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Abstract

We derive an expression connecting the coefficients of a polynomial ex-
panded in the Bernstein basis to the coefficients of an equivalent ex-
pansion of the polynomial under an affine mapping of the domain. The
expression may be useful in the calculation of bounds for multi-variate
polynomials.

1 Introduction

The set of Bernstein basis polynomials of degree n can be used to form
a basis for a vector space of polynomials of degree less than or equal to
n. These polynomials take the form

Bν,n(x) =

(

n
ν

)

xν(1− x)n−ν , ν = 0, . . . , n (1)

where

(

n
ν

)

is a binomial coefficent. It is known that the coefficients

of a given polynomial expressed using the Bernstein basis provide guar-
anteed bounds on the global minimum and maximum of the polyno-
mial [1,2]. This result extends from the fact that these basis polynomials
are non-negative over the unit interval and the values at the end points
are simply

Bν,n(0) = δν0 and Bν,n(1) = δνn (2)

where δ is the Kronecker delta function. Furthermore, such bounds may
be improved by calculating and comparing the various expansion, or
Bernstein, coefficients for the polynomial over subdivisions of the do-
main interval, i.e. the coefficients that result from an affine mapping of
a subdivision of the domain back to the original domain. The de Castel-
jau algorithm [3] is a method for calculating the Bernstein coefficients
that are generated via a repeated halving of the domain. Muñoz and
Narkawicz [4] have provided a simpler variant of this algorithm, by ex-
plicitly calculating the analytical expressions that relate the coefficients
on the original and halved domains. We present here an expression con-
necting the Bernstein coefficients on the unit domain to those for an
affine mapping of the domain. This is in a sense a generalization of the
formulas given by Muñoz and Narkawicz [4]. The formula here reduces
to their result in the special case of dividing the domain into halves. We
also show how to apply the equation to a division of the domain into any
number of intervals of equal size.

2 Derivation of the General Formula

We derive here the relationship between the coefficients of a single vari-
able polynomial in Bernstein form on the unit interval x ∈ [0, 1] , Bν,n(x),
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and those of the corresponding Bernstein polynomial generated by the
mapping x −→ αx+β. This result holds for the multivariate case as can
be easily shown using Smith’s representation [5]. The derivation makes
use of two results: 1) the connection between the coefficients of an ex-
pansion in Bν,n(αx) to those of an equivalent expansion in Bν,n(x) and
2) the identity

Bν,n(1− x) = Bn−ν,n(x) (3)

The three steps shown below create the mapping x −→ αx+β. The first
result is used in the first and third steps, and the second result is used
for the second step.

x1 = α1x (4)

x2 = 1− x1 = 1− α1x (5)

x3 = α2x2 = α2(1− α1x) (6)

where β = α2 6= 0 and α = −α1β. The derivation of the relationship
proceeds similarly to the procedure in Section 2.3 of Ref. [4], and begins
by determining the appropriate partition of the argument 1− αx.

Bν,n(αx) =

(

n
ν

)

ανxν(1− x+ (1− α)x)n−ν

=

(

n
ν

)

ανxν
n−ν
∑

k=0

(

n− ν
k

)

(1− α)kxk(1− x)n−ν−k(7)

=

(

n
ν

)

αν
n
∑

k=ν

(

n− ν
k − ν

)

(1− α)k−νxk(1− x)n−k (8)

Using the trinomial revision formula
(

k
i

)(

n
k

)

=

(

n
i

)(

n− i
k − i

)

(9)

we have that

Bν,n(αx) = αν
n
∑

k=ν

(

k
ν

)

(1− α)k−νBk,n(x) (10)

Equating two equivalent expansions for the same polynomial, one in the
Bernstein basis with argument x, and one in the Bernstein basis with
argument αx,

n
∑

ν=0

cαν,nBν,n(αx) =
n
∑

k=0

ck,nBk,n(x) (11)

gives the following identity involving the Bernstein coefficients cαν,n and
ck,n

ck,n =
k
∑

ν=0

cαν,n

(

k
ν

)

αν(1− α)k−ν =
k
∑

ν=0

cαν,nBν,k(α) (12)
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where the α in cαk,n is not an exponent but a notational superscript. Using
this result, the identity in Eq. (3), and representing now the Bernstein
coefficients of an expansion in the arguments x, x2, and x3 as bk,n, b

2

k,n,

and b3k,n respectively, the coefficients corresponding to Eqs. (4),(5), and
(6) have the following relationships:

n
∑

ν=0

b3ν,nBν,n(α2x2) =
n
∑

k=0

b2k,nBk,n(x2) (13)

b2k,n =
k
∑

ν=0

b3ν,nBν,k(α2) (14)

n
∑

ν=0

b2ν,nBν,n(x2) =
n
∑

ν=0

b2ν,nBν,n(1− x1) (15)

=
n
∑

ν=0

b2ν,nBn−ν,n(x1) (16)

=
n
∑

ν=0

b2n−ν,nBν,n(x1) (17)

=
n
∑

k=0

bk,nBk,n(x) (18)

The coefficients in the last expression can thus be written as

bk,n =
k
∑

ν=0

b2n−ν,nBν,k(α1)

=
k
∑

ν=0

n−ν
∑

ν′=0

b3ν′,nBν,k(−
α

β
)Bν′,n−ν(β) (19)

This equation obviously holds only for β 6= 0. When β = 0, we can
simply apply Eq. (12) instead.

3 Specific Cases

It is straightforward to compute the coefficients for the case where the
unit domain is divided into halves. This division is equivalent to the
mapping x −→ αx + β, where α = 1/2, β = 0, for the left half, and
α = −1/2, β = 1 for the right half. In the former case, we use Eq.(12)

bk,n =
k
∑

ν=0

b3ν,nBν,k(
1

2
) =

1

2k

k
∑

ν=0

(

k
ν

)

b3ν,n (20)

and in the latter, Eq.(19) yields
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bk,n =
k
∑

ν=0

n−ν
∑

ν′=0

b3ν′,nBν,k(
1

2
)Bν′,n−ν(1) (21)

=
k
∑

ν=0

b3n−ν,nBν,k(
1

2
) (22)

=
1

2k

k
∑

ν=0

(

k
ν

)

b3n−ν,n (23)

which are the same formulas given in Eq.(14) of Ref. [4].
These equations can be used to calculate the Bernstein coefficients

corresponding to domains that are created by repeated halving of the
unit domain. Alternatively, we may from the outset define a linear divi-
sion of the domain into M equal size windows by simply setting

α = −1/M, β = m/M, m = 1, . . . ,M (24)

Such a scheme allows one to repeatedly divide the unit domain into
smaller pieces faster and perhaps in a non-even fashion if one so chooses.

4 Conclusions

We have derived an expression relating the Bernstein coefficients of a
polynomial on the unit domain x ∈ [0, 1] to those for the mapped do-
main x −→ αx + β. The expression provides a generalization of the
method implemented by Muñoz and Narkawicz [4]. The full implica-
tions of this work are still being determined; for example, one may study
the aforementioned linear division of the domain in the limit of infinitely
small divisions, M → ∞.
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