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Summary 

The injection of hot (100s of eV) plasma propellant into a 
nozzle composed of shaped magnetic flux to convert the 
plasma thermal energy into directed thrust is fundamental to 
enabling high-specific-impulse (10 000s of seconds) and 
high-specific-power (10s of kW/kg) piloted interplanetary 
propulsion. This report pertains to the theoretical physics 
governing certain aspects of the flow of plasma propellant 
through a magnetic nozzle, primarily the integrity of the 
interface between the plasma and the nozzle’s magnetic 
field, for these operational parameters. An expression for the 
initial thickness of the interface is derived and found to be 
significant (on the order of 10–2 m). A comparison is made 
between classical resistivity and gradient-driven Lower 
Hybrid Drift microturbulent (anomalous) resistivity, from 
which an algorithm is derived that obtains interface  
thickening as a time integral, that is then related to the  
nozzle-shaped geometry of the interface. An algorithm cha-
racterizing the plasma temperature, density, and velocity 
dependencies is derived and found to be comparable to 
classical resistivity at local plasma temperatures on the order 
of 200 eV. Macroscopic flute-mode instabilities within the 
interface in regions of adverse magnetic curvature are dis-
cussed and a practical growth rate formula for magnetic 
nozzle design is derived. It is calculated that only one to two 
e-foldings of the most unstable Rayleigh-Taylor (RT) mode 
would occur. For a more complete treatment of the RT effect 
it will be necessary to include the Hall effect as well as ion 
magnetoviscosity. The necessity of incorporating the Hall 
effect into Ohm’s law is discussed, where the full Hall cur-
rent is able to flow and concomitant plasma rotation allowed. 
In that case, a critical nozzle length expression is derived 
below which the interface thickness is limited to about 1 ion 
gyroradius. 

1.0 Introduction 

This report pertains to the flow of plasma propellant 
through a nozzle composed of shaped magnetic flux, with 
application to the propulsion of space vehicles. The integrity 
of the interface between plasma and nozzle magnetic field  
is a particular concern. We consider at the outset a set of  
coaxial, circular, highly conducting coils in vacuum carrying 
azimuthal currents. Such a coil set produces a longitudinal 
magnetic field B having cylindrical vector components Br 
and BZ. In terms of a “long-thin” geometric approximation, 

the latter component would be dominant. Plasma thrusters, 
in their simplest form, involve the nozzle-based acceleration 
of hot plasma propellant along the nozzle-shaped longitu-
dinal magnetic field. 

Figure 1 illustrates a simplified few-coil magnetic nozzle 
cross section without and with the propellant flowing,  
respectively. An engineering design would incorporate a 
large number of incremental contiguous coils. The magnetic 
nozzle configuration is nominally axially symmetric. It 
consists of a figure-of-revolution around the dash-dot axis of 
symmetry. The current-carrying magnetic-field coils are 
represented in cross section as rectangles. They carry adjust-
able azimuthal currents in the θ- (azimuthal angle) direction. 
The magnetic field lines produced by these coils lie in the 
meridional r,Z-plane. Some of them are represented here as 
solid lines closed around the coils (div B = 0). The chamber 
wall of the nozzle is not shown here, but would lie just inside 
of the magnetic field coils, at a slightly smaller radius.  

Figure 1(a) illustrates magnetic field lines in vacuum, 
without injection of hot plasma propellant. The incipient 
nozzle breech, nozzle throat, and nozzle exit regions are 
indicated. An engineering design would incorporate a large 
number of incremental contiguous magnetic coils to smooth 
out and control the flow of plasma propellant. 

Figure 1(b) illustrates magnetic field lines, before and  
after being distorted by conducting plasma propellant  
injected into the breech. Magnetic flux is squeezed between 
the highly conducting plasma propellant and the yet more 
highly conducting metallic magnetic field coils. In the idea-
lized magnetohydrodynamics (MHD) model, the initial 
magnetic flux in the chamber volume never penetrates either 
the coils or the plasma. The dotted arrows indicate magni-
tude and direction of the plasma flow velocity. The highly 
conducting edge plasma flows along the distorted nozzle 
magnetic field lines. (The pressure of the conducting plasma 
distorts the initial magnetic field lines.) Concomitantly, the 
exterior magnetic field acts like a flexible containment wall, 
radially confining the interior plasma.  

The directed plasma velocity is small in the breech and 
large at the exit. Stagnation enthalpy is converted into flow 
energy by the converging-diverging magnetic nozzle geome-
try. Magnetic trim coils may be needed beyond the exit 
region to straighten out the flow downstream. 

Adjustments of details of the configuration geometry, as 
well as adjustments of the propellant’s injection geometry, and 
the initial time dependence of the setting-up injection rate may 
be necessary to achieve a final desired configuration of steady 
flow. 
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Resistive diffusion of the squeezed magnetic flux into the 
slightly resistive external magnetic coils can be mitigated, in 
principle, by time-dependent programming of the coil’s 
circuit currents or by the use of superconducting coils. Of 
course, neither of these options is available for the preven-
tion of resistive interdiffusion of magnetic flux and plasma 
propellant. Certain instability mechanisms similarly cause 
mixing of plasma and magnetic field regions. These resistive 
and dynamical processes are both important because they 
degrade the performance of the magnetic nozzle, by allowing 
plasma attachment to the closed external magnetic field 
lines. The potential harm due to these processes thus consti-
tutes the motivation for this report, which deals with the 
interface where the nozzle magnetic field meets the plasma.  

When a highly conductive volume of plasma (centered on 
the axis) is axially driven into such a longitudinal magnetic 
field, azimuthal diamagnetic currents are induced to flow in 
the plasma. These induced plasma currents may be regarded 
as images of the external currents. The plasma currents are 

directed to reduce the internal magnetic field within the 
plasma and increase the field on the outside of the plasma. 
The net result is as if magnetic flux had been transferred 
from the plasma volume to the external volume. From Fara-
day’s law, the total magnetic flux is conserved in the overall 
transverse cross section because the external coils are highly 
conducting. Pictorially, the intruding plasma pushes mag-
netic flux out of the way. 

In an extreme idealization of this process (derived from 
very highly conducting plasma), all of the internal magnetic 
flux will have been expelled from the plasma to augment the 
external magnetic flux that confines the plasma laterally. 
Such confinement is affected by external magnetic pressure 
of the field (ultimately supported by the external coils). This 
external magnetic pressure acts inward across the plasma 
boundary to balance the outward lateral thermal and inertial 
pressure of the plasma. 

The magnetic nozzle concept discussed in this report is 
based upon the above-described idealization (illustrated in 
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Fig. 1), notably incorporating a “sharp-boundary” model of 
the field-free plasma. Moreover, the chosen configuration is 
the best that could be hoped for from the viewpoint of the 
plasma-detachment problem, since no plasma resides on 
magnetic flux. The report focuses upon the degradation of 
this ideal zero-order configuration due to the occurrence of 
fundamental microphysical processes. Concomitantly, the 
detachment problem again becomes a concern. 

A more realistic illustration that anticipates the degrada-
tion from an ideal configuration is shown in Figure 2. Start-
ing at the top, distributed coils carry the electric current that 
generates the longitudinal magnetic field (B). An insulating 
liner is the physical surface that prevents the flow of radial 
current and thus provides the Hall voltage. (Without radial 
current, the edge plasma will not spinup.) The confining 

magnetic field occupies a region largely plasma-free near the 
coils and liner, where it is generally parallel to the axis of 
symmetry. The field then becomes more diffuse in the direc-
tion towards the axis of symmetry. This is the resistively 
expanding plasma-magnetic field (hereafter plasma-field) 
mixing layer δ, possibly due to anomalous resistivity, which 
contains both plasma and magnetic field. The core plasma is 
envisioned to be field free. 

Starting from the left in Figure 2, the initial penetration 
depth of ions into the confining magnetic field ∆ is upstream 
of the throat. The resistively expanding plasma-field mixing 
layer δ increases from the initial penetration depth of the  
ions. A region of possibly Rayleigh-Taylor (RT) unstable 
plasma due to adverse longitudinal curvature may exist just  
upstream on the throat. A smooth throat is formed by gradually 
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increasing the azimuthal current in the coils about halfway 
down the complete nozzle, then gradually decreasing the coil 
currents further downstream towards the exit. Beginning at the 
throat, there is a precipitous drop in plasma temperature, 
which continues downstream (so the plasma resistivity is 
likely to be classical downstream of the throat). Beyond the 
“Exit” there will be supplementary magnetic coils to straigh-
ten out the flow of the core plasma. This process will involve 
resistive energy losses. 

The injection of hot hydrogen-plasma propellant into the 
breech of a magnetic nozzle, with subsequent conversion of 
its thermal energy into directed energy (and momentum), 
constitutes one of the important approaches to high-specific-
impulse propulsion of space vehicles, as envisioned for 
certain interplanetary missions (Refs. 1 to 5). A magnetic 
field configuration comprising axially symmetric (Br, B0) 
field lines (in terms of cylindrical coordinates), can be 
shaped into a converging-diverging nozzle by properly 
placed coaxial solenoidal coils. It offers advantages over 
wall-confined flow for the controlled nozzle flow application 
of a high-temperature fully ionized propellant gas.  

One such advantage is derived from the nozzle magnetic 
field imposing an inward radial pressure balancing the out-
ward plasma pressure, presumably isolating the plasma from 
the vessel wall (the coil shields). Such radial magnetic con-
finement of high-electrical-conductivity propellant can in 
principle reduce wall erosion by flowing plasma and reduce 
contamination of the plasma by heavy, high-atomic-number 
wall impurities. Radial magnetic confinement, if successful, 
thus mitigates unwanted mass entrainment and consequent 
reductions in specific impulse as well as mitigates the loss of 
thruster efficiency from inadvertent diversion of enthalpy 
into impurity radiation.  

Another advantage is the opportunity for expeditious  
experimental development since propellant flow control along 
shaped magnetic field lines can be controlled and optimized in 
a convenient, iterative manner during operation. Such optimi-
zation can be realized by adjusting the size and placement of 
coils and their currents. Still another possible advantage may 
be magnetic control of the thrust vector if slight deviations 
from axial symmetry are tolerated near the nozzle exit.  

Viability of the magnetic nozzle concept in its simplest 
form rests upon the integrity of a well-defined axially sym-
metric plasma-magnetic field interface. However, some 
fundamental microphysical processes, in the form of  
electron-ion collisions and microinstabilities, give cause for 
concern about the maintainability of a sharp interface. The 
sharp plasma edge adjacent to the surrounding magnetic flux 
constitutes an ideal axisymmetric equilibrium configuration 
in the sense of a pencil perfectly balanced on its point; it is 
nevertheless nonequilibrium in that there are closely accessi-
ble asymmetric configurations of lower energy. Such 
processes macroscopically broaden the interface by either 
classical or anomalous resistive diffusion, the former due to 
coulomb scattering of electrons on ions, and the latter due to 

time-dependent three-dimensional electric and magnetic 
fluctuations.  

If the desired interface were to become diffuse because of 
the action of these processes, the consequent enhanced  
intermixing of the periphery of the propellant core with the 
inner edge of the magnetic nozzle field (propellant “attach-
ment”) would create a “detachment problem.” Inadvertent 
attachment of propellant to magnetic flux becomes ulti-
mately manifest as resistive drag acting on the attached 
portion of the exhaust plume. That is, the attached part of the 
exhaust plume axially stretches and bends the returning 
magnetic flux lines. Because axial stretching and bending of 
returning magnetic field lines requires energy, the energy 
drain is manifested as a resistive drag on the propellant’s 
egress. Exhaust velocity and thrust thus become degraded. 
This situation motivates attention to the attachment process. 

In this report, a process of “instant attachment” of newly 
injected propellant to the magnetic nozzle flux is described. It 
is not accessible to standard MHD simulations, being charac-
terized by Hall effects and individual particle (kinetic) effects. 
Examination of interface physics during the first quarter ion  
gyroperiod after injection is performed. It shows an initial 
boundary-layer thickness in the breech of the nozzle, which 
proves to be on the order of the ion inertia length, p ic ω  (the 

speed of light divided by the ion plasma frequency). This layer 
thickness in the breech of the nozzle constitutes an initial 
condition subject to further resistive broadening (Fig. 2).  

One of the inferences of this report is as follows: Despite 
the substantial body of excellent theory and some limited 
experimental information that have been accrued, there is not 
yet a sufficiently comprehensive and accurate subgrid model 
readily available for magnetic nozzle design. The effects of 
nonzero beta (beta, β, is defined as the local ratio of total 
plasma pressure to magnetic pressure, Ptot/PB, where PB = 
B2/2μ0; thus, β = 2μ0 Ptot/B

2) in gradient-driven microturbu-
lence are not yet well understood, and β ranges from practi-
cally zero in the external magnetic field to a large value 
within the internal plasma. Moreover, there is not yet agree-
ment on the numerical factor in anomalous resistivity in the 
plasma edge layer, although there is agreement on the para-
meter dependencies. Such a model ideally would be applied 
in tandem with available two-dimensional axially symmetric 
MHD computer simulations (such as MACH2, see Ref. 3), 
with the intent to optimize the magnetic nozzle configuration 
while minimizing the detachment problem. 

On the other hand, within the magnetic-fusion-energy 
community and within the space-plasma physics community, 
there exists the knowledge base and the expertise for devel-
opment of the needed theoretical and computational tools. 
The development of such a synergistic design capability to 
supplement the MHD codes would require a highly detailed 
and computationally intensive effort by a team of scientists 
collectively familiar with both the numerical issues and the 
physics issues.  
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The body of this report is intended to provide substance to 
these general remarks. Some of the key journal articles are 
reviewed without dwelling overly on their mathematical 
details. (It proved necessary to collect and study many  
papers to assimilate a certain perspective from which to 
identify key contributions.) 

1.1 Outline of Report 

Section 2.0, “General Physics Description of Magnetic 
Nozzle,” presents general physics descriptions of magnetic 
nozzle flow, and the flow of a bounded, resistive fluid along 
magnetic nozzle field lines is discussed therein, along with 
associated processes that may be potentially deleterious to 
the plasma-field interface in the magnetic nozzle. The signi-
ficance of local propellant resistivity and of local radial 
pressure gradients, in connection with diffusive broadening 
of the desired axially symmetric interface at the free-surface 
boundary of the propellant region, will be indicated. The 
eventual connection due to microturbulence between effec-
tive resistivity and the steepness of edge gradients will also 
be pointed out.  

We emphasize in Section 2.0 that a local treatment of dif-
fusive intermixing of plasma and field needs to be made well 
defined by specifying certain global electrophysical boun-
dary conditions. The need arises because of the Hall effect, 
which introduces additional dominant physics considerations 
when the electron gyrofrequency in the plasma-field inter-
face is much larger than the electron collision frequency. The 
global electrophysical boundary conditions directly influence 
the nature of the local Ohm’s law, which, in turn, is a key 
player in calculating the evolution of the plasma-field  
interface.  

The conventional application of the simple Ohm’s law  
requires that the radial Hall voltage not be shorted out and 
concomitantly, that the Hall current not be allowed to flow. 
An important demonstration of this assumption lies in the 
opposite case, in which there ensues a severe reduction of 
effective plasma electrical conductivity due to Hall current, 
which is termed “magnetoresistance.” Magnetoresistance 
would be a feature of any simulation or experiment that 
allows Hall current but disallows plasma rotation. A prac-
tical consequence of magnetoresistance germane to  
magnetic nozzle operation would be a severe enhancement in 
the rate of diffusive plasma-field intermixing. Such consid-
erations would apply no matter whether the fundamental 
resistivity is classical or anomalous. In the magnetic nozzle 
geometry, however, having a flow of Hall current without 
rotation of propellant would be unrealistic. Therefore, rota-
tion also has been included here, with attention to satisfying 
boundary conditions in the propellant injection region.  

Allowing unhindered plasma rotation self-consistently 
with the presence of Hall current and with no Hall voltage 
drastically changes the character of the plasma-field  
transition layer from the artificial nonrotating case. We show 
that the layer thickness is limited to about the size of the ion 

gyroradius, provided that the nozzle length is shorter than a 

certain critical length. That length is eie mmλ , namely 

the product of a representative electron mean free path (pos-
sibly anomalously short) with the square root of the ion-to-
electron mass ratio.  

The quasi-radial Hall current produces an azimuthal  
(JHall × B) force that spins up the edge plasma. In a steady-
flow model that satisfies the up-stream boundary conditions, 
the Hall-driven rotational velocity increases going down-
stream. The originally shorted Hall voltage is eventually 
reestablished downstream in the reference frame of the 
rotating edge plasma after sufficient spinup has been 
achieved. This explains why the interface layer broadening, 
downstream of the above-mentioned critical length, reverts 
to the resistive layer that it would have been had the Hall 
current not been allowed to flow. In this regard, it should be 
noted that viscous interaction of the plasma’s edge layer with 
the core plasma would slow down the spatial rate of Hall 
spinup of the edge layer, and would therefore increase the 
above-mentioned critical length. 

In Section 2.0 we suggest the possibility of backup  
approaches to magnetic nozzle utilization. In the event that a 
sharply defined plasma-field interface cannot be achieved 
and maintained throughout the nozzle, nozzle-based accele-
ration of attached plasma along with core plasma is to be 
expected because of the converging-diverging property of 
the attached external annular regions of magnetic flux. The 
problem of maximizing thrust then occurs at the nozzle exit, 
where accelerated attached plasma must be freed from  
returning magnetic flux. One approach to that detachment 
problem, which supports nozzle efficiency, has been docu-
mented, and the reference is listed.  

Section 2.0 also contains a summary of nominal working 
parameters (density, temperature, and magnetic field 
strength) that may be relevant to some interplanetary mis-
sions and laboratory experiments. These are referred to 
occasionally throughout the report in connection with certain 
estimates of plasma properties.  

In Section 3.0, “Resistivity From Gradient-Driven Micro-
instabilities,” we first address the initial interface width (in 
the breech) of the plasma-field mixing layer. This result is 
relevant to an important microinstability, the Lower Hybrid 
Drift (LHD) instability, regarding its linear and nonlinear 
evolution. Then we review the linear theory for that micro-
instability, which is suspected to cause the broadening of 
magnetic, shear-free plasma-field interfaces. This is a rela-
tively robust, gradient-driven small-scale instability. Some 
stabilizing features are pointed out.  

Also within Section 3.0, the most difficult aspect of the 
microturbulence issue is addressed. It involves the connec-
tion of LHD microturbulence with anomalous resistivity, as 
arising from the nonlinear evolution and saturation of  
gradient-driven microinstabilities. The subject is reviewed 
and includes quasi-linear and alternative models. The review 
also discusses some attempts at numerical simulation. A 
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practical formula for resistive interface broadening for gen-
eral resistivity is identified, which can be applied to postpro-
cessing of MHD simulations of magnetic nozzle flow. A 
comparison of classical and anomalous resistivity from one 
of the simulations is presented, as a function of plasma 
density and temperature in hydrogen propellant.  

Section 4.0, “Rayleigh-Taylor- (RT-) Type Instabilities,” 
deals with RT-type instabilities driven by adverse curvature. 
The presence of these RT modes leads to a lack of nozzle-
based control of directed propellant flow. It is important to 
be aware that, in addition to diffusive broadening, the boun-
dary surface of the propellant is free to deform, especially 
along the direction perpendicular to the field lines, namely 
the azimuthal direction. Deformations of the plasma surface 
in the azimuthal direction do not involve the expenditure of 
energy on local bending or stretching of field lines. The 
propellant’s surface therefore is vulnerable to “flute modes,” 
in spite of plasma pressure being nominally balanced by 
magnetic pressure at the interface. Specifically, regions of 
adverse streamline curvature and adverse magnetic curvature 
(center-of-curvature lies within the plasma) are susceptible 
to RT deformations (Fig. 2). The distinction between the 
propellant streamlines and the magnetic field lines is impor-
tant in the injection region (see Sec. 4.0). 

The RT modes will be discussed within the context of 
magnetic nozzle operation, including the effect of finite 
Larmor radius (FLR) stabilization. A physical derivation of 
the growth rate will be presented that incorporates the simul-
taneous influences of plasma pressure and plasma flow with 
curved streamlines. A practical formula for postprocessing 
use with axisymmetric MHD simulations of magnetic nozzle 
flow is obtained. 

It is recognized that a more rigorous treatment of adverse 
curvature instabilities lies within the subject of “ballooning” 
modes, which takes into account that the adverse curvature 
regions have limited length. This is a complicated subject 
from which practical formulae applicable to magnetic nozzle 
flow are not readily available. It deserves a special treatment 
that is beyond the purview of this report. A reference to work 
on the destabilization of ballooning modes in mirror con-
fined plasmas is given.  

The FLR stabilization of the long-wavelength RT branch 
is reviewed and is utilized to construct a practical formula 
for nozzle design. Enhancement of the RT growth rate by 
Hall effects is mentioned, with references, but these are not 
included in this report. It is observed that adverse curvature 
of propellant streamlines in the injection region is practically 
unavoidable. The short-wavelength branch of the RT modes 
is also reviewed, including the absence of their FLR stabili-
zation, as well as their close connection with the previously 
treated LHD instability. For the short-wavelength RT 
branch, the relative importance of curvature relative to the 
plasma pressure gradient is examined and found to be impor-
tant in the plasma injection region.  

Section 5.0 contains a final summary and discussion.  

Appendix A provides a list of the symbols used in this  
report, and Appendixes B through K expand on various 
concepts presented in this report (see “Contents”).  

1.2 Basic Notation and Basic Approach 

We use uppercase V for macroscopic fluid velocities as in 
the MHD model and Vth i for the ion thermal velocity.  
Lowercase v is used for particle velocities, as in connection 
with the Boltzman-Vlasov equation.  

The evolution of the diffusive plasma layer at the edge of 
the plasma is described with a local Cartesian coordinate 
system. This approach is valid whenever the thickness of the 
diffusive layer is small compared with the radius of curva-
ture the short way around. As an example of the validity of 
this approach, see Section 2.3.3, “Diffusion of Field Into 
Plasma With Hall Effect,” which describes the penetration of 
an external magnetic field into the plasma in full cylindrical 
coordinates. Whenever the diffusive magnetic layer is thin 
compared to the radius of curvature, then the radial variable 
r varies negligibly over the region of interest. It thus cancels 
out as a constant, and the cylindrical diffusion equations 
reduce to a Cartesian representation of the diffusion process. 

Appendix B suggests a general and simple computational 
approach for obtaining the evolution of the plasma diffusive 
edge layer. One uses the exact resistive diffusivity D inside 
of the time integral. The time integral is replaced by an axial 
one-dimensional spatial integral involving the axial velocity. 
The axial velocity is expressed in terms of the density varia-
tion and the area variation along the axial direction using 
global mass flow conservation. The density, temperature, 
and velocity variations along the flow can be obtained from 
the quasi-one-dimensional model. If D is based upon classic-
al resistivity, one can take its temperature dependence from 
the quasi-one-dimensional model. If it is based upon ano-
malous resistivity, for example, from the LHD instability, 
one can also use the quasi-one-dimensional model for the 
other scaling variables.  

2.0 General Physics Description of 
Magnetic Nozzle 

In this section, we consider the physics associated with 
the momentum equations of the electrons and ions. The 
notation utilized is as follows. The magnetic nozzle field is 
composed of the vector field B = (Br, 0, BZ), referring to 
cylindrical coordinates (r, θ, Z). The magnitude of the vector 
B is B. The Z-axis constitutes the symmetry axis of the 

nozzle geometry. The unit vector along B is b̂ . The plasma 
velocity vector (ion-fluid velocity vector) component along 

b̂  is V// (see Fig. 2).  

Let θ̂  be a unit vector in the azimuthal direction. Then 
the velocity vector component across the flux surfaces in the 
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quasi-radial direction x̂  = θ̂  × b̂  is V⊥. The unit vector x̂  
is in the direction normal to the axially symmetric flux sur-
faces (Fig. 2). Propellant rotation is presently precluded (but  
included later), so that the total velocity vector of the propel-

lant now is xbV ˆˆ
// ⊥+= VV .  

The steady-state momentum equation for the plasma (sup-
pressing viscosity) is obtained by adding the momentum 
equations of electrons and ions, while neglecting electron 
inertia and recognizing that electron-ion collisions cannot 
alter the total momentum: 

 

 BJVV ×=∇+∇⋅ρ totP  (1) 

 
Here, ρ is the plasma mass density, Ptot is the plasma pres-
sure (electron pressure plus ion pressure), and J is the cur-
rent density vector to be obtained from Ohm’s law. When V⊥ 
<< V//, as is generally desired for magnetic-field guided flow 
of plasma, then the dominant components of Equation (1) along 

and across b̂  in the interface region are as follows: 
 

 

2
//

tot
1

0
2l l

V
P

   
 ∂ + ∂ =   ρ  

 (2) 

 

 

2
//

totˆ
V

P
R ⊥

 ρ
 − + ∇ = ×
 
 

x J B  (3) 

 
In Equation (2), l is the distance along the local field line (or 
streamline in the field-free region of core plasma). In Equa-
tion (3), R is the local longitudinal radius of curvature of the 
field line, and it is assumed for definiteness that the local 
curvature is adverse, that is, convex outwards. (If otherwise, 
replace R by –R.) The symbol ∇⊥Ptot represents the compo-
nent of pressure gradient normal to the flux surfaces, along 
x̂ , where ∇⊥ represents the component of the gradient 
vector along the quasi-radial direction.  

It is assumed below that the plasma pressure is compara-
ble to the magnetic pressure (β ≈ 1) in the plasma-field 
mixing layer; that is, for a nominal plasma-pressure versus 
magnetic-pressure confinement condition. This is a balance 
of pressures. Within the plasma core the local β is therefore 
very large, and within the external magnetic field region the 
local β is very small. The local β is of order 1 within the 
mixing layer, but also globally the internal plasma pressure 
must balance the external magnetic pressure across the inter-
face. The latter viewpoint corresponds to the concept of a 
“global beta.”  

Strictly speaking, Equation (2) as it stands really is only 
valid along the actual flow streamlines, which can differ 
from the magnetic field lines because of resistive diffusion. 
Because the flow vector in the plasma-field mixing layer is 

referred to the magnetic field lines, however, Equation (2), 
which leads to the Bernoulli equation, is only an approxima-
tion within the plasma-field mixing layer. Its validity  
depends upon // 1V V⊥ << . The flow streamlines of the 

plasma that have become attached to magnetic flux in the 
plasma-field mixing layer can be expected to differ only 
slightly from the magnetic field lines because of resistive 
diffusion. 

In particular, one finds ( )// //0.5V V D V⊥ ≈ δ . Here, D is 

a representative resistive diffusivity (D = η/μ0 in mks units), 
and δ is the characteristic diffusive width of the plasma-field 
mixing layer. For the parameters of interest and assuming 
classical resistivity due to coulomb scattering, the ratio 

//V V⊥  proves to be on the order of 0.001. Thus, the flow 

lines would approximately follow the field lines even if there 
were substantial anomalous enhancement of resistivity (in 

D). In this connection, it turns out that δ scales as D , so an 
anomaly factor of 100 in D only increases //V V⊥  by a 

factor of 10. 

2.1 Bernoulli Equation for Nozzle Flow 

Use of the Bernoulli equation for nozzle flow illustrates 
the conversion of thermal energy into directed kinetic energy—
the fundamental operation of a convergent-divergent rocket 
nozzle. A simple example of this is provided when a person 
blows up a balloon and then lets the compressed gas stream 
out of the blow hole. The total momentum is zero if there are 
no external forces acting on the balloon; so when gas streams 
out the back, the balloon has to dart forward to preserve the 
total momentum at zero. The total energy is initially entirely 
thermal. The thermal energy has been converted into directed 
kinetic energy, so the gas temperature must drop. Temperature 
is a measure of thermal energy. If the gas were a plasma, 
classical resistivity would increase. 

Integration of Equation (2), assuming that pressure is  
related to density adiabatically along a streamline, yields the 

Bernoulli equation. Thus, Ptotρ
–Ɣ is constant along a stream-

line. By assuming that the adiabatic index Ɣ = 1 + 2/Q = 5/3 
(where Q is the degrees of freedom; i.e., 3), there are at least 
occasional collisions. The energy-balance equation in its 
entropy-production form yields this adiabatic relation when 
there are neither sources nor sinks of mass and heat along a 

streamline. The choice Ɣ = 5/3 assumes that charged par-
ticles undergo at least several collisions during their transit 
of the nozzle, so that each charged particle samples all three 
degrees of freedom. 

The result of integrating Equation (2) along a streamline 
or flux line is 

 

 ( )
2 2
// constant
2 1

V S+ =
−γ  (4) 
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Here, S is the local speed of sound, which is related to pres-
sure and density by 

 

 2 tot totd

d

P P
S = =

ρ ρ
γ

 (5) 

 

Equation (4) can also be related directly to the equation of 
total energy balance. With help of Equation (5), Equation (4) 
becomes a statement of conservation of total energy per unit 
mass along the stationary flow configuration. That is, the 
sum of the kinetic energy per unit mass, the thermal energy 
per unit mass, and the work done by unit mass against the 
ambient pressure constitute a sum that is conserved along a 
streamline. 

The Bernoulli equation displays the acceleration proper-
ties of a converging-diverging long-thin nozzle when one 
recalls the “choked flow” condition at the nozzle throat, 
namely that the flow velocity equals the sound velocity 
there. Denoting values in the throat by subscript “t,” 

 

 // t t tV V S≡ =  (6) 
 

For simplicity, we shall assume infinite contraction and 
expansion ratios for the converging-diverging nozzle. It can 
be demonstrated, however, that a realistic moderate contrac-
tion ratio of 2, together with a moderate expansion ratio of 3, 
yields results very close to those obtained from assuming 
these ratios to be infinite.  A long-thin coaxial tube of fluid 
(either central or annular) of variable cross section A has the 
property that mass flow rate m  is conserved along the tube. 
Therefore, //V  ≈ 0 is set in the breech (beginning) of the 

nozzle in Equation (4), because A is assumed very large 
(infinite) in the breech. The “constant” in Equation (4) is 
then determined to be 

 

 ( )
2

constant
1

bS
=

−γ  (7) 

 

Here, Sb is the speed of sound in the breech of the nozzle. 
Use of Equations (6) and (7) in Equation (4) yields the flow-
speed of propellant in the throat, 

 

 222

4

3
btt SSV ==  (8) 

 

where Ɣ = 5/3 has been used.  
The exit velocity or specific impulse can be obtained from 

Equation (4) by recalling that propellant cools down as it 
expands through the nozzle. For a fully expanded flow, 
Equations (4) with (7) then provide the exit velocity as  
follows: 

 

 bex SV 3=  (9a) 
 

With Equation (8) this also implies that 
 

 tex VV 2=  (9b) 

Use of the adiabatic relation in the sound speeds in Equa-
tion (8) then yields the ratio of ion density in the throat to ion 
density in the breech, namely as  

 

 
3

2
6495.0

4

3 2
3

≈=





=

ib

it

n

n
 (10) 

 

Since temperature, T, scales adiabatically as n2/3 along a 
streamline, Equation (10) implies that the ratio of tempera-
ture in the throat to temperature in the breech is given  
exactly by  

 

 
4

3=
bT

T
 (11) 

 

Before applying the above results, a perspective regarding 
acceleration by nozzle flow is presented. The above prin-
ciples of nozzle flow and the realization of high exhaust 
velocities govern not only the field-free core plasma, but also 
govern plasma that already has interdiffused with the field 
and become attached.  

Three conditions, however, must be met for nozzle-based  
acceleration to be useful on attached plasma. First, electrical 
conductivity must be sufficiently large within the nozzle so 
that the plasma velocity is approximately confined along 
magnetic field lines, notwithstanding the presence of cross-
field diffusion. Second, annular flux tubes carrying attached 
plasma must themselves exhibit convergence-divergence simi-
lar to the plasma core, so that nozzle-based acceleration occurs 
within each annular incremental flux tube. Third, the plasma-
detachment problem must be addressed and solved at the exit.  

Reference 6 and references therein discuss nozzle-based 
acceleration of highly conducting attached plasma inserted in 
the breech within coaxial magnetic flux tubes (no field-free 
plasma) and includes George Marklin’s numerical calcula-
tion illustrating temperature reduction downstream of the 
throat of the nozzle. When longitudinal and azimuthal  
magnetic fields and longitudinal and rotating flows are all 
included, the nozzle-based acceleration process still can be 
reduced to a generalized Bernoulli equation. Reference 6 
recognizes the importance of solving the detachment problem, 
but does not consider special shaping of diverging magnetic 
field lines for that purpose. This has been carried out in Refer-
ence 7, however, which does describe a means of successful 
detachment with minimal loss of efficiency, while assuming 
that downstream plasma has only classical resistivity.  

Classical resistivity ηcl is the smallest possible. It there-
fore leads to the most difficult detachment problem. Because 
ηcl increases downstream as T–3/2 due to cooling of the  
expanding flow, the detachment process with ηcl can be 
successfully effected (Ref. 7). It proves necessary to outfit 
the vehicle with coaxial solenoidal trim-coils. They must be 
placed downstream in the diverging region of the magnetic 
nozzle, in a manner that ensures that the magnetic nozzle 
field lines are only weakly divergent, thereby minimizing 
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TABLE I.—SAMPLE PARAMETERS RELEVANT TO SPACE 
VEHICLE PROPULSION AND RELATED EXPERIMENTS 

Parameter Propellant 
Hydrogen Helium 

Mass, m, AMU 1 4 

Number density (breech), nb, cm−3 1.0 · 1015 1.0 · 1015 

Number density (throat), nt, cm−3 0.65 · 1015 0.65 · 1015

Temperature (breech), Tb, eV 50 100 

Temperature (throat), Tt, eV 38 75 

Magnetic field,a B, T  0.20 0.35 

Electron cyclotron frequency, ωc e, s
−1 3.2 · 1010 5.6 · 1010 

Electrical conductivity (throat),b σt, mho/m 2.6 · 105 3.7 · 105 

Resistive diffusivity (throat), Dt, m
2/s 3.2 2.3 

Electron collision frequency (throat), υe t, s
−1  0.8 · 108 1.0 · 108 

Flow velocity (throat), Vt, m/s 1.1 · 105 1.0 · 105 

Exit velocity,c Vex, m/s 2.1 · 105 2.0 · 105 
aLocal ratio of thermal to magnetic pressure β = 1 in breech. 
bln Λ = 10, where Λ is length of breech to throat divided by ion 

gyroradius. 
cAlso, specific impulse (10–1 s). 
 
resistive-drag losses. The addition of such trim coils then 
becomes a factor in mission considerations dealing with size 
and weight of the vehicle. It may be that the occurrence of 
enhanced resistivity in the downstream region would further 
ease the detachment problem.  

The above Bernoulli results on nozzle flow are now  
applied to hydrogen propellant, with parameters similar to 
those relevant to interplanetary travel. Also, the Bernoulli 
results are applied to helium propellant with parameters 
similar to those proposed by Turchi (Ref. 2) for a  
magnetic nozzle experiment at Ohio State University using 
the 1-MJ, 1-GW pulsed-power source. Table I presents 
approximate round-number values of nominal reference 
parameters assumed to be inserted into the breech of the 
nozzle. The quantities are derived according to the Bernoulli 
equation for the throat and exit regions of the nozzle. 

It is noted that the assumed high-enthalpy plasmas pro-
vide a desired specific impulse of about 20 000 s. Also, only 
moderate magnetic field strength is required to effect an 
initial balance between plasma pressure and magnetic pres-
sure. (Downstream of the breech, one expects the magnetic 
flux to press inward in radius as the plasma’s internal pres-
sure becomes converted into longitudinal flow energy.) 
Hydrogen propellant is assumed to be axially inserted into 
the breech of the nozzle and preheated to the desired temper-
ature by drawing off edge plasma into the nozzle from the 
fusion power reactor. 

From Table I, a feature that proves to be very important 
with regard to the Hall effect is observed. The electron  
cyclotron frequency in the edge plasma ωc e largely exceeds 
the electron coulomb collision frequency, υe, by more than 2 
orders of magnitude. In the throat, magnetic field B is still 

0.7 of its breech value, hence, also ωc e. Even a severely 
anomalous electron collision frequency still could be domi-
nated by the electron cyclotron frequency.  

At a fixed temperature in the breech, the classical colli-

sion frequency there is proportional to 23Tn  whereas the 

electron cyclotron frequency there is proportional to nT  

via pressure balance. Thus, for the given temperature, the 
reference density would have to be increased by orders of 
magnitude and out of range in order to bring the electron’s 
coulomb collision frequency into the neighborhood of the 
electron cyclotron frequency. For these reasons, the Hall 
effect in the mixing layer is regarded as sufficiently impor-
tant to merit a separate treatment below.  

Finally, we note that the velocity in the throat region, Vt, 
together with the envisioned meter-scale length of the  
nozzle, can be used to provide a rough estimate of the  
transit-time duration available for diffusive spreading of the 
plasma-field mixing layer. For a meter-length nozzle, this 
longitudinal transit time is on the order of 10 μs. (In Appen-
dix B it is shown that if we allow for the transit time to 
increase from zero velocity in the breech, there is an amplifi-
cation of the transit time by a factor of ~2.) 

2.2 Diffusive Intermixing in Plasma-Field Interface 

This subsection addresses diffusive intermixing of plasma 
into magnetic field and also resistive diffusion of magnetic 
field into plasma. Both mixing processes occur together. We 
turn now to Equation (3) for crossfield diffusion of plasma.  

2.2.1 Diffusion of Wall-Confined Plasma 

Equation (3) is discussed as an illustration for the worst 
case. This case is one where hot plasma, initially inserted 
into the breech of the nozzle, inadvertently immediately 
spreads over all upstream flux surfaces (plasma-wall interac-
tions are ignored). The plasma profile is assumed to extend 
uniformly from the symmetry axis out to the wall, so that the 
transverse pressure gradient is now neglected relative to the 
centrifugal force. Effective gravity from centrifugal force 
with adverse curvature would cause wall-confined plasma to 
sink against the outer wall, creating a pressure gradient that 
is positive outwards. By neglecting this pressure gradient, 
we will overestimate the crossfield velocity of plasma and 
the concomitant resistive deviation of the streamline from 
the field line. But even with uniform pressure, the plasma is 
still wall confined. Then Equation (3) reads  

 

 
2
// ˆ

V

R

 ρ
 − = ×
 
 

x J B  (12) 

 
At the same time, assume that Ohm’s law holds in its 

simplest resistive form, namely 
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 σ × =V B J  (13)  
 

where σ is the electrical conductivity of plasma )1( η=σ  

and ×V B  is the effective electric field in the moving refer-
ence frame of the plasma, driving the current density.  

Equation (13) implies that  
 

 2B ⊥× = −σJ B V  (14)  

 
It should be observed that this MHD force density, as  

obtained from the simple Ohm’s law, is directed oppositely 
to the crossfield flow velocity. This phenomenon is known 
as “eddy current braking” of the plasma crossfield flow. The 
same phenomenon creates the detachment problem at the 
nozzle’s exit.  

Use of Equation (14) in Equation (12) presents a steady-
flow balance between the outward centrifugal force resulting 
from parallel flow along a curved field line and the MHD 
braking force. As a concrete example, we shall evaluate this 
balance just upstream of the throat, where the field lines 
might be curving radially inwards towards the throat with an 
adverse curvature (of course, it also is possible to imagine a 
nozzle field with good curvature everywhere). This force 
balance can be expressed as a ratio of transverse to longitu-
dinal velocities in the following form: 
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





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

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D

W

W

V

V
 (15) 

 
Here, 22

kin VW ρ=  is the kinetic energy density of  

parallel flow approaching the throat region; and 

0
2

mag 2μ= BW  is the magnetic energy density near that 

region. Also, 1
0 )( −μσ= clclD  is the classical resistive diffu-

sivity there (Russian or Soviet papers sometimes refer to D 
as “magnetic viscosity”). The magnetic field is chosen to 
have β of order unity, and the flow speed is on the order of 
the speed of sound. (Even though β is of order unity, it is 
assumed that the wall takes up the plasma pressure in the 
present example.) Therefore, the first nondimensional  
ratio, the ratio of energy densities in Equation (15), is of 
order unity. The principal determining factor for the velocity  
ratio //VV⊥  is the second nondimensional ratio in  

Equation (15). For R = 1 m, the hydrogen parameters yield 
5

// 103 −⋅≈RVDcl , and the helium parameters yield 
5

// 102 −⋅≈RVDcl . 

These very small numbers for //R VDcl  signify that 

flowing plasma having a diffuse profile remains very well 
attached to field lines (V⊥ << V//), assuming classical resis-
tivity. This situation would still hold true even for R = 0.1 m. 
It can therefore be expected that with the simple Ohm’s law 

with classical resistivity and for the area of each incremental 
annular flux tube having a converging-diverging dependence 
on axial distance, nozzle-based acceleration still can occur 
for diffuse attached plasma. Moreover, it is worth noting that 
the small ratio //VV⊥  is so small indeed that the plasma 

resistivity could even be anomalously large by several orders 
of magnitude and yet have the plasma remain fairly well 
guided by the field lines.  

To summarize Section 2.2.1, it can be stated that diffuse 
wall-confined plasma preattached to the magnetic flux can 
usefully acquire nozzle-based acceleration provided that the 
consequent detachment problem is solved. Reference 7 has 
described an approach to solving the detachment problem, 
which involves implementation of a weakly diverging  
magnetic nozzle field in the exhaust region. 

2.2.2 Diffusion of Magnetically Confined Plasma 

We return now to Equation (3), assuming that the edge 
plasma at the interface has such a sharp boundary that the 
transverse pressure gradient (negative outwards) completely 
dominates the centrifugal force term. Use of the simple 
Ohm’s law, Equations (13) and (14), then yields an equation 
for the transverse velocity in terms of the transverse pressure 
gradient, tot tot ˆ( / )P P⊥∇ ≈ − δ x : 

 

 tot2
ˆ

2

D
P

B
⊥ ⊥

 η β= − ∇ ≈  δ 
V x  (16) 

 
Here, η is the resistivity, η = 1/σ, and D is again resistive 
diffusivity 0μη=D . Also, β is the ratio of thermal to 

magnetic pressure within the interface; 2
0 tot2 P Bβ = μ , 

where Ptot is the sum of electron and ion pressures, 

tot e iP P P= + . Finally, δ represents the thickness of the 

transition layer of magnetically confined plasma. The pres-
sure gradient of confined plasma is noted to be inward, along 
− x̂ , where xV=⊥V .  

From Equation (16), one then obtains the estimate  
 

 







δ

β≈⊥

//// 2 V

D

V

V
 (17)  

 
Equation (17) for the magnetically confined plasma has the 
same structure as Equation (15) for the wall-confined  
plasma, but now with a very small plasma-field mixing layer 
width in the denominator. However, even if δ were 4 orders 
of magnitude smaller than R, for example δ = 0.01 cm, one 
would still have a relatively small transverse velocity, name-
ly V⊥ ≈ 0.1 V//. This can be seen by utilizing the same para-
meters as for Section 2.2.1. Moreover, if δ ≈ 1 cm, 
comparable to an ion gyroradius, then V⊥ ≈ 0.001V//. Thus, 
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qualitatively it appears that classical resistivity, with the 
given parameters, does not destroy the small ratio of trans-
verse to longitudinal velocity, even for rather thin plasma-
field mixing layers.  

The analysis leading to Equation (17) can be extended. 
We take into account that the plasma-field mixing layer 
width δ is related to the transverse diffusion velocity V⊥. The 
two really should be treated together in a self-consistent 
manner. To exploit this point of view, we cancel V// from 
each side of Equation (17), and make the reasonable identifi-
cation within the plasma-field mixing layer: 

 

 
t

V
d

dδ=⊥  (18) 

 
This equation represents the rate at which the plasma-field 
mixing layer thickens with time as the flow is followed 
downstream. Use of Equation (18) in Equation (17) and 
multiplying through by δ then yields 

 

 
2d

2d
2

D

t

β≈






δ

 (19) 

 
Assuming that the initial boundary-layer width of attached 
plasma in the breech is negligibly small (corrected in 
Sec. 3.0, “Resistivity From Gradient-Driven Microinstabili-
ties,”), this differential equation suggests the estimate 

 

 tbDtβ≈δ  (20)  

 
where tb t is the time for longitudinal flow to traverse the 
nozzle, say from breech to throat. (The integration of 
Eq. (19) over time is addressed in Appendix B.) For a pro-
pellant whose transverse pressure is balanced by confining 
magnetic pressure, the quantity β will be of order unity 
within the plasma-field mixing layer. A more rigorous and 
detailed analytic procedure that includes a non-MHD-
derived initial layer thickness is considered beyond the scope 
of this report (see Sec. 3.0, “Resistivity From Gradient-
Driven Microinstabilities”).  

Note that Equation (20) assumes that there is no signifi-
cant initial thickness of the plasma-field transition layer in 
the breech of the nozzle. It is appropriate for comparison to 
MHD simulations that make the same assumption. This 
issue, which cannot be fully addressed within the resistive 
MHD model, is considered later in this report in Section 3.1, 
“Interface Width in Breech of Nozzle.” It is assumed here 
that the field coils and the injection process are such as to 
allow a macroscopically gentle injection, such that there are 
no anomalous or extreme dynamical macroscopic processes 
that produce an initial width of the transition layer in the breech 
of the nozzle. Otherwise, such a macroscopic initial layer  

thickness certainly would have to be included in the contribu-
tion to the layer thickness downstream. See Reference 1. 

The terse derivation of Equation (20) will now be sup-
plemented with a more rigorous derivation, which provides a 
more precise interpretation of the symbol β. It turns out that 
β is neither a local nor a global concept here, but has aspects 
of both. 

For slow, noninertial resistive flow in the interface, one 
has a situation of quasi-equilibrium. 
 
 BJ ×=∇P  (21) 

 
The quasi-radial component of this equation, outwards 
across the flux surfaces, involves only the azimuthal compo-
nent of the current density. However, the azimuthal electric 
field vanishes in an axially symmetric steady state, so that 
the azimuthal current density can be represented in Ohm's 
law by 

 
 BVJ ×=η  (22) 

 
which involves the outward cross-flux velocity of plasma. 
Use of the latter equation in the former yields 
 

 V








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


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0

2

2
2

B
PD  (23) 

 
in which the gradient and the velocity are directed outwards 
across the flux surfaces, in the quasi-radial x-direction. Here, 
D is the resistive diffusivity η/μ 0. 

In the absence of a detailed model of the interface, one 
must have recourse to reasonable but expeditious assump-
tions to go forward with the theory. In this instance, such an 
assumption is that the plasma outward velocity corresponds 
to the rate of thickening of the interface width δ.  
 

 t
Vx d

dδ=  (24) 

 
Integrating the quasi-equilibrium equation from x = 0 at the 
core edge to x = δ at the vacuum end of the interface, we 
then have  
 

 
t

B
PD

d

d

2
2

0

2

core
δδ

μ
−=−  (25) 

 
In the above equation, Pcore represents the plasma pressure at 
the edge of the core region, and the brackets represent an 
average of the enclosed quantity over the interface width,  
0 ≤ x ≤ δ. This equation also can be written as 
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2d

d
D

t

δ = β  (26) 

 
in which β is now given by 
 

 
2
core02

B

Pμ
=β  (27) 

 
In subsequent equations that represent resistive thickening of 
the interface by resistive diffusion, β should be accorded this 
interpretation.   

For the transit time t we invoke ttbtb VL  t = , where 

Lb t is regarded as a characteristic length of the nozzle from 
breech to throat (similarly, Lb ex is the characteristic length 
of the nozzle from breech to exit plane). Also, Vt represents 
velocity in the throat region, which is known to be on the 
order of the ion thermal velocity. Then, from Equation (20), 
it can be shown that the square of the boundary-layer width 
is 
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22 2  (28) 

  
Here, we have retained β in Equation (20) and have set the 
electron and ion temperatures equal, Te = Ti. Retention of 
beta in Equation (28) is practically just a formality. The 
square root of the local beta is near 1 within the interface and 
so is the square root of the “combination beta” described 
above. The model of the interface invoked here is just not 
sufficiently detailed as to provide more accuracy than is 
available with such numerical factors. The ion thermal gyro-
radius is connected to the ion inertia length by the square 
root of the local beta. So, the factor that is being suppressed 
in delta, as given by the second part of Equation (28), is the 
square root of the ratio of the combination beta to the local 
beta. The square root of that ratio is expected to be near 1. 
Also, the resistivity η in D in Equation (20) has been reex-
pressed in terms of its fundamental factors for hydrogen 

plasma; 2
e e em n qη = υ , where me is electron mass, ne is 

electron number density, q is the magnitude of the electron 
charge, and υe is the momentum-transfer collision frequency 
of an average electron with background ions or with micro-
turbulent fluctuating fields. The negative charge of an elec-
tron will be explicitly indicated as –q; thus q is a positive 
quantity. 

 Recall that the resistive diffusivity 0μη=D  in mks 

units, and πη= 42cD  in cgs units. Here, μ0 is the  

magnetic permeability of vacuum, and c is the speed of light 

in vacuum. It is useful to note that 00
2 1 με=c  in mks 

units, where ε0 is the electrical permittivity of vacuum. 
In Equation (28), ai is a representative ion gyroradius in 

the attached plasma within the plasma-field mixing layer, 

[ ]22 2 iciii mTa ω= , with ωc i being the ion gyrofrequency in 

the boundary-layer magnetic field. Moreover, λe is a repre-
sentative mean free path for collisions of electrons (possibly 

anomalous) with ions; hence 1 2e e e eT m−λ = υ , and me/mi 

is the electron-to-ion mass ratio. Furthermore, ωp i is the ion 

plasma frequency, with 24pi i inq mω = π  in cgs units and 

2
0i inq mε  in mks units. The ratio c/ωp i is called the ion 

inertia length. 
The ion gyroradius ai comprises a principal feature of the 

boundary-layer width. Other highly significant factors also 
codetermine the resistive MHD boundary-layer width in Equa-
tion (28). Thus, iaδ  depends upon the dimensionless longitu-

dinal distance traveled, in the form ( ) ( ) 4121
iee mmL λ .  

Suppose L = 1 m. The throat velocity is Vt = 105 m/s; 

hence the transit time is about t = 10−5 s. Assuming β ≈ 1, and 
taking classical resistive diffusivity Dcl ≈ 3 m2/s for hydrogen, 

one finds from Equation (20) that δ ≈ 0.6 · 10−2 m = 0.6 cm, 
with a slightly smaller value for helium propellant. This 
value of δ constitutes an estimate for the width attained by 
the plasma-field mixing layer after following propellant up 
to and just through the nozzle throat. It is generated by resis-
tive diffusion of plasma into the magnetic nozzle field. It 
overestimates the diffusion, since Dcl is the throat value with 
temperature reduced from its value in the breech. It underesti-
mates the layer thickness, however, by neglecting any initial 
thickness. This neglect is appropriate for comparison of layer 
thickness δ with that from resistive MHD simulations. 

In the assumed case of classical resistivity, with β of the 
order one and taking parameter values listed in Table I 
above, broadening of the plasma-field mixing layer after 
passage of propellant up to and just through the nozzle throat 
thus proves to be rather small compared to system dimen-
sions. This would be so even for a modest plasma throat 
radius of 10 cm. Any simulation (or experiment) of magnetic 
nozzle flow of nominally confined plasma having those 
parameters and giving results with substantially larger diffu-
sion of the plasma-field mixing layer may be violating one or 
more of the model assumptions set forth above. Also, the 
simulation may contain some numerical diffusion.  

In this simple presentation of radial resistive diffusion, we 
have used a constant characteristic nozzle flow velocity for 
estimating δ, which has been taken to be the velocity in the 
throat region of the nozzle. This procedure serves to define a 
characteristic dwell time as a characteristic axial length 
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divided by the characteristic longitudinal velocity. However, 
the dwell time of the propellant between breech and throat 
actually is somewhat longer due to the time needed for the 
propellant to accelerate up to its characteristic velocity. This 
increased dwell time then gives the resistive plasma-field 
mixing layer more time to grow. The effect of the more 
accurate dwell time is discussed in detail later, in Sec-
tion 2.4, “Summary,” and in Appendix B. It is estimated that 
the time needed for acceleration engenders a factor of ~2 in 
the increased thickness of the plasma-field mixing layer.  

2.2.3 Diffusion of Confining Magnetic Field 

In the preceding case, diffusion of plasma into the confin-
ing field was considered. There also is another process for 
attaching plasma to the confining field. After the ambient 
magnetic field has been pressed against the outer conducting 
wall by the initial pressure of injected hot plasma, the field 
can rebound spatially downstream, by undergoing inward 
diffusion into the core plasma regarded as a resistive  
medium. Turchi analytically treated this view of plasma 
attachment (diffusion of a pulsed magnetic field into a resis-
tive medium), using a well-known model of time-dependent 
magnetic diffusion (Ref. 8, personal communication), based 
upon a discussion of time-dependent magnetic diffusion. We 
now analyze this magnetic diffusion process by a slightly 
different method than that used by Turchi. The treatment 
here of the diffusion of a magnetic field into a conductor 
agrees (to within a trivial numerical factor) with that pre-
sented in Section 2.2.2 of plasma diffusion across a magnetic 
field. The reason is that the square root of beta is near 1 for 
the special beta described. 

The point of view adopted here is that the exact time  
dependence of the magnetic field experienced at the boun-
dary of the moving plasma is regarded to be less important 
than the overall time scale for that time variation. The reason 
is that the extent of the field diffusion into the plasma is 
obtained by time integration. This point of view thus moti-
vates us to choose a simple but expeditious time dependence, 
containing a certain relevant characteristic time, for the 
magnetic field experienced by the moving plasma at its 
boundary.  

In a reference frame moving downstream with the plasma 
velocity comparable to the velocity in the throat ~Vt, where 
that velocity is assumed constant and uniform, Maxwell’s 
equations are written as follows. Here, E′ = E + Vt×B is the 
azimuthal electric field in the moving frame. 

   

 
( ) ( )

BB

BJE

tD

D

−∂=∇−=

×∇×∇=η×∇=′×∇
2  (29) 

 
In an axially symmetric configuration, one can note the 
following property of this set of equations. The longitudinal 

component (along B) involves the spatial variation—in the 
direction normal to the flux surfaces—of azimuthal vector 
components of electric field E′ and current density J.  

Here, it is important to note two other key features to be 
used in Equation (29). First, in the moving frame, the azimu-
thal electric field E′ will not necessarily vanish, even in a 
situation of steady flow and steady fields in the lab frame. 
Second, the azimuthal current density vector J is assumed 
related to the azimuthal electric field E′ (in the moving 
frame) by the simple Ohm’s law, as before. Since J involves 
the difference between two vector velocities, those of elec-
trons and ions, its evaluation in any frame produces the same 
result for quasi-neutral nonrelativistic plasma. Also, the 
magnetic field is the same in the moving frame, when the 
velocity is nonrelativistic. The resistive diffusivity D in 
Equation (29) is assumed here to be a scalar constant repre-
sentative of the throat region of the nozzle.  

Cylindrical geometry can be suppressed when examining 
magnetic diffusion in the vicinity of the plasma’s sharp 
boundary, as long as the plasma-field mixing layer width is 
small compared to its radial distance from the axis of sym-
metry. Accordingly, if we let the x-coordinate represent the 
direction normal to the flux surfaces (so that the distance x 
increases towards the wall, see Fig. 2), then the last part of 
Equation (29) reduces to a simple diffusion equation within 
the plasma, considered as a resistive medium: 

 

 
D
t

x
B

B
∂

=∂2  (30) 

 
There is no loss of generality in setting x = 0 at the plasma 
edge. This situation is effectively the same as a magnetic 
field diffusing into a conducting half-space bounded by a 
planar surface. 

Following the line of Turchi’s argument in a general way, 
we shall represent the time variation of the magnetic field 
experienced by the longitudinally moving plasma with sim-
ple exponential time dependence. The method is a form of 
the “separation-of-variables” technique for solving partial 
differential equations. Thus, 

 

 ( ) ( ) ( ), btt t
B x t G x e=  (31) 

 
The incoming conducting plasma in the region upstream of 
the throat presses the external field against the metallic wall 
(coils), thus increasing the field strength in the local neigh-
borhood. By assuming this monotonic increase with time of 
the magnetic field strength seen by the moving edge plasma 
during its traverse up to the throat region, the penetration of 
field into plasma shall surely be overestimated. (Using the 
plasma temperature in the throat, one overestimates the 
prethroat classical resistive diffusivity D.) Then, using Equa-
tion (31), Equation (30) is reduced to 
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 )(
1

)( xG
Dt

xG
tb

=′′  (32) 

 
Here, ( ) xdGxG d=′ . The solution of Equation (32) with-

in the plasma region (x < 0) is 
 

 ( ) 1
I

b tx Dt
G x C e

−
=  (33) 

 
where x is the positive (decreasing plasma density) or nega-
tive (increasing plasma density) distance from the plasma 
boundary (Fig. 2). This spatial profile within the plasma, 
engendered by the time-dependent magnetic field imposed at 
the plasma boundary, clearly exhibits the character of a 
boundary layer of magnetic field protruding into the interior 
of the plasma.  

The moving plasma would generally experience signifi-
cant changes in field strength of a time on the order of the 
plasma’s transit time up to the nozzle throat. Therefore, it is 
reasonable to regard the time constant for imposed field 
growth as tb t , which is the plasma’s transit time through the 
converging part of the nozzle. Then, the plasma-field mixing 
layer thickness implied by Equation (33) can be expressed as  

 

 tbDt=δ  (34) 

 
where tb t is the nominal transit time through the converging 

part of the nozzle, ttbtb VLt ≈ . Thus, essentially the same 

answer is reached for field diffusion into plasma as in Sub-
section 2.2.2 (assuming β is of order 1) when the plasma 
diffuses into the field. In both cases, for the given parameters 
and classical resistivity, the plasma can be expected to  
intermix with the field to a distance of at most about 1 cm 
during transit through the converging part of the nozzle. This 
distance is to be compared to a system length on the order of 
1 m and a plasma throat radius perhaps on the order of 
10 cm.  

For comparison, the steady-state magnetic-field diffusion 
problem is solved in the lab frame in Section 2.3.3, “Diffu-
sion of Field Into Plasma With Hall Effect,” and in Appen-
dix C. In the limit of simple resistive diffusion, a similarity 
solution is found from which a characteristic penetration 
depth evolves with increasing axial distance downstream. 
That result proves to be in very good agreement with the 
present treatment in the moving frame.  

2.3 Hall Effect, Plasma Rotation, and Electron 
Pressure in Ohm’s Law 

We consider the foundations of the simple form of Ohm’s 
law within the context of magnetic nozzle physics. Certain 
global conditions prove to be required in order for the simple 
Ohm’s law to provide a valid description. This circumstance 

may influence the nature of the computed plasma-field mix-
ing layer and its spatial rate of broadening.  

The momentum equation of the electron fluid constitutes 
the complete Ohm’s law. Let Ve be the electron macroscopic 
(fluid) velocity, whereas Vi represents the ion macroscopic 
velocity. Therefore, the current density is 

 
 ( )e i en q= −J V V  (35) 

 
The electron number density is ne (the same as the ion num-
ber density for atomic number Ξ = 1, which is assumed 
here), the electron’s charge is −q, and the mass of a single 
electron is me. The fluid-momentum equation of electrons in 
the lab frame then reads, in mks units,  

 

( )

1

( )

t e e e e
e e

e e i e
e

P
m n

q

m

 
∂ + ⋅∇ + ∇ 

 

= −υ − − + ×

V V V

V V E V B

 (36) 

 
Here, Pe is the electron pressure, and υe is the momentum-
transfer collision frequency of an average electron with the 
ions. As usual, the latter effect is represented as a friction. 
The electron collision frequency can be either the classical 
coulomb collision frequency, or it can be anomalous because 
of the activity of microturbulence. The leftmost term in 
Equation (36) vanishes in the assumed steady state, and the 
inertial [Ve ⋅∇Ve] term generally can be neglected in com-
parison to the electron-pressure gradient when the electron 
macroscopic velocity Ve is small compared to the electron 

thermal velocity [ ] 212 ee mT . That inequality is well satis-

fied at the postulated temperatures. 
Accordingly, by neglecting the two leftmost terms, mul-

tiplying Equation (36) by me/qe, and using Equation (35), 
Equation (36) becomes 

 

 

1e e
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J J
E V B B  (37a) 

 
A more familiar form is 

 

 
1 1

i eP
nq nq

   
+ × = η + × − ∇   

   
E V B J J B  (37b) 

 
The left-hand side is the electric field in the moving frame 
(E is the electric field in the lab frame), and η is the funda-

mental resistivity of plasma, η = σ−1. The electrical conduc-

tivity of plasma is 2
e enq mσ = υ . The second term on the 

right, involving J × B, is the magnetic Hall term. Other terms 
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in Equation (37b) that go beyond the simple Ohm’s law are 
the motional electromotive force due to plasma rotation, 
which is part of the V × B term, and the thermal Hall term, 
which is the electron-pressure gradient term. The thermal 
force term arising from the specific nature of coulomb colli-
sions of charged particles (Ref. 9) is neglected here in the 
interest of simplicity. It can easily be included if so desired. 

In this section, we want to emphasize that the effective 
electrical conductivity is not necessarily the fundamental 
conductivity σ. Rather, the effective electrical conductivity 
generally depends on the Hall terms, on whether rotation 
occurs, and especially on the global electrical boundary 
conditions that are present (either in a simulation or an expe-
riment). Concomitantly, we shall illustrate that the nature of 
the plasma-field mixing layer and its spatial rate of broaden-
ing depends on the possibility of plasma rotation, on the 
presence of an electron pressure gradient, and on the global 
electrical boundary conditions. In order to demonstrate the 
role of the Hall effect in a simple manner, we first neglect 
rotation and electron pressure. They are reinserted later. 

2.3.1 No Plasma Rotation, No Electron Pressure 

It is apparent that  
 

 
c e

e

B

nq

ω σ = = Ω  υ 
 (38) 

 
wherein ωc e is the electron cyclotron frequency, and Ω is 
the conventional Hall parameter. Recall that Ω >> 1 in the 
plasma’s edge layer with magnetic field in the parameter 
regime of interest. Then multiplying Equation (37b) by the 

conductivity 2
e e e en q mσ = υ  is seen to be equivalent to 

 
 ( )BVEbJJ ×+σ=×Ω+ i

ˆ  (39) 

 

where b̂  is the unit vector along B. The Hall term is poten-
tially very important in the considered applications, since Ω 
is very large in the plasma-field mixing layer, on the order of 
400 for hydrogen propellant and 560 for helium propellant in 
Table I. Equation (39) is now solved for the current density 
to exhibit the effective electrical conductivity. 

The azimuthal component of Equation (39) is 
 

 BVJJ xx σ−=Ω−θ  (40) 

 
where it is noted that, in an axially symmetric steady state in 
the lab frame, the azimuthal electric field Eθ = 0. The condi-

tion on Eθ results from the integral form of Faraday’s law of 
induction, namely ∇×E = −∂tB. The component of Equa-

tion (39) normal to the flux surfaces (the x̂ -component) is 
 

 xx EJJ σ=+Ω θ  (41)  

 
It has been noted that rotation is precluded here. It also has 
been implicitly assumed that there is no azimuthal magnetic 
field. (The relevance of the azimuthal magnetic field to the 
considered magnetic nozzle configuration will be brought 
out later. See Appendix D.) 

Upon multiplication of Equation (41) by Ω and adding to 
Equation (40), one finds 

 

 ( )21
x xJ E V Bθ

σ = Ω − + Ω 
 (42)  

 
Now in the limit Ω << 1 (the electron gyrofrequency much 
smaller than the electron collision frequency), Equation (42) 
reduces to a form of Equation (13), the simple Ohm’s law: 

 
 BVJ xσ−=θ  (43) 

  
The remainder of this subsection shows how the simple 

Ohm’s law for azimuthal current conduction still can be 
valid in spite of the presence of a strong longitudinal mag-
netic field, Ω >> 1. Two extreme examples will be discussed 
to illustrate the importance of the Hall effect together with 
global boundary conditions. The first example is that the 
Hall current is absolutely not allowed to flow because of 
global electrical boundary conditions imposed upon the 
system. The second one is at the opposite extreme: namely, 
the Hall voltage is completely shorted out by another kind of 
those boundary conditions, and the Hall current then flows 
unimpeded. (Of course, there could be a number of interme-
diate possibilities, any one of which may be relevant to a 
particular experiment or simulation.) 

2.3.1.1 No Hall current allowed.—If absolutely no cur-
rent is allowed to flow across the flux surfaces (no quasi-
radial currents) because of insulating boundary conditions at 
the wall (and the backplate in the breech of the nozzle), then 
Jx = 0 and Equation (40) again yields the simple Ohm’s law, 
exactly in the form of Equation (43) above. This result is 
obtained in spite of a formally huge magnetic Hall term in 
Equation (39). On the other hand, motivated by the huge 
Hall parameter Ω, it is prudent to be mindful, both in  
experiment and numerical simulation, as to whether any 
quasi-radial Hall currents are inadvertently allowed to flow.  

Of course, the coaxial wall (which is the field coil set) has 
to be metallic so as to support and shape the magnetic nozzle 
field. However, that requirement need not conflict with the 
suppression of Hall currents because the conducting wall can 
be covered with a thin layer of insulating material. (Such a 
composite boundary condition then should be properly 
represented in numerical simulations.) Nevertheless, the 
presence of the insulating wall layer does not necessarily 
suppress the Hall current. A conducting plasma layer could 
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form along the wall in a real experiment and thus could 
support a closure path for the Hall current.  

In the present subcase it is instructive to examine the Hall 
electric field that corresponds to complete suppression of the 
Hall current. If no quasi-radial currents can flow, Equa-
tion (41) indicates that the associated space-charge field (the 
Hall field) is given by Hall ( )E Jθ= Ω σ . It is instructive to 

write this in reverse, utilizing Equation (38), as  
 

 Hall
Hall

nqE
J E

Bθ
σ = = Ω 

 (44) 

 
In the given circumstance of no Hall current, a Hall electric 
field builds up across the flux surfaces to just such a value 
that the azimuthal “E/B” (ratio of of electric to magnetic 
field strengths) drift velocity exactly satisfies the simple 
Ohm’s law. The effective electrical conductivity then is just 
the fundamental conductivity σ, which is the same as if there 
were no magnetic field. The Hall electric field is a space-
charge field associated with surface charges that are built up 
on insulating surfaces that stop the flow of the Hall current.  

The E/B drift velocity referred to above must be the azi-
muthal guiding-center drift velocity of the electrons.  
Although it is true that the ions have exactly the same E/B 
guiding-center drift velocity, such an ion drift is not effective 
in canceling the electron current for the following reason: it 
has been assumed here at the outset that the ion fluid has no 
macroscopic rotational velocity; hence, within the present 
model the ion fluid is incapable of providing an azimuthal 
current to cancel that of the electrons. The physics that 
makes this consistent is that there are other ion drifts besides 
the E/B guiding center drift. For example, there is the ∇B 
drift, and there is the diamagnetic drift resulting from a 
density gradient, which means that there is a lack of cancel-
lation of neighboring gyro-orbits. 

In order that the ion fluid not rotate, which was the 
present assumption, it must be the case that the azimuthal 
E/B guiding center drift velocity of the ions is canceled by 
other effects, such as ion ∇B drifts or ion magnetization 
currents. It does not really matter what the other effects are. 
All that matters is the assumption that such individual par-
ticle mechanisms add up to constitute an ion fluid that does 
not rotate. It will be seen later that the assumption of no ion-
fluid rotation is indeed consistent with the companion  
assumption that the Hall current cannot flow. 

2.3.1.2 Hall current allowed (voltage shorted out).—
Suppose the Hall electric field is completely shorted out 
(EHall = 0), and the Hall current (the quasi-radial current 
JHall) is perfectly free to flow. Note that plasma rotation is still 
assumed to be absent. The assumption of no macroscopic 
mass rotation is not generally consistent with the presence of 
Hall current in the axially symmetric configuration of the 
magnetic nozzle, but could be made consistent in a simula-
tion. Also, it could represent a physically realistic situation 

within a limited region upstream, before the new ion fluid 
has had a chance to be spun up by the JHall × B magnetic 
body force of the Hall current. 

A concrete example of shorting out the Hall electric field 
would be the use of a noninsulated metallic backplate in the 
breech of the nozzle. Conduction in the metallic backplate, 
for example a copper plate, is unaffected by the embedded 
magnetic nozzle field because of the very large collision 
frequencies (with phonons) of the metallic conduction elec-
trons, which, however, also have a very high density that 
produces a high conductivity. If high-conductivity longitu-
dinal electron currents (along the magnetic field lines) were 
to be allowed access to the backplate, then it would have the 
effect of setting all flux surfaces at practically the same 
potential, thus shorting out the radial space-charge field. 
Such a condition, which allows the radial Hall current to 
flow unimpeded, implies that either the uninsulated coaxial 
wall or an edge layer of conducting plasma is available at 
large radius to provide a longitudinal current return path to 
the backplate. If there were no such return path, then either 
net charge would be continually removed from the system or 
bipolar space-charge electric fields would continually build 
up, neither of which is tenable within the steady-state context. 

In the present subcase, in which the Hall electric field 
EHall is assumed to be completely shorted out, Equation (42) 
reduces to  

 

 
21 Ω+

σ
−=θ

BV
J x  (45) 

 
The Hall effect, in conjunction with the assumed boundary 
conditions and in the absence of plasma rotation, has reduced 
the effective electrical conductivity by a huge factor; 

( )2
eff 1 Ω+σ=σ . For the parameters of interest, this reduc-

tion factor is on the order of 105. 
The physical basis for this reduced conductivity, termed 

“magnetoresistance,” has an origin that is somewhat compli-
cated. In view of the present assumption that the ions have 
no fluid velocity in the azimuthal direction, the burden of 
carrying the azimuthal current falls on the electrons. Without 
the “EHall /B” drift velocity induced by the Hall field (as in 
the preceding subcase), an electron can only undergo a  
displacement at each collision by approximately a tiny gyro-
radius step across the magnetic field. This displacement is in 
the azimuthal direction, in response to the azimuthal applied 
electric field Eθ app = −VxB. It can be shown that the electron’s 

effective gyroradius must be small, on the order of Eθ app/Bωc e. 
This particular gyroradius is much smaller than the electron’s 
thermal gyroradius. Hence, the effective step size involved in 
the azimuthal electrical conductivity of electrons across the 
magnetic field is even smaller than the electron’s thermal 
gyroradius. In contrast, the null-magnetic-field conductivity is 
based upon a much larger step size; namely λe.  
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When the Hall voltage is shorted out, thereby precluding 
the EHall/B drift, it is the very small step size in the azimu-
thal direction at a collision of an electron that proves to be 
responsible for the decreased electrical conductivity. This 
phenomenon is termed “magnetoresistance.” The details of 
the three-dimensional scattering of the cycloidal electron 
orbits underlying magnetoresistance lie beyond the purview 
of this report. 

The minimal intermixing of plasma and magnetic field, 
found earlier for the case of classical resistivity, was based 
upon the applicability of the simple Ohm’s law. In the 
present context, that result requires that no Hall current be 
allowed to flow. However, if the Hall electric field were 
even partially shorted out, Hall current would flow, and a 
concomitant drastic reduction in effective electrical conduc-
tivity would ensue, thereby enhancing the plasma-field 
intermixing.  

Clearly, it is important for the elucidation of plasma-field 
intermixing in the magnetic nozzle to ascertain the boundary 
conditions and Hall-return-current paths in the envisioned 
magnetic nozzle device or experiment, as well as in numeri-
cal simulations of plasma flow through magnetic nozzles. 
Attention also should be directed to whether plasma rotation 
is allowed in the simulations. Also, computer simulations are 
vulnerable to subtle numerical effects that impact the com-
puted physics. It is conceivable that these might inadvertent-
ly allow such Hall currents to intrude. Thus, any observed 
deviation in the magnetic nozzle device or in its numerical 
simulation that allows even some Hall current may signify a 
partial shorting of the Hall voltage. The question should then 
be raised regarding the effective electrical conductivity that 
governs diffusive intermixing of plasma and magnetic field.  

It is instructive at this point to examine the Hall current 
with completely shorted Hall field. From Equations (41) and 
(42), with EHall = 0 (Hall field shorted out), and in the limit 
of large Ω, one finds with the help of Equation (38) that  
  
 Hall e xJ n qV=  (46) 

 
Note that the velocity V represents the massive plasma 
velocity, not the electron velocity. Thus, the Hall current is 
carried across flux surfaces by ions. Electrons remain rela-
tively attached to the flux surfaces in regard to their radial 
motion, in the limit of large Ω and concomitantly small 
electron collision frequency υe. Since the space-charge field 
is assumed to be globally shorted out, quasi-neutrality is not 
enforced in the conventional manner. Electrons vacate the 
local region at the same rate as the ions by flowing away 
along the longitudinal magnetic field. 

Note also that the above result for JHall can be written as 
follows: 

 

 
( )Hall 2en q

B
= × × B

J V B  (radial x-component) (47) 

This form of expression for the quasi-radial Hall current 
indicates that it is associated with a guiding-center drift 
velocity of the ions Eθ app/B in the applied electric field,  

Eθ app = V × B. A stationary magnetoplasma placed in an 
externally applied electric field would acquire a Hall current 
of this form when the Hall voltage is shorted out.  

Obviously, electrons connecting longitudinally along 
magnetic flux to a conducting backplate could serve to pro-
vide part of a current-return path for ions that connect trans-
versely across flux surfaces to the conducting coaxial wall or 
to a conducting low-density plasma layer along the wall. If 
such a partial current path were fully completed along the 
wall, the space-charge field (Hall field) that otherwise  
enforces quasi-neutrality in the radial direction would be 
shorted out. Instead, quasi-neutrality would then be main-
tained by having the electrons and the ions vacate a given 
position at the same rate; however, they would flow out in 
their different directions, longitudinal versus radial.  

With regard to such a closure path for the Hall current, in 
terms of classical (Spitzer) resistivity, the longitudinal elec-
trical conductivity in a plasma-wall layer would be rather 
insensitive to the density of plasma in that layer (Ref. 10). It 
is important to note that such a path-closure process with 
longitudinal electron flow is implicitly assumed in the above 
result for the ions as carriers of the radial Hall current. Oth-
erwise, powerful radial space-charge electric fields would 
cause electrons to move across flux surfaces with the ions to 
preserve quasi-neutrality. Examples of such powerful space-
charge fields are given in a later discussion in the beginning 
of Section 3.0, “Resistivity From Gradient-Driven  
Microinstabilities.” 

As already mentioned, a highly conducting backplate 
would practically set all flux surfaces at the same potential, 
thus shorting out the Hall electric field. But even if the con-
ducting backplate were rendered inaccessible to electrons by 
a coating of insulating material, an alternative Hall-current 
return path might become available, such as a layer of low-
temperature plasma next to the insulated backplate. A low-
temperature plasma-wall layer would raise the electron 
collision frequency up to near the electron cyclotron fre-
quency. A 50 eV in hydrogen plasma dropping to 1 or 2 eV 
in the plasma layer at the backplate would accomplish simi-
lar results. The possibility then arises of electron conduction 
currents flowing radially outwards across flux surfaces that 
are intersecting the backplate. Although the electrical con-
ductivity of such an electron-shorting path (~103 mho/m) 
would be quite small in comparison to metallic conductivity 
(~107 mho/m), it would still be many orders of magnitude 
larger than the conductivity of any insulator. Since the full 
effect on the conductivity with unimpeded Hall current is a 
huge effect, even an imperfect shorting path may make a 
meaningful difference. Moreover, ions within the plasma-
wall layer next to the backplate could also contribute to path 
closure by crossing the flux surfaces there, traveling radially 
inwards. 
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It is important to remark that having longitudinal Hall-
current closure along magnetic nozzle field lines necessitates 
allowing for azimuthal magnetic field components. Longitu-
dinal currents in axially symmetric configurations generate 
azimuthal magnetic fields according to the integral form of 
Ampere’s law: ∇×B = μ0J. In Appendix D the subject is 
briefly addressed, while also allowing for rotation of plasma. 
It is shown there that the consequent azimuthal magnetic 
field component Bθ has the order-of-magnitude βiB, where βi 
is the ratio of ion thermal pressure to magnetic pressure of 
the nozzle magnetic field, B. 

A complete model of propellant flow in a nozzle magnetic 
field, which embodies longitudinal currents and azimuthal 
magnetic fields as well as plasma rotation and electron pres-
sure, is very complicated. It would be accessible to simula-
tions that include Hall effects and that carefully treat global 
boundary conditions. The model is not extended in such a 
manner here, although some discussion of the extended 
model is offered in Appendixes D and E. However, a partial 
extension of the present model that is tractable and instruc-
tive is introduced in Section 2.3.2.2, “Hall current allowed 
(voltage shorted out).” 

Thus, we shall complete this section on the Hall effect by 
including electron pressure and plasma rotation in the exten-
sion of Ohm’s law. In the axially symmetric configuration, it 
will be seen that Hall current and plasma rotation must occur 
together. The partially extended model presented below, 
however, does preclude an azimuthal magnetic field, Bθ. 
Nevertheless, it is found that allowing for the possibility of 
plasma rotation proves to have a profound effect upon the 
nature of the plasma-field mixing layer, when the Hall elec-
tric field is shorted out. 

2.3.2 Plasma Rotation and Electron Pressure 

In the above discussion, the azimuthal component of the 
plasma fluid momentum equation has been ignored. This 
restriction would apply to a simulation that had provision 
only for radial and axial components of propellant velocity. 
To be consistent, as shown below, such a code also should 
have hard-wired into it the condition that the Hall current 
automatically be forbidden. In the above discussion,  
however, rotation was automatically excluded but the Hall 
current was not automatically excluded. In a real magnetic 
nozzle experiment or device, the occurrence of propellant 
rotation and Hall current would be coupled.  

These remarks are illustrated by the azimuthal component 
of the plasma momentum equation for the case of an axially 
symmetric steady-state configuration.  

 

 ( ) ( )θθ ×=∇⋅ρ BJVV  (48) 
 

Upon working out the details, one finds 
 

( ) ( ) ( ) ( )//
Halll

V
r l V r l V J B

r l r lθ θ
   ρρ    ⋅∇ = ∂ = −      
      

V  (49) 

Here Vθ is the rotational velocity of plasma, V// is the  
velocity of plasma along the field line, l measures length 
along a field line, and the x-direction (normal to the flux 
surfaces) pertains to JHall. The magnetic field component Bθ 
has been ignored.  

It is important to note that the radius variable r(l) is a 
function of l that characterizes the geometry of the magnetic 
nozzle field. Thus r(l) constitutes the distance from the axis 
of symmetry to a considered point a distance l along a given 
field line, as measured from the breech. Strictly speaking, the 
spatial derivative in Equation (49) is along the r,Z-projection 
of a propellant streamline, since the θ-coordinate is in the 
ignorable direction. In principle, the shape of the field line 
r(l) will be somewhat distorted from its vacuum-field shape 
by the plasma propellant and must be determined self-
consistently with the propellant flow, as is done in MHD 
simulations such as MACH2. However, the Hall effects were 
excluded from the MACH2 simulation in Reference 2.  

It is important to remark that if the Hall current density 
JHall is everywhere forbidden by external boundary condi-
tions, then Equation (49) implies that there can be no rota-
tion of plasma, provided that injected plasma is inserted with 
axial symmetry into the breech and has no net injected  
macroscopic rotation at any radius. Conversely, if it is 
known that there is no macroscopic rotation anywhere, then 
Equation (49) implies that there also can be no Hall current. 
Simulations that are without access to the azimuthal momen-
tum equation of the propellant then lose that means of  
enforcing consistency between the presence of the Hall 
current and the presence of rotation.  

It is also important to note that even in the event of Hall 
currents and concomitant rotation of plasma, the rotational 
kinetic energy can be recovered downstream for conversion 
into axially directed thrust. This conversion can be effected 
in the diverging region of the nozzle where presumably  
JHall approaches 0. Reduction of temperature downstream  
increases υe relative to ωc e ,  making Hall effects less impor-
tant downstream. From Equation (49) above, the rotational 

velocity then vanishes as [r(l)]−1. The conversion of rota-
tional kinetic energy into longitudinal kinetic energy is a 
consequence of conservation of total energy. This feature 
can be demonstrated for axially symmetric steady flow by 
means of the generalized Bernoulli equation including rota-
tion, which describes energy balance along the streamline 
projections in the meridian plane. 

We now invoke Ohm’s law including rotation and elec-
tron pressure. Define an effective electric field Eeff such that 

 

 eff
1

eP
nq

 
= + × + ∇ 

 
E E V B  (50) 

 
Here, E is the electric field in the lab frame. Multiplying 

Equation (37b) by σ and combining with Equation (38), the 
result is  
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 eff
ˆ EbJJ σ=×Ω+  (51) 

 
The azimuthal and Hall components of Equation (51) are, 

respectively, 
 

 θθ σ=Ω− effHall EJJ  (52a) 

and 
 xEJJ effHall σ=+Ω θ  (52b) 

 
Now Eθ = 0 in an axially symmetric steady state in the lab 
frame, and there is likewise no azimuthal pressure gradient 
∇θPe = 0. Therefore, from Equation (50), 

 
 eff θ xE V B= −  (53a) 

Also, 
 

 eff Hall
1

x x eE E V B P
nqθ

 
= + + ∂ 

 
 (53b) 

 
2.3.2.1 No Hall current allowed.—In this case, JHall = 0, 

so that Equations (52a) and (53a) produce Jθ = − σVxB, 
which is again the simple form of Ohm’s law. Thus, the 
results obtained earlier for the plasma-field mixing layer width 
are again realized even when plasma rotation and electron 
pressure are not precluded from the model, as long as the  
Hall current is strictly forbidden by the global electrical boun-
dary conditions. Moreover, when the Hall current is forbid-
den, so is plasma rotation, as discussed above. 

Electron pressure plays a new role, though, as can be seen 
from Equations (52b) and (53b), which now yield, with the 
help of Equation (38) 

   

 Hall 1
x e

E
J nq P

B Bθ
   = + ∂   

  
 (54) 

 
In this case, the electron-fluid pressure-gradient term 

ex PB ∂−1  contributes to the azimuthal current density as 

well as the E/B drift. The second term of Equation (54) is 
partially caused by a lack of cancellation of azimuthal  
current elements from neighboring electron gyro-orbits, due 
to the spatial gradient of electron density in the x-direction 
(normal to flux surfaces). From the manner in which the 
fluid equations are derived from more detailed kinetic mod-
els, the electron pressure gradient in the fluid model also 
automatically incorporates other individual-particle contribu-
tions, namely, guiding center drifts. For brevity, the 

ex PB ∂−1  term is henceforth referred to as “magnetization 

current.” 
Although the E/B guiding-center drift velocity of the ions 

equals that of the electrons, seemingly canceling that  

contribution to the electron current, it is also true—in this 
subcase—that there is no net rotation of the ion fluid. The 
“ion-fluid momentum” is the same as the “plasma-fluid 
momentum.” The ion fluid cannot produce any macroscopic 
contribution to azimuthal current in the absence of  
propellant-fluid rotation, as pointed out earlier. Thus, on the 
basis of the azimuthal momentum equation of the plasma 
when the Hall current is forbidden, the E/B drift velocity of 
the ions must be canceled by other individual-particle ion 
effects, such as other guiding-center drifts and magnetization 
currents. Therefore, the E/B drift velocity in Equation (54) 
must refer to the guiding-center drift velocity of the electrons 
only, it being understood that there is no net rotational con-
tribution from the ions when JHall = 0.  

2.3.2.2 Hall current allowed (voltage shorted out).—In 
the extreme case in which EHall = 0, concomitant with the 
existence of current-return paths sufficient to provide a 
complete circuit for the Hall current, the solution for the 
azimuthal current density Jθ from Equations (52a) and (52b) 
reads as follows: Using Equations (53a) and (53b), one finds 

 

 
( )2

1

1
x x eJ V B V B P

nqθ θ
   σ  = − + Ω + ∂   

   + Ω   
   (55) 

 
In the limit of large Ω, with help of Equation (38), this  
expression reduces to 

 

 
1x

x e
nqV

J nqV P
Bθ θ

   = − + + ∂   Ω   
 (56) 

 
It will be seen shortly that over most of the length of the 
nozzle, Vθ >> Vx in the plasma-field mixing layer between 
plasma and magnetic field. Moreover, Ω >> 1 there. Hence 
the azimuthal current carried by the plasma in the plasma-
field mixing layer essentially contains two principal contri-
butions, one from the ion-fluid rotation, and the other from 
the electron magnetization current. 

Next, we calculate the Hall current density for large Ω, 
from Equations (52b), (53b), and (56): 

 
Hall eff = 

1

x

x x e x e

x

J J E

nqV nqV P V B P
B nq

nqV

θ

θ θ

− Ω + σ

  Ω = − Ω − ∂ + σ + ∂   
     

=
 (57) 

 
The last step is obtained by invoking Equation (38). Thus, in 
the approximation Ω2 >> 1, it would appear that ions still 
carry the Hall current across flux surfaces, when rotation and 
electron pressure are included in the model. However, this 
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result is misleading because Equation (56) is not completely 
accurate, being only the leading approximation (for small 

Ω−1). The leading approximation to Jθ, in terms of Ω−1, is 

prone to error if Jθ is multiplied by large Ω, as in the above 
equation for JHall. The exact answer, using the exact Equa-
tion (55) instead of Equation (56), and again invoking Equa-
tions (38) and (53b), proves to be  

 
2

Hall 2 2

1

1 1
x x eJ nqV nqV P

Bθ
    Ω Ω   = + + ∂       + Ω + Ω    

 (58) 

 
Now finally taking the limit of large Ω, this reduces to 

 

 Hall 2

1 1 1
1 x x eJ nqV nqV P

Bθ
      = − + + ∂      Ω   Ω   

 (59)  

 
Thus, the quasi-radial Hall current is only partly carried 
directly by ions across flux surfaces. Because of subtle mag-
netic effects, it also contains contributions from the ion-fluid 
rotation and from the azimuthal electron magnetization 
current. This is true only in regions that the plasma has been 
able to reach. The final results will indicate that Vθ/Ω is 
indeed of the same order of magnitude as Vx. 

It will be seen that the ions do not travel very far radially 
from the core plasma during times of interest. Although the 
Hall current circuit could be completed near the core's edge, 
the presence of an inadvertent halo of low-density plasma 
could as well facilitate a more distant closure of the Hall 
path. Nevertheless, the inadvertent presence of a pervasive 
low-density halo plasma might allow longitudinal comple-
tion of the Hall current circuit out near the wall, and across a 
conducting backplate. 

Now safely invoking Equation (56) within this higher order 

calculation in Ω−1, Equation (59) becomes, in leading order, 
 

 Hall x
J

J nqV θ= +
Ω

 (60) 

 
This result also is in direct agreement with Equation (52a), 
whose meaning is now clarified. 

With the help of Equations (56) for Jθ and (60) for JHall, 
both transverse components of the plasma momentum equa-
tion can be utilized to find Vθ and Vx. An inversion in the 
procedure proves convenient relative to the simple case of a 
resistive plasma-field mixing layer. Now the quasi-radial 
momentum equation determines the rotational velocity, 
whereas the azimuthal momentum equation determines the 
quasi-radial velocity. These results are then used to examine 
the evolution of the plasma-field interface layer thickness.
  

The qualitative conclusion follows. If the Hall voltage is 
shorted to allow Hall current in the presence of self-
consistent rotation and electron pressure, the plasma-field 
mixing layer thickness between propellant and magnetic 
field becomes very different from that obtained using the 
simple resistive Ohm’s law.  

To carry out this calculation, we first utilize the plasma 
momentum equation in the direction normal to the flux 
surfaces, the x-direction (as usual, it is assumed that the 
transverse pressure gradient dominates the transverse inertial 
effects). This equation reads 
 
 totx x eP J B nqV B Pθ θ∂ = ≈ + ∂  (61) 

 
In the second part of Equation (61), we made use of Equa-
tion (56), wherein the small Vx/Ω term was neglected in 

comparison to Vθ. Since the total plasma pressure is Ptot = Pi 
+ Pe, the second part of Equation (61) is equivalent to 

 

 
1

x iP nqV
B θ

 ∂ ≈ 
 

 (62) 

 
Therefore, the macroscopic ion-fluid rotation is actually 

seen to be effected by the ion magnetization current, to 

leading order in Ω−1.  
Next, Equations (61) and (62) are input to Equation (49), 

the azimuthal component of the plasma momentum equation. 
This is done as follows: Integrate Equation (49) along a 
given representative field line, from the breech region over 
an indefinite length L, which is a significant fraction of the 
length of the nozzle. The present model is valid while Hall 
effects are dominant, which means that the temperature is yet 
large enough that ωc e > υe. The result is 

 

 ( ) Hall

0 //
d

L

L
rJ B

rV l
Vθ

 
= −  ρ   (63) 

 
Quantitative numerical results would require carrying out the 
indicated integration along a selection of representative field 
lines near and in the plasma-field mixing layer, with their 
self-consistent field-line shapes characterized via the func-
tion r(l). Instead, we make the following approximation, in 
the spirit of obtaining an order-of-magnitude scaling result 
for the plasma-field mixing layer width: The integral is 
approximated as the average value of the integrand, say, near 
the throat, multiplied by the distance L. Then, suppressing 
moderate numerical distinctions between the values of quan-
tities at l = L and their representative average values, we 
multiply Equation (63) by the quasi-neutral ion number 
density multiplied by charge, niq, to obtain  
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 Hall
//

i
nqB

n qV L J
Vθ

  
≈ −   ρ   

 (64)  

 
Here, for example, the numerical ratio of the average  
value of r along a field line to r(L) has been suppressed.  

Note that the composite ratio in qB ρ  is just the ion  

cyclotron frequency ωc i = iqB m . Accordingly, we define a 

large parameter Λ >> 1 by 
 

 
//

ciL

V

ω
Λ ≡  (65) 

 
Now V// is closely coupled by the Bernoulli equation to 

( ) 1 2
i e iT T m + γ , the speed of sound, which also is near 

the ion thermal velocity. It follows that the parameter Λ has 
the order of magnitude of the ratio of nozzle length to ion 
gyroradius. To within a trivial numerical factor,  

 

 
ia

L≈Λ  (66)  

 
Therefore, Equation (64) is rewritten, using Equations (60) 
and (65), as 

 

 Hall x
J

nqV J nqV θ
θ

 ≈ −Λ = −Λ + Ω 
 (67) 

 
Here, it is important to note, in view of Equation (62), that 
the Hall current JHall exists in virtue of the ion pressure 
gradient, which creates the ion-fluid rotation. This is pro-
vided that the Hall electric field EHall is shorted out. Recall 
that Ω = ωc e/υe, where ωc e is the electron gyrofrequency, and 
υe is the collision frequency of an average electron with ions. 

The quasi-radial velocity Vx is solved as follows: Combin-
ing the left-hand side of Equation (67) with Equation (62), 
and substituting Equation (61) for Jθ on the right-hand side, 
the resulting equation for Vx can be written as 

 

 tot
1 1

x x i xnqV P P
B B

    ≈ − ∂ + ∂    Λ Ω    
 (68) 

 
In the parameter regime of interest, Λ and Ω are large and of 
the same order, and the two pressure gradients also are of the 
same order of magnitude. It is implicitly assumed that elec-
trons and ions enter the breech with practically the same 
temperature, and also the same density profiles because of 
the quasi-neutrality condition. Therefore, this equation  
essentially constitutes a verification that Vx is indeed very 

small compared with Vθ. (See Eq. (62).) Now referring back 
to Equation (67), note that all terms therein are of the same 
order of magnitude when Λ is multiplied through on the 
right-hand side.  

Although not actually necessary, the following discussion 
is simplified by setting the electron pressure approximately 
equal to the ion pressure, within the plasma and within the 
plasma-field mixing layer: Pe ≈ Pi. Then Equation (68) reads  
 

 







∂























Ω
Λ+

Λ
−≈ ixx P

B
neV

12
1

1
 (69) 

 
It is understood that Equation (69) is not necessarily an 
accurate quantitative statement, but rather represents a  
qualitative scaling result. In that sense, all quantities therein 
are meant to be representative average values when follow-
ing the flow of a piece of propellant along a given magnetic 
field line.  

Equation (69) can be utilized to estimate the plasma-field 
mixing layer width δ at the plasma-field interface. The basic 
modeling approximation, which also was employed earlier in 
the case of resistive diffusion, is to associate Vx with dδ/dt, 
the rate of increase of the plasma-field mixing layer width as 
the longitudinal flow is followed downstream: 

 

 
t

Vx d

dδ≈  (70) 

 
The other part of the basic idea, also employed earlier, is to 
represent the ion pressure gradient within the plasma-field 
mixing layer by its value within the core plasma divided by 
the width of the plasma-field mixing layer: 

 

 
δ

−≈∂ i
ix

P
P  (71) 

 
Then, Equation (69) can be expressed as follows, where Ti 

refers to the ion temperature and where 2
th 2i i iV T m=  is the 

square of the ion thermal velocity:  
 

( )2 2
th

d 2 1 1
1 2 1 2

d 2
ii

c i

VnT

t nqB

 δ    Λ Λ     = + = +        Λ Ω Λ Ω ω        
 (72) 

 

It can be shown that the right-most factor iciV ω2
th  is  

insensitive to position along the nozzle. 
One now integrates Equation (72) over time, while 

following the propellant downstream, assuming that the 
initial plasma-field mixing layer width of attached plasma in 
the breech is negligibly small. On the right-hand side, one 
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simply takes average or representative values during transit 
of the length of the nozzle from breech to throat Lb t and then 
finds 
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 (73) 

 
A rigorous approach requires integration over Lb t: 

tbLVt dddd //= , noting that Λ depends on //VL tb  and 

that //V  cancels in Equation (72). When Λ < Ω, iaδ   

increases slowly with L, as ( ) ( )[ ] 212ln ibbtb aLL δ+ , 

where Lb is a small starting length in the breech, and δb is an 
initial layer thickness derived later as δb ≈ 2ai.  

For the transit time t, we invoke //VLt tbtb = , where 

//V  is a flow velocity in transit, and also note Equation (65) 

for Λ. Then Equation (73) becomes simply 
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It is therefore seen from Equation (74) that when Λ < Ω, the 
plasma-field mixing layer width is on the order of just a few 
ion gyroradii. This is a very favorable result in the sense that 
the width of the plasma-field mixing layer appears to be inde-
pendent of the electron collision frequency, if the condition  
Λ < Ω is satisfied. On the other hand, when the opposite con-
dition is satisfied, namely when Λ >> Ω, then a fundamental 
change occurs in the scaling of the boundary-layer width.  

To examine this second possibility, note that 2(Λ/Ω) has 
the following order of magnitude: 
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where λe is recalled as the mean free path of electrons due to 
collisions (possibly anomalous) with ions. Also, me/mi is the 
electron-to-ion mass ratio. Thus, from Equation (74), if there 

are fewer electron mean free paths along Lb t than ei mm , 

then the boundary-layer width at the plasma edge is just one 
ion gyroradius. However, if the characteristic length of the 
nozzle is substantially greater than that relative to λe, then 
from Equation (74) with Λ >> Ω, 
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It is satisfying to note that Equation (76) exactly reproduces 
Equation (28) for the case of simple resistive diffusion of 
plasma into field, without Hall current and without plasma 
rotation. It also is of interest to record the following equiva-
lent form of Equation (76), representing the case of simple 
resistive diffusion: 

 

 Ω
≈δ tbi La22  (77) 

 

which is to be compared with δ2 ≈ 2
ia  when the nozzle’s 

length is subcritical. Here, Ω = ωc e/υe, where ωc e = qB/me 
is the electron gyrofrequency, and υe is the electron collision 
frequency. 

To summarize, in a model that incorporates rotation, elec-
tron pressure, and Hall current unimpeded by a Hall voltage, 
we found a transition in the behavior of the boundary-layer 
width from the ion gyroradius to the width associated with 
simple resistive diffusion. The transition is realized provided 
that the nozzle is long enough. The critical length Lcrit is on 

the order of λe ei mm . In the case of classical resistivity, it 

can be shown that this quantity is essentially the same as λi

ei mm , which relates to λi, the mean free path for ion-ion 

coulomb collisions. The physical reason is that the plasma 
has spun up enough along its length in the edge layer so that 
the rotational velocity in the edge layer represents a motional 
electric field in the rotating frame, which is strong enough to 
suppress the outward quasi-radial flow of Hall current (sim-
ple resistive Ohm’s law). To see this, note that the outward 
flow of Hall current produces a JHall×B force (for a magnetic 
field that points downstream), which is counterclockwise 
(looking downstream). Therefore, the Vrot×B component of 
the electric field in the rotating frame produces a quasi-radial 
component of the electric field that points inward, towards 
the plasma. If Vrot is large enough, this effect can suppress 
Hall current. 

2.3.3 Diffusion of Field Into Plasma With Hall Effect 

This section on the basic physics shall conclude with an 
account of external magnetic field diffusion into the interior 
plasma, when unimpeded Hall current and consequent  
plasma rotation are present, in a straight cylindrical geome-
try model of the core propellant. This complements the 
preceding treatment of protrusion of plasma into magnetic 
field, with Hall effect, as discussed in Section 2.3.2.2, “Hall 
current allowed (voltage shorted out).” Also, this treatment 
will thus generalize the earlier one that dealt with a planar 
interface, in Section 2.2.3, “Diffusion of Confining Magnetic 
Field.” Such a magnetic-field diffusion process into the core 
plasma occurs at the same time as that of diffusion of the 
plasma into the external magnetic field. When the Hall cur-
rent is totally suppressed by boundary conditions, the simple 
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Ohm’s law governs plasma-field intermixing, and both types 
of resistive diffusion act simultaneously to broaden the 
plasma-field mixing layer.  

With Hall current (and rotation) present, a more complex 
version of Ohm’s law is in force, together with the presence 
of an azimuthal magnetic field. This azimuthal field sur-
rounds the longitudinal return current that replenishes the 
quasi-radial Hall current in a steady state. Under such cir-
cumstances, the diffusion of the nozzle magnetic field into 
plasma then becomes rather involved. Nevertheless, it is 
possible to develop a model of this process—diffusion of 
field into plasma—to the point that some of the principal 
features can be identified. In so doing, we shall assume axial 
symmetry and a steady state. Appendix D shows that the 
azimuthal field should be relatively small compared with the 
other components of the field. 

The development begins with Faraday’s law of induction 
in the lab frame:  

  

 BE t−∂=×∇  (78) 
 
According to the complete Ohm’s law, this can be written as 
 

1 1
0e tP

nq nq

      
∇× η + × − ∇× × + ∇ = −∂ =      

         
J J B V B B  

  (79) 
 

The right-hand side is zero in a steady state in the lab frame 
of reference.  

For the J × B term in Equation (79), we use the momen-
tum equation of the plasma. It is assumed that the electron 
and ion temperatures are uniform. Then, the plasma pressure 
gradient from the momentum equation is parallel to the 
plasma density gradient, so that the pressure gradient term 
does not survive the curl operator. Hence, only the inertial 
term appears from the momentum equation in connection 
with the J × B term. Similarly, the electron pressure gradient 
is parallel to the plasma density gradient. Then the electron 
pressure gradient term disappears from Equation (79).  

We shall consider here only the case of classical Spitzer 
resistivity, which is insensitive to the electron number den-
sity and depends essentially only on the electron tempera-
ture, assumed uniform. Whether the final conclusions still 
would be valid for any anomalous (microturbulent)  
resistivity ηa is an open question. In the case of resistivity 
arising from the LHD instability, an approximate scaling 
argument will be made later. The result is that after allowing 
for adiabatic longitudinal flow and for radial pressure  
balance in the plasma-field interface layer, ηa is seen to 

depend only very weakly on density alone, as n−1/6. This 
circumstance suggests that the arguments to be given here 
for classical resistivity would still hold for the LHD  
resistivity. This suggestion cannot be considered a rigorous 
conclusion, however, because ηa actually proves to be  

profile dependent through factors B/n and (ai/xn)2, where ai 
is the local thermal ion gyroradius and xn is the radial gra-
dient length at the plasma-field interface.  

Returning to the case of classical resistivity, the uniformity 
of electrical conductivity follows from the assumption of 
uniform electron temperature. Then, it is expeditious to mul-
tiply Equation (79) by σμ0 = 1/D, where D is the resistive 
diffusivity. Also note the identity σ/nq = Ω/B, where Ω is the 
Hall parameter ce eΩ = ω υ , and B therein is the magnitude 

of the magnetic field (neglecting the azimuthal field compo-
nent). Note that the electron gyrofrequency ωc e ∝ B, whereas 

the electron plasma frequency ωp e ∝ n . Also, note that the 

electron collision frequency is υe ∝ 23
eTn . 

We also invoke a vector identity for the ∇×(V×B) term 
and recall that ∇ ⋅ B = 0. Then, upon multiplying through by 
σμ0, Equation (79) reads  

 

 

( ) 0
1

00

=∇⋅−∇⋅+⋅∇−−









∇⋅ρμ






Ω+μ×∇

BVVBVB

VVJ

D

B  (80) 

 
We shall preclude radial velocity from the plasma model, 

so that Vr = 0. The inward-radial velocity associated with 
resistive dissipation (by the longitudinal return current) of 
magnetic energy in the azimuthal magnetic field is estimated 
in Appendix E, and is found to be very small. Then, a diver-
genceless flow condition is satisfied by uniform axially 
directed flow of plasma, Vz, that is assumed to be constant in 
time. Thus, for the purpose of examining penetration of 
magnetic fields into the plasma core, the plasma core is here 
modeled as a straight cylinder moving rigidly downstream 
with a constant axial velocity. The possibility of rotation is 
allowed, however, so the inertial term does not vanish, even 
if the density is uniform.  

In this situation, the plasma density still is allowed to have 
a radial gradient, which it must in any case at the boundary 
of the core plasma. The plasma continuity equation in a 
steady state reads ∇ ⋅ (ρV) = 0 = ρ∇⋅+⋅∇ρ VV . Because of 

the assumption about the plasma velocity, and the uniformity 
of the plasma density along the axial direction, each of the 
two terms on the right-hand side of the continuity equation 
vanishes, yet the plasma mass density ρ can have a non-
uniform radial profile. 

It is important to note that in this case of uniform tempera-
ture and classical resistivity, the combination (Ω/B)ρ  
depends only on the electron temperature and hence is uni-

form; that is, ce eΩ = ω υ  and υe ~ 23
eTn . This feature is 

used in carrying out the details in Equation (80). 
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In the term ( )BVVBVB ∇⋅−∇⋅+⋅∇−  of Equation (80), 

those terms that contain both Bθ and Vθ cancel one another 
because the configuration is axially symmetric. It therefore is 
expedient to define projections of the velocity and magnetic 
field vectors in the r,Z-plane. Thus, the projection of the 
flow velocity vector is Vproj ≡ (V⋅Z) ẑ  = (0, 0, VZ).  

One might believe that we could also assume that Br = 0; 
that is, that there should be no radial magnetic field compo-
nent in a straight cylindrical configuration. However, this is 
not the case. In the lab frame, one has a steady-state  
boundary-value situation, in which the nozzle magnetic field 
generally obeys restrictions in or near the breech region of 
the nozzle. For example, if the backplate is highly conduct-
ing, then the nozzle field lines are frozen into the backplate.  
 
 

This constraint implies that when the BZ-component tries to 
diffuse into the resistive core plasma, the nozzle field lines 
must be stretched inwards and thereby necessarily must 
produce a Br-component. This would happen even if the 
backplate were not a conductor, for the nozzle field lines 
also are somewhat constrained by the very conductive rings 
that generate the nozzle field itself. The mathematical rela-
tion between axial and radial components of magnetic field 

follows from ∇ ⋅ B = 0. It reads zzrr BrBr −∂=∂− )(1 .  

Therefore, we must retain Br in principle, and the  
magnetic field projection vector then becomes Bproj = (Br, 0, 

BZ). Then the term ( )BVVBVB ∇⋅−∇⋅+⋅∇−  of Equa-

tion (80) becomes 
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r θ Z

 (81) 

 
 

Here, the obvious unit vectors for the cylindrical coordinate 

system have been introduced. The relation ∂θ r̂  = θ̂  was 
used. Also, it is worth noting that the operator ZZV ∂  would 

play the role of a time derivative in the moving frame.  
The next calculation is to write out the fluid-inertial term 

in Equation (80). The occurrence of the inertial term is a 
direct consequence of the Hall term in Ohm’s law. In eva-
luating the inertial term, the following vector identity is 
used:    

   

 VVVV ×∇×+∇⋅=













∇

2

2V
 (82) 

 
The gradient term on the left-hand side does not survive the 
curl operator in Equation (80), when the other factors within 
that term are uniform. Therefore, effectively, 
  
 ϖ×−=∇⋅ VVV  (83) 

 
 

where ϖ = ∇ × V is the vorticity. Operating on the inertial 
term with the curl in Equation (80), recalling that (Ω/B)ρ is 
uniform and using Equation (83), yields 

 

( ) ( )

Z Z
V

V
r
θ

θ θ

∇ × ⋅∇ = − ∇ ⋅ − ∇ ⋅ + ⋅∇ − ⋅∇
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V
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  (84) 
 

Now, the cylindrical components of vorticity (ϖr, ϖθ, ϖZ) 

are as follows, when noting V = (0, Vθ, VZ), with uniform VZ:  
 

( )

1
, , ( )

1
, 0, ( ) , ,

Z r Z r

Z r r Z

V V rV
r

V rV
r

θ θ

θ θ θ

  = −∂ − ∂ ∂  
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  

ϖ
 (85)  

 

Using this expression for the vorticity in the previous equa-
tion and working out the details, one finds 
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( ) ( )
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This result is entirely analogous to Equation (81), except that 
before in Equation (81), Bθ ≠ 0, whereas now in Equations 

(85) and (86), ϖθ = 0. 
Finally, we display the first term of Equation (80), using 

μ0J = ∇×B. Assuming the usual axial symmetry, and in 
terms of cylindrical coordinates, one finds 
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  (87c) 
 
Equations (81), (86), and (87) are used in Equation (80). To 
simplify the presentation, long-thin ordering for the nozzle-
magnetic field geometry is invoked, namely 

 
 Br << BZ (88a) 
 
 ∂Z << ∂r  (88b)
  

 

~r r

Z Z

B

B

δ
δ

  (88c) 

 
Here, δr << δZ and symbolize gradient scale lengths in the  
r- and Z-directions, respectively, for the special dependence 
of the magnetic field. The third of these conditions is  
required by the restriction that the magnetic field have no 
divergence. Using Equations (81), (86), and (87), the follow-
ing three component equations are then obtained from  
Equation (80): 
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 (89c) 

 
These equations, which describe penetration of fields into 
core plasma, are evidently very complicated. For example, 
the azimuthal component equation for Bθ depends on both Br 
and BZ as obtained from the other two component equations. 
Moreover, all three component equations depend on the 
rotational velocity Vθ, as calculated from a simultaneous 
solution of plasma penetrating into field (why computer 
simulations such as MACH2, extended to include Hall cur-
rent and rotation, are needed). Nevertheless, it proves possi-
ble to obtain some information regarding penetration of 
fields into core plasma, including cylindrical geometry, Hall 
current, return current, and plasma rotation.  

The first thing that can be done is to find out what this set 
of equations reduces to when the Hall current is absent. In 
that case, there is no longitudinal return current; hence 
Bθ = 0. Moreover, without Hall current, there is no mechan-
ism to drive up the fluid rotational velocity of the plasma; 
hence Vθ = 0. Then the vorticity also vanishes; thus ϖ = 0 
(see Eq. (85)). Under these restrictions, the above three 
equations reduce to the following: 
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0 0=  (90b)  
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V
r B B

r D
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 (90c) 

 
Clearly, these reduced equations for steady-state disposition 
of the r- and Z-components of magnetic field exhibit the 
character of resistive diffusion of the magnetic field, which 
was the subject of a previous section based upon the simple  
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Ohm’s law. When the boundary-layer width is small com-
pared to the radius of core plasma, the relative variation of 
the r-coordinate within the plasma-field mixing layer can be 
neglected, and the equations reduce to a description of diffu-
sion in planar geometry. The only essential difference from 
the previous section just referred to is that now Equation (90) 
with respect to the lab frame, is not the moving frame. Thus, 
the operator ZZV ∂  plays the role of a time derivative in a 

frame of reference moving with plasma propellant.  
In the lab frame of reference, with ancillary boundary 

conditions in force at the breech of the nozzle, inward diffu-
sion of the BZ component can occur only with the simultane-
ous appearance and inward diffusion of a Br component. 
This must be so whether or not the Hall effect is present. The 
fundamental requirement that the magnetic field be diver-
gence free, ∇⋅ B = 0, forces the appearance of Br with a non-
uniform radial profile. This must happen whenever the term 

Z Z ZV B∂  is significant. Moreover, although the present 

discussion has been cast in terms of a straight cylindrical 
plasma core, its conclusions, with allowance for obvious 
geometric modifications, have meaning as well for a  
converging-diverging nozzle-shaped geometry.  

In Appendix C, a similarity solution is derived for BZ in 
Equation (90) above, assuming a thin plasma-field mixing 
layer. The solution reads 

 

 pe 1 erf
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Z
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B B
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  
  = −

    
 (91) 

 
where Bpe is the assumed-uniform value of BZ at the plasma 
edge, X is the inward radial distance from the plasma edge, 
and uτ = ZD/VZ is a time-like similarity variable. In a more 
realistic scenario, the edge field would be nonuniform along 
Z, since the starting flux between the plasma and the wall 
would be preserved because that flux spread out downstream 
during the inward diffusion of the magnetic field. However, 
such a scenario is not accessible to a similarity solution. We 
ask for the value of X where the field is reduced to, say, one- 
third of its edge value. For the value of τ, a characteristic 
length Z = 1 m, D = 3 m2/s, and Vz = 105 m/s are input, in 
accordance with Table I for parameters of hydrogen propel-
lant. The value of X is then chosen so that the value of the 
error function is 2/3. The result is that the characteristic 
length of protrusion of magnetic field into the plasma—
considered as a simple resistive medium—is X = 0.65 cm, in 
excellent agreement with the earlier calculation based upon a 
different approach.  

We return now to the opposite case, where the Hall cur-
rent, its return current, and plasma rotation are present. A 
complete discussion is beyond the purview of this report. It 
is sufficient here to just focus upon Equation (89c), which 

describes the steady-state disposition of the longitudinal 
magnetic field relative to core plasma. For convenience, that 
equation is reproduced here: 
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 (89c) 

   
Let us compare the first term with the second term, the Hall 
term. Equation (62) is used in connection with the vorticity 
ϖz. That equation states that the ion rotational current  
density is given by the ion magnetization current density; 

that is, 1
r inqV B P−

θ ≈ ∂ . It is not significantly material 

whether B is regarded as BZ or as the total magnetic field 

including Bθ. Then one can easily estimate, to order of mag-
nitude, the ratio of the second term of Equation (89c) to the 

first term. The ratio proves to be βi(λe/Lϖ) ei mm . Here, 

th~Z Z iV V L
ϖ

∂ , where Vth i is a representative ion thermal 

velocity and Lϖ is a characteristic axial length  
related to the development of vorticity in the plasma-field 
mixing layer. For βi on the order of 1, when the quantity 

Lϖ/λe ie mm  exceeds 1, the Hall term is unimportant and 

consequently ordinary resistive diffusion of field into plasma 
is obtained. This condition essentially agrees with that 
needed for resistive diffusion of plasma into field in the 
presence of Hall current and rotation, as described in connec-
tion with Equations (74) to (76) (see Lcrit discussion in Sec-
tion 2.3.2.2, “Hall current allowed (voltage shorted out)”. 
Therefore, 
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In the opposite extreme, if the Hall term were very large, 

one might expect that the radial gradients of BZ would have 
to become very large in the first term of Equation (89c) to 
keep that equation in balance. The “sharp boundary” picture 
emerging from such a scenario implies that BZ has not dif-
fused very much into the core plasma. 

It is instructive to take a somewhat different approach to 
the issue of resistive diffusion of field into plasma as regards 
the alteration of this process by the Hall effect and rotation. 
Note that  
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Here, as usual, mi is the mass of an ion, q is the magnitude of 
the electron’s charge, and D is the resistive diffusivity. In 
this section, we are assuming singly charged ions. Then 
Equation (89c) can be rewritten as    
   

 ( )1 i ZZ
r r Z Z Z

mV
r B B

r D q

 ϖ  ∂ ∂ = ∂ +   
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 (94)  

 
Recall Equation (85), in particular that the longitudinal com-
ponent of vorticity ϖZ is related to the ion-fluid rotational 

velocity by 1 ( )Z rr rV−
θϖ = ∂ . Utilizing again the ion mag-

netization current density ir PB ∂−1  to represent the ion-fluid 

azimuthal current density nqiVθ, it can then be qualitatively 
estimated that the vorticity term (mi/qi)ϖZ in Equation (94), 
can become significant in comparison to the BZ term when the 
plasma-field mixing layer width (for diffusion of plasma into 
field) is small on the order of an ion gyroradius, ai. 

A more quantitative estimate proceeds as follows. Factor-
ing out mi/qi, one has in Equation (94) a comparison of the 
ion gyrofrequency, ωc i with the vorticity component ϖZ. 
Then for a radially uniform ion temperature, a radially uni-
form magnetic field, and invoking the magnetization current 
density, one can then estimate the vorticity component for a 
given density profile. The simplest case is a linearly decay-
ing density profile of the form n(x) = ncore[1 − x/δ], where x 
is the radial distance outwards from the nominal plasma edge 
and ncore is the number density in the core propellant. Then 
one finds  
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Thus, the vorticity ϖZ is comparable to or larger than the ion 
gyrofrequency ωc i when the plasma-into-field layer width δ 
is small on the order of the ion gyroradius ai and particularly 
in the low-density edge of the layer. This admittedly  
non-self-consistent argument indicates that when the plasma-
into-field layer width δ is on the order of ai, then also under 
the same condition, a large Hall effect manifested as ion-
fluid rotation acts to dominate resistive penetration of field 
into plasma.  

Assuming that the Hall-vorticity term does indeed domi-
nate the right-hand side of Equation (94), one can then pro-
ceed to estimate the field-into-plasma penetration depth δB 
as follows. According to the remarks in the previous para-
graph |ϖZ| ≈ |CI|ωc i, where |CI| is a number exceeding 1 (see 

Eq. (95)). Then, equating the left side of Equation (94) to the 
Hall term on the right side one has the following: 
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Here, the expression (1/σμ0) is inserted in place of D and set 
in terms of the electron plasma frequency, 

2
0pe enq mω = ε . Also, the corresponding ion plasma 

frequency ωp i is introduced. Then the relation ε0μ0 = 1/c2 is 
invoked, where c is the speed of light in mks units. Finally, 
the electron thermal velocity Vth e is also introduced. For 
simplicity, electron and ion temperatures are assumed equal.  

Recalling that the electron collision mean free path is  
given by λe = Vth e/υe, the above equation for the square of 
the field-penetration depth becomes the following: 
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In the present example of a dominant Hall effect, the product 

(Lϖ/λe) ie mm  is smaller than unity, in contrast to the 

situation with resistive diffusion. Hence, the field protrusion 
depth is δB < (c/ωp i), which is known as the “ion inertia 

length.” Since ai = (c/ωp i) iβ , the ion inertia length is on the 

order of the ion gyroradius whenever iβ  is on the order of 1.  

We conclude that the field protrusion depth into the  
plasma is on the order of the ion inertia length (the ion gyro-
radius), provided that the characteristic axial length does not 
exceed a certain critical value. This is essentially the same 
critical length found for the Hall effect to dominate resistive 
diffusion of plasma into field. It is important to emphasize 
that the Hall effect and plasma rotation had to be included 
together in order to reach Equation (96c).  

2.4 Summary 

 Since Section 2.0 is lengthy, we pause here for an interim 
summary and discussion of its contents and a few recom-
mendations for future work.  
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First, a simple model of quasi-one-dimensional nozzle 
flow was presented based upon the Bernoulli equation. This 
well-known model affords useful estimates of propellant 
flow speeds and other quantities as related to the injected 
propellant properties; for example, the propellant speed was 
derived at the nozzle throat and at the exit plane.  

Then, we indicated how the longitudinal flow becomes 
distorted by the presence of curved magnetic field lines and 
edge pressure gradients when the plasma propellant is not a 
perfect conductor. Using the simplest form of Ohm’s law, 
we displayed the eddy current braking of propellant flow 
across flux surfaces. For the tabulated parameters of interest, 
which include an assumption of classical resistivity, we 
showed that eddy current braking in the region upstream of 
the nozzle’s throat severely limits the growth of the resistive 
boundary layer of edge plasma, as generated by pressure-
gradient-driven plasma diffusion into the confining magnetic 
nozzle field. The growth of this plasma-field mixing layer is 
relevant to the amount of attached plasma that evolves during 
transit of the nozzle. A more detailed estimate of the layer 
thickness is presented at the end of this summary section. 

The implicit assumption in our treatment was that, within 
the resistive MHD model, there has occurred no sudden 
initial penetration of magnetic field and plasma. Such beha-
vior might be caused by dynamical resistive MHD effects 
induced by rapid spatial convergence of field lines down-
stream as induced by upstream plasma impact. Early lateral 
displacement of field lines by the highly conducting injected 
plasma, together with the unavoidable crowding of flux into 
the nozzle’s throat, could enhance the spatial rate of conver-
gence of flux beyond the breech of the nozzle, instigating 
strong curvature and thereby spoiling the gentle convergence 
of propellant flow. Coil discreteness can exacerbate that 
effect. Dynamical resistive MHD processes that may be 
engendered by such rapid spatial changes need to be  
understood and avoided, if possible. References 1 to 3 have 
identified such behavior in an axisymmetric simulation  
and has pointed out its importance. A non-MHD effect that 
causes instant penetration of field and injected plasma is 
demonstrated in Section 3.0, “Resistivity From Gradient-
Driven Microinstabilities.” In other words, the injection 
process is here assumed to be sufficiently smooth and  
gradual as to be benign. A systematic investigation of the  
effects of coil discreteness and the rapidity of spatial conver-
gence, within the axially symmetric resistive MHD model, 
would be a worthwhile and instructive project.  

Although the propellant temperature drops precipitously 
after passage through the throat of the nozzle (see Ref. 6), it 
hardly drops at all between breech and throat. Therefore, 
classical resistivity should still be small up to the throat. This 
leads to the expectation that for 1 m or less of travel (from 
breech to throat), there should be very little growth of the 
resistive plasma-field mixing layer separating core-plasma 
from magnetic nozzle field, in the absence of anomalous 
resistivity, when the simple Ohm’s law applies.  

A separate companion process, which also generates  
attached plasma, is the diffusion of external magnetic field 
into the plasma—considered as a fixed resistive medium. 
This process also was analyzed on the basis of the simple 
form of Ohm’s law with classical resistivity and was found 
to produce essentially the same width of plasma-field mixing 
layer as previously estimated for the other process. This 
result was demonstrated by two independent methods, which 
agreed very well. The first was from the point of view of the 
moving propellant, with an assumed growing time-
dependent field applied at the boundary. The second was 
from the lab frame point of view, assuming a steady-state 
configuration with a constant external magnetic field.  

It is convenient to encapsulate these results in terms of a 
magnetic Reynolds number, defined as clA DrV  =magRe . 

Here, the Alfven speed is VA = 2
0B μ ρ , with B being the 

magnitude of the nozzle magnetic field, and ρ the propellant 
mass density. Also, r is a representative radius of the con-
fined plasma in the nozzle, and 0clcl μη=D  is a represent-

ative resistive diffusivity of plasma propellant. For the 
purposes of making approximate estimates, the magnetic 
Reynolds number may be evaluated at the throat of the noz-

zle. When β  ≈ 1, that is, V ≈ Vth i ≈ VA, with Vth i being 

the ion thermal speed, the normalized width δ of the plasma-
field mixing layer may be characterized as  
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where Lb t is a characteristic nozzle axial length. As a numerical 

example, in the region just upstream of the throat Remag ≈ 104, 
and Lb t/r ≈ 10 for Lb t ≈ 1 m and r ≈ 0.1 m. Then δ/r ~ 0.03. 
This ratio will grow further downstream. The analytical 
description of the entire evolution of δ over the length of the 
nozzle is beyond the purview of this report. Equation (97) 
thus is relevant to the plasma attachment process. 

Turchi (Ref. 8, private communication) points out that if 
the angle φB V between field and flow were regarded as an 
independent parameter, and if the transverse pressure gra-
dient were neglected, then the boundary-layer width would 
scale rather differently, namely as 
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This result can be derived from the inertial component of the 
plasma-momentum equation across the flux surfaces (the 
x-component) while incorporating the simple form of Ohm’s 
law for J within the J × B force. In that manner, one finds 
that the incident “core” velocity component across the flux 
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surfaces, core sinxV V= φB V , experiences a slowing down 

due to eddy current braking, with a characteristic time 
2

char Ax VDt = . The boundary-layer width then can be 

estimated as char~ sinxVtδ φB V . Assuming that 1≈β  —

that is, V ≈ Vth i ≈ VA —one immediately arrives at the  
expression in Equation (98). The latter constitutes a much 
stronger dependence on Remag. 

The extremely short slowing-down time for inertially dri-
ven cross-flux motion, which is the result of eddy current 
braking for the upstream parameters of interest, suggests  
that the angle between field and flow may not be indepen-
dently specified in a highly conducting plasma. Section 4.0,  
“Rayleigh-Taylor- (RT-) Type Instabilities” quantitatively 
estimates the crossfield braking time within the single-fluid 
resistive MHD model and the consequent shape of the pro-
pellant streamlines. The flow would very quickly become 
practically field aligned, with a very small remnant of cross-
field flow driven by the edge pressure gradient. Therefore, it 
would appear that the model that underlies Equation (98) is 
more likely to be valid in the low-pressure high-resistivity 
region that exists downstream of the throat, where detach-
ment is of interest rather than attachment. There, the magnet-
ic Reynolds number is much smaller, so that the flow angle 
(relative to the magnetic field) would be less vulnerable to 
alteration by eddy current braking and also would be less 
influenced by the broader transverse pressure gradients. The 
latter point of view was, in fact, adopted for the detachment 
calculation in Reference 7. It is therefore recommended that 
the scaling of the boundary-layer thickness be studied as a 
function of position along the nozzle in order to elucidate the 
transition between Equations (97) and (98).  

The small amount of plasma-field intermixing estimated 
upstream of the throat, for the parameters of interest and 
using classical resistivity, serves as a prompt to consider 
possible causes why simulations or experiments might nev-
ertheless exhibit substantially greater boundary-layer widths 
at the nozzle’s throat. Such causes could be as follows: 

 
(1) numerical diffusion 
(2) degree of processes allowed (Hall effect, rotation, ion 

viscosity, classical vs. anomalous resistivity) 
(3) global geometrical configurations (number and 

placement of discrete field coils, types of global elec-
trical boundary conditions including plasma effects) 

(4) a subtle combination thereof 
 
A feature of the boundary-layer physics notably absent 

from this report, so far, is ion viscosity. This feature is intro-
duced later in the discussion of Rayleigh-Taylor type insta-
bilities in Section 4.3, “Finite Larmor Radius (FLR) 
Stabilization of RT-Type Flute Modes.” It can be shown that 
the collisionless contribution to the force term arising  
from ion gyroviscosity (see Ref. 9) bears essentially the 
same order-of-magnitude relation to ion inertia in the  

plasma-momentum equation as does the Hall term to the 
motional electric field in Ohm’s law; that ratio is on the 
order of ion gyroradius to the plasma’s radial scale length. 
Therefore, collisionless ion gyroviscosity ideally should be 
included in the plasma model of the interface whenever Hall 
effects are included. 

In this concluding discussion of the general physics topic, 
we turn now to a review of the underlying physics 
represented in the modeling of the edge plasma during  
plasma flow through magnetic nozzles, specifically, the 
physics associated with the complete Ohm’s law (the elec-
tron momentum equation). The derivation of the general 
Ohm’s law was first outlined, and then several special cases 
were examined. The emphasis was on the Hall effect and 
plasma rotation. A major concern, however, was the justifi-
cation for use of the simple Ohm’s law while in the presence 
of a strong magnetic field. The simple Ohm’s law is often 
perceived as being the limit of the complete Ohm’s law when 
the electron collision frequency is very large, υe >> ωc e. 

The principal results were as follows: First, it was pointed 
out that when the Hall current is completely suppressed by 
electrically insulating global boundary conditions, the simple 
form of Ohm’s law is restored by means of the quasi-radial 
Hall voltage. This result is obtained even though, in the case 
of interest, υe << ωc e. This justifies the resistive diffusion 
result obtained with the simple Ohm’s law, which governs 
the spatial growth of the plasma-field mixing layer. Practi-
cally the same result for the plasma-field mixing layer 
growth was obtained from two distinct points of view,  
plasma diffusion into magnetic field and field diffusion into 
plasma. 

Next, in simulations that may short out the Hall voltage 
and thereby allow Hall current to flow—but inconsistently 
without plasma rotation—it was shown that there would be a 
very large reduction in the effective electrical conductivity of 
plasma. This is the phenomenon of “magnetoresistance,” 
which would enhance edge-plasma diffusion across the flux 
surfaces. Magnetoresistance associated with the Hall effect 
has been observed in gas-plasma and solid-state-plasma 
experiments configured so that rotation is impossible. 

Finally, self-consistently allowing for flow of Hall current 
and plasma rotation, a characteristic length Lϖ along the 
nozzle was identified beyond which the above-mentioned 
resistive spatial growth of the plasma-field mixing layer 
would occur. However, for lengths smaller than Lϖ, the 
plasma-field mixing layer width proved to be insensitive to 
the electron collision frequency; instead, it was on the order 
of the ion gyroradius. Again, essentially the same results 
were obtained from the two points of view: penetration of 
plasma into field and penetration of field into plasma. The 
characteristic length Lϖ (≈Lcrit) was identified approximately 

as Lϖ ≈ λe ei mm , where λe is the collision mean free path 

of a representative electron, mi is the mass of an ion, and me 
is the mass of an electron. Because the insensitivity of layer 
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thickness to electron collisionality is a favorable result, it is 
recommended that Hall-MHD simulations be performed in 
which the Hall space-charge electric field is shorted out and 
rotation of plasma is allowed, while systematically varying 
the length of the nozzle configuration. Beyond the length Lϖ, 
plasma spinup produces a quasi-radial motional electrical 
field that suppresses the flow of Hall current. We then  
recover the preceding results where the Hall current was not 
allowed to flow. 

Lastly, in this concluding discussion of Section 2.0, on 
general physics of the magnetic nozzle, we turn to the topic 
of the dynamical dwell time available for resistive growth of 
the plasma-field mixing layer. The model that was employed 
earlier in this report simply assumed that the dwell time is on 
the order of Lb t/Vt, where Lb t is a characteristic axial length 
of the nozzle and Vt is the velocity of propellant in the throat. 
Now, we shall refine that model by recognizing that the 
dwell time (say, from breech to throat) must be longer  
because of the time required for acceleration of the propel-
lant up to speed. The plasma-field mixing layer thickness at 
the throat will be calculated using this refined model.  

From Equation (19) with β ≈ 1 in the transition layer, the 
algorithm that is used to investigate the effect of increased 
dwell time between breech and throat is 

 

 2
cl

0
d

b tt
D tδ =   (99) 

 
where δ is the thickness of the plasma-field mixing layer, tb t 
is the time required for the propellant to traverse the distance 
from breech to throat, and Dcl is the classical (Spitzer) resis-
tive diffusivity. It is known that Dcl is insensitive to plasma 
density and essentially depends only on electron tempera-
ture. Equation (99) is analyzed in Appendix B, using a  
generic shape for the nozzle. There, the time variable is 
related to the flow velocity, the longitudinal distance along 
the nozzle Lb t, and the nozzle’s geometry (i.e., the contrac-
tion ratio). The nominal plasma edge layer width at the 

throat ttbt VLD cl  is found to be enhanced by the longer 

dwell time, but by less than a factor of about 2 from the 
original estimate. Specifically, for a radius-contraction ratio 
of 2 the bounding numerical factor proved to be 1.7, whereas 
for a radius-contraction ratio of 3 it proved to be 2.3.  

From these results, an approximate overestimate of the 
fraction of attached hydrogen plasma propellant at the throat 
can now be made for the sample parameters, with the  
assumptions of classical resistivity and no Hall current. First, 
the 0.6-cm estimate of δ is doubled to allow for bidirectional 
diffusion (plasma into field and field into plasma). Then we 
multiply by another factor of 2 to allow for the effect on the 
layer thickness of the increase in dwell time from its refer-

ence value ttbt VLD cl . This adjustment is for the time 

required during acceleration of propellant from breech to 
throat, over a length of 1 m. The final result is a plasma-field 
mixing layer at the throat of about 2.5 cm. Taking a nozzle’s 
nominal plasma radius at the throat, r = 10 cm, this leads to an 
upper bound of the attached fraction 2δ/r of about 50 percent. 
The factor 2 comes from the geometrically enlarged area of an 
outer annulus of thickness δ in cylindrical geometry. To the 
extent that this result is even approximately realistic, it sug-
gests a search for mitigating effects. Therefore, an example  
of operation at higher stagnation temperature and lower  
resistivity with a heavier propellant ion, to achieve the same 
specific impulse, could be pursued at a future time.  

Since the result for the layer thickness is insensitive to the 
radius-contraction ratio, essentially three options for remedi-
ation are allowed, assuming classical resistivity: The first, 
suggested by Turchi, is to shorten the length Lb t from breech 
to throat. However, the thickness of the plasma-field mixing 

layer only scales as tbL , assuming that the scaling in 

Equation (97) is valid. The second is to enlarge the (plasma) 
throat, which has the disadvantage of increasing the mass-
flow rate of propellant (for fixed stagnation density and 
stagnation temperature), with consequences for vehicle 
design and mission logistics. Hence, the second option 
would entail a smaller propellant density to preserve the 
mass flow rate m . The consequent enlargement of the ion-
ion collision mean free path may require extending the MHD 
flow model into the kinetic regime. The third option is to 
work at a higher stagnation temperature in order to decrease 
the resistive diffusivity D (to increase the magnetic Reynolds 
number) and also to work with heavier propellant atoms to 
maintain the desired exhaust velocity (specific impulse). See 
the discussion on constraints at the end of this discussion 
section.  

The above estimate of plasma-field mixing layer thick-
ness, applied to hydrogen propellant with Lb t ≈ 1 m from 
breech to throat, can as well be applied to the envisioned 
”Godzilla” experiment (see Sec. 2.1, “Bernoulli Equation for 
Nozzle Flow”) with fully stripped helium propellant and  
Lb t ≈ 0.3 m (see Ref. 2). According to the tabulated parame-
ters, taking into account the higher stagnation temperature in 
helium and that the atomic number Ξ is 2, D is about 2/3 of 

the hydrogen value; hence, D  is about 0.8 of the hydrogen 

value. Also Lb t is 1/3 of the previous value, so tbL  is 

about 0.6 of the previous value. The velocity near the throat, 
Vt, is about the same for both propellants. Consequently, the 
previous answer for the boundary-layer width δ, namely 

ttbt VLD cl , is to be multiplied by 0.6 × 0.8 ≈ 0.5. Since 

the previous δ for hydrogen propellant was about 2.5 cm, the 
new estimate for helium now is δ ≈ 1.3 cm.  

Figure 6 of Reference 2 displays results relevant to the 
planned helium experiment, as obtained by the MACH2  
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simulation using classical resistivity. It indicates that, at the 
throat, the radius of core plasma is only about 2 cm. From 
there, the magnetic field drops off from its nominal edge 
value of 0.75 to 0.28 T on axis over only a radial distance of 
about 2 cm. This drop-off ratio is close to a factor 1/e; hence, 
2 cm would appear to constitute a fair representation of the 
characteristic boundary-layer width obtained by MACH2 at 
the throat (compared with the above overestimate of 1.3 cm). 
The plasma density or pressure profiles (not shown in the 
figure) might have indicated some additional outward pene-
tration of plasma into field, leading to a somewhat thicker 
effective plasma-field mixing layer. Since both field penetra-
tion into plasma and plasma penetration into field engender 
plasma attachment, it is recommended that the type of  
information in the figure henceforth be made more complete 
by providing the radial density and pressure profiles of 
plasma corresponding to the magnetic profiles therein. The 
He parameters and coil configuration employed in Refer-
ence 2 leading to a 2-cm plasma throat signify that  
essentially all of the He propellant has become attached to 
magnetic flux at the throat position.  

Because the plasma’s corresponding density profile or 
pressure profile was absent from Figure 6 in Reference 2, 
our assessment of what transpired in that simulation between 
breech and throat is necessarily limited. What can be said is 
that the model of classical resistive diffusion developed in 
Section 2.0 of this report is in fair agreement with the 
MACH2 simulation of Reference 2, being too small by 
perhaps a factor of about 2 or 3. This is in spite of the fact 
that the derivation carried out in Appendix B was biased in 
several respects towards too much interdiffusion. 

Figure 8 of Reference 3 shows radial profiles in the plasma-
nozzle throat for a larger system. The system length is 1 m, 
and the system radius is 18 cm. The radial plasma pressure 
profile is shown, along with the radial magnetic pressure 
profile. At the throat of the nozzle-shaped plasma, the inter-
face width extends from about 3 to about 7 cm; thus, the 
width is about 4 cm. For comparison, a rough estimate of the 
resistively diffused width can be obtained from the expres-

sion Dt . For helium at 100 eV, D ≈ 2.3 m2/s. Also, t ≈ 10 μs, 
from a quasi-one-dimensional isentropic flow model  

(velocity in the throat ≈ 10
5
 m/s). Then, the resistively dif-

fused width proves to be about 0.5 cm, which is an order of 
magnitude smaller than the width observed in the MHD 
simulation. (A factor of 2 or 3 enhancement due to the dwell 
time during speed-up does not resolve this discrepancy. See  
Appendix B.) An anomalous process within the resistive 
MHD model ultimately is held responsible for the 50 percent 
mass loss, which is tentatively ascribed to the discrete mag-
netic geometry. In the present report, no attempt is made to 
address this anomalous process, which appears to lack a 
complete and definitive understanding. The authors of Ref-
erence 3 and this author are in agreement that the observed 
anomalous mass loss can probably be mitigated by  
employing a more gradual and smoother magnetic geometry 

transition between the nozzle inlet and the plasma-nozzle 
throat. Such an adjustment may require elongated inlet geo-
metry. This speculation ought to be tested with more numer-
ical MHD simulations.  

The influence of the nozzle shape of core plasma on the 
accrued diffusive edge-layer thickness yet remains to be 
thoroughly investigated. Measured magnetic nozzle field-
line shapes in a real experiment, albeit in coaxial geometry 
over part of the effective length of the thruster, are displayed 
in Figure 1 of Reference 11. Therein, resistive drag by the 
plasma substantially modifies the field-line shape.  

Although the occurrence of substantial diffusive plasma 
attachment motivates exploration of improvements in design, 
it should be recognized that there are fundamental con-
straints arising out of mission logistics. For example, the two 
quantities dm/dt = m  and the specific impulse Ve/g ought to 
remain fixed for a given mission when searching for  
improved parameters. The latter constraint implies that the 
stagnation temperature is fixed for a given propellant; the 
former constraint implies that the quantity ρr2 is fixed (say 
at the throat). Here, ρ is the mass density of propellant and r 
is the throat radius of the confined plasma core. 

However, there is a third constraint associated with the 
magnetic nozzle: the external magnetic pressure should 
balance the internal plasma pressure transversely. The con-
sequent condition on the global beta, namely that β ≈ 1, 
along with fixed stagnation temperature, implies that ρ 
scales as B2. Therefore, the product Br must be fixed at the 
throat. A fixed temperature then implies that the ratio r/ai is 
fixed; that is, that the ratio of ion gyroradius ai to the effec-
tive plasma-throat radius r is fixed—for a given propellant. 
This result was shown in Reference 2. In terms of different 
propellants, the ratio ai/r scales approximately as mi/(Ξ)3/2 
for fixed m  and specific impulse, where mi is the ion mass 

and (Ξ)(1.6×10–19 C) = qi is the ion charge. In this report, |qi| 
= |qe|, and only hydrogen propellant is of interest. 

This constraint on ai/r should be remembered when con-
templating the use of Hall current and rotation along with 

axial lengths shorter than λe ei mm  in order to limit the 

plasma-field mixing layer thickness to the ion gyroradius. 
This constraint also is important when considering the activ-
ity of certain microinstabilities at the plasma-field interface, 
such as the LHD instability. The linear and nonlinear proper-
ties of the latter depend fundamentally on the size of the ion 
gyroradius relative to transverse plasma gradient lengths 
such as the thickness of the plasma-field interface.  

Finally, it should be emphasized that in this report the 
concept of axially symmetric resistive MHD flow with a 
relatively small rate of resistive interdiffusion at the plasma-
field interface has been taken for granted. If ill-understood 
resistive MHD dynamical mixing processes were to exist in 
the breech because of the severity of the plasma injection 
process, and perhaps as exacerbated by the discreteness  
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of field coils, those processes would certainly have to be 
identified and eliminated. Otherwise, supposedly educated  
attempts at systematic engineering designs of magnetic 
nozzles would be premature. 

3.0 Resistivity From Gradient-Driven 
Microinstabilities 

In this section, we review the research that has been done 
on certain microinstabilities, which can potentially contri-
bute to anomalously rapid broadening of the plasma-field 
interface. Attention is focused primarily on those modes that 
propagate in the azimuthal direction, directly across the 
magnetic field. 

Plasma density gradients that have been formed across a 
confining magnetic field are often regarded, within the con-
text of perfect symmetry, as equilibrium states of ideal  
dynamical force-balance. In a practical sense, however, they 
constitute nonequilibrium configurations precariously sus-
pended away from states of lower energy. That is because 
perfect symmetry is never attained. Therefore, such configu-
rations are actually vulnerable to symmetry-destroying  
plasma instabilities that grow out of slight asymmetries  
and that try to access the lower states. For the magnetic 
nozzle, the macroscopic consequence would be a loss of 
definition of the plasma-field interface, with thickening of 
the plasma-field mixing layer, and concomitant attachment 
of peripheral propellant to magnetic nozzle flux. In fact, 
even a macroscopically smooth resistive fluid model entails 
a graininess and concomitant loss of symmetry at the micro-
scopic level, leading to resistive diffusion. 

Some of these instabilities have very large growth rates 
and are not amenable to descriptions within a resistive mag-
netofluid MHD model. The LHD instability is one that has 
been identified as a major concern in such situations. It is 
nominally a robust nonresonant instability that does not 
require the extreme conditions needed by some other well-
known microinstabilities. For example, it does not need 
current drift velocities in excess of the electron thermal 
speed as would be required by the Buneman instability. It is 
insensitive to the electron-ion temperature ratio and so does 
not need Te >> Ti as would be required for destabilization of 
the ion-acoustic instability. Reference 12 presents simula-
tions of screw-pinch and theta-pinch magnetically driven 
implosions using a hybrid computer simulation (particle ions 
and fluid electrons), which employed the so-called Chodura 
resistivity. This is an empirically parametrized representation 
of electron resistivity arising from the ion-acoustic  
instability. However, they ignored the instability requirement 
that Te >> Ti. In their model, the current drift velocity cor-
rectly is required to exceed the ion-acoustic speed, which   
is a much more stringent requirement than in the LHD  
instability. Then, in the empirical model, the electron  
collision frequency is scaled by the ion plasma frequency. 

(Chodura resistivity is an option in the MACH2 resistive-
MHD computer simulations.) Sgro and Nielson had some 
limited success with this approach. They computed the 
structure of the magnetic field in magnetically imploded 
plasmas and generated reflected ions in front of the magnetic 
piston; nevertheless, the empirical resistivity lacked a firm 
theoretical foundation, and there was difficulty in treating 
the late phases of those implosions. Regarding the validity 
of the empirical resistivity, it should also be remarked that 
Chodura himself had a similar degree of success in simula-
tions of magnetically compressed plasma, but employed a 
rather different electron collision frequency: namely, the 
constant 0.025 multiplied by the electron gyrofrequency in 
the external magnetic field (see Fig. 1 in Ref. 13). Also, the 
LHD instability can be destabilized by weak plasma gra-
dients, having gradient lengths that are large compared to the 
ion gyroradius. Moreover, although nominally stabilized by 
finite β, it persists into the ion-cyclotron regime even where 
the local β is substantially larger than 1. (For a brief review 
of the various properties of this instability, see the introduc-
tory discussion in Ref. 14 and the other references therein.)  

In the magnetic nozzle, the linear phase of the LHD insta-
bility would manifest itself as a fine-scale rotating azimuthal 
ripple (flute-type mode) in the plasma-field interface region. 
In this report, the linear and nonlinear theories of this insta-
bility will be briefly reviewed. The nonlinear phase evolves 
into a form of plasma turbulence that would be macroscopi-
cally evident as an enhanced resistivity. Whether such  
enhancement dominates over classical resistivity depends 
upon parameters such as the electron temperature and the 
local width of the plasma-field mixing layer.  

In this report, the nonlinearly evolved microturbulent 
LHD resistivity will be compared with the classical resistivity 
that arises from coulomb collisions of electrons on ions. 
Although the influence of finite β on the linear phase of the 
instability has been clarified (Ref. 15), this writer believes 
that the β dependence of the evolved microturbulence 
(Ref. 14) is not yet definitively understood. Therefore, in the 
following discussion β will simply be taken to be of order 1 
within the plasma-field mixing layer. 

The width of the plasma-field mixing layer relative to the 
size of the ion gyroradius proves to be a key parameter for 
driving the LHD instability in its linear phase. This ratio also 
characterizes the microturbulent resistivity in the nonlinearly 
evolved turbulent phase. For these reasons, it is important to 
ascertain whether there is an initial plasma-field mixing layer 
width that might be immediately formed during the propel-
lant injection process, and if so, to ascertain its characteristic 
thickness. Moreover, this initial plasma-field mixing layer 
width defines the initial condition for further resistive  
broadening as the propellant moves downstream, no matter 
whether that diffusion be classical or anomalous. Thus,  
the first order of business is to identify the width of the  
plasma-field mixing layer that naturally occurs when  
injected plasma first impacts magnetic flux. 



NASA/TP—2009-213439 33 

3.1 Interface Width in Breech of Nozzle 

We preview the results by emphasizing that there must be 
an irreducible initial plasma-field mixing layer thickness 
engendered at the very injection of plasma into the external 
magnetic field. Moreover, it cannot be understood from 
within the resistive MHD model. Hall effects and kinetic 
(individual particle) effects are responsible for its formation, 
which therefore would be missed in standard resistive MHD 
simulations such as those performed by the MACH2 code. 
Modeling of the initial mixing layer in the breech of the 
nozzle therefore comprises the topic of this section. 

Older theories of the interface width separating an impact-
ing plasma from an external magnetic field, self-consistently 
taking into account the magnetic shielding by the plasma 
particles themselves, predicted that the width would be on 

the order of the hybrid electron-ion gyroradius eiaa . This 

collisionless model is known as the Ferraro-Rosenbluth 
sheath. (See Ref. 16 and references therein.) However, Peter, 
Ron, and Rostoker demonstrated in Reference 16 that the 
sheath would rapidly disintegrate as an entity because of 
flute-type instabilities with wavelengths somewhat larger 
than the sheath thickness. Moreover, the disintegration 
would occur very quickly. The growth rate can be inferred to 

be ~ ci ceω ω , the lower hybrid gyrofrequency. The action 

of these fast flute instabilities is believed to be the reason 
that the Ferraro-Rosenbluth sheath has never been observed. 
In this subsection, we develop a model with early turbulent 
collisions for the electrons and later classical or anomalous 
electron-ion collisions, for a much larger interface width,  
~ p ic ω . Such a sheath width of impacting plasma has been 

observed by Ripin et al. (Ref. 17). 
A heuristic picture will be developed of the initial plasma-

field mixing layer thickness produced by injected propellant 
in the breech of the nozzle. The result indicates that, on the 
basis of fundamental physical processes, the initial thickness 
is on the order of the ion inertia length p ic ω . Here, c is the 

speed of light in vacuum and ωp i is the ion plasma frequency. 
For conciseness, no detailed attempt will be made to derive 
exact numerical factors, but the length scale of the initial 
quasi-radial plasma-field transition will be established (where 
“initial” refers to conditions in the breech of the nozzle that 
are immediately experienced by a given element of injected 
plasma, but a macroscopic stationary flow is allowed). 

The interaction between newly injected propellant plasma 
and the magnetic nozzle field may be characterized to first 
order as the inability of “new” electrons to freely cross the 
nozzle’s magnetic flux surfaces because of their diminutive 
electron mass. That is, the electrons have not yet had time to 
collisionally diffuse any significant quasi-radial distance 
across the magnetic field in the manner discussed earlier. So 

in this simplified model, the electrons are, at first, treated as 
collisionless during the short initial ion gyrotime of interest. 

The individual ions, on the other hand, make sizeable  
quasi-radial excursions across the flux surfaces into the 
region of strong magnetic field because of their much greater 
mass. Thus, a quasi-radial space-charge electric field Ex, 
which limits the ion excursions, is established in the mixing 
layer. It points radially inwards towards the core plasma. The 
nozzle longitudinal magnetic field Blong is screened out of 
the core plasma according to a characteristic spatial transi-
tion of width dx. By Ampere’s law, it arises from the net 
azimuthal current layer xdJ y  carried by charged particle 

species in the interface region.  
Our model focuses on a short time interval after injection 

of a given plasma element. This is a time interval so short 
that only electrons can carry the azimuthal current—for the 
reasons explicated below. A motional azimuthal electric field 
associated with the quasi-radial fluid velocity Vx expanding 
across a longitudinal magnetic field Blong (local coordinates) 
is neglected. This simplification proves to correspond to a 
highly sub-Alfvenic expansion across the magnetic field, Vx 
<< VA. See the justifying remarks in Section 3.1, “Interface 
Width in Breech of Nozzle.” Also, see Reference 17.  

We consider a planar interface model having the nozzle 
magnetic field B in the z-direction (into the page), the quasi-
radial x-direction pointing vertically upwards across flux 
surfaces towards the region of strong magnetic field, and the 
y-direction (the azimuthal direction) pointing horizontally 
rightwards. The nozzle magnetic field becomes negligible 
towards the negative x-direction, into the core plasma. Also, 
the space-charge electric field E points in the negative 
x-direction, and is perpendicular to the magnetic field (see Fig. 3). 

The ions cross the magnetic field more easily than the 
electrons, so the outer part of the boundary layer is ion rich, 
whereas the inner part of the boundary layer is electron rich. 
These conditions set up a strong space-charge electric field, 
which serves to give the electrons a guiding center drift, in 
conjunction with the presence of the magnetic field. 

During one ion gyroperiod, only the electrons experience 
a guiding-center drift, because of their relatively rapid gyra-
tions. This drift is to the right, in the direction of E×B 
(clockwise in terms of the azimuthal angle). This is equiva-
lent to a current flow to the left, which is in the direction to 
weaken the internal magnetic field and to strengthen the 
external magnetic field. 

We consider only very early times while following newly 
injected plasma, during which “new” ions within the mag-
netic field interface can barely complete a significant frac-
tion of a gyroperiod. (For hydrogen ions entering into a 
magnetic field of 0.5 T, one gyroperiod is 0.1 μs, whereas 
the transit time through the meter-long nozzle is tens of 
microseconds for V// ≈ 105 m/s.) 
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During this short time interval, the new ions cannot  

express a macroscopic azimuthal current—in the absence of 
an azimuthal electric field (again, see Sec. 3.1). The reason is 
that a macroscopic azimuthal ion current would be the net 
cooperative effect of individual ion guiding-center drifts and 
magnetization current loops (due to partially uncancelled 
gyro-orbits in a density gradient). These individual particle 
mechanisms, by their very nature, require many ion  
gyroperiods to become macroscopically evident. They are 
therefore not available to the ions during an early time  
increment lasting less than one ion gyrocycle after injection 
while following a given plasma element downstream. By the 
way, this view of the situation implicitly defines the local 
reference frame with respect to azimuthal velocity, in that 
the ions are assumed injected without any macroscopic rota-
tional motion. In other words, at injection there is no azimu-
thal beam of ions in the lab frame of reference. The 
electrons, on the other hand, do exhibit very many gyro-
cycles during this first ion gyration and so can indeed manif-
est macroscopic azimuthal currents early on.  

To simplify the model, we suppose that the electrons are 
collisionless (a restriction removed later) and have negligible 
pressure (also removed later). Then, the electrons carry an 
azimuthal macroscopic current only as the result of an E/B 
azimuthal guiding-center drift velocity (in mks units). This 
drift, unlike the other current generating processes, does not 
need significant electron pressure. E/B drift results from non-
uniform curvature of a gyro-orbit. During energy gain from  
–E, the electron’s orbit acquires a greater radius of curvature. 

Over the part of the orbit against –E, energy is lost producing 
a smaller radius. The trajectory is a cycloid, a gyrocircle with 
a moving center having velocity E/B. If the temperature Te 
were very small then the gyrocircle would be very small, but 
the description still applies. 

This temporary exclusion of electron pressure precludes 
other current-generating individual particle effects, namely 
magnetization currents and grad-B guiding-center drifts. The 
simplifying assumption of no field-line curvature in the 
breech also precludes “curvature drifts” of the electron’s 
guiding center. At any rate, the latter drift also vanishes in 
the zero-electron-pressure approximation. (From the way  
the fluid equations are derived from more detailed models,  
we know that the electron fluid equations—with electron  
temperature included—automatically incorporate the various 
individual-particle effects, as regards production of  
macroscopic currents.) 

In view of the zero-electron-pressure assumption, the 
electron macroscopic momentum equation in mks units is 
simply 

 
 ( )BVE ×+−= eeqn0  (100) 

 
where Ve = E × B/B2 is the guiding-center (macroscopic 
fluid) drift velocity vector of the electrons, of number  
density ne. The above equation, in component form, where 
Bz = Blong, is equivalent to 
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qn

BJ
E

e

zy
x =  (101) 

 
where eyey qVnJ −=  is the azimuthal current density car-

ried by the electrons in the plasma-field mixing layer, and  
Vy e is positive to the right. This current is driven such as to 
cancel the vacuum magnetic flux within the plasma and to 
increase it outside of the plasma. Since the longitudinal flux 
cannot be created or destroyed over a short time interval 
within the volume enclosed by the conducting wall (the coil), 
the magnetic flux is pushed aside or displaced by the injected 
plasma.  

By means of Ampere’s law, which reads μ0 J = ∇× B (or 
also μ0Jy = −∂xBz), Equation (101) for the space-charge field 
can be written as 
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This result proves to be key to estimating the thickness of 

the plasma-field mixing layer in the nozzle magnetic field. It 
is based on the azimuthal current being carried only by the 
electrons. 

We now have to consider the time-dependent position, 
that is, the trajectory r(t), of an individual ion that is incident 
on the plasma-field mixing layer. It can be shown that the 
inertial force on the individual ion from radial deceleration 
of the plasma fluid is small compared to the force on the 
individual ion from the space-charge electric field, provided 
that the radial fluid expansion velocity is highly sub-
Alfvenic. See Appendix F for the derivation. The single 
particle’s velocity vector is tii drdv = . The momentum 

balance equation of an ion, in the plane perpendicular to B, 
reads 

 

 ( )BvE ×+= ⊥
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i q
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 (103) 

 
Here, the velocity vector of the ion is partitioned as 

Bv izii B+= ⊥vv . The space-charge electric field vector E 

is in the local x-direction, and the magnetic-field vector B is 
in the local z-direction. The scalar product (“dot product”) of 
Equation (103) with v⊥ i then leads to a statement of energy 
balance in the form 
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Equation (104) shows that the magnetic field does no work 
on the ion, and that the work done on the particle by the 
x-directed electric field affects the total perpendicular energy 

of the particle, not merely the energy associated with the 
quasi-radial velocity vx i. That is, in Equation (104) 

222
iyixi vvv +=⊥ . Therefore, to make use of this energy bal-

ance equation we also need an independent equation for the 
azimuthal velocity component vy i, furnished by the azimu-
thal component of the momentum balance Equation (103): 
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It now proves useful to relinquish the time variable, utiliz-

ing instead the x-coordinate of the particle’s quasi-radial 
position as the independent variable. Noting that d dx iv x t= , 

the energy balance Equation (104) becomes 
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Likewise, the azimuthal momentum Equation (105)  
becomes 
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Multiplying through by vy i in Equation (107) shows that 
Equation (106) can also be written as 
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Hence, energy balance does indeed apply to just the quasi-
radial x-component of ion motion, but only from within the 
instantaneous azimuthal-moving frame of the ion. Note the 
appearance of the radial electric field in the moving frame. 

The best way to convey our approach to the problem of 
the initial thickness of the edge-plasma boundary layer is to 
begin by integrating the azimuthal momentum equation, 
Equation (107). The injected plasma has no directed azimu-
thal velocity. Thermal ions incident on the plasma-field 
mixing layer then will be equally likely to have positive and 
negative values of vy i. As a representative ion, therefore, we 
choose an intermediate example for which the azimuthal 
velocity at the core region is vy i core = 0. The maximum 
radial extent of this particular trajectory is called Δ, which is 
the quantity to be determined. Presumably, this particular Δ 
lies in the midst of the distribution of Δ-values generated by 
internal ions incident on the plasma-field mixing layer at all 
possible angles. 
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Equation (107 ) is integrated from x = 0 to x = Δ. The final 
azimuthal velocity is written as vy i Δ. The result of this 
integration then reads 

 
 y i c iv Δ = − ω Δ  (109) 

 
wherein ci z iq B mω =  is the radial average of the ion 

gyrofrequency over the considered trajectory segment. Note 
that the appearance of the radial average magnetic field is 
mathematically correct and required. The average magnetic 
field within the plasma-field mixing layer is identified as 

roughly half of the outer magnetic field: 2ci c iω = ω . 

Thus Bz and ωc i without brackets now indicate the stronger 
magnetic field out beyond the plasma-field mixing layer. 
Then (109) becomes 

 

 
2

c i
y iv Δ

ω Δ
= −  (110) 

 
Now the energy balance Equation (106) can be integrated 

from x = 0 to x = Δ. The impacting radial velocity is denoted 
by vx i core, and the final radial velocity at the outermost 

extent of the trajectory segment is clearly vx i Δ = 0. Inte-
grated energy balance for an individual ion over the entire 
specified trajectory segment then can be expressed as  
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Equation (111a) slightly rearranged, 
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states that the incident kinetic energy of the outward moving 

ion, 21
core2 i x im v , is partly depleted by doing work 

Δ− xEq  against the inward-directed space-charge electric 

field (recall that Ex is negative). The leftover kinetic energy 
at the end of the considered trajectory segment is just 

2
2

1 Δiyivm . Again, the appearance of the radial average of 

the electric field xE  is indeed mathematically correct and 

required.  
The expression for the electric field in Equation (102) is 

used in Equation (111b), which then becomes 
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In the further interpretation of Equation (112), the  
extremely powerful drive to quasi-neutrality is recognized at 

the envisioned plasma density 1015 cm−3 (provided that the 
space-charge field does not get shorted out).  

Accordingly, we assume quasi-neutrality in the transition 
layer, namely ne ≈ ni = n (for hydrogen, with Ξ = 1). 
Thus,ni − ne<< ni. This assumption does not preclude a 
significant (but not unrealistically huge) space-charge elec-
tric field that maintains quasi-neutrality. A specific know-
ledge of the anomalous microturbulence that instigates the 
early transition to quasi-neutrality in the interface region is 
not needed for the estimate of the early width of the interface.  

Note: A preliminary transient phase of virulent microtur-
bulence must exist, driven by a huge space-charge electric 
field, which facilitates rapid transport of electrons across 
flux surfaces as they follow ions in an attempt to preserve 
neutrality. The main text assumes that this preliminary phase 
is already completed so that quasi-neutrality is preserved. 
Without this preliminary adjustment, the space-charge field 
would remain huge. For example, if an ion density of 

1015 cm−3 were displaced a distance of only 0.001 cm 
beyond the electron boundary, it would create an electric 
field of 2 MV/cm, with severe consequences. An alternative 
possibility is that the electron boundary remains absolutely 
fixed and that the ions are allowed to extend only a thermal 
Debye length (0.00016 cm at 50 eV) beyond the electron 
boundary into the magnetic field. This also seems unrealistic 
and contradicts experimental observations. It seems to be 
necessary that there is a preliminary draconian adjustment of 
the electrons’ distribution upon plasma injection. This ano-
malous electron turbulence is shown to be necessary in 
Appendix F, where classical mobility and collisional drift 
cannot cause electrons to traverse the required ion penetra-
tion depth of an order of a fraction of an ion gyroperiod. 

An approximate estimate of the average term 

( ) ( )2
01 2e xn q B∂ μ  in Equation (112) can be made by 

simply using intermediate values of the quantities therein, 
which does not call upon any detailed profiles within the 
plasma-field mixing layer. The value of ne ≈ n in the deno-
minator of Equation (112) ranges from its core value to a 
much smaller value over the plasma-field mixing layer width 
Δ. Its average, therefore, is simply interpreted as half of the 
number density ncore in the core plasma. Also, we interpret 
the average spatial derivative of magnetic pressure in Equa-
tion (112) as the outer value of magnetic pressure divided by 
Δ. (The neglected inner value of magnetic pressure is signifi-
cantly smaller.)  
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The characteristic radial spatial decrease of B2 into the 
plasma should be governed approximately by the same layer 
width Δ as governs the characteristic radial outward decrease 
of plasma density (associated with the radial protrusion of 
the ion trajectories). This behavior of density and magnetic 
field profiles is consonant with the constancy of total  
(plasma plus magnetic) pressure across the plasma-field 
mixing layer (see Appendixes G and H).  

Such rudimentary partitioning of the whole quantity 

( ) ( )2
01 2e xn q B∂ μ  in Equation (112) proves to be not 

far numerically (within a factor of 2) from the exact answer 
obtained with specific sample profiles. The detailed profiles 
within the plasma-field mixing layer are, of course,  
unknown. However, for example, with exponentially  
decreasing n(x) and exponentially increasing [B(x)]2 over 
width Δ (qualitatively consistent with pressure balance 
across the layer), one obtains a numerical factor 1.17 instead 
of 2 in Equation (113) below. Moreover, a square root is 
eventually extracted to find the width Δ, which finally yields 
a comparative error of only about 30 percent.  

Using just the above rudimentary procedure then, after 
multiplying by 2/mi Equation (112) can be reduced to 

 

 2 2 2
core 2xi A y iv V v Δ= +  (113) 

 

Here, the square of the Alfven speed iA nmBV 0
22 μ=  con-

tains the outer magnetic field beyond the plasma-field mix-
ing layer, and the inner number density of core plasma. We 
suppress the subscripts that would have supplied those 
meanings. 

Equation (110) for vy Δ i is now used in Equation (113), 
together with the key identity 
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The result reads 
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This result is based upon energy and momentum balance for 
an individual ion’s trajectory, together with the relation of 
the radial space-charge electric field to the azimuthal elec-
tron current, obtained from the fluid electron’s radial  
momentum equation. No overt connection is invoked here or 
below with the actual temperature of the ions or with the 
thermal gyroradius of an ion. This salient point will be  
emphasized again below. 

Note that the Δ estimated here depends, in principle, on 
the particular slice of the ion’s incident velocity distribution 
used to make the calculation. Although this particular Δ is 
assumed to be representative of the plasma-field mixing 
layer width, that assumption is not rigorously tested in this 
report. 

We now heuristically consider the trajectory of an indi-
vidual ion as the ion enters at perpendicular incidence and 
proceeds into the plasma-field mixing layer. Incident azimu-
thal velocity vy core i = 0, but incident parallel (to B) velocity 
vz core i is arbitrary. If it undergoes roughly one-fourth of a 
gyrocircle in the average magnetic field in the plasma-field 
mixing layer, such a trajectory segment is expected to be 
approximately commensurate with the time needed for that 
ion to reach its maximum radial protrusion beyond the core 
plasma, denoted by Δ. Since the final radial velocity  
vanishes, the average radial velocity over the quarter circle is 
taken to be half of the incident radial velocity. Then one 
obviously has 
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In Equation (116), time 

4
1iτ  is taken as one-quarter of the 

ion gyroperiod in the average magnetic field within the 
plasma-field mixing layer. Again, the average magnetic field 
is set to half the outer magnetic field, so the ion gyrofre-
quency ωc i without brackets in Equation (116) is understood 
to contain the outer magnetic field. 

Next, we calculate Δ2 from Equation (116) and use Equa-

tion (115) for 2
corex iv  and the identity in Equation (114). In 

that manner we easily obtain the following equation for 

( )22
norm cipωΔ=Δ  where Δnorm denotes the nondimen-

sional version of Δ measured in units of the ion inertia length 
c/ωp i (and ωp i refers to ncore): 
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The term 82
normΔ  represents the final azimuthal kinetic 

energy that ultimately remains of the ion’s incident radial 
kinetic energy, after subtracting the work done by the ion 

against the space-charge field. The term 82
normΔ  in Equa-

tion (117) proves to be comparable to the first term (i.e., ≈1). 

The solution of Equation (117) is 2
normΔ  ≈ 13; then, 

Δnorm ≈ 3.6 = p i cΔω . 
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Use of the specific sample profiles mentioned above in 
evaluating the average space-charge electric field suggest  
the possibility that the coefficient of the first term in Equa-
tion (113) (i.e., 2) should perhaps have been “1.” Then, 
instead of Equation (117), 
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with the solution Δnorm ≈ 2.6. 

These approximate model results paint a definitive pic-
ture. Consider a newly injected plasma element near the 
interface between the plasma and the magnetic nozzle flux, 
which is followed downstream at early times not exceeding 
about one-fourth of an ion gyroperiod. The extent of a repre-
sentative ion protrusion out of the plasma element into the 
(displaced) magnetic flux is a few ion inertia lengths as 
characterized by the core-plasma number density; that is,  
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Our heuristic model cannot guarantee the exact numerical 
factor. Except possibly for the numerical factor, this result 
for the plasma’s edge-layer thickness is dependent neither on 
the incident radial velocity of the ion nor on the strength of 
the external confining magnetic field. It depends solely on 
the ion number density in the bulk plasma. 

The constraints built into the model that yields this result 
are as follows: First, quasi-neutrality within the plasma-field 
mixing layer is achieved immediately in a preliminary tran-
sient adjustment involving microturbulence and is main-
tained thereafter. The almost-massless electrons pulled into 
the magnetic flux by quasi-neutrality have become attached 
to the magnetic flux. Second, the electron current layer 
shields the interior plasma from the magnetic field practi-
cally from the outset of injection of the considered plasma 
element (after several electron gyroperiods). Third, the ion 
component makes practically no contribution to the azimu-
thal current layer. Finally, a cautionary note is that the calcu-
lated Δ was obtained here by considering a special restricted 
class of individual ion trajectories selected out of the  
thermal-ion distribution, namely those that enter the plasma-
field mixing layer without azimuthal velocity. A rigorous 
calculation of Δ requires an average over the entire incident-
ion velocity distribution.  

Note that the edge-plasma boundary layer thickness Δ as 
calculated here also characterizes the inward-radial decay of 
B2, according to Equation (112) and the associated discus-
sion. Hence, the characteristic decay distance of B itself into 
the plasma must be 2Δ, and Δ ≈ 2 p ic ω  to 3 p ic ω   

 

(comparable to Eq. (119)). The ion inertia length is about 1 cm 

for a hydrogen-plasma having number density 1015 cm−3. 
There is indeed experimental evidence (Ref. 17) for 

pic ω  to be the length scale for the plasma-field transition 

layer produced when injected plasma first impacts upon and 
displaces the ambient magnetic field. The account in Refer-
ence 17, however, does not provide a clear and definitive 
understanding of this feature. Although Reference 17  
addresses laser-produced plasma expansion into an existing 
magnetic field, the physics issues therein are generic and 
relevant to injection of plasma into a magnetic nozzle. 

The above results for the width of the plasma-field inter-
face of newly injected plasma can be very simply obtained 
from a reduced model, within about a factor of 2. The  
reduced model begins by assuming that ions of only a single 
outward quasi-radial velocity are initially incident on the 
interface, vx core i ≠ 0 and vy core i = 0, with vz core i being 
arbitrary but following the plasma in the reference frame of 
vz core i. It also assumes, as before, that the electron current 
layer is responsible for magnetic shielding of the interior 
plasma. A key assumption is that there is pressure balance 
across the interface. The electron pressure is still neglected 
in this reduced model. 

Consider the rate at which outward ion momentum flows 
into the interface, per unit area, during the first quarter to half 
gyroperiod, before the ions have been fully reflected by the 
outer magnetic field: It is the particle flux multiplied by the 
momentum of a particle; namely, (ncore vx core i)(mi vx core i) 

= 2
core corex ivρ . Balancing this outflux of initial radial ion 

momentum against the inward magnetic pressure imme-

diately yields core 2x i Av V= , in which the Alfven velocity 

is evaluated with the outer magnetic field and the inner mass 
density. The outward fluid velocity would be smaller with a 
full angular velocity distribution. 

The distance beyond the core where an ion starts to turn 
around (radial velocity → 0) during one-quarter of a gyrope-
riod in the average magnetic field in the plasma-field mixing 
layer is 
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Here as before, the average radial velocity in the layer is 
taken as half the incident velocity, and the average magnetic 
field in the layer has been taken as half the outer magnetic 
field. Because electrons have been pulled out into this layer 
by the forces that maintain quasi-neutrality, they will have 
become attached to magnetic flux in the layer. Thus, the 
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evolution of layer width resembles a ratchet process that 
cannot be reversed. 

Recall the more detailed model that dealt with the energy 
and momentum balance of an ion’s trajectory in the space-
charge electric field and the shielded magnetic field. It  
apparently gives a somewhat larger value for the width of the 
interface: namely 2.6 pic ω

 
to ipc ω6.3

 
(comparable to 

Eq. (119)). Also recall that the corresponding decay length 
of the magnetic field into the core plasma is predicted to be 
twice this value.  

It is important to make a clarification regarding the above 
model. A motional azimuthal electric field has been neg-
lected at the outset that otherwise would have been produced 
by a radial fluid velocity of injected plasma expanding 
across the longitudinal magnetic flux. In principle, the ions 
in the interface region can respond to this azimuthal electric 
field during their initial quarter gyroperiod. Thereby they can 
contribute to the azimuthal macroscopic current provisional-
ly assumed carried only by the electrons. It can be shown, 
however, that the ion contribution would be minor, provided 
that the plasma-fluid’s initial quasi-radial expansion velocity 
across B is highly sub-Alfvenic. 

Specifically, it can be demonstrated that the azimuthal  
fluid velocity component Vy e of the current-carrying elec-
trons is of order VA. In contrast, the azimuthal fluid velocity 
Vy i of the ions in response to the motional electric field  
Ey = −Vx iBz during the first quarter gyroperiod is much 
smaller. In particular, Vy i proves to be merely on the order 
of the radial ion-fluid velocity Vx i. See Appendix F for the 
derivation of these results. The massless electron response to 
Ey merely would be a radial E × B guiding center drift. The 
electron contribution to the azimuthal current would not be 
directly affected by the azimuthal electric field. Therefore, if 
the plasma’s radial expansion velocity Vx i is highly sub-
Alfvenic, that is, if Vx i << VA, then Vy i << Vy e and the ions 
cannot make a significant contribution to the macroscopic 
azimuthal current. The electrons carry practically all the 
azimuthal current.  

The reason that it is possible in principle for the fluid  
plasma’s radial expansion velocity to be sub-Alfvenic at the 
plasma interface with the magnetic field is as follows. After a 
brief sub-Alfvenic dynamical adjustment in the strong mag-
netic field limit, described in Appendix H, further radial  
expansion of the ion fluid involves the ions having to drag 
reluctant electrons across longitudinal magnetic flux. The 
resulting expansion velocity principally depends on the nature 
of the resistivity or the microturbulence that facilitates cross-
field electron transport, even right after injection. If, on the 
other hand, the plasma’s initial quasi-radial-expansion fluid 
velocity (macroscopic velocity) were close to the Alfven 
speed in the plasma-field interface region, then it would be 
important to incorporate into the model the corresponding 
motional azimuthal electric field and the ion response to it. 

That has not been done in the present report, which definitely 
assumes a sub-Alfvenic expansion across the magnetic flux. 

We now remove the two restrictive assumptions that were 
made on the electrons. These were the neglect of electron-
ion collisions and the neglect of electron pressure.  

If electron-ion collisions are included (but still with neg-
lect of electron pressure), then the electron-fluid momentum 
equation can easily be solved for the electron-fluid velocity 
Ve, which then reads 
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Here, Ω = ωc e/υe is the ratio of the electron gyrofrequency 
qB/me to the collision frequency (possibly anomalous) of a 
representative electron with the ions. In the limit Ω → 0, the 
second term, the azimuthal E/B drift velocity term, disap-
pears. The remaining first term reduces to the usual electron 
drift mobility term along the electric field, without a mag-
netic field; namely, −(q/meυe)E. 

For parameters of interest to us, however, Ω2 >> 1. For 
example, with the hydrogen plasma particle number density 

1015 cm−3, a plasma temperature of 50 eV, and a magnetic 
field strength of order 0.5 T (5000 G), one has ωc e ≈ 

1011 rad/s. In contrast, the classical Spitzer collision fre-

quency is υe ≈ 10 8 s−1. Then Ω = 1000 and Ω2 = 106. It is 
immaterial to the argument whether 0.2 or 0.5 T is used here. 
Even if the electron collision frequency were anomalously 
large by a factor of 10 or 100, it would still be the case that 
Ω2 >> 1. For large Ω2, Equation (121) reduces to 
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With large Ω, the drift velocity of the electrons along the 
quasi-radial electric field (first term) becomes very small 
compared with the azimuthal E/B drift velocity (second 
term). This result is just what is necessary to carry out the 
above simplified derivation and estimate of the thickness Δ 
of the edge-plasma transition layer. 

The radial diffusion distance of electrons due to their  
coulomb collisions with ions during one-fourth of an ion 
gyroperiod can easily be calculated, as can the radial mobility-
drift-distance during that same time interval from the first 
term of Equation (122). The former distance is approx-

imately Ω−1/2c/ωp i; the latter is Ω−1c/ωp i (see Appendix F 
for the derivation). It is still assumed that the transient sub-
phase that preserves quasi-neutrality has already occurred. 

The quarter ion-gyroperiod diffusion result Ω−1/2(c/ωp i) 
compares with the resistive-MHD boundary-layer diffusion 
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as evolved along flow distance Lb t (Eq. (77)), which is 

approximately δ ≈ Ω− ½(Lb tc/ωp i)
 ½. 

Both of the above distances are small in comparison to the 
layer width c/ωp i when Ω >> 1. Thus, the effects of colli-
sional diffusion and mobility-drift of electrons in the radial 
direction are not important, for the electrons then would 
travel radially only a small fraction of the layer thickness 
during one-fourth of an ion gyroperiod. This is the case 
although there are many collisions of an average electron 
during one ion gyroperiod. Therefore, the dominant motion 
of electrons still is governed by the azimuthal E/B drift 
velocity, which is what enabled the estimate of c/ωp i for the 
transition layer thickness. 

Moreover, the same qualitative picture would remain 
marginally valid even if the electron collision frequency υe 
were several hundred times larger and on the order of the 
electron gyrofrequency ωc e, thus making Ω ≈ 1. Hence we 
reach a different conclusion with respect to the effect of 
electron collisions than did Reference 17, which failed to 
emphasize the importance of the electron’s E/B drift in 
determining the thickness of the plasma-field transition 
layer. 

The above remarks addressing the effects of electron col-
lisions can easily be extended to include electron pressure. 
Instead of Equation (122) one finds 
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where Eeff = E + (nqe)
−1∇Pe. Again, large Ω ensures the 

dominance of the azimuthal electron-fluid velocity, the 
second term in Equation (123).  

However, the second term in (123) now contains Eeff  
instead of just E, so there are some differences in detail as 
regards both the derivation and the result for the thickness of 
the plasma-field transition layer. For example, the negative 
electron pressure gradient adds its effect to the negative 
space-charge electric field so as to enhance the azimuthal 
electron-fluid velocity, augmenting magnetic shielding by 
the electron current layer. One expects that this current 
enhancement will act to decrease the thickness of the  
plasma-field mixing layer. Such calculations are performed 
in Appendixes G and H. 

The derivations in Appendixes G and H include the fluid-
electron pressure gradient and for simplicity allow the elec-
trons to have the same temperature as the ions. Also, these 
temperatures are assumed to be uniform within the plasma-
field mixing layer. In addition, Appendix H explicitly  
includes the fluid-ion pressure gradient, and moreover, the 
assumption of a static plasma-field mixing layer is relaxed. 
(Assuming that the expanding plasma element has made 
the initial adjustment to quasi-neutrality when it first  
encounters the external magnetic field region, then there is 

no inconsistency of quasi-neutrality with the small mobility 
and drift displacements of the electrons.) 

A more rigorous treatment of radial averaging of the elec-
tric field is carried out in Appendix G, a somewhat different 
averaging treatment independent from those described 
above. Again, specific profile shapes within the plasma-field 
mixing layer are not essential restrictions to make the calcu-
lations. Then, instead of Equation (117) or (118), 
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Here e is the base of natural logarithms (≈2.7183) and βG is 
the global β across the plasma-field mixing layer, namely, 
the inner plasma pressure divided by the outer magnetic 
pressure. The new effect of electron pressure is now mani-
fested by the square bracket containing the effect of the 
global β. As βG increases, the solution Δnorm decreases, and 
so then does the thickness of the plasma-field mixing layer.  

However, there must be overall pressure balance across a 
static plasma-field mixing layer, so that βG = 1 (see Appen-

dix H). The solution of Equation (124) then is Δnorm ≈ 2.35, 
which compares well with the earlier estimates of 3.6 and 
2.6. Thus our earlier conclusion retains validity; namely, that 
the initial thickness of the plasma-field boundary layer (i.e., 
in the injection region) is a few ion inertia lengths c/ωp i. 

Early quasi-radial deceleration of injected expanding 
plasma is included in the calculations in Appendix H. Quasi-
radial deceleration is found to have no major effect on the 
width of the plasma-field mixing layer, provided that the 
quasiradial macroscopic expansion velocity of the fluid 
plasma is highly sub-Alfvenic (Ref. 17). This limit corres-
ponds to a strong magnetic nozzle field.  

Several important concluding remarks can be made  
regarding the initial width of the plasma-field mixing layer. 

The plasma-field mixing layer width at the interface  
between plasma and magnetic field is formed in the injection 
region by processes not accessible to the standard resistive 
MHD model. It serves as the initial condition for further 
broadening of the layer downstream. The radially protruding 
collisionless ion trajectories do not at first become trapped 
on magnetic nozzle flux; rather, those ion trajectories return 
to the field-free core plasma. However, their positive space-
charge halo beyond the core pulls some edge electrons  
radially out of the core so as to preserve quasi-neutrality. 
This space-charge effect constitutes a one-way irreversible 
process facilitated by microturbulence driven by the initially 
large space-charge electric field. A detailed knowledge of 
that initial microturbulence is unnecessary. Since electrons 
are practically massless, some form of electron collisionality, 
be it coulomb collisions with ions or with microturbulent 
fluctuations, is necessary to scatter the edge electrons onto 
the external magnetic flux.  
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There is no physical mechanism of collisions, or effective 
collisions, available for pulling those practically massless 
electrons radially back off of the magnetic flux so as to return 
them, macroscopically, into the core. (Such a mechanism 
would have to work “uphill” against the electron density 
gradient.) They then effectively become trapped on an exter-
nal annular increment of previously expelled magnetic flux. 
The overall process is like a ratchet, in which a continuous 
supply of radially protruding ion trajectories furnishes space 
charge to keep the ratchet expansion process going, during 
the early times following injection of any given plasma 
element within the interface region. Note, however, that this 
heuristic microphysical description of interface broadening 
has general validity not limited to the injection region. 

If the quasi-radial space-charge field were shorted out at 
early times after injection, by the unimpeded flow of Hall 
current, the edge-plasma situation would be fundamentally 
altered. Then, some of the edge electrons would preserve 
charge balance by flowing longitudinally to the backplate (as 
the ions partially vacate the plasma’s edge layer due to the 
radial extent of their trajectories). The ratchet effect thereby 
would be circumvented. Even if the associated Hall-current 
circuit were not completely closed, such a global redistribu-
tion of edge-plasma electrons would drastically reduce the 
otherwise huge local space-charge electric field in the edge 
region and would at least partially mitigate the ratchet effect 
at the plasma-field interface. 

The plasma-field mixing layer in the breech of the nozzle 
(sometimes called the initial boundary-layer width in this 
report) is characterized by the ion inertia length c/ωp i,  
according to the models employed here. This initial broaden-
ing of the interface is facilitated by the above-mentioned 
ratchet effect. The results of these several models contain 
numerical multipliers suggesting that the mixing layer in the 
breech of the nozzle probably is a few times thicker than 

ipc ω . This result has important consequences for the 

attachment of propellant to magnetic flux. For example, if 
the initial interface were 2 cm thick and the nozzle breech of 
injected plasma were 30 cm in radius, then 15 percent of the 
injected plasma propellant would be immediately affected. 
This would occur before the onset of additional adverse 
effects along the flow. 

The width δ of the plasma-field interface—just after  
injection—is not only on the order of a few ipc ω , but is also 

on the order of the ion gyroradius ai. This follows from the 

relation ( )ipi ca ω  = iβ , with iβ  ~ 1 in the interface. 

For example, ai/δ ≈ 0.5 iβ  ≈ 1/ 8  = 0.35, when δ ≈ ipc ω2  

and βi ≈ 0.5. (For a more rigorous derivation of this numerical 
result, see Appendix I.) 

The interface itself is expected to broaden during down-
stream flow. An important question then arises as to whether 

the width of the interface exceeds ai downstream, as  
the flow approaches the nozzle’s throat. This question is  
important because both the linear and nonlinear behavior of 
the LHD instability are affected by the plasma-field mixing-
layer width relative to the ion gyroradius in the layer.  

We will now estimate the ratio ai/δ along the downstream 
flow. In so doing, we now formally assume the initial conditions 
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δ
5.0   where δ ≈ 2c/ωp i  (125) 

 
to hold in the breech (beginning) of the nozzle, where  
variables such as n, δ, t, and D are labeled with subscript b. 

First, to illustrate the method, suppose that the interface is 
broadened just due to the action of classical resistivity,  
ηcl ∼ 1/T 

3/2. (Here, T = Te = Ti.) Using the broadening algo-
rithm in simplified form (avoiding the time integral), we take 
δ2 ~ Dclt, where δ is the width of the interface and t is the 
longitudinal transit time for the propellant flow. Also, Dcl is 
the classical resistive diffusivity arising from coulomb colli-
sions of electrons on ions, 0clcl μη=D  in mks units and 

Dcl = (c2/4π)ηcl in cgs units. Then δ2 ~ t/T 
3/2. The variation 

of the squared ratio of ion gyroradius ai to interface width δ 
can be written as 
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Here, we utililized radial magnetic pressure balance of  

plasma pressure, and the adiabatic relation T ~ nƔ −1 with Ɣ 
= 5/3) between density and temperature along the flow. 
From this very simple calculation, one would conclude that 

ai/δ ~ t−1/2 along the flow. That is, the ion gyroradius appar-
ently becomes smaller in relation to the boundary-layer 
width as the flow progresses downstream, as t increases. A 
more careful calculation, however, shows that this conclu-
sion is too hasty. 

The above argument is deficient in that the initial plasma-
field mixing-layer width in the breech δb was ignored. Also, 
there is no indication of a natural time scale for t. Both defi-
ciencies can easily be corrected by allowing for the initial 
condition in the diffusive-broadening algorithm. (A more 
generalized plasma-field interface thickness calculation at 
the throat is performed in Appendix J. Also included is an 
example calculation of the fraction of attached plasma.) The 

algorithm now reads tDb cl
22 +δ=δ . Here, δb represents the 

initial ion penetration depth into the magnetic field. Carrying 
out the same derivation as in the above paragraph, one then 
finds that 
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where the time scale tb is defined in terms of parameter 

values in the breech, bbb Dt 2δ= . Also, we have invoked 

the relation between ion gyroradius ai and ion skin depth 

c/ωp i, in the form ( ) ibia β=δ 5.0  for δb = 2(c/ωp i)b. 

Now, relevant conditions are such that as the nozzle’s throat 
is approached, nb/n ≈ 1.5 and t << tb. The characteristic time 
tb is several hundred microseconds, for both classical and 
anomalous resistivity; whereas the time for longitudinal flow 

is only about 10 μs. The time tb scales as nT 23 . We infer 

that δia  is practically unchanged between breech and 

throat, when the interface broadens because of the action of 
classical resistivity.  

Next, the same argument is carried out with an anomalous 
resistivity, ηa, that arises from LHD microturbulence. The 
expression given below for this resistivity is derived later in 
this report. It applies to the case where the plasma-field 
interface width extends over several ion gyroradii. This 
resistivity is expected to dominate over classical resistivity at 
sufficiently high temperatures (see Sec. 3.5, “Comparison of 
Anomalous and Classical Resistivities”). One then has 
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               where 0.1 ≤ CBrack ≤ 0.4 (128) 
 

The constant contour factor CBrack is not precisely known, 
but spans 0.1 < CBrack < 0.4. These values are based on a 
numerically obtained expression for anomalous resistivity in 
the Brackbill et al. computer simulations (Ref. 14) of the 
resistivity in a magnetoplasma gradient confined by  
magnetic pressure. Here, ωc e is the electron gyrofrequency, 

ωp e is the electron plasma frequency, and ωLH = ce ciω ω  is 

the lower hybrid gyrofrequency in the case of usual interest 

where 2 2
pe ceω >> ω . In the above expression for anomalous 

resistivity ηa, in accordance with the notation introduced 
later in Section 3.2, “Linear Theory of Lower Hybrid Drift 
(LHD) Instability,” Vd represents the azimuthal drift velocity 
of electrons in the equilibrium current layer that separates 
plasma from the confining magnetic field. This notation  
is meant to apply in a reference frame in which the ions  
have no azimuthal drift velocity. Also, Vth i represents the 

ion thermal velocity, (2Ti/mi)
1/2.The anomalous resistive  

diffusivity in cgs units, Da = (c2/4π)ηa, therefore scales 
along the flow as 
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Again, we have invoked radial pressure balance for B2 and 
the adiabatic relation between n and T along the flow. It is 
important to note that the anomalous resistive diffusivity Da 
scales with the square of the current-drift velocity. 

At first the initial plasma-field mixing-layer width as well 
as the factor (Vd/Vth i)

2 are neglected. Then, using the simple 
algorithm for variation of the boundary-layer width along the 
flow, δ2 ~ Dat, we can estimate the variation along the flow 
of the squared ratio of ai to δ (where Vth i is the ion thermal 
velocity): 
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The ratio itself then would vary along the flow as 
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For the reasons mentioned earlier, however, it would be 

too hasty to accept this result for the variation of ai/δ along 
the flow. Instead, taking into account the initial layer thick-
ness as in the earlier calculation with classical resistivity, and 
now also including the factor (Vd/Vth i)

2 = (ai/δ)2 in the 
anomalous resistive diffusivity Da, we find 
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Although the ratio of interest still appears on the right-hand 
side in the denominator, that is immaterial in the parameter 
range of interest here because the transit time tb t is small:  
tb t << tb. As before, the characteristic time tb is defined by  

tb = δb
2/(Da)b. The time tb scales as (nT)−1/2. Also as before, 

nb/n ≈ 1.5 between breech and throat.  
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Thus, we again infer that the ratio of the ion gyroradius to 
the interface layer width is practically unchanged between 
breech and throat. In the breech, this ratio is estimated to be 
about 1/3. Hence our review of the LHD instability and its 
nonlinear evolution will be performed within the context of a 
plasma-field interface width that extends over several ion 
gyroradii, at any point along the flow between breech and 
throat. The overall conclusion is that the emphasis on the 
anomalous LHD resistivity should be in the small-ion-
gyroradius regime (ai<δ).  

Avoiding the time integral of resistive diffusivity D 
(whether classical or anomalous) really means that the aver-
age value of D between breech and throat has been used. 
This method makes sense here because the plasma parame-
ters do not vary much between breech and throat. The  
density at the throat drops to about two-thirds of its breech 
value, and the throat temperature drops to three-fourths of its 
breech value.  

A final remark is that further downstream beyond the 
throat of the nozzle, there is a rapid spatial drop in plasma 
temperature with increased coulomb scattering of electrons. 
One would then expect that beyond the throat, classical 
resistivity (which is almost independent of density) would 
become more important than the LHD-based resistivity. The 
latter is basically independent of temperature and almost 
independent of plasma density along the flow (see the above 
scaling of Da). Thus, the discussion of microturbulent LHD 
resistivity ηa will be set within the context of edge plasma 
that is situated between the breech and the throat, where ηa 
is most likely to matter.  

3.2 Linear Theory of Lower Hybrid Drift (LHD) 
Instability 

This subsection briefly outlines the linear theory of the 
small amplitude phase of the azimuthal mode LHD instabil-
ity and summarizes the principal results for the frequency, 
growth rate, and wave number of this mode. These results 
then are utilized in the following Subsection 3.3, “Quasi-
Linear Evolution of LHD Instability and Anomalous Resis-
tivity” on the nonlinear evolution of the mode and the devel-
opment of an anomalous resistivity due to the mode. It is 
understood that all calculations are being done in the local 
longitudinal reference frame of the edge plasma. Along the 
way, we point out the limitations of the simplified models 
that are often utilized and the results of certain papers that 
attempted to overcome these limitations. There are three 
principal limitations, which can be described as follows: 

 
(1) The Local Approximation: Most of the papers dealing 

with the linear theory have assumed that the magnetic field  
is in the z-direction and that the wave propagates in the 

azimuthal (y-) direction, with the mode structure e[i(k y  − ωt)].  
 

This is then of the “flute-mode” type. The mode frequency ω 
may be complex, signifying temporal mode growth. Notably, 
the radial structure of the mode, along the plasma density 
gradient in the x-direction, is neglected. Such neglect of the 
radial structure of the mode is called the local approximation. 

(2) The Electrostatic Approximation: It is commonly  
assumed that the charged particle density fluctuations both 
produce and respond only to fluctuations in the electric field. 
Fluctuations in the confining magnetic field are ignored. 
This is known as “the electrostatic approximation.” There-
fore, the fluctuating electric field {δE} is in the azimuthal 
y-direction, along the azimuthal wave vector k; the electric 
field fluctuation then is called longitudinal. 

(3) The Unmagnetized Ion Approximation: It is assumed 
that the important frequencies and growth rates are so large, 
and the mode wavelengths are so short, that the effect of the 
direct current (dc) magnetic field on the ion orbits can be 
ignored. That is, during a mode-fluctuation time, the ions 
cannot nearly complete a gyro-orbit. This is called the  
unmagnetized ion approximation. Therefore, the unperturbed 
ion orbits, which appear in the linear theory, are just straight-
line orbits. 

 
Attempts to relax these three restrictions will be summa-

rized at the end of this subsection. With these three restric-
tions in force, the dispersion relation for the mode is derived 
as follows. One starts with one of the Maxwell equations, 
Ampere’s law in the electrostatic approximation, in which 
the fluctuating magnetic field {δB} is ignored (we shall use 
cgs units here, with c being the speed of light): 
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Instead of setting ∇×{δB} = 0, the desired result could be 
achieved just by taking the divergence of Ampere’s law. The 
vector {δD} is the electric displacement vector. In terms of 
Fourier-mode amplitudes, this equation becomes 
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The superscript “(1)” means that the Fourier-mode amplitude 
corresponds to a first-order small perturbation. The {δD} is 

analyzed into its Fourier amplitudes ),()1( ωkDy , and the 

fluctuating electric field {δE} is analyzed into its Fourier 

components ),()1( ωkEy . We have used the fact that the 

electric displacement component ),()1( ωkDy  is related to the 

electric field component ),()1( ωkEy  through the dielectric 

function ε(k, ω). 
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In order that the mode amplitude in Equation (134) be 
nonzero, the dielectric function must vanish: 

 
 0),( =ωε k  (135) 

 
This equation constitutes the dispersion relation that  
determines the real part of the mode’s frequency Real(ω) and 
growth rate, which is the imaginary part, Imaginary(ω) = γ, 
in terms of the azimuthal mode wave number k. It is found 
that the growth rate of the LHD mode is maximized at a 
characteristic value of k, which is near the reciprocal of the 
electron thermal gyroradius 1/ae. The specific form of the 
dielectric function is to be obtained from the linearized 
small-amplitude dynamics of the electrons and the ions.  

It is convenient to express Equation (135) in terms of the 
electric susceptibilities of each charge species, χe(k, ω) and 
χi(k, ω). Then Equation (135) reads 

 
 0),(),(1 =ωχ+ωχ+ kk ie  (136) 

 
The χe and χ i can be formally obtained from the particle 
species conservation equations and the relation of species 
current densities to the fluctuating electric field. Ultimately, 
these formal relations must be given substance by means of 
the Vlasov dynamical equations for the velocity distribution 
functions of each charge species; this shall be done in the 
next Subsection 3.3, but only for χi(k, ω). It will be seen that, 
because of Equation (136), only χi needs to be used to obtain 
the anomalous resistivity in the quasi-linear version of the  
nonlinear evolution of the mode. 

 Of course χe also must be known to obtain the dispersion 
relation Equation (136) in the linear theory. In the unmagne-
tized ion model χe is much more complicated than χi  
because the electrons sense the dc magnetic field while the 
ions do not. Therefore χe will not be derived here. The  
detailed expression for χe may be found in the paper of 
Davidson and Gladd (Ref. 18). Reference 18 also contains 
background references to the LHD instability. 

The electric susceptibilities, χe and χi, are now related to 
the species polarizabilities, αe and αi, in order to indicate how 
the Vlasov equations for the species dynamics enter the pic-
ture. From the continuity equation for each charge species “s,”  

 

 { } { }δ
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t s
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q
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J

 (137) 

 
Here, {δns} is the number density fluctuation of a species, 
{δJs} is the current density fluctuation of the species, and 
the particle charge of the species is q (q = q for ions and  
q = –q for electrons). The negative charge of the electron 
will be explicitly indicated –qe; thus qe itself is a positive 

quantity. In terms of Fourier amplitudes, the above charge 
conservation equation can be written as 
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but the Fourier amplitude of the current density fluctuation  
is related to the Fourier amplitude of the electric field  
fluctuation by the electrical conductivity σs for that species, 

namely ( ) ( ) ( )ωωσ=ω ,,, )1()1( kEkkJ yssy . The charge-density 

Fourier amplitude of each species is then given by   
 

( ) ( ) ( )(1) (1) (1), , ( , ) ,s s s y s y
k

n k q E k k E k
 ω = σ ω = α ω ω ω 

 (139) 

 

where αs = (k/ω)σs is the polarizability of species “s.” That 
is, polarizability is the ratio of the charge density fluctuation 
of species “s” to the electric field fluctuation. This ratio can 
be calculated by solving the Vlasov equation, as will be 
carried out for ions in the next subsection. 

The Vlasov equation (the collisionless Boltzmann equa-
tion), is merely a statement of conservation of particles in 
position-velocity phase space. 

We can now return to Ampere’s law expressed in terms of 
explicit currents and electric fields, instead of using the 
electric displacement vector. This allows the derivation of 
another equivalent form of Equation (136). Ampere’s law in 
the electrostatic approximation is 

 

 { } { } { }EJB δ
1

δ
4

0δ tcc
∂





+






 π==×∇  (140) 

 

The divergence of this equation, even keeping ∇ × {δB}, 
reduces to Poisson’s equation relating the divergence of the 
electric field to charge density when charge conservation is 
invoked. It is actually unnecessary to set ∇ × {δB} = 0, 
provided that only the electrostatic fluctuations are allowed 
to have an effect within the model. 

The equation for the Fourier amplitudes then reads 
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Use of the conductivity relation ( ) ( )ωωσ=ω ,,),( )1()1( kEkkJ yssy , 

and multiplication by ik/ω and then dividing by k yields 
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Comparing Equations (142) and (136), the susceptibility is 
related to the polarizability of species “s” by 

 

 ss k

i α





 π=χ 4  (143) 

 

recalling that αs is the ratio of the charge density fluctuation 
of the mode to the electric field fluctuation in the mode. Use 
in Equation (143) of the expressions for αs (s = e, i) obtained 
from the Vlasov equation, and then use of χs in Equation 
(136), yields the specific dispersion relation. This dispersion 
relation provides values of complex ω for given azimuthal 
wave number k.  

The results of this dispersion relation must be obtained 
numerically and presented graphically, as is done in the 
paper of Davidson and Gladd (Ref. 18). All three of the 
approximations mentioned above were invoked in Refer-
ence 18. However, analytical results for growth rate max-
imized over k do become available when Te << Ti. These 
results of the linear theory are summarized below, and are 
utilized in the nonlinear (quasi-linear) theory in the next 
subsection. Moreover, it conveniently turns out that the 
numerical results are not greatly changed when Te = Ti, as is 
apparent from the numerical results in Figures 2 and 3 in the 
paper of Davidson and Gladd (see also Refs. 19 and 22). 
Thus, the results presented here are not greatly sensitive to 
the electron-ion temperature ratio. 

At the wave number for which the LHD-mode growth rate 
γ is maximized, and when Te << Ti, one has 
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Here, Vd is the azimuthal current drift velocity in the  
macroscopic rest frame of the ions, Vth i is the ion thermal 

velocity ii mT2 , and ae is the thermal electron gyroradius. 

Also, ωLH is the lower hybrid gyrofrequency ce ciω ω . The 

results in Equation (144) were obtained in the regime  
Vd < Vth i. This proves to be the regime of interest, based on 

the earlier calculations of the ratio 1<δia , presented at the 

end of the subsection on the initial width of the plasma-field 
mixing layer. 

Note that in this regime the LHD mode is destabilized 
(γ > 0) at arbitrarily small current drift velocities Vd. This 
small drift-velocity condition corresponds to arbitrarily 
broad density gradients. That is because when Te << Ti,  
the drift-to-ion thermal velocity ratio becomes 

niid xaVV 5.0th = , where ai is the thermal ion gyroradius 

and nnx xn ∂= −11  is the reciprocal gradient length (xn is 

the quasi-radial length of decay of density). However, the 
apparent ease with which the mode is destabilized proves to 
be an artifact of the unmagnetized ion approximation, as 
shown in Reference 19. Nevertheless, within the context of 
plasma propellant flow in the magnetic nozzle, Equa-
tion (144a) yields an effective cutoff at which the mode loses 
importance for the production of microturbulent resistivity.  

To make such an estimate relevant to space-vehicle  
propulsion, we note the following parameter values. A  
hydrogen ion gyroperiod would be of order 0.1 μs, whereas a 
characteristic longitudinal transit time for propellant to 
traverse a 1-m nozzle would be of order 10 μs. On that basis, 
a growth rate smaller than about 0.01 ωc i should be ignored 
for practical purposes.  

For hydrogen plasma propellant with Te << Ti, the effec-
tive limiting width of the plasma-field mixing layer is esti-
mated from Equation (144a) to be about 20 ion gyroradii, 
which actually proves to be in good semiquantitative agree-
ment with the Freidberg-Gerwin cutoff (Ref. 19). For 
Te = Ti, Reference 19 would predict about 12 ion gyroradii in 
hydrogen plasma. This degree of agreement comes from the 
circumstance that, in the solutions of the LHD dispersion 
relation allowing for magnetized ion gyroresonances, the 
growth-rate envelope of the individual ion gyroresonances is 
in good agreement with the theory having unmagnetized 
ions. Unfortunately, this condition for effective LHD-mode 
stabilization would imply at least about 10 cm of radius 
having plasma attached to magnetic flux. It should be  
remembered that this result is burdened with the three  
approximations mentioned earlier. 

We end this subsection with an account of attempts to  
relax the three modeling restrictions. Gladd, Sgro, and  
Hewett investigated the local approximation both analyti-
cally and with computer simulation in Reference 20. The 
simulation was based upon a so-called hybrid model using 
particle ions and fluid electrons. Self-consistently treating 
the radial structure of the eigenmodes in a nonlocal  
model, they found that, while not perfect, the local  
approximation still provided fairly accurate quantitative 
results. These are graphically compared with the exact 
results. While their model was comprehensive, their  
investigation had only a limited scope and left untreated 
other important aspects of edge-plasma stability (such as 
β effects and gradient-width effects) that are relevant to 
the magnetic nozzle application.  
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Drake, Huba, and Gladd addressed the accuracy of the 
electrostatic approximation for the LHD instability within a 
full electromagnetic treatment in Reference 15. In a linear 
theory, they found that gradually increasing local β had the 
effect of relegating the LHD instability into the ion-cyclotron 
realm. For a local β value below about 1.5, the growth rate 
of the mode is still somewhat larger than 0.01 ωc i, and so it 
would still have some relevance to the space-propulsion 
applications of the magnetic nozzle considered in this report. 
As the local β is further increased up to 2.0, however, the 
growth rate suddenly takes a steep dive down towards very 
small values that have absolutely no relevance. These results 
from a full electromagnetic treatment are important for 
magnetic nozzle applications because in the plasma-field 
mixing layer the local β ranges from very small out in the 
magnetic field region to very large in the plasma region. 

A few remarks are in order here, to provide a perspective 
on the finite-β results of Reference 15. First, the finite-β 
mechanism that reduces the growth rate of the mode is the 
absorption of wave energy by those electrons resonant with 
the wave in virtue of their grad-B guiding-center drift. This 
means that those particular electrons can be knocked  
out of resonance by collisions, and the wave can then be 
collisionally destabilized. This possibility deserves further 
examination within the context of the magnetic nozzle appli-
cation. Second, Reference 15 utilized the local approxima-
tion. However, an understanding of the edge plasma in the 
magnetic nozzle requires a nonlocal treatment of the radial 
mode structure all across the edge plasma that also takes into  
account the presence of a large radial variation of β. Third, 
the calculation in Reference 15 was not self-consistent  
because the ions were modeled as unmagnetized even though 
the LHD mode was degraded into the ion-cyclotron regime 
by β exceeding 1. Thus, it seems that there is still some 
relevant work to be done in the area of linear theory—
oriented to the magnetic nozzle application—that includes 
electromagnetic effects, collisions of electrons with ions, 
nonlocal mode structure, and ion orbits that sense the  
ambient magnetic field. E.Y. Choueiri (Ref. 21) studied a 
type of instability closely related to the LHD but that has a 
component of wave vector along the magnetic field. This is 
called the Modified Two-Stream instability in its low-
temperature form, and it is called the Electron Acoustic 
instability (in Soviet journals) in its high-temperature form. 
In his thesis, the instability is modeled as drift driven by 
external electric fields without the presence of plasma gra-
dients. However, in his development of the theory for appli-
cation to coaxial plasma thrusters, Choueiri included 
electromagnetic effects (hence non-zero β) and electron 
collisions. His treatment is analogous to the local approxima-
tion of the LHD instability and also is limited to unmagne-
tized ions. 

Finally, Freidberg and Gerwin (Ref. 19) addressed the 
unmagnetized ion approximation. By taking into account the 
effect of the ambient magnetic field on the ion orbits, it was 

found that there is a continuous transformation of the LHD 
instability into the Ion Cyclotron Drift instability. This trans-
formation occurs as the ratio ( ) niieid xaTTVV += 15.0th  

decreases, hence as the gradient broadens. The absence of an 
instability cutoff at low drift velocities, found in the unmag-
netized ion approximation, is thereby corrected. For deute-
rium plasma, the instability is stabilized when the gradient 
width exceeds 17ai, and it is stabilized at about 12ai for 
hydrogen plasma, which implies, as earlier, an undesirably 
large fraction of plasma attached to magnetic nozzle flux. A 
note of caution is that Reference 19 still relied on both the 
local approximation and the electrostatic approximation. 
Hence, as mentioned above, a comprehensive linear theory 
free of approximations and oriented to the magnetic nozzle 
application would still be useful. 

Huba and Ossakow (Ref. 22) clarified the role of colli-
sions in the LHD instability, especially as regards its transi-
tion into the Ion Cyclotron Drift instability at low drift 
velocities. They showed that even a very small amount of 

ion collisionality, me/mi < νi/ωc i < ie mm , destroyed the 

ion-cyclotron resonance features. The parameters of interest 
lie near the low-collisionality end of the indicated range. The 
ion-resonance features become smoothed out by occasional 
ion collisions into behaviors that make the instability appear 
as if it were the LHD instability with unmagnetized ions. In 
this manner, the LHD instability acquires more significance 
than previously anticipated, within the low-drift regime. It 
should be emphasized that the linearized model of Huba and 
Ossakow is electrostatic, hence strictly valid only for β = 0. 
One can speculate that if the same results proved to be true 
for the electromagnetic case, then the finite-β, linearized 
theory of Drake, Huba, and Gladd (Ref. 15), with unmagne-
tized ions, would also accrue more validity. 

 3.3 Quasi-Linear Evolution of LHD Instability and 
Anomalous Resistivity 

Several nonlinear hypotheses have been advanced for the 
saturation level of microturbulent fluctuations arising from 
the LHD instability in magnetoplasma gradients. The satura-
tion level of those fluctuations, in turn, determines the mag-
nitude and parameter dependence of the anomalous 
resistivity ηa within those gradients. The various saturation 
hypotheses have been enumerated, with references, in the 
paper of Gladd, Sgro, and Hewett (Ref. 20), and in Brackbill 
et al. (Ref. 14). Those hypotheses will be briefly summarized 
in the subsection following this one, 3.4 “Alternative Models 
for Saturation of LHD Microturbulence.” 

The main purpose of this subsection, however, is to  
review the second-order, single-mode, quasi-linear hypothe-
sis, as the development of this particular model is easy to 
understand. Moreover, an expression is thereby arrived at for 
ηa, which—surprisingly—is essentially the same as the 
results of other models, as well as those of some simulations. 
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It is understood that all calculations are being done in the 
local longitudinal reference frame of the edge plasma. The 
result of the quasi-linear model for ηa, which is in essential 
agreement with an electromagnetic simulation described in 
Reference 14 except for the β dependence, will be compared 
with classical resistivity. (There is a difficulty of interpreting 
the simulation in (Ref. 14) with regard to the β dependence 
of ηa, which is provisionally obviated by simply taking β of 
order 1 in the plasma-field mixing layer.) 

We begin with the Vlasov equation for the electron com-
ponent of plasma. The effect of the ambient static magnetic 
field on the electron orbits must be taken into account. (In 
the electrostatic approximation, the electrons do not respond 
to fluctuations in the magnetic field.) Coulomb collisions of 
electrons are neglected for simplicity. This equation for the 
electron distribution function fe(re, ve, t) reads as follows: 

 

 
d

f f 0
dt e et

  ∂ + ∇ ⋅ =  
  

Η
Η

 (145) 

 
Here, the state of a particle is represented by a point in six-
dimensional phase space H, symbolized as follows by the set 
of mutually independent position and velocity variables: 

 

 ( , )e e= r vΗ  (146) 
 

In Equation (145), the formal time-rate-of-change of those 
variables, as if along an orbit (although not), is defined here 
by 
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The acceleration ae of an electron particle is given in terms 
of electric field E and magnetic field B, in cgs units, by 
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Note that electric and magnetic fields E and B in Equa-
tion (148) depend on particle position re but not on particle 
velocity ve. In Equation (145), re and ve constitute mutually 
independent variables in phase space, and they also are 
independent of the time variable t.  

For purposes of the particle-continuity interpretation of 
Equation (145), which involves interpretation of the phase-
space divergence operator, ve in the first component of 
Equation (147) is considered to be a vector directed within 

r-space, and ae in the second component is considered to be 
directed within v-space. Accordingly, the phase-space diver-
gence operator in Equation (145), namely ∇H ⋅ [(dH/dt)fe] = 
∇r ⋅ [(dH/dt)fe] + ∇v ⋅ [(dH/dt)fe], is to be applied to the 
respective components of dH/dt, as defined in Equa-
tion (147). This procedure is described in detail below.  

The distribution function fe, which is to be determined by 
the partial differential Equation (145), is the phase-space 
distribution function of the electrons, fe(H, t). This function 
is the number of electrons per unit phase volume at the point 
H = (re, ve) at time t. That is, fe(H, t) is the number density 
of electron particles in phase space. The flux of electrons 
through phase space is just [(dH/dt)fe], the first component 
of which (see Eq. (147)) is the particle flux through ordinary 
space, and the second of which is regarded as the flux 
through “velocity” space.  

Now consider a fixed element of phase volume, vr 33 dd , 

at phase point H. Consistent with the above description of 
electron flux through phase space, the spatial divergence 

3 3(  f )d de e r v ∇ ⋅
 r v  signifies the rate at which electrons 

leave “ordinary-volume” element d3r; likewise, the velocity 

divergence 3 3(  f )d de e r v ∇ ⋅
 v a  signifies the rate at which 

they leave “velocity-volume” element d3v. The sum of these 
rates constitutes the total rate of egress of electrons, −∂t fe

vdrd 33 , away from the combined volume element, 

vdrd 33 . This rate balance is encapsulated in Equation (145), 

which thus signifies the local continuity of a gas of particles 
in phase space. Equation (145) closely resembles the equa-
tion of local mass continuity in ordinary fluid dynamics.  

Since re and ve are regarded as mutually independent  
variables, the first part of the divergence operator reads as 

 
 ( )f fe e e e∇ ⋅ = ⋅∇r rv v  (149a) 

 
The second part of the divergence operator is 

 
  ( )f fe e e e∇ ⋅ = ⋅∇v va a  (149b) 

 
Equation (148) for the particle acceleration, ae, was utilized 
in Equation (149b). A detailed justification of Equa-
tion (149b) uses the fact that E and B in Equation (148) 
depend only upon re and not on ve; and also uses the fact that 
∇v ⋅ (ve × Bfe) = ve × B ⋅ ∇v fe + fe ∇v ⋅ (ve × B) = ve × B ⋅ ∇v fe + 0. 
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Now using Equation (149) and ∇H ⋅ [(dH/dt)fe] = ∇r ⋅ [(dH/dt)fe] 
+ ∇v ⋅ [(dH/dt)fe], the Vlasov Equation (145) for the electron 
distribution function can be written as follows: 
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Equation (150) is the conventional form of the Vlasov  
equation for the electron phase-space distribution function. 
Collisions of electrons with electrons and with ions are 
neglected. Replacing eq m−  by iq m , it becomes the 

Vlasov equation for the ion phase-space distribution func-
tion. We now present the quasi-linear formulation of the 
microturbulent resistivity of the magnetoplasma, called 
anomalous resistivity, as it cannot be described in terms of 
coulomb collisions of electrons with ions. 

First, the anomalous resistivity of the plasma, ηa, will be 
formulated in terms of the electric-field fluctuation energy 
by taking the statistical ensemble average of Equation (150) 
averaged over a large number of systems, identical but for 
the indeterminate phase of the LHD wave. The indeterminate 
phase of the wave is due to the fact that there is no preferred 
point in azimuth from which the wave should originate, nor 
is there a preferred point in time at which the wave should 
suddenly appear. That is, the unperturbed configuration is 
uniform in the y-direction and uniform in its static behavior 
in time. The phase of the wave is here regarded as a random 
variable, which is present in the form of a complex exponen-
tial phase factor implicitly attached to the Fourier amplitudes 
associated with the wave.  

Second, the saturation level of the electric field fluctua-
tions, which determines ηa, will be estimated from energy 
balance as in the paper of Davidson and Gladd (Ref. 18). A 
very important refinement of that early energy balance  
argument then becomes necessary, as was later pointed out 
by Davidson (Ref. 23). 

Ensemble-averaged quantities are represented by brackets: 
for example, { }fff δ+=  and { }n n n= + δ . The ensem-

ble average of the Vlasov Equation (150) can then be written 
as follows: 
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In the electrostatic approximation, the magnetic fluctuation 
{δB} has been ignored. Note that the ensemble-averaged 
distribution function f  depends upon the averaged prod-

uct of the linear fluctuations on the right-hand side. We will 
now define n  = “ensemble averaged number density,” and 

ev  = “ensemble-averaged electron velocity.” Also eP  

will represent the ensemble-averaged electron pressure.  
Multiplying Equation (151) by meve and integrating over 

all velocity space,  ev3d , that equation becomes 
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The second term is the divergence of a symmetric tensor.  
We have used the velocity moments of the distribution  

function, namely 3f dn v=  , 3f de en v= v v , 

and { } δ=δ vn ee
3df . Note the ensemble average of ne is 

quasi-neutral. We have also used the moment that defines the 
electron pressure tensor; that is not written down. The pres-
sure tensor is assumed here to be a scalar (neglect of electron 
viscosity). These moment integrals extend over all of veloc-
ity space.  

It is important to realize that the quantities n  and ev  

are not simply the macroscopic density and electron velocity 
of the static, perturbation-free configuration, but that they 
embody as well the additional average effects of the second-
order products of the fluctuations. The macroscopically 
smooth electron pressure Pe also includes both thermal and 
fluctuation contributions that have been averaged over, but it 
turns out that these detailed considerations regarding the 
pressure do not complicate the following discussion. 

We suppose that the macroscopic ensemble-averaged sys-
tem only has radial gradients ∂/∂x perpendicular to the 
z-directed magnetic field, and that ev , the electron current 

velocity, is in the azimuthal (y-) direction. Then the 
y-component of Equation (152), which is the macroscopic 
y-momentum equation, reduces to the following: 

 

 ( ) { }{ }yeyeyet EnqEqnvnm δδ−=+∂  (153) 

 

Here, {δne} is a real electron density fluctuation, which is 

related to the complex wave-Fourier amplitude ( )ω,)1( kne  

and its complex conjugate ( )ω,*)1( kne  as follows:  
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 { } )( )1()1(
2
1 ∗+=δ eee nnn  (154a) 

 
Likewise, 
 

 { } ( )*)1()1(
2
1

yyy EEE +=δ  (154b) 

 

As mentioned earlier, a random phase factor ranΨie  is  
implicitly assumed to be incorporated in the complex Fourier 

amplitudes ( )ω,)1( kne  and ( )ω,)1( kEy  in Equation (154).  

Consequently, in the phase-averaged second-order product 

{ }{ }ye En δδ  in Equation (153), only the cross terms 

( ))1(*)1(*)1()1(
yeye EnEn +  survive the average because the factor 

ranΨie  cancels. The remaining terms are ( )*)1(*)1()1()1(
yeye EnEn + , 

which after averaging, produce the factor ( ) 02cos ran =ψ . 

This description of the averaged contribution to { }{ }ye En δδ  

is correct even when allowing for the fact that the wave fre-
quency ω = Real(ω) + iγ is a complex quantity. 

Therefore, the right-hand side of Equation (153) can be 
written as follows: 
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1
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+−=δδ−
 (155) 

 
However, from the equations for the electron polarizability 
αe and electron susceptibility χe, from Equations (139) and 

(143), respectively, ( ) )1()1()1( 4 yeyeee EikEnq χπ=α=− . 

Therefore, 
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  (156) 

 
The averaged fluctuation energy density in the real electric 
field fluctuations may be calculated in terms of its com-
plex Fourier amplitude in the same manner as described 

above. One easily finds { } *)1()1(
2

12
yyy EEE =δ . Then 

Equation (156) can be reexpressed in terms of the real elec-
tric field fluctuation energy density. Equation (156) becomes 
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π

δ
χ=δδ−

 (157) 

 
The averaged energy density in the fluctuating electric field 

has here been defined by { }{ }πδ= 82
fl y
E EW . 

Now, in the LHD fluctuations, the electron susceptibility 
χe(k, ω) is a very complicated object because the electron’s 
orbit senses the magnetic field. Fortunately, in the quasi-
linear theory, ω and k of a mode are still regarded as being 
related by the dispersion relation. It is expressed in Equa-
tion (136), which implies 

 

 ( ) ( )ie χ−=χ ImaginaryImaginary  (158) 

 
The ion susceptibility χi is easy to calculate when the ions 
are unmagnetized because of the short time scales (so ions 
make straight-line (degenerate) orbits only). Use of Equa-
tion (158) in Equation (157) and the latter in Equation (153) 
yields the macroscopic azimuthal electron momentum equa-
tion in the form 

  

 

( )
( ) fl2 Imaginary

t e y e y

E
i

m n v n q E

k W

∂ +

= − χ
 (159) 

 

We will now calculate χi from the Vlasov equation for the 
ions. 

In the macroscopic rest frame of the ions, neglecting the 
influence of the static ambient magnetic field as well as of 
magnetic fluctuations, the Vlasov equation for the ion phase-
space distribution function fi(r, v, t) reads 

 

 

f f f 0t i i i
i

q

m

 
∂ + ⋅∇ + ⋅∇ = 

 
r v

E
v

 

(160) 

 
In Equation (160), fi(r, v, t) is the ion phase-space distribu-
tion function described earlier in this section. It represents 
the time-dependent number density of ions at position ri, and 
the time-dependent number density per velocity volume at 
velocity vi.  

In the presence of plasma fluctuations, fi naturally splits 
into a time-independent part that is not directly dependent 
upon the fluctuations, and a part {δfi} that directly partici-
pates in those fluctuations. Moreover, {δfi} can be Fourier 
analyzed (expanded in microscopic plane waves) as follows: 
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{ }  ω−⋅ω=δ
k

krkkkvr ))(()1( ))(,(),,( ti
ii eftf  (161) 

 
The quantity ))(,()1( kk ωif  is called the Fourier amplitude 

or the Fourier coefficient of {δfi(k,ω(k))}. In this Fourier 
expansion, the complex frequency ω(k) is related to the 
wave vector k via the dispersion relation. (The dispersion 
relation is the outcome of self-consistently applying the 
plasma dynamical equations together with Maxwell's elec-
tromagnetic equations.) In the present instance, we focus on 
those microscopic waves that possess only an azimuthal 
dependence (dependence on the y-coordinate). 

The linearized equation for the fluctuations then reads 
 

{ } { } { }

{ } ( )

eq

(0)

f f f
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t i ii
i

i
i

q
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q
f k

m

 
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 
 δ

= − ⋅∇ ω  
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r v

v

E
v

E
 (162) 

 
In the macroscopic rest frame of the ions the ion pressure 

is electrostatically confined, so the equilibrium electric field 

in the quasi-radial (x-) direction is 1
eq ( )( )i xE T q n n−= ∂ . 

Moreover, the third term in Equation (162) is on the order of 
(qEeq/miVth i){δfi} with Vth i the ion thermal velocity, Vth i = 

ii mT2 . The second term in Equation (162) is on the order 

of (k Vth i){δfi,} where k is the mode wave number. There-
fore, ratio of the third term to the second term proves to be 

~1/(2kxn), where the gradient length is )(1 1 nnx xn ∂= − . 

For the LHD modes of interest, kai > 1, where ai is the thermal 
ion gyroradius. Actually, k is rather larger than 1/ai; kae ~1. 
Therefore, kxn >> 1; and so the ratio of the third term to the 
second term in Equation (162), 1/(2kxn), is a very small 
number.  

Accordingly, we neglect the third term in Equation (162) 
and also use the local approximation for an electrostatic 
mode with wave propagation in the azimuthal y-direction. 
Equation (162) then becomes 
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f f i

t i y i y i y
i y i

f kq
v E

m v

 ∂ ω   ∂ δ + ∂ δ = − δ   ∂   
 (163) 

 

For a Fourier-mode e(i k y  − iωt), this equation relates the 
Fourier amplitudes (corresponding to a first-order small 

perturbation) ( )ω,)1( kfi  and ( )ω,)1( kEy . 
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i f ikv f E
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 ∂   − ω + = − 
 ∂   

 (164)

  
The solution for the Fourier amplitude ( )ω,)1( kfi  of the 

ion’s perturbed distribution function {δfi} is then 
 

 ( )
(0)(1)

(1) ,
y iy i

i
i y i

f vEq
f k i

m k v k

∂ ∂
ω =

− ω
 (165) 

 
Notice that for an unstable mode, ω has a positive imaginary 
part and therefore the denominator does not vanish. A near-
resonant ion-particle response to the fluctuating fields arises 
when the unperturbed particle velocity vy i has a value such 
that the denominator in Equation (165) almost vanishes. 
Such resonances also can occur for the electrons, although 
the electron denominator is more complicated, including the 
electron gyrofrequency along with various electron guiding-
center drifts in the unperturbed orbits. The electron reson-
ances can be nonlinearly broadened and are then thought to 
provide a mechanism of saturation of the microturbulence, as 
will be discussed below. 

By calculating the Fourier amplitude of the ion number 
density, as given by 

 

 
( )(1) (1) 3, di in k f vω =   (166) 

 

we can calculate the polarizability ratio (1) (1)
i yiqn Eα = , 

and then the susceptibility ki ii απ=χ 4  from Equa-

tion (143). The integration in Equation (166) extends over all 
of velocity space. 

In carrying out the calculation indicated by Equa-
tions (165) and (166), we shall assume that the equilibrium 
distribution function of the ions is Maxwellian: 
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th(0)
eq, i iv Vi
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V
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  (167) 

 
where iii TmV 22

th =− . We have used and will be using 

2
due u

∞ −
−∞

π =  . The constant in front of the gaussian 

exponential in Equation (167) is such that 

( ) eq
3)0( d)(, nvvkfi =ω .  
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The calculation of the Fourier amplitude of the ion density 
fluctuation in Equation (166), from Equations (165) and 
(167), is uneventful and a bit tedious. The result only is 
written here: 

 

 ( )
2(1)

eq(1)

ph
, d

u
y

i
i

E nq u e
n k i u

T k u V

−∞

−∞
ω = −

−π   (168) 

 
The complex normalized phase velocity is given by 

2
ph th( ) iV k V −= ω , where iii TmV 22

th =−  with Vth i being 

the ion thermal velocity. By subtracting and adding Vph in 
the numerator of the integrand, the expression in Equa-
tion (168) can be put into a more convenient form: 
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th th
, 1 Z
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Eq
n k i n

T k kV kV

    ω ω    ω = − +
          

(169) 

 
where the so-called plasma dispersion function Z(ζ) is  
defined by 
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 (170) 

 
in which ζ is taken to have a positive imaginary part. Note 
that ikVthω=ζ  is the independent variable of Z(ζ) and 

that Vth i in Equation (169) is the ion thermal velocity, 

ii mT2 .  

The ratio (1) (1)
i yiqn Eα =  is available from Equa-

tion (169). Then ki ii απ=χ 4  can be written as follows: 
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th thth

2 1 Z
pi

i
i ii

kV kVk V

    ω ω ω    χ = +
        

 (171) 

 
The square of the ion plasma frequency has been introduced; 

thus, 2 2
eq4pi in q mω = π  in cgs units. 

Returning now to the phase-averaged azimuthal momen-
tum equation of the electrons (Eq. (159)), we suppose that 
there is a quasi-steady state relative to the rapid microscopic 
fluctuations. The reason for this is discussed below after 
Equation (174). Furthermore, we also set 

 

 
( )y a y e a yE q n v J= η − = η  (172) 

 

which serves to define anomalous resistivity ηa. Then, from 
Equation (171), Equation (159) reduces to 

2

2 2
th thth

fl
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4 Imaginary Z
pi
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    ω ω ω    η =
        

×

 (173) 

 
Here, average electron velocity y ev  is identified with the 

azimuthal current drift velocity Vd of the electrons, in the 
macroscopic rest frame of the ions. Also, recall that the 

second-order-small quantity EWfl  is the average energy 

density in the fluctuating electric field. Thus, EWfl  is a 

second-order-small factor in the expression for the  
anomalous resistivity. The second-order distinction between 

the equilibrium number density neq in 2
p iω  in the numerator 

and the ensemble-averaged n  in the denominator is then a 

correction of no consequence for the leading second-order 
evaluation of the right-hand side of Equation (173).  

An anomalous collision frequency υa e of electrons can be 
defined as usual, for singly ionized ions, by 

2
a e am n qη = υ . We then find from Equation (173) that 

υa e is given by an expression that agrees exactly with Equa-
tion (33) in the paper of Davidson and Gladd (Ref. 18). Our 
derivation, however, differs somewhat from that in  
Reference 18. 

Equation (173) is applied the to the small drift velocity 
regime, Vd << vi, which is equivalent to the case in which the 
gradient length xn is rather larger than a thermal ion gyro-
radius. This regime is consistent with our estimate of the 
initial width of the plasma-magnetic-field mixing layer. At 
the same time, we follow Reference 18 by using an energy 
argument to obtain an upper bound for the fluctuating  

electric-field energy density EWfl . This procedure, with 

Equation (173), then yields an upper bound to the anomalous 
resistivity in the small-drift regime. 

Referring to Equation (144) for properties of the most  
rapidly growing linear mode in the low drift velocity regime, 
the real frequency Real(ω) approaches zero with Vd, and the 

growth rate γ approaches zero with 2
dV . The wave number at 

maximum growth, however, stays fixed as Vd → 0. Thus, 
ζ = ω/kVth i → 0 as Vd → 0. A simple contour integration 
then can be used to show that as ω → 0 from above the real 
axis, the Z-function in Equation (173) approaches the imagi-

nary constant value, πi . The imaginary quantity in Equa-

tion (173) Imaginary[ζ Z(ζ)] can then be evaluated to 
leading order in the low-drift regime as  
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th th th

Real
Imaginary Z

i i ikV kV kV

      ωω ω     = π 
            

 (174) 

 
In order to obtain an upper bound on anomalous resistivity 

ηa, it is noted by Davidson and Gladd (Ref. 18) (after Fow-
ler) that the energy in the fluctuating electric field can only 
be supplied by the drift kinetic energy of the electron current 
(in the rest frame of the ions). This is thought by them to be 
the only source of energy available to be converted into 
fluctuation energy. We are supposing that this drift current is 
at least momentarily sustained by the local average azimu-

thal electric field, yE , which, in turn, is induced by the 

momentary local radial expansion of the plasma across the 
longitudinal magnetic nozzle field. Therefore, the electric-
field fluctuation energy can at most be 

 

 
2

fl 2

1
eye

E vnmW =  (175) 

 

Now, Equations (174) and (175), the expression for 2
p iω , as 

well as the properties of real frequency Real(ω) and azimu-
thal wave number k are used in Equation (144). Then, after 
some cancellation, the expression for anomalous resistivity 
in Equation (173) reduces to the following simple form in 
cgs units (with ηa in seconds): 
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Here Vth i is the ion thermal velocity, and LH ci ceω = ω ω  

is the lower hybrid gyrofrequency. This expression for ano-
malous resistivity in the magnetoplasma gradient’s current 
layer constitutes an upper bound, which is limited by the 
available drift kinetic energy in the electron’s azimuthal drift 
current in the macroscopic rest frame of the ions. In view of 
our somewhat different derivation, it is satisfying that Equa-
tions (173) and consequently (176) for ηa agree exactly with 
Equation (40) in the paper of Davidson and Gladd  
(Ref. 18). The upper bound on the fluctuation-electric-field 
energy density is called the Fowler bound as discussed in 
that paper. 

It is sometimes convenient to carry out basic calculations in 
cgs units rather than mks units. When applied to resistivity, 
the cgs unit is seconds. Thus, the anomalous resistivity in 
Equations (176), (179), (196), and (198) all manifestly have 
identical dimensions of inverse frequency and hence are 
immediately recognized as being in terms of cgs units. The 
same is true as well of Equation (193) in the next subsection. 

To convert any one of these to resistivities measured in the 
mks unit, ohm-meters, multiply these expressions by 9 · 109. 

The electron collision frequency associated with ηa in 
Equation (176) proves to be  
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th2

p i d
a

LH i

V

V

 ωπ  υ =
 ω  

 (177) 

 

wherein 24i p in q mω = π  is the ion plasma frequency. 

However, a critical refinement of the Fowler upper bound 
is required, as observed by Davidson (Ref. 23). In a regime 
often encountered in magnetoplasmas, which includes mag-
netic nozzle parameters of interest here, the averaged wave-
energy density Wwave far exceeds the energy density in the 

fluctuating electric field fl
EW . This regime of interest has 

2 2
pe ceω >> ω  (or 3 · 109n >> 3 ·1014B2 in cgs units, with n in 

cm−3 and B in gauss).  
The energy density in the fluctuating electric field is only 

part of the total wave energy. It is related to the total wave-
energy density as follows, according to Reference 23: 

 

 
2

fl wave wave2
ceE

pe

W W W
 ω
 = <<
 ω 

 (178) 

 
The reason the wave energy Wwave far exceeds the energy in 

the fluctuating electric field fl
EW  is that the totality of wave 

energy includes contributions not only from fl
EW , but also 

from energy involved in the fluctuating particle motions 
themselves. The latter contribution actually proves much 

larger when 2 2
pe ceω >> ω . In turn, the electron-drift kinetic 

energy constitutes the source for the total wave energy. In 
other words, the “Fowler bound” should be supplanted by 
the “wave-energy bound.” 

Following Davidson (Ref. 23), who states (without a clear 
physical justification) that only half the electron-drift  
energy goes into the wave energy, it is apparent from Equa-

tion (178) that a factor 2 21
2 ce pe

 ω ω
   has to be inserted 

into Equation (176). Furthermore, Davidson chooses to 
express electron-drift velocity in terms of ion gyroradius in 
the limit Te << Ti; namely, Vd/Vth i = 2

1 ai/xn. Here, 

||1 1 nnx xn ∂= −  is the reciprocal radial gradient length. 

Equation (176) thereby becomes modified so as to yield a 
much smaller upper bound on the anomalous resistivity: 
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This is essentially the result stated by Davidson in the first 
section of his paper (Ref. 23). It can be shown to correspond 
to an electron collision frequency 
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 (180) 

 
scaling as ωLH, whereas υa obtained from the Fowler bound 
(Eq. (177)) scales as (1/ωLH). 

Later, the result Equation (179) will be compared with 
two published computer simulations of nonlinear evolution 
and concomitant radial diffusive transport of plasma par-
ticles. In this context, it should be noted that Davidson’s 
derivation of Equation (179) had to rely upon the three  
approximations mentioned earlier: the local approximation, 
the electrostatic approximation, and the approximation of 
unmagnetized ions. Moreover, the derivation of Equa-
tion (179) in Reference 23 does not include some other 
features that are automatically incorporated in the computer 
simulations, such as wave-wave interactions.  

3.4 Alternative Models for Saturation of LHD 
Microturbulence 

Equation (173) indicates that the microturbulent resistivity 
ηa depends fundamentally on the quantity of fluctuations 
squared in the electric field; specifically, ηa depends upon 
the average energy density (second-order small) of electric 

field fluctuations, namely, { }{ }πδ= 82
fl y
E EW . More 

complete models of quasi-linear theory include many modes, 
not just one. Alternative hypotheses have been proposed for 

saturation mechanisms for fl
EW , which include trapping of 

ions in the electrostatic wave-potential, electron resonance 
broadening, wave-wave coupling of growing waves to 
damped waves, and individual particle-orbit modification by 
the growing wave (see discussions in Refs. 14, 20, and 24  
to 27). Each mechanism has had its advocates. Within the 
realm of plasma theory, the final arbiter of the various  
nonlinear-saturation hypotheses would be a well-done com-
puter simulation with examples covering broad ranges of the 
relevant parameters. 

In this section, we provide an overview of two ion-
trapping models, one using an energy method and another 
based on a time-scale method. Ion trapping, being intuitively 
obvious, was one of the first saturation mechanisms to  
be suggested. We also summarize the results of two other 
models, which proved to be in surprising agreement with  
the wave-energy-bound model. It is understood that all  

calculations are being done in the local longitudinal refer-
ence frame of the edge plasma. Also, ions are assumed to be 
singly charged in this subsection. We then conclude this 
subsection by summarizing the results of two nonlinear 
computer simulations of LHD microturbulence, one of which 
avoids two of the approximations mentioned above and the 
other of which avoids all three. Their results for the parame-
ter dependencies of ηa bear a striking resemblance to the 
anomalous-resistivity prediction of the quasi-linear model 
with the wave-energy bound. Unfortunately, there apparently 
is as yet no definitive agreement on the value of the numeri-
cal coefficient. Moreover, this numerical information is 
needed for optimization of magnetic nozzle design, so as to 
minimize attachment.  

The idea behind the energy-based ion-trapping saturation 
mechanism is that if the traveling drift-wave potential  
accrues too much mass, the wave will be slowed and the 
synchronous dynamics that facilitates its growth will even-
tually be spoiled. The possible importance of the ion-
trapping mechanism can be estimated as follows: If the 
electric field fluctuation energy density, evaluated according 

to the wave-energy bound wave
flW  is smaller than the electric 

field fluctuation energy from ion trapping it
flW  then the 

wave-energy-bound level of electric field fluctuations will be 
reached first and will saturate. The fluctuation level for ion 
trapping then would not be energetically accessible. 

The kinetic energy of a thermal ion relative to a traveling 
drift wave of phase velocity Vph is  

 
222

th2
12

phth2
1 )1()1()( Φ−=Φ−=− iiiii TVmVVm

 

(181) 

 
where Ti is the ion temperature, and the ratio of wave phase 
velocity to ion thermal velocity is iVV thph=Φ . If the 

electrostatic potential-energy pulse experienced by a repre-
sentative co-moving ion q{δϕ} reaches the above level of 
kinetic energy, then the traveling wave potential can begin to 
drag ions along with it. The required electrostatic potential 
fluctuation {δϕ} is therefore 

 

 { } ( )21 Φ−≈δϕ
q

Ti  (182)  

 
The electric field fluctuation is related to the fluctuation of 
electrostatic potential by {δE} ≈ k{δϕ}, where k is essen-
tially the azimuthal mode wave number of the fluctuation. 
Also, the field fluctuation energy density from ion trapping 

is on the order of { } πδ≈ 8/2it
fl EW . Therefore, the electric 

field energy-density level associated with ion trapping is  
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On the other hand, the electric field fluctuation energy 
density from the wave-energy bound is (suppressing David-
son’s factor of ½) 
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 (184) 

 
The ratio of field fluctuation energy density from the wave-
energy bound (Eq. (184)) to that from the ion trapping  
Equation (183) can be written as follows, after a bit of mani-
pulation that utilizes the expressions for ωc i and ωp i: 
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As the LHD wave of interest has its phase velocity Vph = 
Real(ω)/k on the order of the drift velocity Vd to within a 
constant CII < 1 (for example, see Ref. 19, nonresonant 
case), Equation (185) will be written as 
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−
  where CII < 1 (186) 

 
In the low-drift-velocity regime of interest (but still the 

nonresonant case), 2
th

2
id VV <<  in Equation (186). This 

strong inequality signifies a gradient length xn larger than an 
ion gyroradius ai. Moreover, recall Equation (144b), which 
gives the wave number of the most rapidly growing LHD 
mode. It has the order of magnitude of k ~ 1/ae. Then, in 

Equation (186), the product 22
iak  becomes on the order of 

mi/me >> 1. Hence, the numerator in Equation (186) is 
somewhat smaller than 1, and the denominator is very large. 

It appears, therefore, that it
fl

wave
fl WW << , so that the ion-

trapping level of electric field fluctuations is not energetically 
possible in the regime of low drifts and broad gradients. 
Moreover, even in the opposite limit of a sharp gradient, 
Vd >> Vth i, ion trapping according to Equation (186) is again 
not possible. It may be that energy-based ion trapping  
becomes marginally competitive in a narrow velocity inter-
val centered at Vd ≈ Vth i. It is clear that this energy-based 
model of ion trapping requires a single dominant wave. 

There also is a different and simpler criterion for ion trap-
ping, which will be aluded to below. It is based upon a time 
scale argument rather than an energy argument. The idea is 
that if a linearly small growing wave exists with growth rate 
γ that is dominant over all other waves, then wave saturation 
occurs when the bounce frequency of an ion in the dominant 
wave potential ωbnce exceeds the linear-phase growth rate; 

thus, ωbnce > γ is the criterion. From Newton’s equation of 
motion (F = ma) of an ion in the dominant wave potential, 

one easily estimates { }2
bnce ( / )i iq m k Eω ≈ δ , where k is the 

wave number for the azimuthal direction and {δE} is the 
fluctuating electric field in the azimuthal direction. The 
critical level for ion trapping then is {δE} ≈ γ2mi/qk, where γ 
is the dominant linear-phase growth rate as given, for exam-
ple, in the collisionless case by Equation (144). A narrow 
wave spectrum is again required for this form of ion trap-
ping. The anomalous resistivity discussed in the present 
report will not be related to this particular criterion, as  
the latter may require a critical damping condition made 
possible by frequent electron collisions with ions (see dis-
cussion below regarding Refs. 25 to 27). Nevertheless, the 
time-scale-based mechanism of ion trapping cannot be defi-
nitively ruled out.  

Gary invoked electron resonance broadening as a second-
order mechanism of LHD-mode saturation. See the discus-
sion in Reference 24, and references therein where it is 
believed that, nonlinearly, a large fraction of the electron 
distribution function is brought into near-resonance with the 
waves and extracts energy from them. In the same paper, he 
also applied that technique to several other kinds of micro-
instabilities that could be expected in magnetoplasma gra-
dients confined by magnetic pressure, notably including the 
“universal instability,” an oblique mode. His calculations are 
carried out analytically, and his result for electron resistivity 
from LHD microinstabilities proves to be practically the 
same as that obtained from the wave-energy bound in  
Reference 23.  

Gary’s calculations on the LHD instability in Refer-
ence 24 are restricted within the local approximation, the 
electrostatic approximation, and the unmagnetized ion  
approximation. Also, those calculations ignore wave-wave 
coupling, as does Reference 23. Gary’s employment of 
electron resonance broadening to calculate saturation of 
turbulence and anomalous resistivity has been criticized by 
Drake et al. (Ref. 26) on the grounds that the model is  
restricted to being electrostatic.  

Gary actually finds that anomalous resistivity from the  
oblique “universal mode” (in which the wave vector is not 
perpendicular to the magnetic field) exceeds that from the 
LHD instability. However, Gary’s theory is electrostatic and 
therefore is restricted to zero β. Other work on the universal 
mode has shown that this mode is stable when β exceeds a 
few percent (possibly 14 percent). Electromagnetic theory of 
the universal instability was addressed in References 28  
to 30. We infer that the universal mode should not be of 
principal importance in the edge layer of the propellant 
wherein β is not small compared to 1 and moreover in which 
β has a large range of values. Whether the universal mode 
would be of some secondary importance in a low-density 
plasma halo extending out into the magnetic nozzle field is 
an open question. 
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Drake et al. (Ref. 26) followed the progression of “nearest 
neighbor” wave-wave couplings by means of numerical 
computation. Nearest neighbor modes are separated by the 
wave vector of the fastest growing linearized instability, 
known as the “pump” wave. The LHD waves were driven by 
resonant ions. Saturation of the resulting turbulence (k ⋅ B = 
0) was ultimately obtained by electron damping at short 
wavelengths, either by ∇B drift-resonant electrons or by 
electron collisions (electron viscosity and electron-ion colli-
sions).  

Unlike the simulation in Reference 14 that is described 
below, that in Reference 26 is not a first-principles simula-
tion. Rather, it is based upon reduced-model equations  
obtained from prior physical reasoning. Thus, there are two 
simplifying restrictions: to Te = 0 and to unmagnetized ions. 
There is also a simplification to nonlinear coupling of just 
nearest neighbor modes, which ultimately requires justifica-
tion (in their appendix) by the presence of electron damping. 
Finally, the model features the spreading of energy in mode-
space, implying the generation of a broad spectrum of modes 
that is not suitable for the phenomenon of ion trapping. On 
the other hand, the model in Reference 26 is electromagnetic; 
hence, it is valid for nonzero β. Furthermore, the authors do 
simulate examples in which Vd < Vth i, unlike the examples 
presented in Reference 14, which are restricted to  
Vd ≈ Vth i.  

From their electromagnetic standpoint in Reference 26, 
Drake et al. criticize the electrostatic electron-resonance 
broadening theory of Gary (Ref. 24) by claiming that such a 
process in an electrostatic model can only shuffle energy 
back and forth between modes without producing true dissi-
pation and concomitant saturation of turbulence. They claim 
that to produce saturation, an electromagnetic model is 
required with specific wave-particle resonances. They also 
point out that, within the electromagnetic model, magnetic 
energy effectively constitutes a very large reservoir of free 
energy, thereby invalidating the wave-energy-bound concept 
invoked in quasi-linear theory that the wave energy is  
limited by the available electron-drift kinetic energy. (Thus, 
it is implied in Ref. 26 that a resistively broadened plasma 
edge gradient can be steepened anew by the continual appli-
cation of external magnetic pressure.) 

In view of this remark, it is most interesting that the ano-
malous resistivity implied in Reference 26 has the same 
parameter dependencies obtained by Davidson (Ref. 23), 
albeit with a larger numerical factor. This result of Drake 
et al., which is not explicitly provided by them, will be  
derived now, based upon Equation (48) in Reference 26. 

The crossfield particle diffusivity D⊥ can be set within the 
context of the usual density-gradient-driven diffusion equa-
tion, namely 
 nDn ∇−= ⊥⊥V  (187) 

At the same time, one has radial force balance within the 
plasma gradient, neglecting inertia (hence, slow diffusion). 
This can be written as 
  

 1
totP c−∇ = ×J B  (188) 

 
wherein Ptot is the total plasma pressure. (It is expeditious to 
use cgs units here, with c the speed of light in vacuum.) 
Invoking the simple form of Ohm’s law, the azimuthal cur-
rent density is related to the azimuthal motional electric field 
by 

 
 ( )BVJ ×σ= ⊥

−1c  (189) 

 
These three macroscopic equations above may be easily 
combined to yield the relation between the particle diffusion 
coefficient D ⊥ and the resistivity η = 1/σ. For uniform 
temperatures of electrons and ions, that relation is 
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where the resistive diffusivity (in cgs units) is  
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Now, Drake et al. (Ref. 26) extract the following expres-

sion for the crossfield particle diffusivity from their simula-
tions, notably including the value of the numerical factor 
CDrake: 
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Here, from their Equation (48) (in Ref. 26) as extracted from 
the simulations, CDrake = 2.4. The “strange” gyroradius aes 
(“es” represents “electron-sound”) is defined by 

iei mmaa 2es = , where ai is the thermal ion gyroradius, 

ai = Vth i/ωc i. Although the Drake et al. model is electro-

magnetic, they claim no explicit β dependence for this D⊥. 
One can directly solve Equation (190) for the resistivity, 

using Equations (191) and (192) and the definition of aes. In 
turn, that result can be manipulated further, using the follow-
ing identities: 
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Also, in cgs units, we have to use the following defini-

tions (with Ptot = nTe + nTi): 
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Here, T is the temperature in ergs. 

The final result for the resistivity, now noted as the  
anomalous resistivity, η = ηa, can then be written exactly as 
follows: 
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 (195) 

 
Drake et al. (Ref. 26) sets Te = 0 in their model, as does 
Davidson in Reference 23. Except for the numerical factor, 
this expression is then identical to the zero-β expression of 
Davidson, Equation (179). After converting Equation (179) 
in terms of the current drift velocity Vd, the numerical factor 
in Equation (179) is about 7. In Equation (195) above, for 
CDrake = 2.4, the numerical factor 4πCDrake is ~30. 
 

The anomalous resistivity inferred in the Brackbill et al. 
paper (Ref. 14) discussed below again proves to be given by 
the identical expression to the above except for the numeri-
cal coefficient, provided that the ion-β factor is neglected. In 
the Brackbill et al. paper, the largest value of the numerical 
coefficient in ηa, as extracted from the simulations, is stated 
to be 0.4. Thus, the numerical coefficient in Drake et al. is 
almost 2 orders of magnitude larger than that in Brackbill 
et al. This is a significant discrepancy in view of the fact that 
the results of Drake et al. compare somewhat favorably with 
measurements on a theta pinch implosion, as will be dis-
cussed next. 

The output of Drake et al. is compared with measurements 
on theta pinch implosions performed by Fahrbach et al. 
(Ref. 27). In so doing, Drake et al. remark that it is important 
to include electron-ion collisions in the theory, which they 
do. At the same time, they emphatically maintain that their 
Equation (48) (in Ref. 26) should still be interpreted as the 
collisionless expression for D⊥ because their simulations 
show that crossfield particle transport is very insensitive to 
the magnitude of electron dissipation.  

The actual comparisons made with the experiments of 
Fahrbach et al. are not the particle diffusion coefficient D⊥ 
or the resistively broadened theta pinch profiles; rather, they 
are the shape and position of the mode spectrum and the 
amplitude of the plasma density fluctuations. The spectral 
comparisons agree very well; for example, the predicted 
down-shift in the peak of the wave number spectrum differ 
by only about a factor of 2. The fractional amplitude of the 
density fluctuations differ more, but still within an order of 
magnitude: 0.034 versus 0.014 at the lowest filling pressure 
and 0.014 versus 0.0023 at the intermediate filling pressure 
(where the greater values represent the theoreticals). (Note 
that anomalous resistivity depends on the squares of those 
fluctuation values.) At the highest filling pressure in the 
experiments, the theoretical model finds that the system is 
very close to marginal stability for LHD modes because of 
electron collisions with ions; hence it should be dominated 
by a single mode, and ion trapping should probably be  
responsible for the saturated amplitude. In fact, the experi-
mentalists invoke the time-scale-based ion trapping mechan-
ism to explain their results at all three filling pressures.  

In view of the several competing mechanisms proposed 
for nonlinear saturation, recourse to first-principles simula-
tions of the evolution of magnetoplasma gradients is useful. 
Such simulations are unbiased as to mechanisms. Brackbill 
et al. (Ref. 14) developed full-particle (both electron and ion) 
electromagnetic simulations (hence, capable of addressing 
nonzero β). The considered equilibria had Te/Ti < 1, corres-
ponding to our Equation (144) and Davidson’s case 
(Ref. 23), but the electron and ion temperatures were  
allowed to evolve self-consistently with the microturbulence. 
As in Reference 26, a major restrictive assumption was that  
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only modes with wave vectors perpendicular to the magnetic 
field were allowed. Unlike Reference 26, however, only 
examples with Vd ≈ Vth i were simulated, although this  
restriction was not required in principle. 

In Reference 14, the microturbulent behavior was simu-
lated in a self-consistent manner over the entire width of the 
plasma density gradient, so there was no local approxima-
tion. Particle orbits were self-consistently calculated in the 
ambient zero-order magnetic and electric fields as well as in 
the nonlinearly fluctuating fields produced by the particle 
motions themselves. Fluid equations were utilized in an 
intermediate time step to advance the fields. There was no 
“unmagnetized ion” approximation. The magnetic field 
profile ranged from a large external value to zero deep in the 
plasma, at the center of the current layer.  

To our knowledge, this is the only published first-
principles electromagnetic full-particle simulation of LHD-
related microturbulence in a global-configuration magnetop-
lasma gradient, from which a practical formula for the inter-
nal anomalous resistivity ηa has been extracted. A paper was 
recently published that included oblique modes, but the 
principal interest there was three-dimensional magnetic 
reconnection across the current layer; see Reference 31. The 
configuration addressed in the Brackbill et al. paper 
(Ref. 14) is relevant to the magnetic nozzle device because 
the internal plasma is confined by external magnetic pres-
sure. If no such practical formula for ηa were forthcoming, 
then simulations of microturbulence in the magnetic nozzle 
would have to be carried out in an iterative manner at many 
locations along the propellant’s flow field within a resistive 
MHD simulation, which seems impractical within normally 
available resources. 

A note of caution, however, is that the paper of Brackbill 
et al., as in related work dealing with theta-pinch implosions, 
differs in a fundamental way from the magnetic nozzle. As 
emphasized by Turchi, in virtue of the longitudinal flow of 
propellant the magnetic nozzle has “new” plasma coming 
from upstream, which is continually entering previously 
disturbed regions of the plasma gradient. Thus, broadening 
of the plasma-field interface region in the magnetic nozzle 
may differ from the results of Reference 14.  

Since Vd/Vth i ≈ 1 in the initial equilibria in Reference 14, 
it is somewhat surprising that the same parameter dependen-
cies (except for the β dependence) are inferred for the ano-
malous resistivity as are found in References 23 (Davidson) 
and 26 (Drake). However, both Davidson’s and Drake’s 
numerical coefficients in ηa are substantially larger than 
observed in the Brackbill et al. simulations.  

Data from the simulations in Reference 14 is somewhat 
sparse and exhibits significant scatter. Nevertheless, the 
overall trends of the data points from Reference 14 (which 
also include the results of earlier simulations) are consistent 
with the ηa expressions in the papers of Davidson (Ref. 23), 
Gary (Ref. 24), and Drake et al. (Ref. 26). In fact, the prac-
tical formula for anomalous resistivity in the Brackbill paper 

was inferred (with an adjustable constant) by comparing the 
parameter dependencies of the particle heating rates in the 
simulation with the second-order heating rates obtained 
analytically by Gary. (Note, however, that Gary employed an 
electrostatic zero-β model.) 

We shall write down the simulation-based formula for ηa 
as set forth in the Brackbill paper (Ref. 14), except that a 
factor 1/βi shall be suppressed. We believe that this inverse-
β factor is not well founded. The ion β is defined by βi = 

8πPi/B
2. The reasons for our reluctance to accept this β 

factor, besides its absence in equation (48) of Drake et al. 
(Ref. 26), is that the Brackbill simulation results are com-
pared with a template based upon a zero-beta electrostatic 
model, so that an inference about the beta dependence is not 
logically possible. In any event, the ion β would be of order 
1 within the magnetically confined plasma gradient. 

The formula suggested in Reference 14 for the effective 
anomalous resistivity then can be written without βi as 
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 where 0.1 < CBrack < 0.4   (196) 

 
This symbol CBrack corresponds to 4πCDrake in the Drake 
et al. discussion above. The largest value of CBrack obtained 
in the Brackbill et al. simulations was CBrack = 0.4, and the 
smallest was CBrack = 0.1. The range of CBrack was related to 
the stage of evolution of the microturbulence and concomi-
tantly of the evolving plasma gradient. When comparing this 
ηa to classical resistivity ηcl, we shall refer to the largest value 
of CBrack, 0.4. It is an open question as to what stage of evolu-
tion, in terms of Reference 14, is appropriate in the magnetic 
nozzle, as a given plasma element travels along the magnetic 
nozzle field in a macroscopic state of stationary flow.  

Reverting from the velocity ratio to the ratio of ion gyro-
radius to gradient scale length, and in the limit of small Te/Ti, 
the simulation result, Equation (196), is compared with 
Davidson’s quasi-linear result, Equation (179). Since  
(Vd/Vth i)

2 = ¼(ai/xn)2 when Te = 0, the constant CBrack in the 
first-principles simulation result Equation (196) is about an 
order of magnitude smaller than that produced by the quasi-
linear wave-energy-bound model represented in Equa-
tion (179). The simulations in Reference 14 had Ti somewhat 
larger than Te (see Table I in Ref. 14), as in Davidson’s 
analytical case (Ref. 23), so the temperature ratio probably 
cannot account for this discrepancy. The discrepancy might 
have been understandable from the expectation that spread-
ing of available energy within wave-vector space by wave 
coupling and energy loss to damped modes in the simulation 
would lead to a reduced level of fluctuations. However, 
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Drake et al. include wave coupling, yet find a much larger 
numerical coefficient for anomalous resistivity ηa than does 
Brackbill et al. 

Drake et al. (Ref. 26) pointed out that if there were a 
channel for magnetic energy to be continually converted to 
plasma energy, then the wave-energy bound used in quasili-
near theory, as limited by the electron-drift kinetic energy in 
the azimuthal current layer, would not be applicable. In 
principle, the level of microturbulent fluctuations could then 
increase beyond that value from the wave-energy bound, due 
to the essentially infinite supply of magnetic energy. In fact, 
the simulations in Reference 14 did find that magnetic  
energy was being continually converted into plasma energy. 
However, it was apparently being converted directly into 
thermal energy of the particles, rather than going into an 
increased level of microturbulent fluctuations. This result is 
understandable from the point of view that continually  
applied external magnetic pressure just keeps squeezing and 
heating the plasma. 

3.5 Comparison of Anomalous and Classical 
Resistivities 

The simulation result Equation (196) will now be com-
pared with classical resistivity. However, we should be 
mindful that this may constitute an underestimate of anomal-
ous resistivity in view of the results of Drake et al., which 
have the same parameter dependence but with a significantly 
larger numerical coefficient. Moreover, the latter result 
compares favorably with some experimental measurements. 
It is understood that all calculations are being done in the 
local longitudinal reference frame of the edge plasma. 

For comparison to classical resistivity, it proves conve-
nient to rewrite the anomalous resistivity simulation result, 
Equation (196). The following identities are utilized:  
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Here, VA is the Alfven velocity. Invoking these identities, 
after some manipulation, Equation (196) can be written as 
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Here, c is the speed of light in vacuum, in centimeters per 
second. Numerical calculations of this anomalous resistivity 
shall be performed at a representative position within the 
plasma gradient.  

To evaluate the factor (VA/c) in Equation (198), we utilize 

the cgs expression, iiA mnBV π= 4 . Mass mi is assumed 

to be that of the hydrogen ion. We wish to evaluate ηa in 
Equation (198) at a representative position within the density 
gradient that constitutes the plasma-field interface layer. 
Midway within the gradient, magnetic pressure (B2/8π) is set 
to half the external magnetic (Bext ) pressure; hence, B2 = 0.5

2
extB . Also, ion number density ni is set to half the internal 

(core) number density ncore; hence, ni = 0.5ncore. Then pres-

sure equilibrium 2
extB  = 16πncoreT is invoked across the 

entire layer width for external magnetic confinement of the 
internal plasma pressure. A uniform temperature T(ergs)  

is assumed, with T = Te = Ti. The result is VA/c = 0.67 · 10−4

( )eVT , with the temperature T(eV) now measured in 

electron volts. Similarly, the electron plasma frequency in 
Equation (198) is given in cgs units by 

24p e p en q mω = π =  5.6 · 104
pn , and the plasma 

number density np in the gradient is again set to half the core 
density. Thus np = 0.5ncore. Then, from Equation (198), the 
anomalous resistivity ηa at a representative position within 
the magnetically confined plasma gradient reads as follows: 
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The ratio of current drift velocity Vd to ion thermal  
velocity Vth i actually is profile dependent. The treatment of 
this quanity is discussed below. Of course, use of Equa-
tions (196) or (198) is preferred for ηa in a resistive MHD 
simulation, so as to provide better resolution within the 
edge-plasma gradient. 

The well-known classical resistivity ηcl across the mag-
netic field (Ref. 9) due to coulomb collisions of electrons 
with ions is practically independent of plasma number  
density. If we set 10ln ≈Λ , which is typical, then ηcl will 
read as follows: 
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Both resistivities ηa and ηcl are measured in seconds in cgs 

units. Multiplication by the number 9 · 109 converts them 
into mks values measured in ohm-meters.  

Either classical or anomalous resistivity can be employed 
in a simple Ohm’s law, to relate the azimuthal current  
density in the edge-plasma gradient layer to the motional 
azimuthal electric field V × B (the cross product of quasi-
radial diffusion velocity with longitudinal magnetic field). 
Their use in the simple Ohm’s law, however, requires that 
the radial Hall voltage does not become shorted out by a 
flow of Hall current. As a practical matter, a resistive MHD 
simulation such as the MACH2 code can be set to run with 
the sum of the two resistivities. Then the dominant one will 
automatically be the effective resistivity.  

For a more systematic impression of the integrity of the 
plasma-field interface, it is of interest to describe conditions 
under which microturbulent (anomalous) resistivity is the 
larger of the two. From Equations (200) and (199), the ratio 
of classical to anomalous resistivity, where temperature T is 
in electron volts, is 
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Classical resistivity clearly dominates at lower temperatures 
and higher densities. The two are equal, however (again, 
when temperature T is in electron volts), when 
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Numerical examples for which ηcl = ηa are tabulated  
below for CBrack = 0.4 and T = Te = Ti. Our earlier analysis 
of the ion gyroradius relative to the initial interface width 

also confirmed the approximate constancy of that ratio (i.e., 
ai/xn) from breech to throat. Note xn is the characteristic 
density gradient scale length, which is defined in terms of 
the ratio of the local ion number density to the local gradient 
of the ion number density. A special derivation is needed to 
relate that ratio, ai/xn to the velocity ratio Vd/Vth i by virtue 
of the MHD equilibrium relation in the quasi-radial direction 
across the flux surfaces, within the interface layer. In this 
derivation it is assumed that the electron and ion tempera-
tures are equal and uniform. Accordingly, we have chosen 
the example Vd/Vth i = ai/xn = 1/3. 

There is a lack of precision, however, because the current 
drift velocity Vd (or also ion gyroradius ai) depends upon 
location within the plasma-field mixing layer, and also  
because its thickness δ (=xn) as a multiple of (c/ωp i) is not 
precisely known (see Appendix I). Hence, a slightly greater 
value of Vd/Vth i = ai/xn = 1/(2.5) is also considered. 

Figure 4 presents temperatures (eV) below which ηcl 

(with 10ln =Λ ) is larger than ηa (Ref. 14 with CBrack = 0.4), 

for a given ion number density (cm–3). The two values for 
the ratio Vd/Vth i are plotted. The critical temperature accord-
ing to Equation (202) is rounded to the nearest 10 eV. 

The results in Figure 4 ought to be insensitive to position 
along the nozzle between breech and throat. That is because 
density n at the throat is still about 2/3 of its breech value 
(and n1/4 is used), and temperature T at the throat is still ¾ of 
its breech value. Thus, at a hydrogen-ion number density 

1015 cm−3, an envisioned stagnation temperature of 50 eV in 
the breech would represent a condition of classical resistiv-
ity, whereas 180 to 220 eV would represent a marginal 
condition where the two resistivities are about equal. The 
220 eV range is, in fact, envisioned in a recent space-mission 
systems study (see Ref. 4). 

In view of the results of Drake et al. (Ref. 26), the reader 
should be warned of the possibility that Figure 4 may  
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wrongly downgrade the importance of anomalous resistivity. 
The critical temperatures in this figure actually depend on 

Brack1 C . If CBrack should have been 2 orders of magni-

tude larger, then the critical temperatures would be smaller 
by a factor 10. If such were the case, then the anomalous 
resistivity ηa would be totally dominant over the classical 
resistivity ηcl for most cases of interest. However, the fluctu-
ation levels predicted by Drake et al. were somewhat too 
large compared with the experimental measurements, and it 
is the squares of those fluctuation levels that determine the 
anomalous resistivity. 

4.0 Rayleigh-Taylor- (RT-) Type 
Instabilities  

In this section, we primarily examine MHD surface insta-
bilities of the flute-mode type, associated with adverse longi-
tudinal curvature of the plasma boundary. To begin with, 
however, brief consideration is also accorded the unique 
conditions in the injection region associated with the initial 
plasma impact with the confining magnetic field. 

Two distinct regions involve instabilities of the RT type. 
The usual one involves propellant flow along magnetic-field 
lines of gradual adverse curvature. An effective gravitational 
force field arises from centrifugal deceleration. In the same 
region there are separate pressure-driven modes with similar 
characteristics, but for which there is no effective gravity 
because there is no macroscopic centrifugal force field. The 
pressure-driven modes require a separate treatment, which is 
supplied below. In magnetic nozzle flow, a combined insta-
bility occurs driven both by centrifugal effects and pressure. 
Therefore, growth rates for modes of the combined type will 
also be derived. The treatment is based on surveying the 
forces acting on a plasma element as it is displaced outwards 
in a region of adverse magnetic curvature. Treatments in  
the literature appear to be more mathematical and less  
accessible.  

For these instabilities, the vulnerable regions are where 
propellant approaches the throat of the nozzle and also near 
the nozzle’s exit, where the diverging flow is redirected 
axially by straightening out the diverging magnetic field 
lines (Fig. 2). The most dangerous RT-type instabilities in 
these two regions are usually considered to be flute modes, 
with azimuthal wave vectors, because these modes do not 
bend magnetic field lines; hence, they are energetically 
easier to destabilize than oblique modes directed partially 
along B.  

The other region to consider is the nozzle entrance region 
where plasma first impacts the magnetic field. That process 
involves quasi-radial expansion of injected hot plasma (in 

the direction ( )ˆˆ B= ×x θ B ) across the nozzle magnetic 

field. The plasma’s subsequent sudden deceleration and 
redirection along B necessarily creates a propellant-flow 
streamline with sharp adverse curvature. The problem is first 
addressed in the nozzle entrance, to identify the degree of 
adverse curvature inherent in the injected edge-plasma 
streamlines. After that, the RT-type instabilities occurring 
further downstream are addressed.  

4.1 RT-Type Instabilities at Initial Impact With 
Magnetic Field  

Plasma impact at approximately normal incidence to a 
surrounding magnetic field has been studied experimentally, 
with theoretical validation, by Ripin et al. (Ref. 17). Laser-
produced plasma was generated at an aluminum surface, and 
the plasma puff then expanded across an ambient magnetic 
field. Fine-scale radial protrusions of plasma were observed 
at the plasma radius where deceleration of the plasma front 
by the magnetic field began to occur, and they were attri-
buted to RT unstable conditions of deceleration at the  
plasma-field interface. Extensions of the MHD model to 
include Hall effects (Huba, Ref. 32) improved the relation of 
observations to theory. Evolution of RT structures was fol-
lowed into the nonlinear regime, both experimentally and 
theoretically. Finite Larmor radius (FLR) effects (Huba, 
Ref. 33) were not invoked in Reference 17, possibly because 
the plasma temperature was too low for them to be relevant. 
Also, early experiments on theta-pinch implosions were 
observed in the implosion-onset phase to contain fine-scale 
radial protrusions around the circumference (McKenna, 
Ref. 34), but no detailed identification was attempted.  

In the magnetic nozzle, one might hope to mitigate RT  
instabilities by inserting propellant at grazing incidence to 
magnetic field lines, thus minimizing adverse curvature of 
the edge streamlines in the injection region. This point of 
view is adopted below. It will be seen, however, that the 
transition from oblique incidence of flow (relative to B) over 
to flow approximately along B is so sudden that the usual 
MHD model is not adequate. A more detailed model is 
needed to describe (and enable a more rigorous investigation 
of) propellant flow in the plasma-field interface layer at  
the breech region of the nozzle, which would enable RT  
instabilities. 

From the point of view of the single-fluid MHD model 
with Te = Ti, the equation governing crossfield motion of 
plasma is, in mks units, 
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This can be rewritten schematically as 
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The negative pressure gradient on the left in Equation (203a) 
has reappeared on the right in Equation (203b) as a positive 
term, and the negative resistive-drag term on the right has 
reappeared as a positive term on the left. The quasi-radial 
fluid velocity is Vx, D is resistive diffusivity, VA is Alfven 
velocity in the gradient layer, and the reciprocal gradient 

length is 111 −−− δ=∂= nnx xn . When the inertial term, 

dVx/dt, is neglected, one recovers the quasi-radial resistive 
diffusion velocity that was identified near the  
beginning of Section 2.0. The magnetic flux is assumed to 
have no give because it has already been squeezed against 
the metallic wall (coil) by the plasma, and a state of  
stationary flow has already been reached. Equation (203b) is 
to be interpreted in a Lagrangian sense of following a given 
plasma element. 

The solution of Equation (203b) is 
 

 trans trans
core (1 )t t t t

x x xV V e V e− −
∞= + −  (204) 

 
The subscript “core” now refers to the initial value of the 

crossfield velocity when the considered element of plasma 
first encounters the magnetic field at the nominal plasma-
field interface. The subscript “∞” signifies the eventual 
crossfield resistive-diffusion velocity attained at large times 
after the inertial transient has dissipated. Vx ∞ is realistically 
assumed to be very small compared with Vx core. The time 
interval over which the inertial transient lasts, ttrans, is the 
time during which there is appreciable crossfield velocity, in 
terms of the incident velocity of the plasma element. 
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=  (205) 

 
For parameters of interest, this transient lasts only a fraction 
of a nanosecond, which signifies that the macroscopic  
single-fluid MHD model is intruding into the purview of 
microphysical processes. This cautionary conclusion is 
further verified when one considers the radius of curvature 
of the trajectory of the considered edge-plasma element, 
which ordinarily would provide information relevant to 
growth rates of RT instabilities. Pursuant to calculating the 
longitudinal radius of curvature R, the distance the consi-
dered plasma element travels along B during time ttrans is 
approximately 
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valid for a shallow (i.e., grazing) angle of incidence. 

Let φB V(rad) denote the incident angle between B and V 
at the nominal plasma-field interface. Then, sin φB V ≈ φB V 
≈ Vx core/Vcore << 1. Simple geometrical considerations show 
that the radius of curvature R of the trajectory can be  
expressed approximately as 

 

 trans core A

A

z V V D
R

V
≈ =

φ φB V B V

 (207) 

 
Equation (207) shows that R is very small for parameters of 
interest in this report, although the angle φB V is  
moderately small (for grazing incidence). For example,  
R ~ 0.01 – 0.001 cm. This follows from typical values of the 
resistive diffusivity D (~104 cm2/s), and of the Alfven veloc-
ity VA (~107 cm/s), jointly producing a very small length 
D/VA. (The impacting velocity Vcore is only smaller than Vth i 
by a moderate area ratio, and Vth i ~ VA upstream of the 
throat. Hence, Vcore/VA is only moderately small.) In reality, 
“microscopic” lengths properly incorporated into a more 
complete plasma model, such as the ion gyroradius ai or the 
ion skin depth c/ωp i, both ~1 cm, would provide lower 
bounds to R. 

The single-fluid MHD model has proven inappropriate for 
a quantitative description of the initial trajectory of an edge-
plasma fluid element at “magnetic impact,” although it is 
incident at a shallow angle with magnetic flux at the inter-
face. Nevertheless, the message is clear. From a macroscopic 
point of view, the plasma element’s incident trajectory onto 
the external magnetic flux undergoes an instantaneous transi-
tion into motion practically along B, due to eddy current 
braking from electron resistivity. 

A large RT growth rate, γRT, is implied by the small  
radius of curvature of the incident trajectory, at its point of 
impact with magnetic field. But the importance of RT insta-
bilities in that region yet depends upon the time tcur during 
which the plasma element resides in the highly localized 
region of adverse curvature. The product γRTtcur determines 
the number of e-folds available for the RT instability in that 
region. The RT instabilities in the plasma-field impact region 
therefore should be examined with the use of appropriately 
detailed plasma models beyond the ordinary MHD fluid-
based model (see, for example, Ref. 35). The incident inter-
nal streamlines that impact the external magnetic flux at the 
plasma-field interface in the injection region (breech)  
unavoidably acquire a segment of severe adverse curvature 
not treatable under ordinary MHD. 
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4.2 RT-Type Instabilities Downstream From 
Injection Region 

We turn now to the topic of RT instabilities downstream 
from the injection region but upstream of the throat, where 
the cross section of the plasma shrinks to form the throat. 
There, the transition to field-aligned flow has already been 
made, and the plasma propellant streamlines near the  
plasma-field interface closely adhere to the magnetic-field 
line shape because of the high electrical conductivity of the 
plasma. Section 3.0 addressed gradient-driven microinsta-
bilities localized within the plasma-field interface, which 
cause broadening of the interface layer by resistive diffusion. 
Here, Section 4.0 addresses macroscopic instabilities that 
cause the interface to deform (to wrinkle) as an entity. This 
process of macroscopic interface deformation is a conse-
quence of instability wavelengths that are large compared 
with the width of the interface layer. The practical conse-
quence is a loss of nozzle-based control of the flow of  
propellant. 

The usual fluid-based MHD model can be applied to  
describe RT flute instabilities, provided thermal excursions 
of individual particles are short compared to characteristic 
macroscopic lengths in the nozzle. Examples of such  
macroscopic lengths are the plasma radius r, the radius of 
curvature of field lines and/or streamlines R, and long flute- 
mode wavelengths in the azimuthal direction 2π/k, with k as 
the azimuthal wave number. It is similarly required that 
times for those thermal excursions be short compared to 
macroscopic times such as longitudinal transit times and 
instability growth times (e.g., see Ref. 9). 

An example of a thermal excursion length across the 
magnetic field is the nominally small ion gyroradius, which 
takes place during a nominally short ion gyroperiod. An 
example along the field is the mean free path for ion-ion 
coulomb collisions, which transpires during a mean free time 
between ion-ion collisions. The electron mean free path is 
about the same as the ion mean free path. For cases of inter-
est here, mean free paths λ along B are several centimeters 

(for n ~ 1015 cm−3 and T ~ 50 to 100 eV) and are generally 
much smaller than meters. 

Within the core plasma, from which the nozzle magnetic 
field has been excluded by the azimuthal current layer, the 
thermal excursions are governed by just the mean free paths 
and mean free times for coulomb collisions of charged par-
ticles. Thermal excursions in the core plasma are unrestricted 
by the magnetic field, and so they take place in all directions. 
If λ is several centimeters, then not only the characteristic 
axial dimension should be at least tens of centimeters, but 
the radial dimension should be as well.  

These restrictions on thermal excursions of individual par-
ticles are meant to ensure that any given fluid element retains 
its identity (undergoes very little random thermal dispersal) 
over the relevant macroscopic lengths and times of interest 
in the device. Then the use of a fluid model makes sense. 

Sometimes, though, fluid-MHD simulations are applied to 
hot plasma configurations without raising cautions that the 
above restrictions on thermal excursions may not always be 
well satisfied. At lower densities and higher temperatures 
relative to the nominal working values of interest for this 
report, a kinetic multispecies model may have to supplant the 
basic single-fluid model of MHD. Such models have been 
developed in the magnetic confinement fusion (MCF) com-
munity, but for different purposes; nevertheless there is some 
expertise in the MCF community in global-kinetic modeling.  

In the discussion here of RT instabilities downstream 
from the injection region, we shall assume that the condi-
tions for a single-fluid model are fulfilled. An exception is 
made in Section 4.4, “Short-Wavelength Gravity-Driven 
Instabilities,” where short-wavelength instabilities that are 
related to RT physics are discussed. 

The present subsection first derives in a heuristic manner 
the RT-type instabilities in a static field-free plasma (without 
flow), confined by pressure equilibrium with the external 
magnetic field and situated within a region of adverse mag-
netic curvature. The derivation is carried out by considering 
the forces acting on a plasma element under the region of 
adverse curvature. Then the modification of the derivation to 
incorporate the longitudinal flow of propellant is presented. 
The instantaneous RT growth rate is derived at any point of 
adverse curvature along the flow, due to the combined  
effects of plasma pressure and propellant flow. Then it is 
converted to a practical expression in terms of specific  
impulse. In the course of the derivation, it will become evi-
dent that the growth rates from the two effects acting sepa-
rately actually represent two distinct instabilities.  

Finally, finite gyroradius stabilization due to collisionless 
ion gyroviscosity is used to estimate the shortest azimuthal 
wavelengths that are RT unstable. Their growth rates are 
compared with axial transit times through hypothetical  
regions of adverse curvature. On the basis of these calcula-
tions, it is recommended that the magnetic nozzle be (self-
consistently) shaped so as to have no regions of adverse 
magnetic curvature, to the extent possible. 

In the following presentation, we do not attempt to con-
sider longitudinal global effects on the structure and growth 
rates of flute instabilities, which would be induced by finite-
length regions of adverse curvature. The treatment of such 
effects actually constitutes the subject of ballooning modes, 
which is sufficiently complicated as to deserve its own spe-
cial presentation. The subject of ballooning modes in longi-
tudinally flowing plasma therefore is beyond the purview of 
the present report. However, such work was carried out 
within the quest for magnetic fusion energy by Nagornyj, 
Ryutov, and Stupakov (Ref. 36) for plasmas confined longi-
tudinally by magnetic mirrors. That configuration is closely 
related to the magnetic nozzle concept. They found that 
ballooning instabilities originating in regions of adverse 
curvature could be stabilized by the presence of nearby 
regions of strong good curvature, if such regions were suffi-
ciently loaded with plasma. (The nozzle throat and the mirror 
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throat are regions of good curvature.) Even so, they found 
that there remained residual instabilities. The results of 
Nagornyj, Ryutov, and Stupakov are not easily utilized in a 
practical manner for the problem of plasma flow in magnetic 
nozzles. That work ought to be revisited within the present 
context. Of course the entire problem could be avoided by 
eliminating regions of adverse curvature. Due to the self-
consistent modification of the vacuum magnetic nozzle field 
by the injection of hot plasma, this approach seems to imply 
that the nozzle be rather long and gradual. 

4.2.1 Surface Instability of Static Plasma in Region of 
Adverse Curvature 

We consider a static field-free plasma configuration of uni-
form pressure Ptot and mass density ρ, confined by the pres-

sure of external magnetic field B, 0
2 2μB , in a region of  

 

equilibrium adverse curvature of radius Req (the center of 
curvature lies within the plasma). This is illustrated in  
Figure 5. The plasma pressure and magnetic pressure is 
acting on the rim element of width dr (<<Req), subtending a 
very small meridian angle dφ. Those radial forces must sum 
to zero in equilibrium. The propellant velocity flow vector is 
V. Centrifugal force density (not shown) is outward, with 
magnitude ρV2/R, and R ≈ Req. Outward radial displacement 
ξ of the rim element as a whole (with dR and dφ held fixed) 
is monitored for instability growth rate.  

The forces are the pressures multiplied by their respective 
surface areas. In calculating the various surface areas of the 
rim element, the element is assumed to extend an azimuthal 
distance dy perpendicular to the plane of Figure 5. For brevity, 
dy will be suppressed in the equations. For example, the 
surface area associated with the outer arc of the rim element 
in equilibrium is just written as Req dφ, instead of Req dφdy. 
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The elongated flute mode analyzed here is energetically 

favorable because, unlike oblique modes, it does not bend 

field lines. Also, it is basically a surface perturbation, which 

has only a limited influence beneath the surface. The width 

of the rim element in Figure 5, dR, is chosen to encompass 

the range of influence under the surface. Farther below the 

surface than dR, the fluid remains practically undisturbed by 

the presence of the surface perturbation. The specific inter-

pretation of dR will be made clear below.  

In terms of Figure 5, radial forces are also vertical forces, 

to lowest order in small d . Therefore, in equilibrium, the 

total radial force dFR acting vertically on the element as a 

whole (see Fig. 5), to lowest order in d , then reads 

 

 (208) 

 

in mks units. The first term in Equation (208) is the outward 

radial (vertical) force acting on the inner arc (i.e., inner 

surface) of the rim element. The second is the radial (ver-

tical) force due to lateral pressure acting on the canted end 

surfaces of the element. The effective radial component, or 

vertical component, of lateral pressure acting on each end of 

the rim element, which is experienced by the rim element as 

a whole, is just ; the surface area of each end 

is dR (see Fig. 5). The third term in Equation (208) is the  

inward radial (vertical) force due to external magnetic pres-

sure on the outer arc (outer surface) of the rim element. The 

notation used is that B at radius R = Req is denoted as Beq.  

After canceling some terms in Equation (208), the equili- 

brium condition reduces to 

 

  (209) 

 

This condition will be utilized in the following discussion of 

the dynamical behavior of the rim element as it undergoes a 

slight displacement. 

Now consider the rim element as being displaced outward 

radially by a small distance  (see Fig. 5). Both the inner and 

outer arcs are displaced outward by distance , while keep-

ing a fixed separation dR and holding fixed the angle d . The 

plasma fluid both upstream and downstream of the consi-

dered rim element is likewise displaced in the meridional 

plane, in the elongated flute mode being discussed. In this 

connection, it is important to note that the external magnetic 

field in the vacuum region, into which the displaced plasma 

will protrude, is completely determined in the local neigh-

borhood. In particular, its R-dependence is determined.  

The local dependence of external B on R can be demon-

strated with the aid of a stream function , with B =   ( ) 

=   , and 
2

 = 0 from   B = 0 in vacuum. Here, the 

symbol 
2
 represents the two-dimensional Laplacian opera-

tor in the plane of Figure 5, and  is a locally constant unit 

azimuthal vector out of that plane. The Laplacian operator is 

expressed in local cylindrical coordinates based upon the 

local radius of curvature, and the boundary condition on B is 

applied at the equilibrium plasma surface. The salient feature 

of the vacuum magnetic field just above the plasma surface 

is that it depends locally on the radius (for small ) as 1/R, 

with R = Req + . It is important to note that the linearly 

small amplitude  is much smaller than the flute mode’s 

azimuthal wavelength out of the plane of Figure 5. 

Concomitantly, the external magnetic flux is not con-

strained to accumulate over the plasma’s outward-moving 

conducting protrusion, because the protrusion actually is of 

limited extent in azimuth (perpendicular to the plane of 

Fig. 5). The external longitudinal magnetic field lines are 

shunted azimuthally to either side of the vertically extended 

conducting surface instead of piling up on top of it, thereby 

maintaining a state of lower magnetic energy. That is why 

the external magnetic field magnitude B, just above the crest 

of the protrusion, can be taken as being undistorted by the 

presence of the flute mode. 

Consequently, the field magnitude B just above the crest 

of the protrusion is related to the field Beq at the equilibrium 

surface by  

 

  (210) 

 
The local spatial behavior of the longitudinal magnetic 

field just outside of the plasma constitutes the principal 

reason for the adverse curvature instability. As displayed in 

Equation (210), the field strength becomes locally weaker 

going away from the plasma, in the region of adverse curva-

ture. Consequently, a plasma element that is displaced out-

wards is subjected to a smaller magnetic backpressure. Thus, 

the plasma displacement continues to grow outwards. 

This critical behavior of the spatial variation of the longi-

tudinal magnetic nozzle field can be directly exhibited by 

utilizing Ampere's law, which is  in mks units. 

By means of Stokes's theorem, Ampere's law can be con-

verted to an integral representation, which reads 

. Here, the indicated loop integral is taken 

around a closed contour, with I being the net current through 

the contour. In the case being considered, the contour is 

around a wedge-shaped rectangle similar to that shown in 

Figure 5. In the present situation, however, the inner leg of  
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the rectangle lies just below the perfectly conducting sharp 
boundary, where B = 0. The outer leg of the rectangle lies a 
displacement distance ξ above the boundary, say at R = Req 
+ ξ, in the notation of Figure 5. Then the integral form of 
Ampere's law reduces exactly to BRdφ = μ0KReqdφ, where K 
is the azimuthal surface current density on the boundary. 
Thus, the field strength just beyond the boundary is B = 
μ0KReq/R, which is exactly equivalent to Equation (210). 

Although an equilibrium boundary was assumed in deriv-
ing Equation (210), the identical result for B(R) is also  
obtained when taking into account the presence of flute 
deformations of the boundary. This result will be shown 
explicitly in Appendix K. 

Our simplified physical derivation of the RT type of  
instability adapts the viewpoint of a plasma element defined 
in the meridional r,Z-plane. The forces operating on the 
plasma element are identified and summed within this plane. 
This approach highlights the role of adverse longitudinal 
curvature, which clearly must influence a mode that is  
extended along the magnetic field (flute mode).  

On the other hand, we suppress physical effects from  
cylindrical geometry associated with curvature the short way 
around. This approximate treatment is valid for small azimu-
thal wavelengths. By looking downstream at the r,θ-plane, 
one sees that a very localized (in azimuth) flute-mode crest 
can scarcely be “aware” of the cylindrical curvature. The 
only reminder of cylindrical geometry is that there be an 
integer number of wavelengths around the circumference, to 
avoid discontinuous behavior. This integer is the so-called 
azimuthal mode number M θ, and the associated azimuthal 
wave number is then  

 
 k = M θ/r  (211) 

 
where r is the cylindrical radius. 

Knowing the radial dependence of the external magnetic 
field allows us to write the equation of motion of the rim 
element in terms of its displacement ξ. The equation of 
motion reads 
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Here, ρReq dRdφ is the mass of the rim element (suppressing 
dθ), to zero order in ξ. Higher order corrections in ξ to this 
mass element are not relevant in a linear theory for small ξ 

because the acceleration in Equation (212), 22 dd tξ , is 

already first order in ξ. Similarly, on the right side of Equa-
tion (212), the total radial (vertical) force on the displaced 
rim element, dFR(ξ), needs to be computed only to first order 
in ξ. That force is 

 

( ) ( )

( )
( )

tot eq tot

2 2
eq eq

eq2
0

eq

d d d d d

d
2

RF P R R P R

B R
R

R

ξ = + ξ − φ + φ

− + ξ φ
μ + ξ

  (213) 

 
The first term in Equation (213) is the outward force on the 
displaced inner arc (surface) of the rim element. The second 
term is the outward force on the rim element as a whole due 
to the lateral pressure at its canted ends (still of radial width 
dR and subtending angle dφ). The last term is the inward 
magnetic force on the displaced outer arc. Equation (210) 
has been used. 

Actually, the effective lateral pressure (averaged over dR) 
is smaller than indicated in Equation (213), second term. 
Continuity of pressure at the displaced outer surface (to 
avoid unphysically large acceleration of the outer surface) 
requires that the internal plasma pressure should spatially 
decrease so as to approach the reduced external magnetic 
pressure there. Taking this feature into account, however, 
only proves to introduce a small correction of order dR/Req. 
This remark will be quantified below. 

After some cancellations in Equation (213), and expand-
ing to first order in ξ and invoking the equilibrium condition, 
Equation (209), the force in Equation (213) becomes simply 

 
 ( ) totd 2 dRF Pξ = ξ φ  (214) 

 
We substitute the first-order force equation, Equation (214), 
into the equation of motion, Equation (212) and look for a 
temporally growing displacement dξ/dt = γRTξ having RT 
growth rate γRT. After further cancellations, the equation of 
motion reduces to an expression for γRT: 
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At this point, it is important to recognize that the most 

energetically favorable motions of plasma in producing the 
flute instability are those that do no compressive work; that 
is, the internal fluid motions in the plane perpendicular to B 
are incompressible. For such incompressible motions, a flute 
mode at the plasma surface with the azimuthal dependence 
ei k y  has only a limited influence beneath the surface, with 

the radial dependence e−k x , where x (>0) is the distance 
beneath the surface (e.g., Ref. 37). To derive this feature, 
write the fluid momentum equation for small perturbations 
in the plane perpendicular to B as ργRT{δV} + ∇{δPtot} = 0. 
Then the condition of incompressibility ∇ ⋅ {δV} = 0 implies 
that ∇2{δPtot} = 0. Inserting the azimuthal mode dependence 

ei k y  into Laplace’s equation for the pressure perturbation 
δPtot confirms the stated result. 
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Therefore, the effective depth of the rim element influ-
enced by the surface mode is dR = 1/k, with k being the 
azimuthal wave number. Plasma fluid at lower depths is 
practically undisturbed by flute-mode perturbations at the 
plasma surface. Thus, we interpret dR as 1/k in Equa-
tion (215). The RT-type growth rate then becomes 

 

 tot
RT

eq

2P
k

R

ρ
γ =  (216) 

 
Note that 2Ptot/ρ ≈ S2, where S is the speed of sound in the 
plasma. Equation (216) thereby has the form of a gravita-

tional instability of the RT type; namely gk=γ RT , in 

which g ≈ S2/Req. The effective gravitational acceleration g 
might therefore be interpreted as the centrifugal force of 
charged particles (of small gyroradius) that move approx-
imately with thermal velocity in either direction along the 
curved magnetic field at the plasma surface. Nevertheless, 
this flute mode is not a true gravitational instability because 
no effective gravitational field permeates the plasma. 

To check the assumption of incompressible motion, note 
that the plasma’s velocity ξγ=ξ RTdd t , as well as the 

effective wave velocity kRTγ , should both be small com-

pared to the speed of sound S. The first condition is satisfied 
because ξ is arbitrarily small. The second condition reduces 
to kReq >> 1. The azimuthal wave number is k = Mθ/r 
(Eq. (211)), where r (distinct from Req) is the cylindrical 

radius of the propellant, and Mθ is the azimuthal mode num-

ber (i.e., ei k y  = θθMie ). Therefore, the second condition for 
incompressible motion is satisfied whenever the radius of 
curvature Req is large compared with r, the propellant’s 

radius, or when Mθ >> 1. 
Finally, we return to the requirement of continuity of 

pressure at the outer displaced surface of the rim element. 
The above model, taken literally, yields the following  
expression for the fractional discontinuity of pressure there 
(we omit the details): 
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expanded to first order in ξ and using the equilibrium rela-
tion, Equation (209). Since dR is comparable to an azimuthal 
wavelength, linear theory for small amplitude motions  
requires that ξ << dR. Hence, the first factor on the right has 
to be small in the linearized dynamical model. The second 
factor is also small, assuming that azimuthal wavelengths of 
the considered flute modes are small compared to the radius 

of curvature of the magnetic nozzle field. Consequently, in 
this limit, the error in continuity of pressure at the displaced 
interface is negligible. 

4.2.2 Surface Instability of Flowing Propellant in Region 
of Adverse Curvature 

The previous example serves to illustrate the methods to 
be applied to flowing propellant in the magnetic nozzle. It 
will be assumed in this section that the external magnetic 
field diffuses only a small distance into the plasma compared 
with the thickness of the rim element. The previously  
derived pressure-driven contribution to the growth rate 
persists, but proves to be augmented by the centrifugal force 
effect of the curved flow. The practical expression for the 
growth rate, derived below, would be useful offline, in post-
processing of axially symmetric resistive MHD simulations 
of magnetic nozzle flow. In this manner one could follow the 
flow and the self-consistent nozzle geometry and thereby 
estimate the extent of e-folding of flute instabilities within 
regions of adverse curvature, without the necessity of run-
ning three-dimensional simulations. 

The centrifugal force density due to propellant flow with 
velocity V// is here denoted by Fg and is locally defined as 
  

 
2
//

g
V

F
R

ρ
=  (218) 

 
where ρ is propellant mass density, and radius R (≈ Req) lies 
within the rim element depicted in Figure 5. This is equiva-

lent to gravitational force density ρg with 2
//g V R= . 

In this case, there are two relevant equilibrium conditions: 
a local one and a global one. Local internal equilibrium 
becomes nonuniform, due to the effective gravitational field 
that now permeates the plasma. The condition of internal 
equilibrium is 

 
   totR gP F∂ =   (219) 

 
Here, as usual, Ptot is the local, total plasma pressure due 

to both electrons and ions.  
The condition Equation (219) holds not only for the equi-

librium configuration, but also for the time-dependent per-
turbed state with growing displacement ξ. As long as the 
radial transit time for sound propagation through depth dR is 
short compared to the growth time of the mode, Equation 
(219) holds. The latter condition ultimately can be expressed 
as γRT/k << S, which is the same as the condition for incom-
pressible motion mentioned in the previous example. 

We turn now to the condition of global equilibrium, which 
applies to the rim element as a whole. The notation P0 refers 
to plasma pressure at the inner arc of the element, and 
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1
2

1
0 tot2 d RP P R P≈ + ∂  represents pressure halfway up on 

the width dR and is representative of the average lateral 
pressure on dR. The centrifugal force density Fg will be 
regarded as an average value within the volume of the rim 
element. Then, equilibrium force balance on the rim element 
of Figure 5, radially (or vertically), reads 
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0 eq
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    + − φ = φ   μ   

  (220) 

 

The first term in Equation (220) is the outward force acting 
on the lower surface of the rim element, and the second term 
is the outward force on the element due to lateral pressure 
acting on its canted ends. The third term, analogous to the 
effect of gravity on the element, is the outward force due to 
the centrifugal force density Fg multiplied by the volume of 

the element ( )1
eq 2 d d dR R R− φ . An average (midvalue) has 

been used for the arc-length in the volume element. The right 
side of Equation (220) constitutes the inward force acting on 
the element due to the external magnetic pressure acting on 
its outer surface. Dividing through by Req dφ using 

1
2

1
0 tot2 d RP P R P= + ∂  and using Equation (219), Equa-

tion (220) then can be written exactly as 
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 (221) 

 

Equation (221) is the consequence of global equilibrium of 
the rim element in Figure 5. It is as if totd dg R(F R)  P R= ∂  is 

the pressure increment to be added to the inner pressure P0 
to ensure pressure continuity across the outer surface of the 
rim element.  

The linear extrapolation of pressure within dR, 

1
2

1
0 tot2 d RP P R P= + ∂ , assumes that the first two terms in 

the Taylor series for the pressure profile are sufficient; that 
is, the pressure gradient term is assumed to constitute a small 
correction. This formula, used to obtain Equation (221), 
proves to require the strong inequality (dR/Req)V2 << S2 
(refer to Eq. (219)). Because a large radius of curvature is 
assumed in the sense dR << Req, it follows that the equili-
brium model allows transonic and supersonic flows within dR. 

Let us define dR = 1/k for the flute-mode wave number. 
Since k = Mθ/r (Eq. (211)), the above inequality then can be 

put in the form (V2/S2) << MθReq/r. In this form, transonic 
and supersonic flows can be handled within the dynamical 
model. The required geometric conditions are that the radius 

of curvature Req be large compared with the cylindrical 

radius r or that the azimuthal mode number Mθ is large 
compared to 1. The same linear extrapolation of the pressure 
profile (with its same consequence) is relevant to the next 
problem. 

We turn now to the dynamical problem, which is to calcu-
late the net force on the plasma element as it is displaced 
outwards by the amount ξ, as in the previous example. As 
before, that force will be inserted into the equation of motion 
(Eq. (212)) of the element, so as to obtain the growth rate of 
the instability. Superscript ξ will refer to the state of the 
superscripted quantity as it exists in the displaced element; 

for example, ξ
0P  refers to the pressure on the displaced inner 

surface of the rim element, and ξ

2
1P  refers to the pressure 

halfway up on dr in the displaced element. 
The force on the rim element is written as 
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 (222) 

 

Here, the first term is the outward pressure-force on the 
displaced lower surface, and the second term is the outward 
force on the element from lateral pressures at the canted ends 
(still of width dR and subtending angle dφ). The third term is 
the outward gravitational force density multiplied by the 
displaced volume using its average arc length. Finally, the 
last term is the inward magnetic-pressure force on the dis-
placed outer surface of the element. The 1/R dependence of 
the external magnetic field, with R = Req + ξ, has been  
invoked.  

The above-mentioned linear extrapolation within dR for 
ξ

2
1P , and the local equilibrium relation Equation (219) are 

used, as well as the global equilibrium Equation (221) as it 

regards 2
eqB . Expanding expressions to first order in ξ, 

Equation (222) then becomes 
 

 

( ) ( )
( )















+++ξ+

−+−
φ= ξξ

ξξ

RFPRFP
R

RFFPP

RF
gg

gg

R
dd

d

dd
00

eq

00

eq  (223) 

 

To first order in ξ, the final square bracket in Equation (223) 
may as well be written ( )R F P g d2 0 + . 

The first term on the right in Equation (223) can be writ-
ten as ξ∂RPtot (= ξFg). The physical reason for being able to 
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write it this way is that the displaced fluid element climbs up 
the preexisting equilibrium pressure profile, because rising 
fluid at the displaced lower surface of the element is replaced 
at that level by azimuthal inflow of fluid from either side. 
The replacement fluid brings with it the original equilibrium 
pressure-profile at that level. (Note that the fluid below dR 
remains practically undisturbed.) 

The second term on the right of Equation (223), due to the 
rising fluid, involves spatial variation of density ρ and posi-
tion R (supposing zero-order flow velocity V// is constant). It 

can be written as RFgR d∂ξ  ( )( )1 1dgF R L R− −
ρ= ξ − . Here, 

1 1
RL− −

ρ = ρ ∂ ρ  is the inverse scale length for radial variation 

of propellant density in the core plasma (not in the edge 
layer). The core plasma is assumed to be fairly uniform, with 
Lρ ~ R >> dR. Then the entire second term, on the order of 

RRFg dξ , can be neglected compared with the first term, ξFg. 

The third term is ( )( )0 eq2 dgP   F R R+ ξ . The gravitational 

contribution (from Fg) is again small compared with the first 
term in Equation (223) because dR << Req. 

Therefore, neglecting terms on the order of dR/Req in  
Equation (223) compared to the first term, Equation (223) 
can be written simply as 

 

 eq 0
eq

d d 2R gF R F P
R

 ξ = φ ξ + 
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 (224) 

 
Using this force in the equation of motion (Eq. (212)) of the 
rim element together with the temporally growing represen-
tation dξ/dt = γRTξ yields the following result for γRT: 

 
2

tot eq // eq tot eq2
RT

2 / ( / ) (2 / )

d d
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+ + ρ
γ = =

ρ
 

(225) 

 
Here, V// refers to the velocity of propellant flow parallel to 
the magnetic field B. It does not really matter in Equa-
tion (225) whether P0 or Ptot is used anywhere in dR, since the 
difference is small, on the order of dR/R compared with Fg.  

The previous discussion about incompressible perturba-
tion flow in flute-mode dynamics (in the plane perpendicular 
to B as before) provided that the plasma properties (ρ, Ptot, 
and V//) vary only weakly within dR. Then, the periodic 

azimuthal mode structure ei k y  again implies that the radial 

mode structure e−k x  decreases exponentially beneath the 

surface. Thus, we again have the relation dR = k−1 in terms 
of the azimuthal wave number k. The growth rate, which 

now includes the effects of both flow and pressure in the 
adverse-curvature region, finally can be written as follows: 

 

 
2
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 (226) 

 
The effective gravitational accelerations in regions of  
adverse curvature, which arise both from thermal motions of 
particles and from propellant flow, just appear in an additive 
manner within the growth rate. This is what would be  
expected intuitively. Bidirectional diffusion of plasma and 
magnetic field across the fluted surface will then create a 
plasma-field mixing layer. 

As before in the pressure-driven case, the model used to 
derive this growth rate suffers from a pressure discontinuity 
at the outer displaced surface of the plasma. Nevertheless, it 
can again be demonstrated that the fractional pressure dis-
continuity reduces to (ξ/dR)(dR/Req), which is very small for 
the two conditions: linearly small amplitudes ξ << dr, and  
dr << Req. We shall omit the details of the demonstration. 

The purpose of this section is to provide rough guidance 
as to whether the idealized RT instability has a chance to 
grow. Larc is the complete length of arc in the adverse curva-
ture region at the plasma edge (convex outwards), and is not 
necessarily small. Concomitantly the subtended longitudinal 
angle in radians is eqarc RL=δφ . This finite longitudinal 

angle is to be distinguished from the “small” longitudinal 
angle used in the simplified model, dφ. Nevertheless, as a 
simplification, we shall assume that the growth rate, Equa-
tion (226), is still valid. Part of this growth rate contains the 
expression ρP2 , but the speed of sound is S2 = ƔP/ρ, and 

we shall take Ɣ = 5/3. Then, 2
5
6/2 SP =ρ . The condition for 

growth is 12
cur

2
RT >γ t , with tcur denoting the time the edge 

plasma spends in the adverse curvature region. This time is 

//arccur /VLt = . We use Equation (226) in the growth condi-

tion 12
cur

2
RT >γ t , but with the azimuthal wave number k 

replaced by Mθ/r, where Mθ is the number of azimuthal wave-
lengths that fit into the circumference, 2πr, the short way 
around. Then, the condition for growth can be expressed as 

 

 

1
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 (227) 

 

The quantities 2S and 2
//V  should be taken as average val-

ues along Larc, which can be determined from axi-symmetric 
ideal MHD simulations. Ion magneto-viscosity sets an upper  
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limit to θM  (see Eq. (234)). Except for a complete treat-

ment, the Hall effect (which is destabilizing) should also be 
included. This is examined in Section 4.3, “Finite Larmor 
Radius (FLR) Stabilization of RT-Type Flute Modes,” and in 
Section 4.3.1, “Example: Estimate of Hall Term in Coaxial 
MHD Thruster.” 

Equation (226) can be converted to a practical formula for 
the growth rate that is characterized by Vex, the velocity of 
propellant at the nozzle’s exit plane (the specific impulse is 
given by Vex m/s ÷ 9.8 m/s2). The practical formula could be 
utilized as a postprocessing tool with axially symmetric 
MHD simulations of propellant flow in magnetic nozzles.  

To derive the practical formula, note that the local speed 

of sound, squared, is given by S2 = ƔPtot/ρ. Then, by means 
of the Bernoulli equation with the choking condition at the 
throat, using the adiabatic relations along the longitudinal 
flow, and using Equation (211), Equation (226) can be  
written as 

 

 
2 / 3
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eq

3
1

5 b

M
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R r
θ

    ρ   γ = −     ρ    
 (228) 

 
The adiabatic index (ratio of specific heats) is taken to be 

Ɣ = 5/3 (i.e., there are occasional collisions), and relations 
based upon infinite contraction and expansion ratios in the 
nozzle geometry are utilized. However, the Bernoulli flow 
solutions are such that the results are hardly changed by 
using realistic values such as 2 for radius contraction and 3 
for radius expansion.  

Mass density ρ varies along the flow, starting with its 
breech value ρb and finally vanishing at the exit plane. After 
taking the square root in Equation (228), the numerical factor 
due to this density variation ranges from 0.63 in the breech 
to 1.0 at the exit. Therefore, the density expression can be 
omitted by instead inserting an average numerical factor of 
0.8, which is within ≈30 percent of the exact numerical value 
at any point along the flow. Then Equation (228) reads 

 

 RT ex
eq
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M

V
R r

θ 
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 (229) 

 

The radius of curvature Req and the cylindrical radius of 
propellant r also vary along the flow, as could be monitored 
in MHD simulations. The Req is interpreted as positive in 
regions of adverse curvature and negative in regions of good 
curvature. In the latter case, the RT-type flute mode is a 
gravity wave that just oscillates without growing. The azimuthal 
mode number Mθ remains to be discussed.  

The final issue of interest here, for macroscopic RT-type 
instabilities, involves the maximum azimuthal mode number 

Mθ to be used in the expression for the growth rate in Equa-
tions (228) or (229). Arbitrarily large mode numbers would 
produce arbitrarily large growth rates, within the context of 
the present sharp-boundary model of the propellant. The 
question as to the maximum effective mode number can be 
answered in terms of FLR stabilization of the RT-type flute 
modes. For the hot plasmas (~100 eV) contemplated for 
magnetic nozzle applications in space vehicle propulsion, 
FLR stabilization can be a noticeable effect.  

4.3 Finite Larmor Radius (FLR) Stabilization of 
RT-Type Flute Modes 

In the preceding section, we explored plasma particle tra-
jectories at their initial impact with the confining magnetic 
field. The concern was brought up that their sharp adverse 
longitudinal curvatures could potentially be a source of 
instabilities in the injection region. In the following sections, 
on the other hand, we shall look at adverse longitudinal 
curvature instabilities further downstream, wherein a steady 
flow along the confining magnetic field has already been 
established at the plasma boundary. 

In the plane perpendicular to magnetic field B, it is well 
known from plasma transport theory that ions within the 
plasma-field mixing layer would possess a collisionless 
gyroviscosity when the plasma is of sufficiently high tem-
perature that ion collisions are infrequent (see Refs. 9 and 32). 
Even though there is no collisional dissipation as is usually 
connected to viscosity, the ion gyroviscosity can exert a 
stabilizing influence on RT flute instabilities by modifying 
the dynamical processes that have enabled the modes to 
grow. Moreover, the flute-mode amplitude is largest at the 
plasma-field interface with the magnetic field, decaying 
exponentially into the plasma. Therefore, the gyroviscosity is 
effective just where the mode amplitude is the largest. 

Viscous diffusivity for ion gyroviscosity can be 
represented approximately as (Ref. 9) 

 
 vis thi i iD a V=  (230) 

 
where ai is the thermal ion gyroradius. This expression is 
analogous to the ordinary kinematic viscosity, λiVth i,  
wherein λi is the mean free path for ion-ion coulomb colli-
sions. Kinematic viscosity is the viscosity coefficient divided 
by nmi. A numerical coefficient of order 1 in Equation (230) 
proves to be almost irrelevant since it only enters the final 
expression for the growth rate as raised to the one-third power. 

In Equation (230) th ωi i c ia V= , the ion thermal velocity 

is ii mTV 2th = , and c i iqB mω =  is the ion gyrofre-

quency within the plasma-field interface (using mks units, 
with T in joules). The gyroviscosity obviously vanishes for 
very small ai, which is associated with very large magnetic 
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fields. It is important to realize that the flute perturbation 
possesses an inverse time scale associated with this gyrodif-
fusivity, which is k2Dvis i, where k M rθ=  is the azimuthal 

wave number. In the case of ordinary diffusivity, k2Dvis i 
would signify a dissipative decay rate of a macroscopic 
dynamical mode, due to ion-ion collisions. 

For mode numbers sufficiently large that the gyrodiffusive 
inverse-time becomes comparable to the RT growth rate, 
those modes would be influenced by FLR stabilization. 

 

 2
vis RTik D  ≈ γ  (231) 

 

The azimuthal mode number corresponding to the condition 
in Equation (231) will be calculated and regarded as approx-
imating the maximum mode number for viable growth of 
RT-type flute instabilities associated with adverse curvature 
of magnetic field lines. 

For Te = Ti = T, and Ɣ = 5/3, the square of the speed  
of sound in the breech can be expressed as 

2 25
th3/b b b b iS P V= ρ =γ . The propellant’s exit velocity can 

then be written 
 

 ibb VSV thex 53 ==  (232) 

 
Although this relation strictly is for infinite contraction and 
expansion, it also is a good approximation for realistic  
converging-diverging nozzle shapes. Use of Equation (232) 
in Equation (228) for γRT allows the solution to Equa-
tion (231) for the upper azimuthal mode number with the 
following result: 
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Since this expression is nondimensional, any consistent set 
of units can now be used. 

Increasing the radius of adverse curvature Req decreases 
the driving force for the flute instability and hence decreases 
the upper mode number that can go unstable in the presence 
of ion gyroviscosity. Increasing the ion gyroradius ai also 
enhances the spatial phase mixing of the mode, spoiling the 
growth dynamics, which likewise acts to decrease the upper 
mode number that can go unstable. 

A lower bound for this upper limit on mode number is  
obtained by raising the temperature T up to its breech value 
in Equation (233) and by raising the mass density ρ up to its 
breech value. These approximations actually are fairly harm-
less between breech and throat because T at the throat only 
drops to three-fourths of its breech value, and ρ at the throat 
only drops to about two-thirds of its breech value. Then 
Equation (233) becomes approximately 
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Equation (234) may also be written in terms of the azimuthal 
wave number rMk θ=  as 
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For parameters of interest here, relevant examples are  
ai ≈ 1 cm and Req ≈ 30 cm, in which case kai ≈ 0.5. In other 
words, in ordinary MHD kai << 1, but in gyroviscous MHD 
FLR stabilization sets in about when kai is on the order of 1. 

Returning to Equation (234), the gyroradius within the 

plasma-field mixing layer is expressed as 2 2 21
2i p ia c= β ω . 

Here, β is the local ratio of total plasma pressure of electrons 
and ions to magnetic pressure at a representative position 
within the plasma-field interface, and ωp i is the ion plasma 
frequency at that representative position within the interface. 
Then setting the average density in the interface to half the 
density in the core plasma and reverting to the ion plasma 
frequency expressed in terms of the core density, Equa-
tion (234) becomes 
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 (236) 

 
Since the value of β is not precisely known, but is near 1 
within the interface and appears only to the one-third power, 
the prefactor in this expression is ignored.  

For hydrogen ion number density 1015 cm−3, c/ωp i = 1 cm. 
Examples of other relevant parameters are r = 15 cm and Req 

= 30 cm. From Equation (236) one sees that Mθ ≈ 5 is about 
the upper limit of flute-mode azimuthal numbers that can  
be unstable, with respect to avoiding FLR stabilization.  

In any event, the RT growth rate only depends on θM . 

Moreover, to the extent that the prefactor in Equation (236) 
can be ignored, the upper limit on flute-mode number is  
independent of temperature, depending just on local plasma 
number density in the core, local cylindrical radius of plasma, 
and local radius of curvature at the plasma-field interface. 

From Equation (229) with Vex = 2 · 107 cm/s (specific impulse 

is 20 000 s), the growth rate for Mθ = 5: γRT ≈ 1.6 · 106 s−1.  
For example, suppose that the longitudinal extent of the 
region of adverse curvature is only 10 cm, and V// ≈ 107 cm/s 
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within the nozzle. Then the transit time through that adverse-

curvature region would be about 10−6 s. From the product of 
growth rate and transit time, we then infer that there would 
occur only one or two e-foldings of the most unstable  
RT mode. In this particular example, the RT flute instability 
therefore appears to be harmless. 

An expression for the growth rate of the most-unstable 
mode, as determined by the presence of ion gyroviscosity, 
can be obtained without the above-mentioned approxima-
tions (i.e., replacing density and temperature by their breech 
values). The resulting expression is valid anywhere along the 
nozzle. The procedure employed is that the maximum k or 
Mθ allowed by ion gyroviscosity according to Equa-
tion (231) is used in the RT growth rate, Equation (228). As 
before, the ion gyroradius at a representative point within the 
plasma-field interface is expressed in terms of the ion inertia 

length of the neighboring core plasma, by 2 2 2( )i p ia c= β ω . 

Here, β (≈1) is the local total β at a representative point 
within the plasma-field mixing layer, but ωp i is the ion 
plasma frequency evaluated within the core plasma. The 
average ion number density within the interface has been set 
to half the core density. 

Taking the maximum wave number k from Equation (231) 
into the growth rate Equation (228) and using the explicit 
expression for the ion plasma frequency, one then finds that 
the growth rate of the most unstable mode, as limited by ion 
gyroviscosity, can be written as follows: 
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(237) 

 
Subscript “b” refers to the value of the quantity in the 

breech or beginning of the nozzle. This result is valid at any 
longitudinal position along the nozzle, provided that ion 
gyroviscosity constitutes the dominant modification to the 
high-conductivity plasma fluid model.  

It is clear from Equation (237) that the principal depen-
dence of the RT growth rate, as limited by ion gyroviscosity, 
occurs just in the first bracketed quantity. That quantity 
contains the propellant’s exit velocity (specific impulse) in 
the numerator, the breech value of the ion inertia length in 
the denominator, and the local adverse radius of curvature 
(Req > 0) in the denominator. 
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The Req varies along the flow at the self-consistent plasma-
field interface. In regions of good curvature, Req is negative 
and there is no instability. The other two factors in Equa-
tion (238) have their positions fixed at the exit and breech. 

The quantity in braces in Equation (237) is of order unity 
and is insensitive to temperature and density along the flow 
field. Using the adiabatic relation between T and n along the 
flow, the product of the density ratio and the inverse temper-
ature ratio in Equation (237) reduces just to (n/nb)1/18, which 
is essentially just 1.0. In Equation (237), the braced quantity 
also is very insensitive to the value of local β within the 
plasma-field interface. Even the last internal factor in brack-
ets is always between 0.5 and 1.0, but it can be explicitly 
taken into account if desired.  

The one quantity in Equation (237) whose variation with 
longitudinal position along the flow is certainly needed is the 
self-consistent radius of curvature Req of the magnetic field 
at the edge of the plasma. This quantity can be extracted 
from axisymmetric MHD simulations of flow through mag-
netic nozzles. The cylindrical radius r of the propellant is 
notably absent from the growth rate in Equation (237). 

Thus, for design purposes the reduced version—
Equation (238)—is probably sufficient. One could try to 
apply it to design the self-consistent magnetic nozzle field to 
be such that, in a region of adverse curvature, the product of 
growth rate and transit time of propellant flow through that 
region is less than 1. A fallback position is to totally avoid 
the presence of adverse magnetic curvature. However, 
achievment of that goal may be hindered by adverse self-
consistent deformation of the original vacuum magnetic 
field. Such adverse deformation may be difficult to avoid in 
the injection of hot plasma into a premagnetized nozzle tube 
that is burdened by constrained dimensions or by the dis-
creteness and separation of magnetic source coils. 

Equation (238) constitutes a simple practical formula for 
the RT growth rate at any longitudinal position in the  
magnetic nozzle. It should nevertheless be regarded as  
provisional. For example, one might be concerned that 
downstream of the nozzle throat the propellant temperature 
eventually decays to the point that ion-ion collisions become 
significant, implying that ion gyroviscosity should be  
replaced by ion collisional viscosity. However, almost the 
opposite proves to be the case. The ion-ion collision fre-
quency υi changes as n/T 3/2, so is constant along the propel-

lant’s flow, since adiabatically, T ~ n2/3. The ion-ion mean 
free path, however, varies as λi ~ Vth i/υi ~ n1/3. Thus, the  
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kinematic viscosity varies as λiVth i ~ n2/3, which decreases 
towards the exit plane. In contrast, taking magnetic pressure 
balance into account, the gyroviscous diffusivity aiVth i 

varies as n−1/6, slightly increasing towards the exit plane. 
Thus, gyroviscosity remains the dominant viscous effect as 
long as ωc i > υi. While the condition ωc i > υi remains in 
force within the plasma-field interface, flute-mode dynamics 
in the plane perpendicular to B are governed by ion gyrovis-
cosity rather than collisional viscosity. Furthermore, for 
relevant injected-plasma parameters, the collisional situation 
ωc i < υi would require plasma density to decrease substan-
tially from its injected value, by at least an order of magni-
tude. The υi is practically constant along the adiabatic flow, 

whereas ωc i decreases as n5/6. But, at that point, the propel-
lant has practically reached the nozzle exit anyway. In a 
more detailed model, there would also be an additional 
intermediate viscous diffusivity (Ref. 9) of the form  
Dvis iυi/ωc i, but this amount of detail lies beyond the present 
purview. 

On the other hand, the Hall effect has been neglected in 
this modeling of the RT instability. Huba (Ref. 33) has pur-
sued the subject of Hall MHD, and has found that at shorter 
wavelengths ~c/ωp i, the Hall effect, taken alone, increases 
the growth rates of those flute modes, and changes their 
nonlinear structure as well. Actually, there is a competition 
between enhancement of growth by the Hall effect and mode 
stabilization by ion gyroviscosity, a subject addressed later 
by Huba and Winske (Ref. 38). The Hall effect should be 
dominant in cold plasmas, such as in the beginning phase of 
theta-pinch implosions exemplified by Reference 34 and  
in the expansion of laser-produced plasmas, Reference 17.  
Ripin et al. experimentally confirmed the features of the Hall-
MHD model (Ref. 17). MHD modeling of flow through mag-
netic nozzles should be revisited in this regard, so that Hall 
effects, together with ion gyroviscosity, can be applied in a 
knowledgeable manner to “adverse curvature” instabilities in 
propellant flow through magnetic nozzles. 

That Hall effects can occur in a cold plasma is correct and 
can be understood by considering that the generalized Ohm's 
law (mks units) does not explicitly contain thermal effects; 
yet, it contains the Hall term (as the second term on the 
right-hand side) as a contribution to the Hall electric field 
(see Eq. (37b)). Nevertheless, in specific applications to 
plasma-nozzle flow, thermal effects can sometimes creep in 
when estimating the importance of the Hall term. 

 

  ( )
nq

×+ × = η + J B
E V B J

 

 (239) 

  

 The first term on the right in Ohm's law is the resistive 
term. Here, η is the resistivity. Equation (239) is just the 
electron-fluid momentum equation without the electron 
inertia and without the electron pressure gradient. The  

absence of the latter emphasizes the circumstance that here 
we are considering “cold plasma.” 

 A necessary condition for the Hall term to be important is 
that it not be dominated by the resistive term. This require-
ment is easily shown to be equivalent to having the electron 
gyrofrequency be large compared to the electron collision 
frequency with the ions (or with plasma fluctuations in the 
case of microturbulence). Such a large gyrofrequency and 
relatively small collision frequency is to be expected in the 
plasma-field interface of the magnetic nozzle for the parame-
ters of interest. The size of the system in the RT problem is 
represented by the azimuthal wavelength of modes. 

 If the above requirement is satisfied (small enough elec-
tron collision frequency), then the next step in estimating the 
importance of the Hall term is to compare it with the  
motional electric field term, V × B. Here, V is the local fluid 
velocity of the plasma, which is the same as the ion-fluid 
velocity. Also, B is the local magnetic field vector. This 
particular comparison will be made in the following example 
of the coaxial MHD thruster, where it will be shown that the 
Hall effect is important when the ion gyroradius is not too 
small compared with the size of the system.  

4.3.1 Example: Estimate of Hall Term in Coaxial MHD 
Thruster 

The salient feature of the following example is that the 
Hall effect becomes important when the ion gyroradius 
becomes comparable to the macroscopic size of the system. 
In the RT problem, the size of the system is represented by 
the azimuthal wavelength of modes. 

In the coaxial plasma thruster, there are inner and outer 
coaxial electrodes, which form an annular nozzle; plasma 
flow velocity V is in the longitudinal direction, magnetic 
field B is azimuthal, and current density J is radial between 
the electrodes. Hence the strength of B decreases in the 
longitudinal direction, as required by Ampere's law  
∇ × Β = μ0J. 

From Equation (239) we want to compare the magnitudes 
(mks units) of the motional electric field term VB and the 
Hall term JB/nq: 

 
VB  versus  JB/nq 

 
Suppose that V is about the same as the ion thermal velocity, 
Vth i, which, at any rate, is a desired feature of nozzle flow. 
When the electric field term is comparable to the Hall term, 
then the Hall effect becomes significant. 

The following relationships are used:  
 

2 2
0pi inq mω = ε , where ωp i is the ion plasma frequency  

2
00 1 c=με , where c is the speed of light 
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A ci p iV cω = ω , where VA is the Alfven speed and ωc i is 

the ion gyrofrequency 

iAi VV β=th  

 
Then the above comparison can be reduced as follows: 
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Here, the quantity βi signifies the local ratio of ion pressure 
to magnetic pressure, and Lcoax is the coaxial longitudinal 
distance over which the azimuthal magnetic field becomes 
depleted by pushing the plasma downstream. Thus Lcoax is 
the length of the annular nozzle. 

The thermal ion gyroradius ai is related to the ion inertia 

length c/ωp i by ( )i i p ia c= β ω , so the above comparison 

finally reads 
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In realistic situations in the coaxial thruster, βi can be of 
order 1. As the ions flow downstream they make gyrations in 
the r,Z-plane, around the azimuthal magnetic field lines. 
Thus, if the ion gyroradius ai is not too small compared with 
Lcoax, so that the ions undergo only a few magnetogyrations 
as they flow through the coaxial nozzle, the term on the right 
can be important, and concomitantly, the Hall effect is  
important. In the case of flute modes, the azimuthal wave-
length is the “size of the system.” 

4.3.2 Concluding Thoughts 

In the flute-mode discussion of the RT instability of this  
report (in Sec. 4.2.2, “Surface Instability of Flowing Propel-
lant in a Region of Adverse Curvature”), a similar effect is 
noted in the literature, since the ion skin depth (c/ωp i) is nearly 
the same as the thermal ion gyroradius when β is near 1. A 
paper by Huba and Winske (Ref. 38) contains a detailed 
account of the RT instability when both Hall effects and ion 
gyroviscosity (FLR or FLR stabilization) are active. Linear 
stability analyses and nonlinear numerical simulations based 
on both fluid and kinetic models were carried out in that 
paper. It is instructive to consider why this pioneering paper is 
not yet applicable to the magnetic nozzle configuration. 

First, in Reference 38, the disparate light and heavy fluids, 
which constitute the RT configuration, are separated by a 
planar interface in the presence of an artificial gravitational 
force. Thus, geometric effects are missing. There is the effect 
of lateral pressure forcing a wedge-shaped element radially 
outwards (see Fig. 5). A concomitant effect is the outward 
spatial decay of external field strength in the region of  
adverse curvature. These geometric effects of adverse curva-
ture are essential for the derivation that produces the pres-
sure contribution to the growth rate in Equation (226). They 
are especially required since artificial gravity is not invoked 
in our model. 

Second, the models used in Reference 38 are “low β” 
models. This assumption has two consequences. The mag-
netic field changes only slightly in traversing the interface, in 
contrast to the magnetic field profile in the interface of the 
magnetic nozzle. Moreover, the ion gyroradius ai, important 
for FLR stabilization, is small against the ion inertia length, 
c/ωp i, in Reference 38. The latter is important for Hall des-
tabilization. In contrast, both of these lengths are comparable 
in the magnetic nozzle interface, because β is of order 1 
there. Thus, short azimuthal wavelengths would be simulta-
neously influenced to roughly equal extents by both 
processes in the magnetic nozzle. In Reference 38, however, 
the Hall effect was dominant because the ion inertia length 
was much larger than the ion gyroradius. 

Since Equation (238) is based only upon FLR stabiliza-
tion, one may question whether it provides meaningful  
engineering guidance. It does so by eliminating from consid-
eration those plasma profiles that are RT unstable. That is, if 
a configuration were found to be RT unstable in spite of 
including FLR stabilization effects in the model, then surely 
it would prove to be yet more unstable had Hall destabiliza-
tion effects also been included. On the other hand, if a stable 
configuration is found in the sense that γRTt < 1, there is then 
no certainty that such a configuration would remain benign if 
Hall effects had been present. Thus, further work is needed 
in this regard.  

 Thus, in the flute-mode RT instability, it has been found 
by Huba and Winske (Ref. 38) that the Hall effect becomes 
important and destabilizing when the macroscopic wave-
length is on the order of the ion gyroradius, but also it is 
known that the FLR stabilization effect becomes important 
under the same conditions. Thus the two effects work against 
one another. This process constitutes a delicate balance that 
deserves a careful calculation oriented to the magnetic  
nozzle. The paper of Huba and Winske shows that the two 
effects are in opposing directions, but those special calcula-
tions are artificial and constructed to clearly show both 
effects by turning one on after the other is on. That paper is 
not directly applicable to the magnetic nozzle, however; a 
special calculation focussed on the magnetic nozzle problem 
is therefore needed. 

 In conclusion, it is indeed the case that the model of the 
flute-mode RT instability in this report, which includes FLR 
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stabilization but omits the Hall effect, may be giving incor-
rect results by not including both effects at the same time. 
That is to say, a traditional approach was followed, consist-
ing of subjecting the ideal MHD results to FLR stabilization, 
without regard to any additional effects. That is exactly why 
it is suggested that there exists a need for the more complete 
calculation in Section 4.2.2, since if the RT instability  
appears threatening even when including FLR stabilization 
effects, it would appear even worse if the Hall destabilization 
effect were also included. In this sense, the formula Equa-
tion (238) is a meaningful engineering design criterion.  

4.4 Short-Wavelength Gravity-Driven Instabilities 

In this section, we shall examine ion gyroviscous stabili-
zation of the unstable MHD flute modes associated with 
adverse longitudinal curvature. It is also pointed out that the 
destabilizing Hall effect should ultimately be included self-
consistently in the model so as to obtain a more complete 
picture of the behavior of these modes. 

Up to this point, discussion of RT-type instabilities has 
been carried out within the fluid description and has been 
directed to flute modes of long wavelengths compared with 
the thickness of the plasma-field interface. The manifestation 
of these long wavelength modes is the azimuthal deforma-
tion of the interface as an entity.  

However, it was recognized by Davidson and Gladd in 
Reference 18, and by Gary and Thomsen in Reference 35, 
that ion inertial force, or effective gravity, can drive insta-
bilities of the LHD type within the interface layer itself. 
These unstable flute modes have very short wavelengths, 
which range between thermal ion gyroradius ai and thermal 
electron gyroradius ae. They are not stabilized by finite ion-
gyroradius effects, except at very small current drift veloci-
ties where the unstable wavelengths become as large as the 
ion gyroradius (see Ref. 19).  

The salient observation regarding the short-wavelength 
LHD flute modes, as connected to the presence of effective 
gravitational acceleration, is that the treatment given in 
Section 3.0 of this report, “Resistivity From Gradient-Driven 
Microinstabilities,” applies without modification (see 
Ref. 18). The reason is that the treatment is set in terms of 
the current-drift velocity Vd. The reader will recall that the 
ratio Vd/Vth i is the characteristic driving factor for the real 
part of the frequency of this drift mode, and its square is the 
characteristic driving factor for the growth rate of the  
instability (see Eq. (144)). Moreover, the square of this 
velocity ratio also is a principal feature of the anomalous 
resistivity arising from LHD microturbulence, as was dis-
cussed in Section 3.0. Thus, the theory in terms of Vd/Vth i 
remains intact. 

The role of gravity in the LHD modes only becomes  
apparent when the expression for the current drift-velocity 
itself is examined. This expression will now be developed 
within the context of propellant flow in the magnetic nozzle. 

For simplicity of discussion electron temperature will be 
neglected, but this is not an essential restriction. The ion 
macroscopic momentum equation is written in a frame of 
reference that is instantaneously at rest in the ion fluid; 
nevertheless, ion inertial effects (ion-fluid acceleration) can 
appear in this frame. 

      
 effx i x xP g nqE∂ − ρ =  (240) 

 
The x-direction is the quasi-radial direction, outwards across 
the external magnetic flux. The effective gravitational field 

is eq
2
//eff RVg x = , with V// the propellant flow  

velocity along B and Req the local equilibrium radius of 
adverse curvature. The magnetic field vector defines the 
local z-direction. The electron drift velocity Vd y e = 

[(E×B)/B2]y in the y- (azimuthal) direction is obtained by 
dividing Equation (240) by nqB. The result is (in mks units) 
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Here, we have assumed uniform ion temperature and have 
defined the density gradient length within the interface by 

(1/xn) = n−1 ∂xn . Earlier in this report, the interface width 
was described as δ, so xn = δ. 

Now, throughout most of the nozzle, the flow velocity is 
somewhat comparable to the local sound speed, which, in 
turn, is comparable to the ion thermal velocity. Therefore, 
Equation (241) says that, in general, the gravitational term is 
not important unless Req is small enough to be comparable to 
xn. Such is clearly not the case throughout most of the  
nozzle: Req is likely several tens of centimeters, whereas xn 
is on the order of just a few centimeters. We conclude that 
gravitational acceleration due to adverse curvature generally 
should constitute only a minor modification to the edge- 
layer gradient that drives the short-wavelength LHD flute  
instabilities. 

The exception to this conclusion occurs at the point of 
impact of injected plasma with magnetic flux. It was seen 
earlier that even at near-grazing incidence of injected flow 
streamlines with the ambient magnetic field, the local radius 
of curvature at the point of impact would be so small as to lie 
beyond the purview of a fluid model. Its scale of smallness 
would probably be set by “microscopic” lengths, such as ai, 
or by c/ωp i. Only then would the two contributions to Vd 
become comparable in Equation (241). Thus, it is indicated 
that the initial point of impact of plasma with field in the 
injection region be scrutinized with respect to modification 
of LHD flute modes by gravitational effects. 

Near the exit plane, the second (gravitational) term in  

Equation (241) would increase (as n−5/6) faster than the first 
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term (as n−1/6), unless the adverse radius of curvature Req is 
maintained at a large value by judicious arrangement of 
downstream magnetic coils.  

5.0 Summary and Conclusions 

The principal objective of this report was to ascertain the 
degree of attachment of propellant plasma to magnetic noz-
zle flux, as represented by the spatially evolving width of the 
plasma-field mixing layer, and to explore ways of mitigating 
that attachment. However, it was emphasized at the outset 
that even attached plasma undergoes converging-diverging 
nozzle acceleration along with core plasma. Moreover, 
reference was made to extant calculations showing that 
attached plasma can be resistively detached downstream 
with little loss of efficiency. This is provided that the neces-
sary weak divergence of the nozzle in a long detachment 
region supported by trim coils is compatible with the overall 
mission design of the vehicle. 

The four principal results from this report are as follows: 
 
(1) The initial thickness δ of the plasma-magnetic field 

interface in the nozzle breech b (where the hot plasma is 
injected) is derived. It is δb ≈ 2c/ωp i, which serves as the 
initial condition for resistive broadening of the interface 
along the flow. Here, c is the speed of light in vacuum and 
ωp i, the ion plasma frequency in the breech. For the parame-
ters of interest here, δb is a few centimeters.  

(2) The subject of gradient-driven Lower Hybrid Drift 
(LHD) microturbulent (anomalous) resistivity ηa is reviewed 
and compared with the classical resistivity ηcl that arises 
from electron coulomb scattering on the ions. The results 
from the smaller of two predictions for ηa are summarized. 
This subject bears on the spatial rate of resistive broadening 
of the interface, for which a simple algorithm is derived in 
terms of a general resistivity. The parameter dependencies of 
ηa appear to be agreed upon in various models, but the large 
discrepancies in the numerical coefficient need to be  
resolved. 

(3) The subject of flute instabilities of the magnetically 
confined interface in regions of adverse magnetic curvature 
is addressed. A physical derivation of the growth rate is 
performed for curved geometry without artificial gravity, 
which includes the effects of both pressure and flow. A 
practical formula for the growth rate is obtained that takes 
into account flute-mode stabilization by ion gyroviscosity 
(finite Larmor radius (FLR) stabilization). The formula can 
be used in magnetic nozzle design, by monitoring the  
self-consistent plasma-nozzle shape and flow velocity in 
axisymmetric simulations of propellant flow through mag-
netic nozzles. In this manner, one can estimate the extent of 
e-folding of flute instabilities in regions of adverse  
curvature. 

(4) The relevance of the Hall effect to Ohm’s law is clari-
fied. The simple Ohm’s law used to connect azimuthal cur-
rent density with azimuthal motional electric field in 
calculating resistive interface broadening depends on the 
Hall voltage not being shorted out by a flow of Hall current. 
This subject is important because the electron gyrofrequency 
ωc e far exceeds the electron collision frequency υe within 
the plasma-magnetic field interface. A complementary  
example is provided whereby the full Hall current is allowed 
to flow; and concomitantly the plasma is allowed to rotate. A 
critical nozzle length is identified below which the interface 
thickness is limited to about one ion gyroradius ai. The 

critical length is eie mm /λ , where λe is a representative 

electron mean free path and mi and me are the ion and elec-
tron masses, respectively. 

 
 In this study, the basic features of converging-diverging 

nozzle flow were reviewed. An algorithm was identified to 
represent resistive broadening along the flow, of the plasma-
field mixing layer. The results for the evolving width of the 
mixing layer proved to be essentially the same for two dis-
tinct models: diffusion of plasma into magnetic field and 
diffusion of magnetic field into plasma. Assuming a zero-
width starting condition for the mixing layer, so as to com-
pare with some reported resistive magnetohydrodynamics 
(MHD) simulations, the simulations were found to be rather 
more effectively diffusive than would be predicted by clas-
sical resistivity.  

Resistive MHD simulations sometimes take for granted 
the simple form of Ohm’s law, despite the presence of a 
strong longitudinal magnetic field in the mixing layer. Thus, 
the magnetic field produces the condition, ωc e >> υe. Invok-
ing the simple form of a local Ohm’s law that incorporates 
unmagnetized electrical conductivity, to relate azimuthal 
current density to azimuthal motional electric field, actually 
requires that the Hall voltage is not shorted out. In other 
words, it is required that no Hall current be allowed to flow. 
Therefore, global electrophysical boundary conditions in the 
device ought to be kept in mind when assessing the validity 
of this local Ohm’s law. In order to suppress the Hall cur-
rent, resistive MHD simulations (and experiments) should 
have an insulating wall layer inserted between the metallic 
field coils and the plasma. Such a wall layer also aids in 
protecting the field coils. (However, plasma near the wall 
might longitudinally short out the insulating wall layer and 
thereby enhance a closure path for the Hall current.) 

The opposite condition, zero Hall voltage, therefore was 
also explored in this report. If the Hall current were indeed 
allowed to flow, as well as to self-consistently spinup the 
plasma propellant, then it might be possible to limit plasma 
attachment to magnetic nozzle flux. Specifically, we found 
that if the nozzle’s length were held smaller than a critical 

length eie mmλ , then the width of the plasma-field inter-

face layer could be held to about one ion gyroradius (here, 
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the initial interface-layer thickness was neglected, except in 
one previously discussed exception). If Hall current could be 
maximized in a magnetic nozzle of subcritical length, then 
the detachment problem at the nozzle’s exit would be  
reduced to a secondary issue. It was also pointed out that the 
associated rotational spinup energy would be recovered in 
the diverging portion of the flow field.  

It is necessary to specify a spatial initial condition in the 
injection region, for calculating the downstream evolution of 
the width of the plasma-field mixing layer. Moreover, its 
width characterizes the anomalous resistivity that influences 
that very evolution. Therefore, special attention was given to 
the mixing-layer’s width δ = xn in the injection (breech) 
region of the magnetic nozzle. From first-principles physics 
considerations, it was inferred that it would be somewhat 
more than twice the ion inertia length, c/ωp i (in terms of the 
internal ion number density). Concomitantly, it was estimated 
that the ion gyroradius ai would be only about one-half to one-
third of δ. In addition, it was shown that the ratio ai/δ is insen-
sitive to position between breech and throat of the nozzle.  

This result for ai/δ determines the ratio of electron current 
drift-velocity to ion thermal velocity. That velocity ratio, in turn, 
is a principal factor in the growth rate of LHD modes as well 
as their subsequent evolution into microturbulent resistivity. 

The LHD instability was singled out for explaining the 
evolution of edge gradients of magnetically confined plas-
mas, because it is an instability that is easier to excite than 
other possible microinstabilities. For example, in comparison 
to the ion-acoustic instability, the current drift-velocity need 
not be large, and the electron-ion temperature ratio also need 
not be large. The ion-acoustic instability and an associated 
empirical resistivity had been previously invoked to explain 
the structure of magnetically imploded theta-pinches. More-
over, because the LHD mode is basically a non-cyclotron-
resonant mode in regards to the ions, it is robust enough to 
saturate at a significant level of fluctuations. This behavior 
presents a contrast with the well-studied electron-cyclotron 
drift instability, which has a very high growth rate but is 
basically a cyclotron-resonant electron mode easily  
destroyed by nonlinearity. 

The derivation of the small-amplitude linear LHD mode 
was outlined and its properties at maximal growth rate were 
summarized. The properties show a drift-wave behavior, 
with a wave phase velocity Vph = Real(ω)/k, proportional to 
current-drift velocity Vd. The characteristic wave number k is 
on the order of the reciprocal electron gyroradius ae. The 
wave’s temporal growth rate is a fraction of the lower hybrid 

gyrofrequency ce ciω ω . Moreover, the growth rate is 

proportional to (Vd/Vth i)
2. In the ion-cyclotron drift regime, 

with magnetized ions and very small Vd, the growth rate is 
so small as to have little relevance to the transit time in the 
magnetic nozzle application. 

The linear characteristics of the LHD wave were then  
invoked in a derivation of the quasi-linear theory of wave 
saturation. The saturated level of electric field fluctuations is 
a principal factor in the size of the anomalous resistivity 
produced by the wave. Use of the wave-energy bound,  
in which the total wave-fluctuation energy (not just  
electric-field-fluctuation energy) is obtained from electron 
drift inetic energy, produced a much smaller resistivity than 
did the Fowler bound. The resistivity from the wave-energy 
bound has parameter dependence identical to some alterna-
tive models of wave saturation and is notably similar to a 
first-principles electromagnetic particle simulation (Ref. 14) 
by Brackbill et al. The latter, however, produced a numerical 
factor in the resistivity that is about one order of magnitude 
smaller than in the quasi-linear model with the wave-energy 
bound. The explanation may lie in wave-wave coupling to 
damped modes in the simulation, except that Drake et al. 
(Ref. 26) also consider wave-wave coupling and yet find a 
much larger numerical coefficient. 

One principal observation of this report is that several  
alternative models of the anomalous resistivity in the inter-
face layer do agree on the multiparameter dependencies of 
ηa. The second principal observation is that there are large 
discrepancies in the numerical value of the coefficient ηa 
predicted by these models. For example, the model of Drake 
et al. (Ref. 26) has a numerical coefficient almost 2 orders of 
magnitude larger than the largest value from the simulations 
of Brackbill et al. (Ref. 14). This disagreement in the numer-
ical coefficient needs to be resolved in order for the subject 
of anomalous resistivity to be applied with confidence to 
engineering design of the magnetic nozzle.  

The anomalous resistivity ηa extracted from the simula-
tion runs of Brackbill et al. was expressed in terms relevant 
to the plasma-field interface in the magnetic nozzle concept, 
facilitating a comparison to classical resistivity ηcl arising 
from coulomb collisions of electrons with ions. The results 
are displayed in Figure 4. For example, at hydrogen-ion 

densities near 1015 cm−3, ηa is dominant over ηcl at injected-
plasma temperatures exceeding about 200 eV. However, if 
the results of Drake et al. are correct, then a breech tempera-
ture exceeding only 20 eV would be sufficient for anomalous 
resistivity to become dominant. 

Also, an open question remains as to the correctness of the 
β dependence of ηa, which purportedly was extracted from 
the Brackbill et al. simulations by comparison with the 
plasma heating results of Gary (Ref. 24). This is a very 
important question because the local β of the magnetically 
confined plasma varies from zero outside the plasma to >> 1 
inside the plasma, in traversing the edge-plasma gradient. 
Thus, resolution of this question affects the ability of resis-
tive MHD simulations to properly represent the internal 
evolution of the plasma’s edge gradient, hence to represent 
the evolution of the width of the plasma-field interface. The 
difficulty with the β dependence proposed in Reference 14 is 
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outside the scope of this report. We note the contrasting result 
of Drake et al., in which no β dependence is claimed even 
though their simulations employ an electromagnetic model. 

We conclude this summary with a few remarks on the 
Rayleigh-Taylor- (RT-) type instability. The presence of 
RT-type flute modes in regions of adverse curvature 
represents a loss of axisymmetric nozzle-based control of the 
flow of propellant. This loss of control can be mitigated by 
having the growth of the mode with the maximum mode 
number be limited by the available transit time of propellant 
through the adverse region. 

A physical derivation was given of the growth rate of  
RT-type flute modes downstream from the injection region 
in magnetically confined plasma in regions of adverse 
magnetic curvature. As is appropriate to the magnetic 
nozzle, the derivation incorporated the joint effects of 
propellant pressure and propellant flow (see Eq. (226)). A 
practical formula was obtained for the growth rate 
(Eq. (238)), which takes into account the stabilization of 
RT-type flutes of the higher mode numbers by the effects 
of collisionless ion gyroviscosity FLR stabilization).  

Within the injection region, the point of initial oblique 
impact of propellant with external nozzle magnetic field was 
singled out as having a localized region of very severe  
adverse curvature in the flow streamline. The extreme curva-
ture there is due to the strong eddy current braking asso-
ciated with the crossfield motion of injected hot plasma of 
high electrical conductivity. It was recognized that the struc-
ture of this region and the instabilities therein are inaccessi-
ble to a fluid model. It was suggested that the region of 
initial meeting of plasma with excluded flux receive special 
consideration regarding gravitational effects on short-
wavelength flute modes that are closely related to the LHD  
instability. 

Lastly, there are effects of hot-plasma physics not covered 
in the fluid-based modeling of Huba on the FLR and Hall 
effects. These hot plasma kinetic effects should be taken into 
account with regard to modes driven by adverse curvature, 
even in modes that are not limited to short wavelengths, and 
are, therefore, also additional to the short wavelength effects 
existing in the LHD-type modes. Here, we exclude the bal-
looning modes that were already mentioned with regard to 
Reference 36.  

We were careful to base our physical derivation of elon-
gated flute instabilities on the presence of adverse magnetic 
curvature rather than on artificial gravity. It is nevertheless 
expeditious for purposes of incorporating more plasma 
physics to relinquish the curved geometry in favor of a plane 
interface with uniform artificial gravity. With this artifice, 
Migliuolo (Ref. 39) generalized the famous FLR-flute mode 
theory of Rosenbluth et al. (first reference in Ref. 39) to 
extend to more plasma-physical effects. In particular  
Migliuolo included electromagnetic effects, nonzero β effects, 
and the effects of particle drift-resonances azimuthally 
across the magnetic field. Thus, Reference 39 shows how to 

obtain more accurate and more comprehensive properties of  
gravity-driven flute modes. He also explains that the short 
wavelength modes treated in Reference 35 do not contain 
electromagnetic effects.  

Also, Freidberg and Wesson (Ref. 40) used the same arti-
fice to show that conditions could arise wherein flute modes 
are essentially stabilized by FLR, but at the same time, gravity-
driven oblique modes are unstable. The latter are driven by 
resonant ion motion along the magnetic field, which is some-
times able to supply the extra energy needed to bend  
magnetic field lines. In magnetic nozzles containing regions 
of self-consistent adverse curvature traversed by hot plasma, 
it therefore would be important to apply appropriately  
detailed plasma-physical models to accurately describe and 
deal with the resulting instabilities. 

It is possible to include more detailed plasma-physical 
models in the analysis of surface perturbations of curved 
plasma boundaries by neglecting the surface curvature and 
instead introducing an artificial gravity. The relevance, 
however, of these artificial models to the integrity of the 
magnetic nozzle has not yet been demonstrated. 

In 2005, Arefiev and Breizman published a paper  
(Arefiev, A.V.; and Breizman, B.N.: Magnetohydrodynamic 
Scenario of Plasma Detachment in a Magnetic Nozzle. Phys. 
Plasmas, vol. 12, 2005.) in which they show that in a highly 
conductive plasma—where the flow kinetic energy density 
exceeds the ambient magnetic energy density—the plasma 
can stretch the magnetic field lines to infinity and thereby 
escape. (A follow-on paper published in 2008 (Breizman, 
B.N.; Tushentsov, M.R.; and Arefiev, A.V.: Magnetic Noz-
zle and Plasma Detachment Model for a Steady-State Flow. 
Phys. Plasmas, vol. 15, 2008.) presents a model that includes 
kinetic ions, but not electron-ion collisions, so resistivity was 
still absent.) However, here in the present report, it is found 
that the temperature of the plasma drops downstream of the 
throat of the nozzle. This is also shown by George Marklin’s 
numerical calculation in Reference 6 (Gerwin, Richard A., 
et al.: Characterization of Plasma Flow Through Magnetic 
Nozzles. AL–TR–89–092 (LA–UR–89–4212), 1989.). Hence, 
resistivity becomes important, precluding the stretching of 
field lines. Thus we conclude that the detachment of plasma 
from magnetic field lines remains an important process.  

In summary, there are many fundamental aspects left to be 
studied regarding the physics of high-temperature, high-
number-density plasma acceleration by means of the mag-
netic nozzle. The derivations in this report on selected topics, 
building on the work of others, can guide further theory 
development and experimental research in this emerging 
area of study. Only then can fast, piloted interplanetary 
travel utilizing magnetic nozzles begin to become viable. 
 
Glenn Research Center 
National Aeronautics and Space Administration 
Cleveland, Ohio, December 11, 2009
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Appendix A.—Symbols and Expressions

A plasma cross-sectional area 

a local particle acceleration 

a thermal gyroradius 

B magnetic field 

{δB} fluctuating magnetic field 

B magnitude of magnetic field B  

b̂  unit vector along B 

C constant  

c speed of light in vacuum  

{δD} electric displacement  

D diffusion coefficient, arising from resistive 
diffusivity 

( )ω,)1( kDy  Fourier-mode amplitude of {δD} 

E electric field (or generalized electric field) 

{δE} electric field fluctuation 

E magnitude of electric field E 

( )ω,)1( kE y  Fourier-mode amplitude of azimuthal compo-

nent of electric field E 

e base of natural logarithm, (2.7183)  

F force density 

f(u) generic function of a similarity variable in 
Appendix C 

f function 

{δf} perturbed distribution function 

( )ω,)0( kfi  ion phase-space distribution function in the 

equilibrium situation 

( )ω,)1( kfi  Fourier-mode amplitude corresponding to ion’s 

{δf} 

G(x) resistively diffused magnetic field’s 
x-dependence within plasma 

g gravitational field 

g(u) first derivative of f(u) with respect to u in 
Appendix C 

H 6-dimensional phase space [r, v] 

h fraction of radial fluid velocity lost by decele-
ration (h ≤ 1)  

I electric current  

J current density 

{δJ} current density fluctuation 

J magnitude of current density J 

K azimuthal surface current density 

K magnitude of azimuthal surface current density 
K 

k azimuthal wave number 

k azimuthal wave vector 

L length 

l vector distance along magnetic field line (or 
streamline in field-free region of core plasma) 

l magnitude of distance l 

M mode number 

m mass 

m  mass flow rate 

n  number density  

( )ω,)1( kne  Fourier-mode amplitude of electron density 

fluctuation 

{δn} number density fluctuation 

P pressure 

{δP} pressure perturbation 

Q degrees of freedom 

q fundamental electric charge (1.6×10–19 C) 

R local longitudinal radius of curvature of field 
line 

Re Reynolds number 

r particle position  

r̂  unit vector in radial r-direction 

r radial coordinate (positive toward wall); origin 
at throat on nozzle centerline 

S speed of sound 

T temperature 

t time 

u similarity variable  

V macroscopic (fluid) velocity 
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{δV} velocity perturbation 

V magnitude of fluid velocity V 

v particle velocity 

v magnitude of particle velocity v 

W energy density 

X inward radial distance from plasma edge  

x̂  unit vector in quasi-radial x-direction 

x quasi-radial coordinate (positive toward wall); 
origin at plasma edge in plasma-field mixing 
layer 

ŷ  unit vector in azimuthal y-direction 

y azimuthal coordinate (positive clockwise, 
facing downstream); origin at plasma edge in 
plasma-field mixing layer 

Ẑ  unit vector in axial Z-direction  

Z axial coordinate (positive downstream); origin 
at throat on nozzle centerline 

Z(ζ) plasma dispersion function 

ẑ  unit vector in longitudinal z-direction 

z longitudinal coordinate (positive downstream, 
along magnetic field); origin at plasma edge in 
plasma-field mixing layer 

α polarizability 

β local ratio of thermal to magnetic pressure 
within the interface 

Ɣ adiabatic index 

γ wave growth rate 

Δ penetration depth of ions into confining mag-
netic field in breech 

δ  characteristic resistive diffusive width of  
plasma-field mixing layer 

ε(k, ω) dielectric function 

ε0 permittivity of empty space 

ζ independent variable of plasma dispersion 
function 

η plasma resistivity 

Θ longitudinal magnetic flux enclosed by path 
integral of electric field taken around moving 
(expanding) plasma boundary 

θ̂  unit vector in azimuthal θ-direction  

θ azimuthal coordinate (positive clockwise, 
facing downstream); origin at throat on nozzle 
centerline 

Λ length from breech to throat L divided by ion 
gyroradius ai. 

λ mean free path  

μ0 magnetic permeability of empty space 

Ξ atomic number 

ξ (small outward virtual) displacement of rim 
element  

ρ mass density of plasma 

σ electrical conductivity 

ς longitudinal distance measured from throat 

τ gyroperiod 

υ collision frequency  

Φ ratio of wave phase velocity to ion thermal 
velocity 

φ angle 

φ electrostatic potential  

{δφ} fluctuation of electrostatic potential 

χ electric susceptibility 

Ψ stream function  

Ω conventional Hall parameter 

ω frequency 

ϖ vorticity  

 

Subscripts 

A Alfven 

a anomalous 

app applied 

area area 

arc complete length of arc in region of adverse 
curvature 

B magnetic field 

B magnitude of magnetic field 

b breech 

back backwards 

bnce bounce 
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Brack Brackbill 

c cyclotron 

char characteristic 

cl classical 

coax coaxial 

core core 

crit critical 

cur (adverse) curvature 

D diffusion 

d drift 

Drake Drake 

e electron 

eff effective 

eq equilibrium 

es electron sound 

ex exit 

ext external 

fl fluctuating 

G global 

g effective gravitational field due to centrifugal 
force  

Hall Hall 

i ion 

in incoming 

kin kinetic  

LH Lower Hybrid 

long longitudinal 

mag magnetic 

max1 maximum bound  

max2 maximum bound (even larger) 

mid middle of transition layer 

n number density 

norm normalized 

out outgoing 

p plasma 

proj projection 

pe plasma edge 

ph wave phase 

R longitudinal radius of curvature 

r radial vector component 

ran random 

RT Rayleigh-Taylor 

rot rotating 

s species 

t throat 

tot total 

th thermal 

trans transient 

V velocity 

vis viscous 

wave wave 

x quasi-radial coordinate (positive toward wall); 
origin at plasma edge in plasma-field mixing 
layer 

y azimuthal coordinate (positive clockwise, 
facing downstream); origin at plasma edge in 
plasma-field mixing layer 

Z axial coordinate (positive downstream); origin 
at throat on nozzle centerline  

z longitudinal coordinate (positive downstream, 
along magnetic field); origin at plasma edge in 
plasma-field mixing layer 

¼ one quarter  

½ radial location halfway through width dR  

I constant from Section 2.3.3, Equation (96a) 

II constant from Section 3.4, Equation (186) 

III denoting constant of integration from  
Equation (C4) 

IV denoting constant of integration from  
Equation (C7) 

V denoting constant from Equation (G8b) 

VI denoting constant from Equation (G14) 

VII denoting constant from Equation (G14) 

β pertaining to global beta 

Δ maximum radial extent  

η resistive  

δ just beyond diffusive mixing layer 
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μ mobility 

ρ density  

θ azimuthal 

τ time 

ϖ vorticity 

⊥ perpendicular to local flux surfaces  

// parallel to local longitudinal field 

∞ asymptotic 

 
Superscripts 

E electric field  

it ion trapping 

k azimuthal wave number 

Mθ azimuthal mode number 

 

ran random  

wave wave-energy bound 

x quasi-radial coordinate (positive toward wall); 
origin at plasma edge in plasma-field mixing 
layer 

y azimuthal coordinate (positive clockwise, 
facing downstream); origin at plasma edge in 
plasma-field mixing layer 

Δ variation radially outward 

ξ state of quantity as it exists in displaced  
element 

ψ phase factor exponent 

(0) Fourier-mode amplitude corresponding to a 
zero-order small perturbation (equilibrium) 

(1) Fourier-mode amplitude corresponding to a 
first-order small perturbation 

′ moving reference frame of plasma 
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Appendix B.—Influence of Dwell Time on Plasma-Field Mixing Layer Width

Starting from Equation (99), and within the context of a 
quasi-one-dimensional model, it can be shown without fur-
ther approximation that the square of the interface width, 
undergoing resistive diffusion along the flow, can be  
expressed as follows: 
 

 

( ) ( ) ( )back2 back
0 back

dLb t
t

t t t b t

D AD L

V D A L

ς ρ ς ςρ ςδ =
ρ ρ

 

(B1) 

 
It has been assumed that the initial interface width is zero. If 

not, one can add 2
bδ  to the right-hand side of the above 

equation. In this equation, subscript t refers to the position of 
the throat, and the integration proceeds back a distance, 
Lback, to the breech of the nozzle. The breech position is 
represented by subscript b. The symbols D, ρ, V, and A 
represent, respectively, the resistive diffusivity, plasma mass 
density, plasma flow velocity, and core plasma cross-
sectional area at position ς measured upstream from the 
throat at the position ς = 0. 

If the resistivity were classical, then the quasi-one-
dimensional temperature dependence of D on position ς 
would be known along the flow. Likewise, the quasi-one-
dimensional density dependence ρ(ς) is known along the 
flow. For a given nozzle shape (actually the shape of the 
confined plasma), the area dependence A(ς) is known as 
well. All of these quantities can be obtained from an ideal 
magnetohydrodynamic (MHD) simulation or a quasi-one-
dimensional model. Their numerical representations can then 
be inserted into the above integral, which can subsequently 
be performed numerically to provide an estimate of the 
resistively broadened interface width at the position of the 
throat. Thus, an ideal MHD simulation or quasi-one-
dimensional model can be employed to make a preliminary 
estimate of the resistive interface broadening, by numerically 
evaluating a single integral. 

In this appendix, however, we want to show that fairly 
close upper bounds to the above expression can be obtained 
in a simple manner, without having to perform the numerical 
integration. 

It is assumed here that the relative-area variation of an  
annular ring containing the plasma-field mixing layer is the 
same as that of the main nozzle shape, a function of longitu-
dinal distance along the flow. Conservation of mass flow is 
assumed (ρ(ς)V(ς)A(ς) = a constant), where A(ς) is the cross-
sectional area at position ς and velocity V(ς) is primarily 
parallel to the core plasma Z-axis. From Equation (99), we 
see that if the resistive diffusivity is replaced by its larger 
value Dt in the throat (since temperature drops along the 
flow and there is classical resistivity), the square of the 

maximum value of the mixing layer 2
max1δ  can be bound at 

the throat by 
 

 

back02
max1

0 0

1
d d d

( )

bt

bt

t L
t t t

t
D t D t D

V
δ = = − = ς

ς    (B2) 

 
Here, we integrate backwards from the throat t to the breech 
Lback using a quasi-one-dimensional model. The longitudinal 
coordinate ς runs from 0 in the throat to Lback in the breech. 
The outgoing longitudinal velocity V(ς) > 0 is assumed to be 
essentially the same in the plasma-field mixing layer as in 
the core plasma, in virtue of the above statement about rela-
tive area variation in the annulus containing the plasma-field 
mixing layer.  

Now, by quasi-one-dimensional mass conservation, 

[ ]( ) ( ) ( )t t tV V A Aς = ρ ρ ς ς   . A still larger bound on δmax2 

can be obtained by replacing V in the above integral by a 
lower bound. This is obtained by replacing ρ(ς) by the larger 
density in the breech ρb in the above expression for the 
longitudinal flow velocity V(ς). Then the expression in 
Equation (D2) is bounded above by 
 

 
back2

max 2
0

( )
d

Lb
t

t t t

A
D

V A

   ρ ςδ = ς   ρ     (B3)  

 
For the relative area variation, we take the following  
generic model. The radius of the nozzle as a function of 
longitudinal position measured from the throat at position 
ς = 0 is taken as  

 

 

1
22

area
( ) 1tr r

  ς ς = +   ς  
 (B4)  

 
where ςarea is a characteristic axial length over which signif-
icant radial variation of the nozzle area occurs. (The length 
ςarea is not exactly the same as the distance Lback from throat 
to breech.) Obviously, dr/dς = 0 at ς = 0, which is appropri-
ate for the shape of the throat. Therefore, the relative area 
variation is 

 

 

2

area

( )
1

t

A

A

 ς ς= +  ς 
 (B5)  

 
Use of Equation (B5) in Equation (B3) yields 

 



NASA/TP—2009-213439 84 

 
3

2 back back
max 2 area

area area

1

3
b

t
t t

L L
D

V

      ρ  δ = ς +      ρ ς ς      

 (B6)  

 
A radius contraction by a factor 2 from breech to throat is 
reasonable, producing density and velocity functions of ς up 
to the throat that differ only by a few percent from what 
would be produced by an infinite contraction ratio. From 
Equation (B5), an area contraction of 4 implies that 

Lback/ςarea = 3 . Then Equation (B6) becomes 

 

( )2 back
max 2

back

2 3
3

2

b
t

t t

b
t

t t

L
D

V

D L
V

  ρ
δ =   ρ   

 ρ
=  ρ 

 (B7)  

 

Now, ρb/ρt ≈ 3/2 constitutes a very good approximation to 
the nozzle flow results (see Eq. (10)). Then the upper bound 
becomes 

 

 2
max 2 back

3
t

t
D L

V

 
δ ≈  

 
 (B8) 

 

Thus, for a radius-contraction ratio of 2, the resistive layer 
width at the throat is bounded above by a quantity that is 

larger than the original estimate, [ ]tbackt VLD , by only a 

factor of about 3  = 1.7. For a radius-contraction ratio of 3, 
the numerical factor proves to be 2.3. 
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Appendix C.—Planar Similarity Solution for Resistive Diffusion of Field Into Plasma

When cylindrical effects are not important (thin plasma-
field mixing layer), Equation (90c) can be written as follows: 

 

 BBX τ∂=∂ 2  (C1) 

 
Here, B = Bz; X is the inward radial distance from the plasma 
edge; and ( )[ ]zVzD=τ , where z is the local axial coordi-

nate, D is the uniform resistive diffusivity of plasma, and Vz 
is the uniform axial velocity of plasma. Note that Equa-
tions (90) and (C1) take the point of view of describing the 
process of magnetic-field diffusion into the plasma within 
the lab frame, in which a steady state (with flow) exists. 
Boundary conditions on the system are envisioned to be 
applied at the breech end and will be discussed below.  

One-dimensional diffusion equations of this type permit 
similarity solutions having the form B(X,τ) = f(u), wherein u 

is the similarity variable, τ= 2Xu . The equation for f(u) 

reads 
 

 ( ) ( ) 





 +′






−=′′

u
ufuf

2
1

4

1
 (C2) 

 
where prime symbols denote derivatives with respect to the 
argument of the function. 

Defining g(u) = f ′(u), the equation for g(u) is 
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+
4

u

uu

4
u

ug
 (C3) 

 

The solution of Equation (C3) for g(u) is immediate. One 
then has 

 

 ( ) 4
III

1
f

u
u C e

u

− ′ =  
 

 (C4) 

 
where CIII is a constant of integration. Integrating Equa-
tion (C4) from u = ∞ to u, one has 

 

 ( ) ( )
4 4

III
0 0

d d
f f

u u
u e u e u

u C
u u

− −∞ 
 − ∞ = −
 
 
   (C5) 

 

though f(∞) corresponds to a field in the plasma at z = 0. A 
boundary condition is that the fields have not yet diffused 
into the plasma at the breech of the nozzle. Thus, f(∞) = 0. It 
is also observed that  
 

 ( )u
u

ueu
u

5.0erf2
d

0

4

π=
−

 (C6) 

 
Then Equation (C5) becomes the following: 
 

 ( )


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


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




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


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τu

X
CBu

5.0
erf1f IV  (C7) 

 

Here, CIV is just another modified constant of integration, 
and the original variables have been reinserted. Also, recall 
that zu zD Vτ = . Note that the latest constant CIV represents 

the uniform value of B at the edge of the plasma, where 
X = 0.  
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Appendix D.—Azimuthal Magnetic Field When Hall Voltage Is Shorted Out

This appendix constitutes an estimate of the azimuthal 
magnetic field that is necessitated by the incoming longitu-
dinal return current, which must balance the outgoing trans-
verse Hall current if the Hall current circuit is fully closed. 
The estimate is admittedly non-self-consistent in the sense 
that results obtained by neglecting the azimuthal magnetic 
field are used to estimate the size of that field. The effects of 
plasma rotation and electron pressure are included here.  

From Equations (62) and (67) the Hall current density can 
be written as 

 

 1 1 1
Hall x iJ nqV B P− − −

θ= −Λ = −Λ ∂  (D1) 

 
All quantities herein are, in principle, functions of the dis-
tance along a given field line. In practice, they shall signify 
representative or average values near or in the throat region 
of the nozzle and near or in the plasma-field mixing layer.  

Now, let Iin represent the incoming longitudinal current, 
which will be presumed to exist inside the plasma core of 
radius r(l). The region of the plasma-field mixing layer then 
begins at r(l), and extends outwards by a small increment 
δ(l). 

The total outgoing average Hall current Iout can be roughly 
estimated as 

 
 rLJI π≈ 2Hallout  (D2) 

 
where r signifies the radius of the plasma core. The right-
hand side of Equation (D2) is intended to signify only aver-
age or representative values.  

By setting Iin = Iout, the azimuthal magnetic field in or 
near the plasma-field mixing layer then can be estimated as 
follows: 

 

 ixZr PBLLJ
r

I
B ∂Λμ−=μ=

π
μ

= −−
θ

11
0Hall0

in0

2
 (D3) 

 
Here, Br Z represents the original longitudinal magnetic 
nozzle field magnitude without any azimuthal component. 
This is equivalent to the projection of the total magnetic field 
vector into the r,Z-plane, Now, by making the convenient 
approximation that δ−≈∂ iix PP , the ratio ZrBBθ  can be 

estimated. Also recall the definition of the ion βi, namely 

that 2
02 BPii μ=β . Dividing Equation (D3) by the mag-

netic field Br Z one then finds 
 

 1
2
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2
−θ δ







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

 μ
Λ
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Zr B
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B

B
 (D4)  

Recalling Equation (65) for Λ, this ratio of fields becomes 
 

 //

2
i

r Z ci

B V

B
θ  β

=  
ω δ  

 (D5) 

 
Since the longitudinal flow velocity V// is on the order of the 
ion thermal velocity, this result is approximately 

 

 
2
i i

r Z

B a

B
θ β  =  δ 

 (D6)

   
Suppose δ is scaled by the ion thermal gyroradius ai, as in 
Equation (74). For example, suppose that δ is one ion gyro-
diameter. The azimuthal magnetic field ratio is then on the 
order of 0.25βi, whereas with the resistive plasma-field 
mixing layer, as in Equation (77), δ could be somewhat 
larger, and hence the azimuthal field would be somewhat 
smaller.  

It is worth noticing that when the azimuthal magnetic field 
is somewhat comparable to the magnetic nozzle field, as is 
indicated here, then it is possible that substantial magnetic 
shear can arise within the plasma-field mixing layer. The 
magnetic nozzle field increases from a relatively small value 
within the plasma core to its ambient value in a rather short 
radial distance, which is the plasma-field mixing layer. It is 
well known that magnetic shear has a stabilizing influence 
on some microinstabilities as well as on flute-type instabili-
ties driven in regions of adverse curvature of the magnetic 
field lines. For this reason among others it appears worth 
exploring in some detail whether the full Hall current mode 
of operation (including plasma rotation) may enhance the 
integrity of the plasma-field mixing layer. This is further 
developed in Appendix E.  
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Appendix E.—Inward Radial Drift of Propellant

Although the main concern of this report is loss of propel-
lant outward onto the nozzle magnetic field lines, it is worth 
pointing out that there also is a mechanism for inward drift, 
which is activated by the presence of the azimuthal magnetic 
field in a resistive plasma medium. For simplicity we assume 
a straight, cylindrical geometry. 

The azimuthal magnetic field lines must enclose the core 
where, in a steady state, the incoming longitudinal current 
balances the transversely outgoing Hall current. The result-
ing small inward drift may be somewhat beneficial in main-
taining the integrity of the core plasma. For simplicity, it was 
not included in the model of field diffusion into the plasma. 
It must arise, however, from a steady-state balance between 
the rate at which magnetic energy is resistively dissipated by 
the longitudinal current and the rate at which magnetic  
energy is brought into the core. This balance can be  
expressed as follows: 

 

 
2

2 2

0
2 d d

2 r Z
B

V r Z J r Zθ 
  π = η π
 μ 

 (E1) 

 
Here, it is known that in highly conducting plasma, magnetic 
flux can only be brought towards the core by the  
 

inward velocity of plasma; that is, the flux lines move  
inwards approximately with the plasma. Equation (E1) is 
essentially an integral form of Poynting’s theorem. 

Now, from Ampere’s law, Bθ = (μ0I)/(2πr), where I is the 
longitudinal current within the core of radius r. Also, we 
have assumed uniform resistivity and uniform density of 

longitudinal current, 2rIJ Z π= . As a result, one finds 

from Equation (E1) that the radial inward velocity at the 
edge of the core is 

 

 
r

D
Vr

4=  (E2) 

 

where D = η/μ0 is the resistive diffusivity of plasma.  
Consider an example with classical resistivity (Spitzer  

resistivity) in hydrogen plasma with the parameters in  
Table I. The resistive diffusivity then is Dcl = 3 m2/s. Also, 
taking the core radius to be r = 0.1 m, the inward drift  
velocity then is 120 m/s, which is 3 orders of magnitude 
smaller than the longitudinal flow velocity of propellant. 
This inward drift velocity is somewhat comparable to the 
outward diffusion velocity found earlier (see the discussion 
following Eq. (17)).  
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Appendix F.—Derivation of Some Results Noted in Presentation 
of Initial Boundary-Layer Width

The results presented below in Sections F.1 and F.2 refer 
to the small electron displacement distances treated in the 
discussion around Equations (121) and (122) in Section 3.1, 
“Interface Width in Breech of Nozzle.” Numerical factors of 
order 1 will be suppressed in the derivations represented 
here. Section F.3 pertains to small inertial forces on individ-
ual ions (see Eq. (103)). Section F.4 validates the assumption 
when only electrons carry azimuthal current. 

F.1 Radial Mobility Drift Distance of Electron 
Versus c/ωp i 

In Equation (122), the first term gives the outward quasi-
radial mobility drift-velocity of the electron fluid in the 

electric field Ex in the limit of large ( )c e eΩ = ω υ . This 

quasi-radial velocity term will be multiplied by about one-

fourth of an ion gyroperiod ( )1 ci≈ ω  so as to obtain the 

outward quasi-radial distance xμ drifted by electrons during 
that time increment. 
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1 1 1 1

1 1

ce y zx i

z ce c i z ce e

y i
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J m

nq m
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= =
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μ
=

Ω μ ω
 

(F1) 

 
Ampere’s law is used in the numerator of the last expression 
above, to replace μ0Jy by [∇ × B]y. Then, the radial length 
increment in the definition of [∇ × B]y is identified as c/ωp i. 
After substituting the definition of ωc e = qB/me, a resulting 
combination of factors is identified as the square of the 

electron plasma frequency 2 2
0p e enq mω = ε  in mks units. 

Finally, recall the relation ε0μ0 = 21 c , where c is the speed 

of light. After some cancellation, and using 

pe pi i em mω = ω , the above expression reduces to 

 

 
1

pi

c
xμ =

Ω ω
 (F2) 

 
Thus the classical outward mobility drift distance traversed 
by an electron in the space-charge quasi-radial electric field 
is small compared with the initial outward ion penetration 
depth. 

 

F.2 Radial Diffusion Distance of Electron Versus 
c/ωp i 

We consider the quasi-radial diffusion distance xD tra-
versed by an electron undergoing a random walk (of gyrora-
dius steps) across the magnetic field, during one-fourth of an 
ion gyroperiod. Recall that the diffusion coefficient of an 
electron in a magnetic field is given by the expression 

2 2
e e e e eD a a= τ = υ , wherein υe is the collision frequency 

of an average electron (having ωc e >> υe) and ae is the 
electron thermal gyroradius. Then 

 
2 2

2 cee e i i i
D e e

ce ci e

a m a a
x D t a

m

ωυ
= = = = =

ω ω Ω Ω Ω
 (F3) 

 
but the ion thermal gyroradius ai is comparable to the ion 
inertia length p ic ω  whenever the ion β is on the order of 1 

(as expected according to Appendix H). Hence, 
 

 

1
2

D p ix c≈ Ω ω  (F4) 

 
Thus the classical outward collisional diffusion traversed by 
an electron across the local magnetic field is small compared 
with the initial outward ion penetration depth. 

F.3 Fluid Deceleration Neglected in Ion Trajectory 
Equation 

An equivalent gravitational deceleration field was neg-
lected in the trajectory equation of an ion, which was  
employed in Section 3.2, “Linear Theory of Lower Hybrid 
Drift (LHD) Instability.” This force field is to be compared to 
the force on the ion from the radial space-charge electric 
field. 

From Equation (H11) and by recalling that the square of 

the Alfven velocity is 2 2
0AV B= μ ρ , we estimate that  

geffδ = hVxVA. Here Vx is the radial fluid expansion velocity 
of the plasma during the first one-fourth ion gyroperiod, and 
h is the fraction of that velocity that is lost to deceleration 
during that time increment. Setting p i A c ic Vδ = ω = ω  (the 

second equation is an identity), the effective gravitational 
acceleration becomes 

 

 eff x c ig hV= ω  (F5) 
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which is approximately the same as Equation (H11). Recall 
that c is the speed of light, ωp i is the ion plasma frequency, 
and ωc i is the ion gyrofrequency in the plasma-field mixing 
layer. Because c i iqB mω = , the equivalent gravitational 

force on the ion is 
 

 effi xm g hqV B=  (F6) 
 

The radial momentum equation for fluid electrons (neg-
lecting electron pressure for simplicity) is nqEx = JyBz. With 
help of Ampere’s law, this becomes 

 

 
22

0

1

2
i A

x x
pi

m VB
qE

n c

 
 = − ∂ ≈
 μ ω 

 (F7) 

 

We have ignored a sign to just get the order of magnitude 
and have set the length scale for magnetic pressure change to 

p ic ω . Using the identity mentioned above, radial force on 

the ion (magnitude only) due to the space-charge field is 
found to be 

 

 x AqE qV B=  (F8) 
 

This electric force exceeds migeff when the plasma-fluid’s 
radial expansion velocity is sub-Alfvenic. 

F.4 Azimuthal Current Carried by the Ions During 
One-Fourth of a Gyroperiod 

A fundamental assumption in Section 3.1 has been that 
only the electrons carry azimuthal current during the short 
time (1/ωc i) when a volume element of plasma first runs into 
the confining external magnetic field. In this subsection, we 
test that assumption. Again neglecting electron pressure for 
simplicity, it is seen from the above estimate of the radial 
space-charge electric field that the azimuthal E × B drift 
velocity of the electrons is just the Alfven velocity. If the 
azimuthal fluid velocity of the ions were much smaller than 
that in the early-time increment of interest, then the ion 
contribution to the azimuthal current also would be small. 
The azimuthal electric field from the radial fluid expansion 
is Ey = VxBz. The Faraday phase due to time-dependent 
interior flux expulsion by the instantaneous electron current 
layer is assumed already completed. The azimuthal velocity 
acquired by an ion during time 1i c iτ ≈ ω  is then  

 

 y i y i i y i c i y z x iV qE m qE m E B V≈ τ = ω = =  (F9) 

 
This is small compared with the electron-current velocity 
when the plasma fluid crossfield expansion is sub-Alfvenic. 
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Appendix G.—Effect of Electron Pressure on the Initial 
Plasma-Field Mixing Layer Width

This appendix examines the effect of electron pressure on 
the initial width of the plasma-field mixing layer. The effect 
of electron collisions has been sufficiently covered in the 
main text. For conciseness, we will ignore electron collisions 
here. However, electron (and ion) pressure (Pe ≈ Pi) will be 
included in this calculation of the initial width of the plasma-
field mixing layer. Moreover, we attempt to carry out a more 
rigorous and detailed evaluation of the radial average electric 
field needed in this calculation, yet without invoking specific 
shapes for the profiles of density and magnetic field within 
the plasma-field mixing layer.  

Consider the azimuthal frame of reference in which newly 
injected ions carry no macroscopic azimuthal current. This is 
presumably the lab frame. In that frame, the quasi-radial 
component (i.e., directed across flux surfaces) of the  
electron-fluid momentum equation then reads as follows: 

 

 ( )x e x y zP nq E V B∂ = − +  (G1) 

 
A key feature of the model is that, for times less than an ion 
gyroperiod the azimuthal current density Jy = −nqVy is car-
ried only by the electrons. As discussed in the main text, we 
shall assume that quasi-neutrality has been achieved in an 
early transient subphase and is maintained (see Section 3.1, 
“Interface Width in Breech of Nozzle”). We also assume that 
the electron and ion temperatures are equal and uniform 
within the plasma-field mixing layer.  

Solving Equation (G1) for the space-charge electric field 
and using Ampere’s law on Jy, 
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 (G2) 

 
Here, Ptot = Pe + Pi = 2Pi is the total plasma pressure. There-
fore, with mass density ρ = min, it is obvious that  
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 (G3) 

 

where Δ is the penetration depth of ions into confining mag-
netic field in the breech. The brackets ...  signify the radial 

average of the enclosed quantity over the width of the  
plasma-field mixing layer. 

Use of azimuthal momentum balance Equation (110) for 
the velocity of an individual ion at the farthest radial extent 
of the ion’s trajectory, vy i Δ = −½ωc iΔ, allows the total 
energy balance of that ion, from Equation (111b) to be  

expressed as follows (the ion gyrofrequency, ωc i without 
brackets, refers to the outer magnetic field beyond the  
plasma-field mixing layer): 

 

 2 2 2
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2 1
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e
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q
v E

m

Δ
=− + ω Δ  (G4) 

 
Here, vx core i is the radial velocity with which the ion is 
incident upon the edge boundary layer. It has been assumed 
that the incident azimuthal velocity vy core i = 0 for a repre-
sentative ion in the midst of a thermal distribution. 

The intent is to utilize Equation (G3) in Equation (G4). 
Therefore, the two radial averages indicated in Equa-
tion (G4) are evaluated. We begin with the second term 
because it entails the most straightforward evaluation. Using 
Ptot = 2nT with uniform T, the second term is 
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The notation 2 2th i iV T m=  is introduced for the square of 

the ion thermal velocity. The radial average of the partial 
derivative of the logarithm of number density is evaluated as 
follows: 
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 (G6) 

 
This is to be multiplied by Δ in Equation (G5). It is reasona-
ble to associate the characteristic width Δ of the plasma-field 
mixing layer with the 1/e spatial decay length of the plasma 
density (where e ≈ 2.71828, the base of natural logarithms). 
The characteristic width Δ originally was associated with the 
protrusion of an average ion’s trajectory beyond the core 
plasma into the magnetic field region. Its quantitative con-
nection with the density profile’s spatial decay, as well as its 
connection with the spatial increase of the magnetic pres-
sure, requires more calculation than can be accommodated 
here. This clarification would require following the full 
thermal velocity distribution of trajectories of outgoing ions 
into the (unknown) nonuniform magnetic field profile. But 
using a few Δs for the 1/e spatial decay of the plasma  
density, say n = ncoreexp(−x/CVΔ), makes little difference, as 

shown later. Then ln(ncore/n
Δ) = 1/CV, where nΔ = ncore/e is 
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the variation of number density radially outward and CV is 
an unknown free constant. Note, however, that the use of this 
specific decaying exponential density profile is only an 
example; it is not essential to the argument. Consequently, 

 

 
1

ln
Δx n∂ = −  (G7a) 

 

If the spatial decay length of the density were taken as CVΔ, 
then instead of Equation (G7a) one would find 

 

  
Δ
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Use of Equation (G7a) in Equation (G5) yields 
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 (G8a) 

 

Retaining the flexibility of CVΔ for the characteristic dis-
tance of spatial decay of the density profile, Equation (G8a) 
becomes instead 
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V
P

C
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ρ
 (G8b) 

 
We have assumed that the characteristic length for the  
increase of magnetic pressure in the plasma-field mixing 

layer 0
2 2μB  is Δ. The quantitative connection of the 

density decay length to Δ has not been established, so a few 
values CV ≠ 1 are considered. 

Now the second term on the right-hand side in  
Equation (G3) has been accounted for. Next, we address the 
first term in Equation (G3). A simple calculation in terms of 
the local Alfven velocity VA yields 

 

 
n

n
VV

B x
AAxx

∂
+∂Δ=

μ
∂

ρ
Δ 22

0

21
 (G9) 

 
Recall that the local Alfven speed squared is ρμ= 0

22 BVA . 

The first term of Equation (G9) can be written 
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Subscript “Δ” refers to local evaluation at the outer edge of 
the plasma-field mixing layer, and subscript “core” refers to 
evaluation at its inner (plasma core) edge. But the final VA 

without those subscripts is to be evaluated with the outer B 
and the inner ρ. The inner ρ is taken as e multiplied by the 
outer ρ. The density’s spatial decay length is taken as the 
original Δ. 

If the spatial decay length of the density were instead taken 
to be CVΔ, then instead of Equation (G10a) one would find 
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V2 2C
x A AV e VΔ ∂ =  (G10b) 

 

Next, the second term of Equation (G9) is evaluated just by 

using an intermediate value of the local 2
AV . Since B  

increases going outwards and ρ decreases, 2
AV  increases 

strongly going outwards. Therefore, its intermediate value is 
simply taken as half the outer value. For the density decay 
scale of Δ, one finds 
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The local 2
AV  appears in Equation (G11a), and the final 2

AV  

in Equation (G10a) has been evaluated at the outer B and the 
inner ρ.  

If the spatial decay length of the density were CVΔ, one 
would find instead 
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Use of Equations (G7a) to (G11a) in Equation (G3) yields 
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The global beta, βG, is the ratio of core plasma pressure 
(electron pressure plus ion pressure) to outer magnetic pres-
sure. Since βG = 1 for pressure balance across a static layer, 
the right-hand side is guaranteed to be positive, in agreement 
with Ex being negative. In case of radial deceleration of the 
macroscopic plasma fluid, it will be shown that βG < 1, 
making the right-hand side of Equation (G12a) still more 
positive. 

Equation (G12a) applies to the case that the density decay 
length in the plasma-field mixing layer is only Δ. If instead it 
were CVΔ, then Equation (G12a) would be replaced by 
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For the negative space-charge field Ex it is clearly necessary 
that CV > ½, but this is not sufficient because the  
expression in brackets in Equation (G12b) also must be 
positive. The latter condition amounts to  
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 (G13) 

 

It will be shown below that βG ≤ 1. Then this condition is 
satisfied for CV ≥ 0.5925. The lower bound 0.5925 for CV is 
an artifact of shortening the electron pressure drop for fixed 
magnetic pressure gradient. The radial electron momentum 
equation reads: neqEx = −∂xPe − ∂x(B

2/2μ0). Thus, an artifi-
cially sharp negative electron pressure gradient, for fixed 
positive magnetic pressure gradient, annihilates the space-
charge electric field, an unphysical consequence. 

Now Equations (G12a) and (G12b) are used to calculate 
the plasma-field mixing layer thickness Δ, following the 
same procedures as are utilized in the main text. Both Equa-
tions (G12a) and (G12b) can be expressed as 
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where CVI and CVII are constants: 
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The Δ represents the physical penetration distance of a 
representative ion at the edge of the plasma into the confin-
ing magnetic field, when that element of plasma first  
encounters the interface region. The nondimensional version 
of Δ, Δnorm, is represented as 
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in which ω p i is the ion plasma frequency referred to the ion 
number density in the core. Using the same procedures as in 

the main text, namely Equation (117), ( )2norm cip
2 ωΔ=Δ , 

and the subsequent discussion, one finds 
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Inserting the constants from Equation (G15) into Equa-
tion (G17), we then find 
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Setting the global beta to its upper bound βG = 1 in Equa-
tion (G18), the lower bounds can be found for the numerical 
values of Δnorm. We say that these results are “lower 
bounds” for the following reason: In Appendix H, we show 
that βG = 1 in the absence of radial deceleration of the  
plasma by the magnetic field (i.e., no fluid-plasma motion 
across magnetic flux), but βG < 1 in the presence of radial 
deceleration (“radial” always means “quasi-radial” across the 
flux surfaces). Hence, according to Equation (G18), setting 
βG = 1 produces a value of Δnorm that constitutes an underes-
timate in the presence of radial deceleration.  

Figure 6 illustrates the dependence of nondimensional ion 
penetration depth Δnorm into the external magnetic field on 
the characteristic electron density decay length into that 
field, (CVΔ), when CV is regarded as an unknown free para-
meter. Figure 6 indicates that the (underestimated) width of 
the initial plasma-field mixing layer, as defined by the radial 
protrusion of a representative ion into the magnetic field, is 
quite insensitive to the exact numerical decay length  
assumed for the density halo. Here, βG has been replaced by 
its upper bound. Appendix H relates the numerical value of 
βG to the presence or absence of macroscopic radial decele-
ration of newly injected, radially expanding plasma. The 
effects of both electron and ion pressure gradients are expli-
citly included in Appendix H. 
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Appendix H.—Relation Between Global Beta and Radial Deceleration

Initially, displaced magnetic flux between the plasma and 

the metallic wall (behind the insulating layer) builds up 

external magnetic pressure to match the radially expanding 

internal plasma pressure and slow down the radial expan-

sion. This phase constitutes a dynamical adjustment  

described below in more detail. It is to be distinguished from 

the subsequent resistive phase that consists of radially  

expanding ions attempting to drag reluctant electrons across 

magnetic flux. The latter phase may involve either classical 

resistivity or anomalous resistivity from microturbulence.  

Newly injected high-temperature plasma tries to expand 

across the ambient magnetic field, if it is not injected right 

along the magnetic field lines. The preexisting nozzle mag-

netic field, however, counters that tendency early on. In the 

simplest MHD model, the high-conductivity Ohm’s law is 

E + V  B = 0, which has some validity at short times during 

the setting-up phase. Here, E is the electric field in the lab 

frame of reference. The symbol V is employed for the fluid 

(macroscopic) velocity vector of the plasma ions in order to 

be clearly distinct from the velocity vector vi of an individual 

ion. As the plasma’s lateral boundary crosses outwards 

through downstream-directed longitudinal magnetic flux (in 

the local z-direction), with quasi-radial fluid velocity Vx (in 

the local x-direction, ˆ x =
ˆ 

 B/B ), an azimuthal electric 

field (VxBz) is generated in the clockwise direction (looking 

downstream). Then, by Faraday’s law (or Lenz’s law),  
 

 
 (H1) 

 

where the closed-line integral is taken around the plasma 

circumference in the clockwise direction, and  is the  

enclosed longitudinal magnetic flux.  

The downstream-directed magnetic flux thereby becomes 

diminished within the plasma and displaced to the annular 

volume outside of the plasma. Longitudinal magnetic flux 

can be laterally repositioned, but once established it cannot 

be created or destroyed within the volume defined by the 

highly conducting wall, during the short time interval of 

interest. The shifted flux, in addition to the original external 

flux, is squeezed between the plasma boundary and the 

conducting wall or coil, which thereby results in an increased 

magnetic field strength in the annulus outside of the plasma. 

The reconfigured flux therefore exerts an increased magnetic 

backpressure impeding the further radial expansion of 

plasma. The squeezed longitudinal magnetic flux acts like a 

compressible gas having an adiabatic index of 2. The  

expanding plasma therefore experiences a radial deceleration.  

Although the above brief description was based upon the 

simplest MHD model of a high-conductivity Ohm’s law, it 

can be extended to more detailed plasma models. This model 

envisions neutral plasma motion across the magnetic field.  

 

The kinetic ion intrusion  in the breech into the confining 

magnetic field takes place in a few hundredths of a micro-

second in a field of thousands of Gauss. This takes place in a 

very short time span (on the order of one-quarter ion gyro- 

period) compared with the transit time from breech to throat 

(~10 μs at a velocity of 10
5
 m/s). We assume this kinetic 

penetration has already occurred, and so we go to the next 

phase, which is described by a fluid model. For example, as 

a steady-flow configuration is approached, with axial sym-

metry, the azimuthal electric field in the lab frame tends to 

vanish; however, resistive currents are driven so as to con-

tinue to shield the plasma interior from penetration by the 

external magnetic field. To see this, use the next level of 

plasma model, namely, a resistive medium of resistivity . In 

this case the perfect conductivity model E + V  B = 0 

evolves over time into V  B = J, where J is the current 

density in the edge plasma (where V represents the resis-

tive leakage of fluid velocity of the plasma in the quasi- 

radial direction across the local magnetic field. The  

resistive currents generated according to this model are 

driven in the counterclockwise direction (looking down-

stream). They generate magnetic fields that have the net 

effect of excluding magnetic flux from the interior plasma 

but reenforcing it in the exterior annulus. Magnetic shield-

ing by an edge layer of plasma current is according to 

Ampere’s law,   B = μ0J. 

Still more detailed plasma models can be taken into  

account, in which collisions of electrons with ions are rare and 

the Hall effect is important. It is then necessary to  

include the effects of electric fields due to charge separation 

and to employ separate models for the electron and ion  

motions (see, for example, the discussion after Equation (101) 

in Section 3.1, “Interface Width in Breech of Nozzle”). Mag-

netic shielding of the interior plasma is again realized.  

The purpose of this appendix is to focus on the initial  

dynamical adjustment phase, by furnishing an account of the 

influence of the radial deceleration of plasma on the G. We 

work in a reference frame that follows a plasma element in 

the main longitudinal flow, and a planar model of the  

plasma-field interface is employed. Curvature of the  

magnetic field lines is neglected for the short time interval of 

interest. The ion and electron quasi-radial momentum equa-

tions then can be expressed as follows: 

 

 

 (H2) 

 

The first equation is the ion quasiradial momentum balance 

equation, wherein the ions carry no azimuthal current at 

early times; the second equation, with the help of Ampere’s 

law, is the electron quasiradial momentum balance equation.  
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With the help of the ion mass conservation equation, 
( ) 0=ρ∂+ρ∂ xxt V , the equations in Equation (H2) may be 

combined as follows: 
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2t x x x x
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 (H3) 

 
As mentioned above, Vx is the radial component of the ion- 
fluid velocity, and the equations are written in the frame that 
tracks the longitudinal flow. In Equation (H3), the total 
plasma pressure is Ptot = Pe + Pi. This equation would have 
had the same form were the ions to carry some azimuthal 
current. 

Equation (H3) is integrated across the evolving interface 
plasma-field mixing layer of width δ. The integration is 
performed from a point at the edge of the core plasma where 
the density is large (subscript “core”) and the magnetic field 
is small, to just beyond the mixing layer where the density is 
small and the magnetic field is large (subscript “δ”). These 
inner and outer points are not fixed, but move radially with 
the plasma fluid.  

The integral of the first term in Equation (H3) is  
rearranged with the time derivative moved in front of the 
whole integral. It then is important to note that contributions 
to that integral arise that are associated with the time-
dependent limits of integration. These exactly cancel the 
contributions to the integration that originate from the 
second term in Equation (H3). In view of these cancellations, 
the integrated equation then can be written as 
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In Equation (H4), ρ is the average mass density in the 

layer of width δ, and the effective gravitational acceleration 
geff is  
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where xV  is the density-weighted average fluid velocity in 

the layer. Specifically, 
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Now dividing through in Equation (H4) by the external 
magnetic pressure, the global beta is 
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If there were no radial deceleration (g = 0) or radial  
macroscopic expansion (Vx = 0), then one would have 
βG = 1. With radial deceleration geff > 0, one must have 

βG < 1. We shall now estimate the deviation ( )Gβ−1  due to 

geff. In order to do so, the following three assumptions are 
made: 

 
(1) The average density in the plasma-field mixing layer is 

roughly half of the density in the bulk plasma:  
 

 core

2

ρ
ρ ≈  (H8) 

 
(2) Consistent with the estimates made earlier, the width 

of the edge-plasma boundary layer still is at least roughly 
given by  

 

 
 

A

pi c i

Vcδ ≈ =
ω ω

 (H9) 

 
The second part of this equation is an identity. Here, the 
inner plasma density and the outer magnetic field are used. 

(3) A fraction h of the radial fluid velocity is lost by  
deceleration during the short time increment of interest,  
dt ≈ 1/ωc i and h ≤ 1. The effective gravitational acceleration 

tVg x ddeff −= , can then be represented as follows. The 

numerator, xx VhV =− d , is to be divided by dt, roughly 

one-fourth of an ion gyroperiod. Then,  
 

 eff c i xg h V≈ ω  (H10) 

 
Using the above three assumptions and referring to Equa-
tion (H7), a simple calculation shows that the deviation of 
the βG from 1 is given by 

 

 A

x

V

V
h

B

g
≈

μ

δρ

δ 0
2

eff

2
 (H11) 

 
Our basic model has been based on the concept of a  
highly sub-Alfvenic expansion of injected plasma across the 
flux surfaces, Vx << VA. This approximation corresponds to a 
very strong vacuum magnetic field and/or injection of pro-
pellant at grazing incidence to B, so that the displaced mag-
netic flux very quickly exerts a backpressure that prevents 
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the realization of a large radial expansion velocity. As the 
plasma expands radially, the plasma pressure falls and the 
external magnetic pressure rises, so that the net force on the 
edge layer is inwards. After this initial dynamical adjustment, 

the plasma may still expand slowly across the magnetic flux, 
but only by the ions dragging reluctant electrons across the 
flux. This second phase corresponds to resistive diffusion. 
Since h ≤ 1, it then follows that βG is very close to 1. 
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Appendix I.—Initial Ratio of Ion Gyroradius to Plasma-Field Interface Width

Starting with the basic local identity  
 

 β=
ω ip

i

c

a
 (I1) 

 
we wish to evaluate this quantity first at a representative 
position in the middle of the plasma’s edge gradient layer, 
the interface region, and then convert that result to the  
ratio [ai]mid/δ, where δ is the width of the interface;  
δ ≈ 2[c/ωp i]core. Here, “core” means the internal number 
density is used to evaluate the ion plasma frequency. In 
Section 3.1, “Interface Width in Breech of Nozzle” the 
interface width was estimated to have a somewhat larger 
value. 

When evaluating the local 28 BnTii π=β , the local n in 

the numerator is set to half the core density, and the local 
magnetic pressure in the denominator is set to half the exter-
nal magnetic pressure. The result is βi = βG i, where the 
subscript “G” refers to the global ion beta, which is defined 
by the ratio of core ion pressure to external magnetic pres-
sure. Assuming that the uniform temperatures are equal,  
Te = Ti, the total βG must be 1 across a static plasma-field 
mixing layer. Therefore, the ion contribution to βG is one-
half; βG i = 1/2. Equation (I1) then reads 

 

 

mid

1

2
i

p i

a

c

 
= 

ω  
 (I2) 

 

However, mid core[ ] [ ] 2pi piω = ω , when the mid-density 

is taken as half the core density. Then, Equation (I2)  
becomes 

 

 
mid

core

1

22

i

p i

r

c

  
=

 ω 
 (I3) 

 

Dividing Equation (I3) by 2  and for 
core

2 pic δ ≈ ω  , 

we then obtain  
 

 

mid 1

2

ia  
=

δ
 (I4) 

 

Because δ actually was calculated to have a somewhat  
larger value, we chose a somewhat smaller final working 
ratio:  

 

 

mid 1

3

ia  
=

δ
 (I5) 

 

The distinction is not overly significant (see Fig. 4). This 
then characterizes the ratio of electron current-drift velocity 
to ion thermal velocity at a representative position within the 
edge-plasma gradient. Of course, different positions within 
the gradient layer will produce different numerical results for 
ai/δ. We do not attempt to obtain a profile-dependent result 
in this report.  
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Appendix J.—Generalized Plasma-Field Interface Thickness at the  
Throat Calculation and Example

This appendix presents a more generalized derivation of 
the plasma-field interface thickness at the throat—where 
both the initial interface thickness at the breech and its 
growth from breech to throat are taken into account. The 
related issue of the ion gyroradius to interface thickness ratio 
equation is also discussed.  
 
J.1 Calculation of Plasma-Field Interface Thickness 

and Fraction of Attached Plasma Discussion 
and Example 

Given a desired specific impulse, which is essentially the 
desired exit velocity Vex at the effective exit of the thruster’s 
nozzle, the velocity of propellant at the throat is, to a good 
approximation, 
 

 ex5.0 VVt =  (J1) 
 

The provisionally estimated travel time tb t of propellant 
from breech to throat may be expressed as 
 

 
t

tb
tb V

L
t =  (J2) 

 

where Lb t is the axial distance from breech to throat. This 
time estimate is subject to correction as described later. 

If the interface thickness in the breech were zero, it would 
thicken with time as 
 

 
t

tb

V

DL
Dt ==δ  (J3) 

 

so as to acquire this value in the throat, provided that we take 
beta to be 1 as a representative magnitude within the inter-
face. We provisionally regard this δ as the width of the radial 
density profile in the interface, but subject to correction as 
described later.  

If, instead, the boundary layer thickness in the breech 
were δb , then the above formula would generalize to 
 

 
t

tb
bb V

DL
Dt +δ=+δ=δ 22

 
 (J4) 

 

This result is based upon the solution of a differential equa-
tion in time along the flow. 

In this rendering of Equation (J4), a time-integration has 
been artificially avoided by regarding D as the average value 
of the resistive diffusivity between breech and throat. How-
ever, D does not vary much between breech and throat, 

whether classical or anomalous due to Lower Hybrid Drift 
(LHD) microturbulence. Using D at the position of the throat 
provides a reasonable estimate of the interface thickness for 
conditions of interest, because the diffusive contribution to 
Equation (J4) generally does not greatly dominate the initial 

(breech) contribution 2
bδ , and moreover, a square root is 

taken to get the final result. 
When modified as described below, Equation (J4) can be 

utilized to estimate the fraction of attached plasma at the 
position of the throat.  

As shown in Section 3.1, “Interface Width in Breech of 
Nozzle,” the interface thickness in the breech, which appears 
in Equation (J4), can be estimated as 
 

 
ip

b
c

ω
=δ 2

 (J5) 

 
in which c is the speed of light in free space and ωp i is the 
ion plasma frequency. 

Equation (J4), moreover, provides the basis for analytic 
estimates of the ratio of ion gyroradius to interface thickness, 
ai/δ, describing that ratio as it varies along the flow. That 
work is presented in Section 3.1. A particular relevance of 
that ratio is that it plays a central role in analytic theories of 
LHD microturbulence, and especially in the anomalous 
magnitude of the associated resistivity. In this regard, it is 
important to remark that these analytic theories (for example, 
Refs. 18, 23, 24, and 35) are usually limited to the elec-
trostatic (zero-beta) model, in which the gradient under 
consideration is only the density gradient. Thus, for the 
purpose of referring to the seminal analytic results of these 
theories, the equations for ai/δ should be viewed within the 
context of a resistively diffused density gradient. The δ 
therein thus represents the density gradient width, without 
the effect of bidirectional diffusion. 

In the application to space vehicle thrusters with magnetic 
nozzles, however, we need to estimate the fraction of plasma 
that has become attached to the magnetic nozzle field lines. 
For that application, inward magnetic diffusion into the 
plasma is just as important as outward diffusion of plasma 
into the external magnetic field. 

In that case, two corrections ought to be made to Equa-
tion (J4). The first is trivial; namely, to expand the travel 
time by about a factor 2 in order to allow for the time needed 
to accelerate the interface plasma up to speed. Thus,  
t = Lb t/Vt becomes  
 

 
t

tb

V

L
t

2
=  (J6) 
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Equation (J6) is the approximate result of an analytic inves-
tigation with realistic nozzle geometry for the plasma edge. 
(This modification with the factor 2, in principle, should also 
be made to the above-mentioned equations for the ratio ai/δ, 
but that will have only a minor effect on the general conclu-
sion that this ratio varies little between breech and throat.) 

The second correction is the more subtle, namely, to allow 
for simultaneous resistive diffusion of plasma into nozzle 
magnetic field and of field into plasma; the so-called bidirec-
tional diffusion. Each of these diffusive processes separately 
(in the absence of Hall current and plasma rotation) would 
accrue a diffusive distance of about √(D t), starting from 
zero thickness in the breech. (For D = 3 m2/s and t = 10 μs, 
this diffusive distance is about 0.5 cm.) Heuristically adding 
the two effects, we could reasonably estimate the total inter-
face thickness as 
 

 DtDt 4==δ  (J7) 

 
The estimate that constitutes Equation (J7) is in need of a 

careful numerical investigation, within the context of a 
slowly convergent breech-to-throat geometry, as mediated by 
a continuously distributed and continuously graded magnet 
coil. Such a gradual configuration geometry would likely 
preclude the anomalous cross-field loss of plasma observed 
in a prior resistive MHD simulation, which employed dis-
crete coils and axially limited distances appropriate to an 
envisioned lab experiment. 

Accounting for both of the above-mentioned corrections, 
Equation (J4) now reads 
 

  
t

tb
b V

DL82 +δ=δ  (J8) 

 
At sufficiently low temperatures, D would be the classical 
resistive diffusivity associated with coulomb scattering of 
electrons on ions.  

The classical resistivity itself appears in Equation (200) in 
CGS units. The coulomb logarithm therein (the logarithm of 
the ratio of the maximum-to-minimum impact parameter in 
an electron collision with an ion) has been set to 10, which is 
sufficient at the present level of development of our investi-
gation. (See Ref. 9.) Multiplication by (c2/4π) converts this 
resistivity to D in CGS units. Multiplication of the CGS 
resistivity by 9⋅109 converts the resistivity to MKS units. 
Dividing the latter by μ 0, which is the magnetic permeability 
of free space, then yields D in MKS units. Alternatively, one 
can convert D (CGS) into D (MKS) by just dividing the 
former by 104. 

At sufficiently high temperatures, D could result from 
LHD microturbulence evolving from edge-gradient instabili-
ties. At intermediate temperatures, D would be appropriately 
regarded as arising from the sum of both resistivities; that is, 

the two types of electron collision frequencies, classical and 
anomalous, would be additive. 

We shall now present a numerical example of the calcula-
tion of the fraction of attached plasma, based upon Equa-
tion (J8). Of course, the parameters to be assumed here can 
be changed as needed, concomitantly with changes of the 
resistive diffusivity D, and the interface width in the breech 
δb. 

J.2 Calculation of the Fraction of Attached  
Plasma—An Example 

Consider hydrogen propellant, breech temperature 50 eV, 

and breech number density 1.0⋅10 15 cm−3. The specific 
impulse is then about 20 000 s, and Vt = 1.0⋅107 cm/s. (Here, 
we employ approximate numbers, but they can be made 
more accurate in a final calculation. Of course, other para-
meters can also be assumed.) 

The interface thickness in the breech is then δb = 1.7 cm. 
More to the point,  
 
 2

b  cm9.22 =δ  (J9) 

 
For the given parameters, classical resistivity by far domi-
nates over anomalous resistivity due to the LHD instability 
(see Fig. 4) and one finds approximately 
 

 sD cm103 4⋅=  (J10) 

 
which is the value in the throat and which thus allows for the 
temperature drop relative to the breech. 

With an axial breech to throat distance of one meter, Lb t = 
100 cm, then Equation (J8) becomes 
 

 cm3.24.20.3  ===δ  (J11) 
 
Because we included bidirectional diffusion, the diffusive 
contribution is about the same as that from the initial 
(breech) contribution. Without the correction for bidirec-
tional diffusion, the second term would be rather small in 
comparison to the breech contribution to the interface thick-
ness. That result for density diffusion alone then would be 
relevant to the gyro-radius ratio to the thickness of the densi-
ty gradient, as discussed earlier.  

In order to calculate the fraction of attached plasma, one 
must already know the rate of mass ejection, m . This quan-
tity is supposed to be predetermined by the logistics of the 
given mission. With a hydrogen plasma radius in the throat, 
rt = 10 cm, one has m  = 3.5 g/s, which already accounts for 
the drop in density from breech to throat. Different desired 
values of the mass ejection rate would lead to different val-
ues of the plasma radius in the throat, at the assumed breech 
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density. (Of course, the plasma radius in the throat must be 
the result of a self-consistent steady-flow interaction  
between the injected plasma and the shaped vacuum  
magnetic nozzle field. Prior simulations have already dem-
onstrated the self-consistent formation of a plasma throat, 
within the time-dependent resistive MHD model.)  

If the core density were to extend throughout the width of 
the interface, then the fraction of attached plasma would be, 
to sufficient approximation,  
 

 percent46
2 =δ

tr
 (J12) 

 
However, the average density in the interface will, of course, 
be somewhat less than the core density. A reasonable provi-
sional estimate, subject to the results of a future resistive 
MHD simulation without ill understood anomalies, is that 
the average density in the interface is roughly half of the 
core value. (This would be the case for a linear spatial  
decrease to zero in the radial edge density profile.) Then one 

finds the fraction of attached plasma to be 23 percent. This 
is, after all, a significant loss of plasma, which portends that 
there will be a significant detachment problem to be solved 
downstream, if the idealized thruster results are to be  
approached.  

At first glance, the above example points to the advantages 
of working at higher temperatures to slow down resistive 
diffusion. Then, higher mass propellant ions would be  
employed to preserve the desired specific impulse. Further-
more, in order to mitigate the initial interface width in the 
breech, it would be advantageous as well to work with a 
higher number density of ions, so as to increase the ion 
plasma frequency there. But note that the higher mass ion 
decreases the ion plasma frequency, whereas the higher ion 
charge increases it! The presence of a higher ion charge also 
tends to increase resistive diffusion due to coulomb scatter-
ing of electrons by ions. Obviously, there are several compet-
ing effects that need scrutiny. A scenario involving higher 
stagnation number density and higher stagnation temperature 
in a propellant consisting of higher mass (and charge) ions, 
becomes of interest for future investigations.  
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Appendix K.—Raleigh-Taylor Instability: Further Considerations

In this appendix, we furnish the details leading to the spa-
tial dependence of the external magnetic field when flute 
distortions of the surface are present. In the main report, we 
presented a derivation of the growth rate of this flute-mode 
instability in the magnetic nozzle-propellant interface. The 
derivation given suppressed some details; specifically, the 
property that the external magnetic field B has a 1/R depen-
dence is crucial, but was not given a full discussion. Here, R 
is the local longitudinal radius of curvature of the surface, 
which can be extended beyond the equilibrium surface to 
signify a spatial variable in the external volume outside of 
the propellant.  

In the equilibrium situation involving only the unper-
turbed boundary surface of propellant, the above-mentioned 
spatial dependence of the external magnetic field can readily 
be demonstrated. The integral form of Ampere’s law is 
employed, using an Ampere circuit around the highly con-
ducting, sharp-boundary propellant configuration, which is 
assumed to diamagnetically exclude the magnetic flux. 
Therefore, the integral form of Ampere’s law immediately 
yields the result that B = μ0KReq/R, where Req is the equili-
brium radius of local longitudinal curvature and K is the local 
transverse surface current per unit longitudinal arc length. 

The question remains as to the spatial dependence of the 
external magnetic field under the nonequilibrium condition 
associated with the distortion of the surface from Req  
(denoted by δR) into flutes. Then R = Req + δR represents the 
distance of a point on the distorted interface from the local 
center of longitudinal curvature of the interface. (The equili-
brium shape of the interface still has longitudinal radius of 
curvature Req.) 

Figure 7 illustrates a longitudinal local section of a  
converging-nozzle surface with “adverse” longitudinal cur-
vature and flutes. The center of longitudinal curvature is at C. 
The equilibrium surface possesses a radius of longitudinal 
curvature Req. The crests and troughs of the flutes on that 
surface are indicated by R = (Req + δR). The flutes are  
observed by rotating the r,Z-plane of the figure around the  
Z-axis, while C is fixed (in the rotating plane) but the radius 
of longitudinal curvature fluctuates. The subtended longitu-
dinal angle is dφ, and the length of arc shown (solid) is Req dφ. 
In the equilibrium situation, without surface distortions, one 
may regard R as a radial position variable in the space out-
side of the unperturbed surface. Since the magnetic field B 
only exists in the external volume, one may apply the 
integral form of Ampere’s law to the circuit indicated by 
(→), to show that B = μ0 K (Req/R), where K is the surface 
current per unit longitudinal arc length. 

In this appendix we furnish the details leading to the spa-
tial dependence of the external magnetic field when flute 
distortions of the surface are present. The proof will be 
carried out primarily verbally and pictorially to facilitate its 

accessibility, but we believe that it is nevertheless a rigorous 
proof when based upon the following assumptions and their 
corollaries: 

 

(1) The propellant core is highly conducting (a “perfect” 
conductor) and is bounded by a sharply defined surface (the 
interface) separating the internal field-free plasma from the 
external longitudinal magnetic nozzle field (Br, BZ). These 
are the only components of B after the original axially sym-
metric configuration becomes distorted by flute modes. 

(2) According to the integral form of Ampere’s law, 
∇×B = μ0J, there must necessarily exist a surface current 
that separates the null-field interior plasma from the nozzle 
magnetic field in the external region. We denote this surface 
current density by K. 

(3) The longitudinal flute-mode displacement of each 
point on the sharp-boundary plasma surface occurs only in 
the r,Z-plane corresponding to that equilibrium point and is a 
periodic function of the azimuthal angle θ. (The cylindrical 
coordinates are (r, θ, Z).) We caution that the flute-distortion 
motion of the surface itself is not identical to the motion of 
the underlying fluid. Nevertheless, only the surface dis-
placement is relevant to the disposition of the external mag-
netic field. 

(4) Our simple model of the flute distortion is that the  
local distorted surface remains “parallel” to the equilibrium 
surface, in the sense depicted in Figure 7(a). This assumption 
is meant to reproduce, as closely as possible, the fluting of a 
plane surface, in which the longitudinal generators of the 
distortions remain parallel to the original plane. This particu-
lar model of the flute distortions is realized by having the 
center of curvature remain fixed in the r,Z-plane as it rotates 
around the axis of initial symmetry. Then the longitudinal 
radius of curvature of the surface varies as the plane rotates, 
thus generating the crests and troughs of the flutes. (Note: 
Restriction of the present model to address only a short 
longitudinal increment of the surface means that the pheno-
mena of global ballooning modes are neglected. Localized 
g-modes are the objects of the present investigation. Even-
tually, however, the ballooning modes should be studied to 
provide a more comprehensive picture of processes that 
affect regions of adverse curvature. Such regions might exist 
throughout the nozzle: either upstream of the nozzle-throat 
(where the nozzle narrows down into the throat) or also 
downstream of the throat (where the diverging field lines are 
turned so as to straighten out the flow). 

(5) The magnetic field must remain external to the dis-
torted fluid surface because magnetic field lines cannot 
penetrate a perfect conductor if they initially lie outside. 
Moreover, the field lines must remain longitudinal (Bθ = 0) 
during the flute distortion, because there exists no conducting-
surface motion restricted to longitudinal flutes that can  
initiate any transverse magnetic field component. (There is  
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no preferred transverse field direction under the given sur-
face displacement.) 

(6) The longitudinal field lines just outside the surface 
must remain tangential to the distorted surface: first, because 
they cannot enter or leave the surface and second, because 
any vacated external vacuum volume would become instantly 
filled with magnetic field (at the speed of light). 

(7) The vector field that describes the current density K 
must (of course) lie on the evolving surface during the dis-
tortion, and it also must remain locally perpendicular to the 
contiguous longitudinal magnetic field vectors. Otherwise, if 
K had acquired a component along B, then B would neces-
sarily acquire a transverse component, but this is impossible 
under the conditions restricted to flute distortions of the 
surface (see above). 

 

Based upon the above assumptions, we can now show that 
the magnetic field at the distorted surface varies as 1/R, 
where R is the local longitudinal radius of curvature on the 
distorted surface. This is done by means of the integral form 
of Ampere’s law. 

It can be inferred from Figure 7(a) that as the r,Z-plane is 
rotated to register a sequence of flute distortions, lines of the 
vector field K cannot cross the boundaries of the sector dφ. 
For if they did, the surface would then necessarily acquire a 
component along longitudinal B, which cannot happen in the 
considered flute distortions (see above). Therefore, the total 
surface current in dφ is conserved. That is, KR dφ is constant. 
(R dφ is the longitudinal arc length crossed by the surface 
current.) 

Figure 7(b) shows an Ampere circuit of vanishing width, 
indicated by (→). The thin Ampere circuit contains the 
propellant’s sharply defined surface. The model considered 
here is delimited by a longitudinal angle increment dφ, 
which is measured from the center of longitudinal curva-
ture C shown in Figure 7(a). The symbol “xxxxx” schemat-
ically indicates the surface current per unit longitudinal 
length, denoted as K. The plane of Figure 7(b) (and 7(a)) is 
the r,Z-plane, but the plane of the Ampere circuit is per-
pendicular to the distorted (fluted) surface. Hence the 
Ampere circuit is in the r,Z-plane only at the crests and 
troughs of the distorted surface. Figure 7(c) illustrates this 
end-on view of a fluted surface, showing three Ampere 
circuit planes. 

Considering Figure 7(b), we can apply the integral form 
of Ampere’s law to the indicated circuit. The result reads BR 

dφ = μ0KR dφ; also, BR dφ = constant. Hence, B varies as 1/R 
even when the surface possesses flute distortions. This result 
was specifically utilized in Section 4.2.1, “Surface Instability 
of Static Plasma in Region of Adverse Curvature,” in the 
discussion of the exponential growth rate of the linearized 
flute-mode fluctuations. 

Aside from the spatial variation of magnetic field B near 
the surface of the propellant, there is a concern that B could 
suffer an overall shift because of a change in surface current 
K as the flutes evolve. However, the large inductance of the 
global currents provides very large impedance against shifts 
in K on the time scales for growth of the Raleigh-Taylor 
instabilities. 
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