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Abst rac t  

A large class of scientific computational problems can be characterized as a se- 
quence of steps where a significant amount of computation occurs each step, but the 
work performed at each step is not necessarily identical. Two good examples oflthis 
type of computation are (1) regridding methods which change the problem discretiza- 
tion during the course of the computation, and (2) methods for solving sparse triangular 
systems of linear equations. Recent work has investigated a means of mapping such 
computations onto parallel processors; the method defines a family of static mappings 
with differing degrees of importance placed on the conflicting goals of good load bal- 
ance and low communication/synchronization overhead. The performance tradeoffs 
are controllable by adjusting the parameters of the mapping method. To achieve good 
performance it may be necessary to dynamically change these parameters at run-time, 
but such changes can impose additional costs. If the computation’s behavior can be 
determined prior to  its execution, it can be possible to construct an optimal parame- 
ter schedule using a low-order-polynomial-time dynamic programming algorithm. We 
illustrate this on two model problems. Because the dynamic programming algorithms 
can be too expensive, we study the performance of an expected linear-time scheduling 
heuristic on one of the model problems and show that it is effective, and nearly opti- 
mal. The concepts we discuss here are quite general, and apply to a wide variety of 
situations. 

‘This research was supported in part by the National Aeronautics and Space Administration under NASA 
contract NAS1-18107 while the author was in residence at ICASE, Mail Stop 132C, NASA Langley Research 
Center, Hampton, VA 23665. 

tSupported in part by NASA contract NAS1-18107, the Office of Naval Research under contract No. 
N00014-86-K-0654, and NSF grant DCR 8106181. 
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Figure 1: Irregular grid for two-dimensional PDE 

1 Introduction 
Two of the principle sources of efficiency loss in parallel computation are load imbalance 
and communication/synchronization overhead. In preselected, very regular problems it 
is often quite straightforward to find a problem decomposition that provides a favorable 
load balance while requiring minimal overhead costs. In problems with either explicitly or 
implicitly varying workloads, different and more general partitioning approaches must be 
taken. 

A class of numerical methods provides good examples of computations with explicit 
dynamically varying workload. Finite-difference algorithms for solving partial differential 
equations operate on a grid representing a discretized approximation to a continuous do- 
main. The computational effort required to adequately solve the problem depends in large 
part on the number of grid points. For the sake of efficiency, time-dependent problems 
are often solved using dense grids in domain regions where the solution changes rapidly 
(in time or space), and coarse grids in more stable regions. An irregular grid of this type 
is illustrated in figure 1; the intersection of lines denote a grid point. In time-dependent 
problems, explicit integration schemes may use different irregular grids at different time- 
steps in response to the anticipated behavior of the solution. This paper adopts such an 
algorithm as a model computation, as it is representative of many in scientific computing- 
a sequence of steps with potentially variable computational demands. Within a step there 
are many operations which could be performed in parallel, thereby reducing execution 
time, and extending the size of problems which can reasonably be formulated for solution. 
But the irregularity of workload between steps makes it difficult to compute an optimal 
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derice. As an illustration, our second model problem is a solution method for very sparse 
triangular systems of linear equations; such systems exhibit run-time irregularity due to 
dynamically changing degrees of available parallelism. Here again the problem irregularity 
makes it difficult to find a truly optimal workload mapping, we must turn to well-founded 
but heuristic methods. 

Many irregular problems can be statically mapped using a generic approach discussed 
in [7], [14], [ll], [ZO]. In its fullest generality, this method operates on multi-dimensional 
domains where the computational workload is tied to points in the domain, and where 
communication tends to be between points which are close. The method first aggregates 
geographical portions of the domain into schedulable work units, and then statically assigns 
each work unit to a processor. The assignment is constructed in such a way that any work 
unit in any processor is geographically “close” to some work unit in every other processor. 
Applied to our first model problem, this method aggregates grid point solutions within 
uniformly sized domain regions; The effective mapping parameter is the spatial size of 
these regions; the number of time-steps or synchronizations required by the computation 
is completely unaffected by this parameter. Spatially small work units are fine-grained 
and tend to balance the load, but increase the communication requirements. A detailed 
study in [18] uses the generic method to statically map our second model problem. Work 
units in this case are groups of variables representing geographically close grid points in a 
two-dimensional domain. However, in this case the choice of work unit granularity defines 
a sequence of computational wavefronts that are used as phases. That study assumed that 
all work units within a wavefront are completed before any work units in the next wavefront 
can be completed. Again, fine-grained work units tend to balance load well but increase the 
number of synchronizations, each with an attendant delay cost. Thus for both problems 
we see a performance trade-off between imbalance and communication/synchronization 
overhead that is controlled by the choice of work unit granularity. 

It is possible to dynamically change work unit granularity between time-steps in the 
irregular gridding problem; this allows better performance by making the mapping more 
sensitive to the changing irregularities of the grid. The work unit granularity in the trian- 
gular solve method is not so easily changed dynamically. However, for a fixed granularity 
it is still possible to dynamically choose the synchronization points-while it is suficient 
to enforce data dependencies by globally synchronizing between wavefronts, it is not neces- 
sary. By paying careful attention to data dependencies, it can be possible to concurrently 
evaluate work units from different wavefronts. The advantage of doing so is illustrated by 
example. Imagine two wavefronts, each with three work units all having unit time exe- 
cution requirements, and suppose a synchronization requires half a time unit. Using two 
processors that synchronize between wavefronts, the computation requires four and a half 
time units. If two work units in different wavefronts can be concurrently evaluated, then 
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with two synchronizations the computation can be completed in four time units. Judicious 
selection of synchronization points can consequently improve the load balance with gains 
large enough to offset additional synchronization costs. 

This alternate selection of synchronization points affects an important mapping param- 
eter: the amount of work assigned to a processor between two synchronizations. The static 
method discussed in [18] allows one to parametrically adjust the computational granular- 
ity. This adjustment of the computational granularity in many cases leads to a partition 
consisting of a number of work units that is relatively small number compared to the 
number of available processors. This may, in many cases, lead to a poor balance of load 
unless care is taken in the assignment of work units to processors. Appropriate selection 
of synchronization points should facilitate good load balancing in these cases. 

Our two model problems are similar in that both can benefit from run-time adjust- 
ment of mapping parameters. The first problem has a fixed number of synchronizations 
and can dynamically change work unit granularity; the second problem fixes granularity 
and changes the number of synchronizations. Yet despite these apparent differences, the 
model problems share an important feature. If the computation’s behavior is known a pri- 
ori and the execution, communication, and synchronization costs are known, then it may 
be possible to increase performance by pre-scheduling values for the mallable mapping 
parameters. For both problems an optimal parameter schedule can be constructed using 
a low-order-polynomial-time dynamic programming algorithm. However, these schedules 
can still be relatively expensive to compute compared to the cost of performing the com- 
putation. Consequently, for the second model problem we study the performance of a 
linear-time scheduling heuristic. We find that the heuristic performs well. 

For the sake of clarity, much of our discussion focuses on our two model problems. 
However, it is important to realize that the principles and concepts we apply are quite 
general, and apply to a large and significant class of parallel computations. This work is 
part of the ongoing Crystal/ACRE [19] parallel programming and run-time environment 
development effort. We aim to develop simple sets of techniques that can be used for the 
automated mapping and dynamic remapping of a variety of problems onto both loosely 
coupled sys tems and tightly coupled systems. Control over performance through mapping 
parameters is very promising for these purposes; construction of parameter schedules is a 
necessary and logical extension of this approach. 

In 92 we present our first model problem, and explain the mapping method used in 
this study. We then discuss estimation of execution, communication, and remapping costs, 
and develop the granularity scheduling algorithm. 93 presents our second model problem, 
a sparse triangular system solution method, and discusses both a dynamic programming 
solution method for scheduling synchronization points, and a linear-time heuristic for this 
problem. Performance data shows that the heuristic is quite effective. Finally, 94 summa- 
rizes this paper. 
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2 Problems with Strictly Defined Phases and Irregu- 
lar Workloads 

We will first consider the solution of a time-dependent partial differential equation. This 
solution has the characteristic that the computation's phases are defined independently of 
the problem granularity or mapping. For any given granularity different work units may 
have different execution requirements, depending on the density of grid points assigned 
to them. Because the grid changes in time, the workload requirements of any particular 
work unit can change. It is this type of irregularity that permits increased performance by 
changing the workload granularity during execution. A wide variety of scientific problems 
have these characteristics; the type of approach developed for this particular problem is 
applicable to others. 

Consider the one-dimensional wave equation 

dU dU 
at dX 

where u represents some density function, and v represents some wave velocity function. 
A numerical solution to a problem of this type is to discretized the interval of interest with 
a uniform grid having points Ax distance apart. The solution for u is sought at times At, 
2 A t ,  3At, and so on. The value of u at the j t h  grid point at time nAt is denoted u?. 
There are a variety of ways to numerically solve this problem. The Lax method of solution 
for u [16] is to solve the equations 

-= -V- 

So-called equations of state  dictate the solution for vr" which is required here; for sim- 
plicity we focus only on equation (1). A commonly studied equation of state is the identity 
v = u / 2  (Burger's equation), in which case only equation 1 need be solved. Boundary 
conditions also need to be specified, but that issue does not affect the focus of this paper. 
Without loss of generality we suppose that u is solved over the unit interval [0,1]. 

i 

! 

2.1 Solution Method 
The dynamic regridding technique discussed in [2] creates a hierarchy of different grid 
density levels. Figure 2 illustrates a hierarchy of three grid levels on a one-dimensional 
domain. All grids are superimposed on the interval [0,1], but the problem is treated with 
different grid resolutions at different steps in the algorithm. We assume that the coarsest 
grid has 2N grid points, with a spacing of A x  = 2-N.  Each step in the resolution refinement 
decreases Ax by a factor of two. The additional grid levels are added to regions where the 
solution exhibits rapid change. We call the coarsest grid level the 0th refinement level, the 
next coarsest level the 1st level, and so on. As illustrated by figure 2 ,  any geographical 

. 
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Figure 2: Grid hierarchy for one-dimensional problem 

point x which falls within a region discretized by a grid at level i must also fall within a 
region discretized by a grid at level i - 1. We will say that the grid at level C - 1 covers the 
grid at level i. integrate(G, i , t ,At) is a function which solves equation 1 on a grid G at 
level i (thus specifying Ax) and time t ,  with time step At. Communication between grid 
levels is carried out by a function update(G, i , t ,At) with the same parameters. update 
is most easily described recursively, as shown in figure 3. The action of updating a grid 

update(G, i, t, At) { 
integrate(G, i, t, At); 
For all grids G’ covered by G { 

interpolate G to create function values onG’ at time t; 
update(G‘, i+l, t,(At)/2); 
update(@, i+l, t+(At)/2, (At)/2); 
Replace G’s grid points matching G‘ by copying; 
1 

1 

Figure 3: Update function for grid at level i 

at level i calls for two updates (with smaller time-steps) of all grids at level i + 1 which it 
covers. Figure 2 gives a simple example of a grid hierarchy. Note that grid levels L1 and L2 
are not contiguous; the collection of updates to contiguous subgrids at level i is semantically 
considered to be an update of grid L;. According to the update algorithm, the middle grid 
(level) in figure 2 is updated twice for every update of the coarse grid, and the finest grid 
is updated twice for every middle grid update. The complete integration of the coarsest 
grid from time t to t + At calls for a sequence of grid updates: LO, LI, L2, L2, L1, L2, L2. 
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The analysis in [2] shows how to dynamically generate the grid hierarchy in response to 
the solution behavior. This paper presumes that the dynamic grid hierarchy is known in 
advance. This is reasonable if the code has been run before so that the solution behavior 
is predictable; it is also reasonable if the user understands his problem well enough to 
place the fine grids in regions of interest (there is an advantage to this, as dynamic grid 
generation is computationally expensive). New grids are typically employed only every few 
(say 5) coarse grid updates. Because of this, it is feasible for the gridding schedule for the 
entire computation (at least large portions of it) to be pre-loaded at initialization. All that 
is needed is a description of the extent of various grids at various levels. For example, the 
hierarchy shown in figure 2 is described by four endpoint pairs (the level zero grid always 
extends from 0 to 1, and so need not be described). This compact description suffices for 
5 coarse grid updates, which is 35 grid updates at the various different levels. 

It is possible to implement this algorithm very simply if a maximum grid level L is 
known. All that is needed is a single grid, with spatial resolution Ax = 2-(N+L) (recall 
that the solution is sought over [0,1]). When grid level i is updated, only certain grid 
points L - i points apart are involved. The copying of values from high order grids to low 
order grids at common geographical points is therefore done implicitly. Likewise, much of 
the initialization of a level i + 1 grid from a level i grid is implicitly done. This method 
does suffer from inefficient use of space; however, the space it does require is the same as 
that required in the worst case of any other grid management scheme. Because this scheme 
simplifies the task of estimating execution and remapping costs, we will tacitly assume its 
use. 

2.2 Wrapping to Map Work Units 
The aggregation/assignment method discussed in [7], [14], and [20] divides a domain into 
kP equal-sized work units, P being the number of available processors, and k being some 
positive integer. We assume that P = 2P, although the mapping method does not require 
this. The work units are assigned in a regular manner to the processors so that every 
work unit in every processor is “close” to some piece in any other processor. Locality of 
workload intensity in space then gives us a certain degree of load balance, without explicit 
consideration of the load being balanced. Figure 4 illustrates one possible aggregation 
and assignment of a one-dimensional domain grid hierarchy. A processor receiving the 
subregion [j/2d, ( j  + l)/2d) is responsible for updating all grid points at all grid levels in 
the domain region [j/2d, (j+l)/Zd). These subregions define work units; because of the grid 
irregularity different work units will have different computational requirements. The work 
unit corresponding to [ j / 2 d ,  ( j  + 1)/2d) is given the index j ;  with P processors available, 
work unit j is assigned to processor j mod P. Called wrapping, this type of scheme is easily 
extended to higher dimensions: a C-dimensional domain is aggregated into work units 
which are indexed by C-coordinate vectors, and the processors are indexed by k-coordinate 
vectors. Work units which differ in exactly one coordinate position are logically adjacent 
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in the domain. The ith processor index coordinate falls within [O,pi - 11. Then work 
unit (do, dl, . . . , dk-l) is assigned to processor (do mod po, dl mod pl, . . . , dk-l mod ~ k - ~ ) .  

We will assume that a work unit length can be no smaller than 2-N, the inverse of the 
number of coarse grid points. Smaller lengths can be implemented, but lead to anomalous 
situations requiring special treatment. 

Empirical data in [14] and [20], analytic modeling in [14], and common sense suggest 
that as the size of the aggregated work units decrease (and hence the number increase), 
the quality of the load balance increases. But communication costs tend to increase as the 
number of work units increases. For example, it is clear from equation (1) that a parallel 
solution of the model problem requires communication between processors P; and 
whenever grid point u j  is assigned to P; and uj+l is assigned to P;+l '. As the number 
of work units increases, the number of such communications increases. Consequently, the 
work unit size controls an inherent performance trade-off between load imbalance and 
communication overhead. 

For each step we could plot performance vs. granularity, and determine the optimal 
degree of granularity for that step. The optimal granularity can therefore change between 
steps, with a possibly profound impact on performance. For example, experiments reported 
in [ 121 consider the performance when granularity is dynamically changed; extreme per-step 
sensitivity to granularity is observed. Also, measurements taken on a battlefield simulation 
suggest that different granularities are called for at different simulation time-steps [ll]. It is 
consequently important to be able to change work unit granularity in response to changing 
workload behavior. To do this optimally we must first estimate the step execution times 
under varying granularities, and must estimate the costs of changing granularity. We may 

'Throughout this paper we assume that indexing arithmetic is modulo the number of indexed objects. 
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t,li(w fo~ill1ll i l t8(~ an optiinixa tioii 1)roblem which chooses a granularity for each step. These 
topics are addressed in the subsection to follow. 

The technique of aggregating the domain into equal sized pieces is not as sensitive to 
precise load distribution as are other mapping techniques such as binary dissection [l]. 
However, our approach has several important advantages. First, inter-processor commu- 
nication is guaranteed to be very local-this is not true with other mapping methods. 
This is especially important as high communication costs can easily defeat an otherwise 
perfectly balanced load. Secondly, our method is less sensitive to changes in the load dis- 
tribution and is less sensitive to miss-estimation of execution costs. Finally, our method 
yields a significantly smaller space of possible mappings than a method like binary dis- 
section. While this can be viewed as a disadvantage for static problems, it is actually 
an advantage for dynamic problem, provided that the space includes effective mappings. 
Fewer possibilities need to be considered as the optimal sequence of mappings is sought, 
leading to an efficient scheduling algorithm. Indeed, the principle reason we are able to 
derive a polynomial-t ime granularity scheduling algorithm is that the number of possible 

I mappings at a given scheduling step is polynomial. 

2.3 Granularity Scheduling 

The first step in constructing a granularity schedule is to estimate the run-time costs under 
differing granularities, and to estimate the costs of changing granularity. The regularity of 
the regridding model problem makes it possible to estimate its execution, communication, 
and remapping costs. The basic idea behind the estimation procedures is that knowledge 
of grid placement and algorithm behavior allows one to calculate the computational and 
communication workload at any given grid update. This type of approach has already 

I been fruitfully applied to a simplier numerical problem in [17] and [15]. 
I As seen in 92.1, our first model problem can be viewed as a sequence of grid level 

updates. If we can estimate the costs of a single grid level update, we may then apply 
the estimation procedure to each grid level in the sequence. The exact details of such 
an estimation procedure depend very much on the code and architecture. However, it 
is not unreasonable to assume that we can estimate or measure the execution time of a 
subgrid integration as a function of subgrid length and density, or to estimate or measure 
communication and synchronization costs as a function of communication volume. Fore- 
knowledge of grid placement and sequencing then permits estimation of the time required 
to update a grid level, as a function of the work unit granularity. We do not intend 
to trivialize here the complexity of parametrically characterizing a program’s execution 
behavior. A detailed treatment of this problem will be found in a forth-coming technical 
report ’. For our purposes here it suffices to argue that the knowledge of grid point 

For common architectures such as grids and hypercubes, binary dissection will give local communication 

3D. Nicol, J .  Saltz, J. Townsend, Estimatzng run-time costs in parallel computations for the purposes of 
in one-dimensional domains, but need not in higher dimensional domains. 
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for j :=0 to p-i { 
perform perfect shuffle on 2; 

if(bit j of myadrs = 0) then 

else 
exchange Z[m/2] - ZCm-11 with neighbor in jth dimension; 

exchange Z[O] - Z[m/2 -11 with neighbor in jth dimension; 

Figure 5:  Remapping communication algorithm 

placement and program behavior allows us to either model or measure the dependency of 
performance on granularity. 

There is a significant communication cost associated with changing granularity between 
grid level updates: the just-updated grid level (say j) is redistributed among processors in 
accordance with the new work unit size and the wrapping assignment. Partial results from 
as yet uncompleted updates to lower grid levels must be maintained; consequently all 2N+J 
possible grid points at level j are redistributed during the remapping. To decrease work 
unit size (and hence increase granularity) every existing work unit is broken into smaller 
pieces which are then distributed. To increase work unit size the existing work units are 
routed to new destinations, where they are coalesced into larger work units. The volume 
of communication during a granularity change will depend on the level, j, of the grid being 
communicated. The following algorithm changes the number of work units per processor 
from Wold to wnew. For simplicity we suppose that both of these values are powers of two. 
If Wold < w,,,, then a processor first divides each of its work units into w,,,,,/wo~~ new 
work units, and computes the new processor location for each. It organizes the new work 
units as an array Z with w,,, elements, each element holding a work unit of the new size. 
The array is initially sorted by processor destination; work units destined for the same 
processor are sorted by geographical position. If wold > tu,,,, then the new processor 
destination for each old work unit is computed, and Z is similarly organized. In either case 
Z has m = rnax{w,id, wnew) entries. 

On a parallel machine possessing hypercube inter-connections processor Pk’s identity, 
my-adrs, is taken to be the value k expressed in binary. Pk has a direct communication link 
with any processor whose address differs from Pk’s in exactly one bit. If i differs from k 
in the j t h  bit, we say that Pk and P; are neighbors in dimension j. The parallel algorithm 
in figure 5 implements personalized all-to-all communication [10],[9], and moves the new 
work units to their proper locations. This algorithm is optimal on a hypercube where 
only one communication port can be active at a time. Upon termination, the Z array of 

resource allocation, ICASE report in preparation. 
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units with size w,,,~. 
Here again, knowledge of the exchange algorithm’s behavior and volume-dependent 

communication costs allow us model or measure the cost of changing granularity. It is in- 
teresting to note that in the algorithm above, the cost of changing granularity depends only 
on the level of the grid being exchanged; it does not depend on the work unit granularities. 
This fact will be exploited in the granularity scheduling algorithm. 

Our model problem can be viewed as a sequence of E grid level updates, on grids 
G1,. . . , GE. Recall that an update to G; is interpreted here as the collection of updates to 
all contiguous grids at a common level. Although it is not logically necessary, we suppose 
that all processors synchronize at the end of a grid level update. The processors do tend 
to be synchronized by the boundary exchange; we will later sketch a means of relaxing 
this assumption. Assuming that the cost of a synchronization is constant, we need not 
explicitly consider this cost in the scheduling problem. 

We have shown that differing work unit granularities can be used to map the grids onto 
a parallel processor; there are N - p possible choices of granularity, which we suppose are 
indexed 1,2, . . . , N - p. The optimal schedule of granularity changes can be determined in 
O( E( N - p ) )  time using dynamic programming. A small number of additional definitions 
facilitate derivation of this result. 

Let L(i)  denote the level of the grid transmitted in a remapping prior to an update of 
grid G;, and let PiJ denote the update finishing time of an update to grid G; using the j t h  
granularity. Fij is a time required to solve equation 1 in parallel on all contiguous subgrids 
on grid G,; the recursion of algorithm update has been unrolled in the definition of the 
grids { Gk}. The cost of remapping prior to updating grid G; is M q ; ) ,  where we emphasize 
the sole dependence of this cost on the level of the grid being exchanged. Finally, let Ajj 
be the minimum execution time required to bring the computation from the beginning 
through the Gi update; this last update occurs using granularity j .  Then the principle of 
optimality states that 

This expression simply says that before updating G; we should either retain the present 
granularity, or remap from some other granularity, identified as the one minimizing {A(i-l)k} 
The value of Aij is thus seen to be the minimum of a remapping cost function and a retain- 
ing cost bnction. This system of equations can be solved by noting that Alj = F1j for all 
j ;  it is then possible to find A,j for all j .  When solving for A,j we will record which cost 
function determines its value. This procedure is continued for all A3j, A4j,. . . , A E ~ ;  then 
the optimal granularity schedule is readily determined. The j minimizing A E ~  is found, 
say at j = k. The value AEk is the minimum possible execution time under the granularity 
scheduling scheme, and to achieve that time GE must be updated with granularity k. If 
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the value for AEk is determined in equation (2) by the remapping cost function, then before 
updating G E  we should have remapped from the granularity defining the remapping cost 
function’s value. Otherwise we reach the G E  update using the same granularity as was 
used on G E - ~ .  The procedure for determining the remapping decision prior to the G E - ~  
update is the same-the cost function defining A ( ~ - l ) k  defines the remapping action that 
should have been taken just prior to the GE-I update. The optimal remapping schedule 
is determined by backtracking through the array of solutions to equation (2). 

The time required to solve this system of equations is easily shown to be O(E(N - p ) ) .  
Suppose that the solutions A(i-l)j are known for all j, and that the minimal value among 
these is achieved when j = k. To solve for any Aij we need only compare A(;,l)j with 
A(;-l)k + Mq;), which is done in constant time. As we solve for each j we can retain 
the minimum value of A;j seen so far, again a constant time cost. The O(E(N - p ) )  
complexity follows from the observation that there E ( N  - p )  function values requiring 
solution . The backtracking phase to determine the granularity schedule is simply O(E),  
which is dominated by the solution phase complexity. 

The overall cost of computing a schedule must include the cost of estimating the update 
finishing times. While this cost is quite low, it can easily dominate the cost of computing 
a schedule and potentially even exceed the cost of running the gridding computation. 
Granularity scheduling makes sense if a single grid structure will be used repeatedly (as 
they often are), or if the necessary information is already available, as it might be in a 
compiler. 

A number of extensions to this approach are possible. In the face of high communica- 
tion costs it may be advantageous to “contract” the computation onto a smaller number 
of processors when the workload drops, and “expand” again when it rises. This can be 
directly incorporated into the dynamic programming solution by allowing a remapping to 
a different sized set of processors. This type of extension has immediate application to the 
parallelization of multi-grid algorithms [4]. A second obvious extension is to higher dimen- 
sional domains. A third extension allows differing integration schemes on differing grid 
levels. A fourth extension is to reduce the number of states in the dynamic programming 
solution by collapsing states between which a remapping cannot occur. A fifth extension is 
to relax the assuniption of global synchronizations between grid level updates, and directly 
model the data flow synchronization that is more likely to be found in the code. These 
considerations, along with empirical data on the performance of this method are taken up 
in an upcoming report . 
4D. Nicol, J .  Saltz, J .  Townsend, Estimating run-time costs in parallel computations for the purposes of 

wsource allocation, ICASE report in preparation. 
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3 Tradeoffs between Load Imbalance and Pattern of 
Synchronizations 

In the first model problem we are able to dynamically adjust granularity, and hence the 
trade-offs between load imbalance and communication overhead. Synchronizations, how- 
ever costly, are not variable. In the second model problem this situation is reversed: we 
cannot easily change granularity dynamically, but we may have considerable freedom in 
choosing where we synchronize. As has already been illustrated, this may allow us to place 
synchronizations in such a way that we achieve a good balance of load. But we suffer addi- 
tional costs by increasing the number of synchronizations beyond that which is minimally 
needed to enforce data dependencies. Instead of scheduling granularity changes, we turn 
now to the problem of scheduling synchronizations. As we shall see, this problem is easily 
treated with dynamic programming. Our approach here is directly applicable to the gen- 
eral class of recursion equations possessing reasonably regular local data dependencies. For 
clarity we shall focus on the model problem of solving triangular systems of linear equa- 
tions. Pre-scheduling synchronizations is particularly important in situations where the 
same matrix structure is repeatedly used, even though the matrix elements change. This is 
exactly the case encountered in certain preconditioned conjugate gradient algorithms [18], 
[8], 1211, and is the framework within which our methods are tested. 

It is not difficult to partition the variables expressed by a triangular matrix into a 
sequence of sets; all variables within a given set can be solved for concurrently. We will 
discuss only the algorithm and results for solution of a lower triangular matrix, the situation 
applying in the upper triangular case is essentially identical. 

The data dependencies between variables can be described by a directed acyclic graph 
(DAG) in the usual way. If the solution to variable a depends on the solution to variable b, 
then b’s vertex roots a directed edge to a’s vertex. Computational wavefronts are efficiently 
determined by sorting the DAG topologically. One stage of the sort consists of removing all 
vertices that are not pointed to by edges, and then removing dangling edges. All vertices 
removed during a given stage constitute a wavefront; the wavefronts are numbered by order 
of generation. 

Wavefronts form the basis of a general parallel solution method discussed in [18] that 
is well-suited for a shared-memory machine such as the Encore Multimax[G]. There are no 
data dependencies between any two variables in the same wavefront; all variables within 
a wavefront may thus be solved concurrently, provided that all of their data dependencies 
have been satisfied. Solving for a variable consists of forming a linear combination of 
solutions to other variables; the coefficients are specified by the triangular matrix, and the 
other solutions are available in the shared memory. Every wavefront constitutes a phase, 
and the problem’s data dependencies can be enforced by inter-phase synchronization. As 
discussed in [18] this method can be generalized: “closely coupled” variables are first 
systematically aggregated into work units where all variables in a work unit can be solved 
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for (in some spccified order) by a single processor without interaction with other processors. 
The dependencics between work units induce a work unit dependency DAG and associated 
wavefront s . 

3.1 Problem Partitioning 
Wavefronts identify work that can be done in parallel; assignment of that work to processors 
is aided by the concept of a string. Loosely speaking, a string is a path through the work 
unit dependency DAG, and so is roughly orthogonal to wavefronts. Methods described 
in [18] assign workload by wrapping strings onto processors. In this paper we use strings 
primarily as a guide to the independence of work units in the work unit dependency DAG. 
A method for partitioning the DAG into strings is discussed below. 

Let D be a DAG, and let G be a set of vertices in D without predecessors. Choose some 
so E G as a string start vertex. For our model problem D is the work unit dependency 
DAG, and G holds a single vertex. Given a partial string s o , .  . . , s i  we remove from D all 
edges rooted in si. If this removal creates one or more vertices without incoming edges 
we choose one as s;+1 and place the rest in G. Otherwise, we terminate this string and 
begin another with a vertex in G. Strings are enumerated by order of creation. If a string 
is extended by a vertex v, then all vertices depending directly on v are marked. When 
choosing s;+1 from among a set of possibilities, preference is given to vertices previously 
marked by this process. Depending on the problem underlying the DAG, sophisticated 
priority schemes for string extension can control string construction in desirable ways. 
Such topics are outside the scheduling concerns of this paper, but are studied in [18]. 

The partitioning of a DAG into strings induces another DAG whose vertices represent 
strings. This graph is called a string DAG where vertex S; roots an edge into S, if string 
Sj has at least one variable that depends on some variable in S i .  To better illustrate 
these ideas, figure 6(a) depicts a DAG which could be obtained from a zero fill incomplete 
factorization of a matrix arising from the discretization of an elliptic partial differential 
equation using a nine point star template. Figure 6(b) enumerates the wavefronts in the 
computation, and figure 6(c) illustrates a string decomposition of the DAG. 

3.2 Load Balancing 
In linear systems arising from the solution of partial differential equations, it is common for 
the string DAG to form a strictly ordered chain[l8]. A natural way of load balancing is to 
wrap entire strings onto processors, just as domain regions were wrapped onto processors in 
the first model problem. Synchronization between wavefronts enforces data dependencies. 
However, this greedy technique of scheduling an entire wavefront sometimes fails to balance 
the load. The failure to balance is essentially an end-effect; e.g., the phase has P + 1 work 
units with equal computational demands, but only P processors are available. We can 
correct this problem by noting that any given work unit in a wavefront does not depend 
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on all work units in the previous wavefront. It is possible to concurrently compute work 
units in consecutive wavefronts provided that we carefully observe data dependencies. The 
identification of strings helps in this task. 

Designate each work unit by (to,;) where w is the work unit’s wavefront number, and 
i is its string number. We can define a strict ordering on these two tuples in the following 
manner: (a ,  c) > ( b ,  d)  when a > b or a = b and c > d. It follows by construction that for 
any u and b, all work units greater than (a,  b )  and less than ( u  + 1, b)  can be solved for 
concurrently. This fact allows us to schedule work units from different wavefronts in the 
same phase, and allows us a considerable degree of freedom in choosing synchronization 
points. 

The computational phases can be selected using dynamic programming. A small num- 
ber of definitions facilitate this result. Let the W work units be renumbered 1,. . . , W with 
respect to the ordering above, and let the execution time of work unit n be denoted w,. 
For any work unit n, let P(n)  denote the furthest “previous” work unit that we allow to 
be concurrently evaluated; if n’s tuple is (a,  b )  then P(n)’s tuple is greater than or equal 
t o ( a - l , b + l )  (it may not beequal t o ( a - l , b + l )  becausestring b + l  may havenowork 
unit on wavefront a - 1). Similarly, let F ( n )  denote the furthest “future” work unit that 
we allow to be concurrently evaluated with n; F ( n )  is less than or equal to (u  + 1, b - 1). 
Let S be the delay cost of synchronizing. Finally, let wmaz( i , j )  be the time required to 
evaluate work units i through j in parallel, provided that P ( j )  5 i 5 j. wmaz( i , j )  ob- 
viously depends on the assignment strategy used to distribute the workload, and is equal 
to the time required by the most heavily load processor. If we place no constraints on 
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the assignment method or variable solution costs, the problem of determining an optimal 
mapping of i to j on P machines is a well-known NP-complete scheduling problem. Lower 
complexities are achieved if we view the processors as a chain, and constrain the assign- 
ment by requiring that for every k, work units k and k + 1 are either assigned to same 
processor, or two adjacent processors. In this case the best assignment is determined in 
polynomial time [3]. The necessity of quickly determining a solution leads us to adopt 
the simple wrapping scheme previously described. In this case work unit k is assigned to 
processor ( I C  - i) mod P, and wrnaz(i , j)  is given by 

Define A ( n )  to be the minimum time possible to bring the computation through the 
solution of n,  given that n is the largest indexed work unit in its phase. The principle of 
optimality then states that 

A ( n )  = min {A(  k) + wrnaz( E ,  n )  + S }  . 
P(n)  k _< n 

For any given n, the IC which defines A(n) by minimizing the right hand side of equation (3) 
also defines the workload to be done in the phase containing n’s s~ lu t ion .~  Once we 
solve these equations the synchronization schedule is found by backtracking through the 
solutions: the ICl defining A ( W )  defines the last phase, the k2 defining A(k1) defines the 
phase prior to the last, and so on. 

The function wrnaz(k, n )  can be determined in O(PTW) time where T is the num- 
ber of strings. In many of the problems we have studied T is approximately equal to a 
small constant times @. Once all values for wrnaz(k,n)  are determined the dynamic 
programming solution can be computed in O(TW) time. Like the first model problem, the 
complexity of this scheduling algorithm is dominated by the time required to pre-compute 
the run-time costs under differing scenarios. The fine granularity of the u n i t s  of work to be 
scheduled make this cost estimate prohibitive in many cases, although the solution method 
could be attractive in the common situation where the same triangular system structure 
is repeatedly used to solve many different sets of equations. The use of a relatively expen- 
sive dynamic programming algorithm for such fine grained work scheduling is somewhat 
inappropriate; in an actual multiprocessor, the computation costs and the synchronization 
costs can only be roughly characterized. There is therefore reason to believe that it may 
be possible to find an inexpensive policy that leads to performance that is comparable to 
the dynamic programming method. 

The policy we propose bears a very close relationship to the SAR (Stop at Rise) policy 
proposed in [13] for choosing remapping 

5The equation for A(W) need not contain the S 
schedule. 

points. The guiding principle for our model 

term, although inclusion of S does not affect the optima1 
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problem is to define a phase by minimizing the ratio of the average time a processor is 
idle due to load imbalance and synchronization to the average time it spends doing useful 
computation. A more general exposition of this principle will be found in a forth-coming 
technical report '. 

We continue to use the linear variable ordering, and let w; denote the estimated com- 
putation time required by the ith work unit. This computation time is easily estimated, as 
the cost of each variable solution is directly related to the number of nonzero columns in 
the variable's matrix row. Like the dynamic programming solution, we assume here that 
work units within a phase are assigned to processors by wrapping. 

The ratio of a processor's average idle time in a phase computing work units i through 
i + n to its average computation time is 

s + w ~ u x ( ~ ,  i + n)  - ( I / P )  xi',: wj 
W;(n) = 

(1/P) E 2  W J  

A simple version of our heuristic schedules work in a greedy manner, choosing the 
phase size n that minimizes W,(n). To schedule the first phase, the n1 minimizing Wl(n) 

the n2 minimizing Wnl(n) is found, and so on. Our experimental results indicate that this 
simple version of the heuristic can be very short sighted, in that the scheduling decision 
entirely neglects the decision's effect on the performance of subsequent phases. Under 
some circumstances a phase is ended in a manner that leaves the subsequent phase with 
little work to perform. 

This myopic difficulty is alleviated by attempting to ensure that the amount of work 
available to the following phase is relatively large compared to the synchronization cost. 

the maximum possible average processor execution time in the next phase. Recalling that 
F ( n )  is the largest index of a variable that can be concurrently evaluated with variable n, 
we redefine W;(n) as 

l is found, and the first phase solves work units 1 through nl. To find the second phase, 

I This is accomplished by adding a term expressing the ratio of the synchronization cost to 

~ 

In the event that F( i  + n)  > P ( W ) ,  a phase ending at n leaves at most one phase left. 
In this case there is no advantage in forcing substantial work onto the last phase; we 
consequently drop the additional term. 

Note that the expressions are written in the form above for conceptual clarity, obvious 
algebraic simplifications yield simpler expressions with the same minima. 

The computational savings a.chieved by this algorithm over the dynamic programming 
solution occur chiefly because only select values of .ru~nux(i, j )  need to be computed. There 

6J. Saltz, D. Nicol, Performance Studies on Mapping Methods for Irregular Parallel Computat ions,  ICASE 
report in preparation. 
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is i l  O( W + P )  startup cost to compute all processor load prefixes E,”,, tilps.jp for 0 5 p 5 
P - 1 aid k = 0,. . . , W / P .  Following this, any value for ~ u r n a z ( i , j )  can be comput,ed 
in O(P) time. The time required by the heuristic is O(P) times the number of times the 
W(n)  statistic is calculated. We will show that the expected number of such calculations 
is O( W ) ,  making the heuristic’s expected complexity O(PW). 

Suppose that work unit i begins phase j. W;(n) is calculated for all 1 5 n 5 ( F ( i )  - i); 
let Xj  = F(i)--i ,  and note that X j  may vary as a function of i. If there are 2 phases chosen 
by the heuristic, then the W ( n )  statistic is computed Cj”=,Xj times. Now let 5 be the 
number of work units that the heuristic places in the j t h  phase; Yj = no if the j t h  phase 
begins with work unit i and among all n E {1,2,. . . , F ( i )  - i}, Wi(n0) is minimal. We 
now consider X j ,  Yj, and 2 to be random variables, hopelessly correlated, with arbitrary 
distributions. The expected linear-time complexity of our heuristic rests squarely on the 
following assumption: there is a constant c such that for every j ,  E [ 5 ]  2 E [ X j ] / c .  For 
example, if every work unit among the X ,  possible has an equal chance of minimizing 
Wi(n), then c = 2. In practice we expect c to be smaller than two, because Yj tends to be 
close to X j .  

The following equation must always hold: 

Y1+ Yz +. . . + Yz = w. 
By the linearity of the expectation operator we thus have 

E[Y,]  + E[&] + . - + E[YZ] = W. 

But for every j, E[Y,] 2 E[drij]/c; this leads to the inequality 

z 
c w  2 E [ C  X j ]  

j = 1  

where we recognize the right hand side as being the expected number of times a W ( n )  
statistic is computed. This number is O ( W ) ,  making the heuristic’s complexity O(PW)  
which is linear in the problem size for a fixed architecture. 

3.3 Experiments 
We evaluated the performance of our scheduling algorithms on a shared-memory architec- 
ture. The Encore Multimax is a bus based shared memory machine that utilizes 10 MHz 
NS32032 processors and NS320Sl floating point coprocessors. All tests reported were per- 
formed on a configuration with 18 processors and 16 Mbytes memory at times when the 
only active processes were due to the authors and to the operating system. On the Encore 
the user has no direct control over processor allocation. Tests were performed by spawning 
a fixed number of processes and keeping the processes in existence for the length of each 
computation. The processes spawned are scheduled by the operating system; throughout 
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tali(: followiiig disciissioxis wo x n i i l x  the tacit assumption that there is a processor available 
at all times to execute each process. In order to reduce the effect of system overhead on 
our timings, tests were performed using no more than 14 processes; this left four processors 
available to handle the intermit tent resource demands presented by processes generated 
by the operating system. 

In Krylov space algorithms such as the preconditioned conjugate gradient algorithm, 
very sparse triangular systems with identical matrices are repeatedly solved. The triangular 
matrices are formed through a process of incomplete factorization[5]. Triangular matrices 
with varying degrees of sparsity may be created by this process. The degree of sparsity 
is controlled by determining by one of a variety of mechanisms which matrix elements 
are allowed to fill in or become non-zero. There is frequently a numerical advantage in 
allowing a moderate number of matrix elements to fill in. The triangular matrices thus 
created are still quite sparse but have only a limited number of variables in a wavefront. 
Methods for improving the performance of these relatively difficult to parallelize problems 
are consequently of practical interest. 

In the example to be discussed below, a matrix M was formed describing a problem 
discretized using a 9 point star template on a 63 by 63 point domain. M was then factored 
using an incomplete factorization algorithm which allowed a moderate degree of fill (level 
2 fill). The typical row of the resulting triangular matrix contains seven non zero entries. 
Experiments reported in [18] suggest that on the rather fine grained Encore Multimax 
machine used here, the work units for this problem should be as small as possible-the 
substitution of a single variable. Using this granularity there are 311 computational wave- 
fronts. The triangular system was solved using 14 processors. Every measured speedup 
number we present was obtained by averaging the timings from 25 runs; the variance be- 
tween runs was extremely small. The serial timing used in the speedup calculation is taken 
from a separate, specifically sequential triangular solve code. 

The cost of a synchronization on the Multimax is roughly 4 times the cost of a floating 
point add and multiply. We tested the sensitivity of our heuristic to inaccurate estimations 
of this cost by varying the values of S used in computing W ( n )  between 0.01 and 100 times 
the cost of a floating point add and multiply. Table 1 lists the experimentally observed 
speedups achieved by the different schedules produced as S varies. For the purposes of 
comparison table 1 also gives speedup estimates that would result from the absence of any 
inefficiencies other than load imbalance. These symbolically estimated optimal speedups 
are obtained by considering only floating point calculations, assuming that an add and 
a multiply each have unit cost. The same processor assignments are used in calculating 
the symbolically estimated speedups as are used in the computed problems. Table 1 also 
depicts the number of computational phases created by the scheduling heuristic. 

We see that the W(n)  policy is rather insensitive to the precise estimate supplied for 
synchronization cost. With decreasing estimated synchronization costs, we note a moderate 
increase in measured speedup, a more substantial improvement in symbolically estimated 
speedups, and a slight increase in the number of phases required to solve the problem. It 
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' Synchronization Est. Optimal Number of Ezperimental 
Cost Speedup Phases Speedup 

311 6.67 

100 8.05 312 6.68 
50 9.26 321 7.29 
10 11.52 336 8.22 
1 11.53 336 8.26 

0.1 11.53 336 8.26 
0.01 11.53 336 8.26 

Wavefront 
Scheduling 8.01 

Table 1: Experimental Results for 63 x 63 Problem Using 9-Point Star Stencil 

is notable that the schedules obtained using synchronization costs of 1, 0.1 and 0.01 were 
identical, only one set of multiprocessor timings were obtained for these cases. In addition 
to the results obtained using W(n) ,  we also ran the problem configured so that all points 
in a wavefront would constitute a phase. The results obtained were, as expected, very 
similar to the results obtained using W(n)  with high synchronization costs. 

To provide an estimate of the relative performance of the dynamic programming schedul- 
ing policy, we solved the same problem described above again using 14 processors, using 
this more expensive scheduling method. In table 2 we compare the experimental speedups 
observed when using the W(n)  and dynamic programming policies. We also compare the 
predicted speedups obtained through the use of the two policies. These predicted speedups 
are computed symbolica.lly and, unlike the estimated optimal speedups presented above, 
take into account the estimated synchronization costs. It is notable that in table 2 the 
differences in both estimated and actual performance between the W ( n )  heuristic and 
the dynamic programming solution are minimal. It is worth noting that the relative su- 
periority of the dynamic programming solution depends on the availability of accurate 
cost estimates. For a miss-estimated value of S equal to 100, both the estimated optimal 
speedup in the absence of synchronization costs and the experimental speedup are slightly 
higher for the W(n)  than for the dynamic programming policy. The schedules produced 
using dynamic programming were identical for synchronization costs of 10, 1, 0.1, 0.01; 
only one set of multiprocessor timings were obtained these cases. Table 2 clearly shows 
that the additional complexity of the dynamic programming approach is not warranted- 

7The estimated optimal speedup using dynamic programming for scheduling is 8.01 while the estimated 
optimal speedup is 8.05 when the W ( n )  policy is used. 
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Synchronization Predicted w ( n )  Predicted D.P. Experimental w ( n )  Experimental D.P. 
cos t  Speed up Speed up Speedup Speedup 
100 0.872 0.874 6.68 6.50 
50 1.576 1.579 7.29 7.38 
10 5.077 5.089 8.22 8.26 
1 10.229 10.240 8.26 8.26 

0.1 11.384 11.393 8.26 8.26 
0.01 11.528 11.537 8.26 8.26 

Table 2: Experimental Results for 63 x 63 Problem Using 9-Point Star Stencil 

the W ( n )  heuristic achieves very nearly optimal performance (relative to the wrapping 
mapping paradigm). 

We can artificially increase the cost of synchronization by increasing the number of 
barriers that processors pass through at a synchronization. Increasing the synchronization 
cost allows us to to predict performance on machines with less favorable computation to 
synchronization ratios than the Encore Multimax. Table 3 compares the performance of 
wavefront scheduling and W ( n )  scheduling as the number of barriers at a synchronization 
varies between 1 and 4. Since the W(n)  heuristic is insensitive to most values of S and we 
do not wish to burden the user with estimations of synchronization costs, all experiments 
reported in table 3 used S = 0.1. Table 3 clearly shows that our heuristic improves 
performance by accepting more synchronization costs in order to improve load balance, 
Naturally, it becomes harder to do so in the fixe of high synchronization costs, but in the 
range of costs studied W ( n )  effectively managed the load imbalance/synchronization cost 
tradeoff. We see then that using a scheduling heuristic gives a non-trivial performance 
improvement over the static method in [18]. 

The relative performance of the W ( n )  policy and the wavefront scheduling policy were 
examined for other matrices of practical interest; in each case the W ( n )  policy outper- 
formed by varying degrees, the policy that schedules work by wavefronts. This effect was 
most noticeable in cases in which there are relatively few units of work in a phase. 

4 Summary 
Recent research has investigated a very regular and parameterized approach to mapping 
dynamically changing problems onto parallel architectures. The use of mapping parameters 
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Number of Experimental % Time in 
Barriers Speed up Synchronization 

1 8.28 6.69 23.6 18.8 
2 6.72 5.74 39.1 30.1 
3 5.74 4.93 46.3 34.8 
4 4.94 4.44 52.4 43.8 

W(n) Wavefront W(n) Wavefront 

Table 3: Results For Increasing Synchronization Costs 

is a key concept in this approach, as it gives a simple handle on controlling load imbal- 
ance/communication cost trade-offs. Observation of problem behavior on parallel machines 
suggests that by dynamically adjusting mapping parameters we can substantially improve 
performance. We have explored this idea in the context of a dynamic one-dimensional par- 
tial differential equation solution method for message-passing machines, and the solution 
of sparse triangular systems of linear equations on shared-memory machines. We make the 
important assumption that the computational activity is known in advance, but note that 
this is often true for the codes we consider. We then formulated dynamic programming 
solutions for parameter schedules, and showed that such schedules are determined with low 
complexity. Even so, it can be advantageous to use faster scheduling heuristics; we present 
an expected-linear-time scheduling heuristic for the triangular systems solution method 
and give empirical evidence that its performance is virtually identical to that of the dy- 
namic programming solution. The concepts and techniques we describe have application 
in a wide variety of problems. 
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