REFERENCE BLADE ANGLES OF 38 DEG'S AND 40 DEG'S
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FIGUREC-7. SR-3PROP-FANSTATICTESTS, CAMPBELL DIAGRAMS FOR

REFERENCE BLADE ANGLES OF 60 DEG'S AND 69.9 DEG'S
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FIGURE C-8. SR-3 PROP-FAN STATIC TESTS, CAMPBELL DIAGRAMS FOR

REFERENCE BLADE ANGLES OF 80.0 DEG'S
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