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ABSTRACT

The optical characteristics of a paraboloidal solar concentrator are
analyzed using the intercept factor curve (a format for image data) to
describe the results of a mathematical model and to represent reduced data
from experimental testing. This procedure makes it possible not only to test
an assembled concentrator, but also to evaluate single optical panels or to
conduct non-solar tests of an assembled concentrator.

The use of three-dimensional ray tracing computer programs to calculate
the mathematical model is described. These ray tracing programs can include
any type of optical configuration from simple paraboloids to arrays of
spherical facets and can be adapted to microcomputers or larger computers,
which can graphically display real-time comparison of calculated and measured
data.

The technique described herein has demonstrated that

(1) It is possible to create a model for predicting concentrator
optical performance from data obtained at various points of the
experimental testing process, and that

(2) The intercept factor curve is a powerful format for optical
performance representation whether it is derived from the
mathematical model or from experimental data.
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SECTION I

INTRODUCTION

This report presents an analysis of solar energy concentrators as
optical elements. A substantial amount of experimental and mathematical
analyses have already been performed on solar concentrators, but these
analyses have generally considered the concentrator as a subsystem component
of an overall energy production system. For this reason, characteristics of
the concentrator optics have not been systematically analyzed in a manner that
is independent of the application.

Any discussion of the operation of a solar concentrator requires a
definition of "performance" and a quantitative measure of performance. The
basic purpose of a solar concentrator is to image (or focus) solar energy from
a large entrance aperture into a small receiver aperture where the radiant
energy is converted into thermal energy. The thermal energy is in turn
converted to electrical energy by way of a heat engine. The operating
efficiency of the thermal-to-electrical energy conversion unit is directly
related to the receiver temperature. The temperature of the receiver
increases with the mean energy flux density passing into the receiver
aperture. The mean energy flux density increases with the image forming
quality of the concentrator, i.e., the smaller the image (with respect to the
size of the concentrator entrance aperture), the higher the flux density.
Herein, the optical performance of a solar concentrator is defined as "the
degree to which the concentrator can form a high flux density solar image."
Because this report covers only optical imaging, surface reflectance and
entrance aperture shading are not included in this definition of performance
although these factors do have a significant effect on the overall operating
performance of a solar concentrator.

The term "concentration ratio," or the ratio of the concentrator aperture
area to the receiver aperture area, has often been used to define the optical
performance of a solar concentrator. This definition has the disadvantage of
being both incomplete and subject to misinterpretation because there is no
precise definition of the fraction of the focal plane image that passes through
the receiver aperture. For example, a 13% change in the receiver aperture
radius (corresponding to a 30% change in the concentration ratio) would give a
1% change in the total input energy.

There are many ways to describe the image forming quality of an optical
system. For solar concentrators, a very practical and generally accepted
description is the focal plane "intercept factor" curve, which is the same as
the standard optical term "encircled energy." These data can be expressed as
a table of measured or calculated points that are presented in graphical
form. The curve indicates the fract~on of the total image energy passing
through an aperture with a radius that is specified by a linear distance from
the optical axis in the focal plane or by an angle with the vertex at the
center of the concentrator. The latter parameter is dimensionless; as a
consequence, the results can be applied to any concentrator regardless of
linear dimensions.
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A practical way to measure the image forming characteristics of a
reflecting panel or an assembled concentrator is use of a fixed point source
of light. A high intensity spotlight at a distance of 1000 ft is ideal in a
moderately dark environment, but good measurements can also be made with a
high intensity light source at a distance of several focal lengths from the
concentrator vertex. The size of the image from an extended source is
determined by both the size of the source and the optical imperfections. In
this case, it is generally difficult, if not impossible, to make a
quantitative determination of the optical imperfections. The final
confirmation of concentrator performance must be made with the sun as a
source, but for preliminary testing the sun has the disadvantage of both high
levels of radiant energy and constant motion.

The intercept factor curve can be directly measured with a photometer
and a series of circular apertures. For small panels, a Fresnel lens can be
used to image the energy passing through the aperture onto the photometer.
For large panels, or an assembled concentrator, an imaging photometer can be
used to measure the energy falling outside the aperture of a white annular
target. With a series of water-cooled apertures and a cold-water cavity
calorimeter, the intercept factor curve can be measured when the concentrator
is pointing at the sun. The intercept factor data can also be obtained by the
use of a photometer or radiometer that scans the image. Each aperture
measurement is divided by the total image measurement to obtain the intercept
factor for that aperture. For ray tracing calculations, each point is
determined by dividing the number of rays that fall within a specified circle
by the total number of rays falling on the concentrator.

An intercept factor curve can describe the image from a point source at
a finite or infinite distance, or it can describe the image from the sun. It
is also an ideal format for representing both the measured and calculated
image data. It can be used to directly determine the collection efficiency of
an existing thermal receiver or determine the relationship between receiver
temperature and the optimum receiver aperture radius.

Prototype concentrator systems have been built on the basis of overall
system analyses and subsequently tested under operating conditions. Diffi
culties arise when total performance does not meet expectations and there is
no direct way to systematically isolate the problems. These problems may
result from any or all of the concentrator components: mirror geometry and
surface properties, mirror mounting and tracking instabilities, receiver
configuration and location, etc.

Because the optical performance of the concentrator is paramount to the
success of the energy conversion, a detailed systematic study was made of the
optics of a prototype concentrator. l This study was based on an interactive

lThe paraboloidal concentrator used in this analysis for experimental testing
is the l2-m-diameter Parabolic Dish Concentrator No.1 (PDC-l), which is
described in detail in a companion report entitled Development and Testing of
Parabolic Dish Concentrator No.1 by E.W. Dennison and T.O. Thostesen, Jet
Propulsion Laboratory, 5105-143, November 1984.
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development of a mathematical model and experimental testing procedures.
The experimental procedures used a point source of light at a finite distance
and were performed under static mirror conditions. Complete and incomplete
mirrors were incorporated into the testing to determine concentrator char
acteristics early in the manufacturing process and to evaluate quality control
procedures.

Previous analyses (Refs. 1 through 4), for example, have incorporated
all of the system components mentioned into a single comprehensive framework,
hence making it difficult to isolate specific effects. Moreover, these
analyses are specific to paraboloidal concentrators. The mathematical
approach used by these authors emphasizes geometric considerations and
utilizes cone optics (an analysis that incorporates the solar disk as an
intrinsic part of the computations) as a procedure. This approach is burdened
with the problems of transcendental equations that are common to many
geometric optical problems. The references cited tend to minimize the
requirement for extensive use of computers and their associated expense, and
provide procedures for circumventing direct numerical analyses.

The procedures presented here also rely on computed results. With
current microcomputing technology, an exact and general formulation can be
utilized that is neither disproportionately time-consuming nor expensive and
can be made portable enough for use at test site locations. In addition, the
procedures are not limited to paraboloidal configurations or single mirror
systems. Facetted mirrors, spherical mirrors, and mirrors of special design
may be modelled and analyzed with equal facility.
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SECTION II

COMPUTER MODEL

The computer model developed to simulate the concentrator is based on
three-dimensional ray tracing. The law of reflection is formulated as a set
of vector equations involving the incident rays, reflected rays, and the normal
to the concentrator surface at the reflection points. The reflected ray direc
tion is computed for a specified source location, a particular optical surface,
and a specified reflection point on the concentrator. Iterating the computa
tion for an array of reflection points and normal vectors suitably describing
the surface produces an array of reflected rays.

The points of intersection of these rays with the receiving surface
forms a model of the optical image. The coordinates of the intersection
points are calculated explicitly, and therefore may be analyzed in the same
way that experimental data are analyzed. The number of reflected rays per
unit area for prescribed small areas of the image represents the intensity in
that area. For intercept factor calculations, the image plane is divided into
concentric apertures centered about the optical axis.

In the interest of having a methodical approach to the analysis, the
modelling proceeded in a sequence of three distinct steps. The first modelled
a perfect geometric concentrator 'free from surface irregularity and illuminated
by a point source. The second introduced variable degrees of surface irregu
larity into the system, and the third integrated the results of the first two
and used as a source an array of points that simulate the finite solar disk.

The vector nature of the three-dimensional reflection problem is
illustrated in Figure 2-1 where two reflection points are shown. The rays
~ ~

11 and 12 are vectors~repres~nting incident rays from a single point
source. The vectors Nl and N2 are the surfac~ normals particular to the
paraboloidal surface with a focal length f. Rl and R2 are the resulting
reflected rays terminating at the receiving plane.

As indicated in the figure, the law of reflection requires that the
angle of incidence and reflection be equal in each case:

~2i = ~2r

(1)

(2)

and that the incident, normal, and reflected rays be coplanar. Algorithms
suitable for iterative programming can be developed by writing the law of
reflection as a combination of vector and scalar products of the vectors
involved.
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The first step is determining an analytic form for the surface normals.
This is accomplished by writing the functional form of the reflecting surface
as an equipotential surface and taking the negative gradient of the equation.
For the paraboloidal surface with the surface equation usually written as:

(3)

(where the subscript m denotes mirror coordinates relative to the vertex and f
1S the focal length), the equivalent equipotential is:

o (4)

Application of the negative gradien~ operator

-v (5)

to g(Xm,Ym,Zm) yields the surface normal Nin terms of the coordinate
location Xm,Ym,Zm of the reflection point as:

N (6)

For a paraboloid this becomes explicitly:

(7)

The latter equation specifies the components of the surface normal vector for
any reflection point.

The incident ray vector from any reflection point to the source becomes

I (8)

where Xs ' Ys ' and Zs are the coordinates of the point source relative to
the vertex.
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With this formulation, both the incident ray and the surface normal are
numerically specified. These two vectors are reduced to unit vectors by
dividing them by their respective magnitudes:

'"N N/ INI

'"1=1/111.

(9)

(10)

For a point source at infinity, the incident unit vector can also be described
as:

'"I = sino. cos Sx + sin 0. sin Sy + cos 0. Z ( 11)

where 0. is the radial angle from the optical axis and S ~s the azimuthal angle
from the X axis.

The law of reflection may be written in terms of the scalar (DOT) product
(I . N) and the vector (CROSS) product (I x N) to give the associated
reflected ray unit vector as:

'"R (I • N) N N x (I x N) •

This unit vector has three components numerically specified in terms of the x,
y, and z directions. These components specify the direction of the reflected
ray relative to the coordinate axes.

The vector equation represents three linearly independent component
equations that may be written as a matrix multiplication:

.....
R

x

Ry

Rz

(N2 .....2 N2) '" '" ..... '" '"N - 2 N N 2 N N Ix Y z x Y x z x
'" '" (N 2 "'2 N2) '" '" '" ( 13)2 N N N - 2 N N I

x Y Y x z Y z Y
'" ..... 2 N N (N 2 ..... 2 N2) '"2 N N N I

x z Y z z x y z

As a result, the reflection process is viewed mathematically as a transform of
the incident ray into the reflected ray with the elements of the
transformation depending only on the surface normal components.

The matrix formulation adapts well to iterative computation, and the use
of component multiplication eliminates the need for overt use of trigonometric
functions. A computer graphic display of the model analogous to Figure 2-1 is
shown in Figure 2-2. In the latter figure, the number of zones and the number
of reflection points circumscribing each zone are variable.
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Figure 2-2. Computer-Generated Graphic Display of Paraboloidal
Concentrator and Reflected Rays
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The final step in determining the intercept factor is to compute the
coordinates of the reflected ray (designated by the subscript p) as it
intercepts the target or focal plane. These coordinates can be found from the
general equation:

x - X Y - Y Z - Z
P m P m P m .

~ ~ ~

R R R
x Y z

In practice this becomes two equations:

(14)

and

X
P

(z
p

~

R
x

- Z )*- +m ~

R
z

X
m

(15)

~

R
X = (Z - z )*-l + y
ppm R m

z

The coordinates Xp ' Yp ' and Zp therefore describe an image point whose
distance from the opt~cal axis is:

T= ~,
~l\.p ... Ip

(16)

( 17)

and the ray will be inside the aperture if T is less than the radius of the
aperture. The intercept factor is the fraction of the total number of rays
striking the concentrator that fall inside the specified focal plane aperture.
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SECTION III

ABERRATIONAL EFFECTS AND IMPERFECT CONCENTRATORS

Because the optical source of primary interest for solar concentrators
is the sun, a practical optical model must include sources of light that are
at least one solar radius from the optical axis. The mean half angle of the
solar disk is 4.65 mrad, but for convenience a value of 5 mrad has been used
for the calculations in this report. For the purpose of the ray tracing
model, the points on the sun can be either the angular distance from the
optical axis or the X,Y,Z coordinates with respect to the concentrator
vertex. (The Z distance of the sun is approximately 1.5 x lOll m.)

For a perfect paraboloid, off-axis source points are not formed into
point images. These aberrations increase with the angular distance of the
point source from the optical axis, and the composite effect of these
aberrations is significant. To demonstrate this, an intercept factor curve
was calculated for a paraboloidal concentrator with a focal length/diameter
(f/D) of 0.5 and a circular source of 5 mrad radius. The results are shown 1n
Figure 3-1, and the data are given in Table 3-1. 2 For comparison, the
intercept factor curve for a perfect optical system (no aberrations) with the
same source is also included. The intercept factor is shown as a function of
the aperture radius divided by the focal length. This dimensionless parameter
is the tangent of the aperture radius angle as viewed from the vertex.
Because the angles are small and to clarify the interpretation of the curves,
the angle is given in milliradians (mrad).

The intercept factor curve for a perfect paraboloid is the upper limit
of optical performance. Physical imperfections that extend the intercept
factor must be accounted for in any acceptable model. The model described
here assumes the uncertainties to be of two categories: systematic and random.

The systematic uncertainties include errors in the geometric form, focal
length, and tracking. These errors can be modelled by specifying a different
geometry for the mirror and by offsetting the solar source from the optical
axis. However, for the PDC-l concentrator, these errors were detected and
corrected by other direct methods and were eliminated as a major concern in
the final calculations.

Of more relevance to the model is a technique for simulating the random
surface irregularities that are an inherent part of any concentrator. Because
the sources of these irregularities are diverse and usually cannot be
specifically isolated, a computational scheme based on random surface errors
was developed and incorporated into the model. The test of such a modelling
technique is comparison with experimental data.

The model is based on the concept that the surface normals are randomly
perturbed, and these perturbations cause errors in the concentrator image.

2Data tables are given in the Appendix.
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Because the concentrator has a large number of small independent surface
irregularities, the model must be calculated for a large number of reflection
points. The perturbations introduced into the model surface normals were
randomly selected but modulated by a Gaussian distribution.

The process is illustrated in Figure 3-2. In the figure, N i~ the
surface normal prescribed by the geometry of the concentrator, and N' is the..... .....
perturbed normal ...... Nt is inclined relative to N by an angle ¢ and then allowed
to precess about N with a precession angle o. The inclination angle ¢ is
chosen at random from a Gaussian distribution according to the equation:

RDMI (14)

RDMI is a random number in the range O<RDMI~I. The standard deviation,
sigma, is determined empirically by comparison with experimental data and
becomes the surface quality factor of the concentrator.

For computational purposes, the equation is inverted to:

a ,J2 [In( l/a J27i) - In(RDMl)] 1/2 •

The precession angle is selected from a uniform distribution with 0 =
(RDM2) • (2rr) and O«RDM2)~I.

(15)

"The random numbers RDMI and RDM2 are obtained by separate selections
from a random number generator to avoid any coupling of the calculations.
Establishing the angles ¢ and 0 per~its the components of the perturbed normal
to be written as those of a vector Nt in a coordinate system that has been
rotated relative to the vertex axes. A rotation transformation is required to
establish these components in the X, y, z coordinate system.
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Figure 3-2. Randomly Perturbed Surface Normal on Concentrator Surface
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SECTION IV

RESULTS AND DISCUSSION

As a test of the computer model and of the general procedure,
comparisons were made between the model predictions and experimental
measurements for a paraboloidal concentrator. This comparison was designed
for three specific objectives: (1) to determine if the modelling procedure
had the credibility and sensitivity required for a practical analytic device,
(2) to determine a surface quality factor representative of a specific
concentrator, and (3) to present an accurate extrapolation from the point
source test data to the solar performance.

The concentrator under study had nominal values of 6.00 m for the focal
length and 0.50 for the focal length/diameter ratio (f/D), and for testing
purposes was illuminated with a point source. Experimentally measured
intercept factors were compared with those predicted by the computer model.

The experimental procedures developed for using point sources at finite
distances permitted direct methodical comparison of intercept factors without
the necessity of relying on solar models in the analysis. The sun, as a
finite source, enlarges the image and obscures the image defects resulting
from concentrator imperfections. The use of point sources permits an accurate
analysis of the concentrator and allows the experiment to be well defined.
The effect of the finite solar source can be calculated after the optical
characteristics of the concentrator have been determined.

A. FULL MIRROR COMPARISONS

Experimental data for the complete concentrator were gathered with the
point source (a high quality spotlight) on the optical axis 900 m (nominally
150 focal lengths) from the mirror vertex. The image plane was established as
the location of minimum image size and was located 6.03 m from the vertex,
very near the nominal focal plane. The intercept factors were determined by
measuring the amount of light falling on a series of white apertures. The
measurements were made with an imaging photometer mounted at the concentrator
vertex.

The subsequent analysis permitted relatively direct comparison with the
model results. In the ray trace modelling procedures, the intensity is
interpreted as the percentage of rays falling within a circular aperture ~n

the image plane.

The computer model was used in an interactive mode to yield the
intercept factor curve shown in Figure 4-1 (data shown in Table 4-1), and
established a surface error sigma value of 16.25 mrad. Simultaneously, the
real focal length was confirmed to be 6.00 m. The RMS (root mean square)
deviation of the curve from the data is approximately 1%. It should be noted,
however, that the model curve is not an attempt to fit the data parametrically,
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but to establish a surface error number that represents the experimental
intercept factors. The criteria for the best representation was based on
subjective judgment rather than a numeric RMS deviation.

At the beginning of the testing program, there was some concern about
the propriety of using a point source at a finite distance because a
paraboloidal concentrator gives a well defined image only for an infinitely
distant point source. In practice, this did not present a problem because an
accurate model could simulate any test configuration.

The comparisons between numerous model intercept factors and those for
the experiment did demonstrate that the surface error was the only unknown
parameter. For that reason, the nominal values for the focal length, mirror
diameter, image plane distance, and source distance could be used directly in
the final model.

The development of the various computer models necessary to establish
the comparative intercept factors provided valuable information concerning the
sensitivity of the model to the physical parameters. In particular, the
intercept factor is relatively insensitive to the f/D ratio.

Precise measurement of the experimental image plane position and source
distance are crucial to the comparisons, as is a reasonably accurate nominal
value for the focal length. The most sensitive factor in the modelling is the
relative focal point/image plane distance because of the low f/D ratio of the
concentrator. The size of this image changes rapidly with small displacements
of the intercept plane away from the focal point.

Variation of other parameters in addition to the surface error to obtain
reasonable model-experiment agreement can be done, but involves looking for
subtle changes in the shape of the intercept factor curve as well as in its
overall magnitude. For this reason, such comparison depends heavily on the
precision and quantity of experimental data. The excellent agreement of the
computed data with the experimental data indicated that changes to the nominal
parameters were unnecessary.

B. POINT SOURCE TESTING OF INCOMPLETE MIRRORS

The feasibility of providing mirror quality information during the
manufacturing of the concentrator panels was investigated by performing point
source testing with only four of the twelve panels. The testing procedures
were similar to those used for the complete concentrator, i.e., a point source
at 900 m was used to illuminate the mirror, and the image was photometrically
measured to determine the intercept factor.

The experimental and computer model data are shown in Figure 4-2 and
Table 4-2. The best comparison for the four-panel system data yielded a
surface quality sigma value of 14.0 mrad as the aggregate for the four
panels. The computer model treated the data as though it were for a complete
concentrator (permissible because of the rotational symmetry) in order to
determine which of the physical parameters required adjustment. Combinations
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of focal length, image plane, diameter, and surface error were modelled. The
study provided insight into the sensitivity of the modelling procedures to
parametric changes, as well as quantitative data concerning the concentrator.

Two different approaches to the parametric search yielded independent,
reasonable representations of the experimental intercept factors. The first
made the assumption that the effective focal length was 6.0 m, the focal
length/diameter ratio was 0.50, and the point source at 900 m was close enough
to infinity to assume imaging at 6.0 m. No acceptable intercept factor was
found for these parameters. An acceptable intercept factor agreement was
obtained by changing the f/D ratio to 0.54 and by using a surface error sigma
of 12.7 mrad. However, this would imply a mirror diameter of 11.1 m instead
of the actual 12 m. Moreover, modelling a point source at infinity with these
parameters did not give an intercept factor similar to that of the 900-m data.

The second model was constructed to conform as closely as possible to
the actual experimental measurements. The focal length and f/D were
reestablished at 6.00 m and 0.50, respectively, but the image plane was set at
6.03 m as was actually measured instead of at the previously assumed 6.0 m.
These parameters yielded the best comparison and the sigma of 14.0 mrad.
These parameters, when modelled for a point source at infinity, give an
intercept factor showing the same relationship to the 900-m data as the one
shown in Figure 4-1 for the complete concentrator. This is the relationship
expected of correct modelling.

These studies of the four-panel assembly reinforce the importance of
accurately determining the image plane/focal plane distance for point source
testing and of accurately measuring the test configuration. This work also
provides the basis for further investigation of techniques for analyzing
concentrator optical elements early in their construction.

The difference between the surface quality of the four-panel system and
that of the full mirror is not large, and such an increase in surface
irregularity is not unexpected as additional panels are installed. Because
the computer model can be easily tailored to specific parameters and the
experimental measurements can be made within reasonable physical constraints,
this modelling method is a promising mode of quality control. Further study
of this application is clearly merited.

C. INTERCEPT FACTOR COMPARISONS WITH ONE PARAMETER

The ability to obtain good model-experiment intercept factor comparisons
using only one parameter, sigma, as the adjustable parameter should not be
surprising because the computation of the surface error actually incorporates
two variables: (1) the tilt angle of the perturbed normal relative to the
ideal value and (2) the precession angle of the tilted normal. Both
parameters are called independently from a random number generator. The first
assumes a Gaussian modulation of the random numbers and has a standard
deviation available as an adjustable parameter. The second assumes a uniform
distribution of the precession angles. As a result, the second parameter has

4-5



no standard deviation and does not appear explicitly. The inclusion of the
two independent parameters does introduce, however, both azimuthal and radial
effects of surface irregularities and, thus, gives a reasonable representation
of the actual optical surface.

D. SOLAR EXTRAPOLATION

The model can project the concentrator solar performance as a direct
extrapolation of the test results. Assuming constant geometric factors for
the mirror and the surface quality factor to be sigma = 16.25 mrad, intercept
factors for a solar source were modelled. For this specific extrapolation,
the simplest solar model, i.e., that of a uniformly illuminated disk, was used.

The solar model was given rotational symmetry about the optic axis, an
angular radius of 5.0 mrad, and a source distance of 1.5 x lOll m. This was
accomplished by assuming that the source rays are on a line extending from the
optical axis outward to 5.0 mrad in 1.0 mrad increments. Each point was the
source of 3565 rays distributed uniformly over the surface of the concentrator
for a total of 21,390 rays. The rays are intercepted at the focal plane
(6.00 m). The resulting solar source intercept factor is shown in Figure
4-3. The corresponding data are given in Table 4-3.

Because the surface error (16.25 mrad) is significantly greater than the
solar radius of 5 mrad and therefore dominates the image degradation, the
intercept factor of the sun is not greatly different from that of a single
point source on axis.

It should be noted with caution that if the solar radius is attributed a
sigma value of as = 5 mrad and combined with the surface error am = 16.25 mrad
to give a total of aT = (a~ + a~)1/2 = 17.0 mrad, a point source illuminating
a mirror with a surface error of am = 17.0 mrad gives an intercept factor essen
tially identical to that of the solar source with am = 16.25 mrad. Although this
is not unexpected when am» as' caution must be used in its general application.
The same procedure using am = 14.7 mrad and as = 5 mrad does not produce accept
able results even though the intercept factors are similar. Conversely, when
am«as , the intercept factor is primarily determined by the flD ratio of the con
centrator and the angular size of the sun and is not dependent on the surface
errors.

For comparison, Figure 4-4 shows the intercept factors for a 5-mrad,
uniformly radiating solar disk and hypothetical mirror surfaces with sigma
values of 11, 13, 15, and 17 mrad.

In the intercept region of 85 to 95%, the curves indicate that an
uncertainty of 2 mrad in the initial determination of the surface error could
lead to errors as large as 10% in the projected solar performance. However,
the quality of the experimental data available indicates that the surface
error can be ascertained to within ~0.25 mrad. The intercept factor curves
show that the latter value would translate to a projected intercept factor
uncertainty of 2% or less. Improved data acquisition methods would probably
reduce this uncertainty.
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It should be noted that the measurements were made under static mirror
conditions. During actual operation with the concentrator tracking the sun,
uncertainties in tracking position and the changing gravity load could affect
the total performance. Measurements of this type can be made with cold-water
calorimeters, but are generally time-consuming and limited to a few aperture
values.
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SECTION V

CONCLUSIONS

The use of basic paraboloidal geometry with the flD ratio and a single
surface or slope error as the fundamental parameters to describe a solar
concentrator is cornmon to both this work and that of previous authors. It 1S

reassuring to note that these different approaches give similar results.

The problem with previous solar concentrator models is that they cannot
be used for simple testing of single optical panels or non-solar tests of
assembled concentrators. This problem has been resolved by the use of the
intercept factor curve with a point source of light at any distance from the
concentrator or with the sun as a source. The intercept factor curve can be
used to describe the results of a mathematical model of a concentrator or to
represent reduced data from experimental image measurements. Measurements can
be made by scanning a photodetector or flux mapper over the image or by the
use of an integrating photometer or calorimeter to measure the relative
intensity of the image falling inside a series of circular apertures. With
the sun as a source, these intercept factor curves can be used to evaluate the
performance of power conversion thermal receivers.

The use of ray tracing computer programs as described herein is both
powerful and practical. These programs can include any type of optical
configuration from simple paraboloids to arrays of spherical facets. These
programs can be adapted to microcomputers at an acceptable cost in operating
time. The sophisticated graphics displays now available on many
microcomputing systems can be used for real-time interactive comparison of
calculated and measured data.

When the optical testing of the JPL PDC-l solar concentrator began,
there was a clear need for a comprehensive method to handle both the
theoretical and experimental aspects of imaging characteristics of solar
concentrators. While the work described in this report is not definitive, it
does demonstrate that the use of ray tracing programs and intercept factor
curves can provide a practical way to fulfill this need.
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Table 3-1. Model Computed Intercept Factor Data for Figure 3-1.

(Solar Source Intercept Factor; Perfect Paraboloidal Mirror; flD = 0.50;
Model Sigma = 0.00; Source Distance = 1.5 x lOll;

Source Radius = 5.0 mrad)

Intercept Factor

Normalized
Aperture Radius,

mrad

0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0
2.2
2.4
2.6
2.8
3.0
3.5
4.0
4.5
5.0
5.5
6.0
6.5
7.0
7.5
8.0
8.5
9.0
9.5

10.0

Perfect
Paraboloidal

Mirror

0.042
0.085
0.099
0.142
0.170
0.199
0.236
0.262
0.297
0.327
0.359
0.392
0.419
0.498
0.578
0.656
0.711
0.814
0.873
0.915
0.943
0.963
0.977
0.986
0.992
0.996
0.999

A-3

Perfect
Optical
System

0.014
0.026
0.040
0.058
0.078
0.102
0.130
0.160
0.194
0.230
0.270
0.314
0.360
0.490
0.640
0.810
1.000
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f/D Ratio

Table 4-1a. Model Computed Data for Figure 4-1

11/11/83; Geometry: Modified Parabola; Focal Length = 6.00;
= 0.500; # Rays = 3565; # Circles = 100; # Points/Circle = 36;

Plane Cut z; Value: 6.030; Sigma = 16.25;
Source Points: X = 0, Y = 0, Z = 900)

Normalized Aperture Intercept Points
Radius, mrad Factor Out

2.00 0.022 3485
4.00 0.105 3190
4.21 0.119 3142
6.00 0.225 2762
8.00 0.356 2297
8.42 0.394 2159

10.00 0.492 1812
12.00 0.624 1339
12.64 0.660 1212
14.00 0.721 995
16.00 0.810 679
16.85 0.831 601
18.00 0.863 488
20.00 0.912 314
21.06 0.932 244
22.00 0.948 186
24.00 0.964 127
25.27 0.972 100
26.00 0.976 86
28.00 0.985 53
29.49 0.990 35
30.00 0.992 29
31.59 0.994 20
32.00 0.996 16
33.70 0.998 6
34.00 0.998 6
36.00 0.999 4
37.91 0.999 4
38.00 0.999 3
40.00 0.999 3
42.00 0.999 2
42.12 0.999 2
44.00 1.000 0
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Table 4-lb. Model Computed Data for Figure 4-1

11/11/83; Geometry: Modified Parabola; Focal Length = 6.00;
= 0.500; # Rays = 3565; # Circles = 100; # Points/Circle = 36;

Plane Cut Z; Value: 6.000; Sigma = 16.25
i
'

Source Points: X = 0, Y = 0, Z = 1.5 x 10 1)

Normalized Aperture Intercept Points
Radius, mrad Factor Out

2.0 0.036 3437
4.0 0.124 3122
6.0 0.247 2683
8.0 0.383 2199

10.0 0.515 1729
12.0 0.638 1289
14.0 0.734 947
16.0 0.817 651
18.0 0.873 451
20.0 0.914 305
22.0 0.949 182
24.0 0.969 110
26.0 0.983 59
28.0 0.990 35
30.0 0.996 13
32.0 0.998 7
34.0 0.999 3
36.0 0.999 3
38.0 0.999 1
40.0 1.000 0
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Table 4-1c. Model Computed Data for Figure 4-1

11/10/83; Geometry: Modified Parabola; Focal Length = 6.00;
= 0.500; # Rays = 3565; # Circles = 100; # Points/Circle = 36;

Plane Cut z; Value: 6.030; Sigma = 0.0000;
Source Points: X = 0, Y = 0, Z = 900)

Normalized Aperture Intercept Points
Radius, mrad Factor Out

0.50 0.061 3448
l.00 0.172 2952
l. 50 0.273 2592
2.00 0.364 2268
2.50 0.444 1980
3.00 0.525 1692
3.50 0.596 1440
4.00 0.657 1224
4.50 0.717 1008
5.00 0.778 792
5.50 0.828 612
6.00 0.879 432
6.50 0.929 252
7.00 0.980 72
7.50 1.000 0
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Table 4-1d. Experimental Data for Figure 4-1

(Full Mirror Experimental Data Source: Point, Visible Source Distance:
900 m; Image Plane: 6.03 m)

Aperture Radius Normalized Aperture Intercept Factor,
in. mm Radius, mrad Measured

1.000 25.4 4.21 0.131
2.000 50.8 8.42 0.377
3.000 76.2 12.64 0.670
4.000 101.6 16.85 0.839
5.000 127.0 21.06 0.927
6.000 152.4 25.27 0.965
7.000 177.8 29.49 0.981
7.500 190.5 31.59 0.985
8.000 203.2 33.70 0.988
9.000 228.6 37.91 0.991

10.000 254.0 42.12 0.994
11.000 279.4 46.33 0.997
12.000 304.8 50.55 0.998
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Table 4-2a. Model Computed Data for Figure 4-2

11/16/83; Geometry~ Modified Parabola; Focal Length = 6.00;
0.500; # Rays = 3565; # Circles = 100; # Points/Circle = 36;

Plane Cut z; Value: 6.030; Sigma = 14.00;
Source Points: X = 0, Y = 0, Z = 900)

Normalized Aperture Intercept Points
Radius, mrad Factor Out

2.0 0.037 3433
4.0 0.164 2982
6.0 0.314 2446
8.0 0.484 1839

10.0 0.643 1271
12.0 0.753 880
14.0 0.840 569
16.0 0.908 328
18.0 0.949 180
20.0 0.965 125
22.0 0.979 76
24.0 0.987 45
26.0 0.993 24
28.0 0.998 7
30.0 0.999 4
32.0 0.999 3
34.0 0.999 3
36.0 0.999 1
40.0 1.000 0
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Table 4-2b. Experimental Data for Figure 4-2

(Four Panel Experimental Data Source: Point, Visible Source Distance:
900 m; Image Plane: 6.03 m)

Aperture Radius Normalized Aperture Intercept Factor,
in. mm Radius, mrad Measured

1.000 25.4 4.23 0.168
1.500 38.1 6.35 0.350
2.000 50.8 8.47 0.527
2.500 63.5 10.58 0.695
3.000 76.2 12.70 0.812
3.500 88.9 14.82 0.881
4.000 101.6 16.93 0.925
4.500 114.3 19.05 0.946
5.000 127.0 21.17 0.965
5.500 139.7 23.28 0.977
6.000 152.4 25.40 0.986
6.500 165.1 27.52 0.990
7.000 177.8 29.63 0.994
7.500 190.5 31. 75 0.997
8.000 203.2 33.87 0.999
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Table 4-3. Model Computed Solar Source Projections for Figure 4-3

(PDC-1 Solar Source Projection Data Summary; Model Parameters: Focal
Length = 6.00 m, Diameter = 12.00 m, Source Distance = 1.5 x lOll m, Image

Plane = 6.00 m; (1/10 )1 - Uniform Solar Disk, Radius = 5.0 mrad and
Surface Sigma = 16.25 mrad; (1/10 )2 - Point Source (on axis) and

Surface Sigma = 16.25 mrad; (1/10 )3 - Uniform Solar Disk and
Surfa~e Sigma = 0.00 mrad)

Normalized Aperture
Radius, mrad

Intercept Factor
(Curve 1)

Intercept Factor
(Curve 2)

Intercept Factor
(Curve 3)

1.0 0.099
2.0 0.027 0.036 0.262
3.0 0.419
4.0 0.097 0.124 0.578
5.0 0.711
6.0 0.221 0.247 0.873
7.0 0.943
8.0 0.353 0.383 0.977
9.0 0.992

10.0 0.479 0.515 0.999
12.0 0.600 0.638
14.0 0.700 0.734
16.0 0.785 0.817
18.0 0.852 0.873
20.0 0.900 0.914
22.0 0.935 0.949
24.0 0.960 0.969
26.0 0.974 0.983
28.0 0.984 0.990
30.0 0.991 0.996
32.0 0.995 0.998
34.0 0.998 0.999
36.0 0.999 0.999
38.0 0.999 0.999
40.0 0.999 1.000
42.0 0.999
44.0 1.000
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