
1 -*
1

A Model of Security Monitoring

Matt Bishop

Department of Mathematics and Computer Science
Dartmouth College

Hanover, NH 03755

ABSTRACT

We present a model of security monitoring that distinguishes
between two types of logging and auditing, and from the model draw
implications for the design and use of security monitoring mechanisms.
We then demonstrate the usefulness of the model by analyzing several
different monitoring mechanisms.

1. Introduction

Although often used interchangeably, auditing and logging describe two distinct

actions; logging is simply making a record, and auditing is analyzing that record [8].

Computer systems use logging to provide information used to restore file systems and

databases to consistent states after crashes [9,10,14,16]; they also require logging for

security purposes, for example in computer systems ranging from those meeting the

Department of Defense trusted computer guidelines for class C2 or higher [17], in

electronic fund transfer systems [12], and other types of data processing [2]. The

computers log information relevant to the security of the system; in most cases, they

audit this log (often called an audit trail or activity log) and take action consistent

with the state of the system as recorded in the log. This audit has three steps. First,

information in the log is reduced to eliminate data. The remaining information is

The support of grant NAG 2480 from the National Aeronautics and Space Administration to
Dartmouth College is gratefully acknowledged.

. .- 7

[NASA-Ca-l8584S) A nODBL OF SECURITP N89-284 46
8 O N I T O R E N G fDartmouth C o l l .) 23 p CSCL OSB

U n c l a s
G3/82 0224757

- 2 -

analyzed either to format the data in the log or to determine whether or not a

compromise has occurred or would occur if a specific action were taken; and finally,

the audit mechanism notifies a program or an auditor of the results.

The entry and exit of people from a secured building provides an analogy. At the

door is a security guard who signs people in and out. This record is a log, and the

guard is performing the logging function. At the end of the day, the main office

obtains the logs. To determine if there is a potential security problem, a clerk fiist

eliminates all names showing both entry and exit; this is the reduction step. The clerk

then determines if the people still in the building axe authorized to be there at night;

this is the analysis step. If someone who should not be there is still in the building,

the clerk calls the security office and directs them to locate and to escort the person

out of the building; this is the notification step.

To show that the terms “logging” and “auditing” apply to diverse situations,

consider the same building with a new rule: employees must escort visitors within the

building. When a visitor arrives, the guard records personal information and who the

visitor is to see (the logging step.) The guard then determines how to contact that

employee, which may entail calls to numerous people (the reduction step). When the

guard reaches that person, the guard asks whether the employee will escort the visitor

(the analysis step). Finally, the guard informs the visitor of the result (the notification

step.) While these are not the conventional uses of the words “logging” and “audit-

ing,” they certainly fall under the purview of the definitions above.

We should at this point distinguish our notion of “logging” and “auditing” from

the orthogonal concepts of “passive auditing” and “active auditing” as defined in [l].

- ~ _ _ ~ ~ ~- ~ -~ ~- ~~~ ~

4

- 3 -

“Passive auditing” is essentially logging with the expectation that the log will be

available for analysis; whether or not the log is analyzed is irrelevant to our notion of

“logging,” since we are separating logging from the auditing process entirely.

“Active auditing” is the complement of “passive auditing,” and determines if the

information in the log constitutes one (or more) of a set of exceptional conditions and

if so, takes action. Our use of “auditing” simply refers to the analysis and taking of

action. Note that action may be taken even if no exceptional condition has occurred;

this may be done to reassure systems administrators that the system is still functioning.

This paper provides a formal model of logging and auditing based on the effects

of the implementation of each. The third section discusses some practical implications

of this model, and the fourth applies this model to varying situations and analyzes pro-

perties to demonstrate the model’s robustness.

2. The Model

Logging and auditing involve recording and analyzing the state of a system. Fol-

lowing [4], we assume that the set of entities E and a set of well-formed commands C

can characterize the computer system completely. Intuitively, E is what the system is

composed of and C is the set of events that can cause it to change. For all e E E,

vaZ(e) is the set of values associated with the entity, vaZ(E) is the set of all values of

all e E E, and VAL(E) is the set of values that all entities in E may assume. The set

NE of strings names the entities in E, and the function hE: E +NE maps each entity

to a name. The set Nv of strings names the possible values of the entities in E , and

the function hv: E +VAL@) maps each value into a string. Similarly, the set Nc of

strings names the commands in C, and the function : C -+ NC maps each command

- 4 -

to a name. To simplify some definitions, we require that the null command be in C.

Definition. A system state s is a 1-tuple (E). The collection S of all possible states

is the state space. The relevant part of the system state oss is the subset of (E)

under consideration. The collection Z of the relevant parts of all possible system

states is the relevant state space.

As an example, consider the protection state of a system described by the triple

(S,O,A), where S is the set of subjects, 0 the set of objects, and A the matrix of

rights, within the system [ll]. Here the entities E corresponds to the pairs of subjects

and objects, and the values vaZ(E) of each entity is the corresponding access right in

the access matrix. In this case, the relevant part of the system is the entire protection

state, so a=(E). Note that this ignores entities not relevant to the protection state, so

it does not describe the state of the system.

Definition. A system is a 4-tuple (C,S,so,T) where SO the initial state, and

T: C XS +S is the system transform.

Informally, T the set of mappings that reflect the change of state. During the life of

the system, a series of these functions will execute; the next definition captures this

notion.

Definition. Let N be the set of nonnegative integers. A system history is a function

n: N + C x S such that the second element of n(0) is s 0, and

ftn E N [[n (n) = (c , s) and n(n+l)=(c*,s*) 3 +s* E T(c,s)]
A relevant state history is a function X: N -+CZxX such that

thz E N [I I (n)=(c , s)+X(n)=(c ,o)]

- 5 -

If n (i) = (c , s) and n(i+l)=(c*,s*), we Write Ti for that member of T

corresponding to c* and mapping the system state from s to s* (that is, Ti: S -+S is

the same as T: c X S + S where c is the first element of n(i+l)). Also, we shall

abbreviate l I (i) = (c , s) by writing c as Ci and s as S i . Similarly, Oi corresponds to

the relevant parts of si.

Consider now the effect of a projection z:CxxZ+Z of T on ai-1. Even though

Ti(s i - l)=s i , it need not be true that Ti(Oi-l)=Oi because Oi-1, and hence T i , may lack

information necessary to produce Oi. Intuitively, consider the relevant part of the state

of a system to be the protection state of a file f . Here,

o=(f , all subjects }

and

vaZ((s f))= (s’s set of rights overf }.

The system transform function z must capture all changes to 6. Note that the state

includes information about only one passive object, f , but does not include such rights

as the ability of a subject to write directly to the disk. By writing directly to the disk

directory, which contains the controlling representation of permissions for all files on

the disk, a subject can change its access rights to the file, and hence 0; but since (T

does not include access rights to the disk, there is no z for which Ti(Oi-l)=Oi. But

since si-1 does include those permissions, given Si-1 , Ti will produce the next state S i .

We define the term inclusive to capture this notion.

Definition. The relevant state space Z is inclusive if

V i [Ti(Si - l)=Si + 3 T i [Ti(Oi-l)=Oi]]

- 6 -

In English, this says that if each element of Q captures enough information about the

state of the system so that some projection of Ti can map Qi-1 into Oi, then at any

time i , the (relevant parts of the) next state can be determined simply by looking at

Oi. Thus only those parts of oi GSi are relevant. Of course, ~i is just the projection

of Ti into the space Z. If Si-1#Si and Oi-l=Oi, then ~i is the identity function even

though Ti is not. Note that Ti will never be the identity function, because in that case

no change of state has occurred.

From here on, we shall simply deal with relevant parts of the state and assume

that they are inclusive,

A logging function abstracts relevant parts of the state and turns them into output.

Definition. Let hsae: Z + N E X N V ; then hsta is a state logging function. Let

hcb8e: C Z X + N c x NE x N v ; then hcbse is a state logging function. Collectively,

call k h ~ b g e u h ~ ~ ~ ~ where h: C xZ+ 0 and O=NE XNV UNC XNV X N E is the out-

put of the logging function.

Intuitively, the state logging function records the relevant components of the state of

the system, and the change logging function records the specific event or action that

causes the system to alter relevant components of the state as well as the new values

of those components. The output of the logging function is some data recording the

state or transition. For example, return to the instrumented kernel, except this time

assume all system calls print a log message whenever they change rights a user has

over a file, or write to either the disk directory or in-core copies of that directory; in

the latter two cases they record the altered directory entry. Using the system call

method, N c are the names of the system calls, NE the names of the files and users,

- 7 -

and NV the new settings of the protection modes; as each output log message prints

the system call name, the name of the entity altered and the entity altering it, and the

new protection mode, 0 =Nc X N E XNV, so this is change logging. If the protection

modes of all files were recorded periodically, NE would be the names of the files and

users, and Nv the settings of the protection modes; as each output log message con-

tains the name of the entity scanned and the associated protection mode, 0 =NE XNV,

so this is state logging. Note that both types of logging functions may make entries in

a log.

Definition. An output o =(n,,ne ,nv) (or (ne,nv)) is invertible if there is a unique

command c , entity e , and value vaZ(e) for which k (c) = n c , hE(e)=n,, and

hv(vul (e)) = nv (or if there is a unique entity e , and value vul (e) for which hE (e)=ne

and hv(vu2 (e)) = nv).

Intuitively, an output being invertible means that the value of the entity before

the logging can be determined from the log.

Definition. A log L of a system is a sequence of outputs 00,01, - * such that

th3j [h(Ku))=oi 3 The log is unique if each Oi is invertible. The log is complete

if it is unique and the sequence of relevant parts of the state generating the output O i ,

i 20, is the relevant state history of the system.

Uniqueness means simply that there is only one sequence of states that could have

produced the particular log. Note that this does not mean there could only be one

state history, because the log may consist of outputs of states scattered throughout the

state history; to obtain a unique state history, the log must be complete as well.

- 8 -

Proposition. Let oo,ol, . * * be the relevant state history of a system. A log L = (

00,o 1, . . . ,om) is complete if and only if the following conditions hold:

(1) each Oi is invertible;

Proof. (only ij) Assume conditions (1)-(3) hold. Then by (l), the log is unique; by (2),

inverting the first element of the log gives the frrst element in the state history; and by

(3), the sequence of relevant parts of the states Oi is generated by a logging function

being applied to the i t h element in the relevant state history.

(ifi Assume the log is complete. Then by definition (1) holds. As there is no

transformation 70, there can be no corresponding command, so o ~ = h ~ ~ ~ ~ (o o) , and (2)

holds. Finally, by assumption relevant parts of the states in the relevant state history

are inclusive, SO for each pair of such states (Gi-1, ~ i) there is a function Zi(Oi-l)=Oi

and therefore a corresponding command Ci E Cz for which x(i)=(ci,oi+l); hence

h(x(i))=oi. This proves (3), and hence the proposition. l3This means that a change

log is not sufficient to generate a complete log; a state logging function must also

generate output corresponding to the initial state of the system.

This proposition says that to track a system accurately, the part of the state being

logged must be inclusive, enough information must be logged to reconstruct the state,

some initial state must be logged, and then after every transition either the new state

or the action causing the transition must be recorded.

Auditing consists of the reduction of the log, the analysis of the result, and the

notification of a user or program. The function r : 0 + 0 reduces the messages from

- 9 -

h irrelevant outputs from the log; the function a : 0 + d analyzes the reduced output

of the log into a sequence of audit messages OiE d; and finally the function

n : Q + Zx Q notifies the appropriate people of the results, and possibly causes the sys-

tem to alter the relevant parts of the state. For convenience, we collapse these into a

single function a: 0 -+(Z,Q). Let O i = (ok 1 k S i }. If a(Oi)=(Oi,Oi), then the

auditing function does not alter the state of the system and is said to be informative.

If a(0i) = (Oj ,ai) where j # i , then the auditing function feeds a response back into the

system, altering its state; it is said to be responsive.

This captures the notion of an auditing mechanism being able to alter the state of

the system in response to a problem. As an example, consider a backoff scheme for

login attempts with delay x seconds. This mechanism allows the user to log in over a

telephone line. After the nth failure, the system waits x n seconds before allowing the

next attempt. In this case, the auditing function would take the log output and on

failure modify the state to wait for x” seconds before allowing another attempt. This

is an example of responsive auditing. If, however, the auditing mechanism simply

kept statistics and did not modify the system state (for example, no backoff was done),

it would be informative auditing.

3. The Practise

This model suggests many practical considerations, the most basic lying in the

concept of “relevant state.” The state to be logged must be inclusive, for if not, some

information affecting the state of the system may not alter that state immediately; the

resulting unexplainable change would diminish the value of the log. State logging

mechanisms must record all parts of the relevant state, and change logging

- 10-

mechanisms must record all actions that affect the relevant state, or else it will not be

possible to derive any state accurately from the log, and the log may not reflect even

changes indicating an attack on the system. This implies that logging mechanisms

should always be designed in synchrony with the computer system so they are an

integral part of both the structure and the components of the system, as [l] pointed

out.

The need to record transitions or states accurately raises the question of cost.

Logging a state (Ti-1 may require scanning a substantial portion of the system; if so, as

computer systems usually change state very rapidly, recording Oi-1 every millisecond

would make the system unusable. So, state logging mechanisms make entries periodi-

cally, resulting in an incomplete state log because the mechanism does not record a

complete state history. Suppose at time i the system is in state Oi, and the state log

has outputs corresponding to states q,,Ofl, * * * . If ti # i , some states will have no

corresponding output in the log, and if ti ~ i , the logging mechanism will not record

many states, leaving a very large window of vulnerability when an attacker can make

changes to Oi, obtain whatever is desired, and then restore the original Oi. On the

other hand, obtaining the relevant information about the transition Ti requires instru-

menting only the system call or the external event handler causing the change, which

impacts the users much less because the transitions Ti from Oi-1 to Oi are recorded as

they occur. If all events (including external exceptions) are instrumented and logged,

and the initial state is known, then by the proposition, the state log derived from the

change log would be complete. But most implementations of a change logging

mechanism focus on tracking events that indicate an attack, and for that reason their

- 11 -

implementation either makes no record of the initial state 00 or assumes 00 is secure.

Since this assumption means the log is not complete, the system may initially be in a

nonsecure state, and an attacker could gain control of the computer. While the steps

the attacker takes would show in the log, unless additional precautions are taken, the

attacker could simply erase the appropriate entries in the log.

The composition of the log entries Oi affects the robustness of the log. By the

proposition, a complete log records a state history. In a change log, each state ok in

that history depends on the initial output and all previous outputs Oi =Ti, i Sk;

whereas for a state log, each state ok depends only on Ok =ok. An attacker therefore

need alter only one output in a change log to conceal some change to the state of the

system, but in a state log must alter each output subsequent to the change which he is

concealing. So the attacker must modify more messages to conceal changes of state

with state logging than with change logging.

Some monitoring systems attempt to abstract intent from a sequence of actions or

changes of state. Since state logging does not indicate how a change of state

occurred, in practise the state logging mechanism does not indicate why the state

changed, but merely the new state ok of the system. A change log, on the other hand,

indicates the action zk causing the system state to change and preserves enough infor-

mation to determine the new state. For example, a computer system logged changes to

the protection modes of a file. If a user’s rights over a file were altered, a change log-

ging mechanism recording system calls would indicate if the cause was a system call

to change that user’s rights, or a direct write to the protection information in the disk

directory. A state logging mechanism would simply indicate that the rights had

- 12 -

changed without indicating how. The change log therefore provides information that a

system security officer can use to determine if the sequence of events was an

attempted attack, an error, or indicates that a user bears further monitoring. So in

addition to monitoring the state, change logging may also be used to monitor users’

actions which, in turn, may be used to detect attempts to thwart security [7,13].

The central theme of the auditing portion of the model is that the auditing func-

tion takes output from the logging function and translates it into two components: a

state (which may be new, involving a transition) and an output. Three components

then are relevant: first, getting the output from the logging mechanism to the auditing

mechanism uncorrupted; second, getting the auditing output from the auditing mechan-

ism to its destination uncorrupted; and third, preventing interfexcnce with the transition

from the old to the new state when the auditing mechanism so requires.

In the simplest types of computer systems, both informative and responsive audit-

ing mechanisms lie on the host being audited. Unless this host has a trusted comput-

ing base, there is little if any guarantee that a determined attacker cannot interfere with

the logging orauditing mechanisms. The quick response is to move the audit mechan-

ism to another machine, which introduces a new angle of attack, namely via the

transmission software and hardware; and here the difference between informative and

responsive auditing becomes quite important.

Assume the auditing mechanisms lie on a remote, physically secure computer

called the audit machine (which may be a personal computer or a workstation.) The

logs are also maintained on the audit machine, and the logging mechanism on the

other machines write to the audit machine over a secure communication channel. The

- 13 -

auditing mechanism does all reductions and analyses on the audit machine.

Consider first the security of the transmissions from the main computer to the

audit machine. As the audit machine is physically secure, the attacker (presumably)

cannot penetrate the facility and erase or alter the log. Since the communications

channel into the audit machine does not allow previously sent messages to be erased,

the attacker cannot erase the log. If a trusted authentication mechanism ensures that

messages sent to the audit machine are genuine log messages, the attacker cannot even

forge log entries or other messages. As the auditing software is not resident on the

main computer, the attacker cannot tamper with it. This leaves two vulnerable mas:

the logging software (which is resident on the main machine) and the notification

mechanism.

The logging software may be attacked in one of several ways, the result being

that logging is disabled (which the audit machine can detect easily), many genuine but

spurious messages are produced (and these messages will be eliminated during the

reduction phase) or the messages produced will be incorrect and misleading. To

prevent this requires protecting the logging software.

The importance in the distinction between responsive and informative auditing

lies in the interaction of the computing system with the auditing subsystem. There are

two aspects to this. First, the computer system must send information to the auditing

subsystem when an informative auditing mechanism is in place; but with a responsive

auditing mechanism, the auditing subsystem must send information back to the

(relevant component of the) computer system to enable the transition to the new state.

Thus, the notification phase of an informative auditing mechanism can proceed

- 14 -

through the audit machine and not involve the monitored host at all. Then the attacker

cannot alter the results of the audit by tampering with a message from the auditing

system to the auditor except by physically intercepting it because the message is never

on the audited computer, it is composed and printed on the audit machine. If the

responsible person has a computer available, the auditing software can write the infor-

mation, encrypted using a public-key cryptosystem, onto a floppy disk or to tape. The

auditor obtains the medium, loads the data onto his computer, decrypts the message,

and acts accordingly. Since public key cryptosystems can be used to ensure both

privacy and authenticity, the auditor would have a f m basis for accepting the results

of the audit. The attacker could not tamper with the results without the auditor learn-

ing about it.

However, responsive auditing requires the results of the audit to be transmitted

back to the audited computer so that it may act upon the result. This means that the

communications channel between the audited computer and the audit machine is two-

way, and an attacker may attack two pieces of software: the logging routine (as noted)

and the routines that act upon the results of the audit. So, responsive auditing

schemes have a greater window of vulnerability than informative auditing schemes.

The second aspect of the interaction of the computing system with the auditing

subsystem that affects security belongs to the realm of human factors. If the auditing

process is informative, a human must sift through the results to determine what is and

is not significant. Experience has shown that if the ratio of what is significant to what

is not significant is low, humans may very well m i s s important results. Further, if the

output is not clear, succinct, and easy to understand, the administrators may overlook

- 15 -

something. This often leads to the inclusion of mechanisms which suppress irrelevant

information, since human beings will tend to m i s s important information present

among a mass of irrelevant information. Yet such mechanisms usually suppress

important information unintentionally, and so present a danger that the mechanism’s

design must deal with. However, with responsive auditing an automatic mechanism

does the winnowing, so no ignore mechanism is necessary, and the program or subsys-

tem that receives the output of the audit prescribes the format.

Performance considerations touch on both these aspects. Since informative audit-

ing involves no change of state, the mechanism can run when the system is lightly

loaded or not available to regular users, so its impact on the system from the users’

perspective is minimal. Responsive auditing, however, controls whether the system

changes from one state to another and so must occur after a query or command makes

an entry (or set of entries) in a log but before the system can respond. The auditing

mechanism must be able to run at any time, even when users are on the system, and

will therefore impact the performance much more than an informative auditing system

will. Worse, since the audit takes place whenever the command or query is issued, the

impact may be very consistent rather than infrequent. Preserving the audit trail in

reduced form may ameliorate this impact by allowing the auditing mechanism to

reduce only the entries made since the last audit, and to combine the result with previ-

ously reduced data.

A major problem of both types of auditing systems is to preplan precisely what

characteristics are to be audited. As observed in [l], people designing audit systems

“...tend, from time to time, to create their own special purpose [auditing systems]

- 1 6 -

designed Q& to satisfy their own initial requirements.” An auditing package may

satisfy all needs for a time, but when applied to a new situation, fail miserably. As an

example, consider a responsive audit mechanism for a small statistical database that

works by creating a matrix for queries, and applying linear analysis to the matrix to

determine if answering a query will allow the questioner to deduce an individual

record [3]. Such an audit tool can determine if the database will be compromised in

time O(n2), which for a small n is acceptable. But as the number of entries grows,

the time needed for the audit mechanism to analyze the rows of the mamx for linear

independence becomes unacceptably high. Notice that this problem is less serious

with informative audit mechanisms, because they do not take action to block com-

mands or queries; the only people impacted are the recipients of the audit results.

Finally, adding a security monitoring system as an afterthought frequently pro-

duces serious problem. Such systems can in general be evaded far more easily than

can security monitoring mechanisms designed into the system. As an example, con-

sider a fide monitoring program which logs changes to files on the system. If the pro-

gram is not built into the kernel, then it must use a special library to make entries in

the log, and a clever attacker can avoid linking that library (by creating one of his or

her own, which issues the appropriate supervisor call without making an entry in the

log, for example.) If the program is built into the kernel of the system, though, it can-

not be (easily) subverted, because an attacker must replace the kernel with one that

does not monitor - a decidedly nontrivial task!

,

- 17 -

4. Examples and Discussion of the Model

Some examples will make the ideas in the model more concrete. So, in this sec-

tion we shall consider some logging and auditing schemes, place them within the

above model, and discuss some security problems with each.

4.1. Statistical Database Control: Random-Sample-Queries

This method, introduced in [6], takes a query 4 concerning some class C of

records in the database and applies to each record r E C a selection function f (C, r)

to determine whether or not r is to be used to compute the response to 4. The selec-

tion function may either choose records randomly, in which case the same query may

produce answers based on two different sample sets, or consistently, in which case the

same query would produce the same answer, computed over the same sample set each

time it is asked.

Here the relevant part of the state is

Gi={ r I ~ E C }

the logging function is

h(c ,oi)=R (ai)

where c is the query and R (<Ti)=((ne ,ny) } a set of pairs of names and values of the

records to be used. So the log is simply the names and values of records to be used.

The input to the audit function is Oi = (R (~ i)), and the audit function is

a(Oi) = (0 i -C r If(r,C)#l },ai)

(where ai is any written record made). Note that the audit function alters the state to

conceal those records not selected for the sampling, so the auditing is responsive; since

the logging function operates on the state of the system, it is state logging.

h(c x Oi)=(C ,v,v)

where v is the empty entity and its associated value. If the query C can be answered,

b

- 18 -

4.2. Statistical Database Control: Query-Set-Overlap

This control records all sets Di, i = 1, . . . , n about which queries have been

answered, and answers a new query about a set C if and only if the number of records

in C n D i is less than some parameter (for all i = 1, . . . , n).

The relevant part of the state is the queries answered so far, so

Notice the querying of C changes the state, so the transition function Ti is simply C.

Hence

it must be added to the set, so the input to the audit function is Oi = ~ i U(C), and

the audit function is

As the auditing mechanism may change the state of the system, the auditing is respon-

sive, and as the transition functions (queries) are logged, the logging is change log-

ging.

4.3. Computer System Monitoring: File System Scanner

A set of programs (for example see [18]) scans file systems every night, record-

ing users’ rights over files and transmitting the list to another computer, where they

are compared to a master list. If there is a discrepancy, the audit system notifies

administrators of any problems via electronic mail on the machine on which the audit

takes place.

,
~

- ~

- 19 -

Here, the state

Oi = (users’ rights over the files named in the master list }

The logging function is

h(c ,Oi)=R (Oi)

where c is the null command and R(oi)=((n,,nv) } is a set of pairs of subject and

object names and the set of rights the subject has over the object. The logging func-

tion just outputs a representation of the relevant set of rights to the audit machine.

The input to the audit function is Oi = (R (Oi) }, and the audit function is

a(Oi) = (Oi ,ai 1
The logging done here is state logging because it captures parts of the state of the

relevant files, and the auditing is informative because the state of the system is not

altered. Here, ai is the letter mailed to the system administrators.

4.4. Computer System Monitoring: Auditing Subsystem

An auditing subsystem [15] instruments the kernel of a workstation to record

specific system calls, and from that log produce an audit trail to enable reconstruction

of events leading to a breach of security.

Here the state of the system

Oi = (the values of monitored characteristics }

(see [15] for a description). The logging function

V c i ,ai) = (nc i ,v,v)
is the function which maps the instrumented events into output (and v is the empty

entity and its value). The input to the audit function is Oi = ((n , k) I 1 S k Si }, and

the audit function is

,

- 20 -

a(Oi = (oi ,ai

where ai is the output that another program can prettyprint. This clearly is change

logging, and since its primary purpose is to allow reconstruction of events culminating

in a breach of system security, the auditing is informative only.

4.5. Backing Up Computer Systems

The data on computer systems is often backed up by copying the data from the

computer system to some backup medium such as tapes. Assume the entire file sys-

tem is dumped (an “epoch dump”). Here the state of the system is

Oi = (the contents of all files on the system)

and the logging function

h(c ,ai) = (those contents dumped in a usable format }

Since the logging function is recording the system state, it is a state logging function.

4.6. Discussion of the Examples

Both query-set-overlap controls and the auditing subsystem assume that the

change log is accurate; if an attacker is able to subvert either system’s log, reconstruct-

ing a successful attack on either system might be impossible. For this reason, the log-

ging mechanism must be an integral part of the system. The auditing subsystem in

fact recognizes this and requires that only authorized users be able to access the log if

it is stored locally; since the subsystem is implemented on a workstation with

enhanced security features [5] , the designers believe the underlying computing base

provides sufficient security. Similarly, if query-set-overlap is used?, the log must be

kept in a protected area (either locally or remotely.) This would require some trusted

t Since the auditing system for a query-set-overlap control would have to compare the current query

communication path or trusted

sample query controls and the

- 21 -

computing base. On the other hand, to defeat random

file system scanner, an attacker would have to tamper

with every invocation of the state function f for a particular record r , or with every

message involving a set of files, to prevent a change from being entered into the log;

this is certainly possible, but can probably be more easily detected than a change to

just one log message.

Both statistical database controls require that the auditing mechanism respond

promptly to entries in the log, because the requested statistic cannot be released (or

denied) until the auditing mechanism answers. If the system has been successfully

penetrated, the attacker can alter this response to whatever is desired, this would allow

him to obtain records which should be concealed. (The records might be on a remote

host, and so the attacker may not be able to get access to them directly even if the

machines on which the auditing mechanism and the statistical database manager reside

is penetrated.) The file system auditing mechanisms do not suffer from this vulnerabil-

ity if the audit is performed on a machine other than the one being audited and the

results are transmitted to the relevant people using a physically secure printer that can-

not be tampered with. In this sense, informative audits are less susceptible to

compromise because the window in which an attacker can alter logs or results is

smaller.

5. Conclusion

The model of logging and auditing that we have described is comprehensive

~ ~

with every past query, it should be noted that this technique is infeasible under most practical condi-
tions.

- 22 -

enough to encompass very different schemes used in a variety of contexts; for exam-

ple, statistical database query control and file access monitoring systems do not seem

to be related and yet they create closely related security problems, and the mechanisms

designed to improve the security of one will also improve the security of another. It

also identifies many practical problems in security monitoring. By using this model to

classify different auditing schemes, their usefulness for a given situation may be more

readily apparent since much of the analysis stems from the particular classification.

This will assist designers and system managers in their analysis of security monitoring

products and schemes.

References

1.

2.

3.

4.

5.

6.

7.

8.

9.

Bonyun, D., “The Role of a Well Defined Auditing Process in the Enforcement
of Privacy Policy and Data Security”, Proceedings of the 1981 Symposium on
Security and Privacy, 19-25 (April 1981).
Bowman, R. and Kendall, P., “Security and Auditability - Mutually Compatible
Objectives in the EDP Environment”, Security Audit & Control Review, I , 3
(Summer 1982) 35-47.
Chin, F. and Ozsoyoglu, G., Auditing and Inference Control in Statistical
Databases, University of California, San Diego, CA, December 1980.
Cornwell, M. R., “A Software Engineering Approach to Designing Trustworthy
Software”, Proceedings of the 1989 Symposium on Security and Privacy, 148-
156 (May 1989).
Cummings, P. T., Fullam, D. A., Goldstein, M. J., Gosselin, M. J., Picciotto, J.,
Woodward, J. P. L. and Wynn, J., “Compartmented Mode Workstation: Results
Through Prototyping”, Proceedings of the I987 Symposium on Security and
Privacy, 2-12 (April 1987).
Denning, D., “Secure Statistical Databases Under Random Sample Queries”,
ACM Transactions on Database Systems, 5, 3 (September 1980) 291-315.
Denning, D., “An Intrusion-Detection Model”, Proceedings of the I986 IEEE
Symposium on Privacy and Security, 1 18-13 1 (April 1985).
Webster’s Third New International Dictionary of the English Language, G. & C .
Memam Company, Springfield, MA, 1981.
Gray, J., McJones, P., Blasgen, M., Lindsay, B., Lorie, R., Price, T., Putzolu, F.
and Traiger, I., “The Recovery Manager of the System R Database Manager”,

. - 23 -

ACM Computing Surveys, 13, 2 (June 1981) 223-242.
10. Haerder, T. and Reuter, A., “Principles of Transaction-Oriented Database

Recovery”, ACM Computing Surveys, 15,4 (December 1983) 287-318.
11. Harrison, M. A., RUZZO, W. L. and Ullman, J. D., “Protection in Operating

Systems”, Communications of the ACM, 19, 8 (August 1976) 461-471.
12. Kinnon, A. and Davis, R. H., “Audit and Security Implications of Electronic

Fund Transfer”, Computers and Security, 5 , 1 (March 1986) 17-23.
13. Lunt, T. F. and Jagannathan, R., “A Prototype Real-Time Intrusion-Detection

Expert System”, Proceedings of the 1988 IEEE Symposium on Privacy and
Security, 59-66 (April 1988).

14. Mitchell, J. G. and Dion, J., “A Comparison of Two Network-Based File
Servers”, Communications of the ACM, 25, 4 (April 1982) 233-245.

15. Picciotto, J., “The Design of an Effective Auditing Subsystem”, Proceedings of
the 1987 Symposium on Security and Privacy, 13-22 (April 1987).

16. Sturgis, H., Mitchell, J. and Israel, J., ‘‘Issues in the Design and Use of a
Distributed File System”, Operating Systems Review, 14, 3 (July 1980) 55-69.

17. U.S. Department of Defense, “Trusted Computer System Evaluation Criteria”,
DOD 5200.28-STD, CNational Computer Security Center, Fort Meade, MD,
December 1985.

18. Wood, P. and Kochan, S., UNlX System Security, Hayden Books, Indianapolis,
IN, 1985.

