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Simulation of a Cold Gas Thruster System  
and Test Data Correlation 

Daniel M. Hauser and Frank D. Quinn 
National Aeronautics and Space Administration 

Glenn Research Center 
Cleveland, Ohio 44135 

Abstract 
During developmental testing of the Ascent Abort 1 (AA-1) cold gas thruster system, unexpected 

behavior was detected. Upon further review the design as it existed may not have met the requirements. 
To determine the best approach for modifying the design, the system was modeled with a dynamic fluid 
analysis tool (EASY5). The system model consisted of the nitrogen storage tank, pressure regulator, 
thruster valve, nozzle, and the associated interconnecting line lengths. The regulator and thruster valves 
were modeled using a combination of the fluid and mechanical modules available in EASY5. The 
simulation results were then compared against actual system test data. The simulation results exhibited 
behaviors similar to the test results, such as the pressure regulators response to thruster firings. Potential 
design solutions were investigated using the analytical model parameters, including increasing the volume 
downstream of the regulator and increasing the orifice area. Both were shown to improve the regulator 
response. 

1.0 Introduction and Background 
The Ascent Abort 1 (AA-1) test vehicle was part of the Orion flight test program conceived of to 

verify the launch abort system (LAS). The AA-1 flight was to demonstrate the LAS performance during 
abort at maximum dynamic pressure. The AA-1 Reaction Control System (RCS) was to be used to 
provide roll control to the boilerplate Crew Module (CM) during descent, to determine the response of the 
main parachutes to torque. The AA-1 RCS was also to demonstrate a roll control algorithm to position the 
CM for landing and provide rate damping as needed. The AA-1 RCS was designed to use non-flight 
components with no heritage to the production vehicle. A developmental test was performed on the RCS 
system in February 2010. During the testing, the regulator experienced significant pressure undershoot 
and overshoot when the thruster valve was cycled open and closed. Un-commanded closure of the thruster 
valve was detected and attributed to the pressure undershoot. The closing time of the thruster valve 
appeared to be pulse length dependent. 

2.0 AA-1 Reaction Control System Developmental Test 
A developmental test of the AA-1 RCS cold gas system was constructed to demonstrate performance 

of the design. A simplified schematic of the flight RCS system can be seen in Figure 1. The black lines 
indicate the hardware that was included in the developmental test. The test system consisted of four 
nitrogen propellant tanks pressurized to 3600 psig for a total of 400 lb of nitrogen. A regulator was used 
to reduce the pressure to 600 psig. Further downstream was a relief valve set at 900 psig, and the thruster 
valve with an attached nozzle, designed to generate 150 lb thrust at sea level. The thruster valve was a 
solenoid pilot operated valve. The piloted valve was configured in a manner that requires a differential 
pressure across the valve for it to stay open. The system was designed with the expectation that the 
thruster valve could be commanded open and closed for various pulse lengths. Not shown on the 
schematic is the tank isolation valve and instrumentation. Testing consisted of filling, nominal and 
emergency blow down operations.  
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Figure 1.—AA-1 RCS Schematic. Black lines represent hardware included in developmental test. 

 
 
 

During the testing of nominal operations the system experienced a large drop and rise in regulator 
outlet pressure when the thruster valve was opened and closed. In some instances the thruster valve was 
also shown to close momentarily after the dip in pressure. Another finding was that the valve opening and 
closing times seemed to be dependent on the thruster valve pulse length. To illustrate the behavior two 
plots of the test data are presented in Figures 2 and 3.  

Figure 2 shows two short (400 ms) pulses followed by one longer pulse (2500 ms). The plots show 
the regulator inlet and outlet pressure, the command signal to the thruster valve and thruster chamber 
pressure. Notice that the thruster valve response time for opening is consistent for the three pulses shown. 
However, the valve closure is nearly immediate for the long pulse whereas it is significantly longer for the 
two short pulses. Notice that when the regulator outlet overshoot reaches the 1000 psi level the relief 
valve opens and the pressure drops to near the set point. These characteristics are common throughout the 
data collected. 

As the regulator inlet pressure decreased the response deteriorated further as shown in Figure 3. 
Shown is a 1500 ms commanded pulse followed by a series of 400 ms pulses separated by 100 ms. 
During the first pulse shown in Figure 3 the valve opens and closes with similar timing as the long pulses 
shown in Figure 2. However the valve momentarily closes immediately after opening as determined by 
the thruster chamber pressure. Also notice that the thruster valve does not respond to the short pulse 
commands until the third closing command.  
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Figure 2.—AA-1 Developmental Test Results. Typical behavior with short and long pulses  

 

 
Figure 3.—AA-1 Developmental Test Results Examples of erratic behavior at lower supply pressures. 
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Figure 4.—Overall system model. 

3.0 Modeling Approach 
In response to the unexpected results exhibited by the system during testing, a dynamic model of the 

system was created with the following goals: 
 

• Determine the cause of the regulator pressure undershoot and overshoot 
• Determine the cause of the thruster valve closing during the thruster valve firings 
• Determine the cause of the irregular closing times of the thruster valve 
• Determine the effectiveness of different design solutions to normalize operation. 

 
The software tool used to model the system was MSC EASY5, a dynamic fluid/mechanical systems 
modeler. The majority of the components used in the model were built using components in the Gas 
Dynamics Library (GD) of the EASY5 modeling tool. An overall view of the model can be seen below in 
Figure 4. The regulator and thruster valve were modeled using a mix of fluid and mechanical components 
as explained in the following sections. The regulator and thruster valve supply lines included a transient 
momentum pipe and a generic loss component to account for the losses associated with the bends and 
fittings. The thruster nozzle was modeled with a generic EASY5 nozzle component that calculates the 
mass flow rate based on the upstream pressure and temperature.  

3.1 Regulator Model 

The regulator used in the AA-1 test is a direct acting regulator loaded with a fixed spring. The 
pressure in the sense volume, connected to the downstream pressure, acts against the spring to close the 
poppet against its seat as it approaches the set pressure. A schematic representation of the functional 
components in the regulator can be seen in Figure 5. The pressure forces acting on the poppet were 
assumed to be balanced and therefore cancelled each other out.  

Previous regulator studies in the literature accounted for an additional flow force acting on the 
regulator poppet (Refs. 1, 2, and 3). The flow force accounts for the uneven pressure acting on the 
different areas of the poppet. The flow force is typically found by measuring the force at various inlet 
pressures and poppet positions during a test. Unfortunately, the regulator poppet geometry used in the two 
previous studies was different than the geometry of the poppet being used in this study. It was decided not 
to include a flow force in the model since its application would have been arbitrary and would have no 
basis for its determination.  
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Figure 5.—Regulator schematic. 

 
 

 
Figure 6.—Regulator model. 

 
The EASY5 model of the regulator can be seen in Figure 6. A single acting cylinder was used to 

model the variable volume of the sense chamber and the poppet position. The regulator flow resistance 
was modeled with the variable orifice component. The orifice area is based on the poppet position and 
determined using a look-up table. The volume and piston areas of the regulator were determined from 
drawings supplied by the regulator manufacturer. An orifice was used to model the complicated flow 
passage connecting the sense volume to the regulator outlet. Since the orifice area was not known, it was 
varied within the model until the undershoot and overshoot behavior approximated the test results 

 
The regulator poppet force balance equation is shown below in the following equation.  

   

Nomenclature
P = pressure

Subscripts
u = upstream
s = sensing volume
d = downstream 

Flow

Pd

Pu

PS

Valve Seat

Sense 
Orifice Flow

Pd

Poppet

Sense 
Volume
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 pdsps,psspp xffFxKFxm  ⋅−−+⋅−=⋅  

Where xp̈,  xṗ, xp is the regulator poppet acceleration, velocity, and position respectively, mp is the poppet 
mass, Fs is the force acting on the sensing area due to the pressure in the sensing volume. Ks and Fs,p are 
the spring rate and spring preload, fs and fd are the static and dynamic friction coefficients.  

The static friction and dynamic friction coefficients were varied in the simulation model and were not 
shown to have a significant effect on the response as most of the damping is a result of the pneumatic 
process occurring in the regulator (Ref. 2).  

3.2 Thruster Valve Model 

The normally closed thruster valve uses upstream pressure in the sensing volume in conjunction with 
a spring to hold the poppet closed. The closing force on the poppet is opposed by main valve inlet and 
outlet pressures acting on the poppet. A small direct acting solenoid valve controls a path between the 
sensing volume and the valve outlet. Similarly a path between the valve inlet and the sensing volume is 
controlled by a fixed “sense” orifice. When the solenoid valve is initially opened the gas leaves the sense 
volume reducing the closing force sufficiently for the valve to open. When the solenoid valve is closed, 
the pressure in the sense volume increases closing the poppet. A schematic of the thruster valve can be 
seen in Figure 7.  

The EASY5 model of the thruster valve can be seen in Figure 8. Similar to the regulator the poppet 
was modeled by a single acting cylinder with a spring. In this case, the spring acts to extend piston. Gain 
factors representing the poppet area acted upon were applied to the inlet and outlet pressures with the 
resulting forces being summed and applied to the cylinder.  

The main valve was modeled using a variable area orifice where the effective flow area was 
determined using the poppet position and a look-up table. Flow into and out of the valve was modeled by 
orifices. The solenoid orifice area was provided by a time dependent lookup table to simulate operating 
sequences. The sensing volume and pressure areas were determined from drawings supplied by the 
thruster valve vender.  

 

 
Figure 7.—Thruster valve schematic. 

Nomenclature
A = area
P = pressure

Subscripts
u = upstream
s = sensing volume
d = downstream 

(Chamber Pressure)
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Figure 8.—Thruster valve model.  
 
 
 
The upstream and downstream pressure forces were included in the force acting on the poppet. The 

poppet acceleration can then be calculated through the following equation after accounting for the static 
and dynamic friction as well as the inertia or poppet mass.  

 
p

pdsps,pssud
p m

xffFxKFFF
x




⋅−−+⋅−−+
=  

Where Fd, Fu, and Fs are the pressure forces acting on the downstream, upstream and sense pressure areas, 
xp̈,  xṗ, xp are the valve poppet acceleration, velocity, and position respectively, mp is the poppet mass, Ks 
and Fs,p are the spring rate and spring preload fs and fd are the static and dynamic friction coefficients.

 
4.0 Simulation Results 

Simulations were run in EASY5 with short segments of thruster firing profiles conducted during 
testing. The thruster valve was commanded open (2.0 sec) and closed (3.57 sec) in the simulation by 
adjusting the pilot valve orifice area via the time based look-up table. A comparison of the simulated 
regulator outlet pressure with the test data can be seen in Figure 9. The simulation is of a “long” thruster 
firing of 1.6 sec. The regulator outlet pressure experiences a large undershoot when the thruster valve is 
opened. Similar behavior is seen as the thruster valve is commanded closed, the downstream pressure 
overshoots to a pressure close to or above the relief valve set pressure. It should be noted that the relief  
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valve is not part of the model. The measured steady state pressure at the high flow rate is less than the 
steady state pressure in the simulation. One explanation for this difference is due to the flow force not 
being included in the model. As discussed previously in Section 3.0 the flow force can become significant 
and lower or raise the regulator steady state outlet pressure.  

A plot of the simulation thruster chamber pressure (Pd) is shown against the measured chamber 
pressure during tests in Figure 10. The chamber pressure increases after the valve is opened but then 
decreases tracking the regulator outlet pressure. The thruster pressure drops momentarily to 14.7 psia 
indicating that the valve closes. The valve is commanded closed at 3.57 sec and closes within 40 ms. The 
measured steady state pressure at the high flow rate is less than the simulated pressure because the model 
was tuned to approximate both the undershoot and overshoot sacrificing the steady state accuracy.  

A plot of the poppet positions of both the regulator and the thruster valve relative to each other is can 
be seen in Figure 11. Notice that the thruster valve opens and closes before the regulator poppet starts to 
move. This suggest that the response time of the regulator needs to be improved or the gas stored 
downstream of the regulator needs to be increased enough to allow the regulator extra time to react before 
the thruster valve closes. A plot of the thruster valve inlet, outlet and sense pressures can be seen in 
Figure 12. Note that at two points in time the flow reverses through the pilot valve, as determined by the 
downstream pressure being higher than the sense pressure. This occurs when the thruster valve first 
opens, at the 2.1 and 2.27 sec on the timeline.  

 
 
 

 
Figure 9.—Regulator outlet pressure, test versus simulation.  
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Figure 10.—Thruster chamber pressure, test versus simulation.  

 

 
Figure 11.—Regulator and valve poppet position during thruster firings. 

 

 
Figure 12.—Valve inlet, outlet, and sensing pressure during thruster firings. 
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5.0 Proposed Design Solutions 
Two potential design solutions to reduce the regulator undershoot/overshoot and resulting thruster 

valve closing were investigated with the EASY5 system model. One was increasing the volume 
downstream of the regulator perhaps by adding an accumulator. Another approach was to decrease the 
flow resistance between the regulator sense volume and regulator outlet. These design solutions were 
easily investigated using the EASY5 model by increasing the node volume downstream of the regulator 
and increasing the diameter of the orifice used to model the flow resistance into the sense volume of the 
regulator. 

The system volume downstream of the regulator was varied in the simulation to see what impact it had 
on the pressure undershoot/overshoot, and resulting thruster valve performance. The as tested volume of 
110 in3 was run along with volumes of 1000, 2000, and 5000 in3. A plot showing the regulator outlet 
pressure and thruster valve outlet pressure for the various downstream volumes can be seen in Figures 13 
and 14 respectively. As volume increased the regulator outlet undershoot and overshoot pressure also 
decreased resulting in increasing acceptable thruster pulses. The practical limitations into how much 
volume can be added to the system due to weight and volume constraints were not determined.  

The effect of changing the regulator sense orifice was accomplished by varying the modeled orifice 
diameter. The sense orifice resistance was varied by changing the orifice diameter from the original 
0.0052 in. to values of 0.008, 0.01 and 0.02 in. Figures 15 and 16 show the regulator outlet pressure and 
thruster valve outlet pressure for the various orifice diameters used in the simulation.  

As the orifice diameter increased the regulator response time decreased. The faster response time and 
corresponding reduction in regulator pressure undershoot resulted in satisfactory thrust impulses. The 
increased volume approach effectively delayed the rate at which the pressure dropped allowing regulator 
to recover before the drop in pressure adversely impacted the thruster valve performance. The larger 
orifice did nothing to change the rate of pressure drop, but did allow the regulator to respond quickly 
enough to provide satisfactory thruster performance.  

 
 

  
Figure 13.—Regulator outlet pressure. 
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Figure 14.—Thruster valve outlet pressure. 

 
 

  
Figure 15.—Regulator outlet pressure. 
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Figure 16.—Thruster valve outlet pressure. 

6.0 Conclusion 
The value of system level developmental testing is illustrated by this investigation of the test results. 

Models generated using EASY5 provide insight to the component interaction and system level 
performance. The simulation of the cold gas thruster system compared well with the test data. The 
fluid/mechanical model of the thruster valve contained enough fidelity to predict the momentarily closing 
of the valve as a result of the regulator pressure undershoot. The regulator pressure undershoot was 
determined to be the primary cause of the momentarily closing of the thruster valve. The simulation 
provided an ideal tool for investigating design modifications for improved performance. The simulation 
predicted that increasing the regulator downstream volume and/or decreasing the regulator sense flow 
restriction would reduce the regulator outlet pressure undershoot enough to prevent the momentarily 
closing of the thruster valve.  
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