0272-101 REPORT DOCUMENTATION 1_ REPORT NO.	2.	3. Recipient's Accession No.
PAGE		
. Title and Subtitle		5. Report Date
Chemical-quality reconnaissance of the wate		June 1982
material in the Delaware River estuary and	adjacent New Jersey	6.
tributaries, 1980-81		8. Performing Organization Rept. No.
Joseph J. Hochreiter, Jr.		USGS/WRI/NTIS 82-36
9. Performing Organization Name and Address		10. Project/Task/Work Unit No.
U.S. Geological Survey		
Water Resources Division		11. Contract(C) or Grant(G) No.
Room 430 Federal Building		(C)
402 East State Street		(G)
Trenton, New Jersey 08608		
12. Sponsoring Organization Name and Address		13. Type of Report & Period Covered
U.S. Geological Survey, Water Resources Div	vision	Final
Room 430 Federal Building	Ļ	
402 East State Street		14.
Trenton, New Jersey 08608		
15. Supplementary Notes Prepared in cooperation with the New Jerse	v Department of Enviror	mental Protection.
Division of Water Resources		
Agency "priority pollutants," including ac	* *	
volatile organic compounds, in addition to Surficial bed material at selected location polychlorinated biphenyls, and base/neutra Trace levels (1-50 micrograms per lit those associated with the occurrence of hy the water samples taken. DDT, DDD, DDE, P surficial bed material samples. Diazinon detected in the study (1.6 micrograms per select trace metals in bed material were d sampled, the surficial bed material contai one cross section of Raccoon Creek at Brid Creek revealed bed material containing tol 15 base/neutral extractable organic compou carbons, phthalate esters, and chlorinated	selected dissolved ind ns was examined for tra l extractable organic of er) of purgeable organic drocarbons, were found CB's and chlordane are was the only organophos kilogram at one location iscovered at two location iscovered at two location ning the most contaminant geport. An additional uene, oil and grease, ands, including polynucion	organic constituents. ace metals, insecticides compounds. ic compounds, particular in about 60 percent of present in most sphorous insecticide on). High values for ions. Of the 10 sites ation was found along analysis of Raccoon and trace quantities of lear aromatic hydro-
 volatile organic compounds, in addition to Surficial bed material at selected location polychlorinated biphenyls, and base/neutra Trace levels (1-50 micrograms per lit those associated with the occurrence of hy the water samples taken. DDT, DDD, DDE, P surficial bed material samples. Diazinon detected in the study (1.6 micrograms per select trace metals in bed material were d sampled, the surficial bed material contai one cross section of Raccoon Creek at Brid Creek revealed bed material containing tol 15 base/neutral extractable organic compounds arbons, phthalate esters, and chlorinated 7. Document Analysis a. Descriptors *water-quality, *wat compounds, *trace metals, DDT, polychlorin surface/ground-water relations. b. Identifiers/Open-Ended Terms Delaware River, EPA p 	selected dissolved ind ns was examined for tra l extractable organic of er) of purgeable organi drocarbons, were found CB's and chlordane are was the only organophos kilogram at one location iscovered at two location iscovered at two location ing the most contaminant geport. An additional uene, oil and grease, a nds, including polynuc benzenes. er pollution, *bottom s ated biphenyls, pestic	organic constituents. ace metals, insecticides compounds. ic compounds, particular in about 60 percent of present in most sphorous insecticide on). High values for ions. Of the 10 sites ation was found along analysis of Raccoon and trace quantities of lear aromatic hydro-
 volatile organic compounds, in addition to Surficial bed material at selected location polychlorinated biphenyls, and base/neutra Trace levels (1-50 micrograms per lit those associated with the occurrence of hy the water samples taken. DDT, DDD, DDE, P surficial bed material samples. Diazinon detected in the study (1.6 micrograms per select trace metals in bed material were d sampled, the surficial bed material were d sampled, the surficial bed material contai one cross section of Raccoon Creek at Brid Creek revealed bed material containing tol 15 base/neutral extractable organic compounds, phthalate esters, and chlorinated 17. Document Analysis a. Descriptors *water-quality, *wat compounds, *trace metals, DDT, polychlorin surface/ground-water relations. 	selected dissolved ind ns was examined for tra l extractable organic of er) of purgeable organi drocarbons, were found CB's and chlordane are was the only organophos kilogram at one location iscovered at two location iscovered at two location ing the most contaminant geport. An additional uene, oil and grease, a nds, including polynuc benzenes. er pollution, *bottom s ated biphenyls, pestic	organic constituents. ace metals, insecticides compounds. ic compounds, particular in about 60 percent of present in most sphorous insecticide on). High values for ions. Of the 10 sites ation was found along analysis of Raccoon and trace quantities of lear aromatic hydro-
 volatile organic compounds, in addition to Surficial bed material at selected location polychlorinated biphenyls, and base/neutra Trace levels (1-50 micrograms per lit those associated with the occurrence of hy the water samples taken. DDT, DDD, DDE, P surficial bed material samples. Diazinon detected in the study (1.6 micrograms per select trace metals in bed material were d sampled, the surficial bed material were d sampled, the surficial bed material contai one cross section of Raccoon Creek at Brid Creek revealed bed material containing tol 15 base/neutral extractable organic compound carbons, phthalate esters, and chlorinated 17. Document Analysis a. Descriptors *water-quality, *wat compounds, *trace metals, DDT, polychlorin surface/ground-water relations. b. Identifiers/Open-Ended Terms Delaware River, EPA p Delaware, volatile organic compounds. 	selected dissolved ind ns was examined for tra l extractable organic of er) of purgeable organi drocarbons, were found CB's and chlordane are was the only organophos kilogram at one location iscovered at two location iscovered at two location iscovered at two location apport. An additional uene, oil and grease, a nds, including polynuc benzenes. er pollution, *bottom s ated biphenyls, pestic: riority pollutants, New UNCLASSIFIED	reganic constituents. ace metals, insecticides compounds. ic compounds, particular in about 60 percent of present in most sphorous insecticide on). High values for ions. Of the 10 sites ation was found along analysis of Raccoon and trace quantities of lear aromatic hydro- sediments, *organic ides, saline water, w Jersey, Pennsylvania, Peport) 21. No. of Pages 41
 volatile organic compounds, in addition to Surficial bed material at selected location polychlorinated biphenyls, and base/neutra Trace levels (1-50 micrograms per lit those associated with the occurrence of hy the water samples taken. DDT, DDD, DDE, P surficial bed material samples. Diazinon of detected in the study (1.6 micrograms per select trace metals in bed material were d sampled, the surficial bed material were d sampled, the surficial bed material contai one cross section of Raccoon Creek at Brid Creek revealed bed material containing tol 15 base/neutral extractable organic compounds carbons, phthalate esters, and chlorinated 17. Document Analysis a. Descriptors *water-quality, *wat compounds, *trace metals, DDT, polychlorin surface/ground-water relations. b. Identifiers/Open-Ended Terms Delaware River, EPA p Delaware, volatile organic compounds. 18. Availability Statement 	selected dissolved ind ns was examined for tra l extractable organic of er) of purgeable organi drocarbons, were found CB's and chlordane are was the only organophos kilogram at one location iscovered at two location iscovered at two location iscovered at two location and the most contaminant geport. An additional uene, oil and grease, ands, including polynuc benzenes. er pollution, *bottom s ated biphenyls, pestic: riority pollutants, New 19. Security Class (This	Preport21. No. of PagesReport21. No. of Pages21. No. of Pages41

CHEMICAL-QUALITY RECONNAISSANCE OF THE WATER AND SURFICIAL BED MATERIAL IN THE DELAWARE RIVER ESTUARY AND ADJACENT NEW JERSEY TRIBUTARIES, 1980-81

By Joseph J. Hochreiter, Jr.

U.S. GEOLOGICAL SURVEY

Water-Resources Investigations 82-36

Prepared in cooperation with the

NEW JERSEY DEPARTMENT OF ENVIRONMENTAL PROTECTION,

DIVISION OF WATER RESOURCES

June 1982

UNITED STATES DEPARTMENT OF THE INTERIOR

JAMES G. WATT, Secretary

GEOLOGICAL SURVEY

Dallas L. Peck, Director

For additional information write to:

U.S. Geological Survey Room 430, Federal Building 402 East State Street Trenton, New Jersey 08608

CONTENTS

Page

Abstract	<i></i>	1
Introduction		1
Purpose and scope		2
Acknowledgments		2
The Delaware River estuary		2
Location and extent		2
Climate		3
Geography and geology		3
Ground-water hydrology		5
Surface-water hydrology		6
Land use		8
Data collection		10
Sample collection		10
Laboratory methodology		14
Results		14
Water quality		14
Sediment quality		20
Discussion		27
Summary and conclusions		35
Suggestions for further study		36
Selected references		36

ILLUSTRATIONS

Figure	1Map of the Delaware River estuary showing the	
	location of sampling sites	4
	2Monthly streamflow for the Delaware River at	
	Trenton, N.J	7
	3Stiff diagrams of major ions at five Delaware	
	River estuary sampling locations,	
	September 3-4, 1980	19
	4Concentration of DDT and its metabolites in the	
	surficial bed material of selected sites	24
	5Concentration of chlordane in the surficial bed	
	material of selected sites	25
	6Concentration of PCB's in the surficial bed	
	material of selected sites	26

TABLES

Table	1Comparison of mean monthly discharge with median	
	and normal discharge at the Delaware River at	
	Trenton, N.J	8
	2Land use by county for the Delaware Valley (1970)	9
	3Sampling frequency and location of the 13 sampling	
	sites	11

TABLES--Continued

4U.S. Environmental Protection Agency priority	
pollutants: analysis list of specific volatile organic compounds detectable by the U.S.	
Geological Survey Central Laboratory	12
5U.S. Environmental Protection Agency priority	
pollutants: analysis list of acid extractable and	13
base/neutral extractable organic compounds 6Chemical analyses of selected surface-water sites	10
in the Delaware River estuary	15
7Analyses of volatile organic compounds in the	21
surface water of the Delaware River estuary 8Chemical analyses of surficial bed material in the	21
Delaware River estuary	22
9Insecticides for which analyses were done on most	<u> </u>
surficial bed material samples 10Results of a base/neutral extractable organic	23
compound analysis of the surficial bed material	
at Raccoon Creek at Bridgeport, N.J.,	~ 0
January 8, 1981 11Results of a previous investigation of the	28
surficial bed material in the Delaware River	
estuary, April 28, 1979	29
12Chemical properties and environmental significance	31
	1

GLOSSARY OF TERMS

- Appalachian Highlands. A major physiographic subdivision of the United States that, in New Jersey, includes parts of the following physiographic provinces: (1) Piedmont, (2) New England, (3) Valley and Ridge, and (4) Appalachian Plateaus. Each province is characterized by distinctive landforms related to the structure and types of rocks contained therein and to the geologic history of the province.
- DDT-T. A term used in this report to collectively identify DDT (dichlorodiphenyltrichloroethane) and its metabolites, DDD (dichlorodiphenyldichloroethane) and DDE (dichlorodiphenyldichloroethylene).
- Delaware Estuary. The entire tidal segment of the Delaware River including the Bay, from river mile 0.0 at the entrance of Delaware Bay to river mile 133 at the head of tide at Trenton, N.J.
- Delaware River estuary. That segment of the Delaware Estuary, not including the bay, from river mile 48.23 at the mouth of the Delaware River to river mile 133 at the head of tide at Trenton, N.J.
- Delaware Valley. For the purposes of this report, a region as defined by the Delaware Valley Regional Planning Commission that covers a total of 3,840 square miles in the center of the eastern seaboard. This area includes Bucks, Chester, Delaware, Montgomery, and Philadelphia Counties in Pennsylvania; Burlington, Camden, Gloucester, and Mercer Counties in New Jersey.
- Dissolved. That material in a representative water sample which passes through a 0.45-micrometer membrane filter. This is a convenient operational definition used by Federal agencies that collect water data. Determinations of "dissolved" constituents are made on subsamples of the filtrate.
- EPA priority pollutants. A list of 129 materials developed by the U.S. Environmental Protection Agency (Keith and Telliard, 1979) in implementing parts of the Federal Water Pollution Control Act (Public Law 92-500) which deals with toxic pollutants in water. These materials include purgeable, acid extractable, and base/neutral extractable organic compounds, pesticides, metals, cyanides, asbestos, and polychlorinated biphenyls (PCB's).
- Fall Line. A line characterized by the outcrop of bedrock that divides the rolling topography of the Piedmont physiographic province from the relatively flat plains of the Coastal Plain physiographic province. The line runs

GLOSSARY OF TERMS--Continued

parallel and just to the northwest of the Delaware River estuary from below Wilmington, Del., through Trenton, N.J. The point at which the Fall Line crosses the Delaware River is considered to be the head of tide.

- <u>Micrograms per liter (μ g/L)</u>. A unit expressing the concentration of a chemical constituent in solution as the mass (1 microgram = 1 X 10⁻⁶ gram) of solute per unit volume (liter) of water. One μ g/L is approximately equal to 1 part per billion (PPB) in aqueous solutions of low dissolved-solids concentration.
- <u>Micrograms per gram (µg/g) or kilogram (µg/kg)</u>. A unit expressing the concentration of a chemical constituent as the mass (microgram) of the substance sorbed per unit mass (gram/kilogram) of sediment.
- <u>Milligrams per liter (mg/L)</u>. A unit expressing the concentration of chemical constituents in solution as the mass (1 milligram = 1 X 10⁻³ gram) of solute per unit volume (liter) of water. One mg/L is approximately equal to 1 part per million (PPM) in aqueous solutions of low dissolved-solids concentration.
- Minimum detection limit. For a given type of sample and analytical procedure, it is that concentration value below which the presence of the constituent being analyzed cannot be verified or denied. Minimum detection limits can be identified in tables 6 and 8 of this report by a zero (0) or by a less than (<) symbol preceding a numerical value.
- Organic compounds, acid extractable (EPA priority pollutants). A group of 11 semivolatile phenolic compounds. These compounds are extracted with methylene chloride from a water sample under acidic conditions prior to analysis by gas chromatography-mass spectrometry (GC-MS).
- Organic compounds, base-neutral extractable (EPA priority pollutants). A group consisting of 46 semivolatile compounds from various chemical families extracted with methylene chloride from a water sample under alkaline conditions prior to analysis by GC-MS.
- Organic compounds, purgeable (EPA priority pollutants). A group of 31 organic compounds which, because of their volatile nature, can be stripped as a vapor from a water sample via the injection of an inert gas prior to analysis by GC-MS. Two compounds (acrolein, acrylonitrile) of this group actually remain part of the water sample after vapor stripping. These compounds are analyzed by direct aqueous injection GC-MS. As a group, these compounds are of lower

GLOSSARY OF TERMS--Continued

molecular weight than acid or base/neutral extractable compounds, and often have higher vapor pressures. Their boiling points are less than 150°C.

- <u>River mile</u>. A system of computing center channel stream length. The values used in this report were adopted from the table of river miles used by the Delaware River Basin Commission.
- Sampling vertical. A sampling location that represents the depth of a stream at a single point along the horizontal cross section of a stream or estuary.
- Sediment. A solid material that originates mostly from disintegrated rocks and is transformed by, suspended in, or deposited from water; it includes chemical and biochemical precipitates and decomposed organic material such as humus. The quantity, characteristics, and cause of the occurrence of sediment in streams are influenced by degree of slope, length of slope, soil characteristics, land use, and quantity and intensity of precipitation.
- Specific conductance. A measure of the ability of a water to conduct an electrical current expressed in micromhos per centimeter at 25°C. Because the specific conductance is related to the number and specific chemical types of ions in solution, it may be used for approximating the dissolved solids content in the water. Commonly, the amount of dissolved solids (in milligrams per liter) is about 65 percent of the specific conductance (in micromhos per centimeter at 25°C). This relation is not constant from stream to stream or from well to well, and it may even vary in the same source with changes in the composition of the water.
- Surficial bed material. The upper segment (0.1 to 0.2 ft) of unconsolidated material which is deposited on the bottom of a streambed, lake, pond, reservoir, or estuary. Only material which passes through a 2-millimeter sieve is accepted for the chemical analyses described in this text.
- Suspended sediment. The sediment that at any given time is maintained in suspension by the upward components of turbulent currents or that exists in suspension as a colloid in a water column.

CONVERSION OF INCH-POUND UNIT TO INTERNATIONAL SYSTEM (SI) UNITS

The following factors may be used to convert the inch-pound units published herein to the International System of Units (SI).

Multiply Inch-Pound Unit	<u>By</u> Length	<u>To Obtain SI Unit</u>
inch (in.) foot (ft) mile (mi)	2.54 30.48 1.609	centimeter (cm) centimeter (cm) kilometer (km)
	Area	
square mile (mi²)	2.590	square kilometer (km²)
	Flow	
cubic foot per second (ft³/s) million gallons	0.02832	cubic meter per second (m³/s) cubic meter per second
per day (Mgal/d)	0.04381	(m ³ /s)
Spe	ecific Conduc	etance
micromho per centimeter at 25°C (µmho/cm at 25°C)	1.000	microsiemens per centimeter at 25°C (µS/cm at 25°C)
	Mass	
ton (short, 2,000 lb)	.9072	ton (metric)

CHEMICAL-QUALITY RECONNAISSANCE OF THE WATER AND SURFICIAL BED MATERIAL IN® THE DELAWARE RIVER ESTUARY AND ADJACENT NEW JERSEY TRIBUTARIES, 1980-81

By Joseph J. Hochreiter, Jr.

ABSTRACT

This report presents chemical-quality data collected from May 1980 to January 1981 at several locations within the Delaware River estuary and selected New Jersey tributaries. Samples of surface water were analyzed for Environmental Protection Agency "priority pollutants," including acid extractable, base/neutral extractable and volatile organic compounds, in addition to selected dissolved inorganic constituents. Surficial bed material at selected locations was examined for trace metals, insecticides, polychlorinated biphenyls, and base/neutral extractable organic compounds.

Trace levels (1-50 ug/L) of purgeable organic compounds, particularly those associated with the occurrence of hydrocarbons, DDT, were found in about 60 percent of the water samples taken. DDD, DDE, PCB's, and chlordane are present in most surficial bed material samples. Diazinon was the only organophosphorous insecticide detected in the study (1.6 μ g/kg at one location). High values for select trace metals in bed material were discovered at two locations. Of the 10 sites sampled, the surficial bed material containing the most contamination was found along one cross section of Raccoon Creek at Bridgeport. An additional analysis of Raccoon Creek revealed bed material containing toluene, oil and grease, and trace quantities of 15 base/neutral extractable organic compounds, including polynuclear aromatic hydrocarbons, phthalate esters, and chlorinated benzenes.

INTRODUCTION

In recent water-quality studies of surface-water systems, chemical analyses of bed material deposits in stream channels have been used as indicators of past contamination. Some contaminants, especially organic substances, evade detection in water due to their typically low concentrations, erratic distribution patterns, and generally low solubilities. The chemical quality of any river is dependent not only on the quality of the water and aquatic life within the river, but also on the chemical composition of the channel deposits and the interactions that might exist between these deposits and the water. Many constituents are sorbed onto suspended sediment particles that are later deposited onto the streambed (Feltz, 1980). Over time, these contaminants accumulate in the bed material at concentrations many times greater than originally present in the water.

An investigation by Sheldon and Hites (1978) detected nearly 100 organic compounds in the water of the Delaware River estuary between Trenton, N.J., and Marcus Hook, Pa., noting a predominance of ethylene glycol derivatives. Data collected by the U.S. Geological Survey throughout the 1970's indicate that some of the bed material along the Delaware River main stem contains organochlorine insecticides and PCB's. Additional data collected by the U.S. Geological Survey in 1979 suggest that substantial quantities of trace metals and organic compounds, including polychlorinated biphenyls (PCB's) have been deposited in the sediments of the Delaware River estuary (U.S. Geological Survey, 1980).

Much of the Delaware River estuary overlies the outcrop of the Potomac-Raritan-Magothy aquifer system. Existing potentiometric heads indicate that recharge from the river to this aquifer system occurs through sections of estuarine bed material. This condition might induce the transport of contaminants from the surface water and bed material to the aquifer system.

Purpose and Scope

The U.S. Geological Survey, in cooperation with the New Jersey Department of Environmental Protection, Division of Water Resources, is investigating the chemical quality of ground water and surface water in the vicinity of the Potomac-Raritan-Magothy aquifer system outcrop from Trenton to Pennsville, N.J. The study began in October 1979 and will continue through September 1983.

This report discusses the occurrence and distribution of selected chemical-quality constituents, including U.S. Environmental Protection Agency (EPA) "priority pollutants" (Keith and Telliard, 1979), in surface water and associated surficial bed materials of the Delaware River estuary and selected New Jersey tributaries. Thirteen surface-water and 10 bed material sites were sampled between Trenton and Pennsville from May 20, 1980, through January 8, 1981. Emphasis in this report is placed on the investigation of trace metals and organic compounds in the surficial bed material.

Acknowledgments

The author is grateful to Kathy Baker, Paul Moleski and Lois Voronin of the U.S. Geological Survey for the collection of field data. Luis Lowe, organic chemist with the U.S. Geological Survey Central Laboratory, contributed guidance in organic chemistry.

THE DELAWARE RIVER ESTUARY

Location and Extent

The Delaware Estuary basin drains approximately 5,900 mi², excluding the surface area of the bay, and represents the tidal part of the Delaware River and Delaware Bay. The Delaware River estuary extends from the head of tide at Trenton, N.J., south to

river mile 48.23 at the head of the bay (fig. 1). The entire Delaware River basin drains 12,765 mi² (excluding the surface area of the bay) from parts of New York, Pennsylvania, New Jersey, Maryland and Delaware (Parker and others, 1964). The estuary begins in Trenton, N.J. at the Fall Line, which separates the Appalachian Highlands from the Atlantic Coastal Plain. The large industrial cities of Philadelphia, Pa. (1980 population, 1,688,210), Camden, N.J. (84,910), Chester, Pa. (45,794), and Wilmington, Del. (70,195) are located along the Delaware River and estuary. The 1980 population of the nine-county Delaware Valley region is over 5 million (David Lewis, U.S. Census Bureau, oral communication, 1981). The Delaware River estuary supplies water for domestic use to several communities, including Philadelphia. The estuary serves one of the largest freshwater ports in the country, and a shipping channel is dredged and maintained from Bordentown, N.J., south to the bay.

Climate

The Delaware Estuary basin has a moderate, primarily continental climate. The mean annual temperature at Trenton is $54\,^{\circ}\text{F}$ (12.2°C) with a range in mean monthly temperature from $32\,^{\circ}\text{F}$ (0°C) in January to $76\,^{\circ}\text{F}$ (24.4°C) in July. Average annual precipitation during 1941-70 at Trenton was 40.17 inches. October and February are the driest months, with mean monthly precipitation of 2.5 in. and 2.7 in., respectively. The wettest months typically are July and August, with mean monthly precipitation of 4.7 in. and 4.1 in., respectively (U.S. National Oceanic and Atmospheric Administration, 1973).

Total precipitation during the sampling period from May to December 1980 was 3.75 in. below a mean of 27.52 in. at Philadelphia and 7.07 in. below a mean of 28.68 in. in the basin above Trenton (Delaware River Basin Commission, written communication, 1981). The annual precipitation at Trenton for 1980 was 34.17 in. (U.S. National Oceanic and Atmospheric Administration, oral communication, 1981).

Geography and Geology

The Delaware River estuary lies almost entirely in the northern Atlantic Coastal Plain. All drainage into the Delaware River basin north of Trenton, as well as most of the drainage into the estuary from Pennsylvania, originates in the Appalachian Highlands. Drainage into the estuary from New Jersey and most of Delaware originates in the Atlantic Coastal Plain. The geologic characteristics of both the Coastal Plain and Appalachian Highlands provinces contribute to the deposition of sediment within the estuary.

Mansue and Commings (1974, p. H17) report that, on the average, 1.6 million tons of sediment is transported into the Delaware estuary annually. Of this amount, the Delaware River main stem transports 48 percent, streams draining the Piedmont

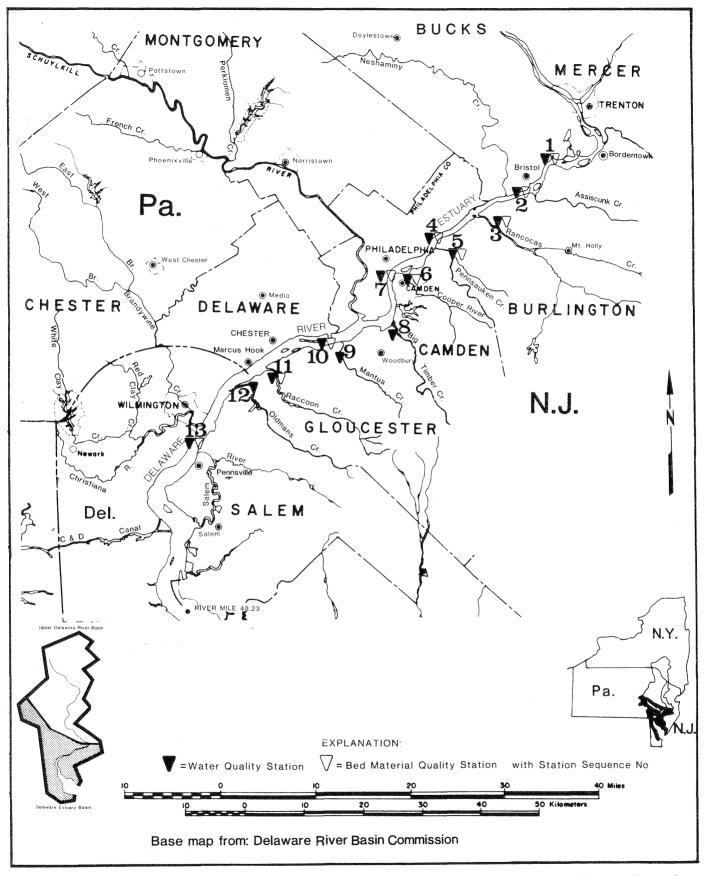


Figure 1--- Map of the Delaware River estuary showing the location of sampling sites.

Physiographic province transport 42 percent, and streams draining the Atlantic Coastal Plain transport about 10 percent. Of the remaining 52 percent of annual sediment transported from sources other than the main stem, Pennsylvania tributaries contribute 34 percent, and New Jersey and Delaware tributaries each contribute 9 percent (Mansue and Commings, 1974, p. H17). Weil (1977, p. 15) reports that approximately 65 percent of all sediment transported into the estuary is deposited in the dredged navigation channel and anchorage areas between the head of Delaware Bay and Philadelphia.

The geology of the Coastal Plain in New Jersey is characterized by a wedge of unconsolidated sediments that thickens and dips toward the Atlantic Ocean. The Potomac Group and Raritan and Magothy Formations of Cretaceous age are the oldest of these sediments. These deposits overlie Precambrian and Paleozoic crystalline rock and crop out along the Fall Line bordering the Appalachian Highlands in New Jersey and Pennsylvania.

The Potomac Group and Raritan and Magothy Formations are composed of interbedded sand and gravel, silt, and clay units. In parts of the outcrop area, the Cretaceous formations are overlain by more recent sediments, including the Pensauken Formation of late Miocene age, the Bridgeton Formation of Miocene age, and the Spring Lake and Van Sciver Lake beds of the late Pleistocene age (Owens and Minard, 1979).

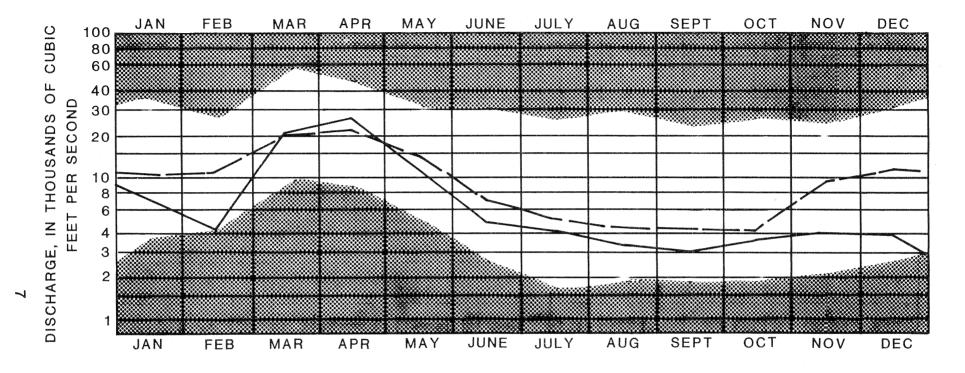
Northwest of the Fall Line, the bedrock consists mainly of metamorphic and sedimentary rocks of Cambrian or possibly Precambrian age. Triassic rocks can be found at the surface in parts of Bucks and Montgomery Counties (Willard, 1962).

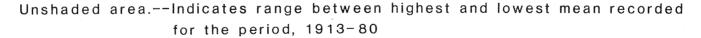
Ground-water Hydrology

The flow patterns within the Potomac-Raritan-Magothy aquifer system prior to ground-water development were controlled by the natural hydraulic gradients, reflecting the difference in elevation and the distance between recharge and discharge areas, as well as the geology and physical properties of the aquifers and confining units (Barksdale and others, 1958). The regional ground-water flow before development was controlled by recharge to two areas of the outcrop at high elevations (Barksdale and others, 1958) and by leakage from the Englishtown Formation, through the underlying confining unit in the Merchantville Formation and Woodbury Clay (Gill and Farlekas, written communication, 1969). As the water resources of the area were largely undeveloped, the aquifer discharged at many places into the Delaware River estuary, tributaries overlying the outcrop, and streams draining the Coastal Plain in southern New Jersey.

In 1978, about 230 Mgal/d was withdrawn from the Potomac-Raritan-Magothy aquifer system, accounting for approximately 70 percent of the total pumpage from the Coastal Plain in New Jersey (Vowinkel and Foster, 1981, p. 28). The extensive development of

the aquifer system in the Camden County area has resulted in a decrease in potentiometric heads, reversing the original flow pattern so that recharge to the aquifer system is now induced from the Delaware River estuary in this area (Greenman and others, 1961, and Barksdale and others, 1958).


Although it is generally accepted that the estuary recharges the aquifer system, the specific distribution is largely unknown. Powell and others (1954) conducted aquifer tests and analyzed cores from the Delaware River estuary bed above Philadelphia and found many areas, particularly along the dredged channel, where water can easily flow through highly permeable bottom sediments. Barksdale and others (1958, p. 114-116) indicate that direct recharge from the estuary to the lower aquifer in the system would be unlikely in the Philadelphia-Camden area because of a clay layer. Luzier (1980, p. 21) suggests that direct recharge to the lower aquifer would be unlikely near the Delaware Memorial Bridge for similar reasons.


Luzier (1980) developed a two-dimensional digital simulation model of the Potomac-Raritan-Magothy aquifer system. The principal study area bordered both sides of the Delaware River estuary from Trenton to Wilmington. A simulation analysis for 1973 indicated that about 45 percent of the water withdrawn from this study area was induced recharge from the Delaware River estuary.

Surface-water Hydrology

The entire Delaware River estuary and the lower reaches of all its tributaries are affected by diurnal tidal fluctuations. According to Miller (1962, p. C22), during a typical tidal cycle, upstream flow rates are of higher intensity, yet net downstream flow is often of longer duration (Cohen and McCarthy, 1962, p. B10). The result is a net downstream discharge, in most cases, during a complete tidal cycle. Harleman and Lee (1969) report that, on the average at Philadelphia, a unit of water will travel 15 mi during a complete tidal cycle--7 mi upstream during high tide and 8 mi downstream during low tide. The mass transit time of water from Trenton to Marcus Hook is 43 days when the flow is 4,000 ft³/s at Trenton (Keighton, 1966). Tidal reaches of the tributaries to the estuary experience similar fluctuations. The intensity of these fluctuations determines the amount of backwater that can enter the tributaries from the estuary during the incoming tidal cycle.

A decrease in freshwater inflow to the estuary and tributaries can diminish the ability of these bodies to flush out saline water and anthropogenic contaminants. The mean monthly streamflow for the calendar year 1980 is plotted in figure 2 against the median of the monthly means for the standard reference period at the Delaware River at Trenton. Table 1 shows that the flow in the Delaware River at Trenton for each month of the sampling period, May-December 1980, was substantially below the

Dashed line.--Indicates the median of the monthly means for the standard reference period, 1941-70

Solid line .-- Indicates observed monthly mean flow for the 1980 calendar year

Figure 2.-- Monthly streamflow for the Delaware River at Trenton, N.J.

median of record (1913-80) for that month. During November and December, the mean monthly flows were substantially less than the twenty-fifth percentile of flow, so that the mean discharge for May-December 1980 was 46 percent below the median of record for that period (1913-79) and 28 percent below the twenty-fifth percentile of flow.

Table 1.--Comparison of mean monthly discharge with median and normal discharge at the Delaware River at Trenton, N.J.

Month (1980)	Monthly mean discharge for 1980	Median discharge for period of record (1913-80)	Twenty- fifth percen- tile of discharge for period of record (1913-80)	Percent- age below the median	Percent- age below the 25th percen- tile
May June July August September October November December	11,920 4,874 4,008 3,198 2,981 3,512 3,985 3,784	12,650 7,176 5,222 4,547 4,231 5,061 9,825 10,860	10,060 5,085 3,726 2,991 2,780 3,176 4,725 7,358	5.7 32 23 30 30 31 59 65	- - - 16 49
Period:					
May-December	4,783	*8,830	* 6,599	46	28

[In cubic feet per second]

* Period of record (1913-79).

Land Use

Table 2 shows 1970 land use summaries for the nine-county area known as the Delaware Valley (Delaware Valley Regional Planning Commission, written communication, 1970). These values represent total county areas, including areas outside of the Delaware Estuary basin. Analyses of land use in these counties may help to determine the source of contaminants in the estuary.

The Delaware River Basin Commission (1975) inventoried over 100 industrial waste-water discharges along the Delaware Estuary and adjacent tidal tributaries. More manufacturing is done in Philadelphia and Delaware Counties in Pennsylvania than in any other Delaware Valley County. Camden and Gloucester counties are the most heavily industrialized New Jersey counties bordering the

Table 2.--Land use by county for the Delaware Valley (1970), in percent.

Source: Delaware Valley Regional Planning Commission, written communication, 1970

				-	Land-use catego	ories			
Counties	Area (mi²)	Residential	Utilities and transporta- Trade and tion services		Manufacturing	Resource production (principally agriculture)	Undeveloped and recreation	Total land use *	
Bucks	625	12.3	3.7	3.0	1.4	29.9	49.7	100	
Chester	761	9.1	3.5	1.9	0.4	51.3	33.8	100	
Delaware	191	28.7	9.2	6.0	1.7	15.3	39.1	100	
Montgomery	496	21.1	6.0	3.6	1.4	38.0	29.9	100	
Philadelphia	144	29.6	24.2	12.7	5.6	1.6	26.1	100	
Pennsylvania total	2,217	15.7	6.0	3.7	1.4	35.9	37.3	100	
					2		<u> </u>		
Burlington Camden	830 224	5.4	2.4 8.3	5.4	• 3	23.8	62.8	100	
Gloucester		18.7		3.8 2.1		16.6	51.2	100	
Mercer	339 230	9.0 15.1	3.3 5.8	2.1 3.8	1.0 .9	33.9 39.4	50.6 34.6	100	
Mercer	230	10+1	0.0	2.0	•9	29.4	34.0	100	
New Jersey total	1,623	9.3	3.9	4.3	•7	27.2	54.7	100	
						· · ·			
Delaware Valley total	3,840	13.0	5.1	3.9	1.1	32.2	44.7	100	

* Land use may not total 100 percent due to rounding off during compilation.

Ø

estuary. Manufacturing industries (primarily chemical, petroleum, and primary metals) constitute 1.1 percent (42 mi²) of the Delaware Valley. Thirty-two percent (1,229 mi²) of the Delaware Valley in 1970 was classified agricultural.

DATA COLLECTION

Sample Collection

Table 3 lists the sampling frequency of water and surficial bed material at the 13 sampling sites. Figure 1 shows the location of each site in the estuary.

Because saltwater is denser than freshwater, estuarine systems tend to stratify with depth near the zone of saltwater/ freshwater interface, causing the concentrations of many chemical constituents to stratify also. The water is additionally layered owing to temperature and density gradients, so that a representative sample must be integrated vertically and composited horizontally. Water and bed material samples are composites of three to five verticals along a single cross section at each site. Cross sections were selected along the tidal reach of each stream sampled.

All bed material samples were sieved through a 2-millimeter sieve at the time of collection. Water samples were collected with U.S. series point- and depth-integrating suspended-sediment samplers (Guy and Norman, 1970). Although most samples were collected during the outgoing part of the tidal cycle, some variances in water quality resulted from collecting the sample before all backwater had been flushed below the point of collection.

Water samples were collected for analysis of volatile organic compounds (table 4), acid and base/neutral extractable organic compounds (table 5), common ions, dissolved organic carbon, and trace metals. Bed material samples were collected for acid and base/neutral extractable organic compounds, pesticides (see table 9), and trace metals.

The samples for analysis of volatile organic compounds were collected in 40-milliliter glass septum bottles. Suspended sediment samplers were modified to collect a nonaerated sample. A length of tapered polyvinyl chloride tubing was friction fitted to the discharge side of the sampler's intake nozzle, and the other end was placed inside a septum bottle before it was loaded into the sampler (G. L. Pederson, written communication, 1980). These samples were sealed air tight and chilled at 4°C.

Samples for analysis of acid and base/neutral extractable organic compounds were collected in heat-treated glass bottles. These samples were also chilled at 4°C.

Site No.	Site identification	Name	Latitude	Longitude	Date of sampling			
(figure 1)	No.				Surface water	Bed materia		
1	01464560	Delaware River at Florence, N.J.	40°07'34"	074°48'59"	May 1980 Sep 1980 Nov 1980	May 1980		
2	01464600	Delaware River at Bristol, Pa.	40°05'55"	074°51'58"	May 1980 Sep 1980 Nov 1980	May 1980		
3	01467024	Rancocas Creek at Bridgeboro, N.J.	40°01'45"	074°55'55"	May 1980 Sep 1980 Nov 1980	May 1980		
4	01467060	Delaware River at Palmyra, N.J.	40°01'05"	075°02'16"	May 1980 Sep 1980 Nov 1980	May 1980		
5	01467082	Pennsauken Creek at Route 130, at Cinnaminson, N.J.	39°59'06"	075°00'55"	May 1980 Sep 1980 Nov 1980	May 1980		
6	01467193	Cooper River below Federal Street at Camden, N.J.	39°56'42"	075°06'16"	May 1980 Sep 1980 Nov 1980	May 1980		
7	01467200	Delaware River at Benjamin Franklin Bridge, at Philadelphia, Pa.	39°57'11"	075°08'05"	May 1980 Sep 1980 Nov 1980	May 1980		
8	01467390	Big Timber Creek at Westville, N.J.	39°52'28"	075°07'36"	Nov 1980			
9	01475160	Mantua Creek at Paulsboro, N.J.	39°49'52"	075°14'13"	Nov 1980			
10	01475200	Delaware River at Paulsboro, N.J.	39°50'42"	075°16'10"	May 1980 Sep 1980 Nov 1980	May 1980		
11	01477160	Raccoon Creek at Bridgeport, N.J.	39°48'04"	075°21'22"	May 1980 Sep 1980 Nov 1980	May 1980 Jan 1981		
12	01477600	Oldmans Creek at Nortonville, N.J.	39°47'05"	075°24'25"	Nov 1980			
13	01482100	Delaware River at Delaware Memorial Bridge, at Wilmington, Del.	39°41'21"	075°31'19"	May 1980 Sep 1980 Nov 1980	May 1980		

Table 3.--Sampling frequency and location of the 13 sampling sites.

anda anta Table 4.--U.S. Environmental Protection Agency priority pollutants: analysis list of specific volatile organic compounds detectable* by the U.S. Geological Survey Central Laboratory.

*Results are semiquantitative.

Source: Beetem and others (eds.), 1980.

Volatile Organic Compounds

Benzene Bromoform Carbon tetrachloride Chlorobenzene Chlorodibromomethane Chloroethane 2-Chloroethyl vinyl ether Chloroform Dichlorobromomethane Dichlorodifluoromethane 1,1-Dichloroethane 1,2-Dichloroethane 1,1-Dichloroethylene 1,2-trans-dichloroethylene 1,2-Dichloropropane 1.3-Dichloropropene Ethylbenzene Methylbromide Methylene chloride 1,1,2,2-Tetrachloroethane Tétrachloroethylene Toluene 1,1,1-Trichloroethane 1,1,2-Trichloroethane Trichloroethylene Trichlorofluoromethane Vinyl chloride

Table 5.--U.S. Environmental Protection Agency priority pollutants: analysis list of acid extractable and base/neutral extractable organic compounds.

Note: Components quantified if concentration exceeds 2.0 μ g/kg (bed material) or 1.0 μ g/L (water phase). Detection and identification of compounds will depend on many factors and will be strongly affected by the total composition of the sample and by compound concentration.

Source: Beetem and others (eds.), 1980.

Acid Extractable Organic Compounds

4-Chloro-3-methylphenöl 2-Chlorophenol 2,4-Dichlorophenol 2,4-Dimethylphenol 4,6-Dinitro-2-methylphenol 2,4-Dinitrophenol 2-Nitrophenol 4-Nitrophenol Pentachlorophenol Phenol 2,4,6-Trichlorophenol

Base/Neutral Extractable Organic Compounds

Acenaphthene Acenaphthylene Anthracene Benzidine Benzo(a)anthracene Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(g,h,i)perylene Benzo(a)pyrene 4-Bromophenyl phenyl ether Butyl benzyl phthalate Bis(2-chloroethoxy)methane Bis(2-chloroethyl)ether Bis(2-chloroisopropyl)ether 2-Chloronaphthalene 4-Chlorophenyl phenyl ether Chrysene Dibenzo(a,h)anthracene Di-n-butyl phthalate 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 3,3'-Dichlorobenzidine Diethyl phthalate

Dimethyl phthalate
2,4-Dinitrotoluene
2,6-Dinitrotoluene
Di-n-octylphthalate
Bis(2-ethylhexyl)phthalate
Fluoranthene
Fluorene
Hexachlorobenzene
Hexachlorobutadiene
Hexachlorocyclopentadiene
Hexachloroethane
Indeno(1,2,3-cd)pyrene
Isophorone
Naphthalene
Nitrobenzene
Nitrosodimethylamine
n-Nitrosodiphenylamine
<u>n-Nitrosodi-n-propylamine</u>
Phenanthrene
Pyrene
2,3,7,8-Tetrachlorodibenzo-p-dioxin
1,2,4-Trichlorobenzene

Temperature, specific conductance, pH, alkalinity, and bicarbonate were determined in the field. Samples for analysis of dissolved organic carbon were filtered through a 0.45-micrometer silver filter into heat-treated glass bottles. Samples for metals analysis were acidified with nitric acid to pH 2.0 or below. The samples analyzed for nitrogen, phosphorous, dissolved organic carbon, and bed material content were stored at 4°C.

Laboratory Methodology

The U.S. Geological Survey National Water Quality Laboratory in Doraville, Ga. performed all laboratory analyses. Potassium, phosphorus, nitrate and nitrite nitrogen, sulfate, and chloride were analyzed by laboratory methods described by Skougstad and others (1979). Dissolved organic carbon was analyzed by a wet oxidation method described by Goerlitz and Brown (1972).

Volatile organic compounds were analyzed on a gas chromatography/mass spectrometry (GC-MS) system using a "vapor stripping" technique (U.S. Environmental Protection Agency, 1979a). Acid and base/neutral extractable organic compounds were analyzed by EPA method 625 on a GC-MS. Each sample was extracted with methylene chloride within 48 hours of receipt at the laboratory. Insecticides and polychlorinated biphenyls were analyzed on a gas chromatograph utilizing an electron capture detector (U.S. Environmental Protection Agency, 1979b). The PCB analysis includes all nondifferentiated Arochlor¹ compounds. All trace metal analyses were performed by induction coupled plasma spectrometry (Garbarino and Taylor, 1979).

RESULTS

Water Quality

Table 6 contains the results of chemical analyses collected from the 13 sampling sites. Nitrite and nitrate nitrogen (NO₂ and NO₃) concentrations ranged from 0.03 mg/L to 2.5 mg/L and were within maximum levels for domestic water supply as established by U.S. EPA (1977, p. 107).

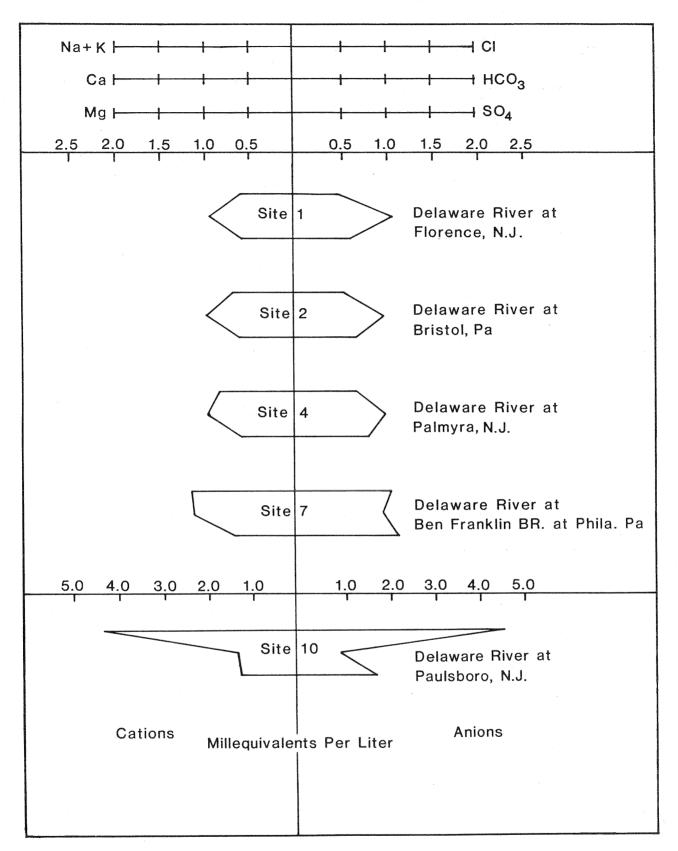
Figure 3 shows the major ion distribution in samples collected at five sites along the Delaware River estuary during September 1980. The September sampling was chosen because all the samples were collected during the same approximate segment of the tidal cycle. As the water travels downstream, its composition quickly changes within the saltwater/freshwater mixing zone from a moderately predominate calcium bicarbonate type to a predominately sodium-potassium chloride type. Maximum concentrations of chloride (2,200 mg/L) as well as sulfate (390 mg/L) were measured

¹ The use of the brand name in this report is for identification purposes only and does not imply endorsement by the U.S. Geological Survey.

Dat	e	T	ime	Direction of tide	Temper- ature, water (deg C)	Spe- cific con- duct-	pH field (units)	Carbon dioxide dis- solved	Alka- linity (mg/L	Bicar- bonate (mg/L	Nitro- gen NO ₂ +NO ₃ dis- solved	Phos- phorus, ortho- phos- phate dis-	Phos- phorus, ortho- phos- phate dis-
						ance (µmho∕cm)		(mg/L as CO ₂)	as CaCO₃)	as HCO ₃)	(mg/L as N)	solved (mg/L as PO ₄)	solved (mg/L as P)
					01464560	- Delawar	e River a	at Florenc	e, N.J.				
May 21 Sep 4 Nov 25		1	240 515 940	Outgoing do do	 7.5	18 1 2 30 22 6	7.4 7.3 7.4	3.3 5.2 3.9	44 53 50	54 65 61	1.5 1.2 1.4	0.09 .15 .00	0.03 .05 .00
					01464600	- Delaware	River at	: Bristol,	Pa.				
May 21 Sep 4 Nov 25		1	050 440 040	Outgoing do do	7.0	176 242 238	7.2 7.4 7.6	5.0 3.8 2.5	41 ~48 50	50 59 61	1.5 1.4 1.3	.06 .15 .95	.02 .05 .31
				0	1467024 -	Rancocas C	reek at H	Bridgeboro	, N.J.				
May 20 Sep 4 Nov 14	, -	1	345 345 425	Outgoing do Low Slack/ Incoming	 8.0	100 250 178	6.5 7.6 6.9	7.0 2.3 3.8	10 48 16	12 58 19	.96 1.3 1.0	.28 .18 .00	.09 .06 .00
				5	01467060	- Delaware	River at	. Palmyra,	N.J.				
May 21 Sep 4 Nov 25	, -	1	150 300 210	Outgoing do Incoming	 7.5	168 274 238	7.2 7.2 7.2	4.5 6.0 6.2	37 48 50	45 59 61	1.7 1.5 1.5	.09 .34 .21	.03 .11 .07
				01467082	- Pennsau	ken Creek	at Rt 130), at Cinn	aminson,	N.J.			
May 21 Sep 4 Nov 14	,	1	940 210 330	Outgoing do Low Slack	8.9	185 269 422	6.8 7.4 7.1	12 4.6 13	39 60 82	48 73 100	1.7 1.4 1.8	.12 .31 2.3	.04 .10 .74
				01467193 ·	– Cooper R	iver below	Federal	Street, a	it Camden	, N.J.			
May 20 Sep 3 Nov 14		1	320 300 230	Outgoing do do	8.1	304 \ 336 317	7.2 7.3 7.2	6.9 6.7 8.2	60 68 66	73 83 81	.76 .96 1.2	.40 .40 .03	.13 .13 .01
			01467	200 - Delawa	are River	at Benjami	n Frankl:	in Bridge,	at Phil	adelphia,	Pa.		
May 23 Sep 3 Nov 25		1	400 220 320	Outgoing do Incoming	7.5	206 331 305	7.1 6.8 7.3	6.5 14 4.9	42 46 50	5 1 5 6 6 1	1.0 1.6 1.5	• 31 • 00 • 37	.10 .00 .12
				0	1467390 -	Big Timber	Creek at	t Westvill	.e, N.J.				
Nov 14	, 19	80 1	130	Outgoing	8.9	313	6.7	16	42	51	1.8	.00	.00
Nov 14	10	80 1	010	Outgoing	01475160 8,5	- Mantua C 420	reek at E 6.8	Paulsboro, 11	N.J. 36	44	1.7	.00	.00
107 14	, יי	00 1	010			Delaware			-			.00	.00
May 22 Sep 3 Nov 26	;	1	100 120 045	Outgoing do do	 8.0	25 4 7 49 45 9	7.1 6.8 7.1	6.1 13 7.8	35 42 50	43 51 61	.03 2.4 1.8	·37 .00 .15	.12 .00 .05
				i	01477160 -	Raccoon C	reek at l	Bridgeport	, N.J.				
May 23 Sep 3 Nov 17	3	1	130 020 405	Outgoing do do	 5.9	22 8 1 48 1 09 1	7.5 7.2 7.0	2.0 5.7 8.0	34 46 41	42 56 50	1.4 2.5 2.4	.21 .06 .03	.07 .02 .01
					01477600 -	Oldmans C	reek at I	Nortonvill	e, N.J.				
Nov 17	7, 19	80 1	250	Outgoing	5.9	1970	6.9	8.1	33	40	2.5	.00	.00
				82100 - Dela				_					
May 22 Sep 3 Nov 26	3	()855)845 245	Outgoing do Incoming	7.2	413 6800 6060	7.1 7.4 7.7	4.7 3.8 1.9	30 49 50	37 60 61	.42 2.5 2.5	.00	.00

Table 6.--Chemical analyses of selected surface-water sites in the Delaware River estuary.

Table 6.--Chemical analyses of selected surface-water sites in the Delaware River estuary--Continued


		Date	2	Carbon, organic dis- solved (mg/L as C)	Hard- ness (mg/L as CaCO ₃)	Hard- ness, noncar- bonate (mg/L as CaCO ₃)	Calcium dis- solved (mg/L as Ca)	Magne- sium, dis- solved (mg/L as Mg)	Sodium, dis- solved (mg/L as Na)	Sodium ad- sorp- tion ratio	Sodium (percent)	Potas- sium, dis- solved (mg/L as K)	Chlo- ride, dis- solved (mg/L as Cl)
	<u>х</u> ,				014	64560 - De	laware Ri	ver at Fl	orence, N	.J.			
	May Sep Nov	4	1980	6.2 2.8 2.6	62 78 78	1.8 25 28	15 19 20	5.9 7.3 6.9	10 13 15	0.6 .7 .8	26 29	2.4	12 17 17
		-5				464600 - D					_ ,		
	May Sep Nov	4	1980	4.6 2.8 3.6	57 81 78	16 33 28	14 20 20	5.4 7.6 6.9	10 15 15	.6 .8 .8	28	2.6	11 19 20
				J. C		57024 - Ran					2)	L. + L.	20
	May Sep Nov	4	1980	14 3.5 3.6	26 330 41	16 280 25	6.7 19 11	2,2 68 3,3	7.7 16 12	•7 •5 •9	10 36	2.9 3.6	9.4 20 17
					014	67060 - De	laware Ri	ver at Pa	lmyra, N.	J.			
	C	4	1980	5.4 3.6 6.2	56 80 81	19 32 31	14 20 21	5.2 7.3 6.8	10 18 15	- 6 - 9 - 8	32 28	3.2	11 23 21
j ()				. 01	467082 -	Pennsauken	Creek at	Rt 130,	at Cinnam	inson, N	.J.		
	May Sep Nov	4	1980	5.2 3.4 6.0	57 79 86	18 	14 20 24	5.3 7.1 6.3	13 19 40	.8 1.0 2.0	 33 47	3.5 9.8	14 23 50
				014	67193 - 0	ooper Rive	r below F	ederal St	-	Camden,	N.J.		
	May Sep Nov	3	1980	11 7.4 6.1	62 77 70	2 9 4	17 20 19	4.8 6.5 5.3	20 33 23	1.2 1.8 1.3	39 46 39	4.9 6.5 7.9	21 32 30
			0	1467200 -	Delaware	River at	Benjamin	Franklin	Bridge, a	t Philad	elphia, Pa	•	
	May Sep Nov	3	1980	8.5 5.2 4.9	61 92 87	19 46 37	16 23 22	5.1 8.4 7.8	11 25 24	.7 1.2 1.2	27 36 36	2.0 4.0 3.8	13 36 34
					01467	390 - Big	Timber Cr	eek at We	stville,	N.J.			
	Nov	14,	1980	13	75	33	19	6.7	25	1.4	40	5.7	35
	Nov	1 11	1980	9.9	95	75160 - Ma 59	22	9.6	.sboro, N. 41	2.0	47	5.6	64
		,				'5200 - Del						2	•
	May Sep Nov	3	1980	2.5 4.8 5.4	68 130 120	33 88 70	17 27 28	6.1 16 11	15 97 39	.9 4.1 1.7	32 60 41	2.2 7.5 5.2	17 160 68
		2			0147	7160 - Rac	coon Cree	k at Brid	lgeport, N	.J.			
	May Sep Nov	3	1980	6.0 5.9 5.2	69 200 160	35 150 120	18 30 28	5.9 30 21	14 260 160	.8 9.2 6.3	30 72 67	2.2 13 9.8	19 500 250
					0147	7600 - Old	mans Cree	k at Nort	onville,	N.J.			
	Nov	17,	1980	4.0	230	200	34	35	310	10	73	16	420
			0	1482100 -	Delaware	River at	Delaware	Memorial	Bridge, a	t Wilmin	gton, Del.		
· 20. 24.		3	1980	2.8 3.9 5.8	81 550	51 500	$\frac{17}{54}$	9.4 100	52 960	2.8 21	57 78	3.4 41	77 2200 1700

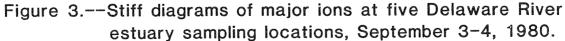

Date	Sulfate dis- solved (mg/L	Silica, dis- solved (mg/L as SiO ₂)	Barium, dis- solved (µg/L as Ba)	Beryl- lium, dis- solved (µg/L as Be)	Cadmium dis- solved (µg/L as Cd)	Cobalt, dis- solved (µg/L as Co)	Copper, dis- solved (µg/L as Cu)	Iron, dis- solved (µg/L as Fe)	Lead, dis- solved (µg/L as Pb)		
	0	1464560	- Delawar	e River a	t Florenc	e, N.J.					
May 21, 1980 Sep 4 Nov 25	28	3.2 1.2 1.6	40 30 30	3 <1 <1	3 <1	<3 <3 <3	<10 <10 <10	100 10 160	<10 <10 <10		
		0146460	00 - Delaw	are River	at Brist	ol, Pa.					
May 21, 1980 Sep 4 Nov 25	30	3.2 .1 1.9	30 30 20	< 1 < 1 < 1	3 1 	<3 <3 <3	< 10 <10 <10	63 8 88	<10 <10	i N	
	0	1467024	- Rancoca	s Creek a	t Bridgeb	oro, N.J.					
May 20, 1980 Sep 4 Nov 14		5.2 .3 7.7	40 30 30	< 1 < 1 < 1	<1 <1 <1	<3 <3 <3	15 <10 <10	1300 56 57	<10 <10 <10		
		01467060) <mark>-</mark> Delawa	re River	at Palmyr	a, N.J.					
May 20, 1980 Sep 4 Nov 25	37	3.9 .1 2.9	40 30 40	< 1 < 1 < 1	2	. <3 <3 <3	12 <10 <10	81 21 66	<10 <10 <10		
	01467082	- Penns	sauken Cre	ek at Rt	130, at C	innaminsc	on, N.J.				
May 20, 1980 Sep 4 Nov 14	26 33 41 1	4.0 •7 2	30 30 30	<1 <1 <1	3 1 2	<3 <3 <3	18 10 16	96 29 33	<10 <10 <10		
	01467193	- Cooper	r River be	low Feder	al Street	, at Came	en, N.J.				
May 23, 1980 Sep 3 Nov 14		7.5 4.6 0	40 30 30	<1 2 1	<1 1 1	< 3 <3 <3	< 10 <10 <10	130 110 85	<10 <10		
014672	200 - Delaw	are Rive	er at Benj	amin Fran	klin Brid	lge, at Pr	iladelphi	a, Pa.			
May 23, 1980 Sep 3 Nov 25	53	3.2 .4 3.6	30 40 30	< 1 < 1 < 1	<1 2 	< 3 < 3 < 3	< 10 <1 0 < 10	58 55 78	<10 <10 <10		
	01	467390 ·	- Big Timb	er Creek	at Westvi	lle, N.J.					
Nov 14, 1980	45	5.8	30	1	< 1	<3	< 10	4 O	<10		
		01475160) <mark>-</mark> Mantua	Creek at	Paulsbor	•o, N.J.					
Nov 14, 1980	54	3.9	40	1	<1	< 3	< 10	89	<10		
	0	1475200	- Delawar	e River a	t Paulsbo	pro, N.J.					
May 22, 1980 Sep 3 Nov 26	8 1	2.5 .5 3.2	30 40 30	< 1 < 1 < 1	< 1 1 	< 3 < 3 < 3	<10 <10 <10	64 18 54	<10 <10 <10		
	0	1477160	- Raccoon	Creek at	Bridgepo	ort, N.J.					
May 23, 1980 Sep 3 Nov 17	36 110 89	.2 .3 4.0	30 40 40	<1 <1 <1	<1 2 1	< 3 < 3 < 3	< 10 <1 0 < 10	88 13 55	<10 <10		
	0	1477600	- Oldmans	Creek at	Nortonvi	ille, N.J.					
Nov 17, 1980	110	3.4	50	< 1	4	<3	< 10	47	< 10		
014821	100 - Delaw	are Rive	er at Dela	ware Memo	orial Brid	lge, at Wi	lmington,	Del.			
May 22, 1980 Sep 3 Nov 26	41 390 320	.2	30 40	< 1 < 1	< 1	< 3 < 3	< 10 10	28 	 15		

Table 6.--Chemical analyses of selected surface-water sites in the Delaware River estuary--Continued

	Da	ite	Manga- nese, dis- solved (µg/L as Mn)	Molyb- denum, dis- solved (µg/L as Mo)	Stron- tium, dis- solved (µg/L as Sr)	Vana- dium, dis- solved (µg/L as V)	Zinc, dis- solved (µg/L as Zn)	Lithium dis- solved (ug/L as Li)	Solids, residue at 180 deg. C dis- solved (mg/L)	Solids, sum of constit- uents, dis- solved (mg/L)	Solids, dis- solved (tons per ac-ft)
		. •		014	164560 - I	Delaware H	River at	Florence,	N.J.		
May Sep Nov	4	1980	46 22 83	<10 <10 <10	65 87 78	<6.0 <6.0 <6.0	21 <4 33	<4 <4 4	119 146 491	106 126 132	0.16 .20 .67
				0	1464600 -	Delaware	River at	Bristol,	Pa.		
May Sep Nov	4	1980	27 11 94	18 <10 <10	63 90 79	<6.0 <6.0 <6.0	18 <4 20	<4 <4 <4	110 147 140	99 130 138	.15 .20 .19
				0140	57024 - Ra	ancocas Cr	reek at E	Bridgebord	, N.J.		
May Sep Nov	4	1980	71 4 47	<10 <10 <10	39 91 64	<6.0 <6.0 <6.0	34 <4 6	< 4 < 4 4	72 150 107	61 192 102	.10 .20 .15
				01	467060 - 1	Delaware I	River at	Palmyra,	N.J.		
May Sep Nov	4	1980	25 20 37	<10 <10 <10	63 97 86	<6.0 <6.0 <6.0	14 5 12	<4 <4 5	112 162 147	98 145 144	.15 .22 .20
			0	467082 -	Pennsauke	en Creek a	at Rt 130), at Cinr	aminson,	N.J.	
1ay Sep Nov	4	1980	41 23 120	<10 <10 <10	80 110 280	<6.0 <6.0 <6.0	10 5 14	<4 <4 12	117 170 256	108 149 243	.16 .23 .35
			014	167193 -	Cooper Riv	ver below	Federal	Street, a	it Camden,	, N.J.	
May Sep Nov	3	1980	81 68 77	<10 <10 <10	170 190 250	<6.0 <6.0 <6.0	14 <4 7	7 5 6	160 210 184	146 191 179	.22 .29 .25
			01467200 ·	- Delawar	e River a	t Benjamiı	n Frankli	in Bridge,	at Phila	adelphia, 1	Pa.
May Sep Nov	3	1980	33 110 98	21 <10 <10	72 110 98	<6.0 <6.0 <6.0	15 <4 19	< 4 4 4	117 190 185	106 185 181	.16 .26 .25
				0146	7390 - Bi	g Timber	Creek at	Westville	e, N.J.		
lov	14,	1980	110	<10	120	<6.0	14	5	194	176	.26
								aulsboro,			
vov	14,	1980	140	<10	110 75200 D	<6.0	14 ivor st 1	6 Pauleboro	251 N 1	230	.34
Sep	3	1980	50 120	12 <10	83 180	<6.0 <6.0	19 <4	Paulsboro 4 7	141 454	121 425	.19
Nov	20		190	<10	140 77160 - B	<6.0	32	5 ridgeport	283 N.I	264	.38
Mav	23.	1980	52	<10	82	<6.0	14	6	134	123	.18
Sep	3		84 190	<10 <10	270 190	<6.0 <6.0	<4 7	11 8 ortonville	874 591	982 598	1.19 .80
Vov	17.	1980	320	<10	300 - 0	<6.0		11		960	1.44
	,		01482100								
		1980	25	29	99	<6.0	13	6	250	220	.34
Sep Nov			120	<10	760	11	21	-6	3320	3220	4.52

Table 6.--Chemical analyses of selected surface-water sites in the Delaware River estuary--Continued

in the Delaware River at Delaware Memorial Bridge at Wilmington, Del. These analyses are not represented in figure 3, however, because no cation concentrations were recorded for this site in September.

The maximum dissolved iron concentration (1,300 $\mu g/L$) was recorded at Rancocas Creek at Bridgeboro, N.J., in May 1980. The median concentration for dissolved iron was 57 $\mu g/L$.

Table 7 shows the analyses of volatile organic compounds in the surface water. Benzene, toluene, cyclohexanes, trichloroethylene, and tetrachloroethylene are the predominant compounds detected in the estuary. Samples contained traces of 1,1-dichloropropane only in September 1980 in the vicinity of Philadelphia. Throughout the study, about 60 percent of the surface-water samples contained at least some measurable amount of volatile organic compounds, at concentrations ranging from 1.0 μ g/L to 12.4 μ g/L for each constituent identified. About 15 percent of all samples contained a 20-50 μ g/L background of undifferentiated hydrocarbons, including cyclohexanes.

In November 1980, samples from 13 sites were analyzed for acid and base/neutral extractable organic compounds. These semiquantitative analyses showed no recoverable concentrations of any acid or base/neutral extractable organic compounds at the 2 μ g/L detection limit. Since these samples represent only one sampling, it is believed that these semiquantitative results may not accurately reflect the actual conditions present in the estuary.

Sediment Quality

Table 8 contains chemical analyses of the surficial bed material at 10 locations, including results for trace metals, organochlorine and organophosphorous insecticides, and PCB's. The maximum concentrations for most constituents were in the first of two samples taken from Raccoon Creek at Bridgeport, N.J. Cadmium, chromium, cobalt, and diazinon were only found in the surficial bed material at this site, while high relative concentrations of copper, lead, and zinc were also found here. Although trace metals were not resampled, significantly lower values for insecticides and PCB's were recorded during a second sampling of Raccoon Creek at a different cross section.

The most common chlorinated organic compounds in the bed material were DDD, DDE, PCB's, DDT, and chlordane. Figures 4 through 6 plot concentrations of DDT and its metabolites, chlordane, and PCB's, respectively, in the bed material of all 10 sites sampled. The bed material at the Delaware River at Palmyra contained the maximum recoverable concentrations of DDT-T and PCB's in the estuary; whereas the minimum concentrations for these constituents were found in the bed material of the Delaware River at Benjamin Franklin Bridge at Philadelphia. The only value Table 7.--Analyses of volatile organic compounds in the surface water of the Delaware River estuary.

N.D. None detected at the minimum detection limit.

S.D. Sample destroyed.

Site identi- fication No.	Date	Time	Compound(s) detected	Concentration (µg/L)
01464560	5-21-80 9-04-80 11-25-80	1240 1515 0940	N.D. N.D. Benzene*	12.0
01464600	5-21-80 9-04-80 11-25-80	1050 1440 1040	Trichloroethylene N.D. *	5.0
01467024	5-20-80 9-04-80 11-14-80	1345 1345 1425	Trichloroethylene N.D. Toluene	5.0 1.0
01467060	5-20-80 9-04-80 11-25-80	1150 1300 1210	Trichloroethylene N.D. *	5.0
01467082	5-20-80 9-04-80 11-14-80	0940 1210 1330	Trichloroethylene N.D. Trichloroethylene Toluene	5.0 2.0 2.0
01467193	5-23-80 9-03-80 11-14-80	1320 1300 1230	Tetrachloroethylene N.D. Toluene	8.0 1.0
01467200	5-23-80 9-03-80 11-25-80	1400 1220 1320	S.D. 1,1-Dichloropropane *	5.0
01467390 01475160	11-14-80 11-14-80	1130 1010	S.D. N.D.	
01475200 01475200	5-22-80 5-22-80 9-03-80 11-26-80	1100 1100 1120 1045	N.D. N.D. 1,1-Dichloropropane S.D.	3.0
01477160	5-23-80 9-03-80 11-17-80	1130 1020 1405	S.D. N.D. Benzene	1.4
01477600	11-17-80	1250	Benzene Toluene	1.5
01482100	5-22-80 9-03-80 11-26-80	0855 0845 1245	S.D. N.D. Toluene*	10.0

* Undifferentiated hydrocarbons including cyclohexanes (approximately 20-50 $\mu\text{g/L}$).

Table 8.--Chemical analyses of surficial bed material in the Delaware River estuary.

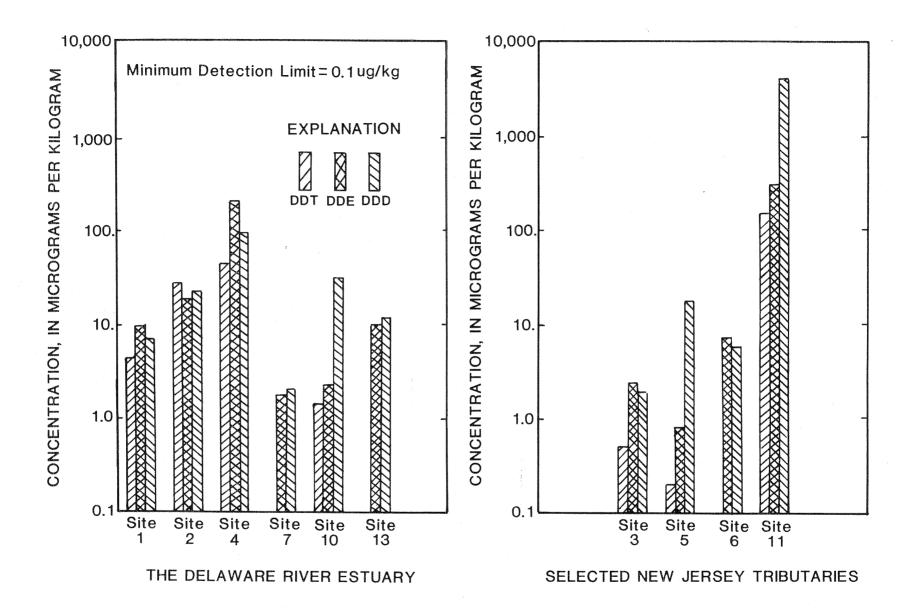
1997) - 1 99 199 1		lana kalikaan	Date	Time	Arsenic total (µg/g as As)	Cadmium recov- erable (µg/g as Cd)	Chro- mium, recov- erable (µg/g)	Cobalt, recov- erable (µg/g as Co)	Copper, recov- erable (µg/g as Cu)	Iron, recov- erable (µg/g as Fe)	Lead, recov- erable (µg/g as Pb)	Manga- nese, recov- erable (µg/g)	Mercury recov- erable (µg/g as Hg)	Zinc, recov- erable (µg/g as Zn)	Sele- nium, total (µg/g)
1	: • •		· · · · · · · · · · · · · · · · · · ·			01	464560 -	Delaware	River at	Florence	e, N.J.				
М	lay	21,	1980	1240	3	<10	30	10	30	39 00 0	60	650	0.00	430	1
						0	1464600 -	Delaware	e River a	t Bristol	., Pa.				
М	lay	21,	1980	1050	0	<10	<10	10	<10	560.0	10	270	.00	110	. 0
						014	67024 - F	ancocas (Creek at	Bridgebor	o, N.J.				
м	lay	20,	1980	1345	0	<10	<10	<10	<10	9500	20	130	.00	55	.0
						0	1467060 -	- Delaware	e River a	t Palmyra	a, N.J.				
м	lav	20.	1980	1150	0	<10	30	<10	70	12000	150	580	.02	530	0
		,				1467082 -									
м	av	20	1980	0940	2	<10	<10	<10	<10	12000	<10	45	.00	12	0
11	ay	20,	1900	0940		467193 -						-	.00	12	0
M	lov.	່	1980	1320	1	<10	<10	<10	<10	2600	40	83	.00	270	0
	ay	20,	1900	1320		- Delawar								210	0
		0.7	1000	1 100				-					.00	250	0
м	ay	23,	1980	1400	1	<10	<10	10	<10	6300	40	820	.00	350	0
S.								Delaware							
М	ay	22,	1980	1100	2	<10	30	30	10	21000	30	710	.00	74	0
						01	477160 -	Raccoon	Creek at		rt, N.J.				
			1980 1981	1 13 0 1 100	4	20	190	50	230	29000	590 	500	.01	2100	0
					01482100) - Delawa	re River	at Delawa	are Memor	ial Bridg	ge, at Wil	lmington,	Del.		
М	ay	22,	1980	0855	4	<10	<10	30	20	23000	60	940	.00	91	0
		D	ate	Aldrin, total (µg/kg)	Lindane total (µg/kg)	Chlor- dane, total (µg/kg)	Mirex, total (µg/kg)	Per- thane (µg/kg)	DDD, total (µg/kg)	DDE, total (µg/kg)	DDT, total (µg/kg)	Diel- drin, total (µg/kg)	Endo- sulfan, total (µg/kg)	Endrin, total (µg/kg)	Ethion, total (µg/kg)
•••						01	464560 -	Delaware	River at	Florence	e. N.J.				
M	av	21.	1980	<0.1	<0.1	4	<0.1	<0.1	7.4	10	4.4	<0.1	<0.1	<0.1	<0.1
		,	1,500					- Delawar							
м		21	1000	<.1	<.1	<1	<.1	<.1	23	14	28	<.1	<.1	<.1	<.1
P1	ау	21,	1980	ו1	×. I			Rancocas							
8,3 ×			4000									1	<i>/</i> 1	1	/ 1
M	lay	20,	1.980	<.1	<.1	2	<.1	<.1	1.9	2.4	•5	. 1	<.1	<.1	<.1
an Car								- Delawar							
M	lay	20,	1980	<.1		21			94		45			<.1	<.1
						01467082 -									
М	lay	20,	1980	<.1		16							.2	<.1	<.1
					0	1467193 -	-					n, N.J.			
М	lay	23,	1980	<.1	<.1	<1	<.1	<.1	5.8	7.4	<.1	<.1	<.1	<٠1	<.1
					01467200	- Delawar	e River	at Benjam	in Frankl	in Bridg	e, at Phi	ladelphia	1, Pa.		
M	lay	23,	1980	<.1	<.1	<1	<.1	<.1	2.1	1.8	<.1	<.1	<.1	<.1	<.1
						0	475200 -	Delaware	River at	Paulsbo	ro, N.J.				
M	1ay	22,	1980	<.1	<.1	5	<.1	<.1	32	23	1.4	• 3	<.1	<.1	<.1
						0.	477160 -	Raccoon	Creek at	Bridgepo	rt, N.J.				
Ą	lay Jan	23, 8,	1980 1981	∝ く.1 く.1	<.1 <.1	190 2	<.1 <.1	<.1 <.1	4000 3.9	300 1.6	150 <.1	10	<.1 <.1	<.1 <.1	<.1
					01482100	- Delawan	re River	at Delawa	re Memori	ial Bridg	e, at Wi	lmington,	Del.		
M	lay	22,	1980	<.1	<.1	7	<.1	<1	12	10	٢.1	<.1	<.1	<.1	<.1
									00						

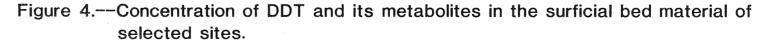
22

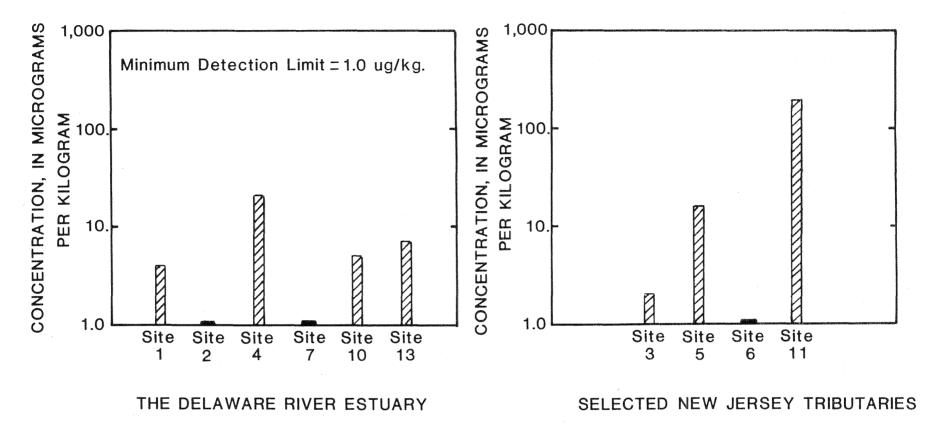
5.

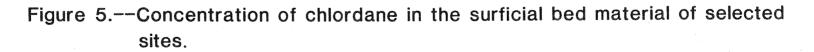
Table 8.--Chemical analyses of surficial bed material in the Delaware River estuary--Continued

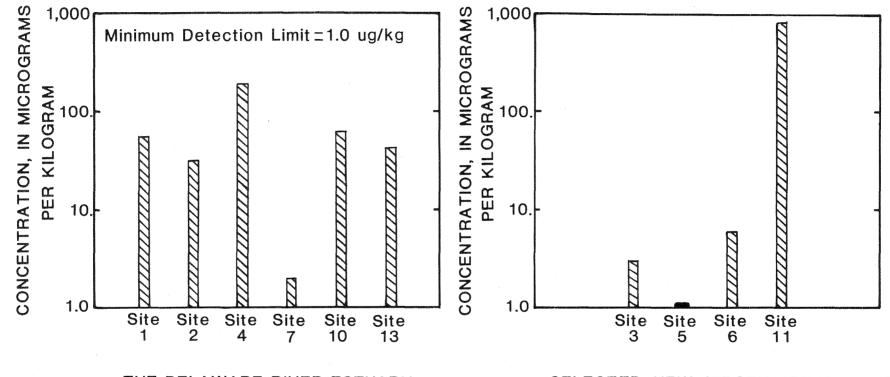
	Date	Toxa- phene, total (µg/kg)	Hepta- chlor, total (µg/kg)	Hepta- chlor epoxide total (µg/kg)	Meth- oxy- chlor, total (µg/kg)	PCB, total (µg/kg)	PCN, total (µg/kg)	Mala- thion, total (µg/kg)	Para- thion, total (µg/kg)	Di- azinon, total (µg/kg)	thion,	Tri- thion, total (µg/kg)	Methy tri- thion total (µg/kg
				0	1464560 -	Delaware	River at	; Florence	e, N.J.				
May	21, 1980	<1	<0.1	<0.1	<0.1	55	<1	<0.1	<0.1	<0.1	<0.1	<10	<0.1
					01464600	- Delawar	e River a	at Bristol	, Pa.				
May	21, 1980	<1	<.1	<.1	<.1	32	<1	۲.1	<.1	<.1	۲.1	<10	٢.1
				01	467024 -	Rancocas	Creek at	Bridgebor	o, N.J.				
May	20, 1980	<1	<.1	<.1	<.1	3	< 1	<.1	<.1	<.1	<.1	<10	<.1
				0	1467060 -	Delaware	River at	; Palmyra,	, N.J.				
May	20, 1980	< 1	<.1	<.1	<.1	190	<1	<.1	<.1	<.1	<.1	<10	۲.1
				01467082	- Pennsau	ken Creek	at Rt 13	30, at Cir	naminson	N.J.			
May	20, 1980	<1	<.1	. 4	<.1	<1	<1	<.1	<.1	<.1	<.1	<10	۲.1
			a	1467193 -	Cooper R	liver belo	w Federal	Street,	at Camder	n, N.J.			
May	23, 1980	<1	<.1	<.1	<.1	6	<1	<.1	<.1	<.1	<.1	<10	<.1
			01467200) - Delawa	re River	at Benja	nin Frankl	lin Bridge	e, at Phi	Ladelphia	, Pa.		
May	23, 1980	<1	<.1	<.1	<.1	2	<1	<.1	<.1	<.1	<.1	<10	<.1
				01	475200 -	Delaware	River at	Paulsborg	o, N.J.				
May	22, 1980	<1	<.1	<.1	<.1	62	<1	۲.1	<.1	<.1	<.1	<10	<.1
				01	477160 -	Raccoon	Creek at H	Bridgeport	t, N.J.				
	23, 1980		<.1	1.6	<.1	830	<1	<.1	<.1	1.6	<.1	<10	۲.1
Jan	8, 1981	<1	<.1	<.1	<.1	11	<1 Mamoni						
	00 1000						are Memori		÷			(10	
мау	22, 1980	<1	<.1	۲.۱	<.1	42	<1	<.1	<.1	<.1	<.1	<10	<.1


recorded in 1980 for perthane was 510 $\mu g/kg$ in the bed material of the Delaware River at Palmyra.


Table 9 separates insecticides detected at one or more locations from those not found at any location. The only organophosphorous insecticide detected in the bed material of the region was diazinon (1.6 μ g/kg), which was found at Raccoon Creek at Bridgeport.


Table 9.--Insecticides for which analyses were done on most surficial bed material samples.


Detected at one or more locations	Not detected at any location
Chlordane DDD DDE DDT Diazinon Dieldrin Endosulfan Heptachlorepoxide Perthane	Aldrin Lindane Endrin Malathion Ethion Toxaphene Heptachlor Mirex Methoxychlor Parathion Methylparathion Trithion


Methyltrithion

THE DELAWARE RIVER ESTUARY

N 0

SELECTED NEW JERSEY TRIBUTARIES

Figure 6--Concentration of PCB's in the surficial bed material of selected sites.

At the Raccoon Creek site, an additional bed material sample was analyzed for the 46 base/neutral extractable organic compounds shown in table 5. The results in table 10 show that, of the 15 constituents identified at trace or greater quantities, nine were polynuclear aromatic hydrocarbons, three were phthalate esters, and three were monocyclic chlorinated aromatics. Oil, grease, and methylbenzene were also found in this sample.

DISCUSSION

In an industrial or agricultural watershed, the potential exists for the transport of toxic substances into the water receiving surface runoff from point and nonpoint sources. Suspended sediments often act as vehicles for the transport of insoluble constituents that eventually accumulate in the surficial bed material of receiving streams (Feltz, 1980). It is not known how rapidly these accumulated constituents may leach into the surface water or migrate with the water recharging nearby aquifers. Certain insoluble organic compounds, such as DDT, are known to bioaccumulate in the tissues of certain aquatic organisms living in contaminated environments (McEwen and Stephenson, 1979).

This report presents a reconnaissance of some characteristic contaminants in the water and sediments of the Delaware River estuary region. Regionally quantifying these contaminants and assessing their impact on the water of the estuary and nearby aquifers will require more intensive study. Marked differences in constituent concentrations exist in the data collected by the U.S. Geological Survey in 1979 (table 11) and the results of this study. Such differences underscore the difficulty in reporting absolute concentrations of contaminants in surficial bed material. As indicated in table 8 by the two analyses of insecticides and PCB's at Raccoon Creek, it seems difficult to select a truly representative cross section capable of producing repeatable results for a single station.

The two cross sections selected for bed material analysis at Raccoon Creek were located within 200 feet of each other. Although the same sampling procedures were employed for each sample, the morphology of the bed at each location was very different. The surficial bed material collected in May 1980 contained more siltaceous material; whereas that collected in January 1981 contained a higher percentage of coarse to very coarse sand and gravel. A partly frozen streambed in January made removal of fine material difficult. The cross section selected in May 1980 was wider than the one selected in January 1981. This allowed for the distribution of the net discharge over a wider cross-sectional area, accounting for lower stream velocities in the wider section. Lower velocities commonly inhibit streambed scour and favor the deposition of finer particles.

Stainken (1979) was able to show that extractable hydrocarbons and percentage of volatile materials increased as the silt-clay content of Raritan Bay sediments increased. Goerlitz Table 10.--Results of a base/neutral extractable organic compound analysis of the surficial bed material at Raccoon Creek at Bridgeport, N.J., January 8, 1981.

Compound name	Compound type	Concentration, in micrograms per kilogram		
1,3-Dichlorobenzene	Monocyclic chlorinated aromatic	Trace ¹		
1,2-Dichlorobenzene	do			
1,2,4-Trichlorobenzene	do	do		
Napthalene	Polynuclear aromatic hydrocarbon	do		
2-Chloronapthalene	do	do		
Acenaphthene	do	nteo anos 🛛 🔿 maio, anos		
Dimethyl phthalate	Phthalate ester			
Fluorene	Polynuclear aromatic hydrocarbon			
Diethyl phthalate	Phthalate ester	aa aa d Oxee aa		
Phenanthrene [not dif- Anthracene ferentiated]	Polynuclear aromatic hydrocarbon do	2.6		
Dibutyl phthalate	Phthalate ester	4.5		
Fluoranthene	Polynuclear aromatic hydrocarbon	Trace ¹		
Pyrene	do	do		
Chrysene	do	Du ²		

 $^{\rm l}$ Trace, less than or equal to 2.0 $\mu g/kg.$

² Du, Interference from hydrocarbon contamination. Sample contains large unspecified amounts of oil, grease, and methylbenzene.

Table 11.--Results of a previous investigation of the surficial bed material in the Delaware River estuary, April 28, 1979.

Source: U.S. Geological Survey, 1980

[Results in micrograms per kilogram]

Site identi- fication No.	Station name	Endo- sulfan, total	PCN, total	Aldrin, total	Lindane total	Chlor- dane, total	DDD, total	DDE, total	DDT, total	Diel- drin, total	Per- thane, total	Endrin, total	Toxa- phene, total	Hepta- chlor, total	Hepta- chlor Epox- ide total	PCB, total	Mirex, total
01464575	Delaware R at PA Tpk Bdg at Edgely, Pa.	<0.1	<1	<0.1	<0.1	31	28	39	3.0	<0.1	12	<0.1	<1	<0.1	<0.1	120	<0.1
01464600	Delaware R at Bristol, Pa.			<.1	<.1	5	3.9	5.2	.5	.2	3	<.1	<1	<.1	<.1	5	
01467060	Delaware R at Palmyra, N.J.	<.1	<1	<.1	<.1	5	510	160	<.1	.4	380	<.1	<1	<.1	<.1	33	<.1
01467200	Delaware R at Benjamin Franklin Br., at Phila., Pa.			<.1	<.1	6	10	30	<.1	3.8	26	<.1	<1	<.1	<.1	380	
01467322	Delaware R at Walt Whitman Br., at Phila., Pa.	<.1	<1	<.1	<.1	89	31	410	7.2	6.4	<.1	<.1	<1	<.1	<.1	410	<.1
01477050	Delaware R at Chester, Pa.			<.1	<.1	90	31	130	120	2.0	× <.1	<.1	<1	<.1	<.1	100	
01482100	Delaware R at DMB, at Wilmington, Del.			<.1	<.1	27	15	35	3.0	1.2	<.1	<.1	<1	<.1	<.1	31	

and Law (1974), however, demonstrated that the abundance of fine particles in various bed material types is not always related to higher concentrations of chlorinated hydrocarbons. Differences in contaminant concentration over time at the same site could also reflect movement of sediments in response to hydrologic events.

Table 12 lists the most recent EPA water quality limiting values and environmental profiles for selected constituents. The constituents listed were found in either the water or bed material of the study area. Since the limiting values shown have been established for water only, comparisons of actual bed material concentrations to these limiting values cannot be made.

Environmental factors influence the rate and magnitude of bed material contaminant migration. These factors include temperature, the extent of bed disturbance from dredging, surface-water velocities, channel geometry, the extent of ground water-surface water interaction, and tidal influences. Physical and chemical factors that affect bed contaminant migration include constituent solubilities, the presence of metabolizing flora or fauna, and the rate and extent of chemical decomposition, including the persistence of any decomposition byproducts.

Despite the poor quantitative comparability between data collected in 1979 and data collected for this report, several qualitative trends are apparent. Throughout both studies, relatively soluble organophosphorous insecticides were virtually absent from the bed material. Chlordane and dieldrin were prevalent in the estuarine bed material in 1979 and 1980. In 1979, perthane was found throughout the bed material of the upper estuary, whereas, in 1980, perthane was detected at the Delaware River at Palmyra.

Concentrations of DDE and DDD in bed material were usually higher than that of DDT in both studies. This relationship would suggest that most of the DDT in the estuary has undergone metabolic changes and persists in the form of breakdown components (Barthel and others, 1966). The use of DDT has been banned in all but the most extreme situations since January 1, 1973, yet DDT and its metabolites still persist in the surficial bed material.

PCB's were prevalent in the bed material samples collected for this study and in 1979. A voluntary ban on the sale of PCB's for open application, such as plasticizers and adhesives, has been in effect since 1970, and the only U.S. manufacturer ceased production in 1977 (National Academy of Sciences, 1979). The presence of PCB's in the 1979 and 1980 samples attests to the known persistence of PCB's in the aquatic environment (Sax, 1974, p. 661).

The significance of the polynuclear aromatic hydrocarbon (PAH) distribution in the bed material of the Raccoon Creek cannot be determined based on one sampling. If more data were available,

Name	Formula	EPA designated limiting value (in H ₂ 0)	Selec tion cri- teria	Remarks
MANDER MINISTER AND AN	n de la construcción en el la construcción de la construcción de la construcción de la construcción de la const	S	electe	d metals
Cadmium	Cd	1 2 4.5 μg/L 59.0 μg/L 10.0 μg/L	A B C D E	Occurs naturally as greenockite (CdS)ore* ² . Cd has multiple industrial uses including electroplating, paint pigments, and in batteries. LD_{50} (oral) ranges from 14 mg/kg for Cd lactate to 660 mg/kg for Cd succinate.* ³
Iron	Fe	300 µg/L 1,000 µg/L	G B	Hematite (red and brown) is the most common iron ore.* ¹ The principal objection to Fe in domestic water supplies is aesthetic.
Manganese	Mn	50 µg/L	G	Important ores of Mn are pyrolusite and manganite.* ² Mn decomposes in water and is used in the manufacture of steel and var- ious alloys.* ⁵
		Select	ed org	anic compounds
Benzene	C ₆ H ₆	5,300 μg/L 5,100 μg/L 0.00 μg/L 6.6 μg/L	B D F	A clear, colorless, volatile liquid with an aromatic odor. Benzene is an important fractional component of fuel oil.* ⁶ Benzene is used as a constituent of motor fuels, and as an intermediate in the manufacture of styrene, cyclohexane, detergents, and pesticides.* ⁷ Benzene is a recognized carcinogen and a cumulative toxin. It is slightly soluble in H_2O (0.8 PPM).* ⁷
Chlordane	C ₁₀ H ₆ Cl _a	0.0043 µg/L 2.4 µg/L 0.0040 µg/L 0.09 µg/L 0.00 µg/L 0.0046 µg/L	A B C D E F	A polycyclic chlorinated hydrocarbon insecticide. Chlordane has been used for over 30 years in termite control * ¹⁰ . Acute LD ₅₀ (oral) is 457-590 mg/kg.* ⁵ Its solubility in water is low (9 PPB).* ⁷
¹ e ^[1.05]	n(hardness)) - 8.53] _{µg/L}		
² e ^[1.05]	n(hardness)) - 3.73] _{µg/L}		

\$

Table 12.--Chemical properties and environmental significance of selected constituents.

Selec-EPA designated tion Name Formula limiting value cri-Remarks $(in H_20)$ teria Selected organic compounds--Continued DDT C14H,Cl5 0.0010 µg/L A&C DDT, and its metabolites DDE $(C_{1,4}H_8Cl_4)$ (Dichloroand DDD (C, H, Cl,) are broad spectrum 1.1 μg/L В D chlorinated hydrocarbon insecticides. diphenvl 0.13 µg/L trichloro-0.00 ug/L E DDD (also known as TDE) is also formuethane) 0.00024 µg/L F lated independently as an insecticide. DDT-T (particularly DDE) is accumulated in body fat.**+*7 Oral LD50 (male rats) for DDT = 113 mg/kg; for DDE = 800 mg/kg; for DDD = $3,400 \text{ mg/kg.*}^3$ DDT and DDE are slightly soluble in H₂O (1.3 PPB). DDD has separate limiting values for the protection of freshwater/saltwater aquatic life of 0.6/3.6 µg/L based on acute toxicity.*1 Dieldrin $C_{1}H_{R}Cl_{0}O$ A&C A cyclodiene chlorinated hydrocarbon 0.0019 µg/L insecticide. Acute oral $LD_{50} = 46$ mg/kg.*⁵+*⁷ Dieldin has a very low 2.5 µg/L В D 0.71 µg/L Е 0.00 µg/L vapor pressure, and is slightly soluble 0.00071 ug/L in water (186 µg/L at 25°C).*1 Dieldrin F is stored in animal fat and is thus subject to biomagnification in the food cycle. Manufacture of dieldrin in the U.S. was suspended in 1974. Endo- $C_{9}H_{6}Cl_{6}O_{3}S$ 0.056 µg/L A cyclodiene chlorinated hydrocarbon А sulfan 0.22 µg/L В insecticide. Acute oral LD₅₀ is 100 $mg/kg.*^{3}+*^{5}$ Endosulfan appears to be С 0.0087 µg/L D particularly damaging to the central 0.034 ug/Lnervous system.*1 It is considered insolu-74.0 µg/L E ble in water.*3 Heptachlor C10H5Cl7 0.0038 µg/L Α Heptachlor and its principal metabolite. 0.52 µg/L В heptachlor epoxide $(C_{10}H_7OCl_7)$ are С polycyclic chlorinated hydrocarbon insecti-0.0036 µg/L 0.053 µg/L D cides. Acute oral LD₅₀ for heptachlor is E 90 mg/kg,*⁵ and for the epoxide it is 46.5 0.00 µg/L mg/kg.*7 Heptachlor is soluble in H₂O at 0.00278 µg/L F about 56 PPB, *7 while the epoxide is soluble in water at about 350 PPB.

Table 12.--Chemical properties and environmental significance of selected constituents--Continued.

		eonst	Luent	scontinued.
Name		PA designated imiting value (in H ₂ O)	Selec tion cri- teria	Remarks
Malabarda an Da'r ynan yn ylarana yn		Selected org	anic c	ompoundsContinued
PCB's (Poly- chlorinate biphenyls)		0.014 µg/L 0.030 µg/L 0.000 µg/L 0.00079 µg/L	A E F	PCB's (Arochlors) are joined by the chlo- rination of diphenyl rings (C_{12}) . Although 209 possible substitutions of chlorine for hydrogen are possible (including all isomers), the industrially significant pro- ducts are those containing 21, 42, 48, 54, and 60 percent chlorine by weight.* ³ Tech- nical PCB can also include such contami- nants as chlorinated napthalenes and chlo- rinated dibenzofurans. PCB's were intro- duced over 45 years ago and are known to be almost chemically inert.* ¹ Their principal vehicle for movement in the environment is believed to be water,* ³ and strong evidence exists for their tendency to accumulate in food chains.* ¹ They are generally low in acute toxicity (LD ₅₀ oral(mice) = 2,000 mg/kg), however they are considered to be quite toxic after chronic long term ex- posure.* ³ PCB's are useful as electrical insulating mediums and as a heat-transfer fluid. The solubilities of PCB's in water vary from 2 to 250 PPB depending on the specific Arochlor.* ³ +* ⁷
PAH's (Poly- nuclear aromatic hydro- carbons)	Compounds containing multiple unsaturated carbon rings	0.00 μg/L 0.028 μg/L	E F	PAH's can be formed in any hydrocarbon com- bustion or decomposition process from a multitude of anthropogenic and natural sources, including forest fires and oil spills. Many PAH's are known to have mutagenic and carcinogenic effects.* ⁹
PCE (Tetra- chloro- ethylene)	Cl ₂ C:CCl ₂	840 μg/L 5,280 μg/L 450 μg/L 10,200 μg/L 0.00 μg/L 8.0 μg/L	A B C D F	PCE is commonly used as a dry cleaning and industrial solvent, as a heat transfer medium and in the manufacture of fluoro- carbons. PCE does not appear to be a cumulative toxin.* ⁷ PCE is considered insoluble in water.* ⁸

Table 12.--Chemical properties and environmental significance of selected constituents--Continued.

Table 12.--Chemical properties and environmental significance of selected constituents--Continued.

Name	Formula	EPA designated limiting value (in H ₂ O)	cri-	Remarks
ningen segmenter en	an an Albert Break and an an an an Albert Albert Albert Albert Albert Albert	Selected org	anic c	ompoundsContinued
Toluene	C ₆ H ₅ CH ₃	17,500 μg/L 5,000 μg/L 6,300 μg/L 14.3 mg/L	B C D E	Toluene is a colorless liquid that is an important fractional component of fuel oil. It is formed in petroleum refining and coal for distillation.*7 Toluene is considered insoluble in water.*7
TCE Trichlo- roethylene	ClCH: CCl ₂	45,000 μg/L 2,000 μg/L 0.00 μg/L 27.0 μg/L	B D F	TCE is a heavy colorless liquid that is principally used as a degreasing solvent. It also is used to decaffeinate coffee and as a dry cleaning agent. ^{*1} Its acute oral LD_{so} is 4,920 mg/kg. ^{*7} TCE is considered slightly soluble in water. ^{*2}
				es are referenced to Sittig (1981). Sittig mental Protection Agency Ambient Water

compiled these values from the U.S. Environmental Protection Agency Ambient Water Quality Criteria Series (1980), and the Health and Environmental Effects Profiles Series (1980).

 LD_{so} (lethal dose, 50 percent). The dose of a substance that is fatal to 50 percent of exposed organisms under test conditions within a specified period of time. A substance having an LD_{so} of less than 50 mg per kg of body weight is regarded by toxicologists as highly toxic.

REFERENCES FOR REMARKS COLUMN:

* 1 * 2 * 3 * 5 * 6 * 7 * 8 * 9 * 10	<pre>Sittig (1981); Hawley (1981); Sax (1974); U.S. Environmental Protection Agency (1976); Windholz and others (1976); Zurcher and Thuer (1978); National Research Council (1977); Weast and Astle (1979); Josephson (1981); Maigton Publishing Compony (1081)</pre>
	Josephson (1981); Meister Publishing Company (1981).

SELECTION CRITERIA: A = to protect freshwater aquatic life - 24 hour average value B = to protect freshwater aquatic life - value not to be exceeded C = to protect saltwater aquatic life - 24 hour average value D = to protect saltwater aquatic life - value not to be exceeded E = preferred limit to protect human health F = this concentration poses an additional lifetime cancer risk of 1 in 100,000

G = maximum level recommended for domestic water supply

the techniques outlined by Lake and others (1979) might be helpful in determining the origins of the PAH's detected.

The volatile organic composition of the water samples varied significantly between sites and between samplings. Trichloroethylene and tetrachloroethylene were among the predominant halogenated organic compounds found in this study, and in a similar surface-water study by EPA in Pennsylvania and Ohio (Dreisch and others, 1980).

Hydrocarbons in the estuary can result from many point and nonpoint sources, including atmospheric deposition. Benzene and toluene are potential decomposition byproducts of petroleum products (Zurcher and Thuer, 1978). Cyclohexane also exists as a component part of crude petroleum (Hawley, 1981, p. 297). It seems that many volatile organic compounds exist in the Delaware River estuary with instantaneous sampling conditions determining what will be found in a sample at any given time, thus making a description of spatial and time distribution impossible at present.

SUMMARY AND CONCLUSIONS

This report presents a reconnaissance of organic and inorganic contaminants in the water and bed material of the Delaware River estuary region. The water and surficial bed material of six Delaware River estuary sites and four tidal *tributaries* in New Jersey were sampled from May 1980 to January 1981. Most water samples were collected during the outgoing (receding) segment of the tidal cycle. The water at three additional tributaries in New Jersey were sampled for organic and inorganic constituents.

The inorganic quality of the water is characterized by increased chloride and sulfate levels in the lower part of the estuary. Sodium was the predominate cation in the lower estuary, whereas calcium predominated upstream from Philadelphia. Moderate amounts of manganese were recorded throughout the region.

No single volatile organic compound persisted in the water of the estuary during the study. Benzene, toluene, 1,1dichloropropane, tetrachloroethylene, and trichloroethylene were found at various times and locations at concentrations ranging from 1 to 12 μ g/L. Undifferentiated hydrocarbons, including cyclohexane, were found in the Delaware River estuary at concentrations ranging from 20 to 50 μ g/L.

No measureable amounts of acid extractable or base/neutral extractable organic compounds were found in the water at any site. Trace quantities of 15 base/neutral extractable organic substances, in addition to toluene and oil and grease, were found in the surficial bed material at Raccoon Creek. These compounds included nine polynuclear aromatics, three phthalate esters, and three chlorinated benzenes.

35

The surficial bed material of the region was generally low in trace metals, except at Raccoon Creek at Bridgeport and Delaware River at Palmyra. The bed material of Raccoon Creek in May 1980 contained high concentrations of cadmium (20 μ g/g), chromium (190 μ g/g), cobalt (50 μ g/g), copper (230 μ g/g), lead (590 μ g/g), and zinc (2,100 μ g/g). The Delaware River at Palmyra had high concentrations of copper (70 μ g/g), lead (150 μ g/g), and zinc (530 μ g/g) in the bed material.

At most of the locations, the surficial bed material contained measurable concentrations of DDD, DDE, PCB, DDT, and chlordane. Only the bed material at Delaware River at Palmyra contained perthane (510 μ g/kg). The only organophosphorous insecticide detected in the bed material of the region was diazinon (1.6 μ g/kg) at Raccoon Creek at Bridgeport.

SUGGESTIONS FOR FURTHER STUDY

Factors not quantified in this study, but considered necessary for a comprehensive assessment of water and bed material contamination in the estuary include: (1) regional base/neutral extractable organic analyses of the surficial bed material to assist in identifying sources of industrial organic waste; (2) extensive bed material analyses for trace metals and hydrophobic organic substances, including organochlorine pesticides and PCB's, particularly along the tidal Raccoon Creek (including core analy-ses of the bed at selected locations for possible contaminants buried beneath surficial sediments); (3) further assessment of the occurrence and distribution of volatile organic compounds, including a study of their fate and significance in surface-water systems; (4) analysis of the mobilization of low-solubility metals and organic substances from the bed material into nearby ground and surface water; and (5) evaluation of current and proposed deposition sites for channel dredged spoils, to determine the potential for leachate contamination into hydraulically-connected aquifers and streams.

Accumulation in the bottom sediments may afford the only opportunity for detection of insoluble substances in many surfacewater systems, apart from water analyses performed at or near known sources of contamination. Analyses for hydrophyllic substances, such as acid extractable organic compounds, should be restricted to water samples. These substances have high aqueous solubilities, making their long term retention in sediments unlikely (Lewis Lowe, oral communication, 1981).

SELECTED REFERENCES

Barksdale, H. C., Greenman, D. W., Lang, S. M., Hilton, G. S., and Outlaw, D. E., 1958, Ground-water resources in the tri-state region adjacent to the lower Delaware River: New Jersey Department of Conservation and Economic Development Special Report 13, 190 p.

- Barthel, W. F., Parsons, D. A., McDowell, L. L., and Grissinger, E. H., 1966, Surface hydrology and pesticides: Soil Science Society of America, Inc., American Soil Association Special Publication no. 8, 150 p.
- Beetem, W. A., Friedman, L. C., Perryman, G. R., and Watterson, C. A. (eds.), 1980, 1981 Water Quality Laboratory Services Catalog: U.S. Geological Survey Open-File Report 80-1279, p. 2.6.1 - 2.6.10.
- Cohen, Bernard, and McCarthy, L. T., Jr., 1962, Salinity of the Delaware Estuary: U.S. Geological Survey Water-Supply Paper 1586-B, 47 p.
- Delaware River Basin Commission, 1975, Industrial Discharge Inventory: West Trenton, N.J., 5 p.

1981, The Delaware River basin comprehensive (Level B) study: West Trenton, N.J., 140 p.

Delaware Valley Regional Planning Commission, 1977, Ground water quality problems: Delaware Valley Regional Planning Commission 208 Study, 39 p.

_____1979, Year 2000 land use and open space plan: Philadelphia, Pa. 104 p.

- Dreisch, F. A., Gower, Marilyn, and Manson, T. O., 1980, Survey of the Huntington and Philadelphia river water supplies for purgeable organic contaminants: U.S. Environmental Protection Agency Region III, Report No. EPA-903/9-81-003, 14 p.
- Feltz, H. R., 1980, Significance of bottom material data in evaluating water quality, in Baker, R. A., ed., Contaminants and Sediments, Volume 1: Ann Arbor Science Publishers, Inc., p. 271-287.
- Garbarino, J. R., and Taylor, H. E., 1979, An inductive-coupled plasma atomic emission spectrometric method for routine water quality testing: Applied Spectroscopy, v. 33, no. 3, p. 220-226.
- Goerlitz, D. F., and Brown, Eugene, 1972, Methods for analysis of organic substances in water: U.S. Geological Survey Techniques of Water-Resources Investigations, Book 5, Chapter A3, 40 p.
- Goerlitz, D. F., and Law, L. M., 1974, Distribution of chlorinated hydrocarbons in stream-bottom material: U.S. Geological Survey Journal of Research, v. 2, no. 5, p. 541-543.

- Greenman, D. W., Rima, D. R., Lockwood, W. N., and Meisler, Harold, 1961, Ground-water resources of the Coastal Plain of southeastern Pennsylvania: Pennsylvania Geological Survey Bulletin W-13, 375 p.
- Guy, H. P., and Norman, V. W., 1970, Field methods for measurement of fluvial sediment: U.S. Geological Survey Techniques of Water-Resources Investigations, Book 3, Chapter C2, 59 p.
- Harleman, D. R. F., and Lee, C. H., 1969, The computation of tides and currents in estuaries and canals: Committee of Tidal Hydrology, U.S. Army Corps of Engineers, Technical Bulletin No. 16, 264 p.
- Hawley, G. G., 1981, The condensed chemical dictionary: New York, Van Nostrand Reinhold Co., 1135 p.
- Hem, J. D., 1970, Study and interpretation of the chemical characteristics of natural water, [2d ed.]: U.S. Geological Survey Water-Supply Paper 1473, 363 p.
- Josephson, Julian, 1981, Polynuclear aromatic hydrocarbons: Environmental Science and Technology, v. 15, no. 1, p. 20-22.
- Keighton, W. B., 1966, Fresh-water discharge-salinity relations in the tidal Delaware River: U.S. Geological Survey Water-Supply Paper 1586-G, 16 p.
- Keith, L. H., and Telliard, W. A., 1979, Priority Pollutants I a perspective view: Environmental Science and Technology, v. 13, no. 4, p. 416-423.
- Lake, J. L., Norwood, Curtis, Dimock, Crandall, and Bowen, Robert, 1979, Origins of polycyclic aromatic hydrocarbons in estuarine sediments: Geochimica et Cosmochimica, v. 43, p. 1847-1854.
- Luzier, J. E., 1980, Digital-simulation and projection of head changes in the Potomac-Raritan-Magothy aquifer system, Coastal Plain, New Jersey: U.S. Geological Survey Water-Resources Investigations 80-11, 72 p.
- Mansue, L. J., and Commings, A. B., 1974, Sediment transport by streams draining into the Delaware Estuary: U.S. Geological Survey Water-Supply Paper 1532-H, 18 p.
- McCartney, David, and Beamer, N. H., 1964, The complexity of water quality in the Delaware Estuary: American Institute of Chemical Engineers preprint 18b, 23 p.

- McEwen, F. L., and Stephenson, G. R., 1979, The use and significance of pesticides in the environment: New York, John Wiley and Sons, p. 453-465.
- Meister Publishing Company, 1981, Farm Chemicals Handbook: Willoughby, Oh., 655 p.
- Miller, E. G., 1962, Observations of tidal flow in the Delaware River: U.S. Geological Survey Water-Supply Paper 1586-C, 26 p.
- National Academy of Sciences, 1979, Polychlorinated biphenyls: Committee on the Assessment of Polychlorinated Biphenyls in the Environment, Environmental Studies Board, Commission on Natural Resources, Washington, D.C., National Academy of Sciences, 182 p.
- National Research Council, 1977, Drinking water and health: National Academy of Sciences, 939 p.
- Owens, J. P., and Minard, J. P., 1979, Upper Cenozoic sediments of the lower Delaware Valley and the northern Delaware Peninsula, New Jersey, Pennsylvania, Delaware, and Maryland: U.S. Geological Survey Professional Paper 1067-D, 47 p.
- Parker, G. G., Hely, A. G., Keighton, W. B., Olmsted, F. H., and others, 1964, Water resources of the Delaware River basin: U.S. Geological Survey Professional Paper 381, 200 p.
- Powell, S. T., Consulting Engineers, Baltimore, Maryland, and Legette and Brashears, Consulting Ground-Water Geologists, New York, 1954, Report on the effect of ship channel enlargement above Philadelphia: Report prepared for The Committee for Study of the Delaware River, Appendix A2-1.
- Rhodehamel, E. C., 1970, A hydrologic analysis of the New Jersey Pine Barrens region: New Jersey Department of Environmental Protection, Division of Water Resources, Water Resources Circular 22, 35 p.
- Sax, N. I. (ed.), 1974, Industrial Pollution: New York, Van Nostrand Reinhold Co., 702 p.
- Scheier, Arthur, and Kiry, Paul, 1973, A discussion of the effects of certain potential toxicants on fish and shellfish in the upper Delaware Estuary: The Philadelphia Academy of Natural Sciences, 54 p.

- Sheldon, L. S., and Hites, R. A., 1978, Organic Compounds in the Delaware River: Environmental Science and Technology, v. 12, no. 10, p. 1188-1194.
 - 1979, Sources and movement of organic chemicals in the Delaware River: Environmental Science and Technology, v. 13, no. 5, p. 574-579.
- Sittig, Marshall, 1981, Handbook of toxic and hazardous chemicals: Noyes Publications, 729 p.
- Skougstad, N. W., Fishman, M. J., Friedman, L. C., Erdmann, D. E., and Duncan, S. S., 1979, Methods for determination of inorganic substances in water and fluvial sediments: U.S. Geological Survey Techniques of Water-Resources Investigations, Book 5, Chapter A1, 626 p.
- Stainken, Dennis, 1979, Occurrence of extractable hydrocarbons in sediments from Raritan Bay, New Jersey: Bulletin of the New Jersey Academy of Science, v. 24, no. 1, p. 6-11.
- U.S. Environmental Protection Agency, 1977, Quality Criteria for Water: U.S. Government Printing Office, Washington, D.C., 256 p.
 - 1979a, EPA Method 624-Purgeables: Federal Register, v. 44, no. 233, p. 69532-69539.

1979b, EPA Method 625-Base/neutrals, Acids, and Pesticides: Federal Register, v. 44, no. 233, p. 69540-69552.

U.S. Geological Survey, 1952, Index of water resources records in the Delaware River basin to September 30, 1951: U.S. Geological Survey Circular 190, 19 p.

1980, Water Resouces Data for Pennsylvania, Volume 1, Delaware River basin: U.S. Geological Survey Water-Data Report, PA-79-1, 277 p.

- U.S. National Oceanic and Atmospheric Administration, 1973, Monthly normals of temperature, precipitation, and heating and cooling degree days 1941-1970 (New Jersey): National Climatic Center, Climatography of the United States No. 81, Asheville, North Carolina.
- Vowinkel, E. F., and Foster, W. K., 1981, Hydrogeologic conditions in the Coastal Plain of New Jersey: U.S. Geological Survey Open-File Report 81-405, 39 p.

- Weast, R. C., and Astle, M. J. (eds.), 1979, Handbook of chemistry and physics: Boca Raton, Fla., Chemical Rubber Co., 2447 p.
- Weil, C. B., 1977, Sediments, structural framework, and evolution of Delaware Bay, a transgressive estuarine delta: The Delaware Sea Grant College Program, College of Marine Studies, University of Delaware, 199 p.
- Willard, Bradford, 1962, Pennsylvania geology summarized: Pennsylvania Department of Environmental Resources Educational Series No. 4, 17 p.
- Windholz, Martha, Budavari, Susan, Stroumtsos, L. Y., and Fertig, M. N. (eds.), 1976, The Merck Index, Ninth Edition: Rahway, N.J., Merck and Company, Inc., 1937 p.
- Zurcher, Fritz, and Thuer, Markus, 1978, Rapid weathering processes of fuel oil in natural waters: Analyses and interpretations: Environmental Science and Technology, v. 12, no. 7, p. 838-843.

☆ U.S. GOVERNMENT PRINTING OFFICE: 1982 – 509-045/23