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Abstract 

An enhanced design methodology for minimizing the error 
in on-line Kalman filter-based aircraft engine performance 
estimation applications is presented in this paper. It specific-
ally addresses the underdetermined estimation problem, in 
which there are more unknown parameters than available 
sensor measurements. This work builds upon an existing 
technique for systematically selecting a model tuning para-
meter vector of appropriate dimension to enable estimation by 
a Kalman filter, while minimizing the estimation error in the 
parameters of interest. While the existing technique was 
optimized for open-loop engine operation at a fixed design 
point, in this paper an alternative formulation is presented that 
enables the technique to be optimized for an engine operating 
under closed-loop control throughout the flight envelope. The 
theoretical Kalman filter mean squared estimation error at a 
steady-state closed-loop operating point is derived, and the 
tuner selection approach applied to minimize this error is 
discussed. A technique for constructing a globally optimal 
tuning parameter vector, which enables full-envelope applica-
tion of the technology, is also presented, along with design 
steps for adjusting the dynamic response of the Kalman filter 
state estimates. Results from the application of the technique 
to linear and nonlinear aircraft engine simulations are 
presented and compared to the conventional approach of tuner 
selection. The new methodology is shown to yield a signifi-
cant improvement in on-line Kalman filter estimation 
accuracy. 

Introduction 
An emerging approach in the field of aircraft engine con-

trols and health management is the inclusion of real-time on-
board adaptive models for the in-flight estimation of engine 
performance parameters (Refs. 1 to 3). These models, 
typically based on Kalman filters, enable the estimation of 

unmeasured engine performance parameters that can be used 
for diagnostics, prognostics, and controls applications. A 
challenge that complicates this practice is the fact that an 
aircraft engine’s performance is affected by its level of 
degradation, generally described in terms of unmeasurable 
health parameters such as efficiencies and flow capacities 
related to each major engine module. The level of engine 
performance degradation can be estimated using a Kalman 
filter, given that there are at least as many sensors as parame-
ters to be estimated (Ref. 4). However, in an aircraft engine 
the number of sensors available is typically less than the 
number of health parameters, presenting an under-determined 
estimation problem. The conventional approach to address this 
shortcoming is to estimate a subset of the health parameters, 
referred to as model tuning parameters. While this approach 
enables on-line Kalman filter-based estimation, it can 
introduce error in the accuracy of overall model-based 
performance estimation applications. In a departure from the 
conventional approach of selecting a subset of health parame-
ters to serve as the tuner vector, Litt (Ref. 5) presented a novel 
approach based on singular value decomposition that selects a 
model tuning parameter vector of low-enough dimension to be 
estimated by a Kalman filter. In this method, a model tuning 
parameter vector, q, is constructed as a linear combination of 
all health parameters, h, given by 

 q = V*h (1) 

where the transformation matrix, V*, is selected by applying 
singular value decomposition to capture the overall effect of 
the larger set of health parameters on the engine variables as 
closely as possible in the least squares sense. An enhancement 
to the work of Litt, presented by Simon and Garg (Ref. 6), 
selects V* to minimize the theoretical mean squared estimation 
error in the parameters of interest at a steady-state open-loop 
linear design point. 

In this paper, several design enhancements to the optimal 
tuner selection methodology presented in Reference 6 are 
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discussed and presented. These include extending the optimal 
tuner selection methodology to encompass closed-loop control 
operating conditions, selection of a single tuner vector for 
application throughout the engine operating envelope as 
opposed to at a single design point, and design considerations 
to provide the desired Kalman filter dynamic response. The 
remainder of this paper is organized as follows. First, some 
mathematical preliminaries are given regarding the problem 
formulation including the linear model representing system 
dynamics and the formulation of the Kalman filter. Next, 
several practical design considerations are discussed including 
an approach for selecting a tuner vector optimal for full-
envelope operation, referred to as a globally optimal tuner 
vector, and design steps for adjusting Kalman filter dynamic 
response. This is followed by an example application of the 
methodology to linear and nonlinear turbofan engine simula-
tions. Finally, conclusions are presented. 

Nomenclature 
A, Ac, Axh, Axq, 
B, Bce, Bco, Bxh, 
Bxq, C, Cc, Cxh, 
Cxq, D, F, Fxh, 
Fxq, G, L, M, N 

system matrices 

C-MAPSS Commercial Modular Aero-Propulsion 
System Simulation 

Fn net thrust 
HPC high pressure compressor 
HPT high pressure turbine 
I identity matrix 
K∞ Kalman filter gain 
LPC low pressure compressor 
LPT low pressure turbine 
Ph health parameter covariance matrix 
PLA power lever angle 
PWLKF piece-wise linear Kalman filter 

P∞ Kalman filter state estimation covariance 
matrix 

Q, Qxh, Qxq process noise covariance matrices 
R measurement noise covariance matrix 
SmLPC low pressure compressor stall margin 
SSEE sum of squared estimation errors 
V* transformation matrix relating hk to qk 
WSSEE weighted sum of squared estimation errors 

e error between control setpoint and feedback 
signal 

h health parameter vector 

m number of measured outputs 
p number of health parameters 
q Kalman filter tuning parameter vector 
r control setpoint 
u actuator command vector 
v measurement noise vector 
w, wh, wxh, wxq process noise vectors 
x, xxh, xxq state vectors 
y vector of measured outputs 
z vector of unmeasured (auxiliary) outputs 
Subscripts  
c control parameter 
k discrete time step index 
o open-loop feedback signal 
r feedback signal 
xh augmented state vector (x and h) 
xq reduced order state vector (x and q) 
ss steady-state value 
Superscripts  
† pseudo-inverse 
T transpose 
- a priori estimate 
+ a posteriori estimate 
  
Diacritical marks 
ˆ estimated value 
˘ augmented 
˜ error or residual 
ˉ expected or mean value 

Problem Formulation 
The discrete linear time-invariant engine state space equa-

tions about a design point are given as 

 
1k k k k k

k k k k k

k k k k

x Ax Bu Lh w
y Cx Du Mh v
z Fx Gu Nh

+ = + + +

= + + +

= + +

 (2) 

where k is the time index, x is the vector of state variables, u is 
the vector of control inputs, y is the vector of measured 
outputs, z is the vector of auxiliary (unmeasured) model 
outputs, and h is the vector of engine health parameters. The 
vectors w and v are zero-mean white noise inputs, with 
covariance of Q and R, respectively. The matrices A, B, C, D, 
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F, G, L, M, and N are of appropriate dimension. From Eq. (2) 
it can readily be observed that health parameter deviations 
induce shifts in the engine state variables and outputs. As 
such, health parameter effects must be accounted for to 
achieve accurate engine performance estimation. Towards this 
requirement, Eq. (2) can be rewritten such that h is concate-
nated with x to form an augmented state vector, xxh, as shown 
in Eq. (3). Since engine performance deterioration is very 
slowly evolving relative to other engine dynamics, h is here 
modeled without dynamics. 
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h

F x Gu

+

+

       
= + +        

        

= + +

 
= + + 

 

= + +

 
= + 

 

= +

 





 

(3) 

The vector wxh is zero-mean white noise associated with the 
augmented state vector, [xT hT]T, with a covariance of Qxh. wxh 
consists of the original state process noise, w, concatenated 
with the process noise associated with the health parameter 
vector, wh.  

 
,

,

k
xh k

h k

w
w

w
 

=  
   

(4) 

Closed-Loop State-Space Model 
This paper considers an engine operating under closed-loop 

control conditions. As a point of introduction, refer to the 
architecture shown in Figure 1 depicting the interaction 
between an aircraft engine, a controller, and a Kalman filter. 
Here, the controller accepts inputs consisting of an error 
signal, ek, (i.e., a residual between a commanded parameter, rk, 
and a sensed feedback parameter, yr,k), along with additional 
sensed measurements, yo,k. The controller processes these 
inputs to produce actuator commands, uk.  

As shown in Figure 1, engine operation is effected by both 
actuator commands and the engine’s level of deterioration 
denoted by the unknown set of health parameter inputs, hk.  
 

Controller
Aircraft
Engine

rk ek

uk
yk

yr,k

+

-

zk

hk

Kalman
Filter

ˆ ˆ ˆ, , ,
ˆˆ ,

k k k

k k

x y z

q h

yo,k

uk

 

Figure 1.—Aircraft engine, controller, and Kalman filter. 
 

The Kalman filter processes the measurements, yk,  
and actuator commands, uk, to produce the estimates 

ˆˆ ˆ ˆˆ, , , , andk k k k kx y z q h . 
The controller state space equations are given as 

 
, 1 , ,

,

,

c k c c k ce k co o k

k c c k

k k r k

x A x B e B y
u C x
e r y

+ = + +

=

= −

 (5) 

and the sensed feedback parameters, yr,k and yo,k, can be 
written as  

 ,

,

r k r k r k r k

o k o k o k o k

y C x D u M h
y C x D u M h

= + +

= + +
 (6) 

From Eqs. (5) and (6) the controller state variables become 

( )

( )

( )
( ) ( )

,

, 1 ,

,

...

...

...

k

o k

c k c c k ce k r k r k r k

e

co o k o k o k

y

c c k ce r co o k

ce r co o k ce r co o k

ce k

x A x B r C x D u M h

B C x D u M h

A x B C B C x

B D B D u B M B M h
B r

+ = + − − −

+ + +

= + − +

+ − + + − +

+





 
(7) 

Substituting uk = Ccxc,k (from Eq. (5)) into Eq. (7) yields 

 

( )

( )

( )

1

2

1

, 1

,

...

...

c k ce r co o k

A

c ce r c co o c c k

A

ce r co o k ce k

L

x B C B C x

A B D C B D C x

B M B M h B r

+ = − +

+ − +

+ − + +







 
(8) 

From Eqs. (2) and (5) the closed-loop engine state variables 
can be written as 
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 ( )1 ,

k

k k c c k k

u

x Ax B C x Lh+ = + +


 
(9) 

The quantities in Eqs. (8) and (9) can be augmented with the 
health parameters to obtain 

 
1

, 1 1 2 1 ,

1

0

0 0 0

k c k

c k c k ce k

k k

x A BC L x
x A A L x B r

Ih h

+

+

+

      
      = +      
            

 (10) 

For simplicity the following augmented matrices and vectors 
are defined 

 

,

1 2

1

0

k
k

c k

c

ce

x
x

x

A BC
A

A A

B
B

L
L

L

 
=  

 
 

=  
 
 

=  
 
 

=  
 









 (11) 

allowing the closed-loop state space equations to be re-written 
in the following form using Eqs. (2), (5), (10), and (11) 

 





1

1

,

,

00

k

k

k k
k

k

k k c c k k

u

k
c

C

k k c c k k

u

k
c

F

x x BA L r
h hI

y Cx DC x Mh

x
C DC M

h

z Fx G C x Nh

x
F GC N

h

+

+

      
= +      

     

= + +

    =      

= + +

    =      





  









 (12) 

Reduced-Order State Space Model  
To enable Kalman filter formulation when presented the 

underdetermined estimation problem a reduced-order state 
space model must be constructed. This is accomplished by 

defining a model tuning parameter vector, q, which is a linear 
combination of all health parameters, h, given by 

 
*q V h=   (13) 

where q ∈ m, h ∈ p, m < p, and V* is an m × p transforma-
tion matrix of rank m, applied to construct the tuning parame-
ter vector. While q is constructed as a linear combination of 
health parameters, the elements of q do not have any physical 
meaning. Their purpose is to allow an accurate estimation of 
unmeasured engine parameters. However, given q, an 
approximation of the health parameter vector, ĥ , can be 
obtained as 

 *†ĥ V q=  (14) 

where V*† is the pseudo-inverse of V*.  Substituting Eq. (14) 
into Eq. (3) yields the following reduced order state space 
equations which will be used to formulate the Kalman filter 

 

 
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,
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x
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q

+

+
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



,

k

xq xq k k

Gu

F x Gu

+

= +
 

(15) 

For the reduced order system, the state process noise, wxq, and 
its associated covariance, Qxq, are calculated as 

 

, ,* *
,

* *

0 0
0 0

0 0
0 0

k
xq k xh k

h k

T

xq xh

wI I
w w

wV V

I I
Q Q

V V

    
= =     

     

   
=    

     

(16) 

Kalman Filter Formulation  
In this study, steady-state Kalman filtering is applied. This 

means that while the Kalman filter is a dynamic system, the 
state estimation error covariance matrix and the Kalman gain 
matrix are time invariant—instead of updating these matrices 
each time step they are pre-converged and held constant at 
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their final values. Given the reduced order linear state space 
equations shown in Eq. (15), the state estimation error 
covariance matrix, P∞, is calculated by solving the following 
Riccati equation (Ref. 7) 

 

1( )T T T
xq xq xq xq xq xq

T
xq xq xq

P A P A A P C C P C R

C P A Q

−
∞ ∞ ∞ ∞

∞

= − +

× +


 (17) 

The steady-state Kalman filter gain, K∞, can then be calculated 
as follows (Ref. 7) 

 
1( )T T

xq xq xqK P C C P C R −
∞ ∞ ∞= +  (18) 

The Kalman filter a priori and a posteriori estimates are given 
in Eq. (19) and Eq. (20) respectively (Ref. 7) 

 , , 1 1ˆ ˆxq k xq xq k xq kx A x B u− +
− −= +  (19) 

 ( ), , ,ˆ ˆ ˆxq k xq k k xq xq k kx x K y C x Du+ − −
∞= + − −  (20) 

The reduced order state vector a posteriori estimate, ,ˆxq kx+ , 
produced by Eq. (20) can be used to produce an estimate of 
the augmented state vector and the auxiliary parameters as 
follows 

 

, ,*†

*†
,

0
ˆ ˆ

0

ˆˆ

xh k xq k

k xq k k

I
x x

V

z F NV x Gu

+

+

 
=  

 

 = + 

 (21) 

Optimal Transformation Matrix Selection 
As presented in Reference 6, the estimation accuracy of the 

Kalman filter is directly dependent on the selection of the 
transformation matrix, V*. This gives rise to the optimization 
problem of selecting V* to minimize the estimation error in the 
parameters of interest. This can be accomplished by conduct-
ing an optimal iterative search to select a V* matrix that 
minimizes the mean sum of squared estimation errors (SSEE) 
in the parameters of interest 

 ( )
*

*arg min
m pV

SSEE V
×∈

 
(22) 

Alternatively, a weighted mean sum of squared estimation 
errors, WSSEE, can be applied to place more/less emphasis on 
certain parameters, or to account for variation in the engineer-
ing units of different parameters. Reference 6 presented 
derivations of health parameter and auxiliary parameter mean 

SSEE as a function of V* at an open-loop steady-state operat-
ing point. While the functional design of a Kalman filter 
applied to an open-loop versus a closed-loop system is the 
same due to the separation principle (see Ref. 8), the transfor-
mation matrix, V*, which is optimal under the two scenarios is 
different. Readers are referred to the Appendix for a complete 
derivation of the closed-loop SSEE as a function of V*. As in 
the open-loop case presented in Reference 6, once the 
theoretical derivation of the SSEE is obtained, an optimal 
iterative search can be applied to determine the V* matrix that 
produces the minimum estimation error.  

Practical Design Considerations  
The approach for selecting V* introduced in Reference 6 is 

designed to provide optimal estimation results at a single 
steady-state operating point. However, in real-world applica-
tions an aircraft engine will operate at and transition between a 
broad range of operating points. Some practical design 
considerations for selecting V* and designing a Kalman filter 
to provide full-envelope estimation accuracy and satisfactory 
transient estimation response are given in the following 
subsections. 

Selecting V* for Full-Envelope Operation 
A typical design approach for on-board adaptive aircraft 

engine models is to implement a piece-wise linear Kalman 
filter (Refs. 1, 2, and 4). This consists of designing individual 
Kalman filters at multiple operating points spanning the 
engine’s operating envelope, and then interpolating between 
points as the engine transitions between operating conditions. 
This is a suitable design approach if one follows the conven-
tional technique of selecting a fixed subset of health parame-
ters to serve as the Kalman filter tuner vector, q, throughout 
the entire engine operating envelope. However, if the method 
of Reference 6 is used to select a different V* (and thus a 
different q) for each design point comprising the piece-wise 
linear model, interpolation between the design points will 
yield meaningless results. Thus, an alternative strategy is 
necessary. This can be addressed by modifying the optimal 
iterative search routine to produce a single “globally optimal” 
V* transformation matrix that minimizes the sum of theoretical 
SSEE’s (or WSSEE’s) calculated at a number of user-specified 
engine operating points. This procedure does add computa-
tional complexity to the design process, but, as the selection of 
V* is only performed off-line during the design phase, it does 
not add any computational burden to the Kalman filter 
implemented on-line. While the selection of a globally optimal 
V* matrix may result in sub-optimal estimation results at 
individual operating points, it will permit interpolation 
between operating points of a piece-wise linear Kalman filter 
suitable for full-envelope operation. The next section will 
present estimation accuracy results from the application of this 
technique to an aircraft engine simulation. 



 

NASA/TM—2012-217278 6 

Adjusting Kalman Filter Process Noise to Provide  
Acceptable Dynamic Response 

The optimal iterative search for V* introduced in Refer-
ence 6 is designed to minimize the Kalman filter mean 
squared estimation error at a steady-state operating point. The 
dynamic response of the Kalman filter state estimates is not 
considered in this process. This can lead to the selection of a 
V* matrix that produces overly sensitive or overly sluggish 
variations in the estimated state and tuning parameters when 
the engine experiences a transient. Typically, a Kalman filter 
designer directly specifies the state process noise covariance, 
Q, to provide the desired estimation response. However, the 
optimal tuner selection approach performs a transformation 
that converts the designer-specified full-order process noise 
covariance matrix, Qxh, to a reduced-order process noise 
covariance matrix, Qxq (see Eq. (16)). The next section will 
discuss and present design steps that can be taken to improve 
the dynamic response of the Kalman filter. 

Turbofan Engine Example 
In this section the utility of the optimal tuner selection 

methodology is demonstrated by showing results from its 
application to the Commercial Modular Aero-Propulsion 
System Simulation (C-MAPSS), a NASA-developed high-
bypass turbofan engine simulation (Ref. 9). C-MAPSS is a 
transient nonlinear aerothermodynamic engine model 
developed for controls and diagnostics research and develop-
ment purposes. It has two state variables (fan and core speed), 
and three actuators (fuel flow, variable stator vanes (VSV), 
and a variable bleed valve (VBV)). C-MAPSS also has ten 
adjustable efficiency and flow capacity health parameters that 
enable the simulation of engine performance deterioration and 
module performance faults. The state variables, actuators, and 
health parameters are listed in Table 1. In this study, a 
simplified version of the C-MAPSS engine controller 
comprised of a fuel flow controller and variable geometry 
open-loop schedules is considered. While C-MAPSS does 
have control limit logic to prevent engine over speed and 
operating instabilities, that logic is not included here. The 
controller schedules fuel flow based on the error, ek, between 
commanded and sensed fan speed. VBV and VSV actuators 
are open-loop scheduled based on sensed fan speed and sensed 
core speed, respectively. Collectively, fuel flow, VBV, and 
VSV commands form the vector of control inputs, uk, 
provided as inputs to C-MAPSS. The C-MAPSS controller 
state variables and sensed feedback parameters are shown in 
Table 2.  

For the purposes of this study, six sensed outputs and four 
unmeasured auxiliary outputs are defined. These parameters 
and their engineering units are listed in Table 3.  
 
 
 

TABLE 1.—STATE VARIABLES, ACTUATORS,  
AND HEALTH PARAMETERS 

State  
variables 

Actuators Health  
parameters 

Nf – fan speed Wf – fuel flow Fan efficiency* 
Nc – core speed VSV – variable stator vane Fan flow capacity* 
 VBV –variable bleed valve LPC efficiency 
  LPC flow capacity* 
  HPC efficiency* 
  HPC flow capacity* 
  HPT efficiency 
  HPT flow capacity* 
  LPT efficiency 
  LPT flow capacity 

*Health parameters applied as tuners in conventional estimation approach 
 

TABLE 2.—CONTROLLER STATE VARIABLES  
AND SENSED FEEDBACKS 

Controller state variables  
(xc) 

Controller sensed feedbacks 

xc(1) – fuel flow control state variable 1 yr    – corrected fan speed 
xc(2)  – fuel flow control state variable 2 yo(1) – corrected fan speed 
xc(3)  – fuel flow control state variable 3 yo(2) – corrected core speed 
xc(4)  – VBV control state variable  
xc(5)  – VSV control state variable  

 
TABLE 3.—SENSED OUTPUTS AND  

UNMEASURED AUXILIARY OUTPUTS 
Sensed outputs  

(y) 
Auxiliary parameters  

(z) 
Nf – fan speed (rpm) T40 – Combustor exit temp. (○R) 
Nc – core speed (rpm) T50 – LPT exit temperature (○R) 
P24 – HPC inlet total pressure (psia) Fn – Net thrust (%) 
T24 – HPC inlet total temp. (○R) SmLPC – LPC stall margin (%) 
Ps30 – HPC exit static pressure (psia)  
T48 – Exhaust gas temperature (○R)  

Case 1: Kalman Filter Point Design 
As an initial evaluation, the optimal tuner selection metho-

dology was applied to design a Kalman filter for application at 
a single closed-loop operating point. Here, model tuning 
parameters were selected to minimize a weighted sum of 
squared estimation errors (WSSEE) in the four auxiliary 
parameters listed in Table 3. To serve as a comparison, two 
additional Kalman filters were designed. These included a 
Kalman filter designed applying the conventional approach of 
selecting a subset of health parameters to form the model 
tuning vector, and a Kalman filter designed applying the open-
loop optimal tuner selection approach presented in Refer-
ence 6. The health parameters selected to serve as the elements 
of the tuner vector in the conventional design approach are 
denoted with an “*” in Table 1. They were selected through an 
exhaustive search that considered all possible combinations 
and determined the subset of six health parameters that  
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to C-MAPSS (a linear state space point model and the full 
nonlinear version) at steady-state closed-loop conditions at a 
provided the minimum WSSEE. All three designs were applied 
cruise operating point of 35K ft, 0.65 Mach, and a power lever 
angle (PLA) setting of 60°. In each case the engine was 

subjected to sensor measurement noise with covariance R 
(with elements of the y vector in corrected engineering units, 
ordered as shown in Table 3), and health parameter deteriora-
tion with covariance Ph (with elements of the h vector in 
percent, ordered as shown in Table 1), defined as follows 

 

5.469 1.830 0.047 0.381 1.585 2.273
1.830 131.195 0.022 16.817 18.415 4.241
0.047 0.022 0.002 0.007 0.006 0.007
0.381 16.817 0.007 3.744 1.843 0.232

1.585 18.415 0.006 1.843 7.894 1.156
2.273 4.241 0.007 0.232 1.156 6.342

R

−
 −

− −
=

− −

− −

210−





 
× 

 
 
 
 

  

 

0.508 0.596 0.259 0.515 1.098 1.913 0.278 0.259 0.057 0.029
0.596 0.894 0.350 0.700 1.480 2.593 0.370 0.348 0.077 0.039
0.259 0.350 0.230 0.334 0.693 1.230 0.165 0.158 0.035 0.018
0.515 0.700 0.334 0.749 1.384 2.473 0.326 0.315

hP

− −
− −
− −
−

=

0.070 0.035
1.098 1.480 0.693 1.384 3.213 5.670 0.691 0.669 0.147 0.075
1.913 2.593 1.230 2.473 5.670 10.468 1.182 1.165 0.258 0.132
0.278 0.370 0.165 0.326 0.691 1.182 0.206 0.179 0.037 0.019
0.259 0.348 0.158 0.315 0.669 1

−
− −
− −
− −

− − − − − − .165 0.179 0.183 0.035 0.018
0.057 0.077 0.035 0.070 0.147 0.258 0.037 0.035 0.018 0.004
0.029 0.039 0.018 0.035 0.075 0.132 0.019 0.018 0.004 0.012

 
 
 
 
 
 
 
 
 
 
 

− − 
 − − 
 − − − − − − − − 

 

 
Note that the R and Ph matrices shown above contain non-

zero off diagonal elements. For R, this is due to the fact that 
the engine is operated closed-loop and parameter correction 
(Ref. 9) is applied. This results in non-zero covariance 
between each sensor measurement pair. To calculate R, a large 
simulated data set was generated by applying random noise to 
each sensor (i.e., the six sensors shown in Table 3 plus the 
inlet temperature and pressure sensors used for correction). 
The resulting covariance in the corrected sensor measurements 
yields R. The engine performance deterioration levels applied 
in this study are loosely based on historical aircraft engine 
data presented in Reference 10. This report shows that engine 
module deterioration occurs in a coupled fashion, resulting in 
some non-zero covariance between each health parameter pair. 
For this study, a routine was created to simulate random 
engine health parameter deterioration levels representative of 
the information shown in Reference 11. Based on a large 
simulated dataset generated by this routine, the health 
parameter covariance was calculated as Ph. 

Table 4 shows a comparison of the theoretically predicted 
and experimentally obtained mean squared estimation errors 
for the three Kalman filter designs when applied to linear and 
nonlinear C-MAPSS operating in closed-loop. The experimen-
tal results were obtained through a Monte Carlo simulation 
analysis in which the health parameters varied over a random 

distribution in accordance with the covariance matrix, Ph 
shown above. The test cases were concatenated to produce a 
single time history input that was provided to the C-MAPSS 
models. Each individual health parameter test case lasted 45 s. 
The experimental errors shown in Table 4 are based on the last 
10.5 s of each 45 s test case. This allowed the engine model and 
the Kalman estimator to reach a quasi-steady-state operating 
condition prior to calculating the error. The corrected trim point 
values of T40, T50, Fn, and SmLPC are 2808 °R, 1222 °R, 
26.5 percent, and 11.3 percent respectively. For the construc-
tion of WSSEE, a weighting of 1.0 was applied to the T40 and 
T50 errors, and a weighting of 100.0 was applied to the Fn and 
SmLPC errors. 

From Table 4 it can be seen that the mean squared estimation 
errors experimentally obtained from the linear model exhibit 
good agreement with the theoretically predicted errors. This 
result is encouraging as it validates the closed-loop optimal 
tuner selection methodology presented in this paper. It is also 
encouraging to find that the closed-loop optimal tuner selection 
approach provides superior estimation accuracy compared to the 
other two tuner selection approaches. A closer comparison of 
the closed-loop versus open-loop theoretical results reveals that 
the improvement offered by the closed-loop tuners is primarily 
due to a reduction in estimation variance. The mean squared 
estimation bias is nearly the same in both cases. This suggests  
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TABLE 4.—AUXILIARY PARAMETER  
MEAN SQUARED ESTIMATION ERRORS 

Tuner  
vector 

Error  T40  
(°R) 

T50  
(°R) 

Fn 
(%) 

Sm-LPC 
(%) 

WSSEE 

Subset of 
health 

parameters 

Theor. sqr. bias 20.48 0.69 0.003 0.031 24.51 
Theor. variance 0.50 0.07 0.007 0.047 5.99 
Theoretical 20.98 0.75 0.010 0.078 30.49 
Exp. (linear) 20.16 0.78 0.010 0.075 29.43 
Exp. (nonlinear) 24.52 1.39 0.012 0.197 46.73 

Cruise 
optimal 

(open-loop) 

Theor. sqr. bias 1.58 0.52 0.001 0.014 3.60 
Theor. variance 0.75 0.11 0.005 0.029 4.28 
Theoretical 2.32 0.62 0.007 0.043 7.89 
Exp. (linear) 2.26 0.64 0.007 0.044 7.92 
Exp. (nonlinear) 4.49 1.19 0.007 0.163 22.73 

Cruise 
optimal 

(closed-loop) 

Theor. sqr. bias 1.61 0.39 0.001 0.013 3.43 
Theor. variance 0.36 0.07 0.000 0.002 0.64 
Theoretical 1.97 0.45 0.002 0.015 4.06 
Exp. (linear) 2.05 0.46 0.001 0.014 4.10 
Exp. (nonlinear) 4.49 0.96 0.006 0.166 22.59 

 
that the open-loop tuner selection approach, which is mathe-
matically simpler and does not require access to detailed 
control design information, may be applied to provide 
comparable estimation accuracy, especially in applications 
that exhibit limited estimation variance. It is noted that the 
experimental estimation errors obtained based on nonlinear C-
MAPSS are larger than those based on linear C-MAPSS. This 
is attributed to differences between the nonlinear plant model 
and the linear model that the Kalman filter is based upon. In 
particular, the SmLPC mean squared estimation error is 
significantly larger in the nonlinear case. This error, which has 
a WSSEE weighting of 100, causes most of the increase 
observed in WSSEE over the linear and theoretical results.  

Case 2: Kalman filter Full-Envelope Design 
The previous case presented estimation results at a single 

operating point. However, to be practical the methodology 
must be applicable for constructing an estimator that can 
provide accurate estimation performance as the engine 
transitions throughout the flight envelope. As previously 
discussed, this can be performed by selecting a single globally 
optimal V* matrix for application within a piece-wise linear 
Kalman filter (PWLKF) design, enabling estimation through-
out the entire operating envelope. The optimal iterative search 
routine was modified to sum the theoretical WSSEE results 
over multiple user-specified operating points. Through trial 
and error it was found that optimizing over a small number of 
operating points spanning the commonly encountered regions 
of the flight envelope provided reasonable estimation  
accuracy. To illustrate this technique, a single globally optimal 
V* matrix was produced based on the nine engine operating 
points shown in Figure 2.  

Table 5 shows the auxiliary parameter theoretical mean 
squared estimation errors obtained when applying the globally 
optimal V* matrix and tuner vector at the same closed-loop 
steady-state cruise operating condition used in Case 1. As a  
 

 
Figure 2.—Optimization points applied for globally optimal 

tuner selection 
 
TABLE 5.—AUXILIARY PARAMETER THEORETICAL MEAN 

SQUARED ESTIMATION ERRORS AT STEADY-STATE 
CRUISE OPERATING POINT 

Tuner vector T40 
(°R) 

T50 
(°R) 

Fn 
(%) 

SmLPC 
(%) 

WSSEE 

Subset of health parameters 20.98 0.753 0.010 0.078 30.50 
Cruise optimal (open-loop) 2.32 0.62 0.007 0.043 7.89 
Cruise optimal (closed-loop) 1.97 0.454 0.002 0.015 4.06 
Globally optimal (closed-loop) 1.97 0.466 0.002 0.015 4.11 
 
comparison, the theoretical mean squared estimation errors 
based on the three model tuner vectors evaluated in Case 1 are 
also shown. The encouraging result is that application of the 
globally optimal tuner vector does not result in a significant 
loss in estimation accuracy. In fact, the WSSEE of the globally 
optimal tuner vector is only 1.2 percent larger than that of the 
tuner vector optimally selected for the given cruise operating 
point. Even more impressive is the fact that the evaluated 
cruise point is not one of the nine points used to determine the 
globally optimal V*.  

As an additional comparison, the average theoretical estima-
tion accuracy provided by the subset of health parameters, 
cruise optimal closed-loop, and globally optimal closed-loop 
tuner vectors was evaluated at 2000 operating points spanning 
the engine operating envelope. For this evaluation, separate 
Kalman filter point designs were constructed at each of the 
2000 operating points. These results are shown in Table 6, 
along with the standard deviation in the results (shown in 
parentheses). Here it can be observed that the Kalman filter 
design that applies the globally optimal tuner vector provides a 
4.2 percent reduction in WSSEE compared to the cruise 
optimal tuner vector. Furthermore, the standard deviation in 
all squared estimation errors is relatively small, demonstrating 
little variance in the estimation error as the operating point is 
changed. These results are highly encouraging as they suggest 
that a fixed tuner vector, which is near optimal over a large  
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TABLE 6.—AUXILIARY PARAMETER THEORETICAL  
MEAN SQUARED ESTIMATION ERRORS (AND  
STANDARD DEVIATION) AVERAGED OVER  
2000 STEADY-STATE OPERATING POINTS 

Tuner vector T40 
(°R) 

T50 
(°R) 

Fn 
(%) 

SmLPC 
(%) 

WSSEE 

Subset of health 
parameters 

20.03 0.762 0.012 0.054 27.36 
(1.94) (0.155) (0.005) (0.016)  

Cruise optimal 
(closed-loop) 

1.90 0.711 0.003 0.014 4.27 
(0.16) (0.531) (0.002) (0.003)  

Globally optimal 
(closed-loop) 

1.90 0.634 0.003 0.013 4.09 
(0.15) (0.298) (0.001) (0.002)  

 
 
region of the flight envelope, can be found. However, 
additional evaluation is warranted to demonstrate that a 
globally optimal tuner vector can be generated and applied to 
other engine models in addition to C-MAPSS. 

Case 3: Kalman Filter Design Considerations 
For Transient Operating Conditions 

The optimal tuner selection strategy presented in this paper 
is designed to minimize the mean squared estimation error 
under steady-state operating conditions. However, it does not 
necessarily provide the desired accuracy when the engine is 
undergoing a transient. To illustrate this refer to Figure 3. The 
top half of this figure shows a comparison of nonlinear C-
MAPSS net thrust versus a PWLKF estimate of net thrust as 
the engine undergoes a power transient at a cruise condition 
(35K ft, 0.65 Mach). The lower half of the figure shows the 
corresponding variation in the estimates of the tuning 
parameters, q, produced by the Kalman filter. In this example, 
nonlinear C-MAPSS is a nominal (non-deteriorated) engine, 
whereas the PWLKF is based on a fleet average (50 percent 
deteriorated) engine. Before and after the transient operating 
period, the actual and estimated net thrust exhibit good 
agreement. However, during the transient the estimate 
produced by the Kalman filter responds more rapidly than the 
actual thrust; consequently the estimate is not as accurate. It 
can also be observed that the tuner estimates undergo signifi-
cant variations during the transient. 

A design step that can be taken to adjust the dynamic re-
sponse of the Kalman filter estimates is to modify the 
specified process noise covariance matrix, Qxh. Specifying 
smaller magnitude values will slow the dynamic response of 
the Kalman filter estimates. To illustrate this, the Qxh matrix 
was divided by 1106, and the optimal tuner selection process 
was repeated. The identified vector of tuning parameters was 
then applied to design a new Kalman filter. The response of 
the new Kalman filter to the same power transient is shown in 
Figure 4. Here it can be observed that the estimation accuracy 
during the transient is improved, and the amount of variation 
in the tuning parameters during the transient is also reduced. 

 

 
Figure 3.—Kalman filter response with original Qxh. 

 

 
Figure 4.—Kalman filter response with adjusted Qxh. 

Conclusions 
A systematic approach to model tuning parameter selection 

for on-line Kalman filter based parameter estimation under 
closed-loop operating conditions has been presented, along 
with design considerations for applying the approach. This 
technique is specifically for the underdetermined parameter 
estimation problem where there are fewer sensor measure-
ments than unknown health parameters that impact system 
outputs. The approach creates and applies a linear transforma-
tion matrix, V*, to select a vector of tuning parameters that are 
a linear combination of all health parameters. The tuning 
parameter vector is selected to be of low enough dimension to 
be estimated, while minimizing the mean-squared error of 
Kalman filter estimates. Evaluations based on an aircraft  
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engine linear point model demonstrate that the theoretically 
predicted and experimentally obtained estimation errors 
exhibit good agreement, thus confirming the theory that the 
tuner selection methodology is based upon. The technique was 
also found to provide acceptable estimation results when 
applied to a nonlinear aircraft turbofan engine simulation, 
although, as expected, some loss in estimation accuracy is 
incurred compared to the linear evaluation. Additionally, a 
technique for selecting a single globally optimal V* matrix 
applicable throughout an engine’s operating envelope has been 
demonstrated. This is necessary to enable interpolation 
between operating points within a piece-wise linear design 
implementation. Theoretical evaluation results using an 

aircraft engine model showed that the application of a single 
globally optimal V* matrix results in only a 1.2 percent 
increase in mean squared estimation error compared to the 
implementation of an optimal V* matrix at a cruise operating 
point. While encouraging, additional evaluation is warranted 
to determine if this holds when the technique is applied to 
different engine operating points and different engine models. 
Finally, it was also shown that, as in a conventional Kalman 
filter implementation, the system designer can adjust the 
dynamic response of the Kalman filter estimates by adjusting 
the specified state vector process noise covariance matrix used 
in the filter design.  
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Appendix: Derivation of Kalman Filter Mean Squared  
Estimation Error Under Closed-Loop Operating Conditions 

This appendix provides a derivation of the Kalman filter 
mean squared estimation error at a closed-loop steady-state 
operating point. This information is used in the iterative search 
for an optimal V* matrix described in the paper. This appendix 
will first derive the control inputs, system outputs, and 
Kalman filter estimates under steady-state conditions. Next, 
the Kalman filter mean squared estimation error, which is 
comprised of a mean squared bias and a mean variance, will 
be derived.  

System Under Steady-State Conditions 
For the linear system operating at the trim point under 

steady-state conditions rk = 0 and 1k k ssx x x+ = =   . We can 
leverage this information to write the x, y, and z equations as a 
function of h 
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(A.1) 

The steady-state actuator commands, uss, and the steady-state 
state vector, xss, can also be written as functions of h, so from 
Eqs. (5) and (A.1) 
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 (A.2) 

Steady-state Kalman filter estimates can also be written as a 
function of h. To make this derivation we will begin by  
rewriting the a priori and a posteriori Kalman filter equations 
previously given in Eqs. (19) and (20) as follows 

a priori equations 
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a posteriori equations 
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 (A.4) 

Next, the following expected value properties at steady-state 
operating conditions are defined  
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 (A.5) 

Substituting (A.5) into (A.3) allows the a priori Kalman filter 
equation under steady-state conditions to be written as 
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 (A.6) 

Then, substituting Eqs. (A.1) and (A.2)  into (A.6), the steady-
state Kalman filter a priori equation can be written as a 
function of h. 
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(A.7) 

Next, proceed to the a posteriori Kalman filter equations, which can also be written as a function of h  
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 (A.8) 

 
Steady-State Mean Squared Estimation Error  

Using Eqs. (21), (A.8), and (A.2), the steady-state mean 
estimation error bias is given as 
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The steady-state auxiliary parameter estimation error bias can 
also be derived using Eqs. (15), (A.1), and (A.8) 
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Mean Squared Estimation Error Bias 
The average sum of squared estimation error biases across a 

fleet of engines can be calculated from Eqs. (A.9) and (A.10) 
as follows 

{ }
{ }

{ }

2
, , , , ,

h

T T
xh fleet xh ss xh ss xh ss xh ss

T T
xh xh

T T
xh xh

P

T
xh h xh

x E x x E tr x x

E tr G hh G

tr G E hh G

tr G P G

  ≡ =   
 =  
 
  = ⋅  
 
 

=

    



 (A.11) 



 

NASA/TM—2012-217278 13 

 

{ }
{ }

{ }

2

h

T T
fleet ss ss ss ss

T T
z z

T T
z z

P

T
z h z

z E z z E tr z z

E tr G hh G

tr G E hh G

tr G P G

  ≡ =   
 =  
 
  = ⋅  
 
 

=

    



 (A.12) 

where tr{●} represents the trace (sum of the diagonal 
elements) of the matrix. 

Estimation Error Variance 
Next, derivations are presented for the covariance matrix of 

the augmented state estimate and of the auxiliary parameter 
 

estimate, ˆˆ ,xh kP  and ,̂z kP respectively. These matrices will each 

be calculated as a function of the reduced-order state vector 
estimation covariance matrix, ˆ ˆ,xq kP , which is defined as  
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where the vector εxq,k is defined as the residual between ,ˆxq kx+  

at time k and its expected value. Since , ,ˆ ˆxq k xq ssE x x+ +  =  , εxq,k can 

be obtained by subtracting Eq. (A.8) from Eq. (20) 
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While the actuators will exhibit some variance due to mea-
surement noise in the control feedback sensors, their contribu-
tion to the overall estimation variance is not as large as that of 
the sensor measurements. Therefore, to help simplify this 
derivation we will assume that the actuator commands are held 

constant at uss (they have no variance). With this simplifying 
assumption uk = uk+1 = uss, allowing Eq. (A.14) to reduce to 

( ) ( ) ( ), , 1 ,ˆ ˆxq k xq xq xq k xq ss k ssI K C A x x K y y+ +
∞ − ∞ε = − − + −  (A.15) 
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Next, we can substitute Eq. (A.15) into Eq. (A.13) and 
manipulate to produce the following Riccati equation: 
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 (A.16) 

The above Riccati equation can be solved to calculate the 
covariance in the state and health parameters estimates, or in 
the auxiliary parameter estimates: 
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T
z k xq kP F NV P F NV   =      (A.18) 

Sum of Squared Estimation Errors 
Once equations (A.11), (A.12), (A.17), and (A.18) are 

obtained, they may be used to analytically calculate the mean 
sum of squared estimation errors over all engines by combin-
ing the respective mean squared estimation error bias and 
estimation variance information. The mean sum of squared 
estimation errors of the augmented state vector, ˆˆ,x hSSEE , and 

the mean sum of squared estimation errors of the auxiliary 
parameter vector, ẑSSEE , become 
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A weighting, Wz, can be applied to calculate a “weighted” sum 
of auxiliary parameter squared estimation errors given as 

 { }ˆ ,̂
T

z z z h z z kWSSEE tr W G P G P = +   (A.20) 

The SSEE or WSSEE equation, given in Eqs. (A.19) and 
(A.20) respectively, can be directly applied within the iterative 
search for an optimal V* matrix as denoted in Eq. (22). 
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