
Justin S. Gray, Kenneth T. Moore, Tristan A. Hearn, and Bret A. Naylor
Glenn Research Center, Cleveland, Ohio

A Standard Platform for Testing and Comparison
of MDAO Architectures

NASA/TM—2012-217652

August 2012

AIAA–2012–1586

NASA STI Program . . . in Profi le

Since its founding, NASA has been dedicated to the
advancement of aeronautics and space science. The
NASA Scientifi c and Technical Information (STI)
program plays a key part in helping NASA maintain
this important role.

The NASA STI Program operates under the auspices
of the Agency Chief Information Offi cer. It collects,
organizes, provides for archiving, and disseminates
NASA’s STI. The NASA STI program provides access
to the NASA Aeronautics and Space Database and
its public interface, the NASA Technical Reports
Server, thus providing one of the largest collections
of aeronautical and space science STI in the world.
Results are published in both non-NASA channels
and by NASA in the NASA STI Report Series, which
includes the following report types:

• TECHNICAL PUBLICATION. Reports of

completed research or a major signifi cant phase
of research that present the results of NASA
programs and include extensive data or theoretical
analysis. Includes compilations of signifi cant
scientifi c and technical data and information
deemed to be of continuing reference value.
NASA counterpart of peer-reviewed formal
professional papers but has less stringent
limitations on manuscript length and extent of
graphic presentations.

• TECHNICAL MEMORANDUM. Scientifi c

and technical fi ndings that are preliminary or
of specialized interest, e.g., quick release
reports, working papers, and bibliographies that
contain minimal annotation. Does not contain
extensive analysis.

• CONTRACTOR REPORT. Scientifi c and

technical fi ndings by NASA-sponsored
contractors and grantees.

• CONFERENCE PUBLICATION. Collected
papers from scientifi c and technical
conferences, symposia, seminars, or other
meetings sponsored or cosponsored by NASA.

• SPECIAL PUBLICATION. Scientifi c,

technical, or historical information from
NASA programs, projects, and missions, often
concerned with subjects having substantial
public interest.

• TECHNICAL TRANSLATION. English-

language translations of foreign scientifi c and
technical material pertinent to NASA’s mission.

Specialized services also include creating custom
thesauri, building customized databases, organizing
and publishing research results.

For more information about the NASA STI
program, see the following:

• Access the NASA STI program home page at
http://www.sti.nasa.gov

• E-mail your question to help@sti.nasa.gov

• Fax your question to the NASA STI

Information Desk at 443–757–5803

• Phone the NASA STI Information Desk at
 443–757–5802

• Write to:

 STI Information Desk
 NASA Center for AeroSpace Information
 7115 Standard Drive
 Hanover, MD 21076–1320

Justin S. Gray, Kenneth T. Moore, Tristan A. Hearn, and Bret A. Naylor
Glenn Research Center, Cleveland, Ohio

A Standard Platform for Testing and Comparison
of MDAO Architectures

NASA/TM—2012-217652

August 2012

AIAA–2012–1586

National Aeronautics and
Space Administration

Glenn Research Center
Cleveland, Ohio 44135

Prepared for the
53rd Structures, Structural Dynamics, and Materials (SDM) Conference
cosponsored by AIAA, ASME, ASCE, AHS, and ASC
Honolulu, Hawaii, April 23–26, 2012

Available from

NASA Center for Aerospace Information
7115 Standard Drive
Hanover, MD 21076–1320

National Technical Information Service
5301 Shawnee Road

Alexandria, VA 22312

Available electronically at http://www.sti.nasa.gov

Trade names and trademarks are used in this report for identifi cation
only. Their usage does not constitute an offi cial endorsement,
either expressed or implied, by the National Aeronautics and

Space Administration.

This work was sponsored by the Fundamental Aeronautics Program
at the NASA Glenn Research Center.

Level of Review: This material has been technically reviewed by technical management.

This report is a formal draft or working
paper, intended to solicit comments and

ideas from a technical peer group.

This report contains preliminary fi ndings,
subject to revision as analysis proceeds.

The Multidisciplinary Design Analysis and Optimization (MDAO) community has de-
veloped a multitude of algorithms and techniques, called architectures, for performing
optimizations on complex engineering systems which involve coupling between multiple
discipline analyses. These architectures seek to efficiently handle optimizations with com-
putationally expensive analyses including multiple disciplines. We propose a new testing
procedure that can provide a quantitative and qualitative means of comparison among
architectures. The proposed test procedure is implemented within the open source frame-
work, OpenMDAO, and comparative results are presented for five well-known architectures:
MDF, IDF, CO, BLISS, and BLISS-2000. We also demonstrate how using open source soft-
ware development methods can allow the MDAO community to submit new problems and
architectures to keep the test suite relevant.

Nomenclature

AAO All At Once

BLISS Bi-Level Integrated Systems Synthesis

CO Collaborative Optimization

COBYLA Constrained Optimization By Linear Approximation

DOE Design of Experiments

IDF Individual Design Feasible

MDA Multidisciplinary Analysis

MDAO Multidisciplinary Design Analysis and Optimization

MDF Multiple Design Feasible

SAND Simultaneous Analysis and Design

SLSQP Sequential Least Squares Quadratic Programming

XDSM Extended Design Structure Matrix

I. Introduction

The ultimate goal of any Multidisciplinary Design Analysis and Optimization (MDAO) architecture is no
different than that of any traditional optimization: to find the best solution possible in a given design space,
subject to all specified constraints. The true challenge that research into MDAO seeks to address, however,
lies in the ever increasing complexity and computational cost of modern engineering design tools. With the
advent of Computational Fluid Dynamics (CFD) and Finite Element Analysis (FEA) a single analysis can
easily take several hours or more to run. Systems analysis frameworks seek to integrate large numbers of
different analysis tools from a wide range of engineering disciplines. Thus, it is increasingly important that
any optimization accounts for the problems associated with modern analyses.

NASA/TM—2012-217652 1

Abstract

A Standard Platform for Testing and Comparison of
MDAO Architectures

Justin S. Gray, Kenneth T. Moore, Tristan A. Hearn, and Bret A. Naylor

National Aeronautics and Space Administration
Glenn Research Center
Cleveland, Ohio 44135

To complicate things further, in many cases, analyses for complex systems can display such significant
interactions between their components that it becomes necessary to model them in a highly coupled manner.
These couplings present an even greater challenge, because system compatibility needs to be maintained at
the same time as minimization of the objective function . Lastly, there is the problem of how to efficiently
handle optimization where the coupled discipline analyses can have dramatically different run times. This
is usually the case when trying to do analysis with coupled high-fidelity and low-fidelity tools.

The MDAO community has developed a number of decomposition-based MDAO optimization algorithms,
called MDAO architectures to help tackle the issues identified above. A large number of MDAO architectures
have been proposed, implemented, and tested on a wide variety of problems. A survey by Martins identified 13
different architectures found in the literature.1 However, having so many architectures makes it difficult for an
engineer to select the appropriate one for an analysis. Traditionally, this selection has been made somewhat
informally, with a tendency to rely on architectures that are already familiar to the researcher.2 However,
a number of efforts have provided comparative results among architectures which could be used to make a
more informed decision.3–5 Hulme and Bloembaum developed a testing system called CASCADE which was
designed to generate lots of optimization test problems, and they used it to compare the performance of the
IDF, MDF and AAO architectures.6 Most recently Martins et al. developed a prototype MDO framework,
πMDO, which was designed specifically to enable the rapid application of MDAO architectures to engineering
problems.7 Tedford and Martins used πMDO to implement a number of architectures and compare their
performance on a set of test problems.8 In their comparison made among IDF, MDF, SAND, CO,and CSSO
it was determined that IDF and SAND were the best performing architectures, but that this result was
specific to the problems they tested. In related work, Marriage and Martins identified a specific problem
where CO outperformed MDF9 due to a specific problem structure where two disciplines were very highly
coupled but the rest were not. Considering these two results together it is clear that architecture performance
is problem dependent. Also, Tedford and Martins acknowledge that their analysis was performed using only
numerical differentiation techniques and that if analytic derivatives were provided for the disciplines, the
results could have been different. Many new architectures have been developed and modifications to existing
architectures, have been proposed but standardized performance benchmarking on these has not yet been
done.

Tedford and Martins’ work compared architecture performance across three different test problems. All
three of these problems were mathematical implementations. Padula et al. proposed a number of different
possible MDAO test problems in the MDAO test suite.10 This work provided problem statements and
some Fortran source files, via a website, for 13 different problems. Some of the problems were not directly
implementable without access to complex analytical models and specialized analysis tools. Other problems
were posed in such a way as to be solved by a specific MDAO architecture and were not general enough to
be used in studies with multiple architectures. Regardless, work on the MDAO Test Suite established the
foundation for a publicly available test suite of problems which the community could use.

So from previous research, we conclude that it is necessary to consider a number of test problems which
exhibit characteristics similar to those expected for the real analyses in order to characterize the performance
of any given architecture. Furthermore, it is possible that different implementations of the same architecture
need to be compared as well.11,12 The work with πMDO established the foundation for a test procedure by
demonstrating that architectures could be automatically applied to a given set of problems. Despite these
efforts, no common testing platform has emerged, and a standard test procedure has not been adopted to
measure the performance of new architectures. Nor has an exhaustive comparison been performed using the
whole range of test problems that have been proposed.

Therefore, we see the following necessary challenges which need to be addressed in order to successfully
develop an effective testing platform.

1. Selecting a common software framework on top of which the MDAO community could develop and
share a testing platform

2. Constructing a large set of MDAO architectures which are implemented as efficiently as possible

3. Compiling a suite of test problems which have properties that simulate a wide range of engineering
analyses and problem scales

4. Ensuring that new test problems and architectures, as well as improvments, can be added into the test
suite by the community

NASA/TM—2012-217652 2

In this work we propose the use of an open source engineering framework, OpenMDAO, as the shared
platform to address all four of these issues. Within OpenMDAO we have implemented some of the most
commonly investigated MDAO architectures and collected a set of test problems from the available literature.
Using an automated test process every problem was optimized using each one of the architectures, and the
results are presented. This collection of architectures and test problems is not intended to compose a
complete test suite. Rather, it serves as an initial test suite that proves the viability of OpenMDAO as a
testing platform. By leveraging open-source software development methods, we show how OpenMDAO will
provide an avenue for community contribution of new test problems and MDAO architectures so that the
test suite can evolve to be more relevant and applicable to engineering problems.

II. Common Software Framework

The OpenMDAO development effort was started by the NASA Subsonic Fixed Wing project under the
Fundamental Aeronautics Program to ensure that NASA has the necessary software framework to make
effective use of MDAO for the examination of unconventional aviation concepts such as the Hybrid Wing
Body aircraft.13,14 It was recognized that an effective MDAO framework needed to have a wide user base
and would require continued collaboration from industry and academia to ensure that new MDAO research
was constantly being utilized. For this reason OpenMDAO was designed from the beginning to be an open
source software development effort.15

OpenMDAO is built on top of the Python programming language16 and is designed to provide full support
for the rapid implementation and application of MDAO architectures. OpenMDAO is designed around a
black-box approach to component analyses.17,18 Analyses are broken down into a number of smaller parts,
and each one is modeled as a black-box with inputs and outputs. The boxes are then strung together to build
the full analysis. OpenMDAO provides four main classes to support this type of functionality: Component,
Driver, Workflow, and Assembly.

Any given engineering problem would be composed of a set of Component and Assembly instances. To
solve a problem a user would arrange a set of Driver and Workflow instances to implement some type of
optimization algorithm or MDAO architecture. A short description of each class is presented below.

A. Fundamental Classes

1. Component Class

A unit of computational work is represented by the Component class in the framework. Component instances
have input and output variables and perform calculations when executed. Figure 1 gives a conceptual view
of what a simple Component looks like.

Figure 1: Conceptual view of a simple component. a, b, and c are all variables.

Some components may be written purely in Python code. Native Python components are very easy to
construct and provide the ability for users to rapidly implement new analysis tools.

Other components may be comprised of a Python wrapper for a code written in another language, such
as Fortran, C, or C++.19 You can also convert a native Python component to a wrapped component using
a small amount of compiled code to handle the most computationally expensive part of calculations to get
some performance improvements. In the OpenMDAO User Guide, a piston engine model is created as a
native Python component. Then that analysis is converted into a compiled executable written in C and

NASA/TM—2012-217652 3

wrapped in Python to make a compiled component. The result of the complied Component is a roughly
800% increase in computation speed.20

2. Driver Class

Drivers are used to perform any iterative task (e.g., optimization, convergence, or design of experiments).
OpenMDAO currently provides a number of drivers in its standard library. It also provides full support for
users to provide new drivers to meet their own needs.

To make it simple to exchange one driver for another in an analysis, it was necessary to establish a uniform
interface, or application programming interface (API), that all drivers could support. Previous research by
Perez et al. focused on developing a single uniform API for all optimizers to utilize.21 OpenMDAO extends
that concept to provide a common API for all drivers.

3. Workflow Class

A Driver instance iterates by executing a set of Component instances repetitively. Drivers are associated with
instances of Workflow that specify which components to execute and the order to execute them. Although
in many cases a workflow contains just basic components, it can also contain other drivers. This allows
nested iterative processes to be created. Nested iterations provides the flexibility needed to build complex
optimization processes defined by MDAO architectures. Components are allowed to show up multiple times
in a single workflow or in multiple parts of a nested workflow. This can be used, for example, to train a
metamodel in one part of a workflow and then optimize it in another.

4. Assembly Class

Instances of the Assembly class contain groups of components and drivers that compose an analysis. Assembly
instances can have their own input and output and, like drivers, can also be included in workflows. This
allows assemblies to be included in models with other components. This capability allows nested models to
be created by having complex simulations contained within an assembly, e.g. a turbine engine simulation in
an Assembly which is used as a component in an aircraft simulation.

B. Problem Formulation

Like traditional optimization problems, MDAO problems can be represented by a fundamental problem
formulation which describes the goals of the optimization. This fundamental formulation is comprised of a
set of six things:

1. Local design variables

2. Global design variables

3. Objective(s)

4. Constraints

5. Coupling variable pairs

6. Analysis components

More formally this formulation can be represented as:

min f(x, y(x))

w.r.t. x

s.t. g(x, y(x)) ≥ 0 (1)

yi(x) = yj(x) for i 6= j

Each coupling variable pair includes both an input to a given component and the output from another
component that must be consistent (i.e. yi(x) = yj(x)) at a converged solution.

NASA/TM—2012-217652 4

It could be argued that there is no real distinction between local and global design variables, because you
can infer that a global exists by the occurrence of the same variable name in multiple disciplines. In theory
this works, but in practice different analysis tools will give different variable names to the same physical
quantity. In the interest of solving this practical issue OpenMDAO requires explicit definition of local design
variables and global design variables

Some of the problem formulations in the literature also include the specification of disciplinary state
variables and residual functions of those state variables. In these cases, disciplinary codes are relying on
external solvers or optimizers to bring them into a self-consistent state (i.e. drive their residuals to zero).
Only the All At Once (AAO) and the Simultaneous Analysis and Design (SAND) architectures directly deal
with state variables and residuals. In all other cases, an additional solver needs to be added to drive the
disciplines to consistency. Since neither AAO or SAND is considered for this work, for the sake of simplicity
we leave state variables and residuals out of the fundamental formulation. We do acknowledge that future
studies may require them though.

1. OptProblem Class

OpenMDAO provides a subclass of Assembly, called OptProblem, which supports the explicit definition of
the above six elements of a problem formulation. An instance of OptProblem includes all the necessary
components, or analysis codes, to perform an optimization, as well as a complete definition of the problem
formulation.

In addition to the information regarding the problem formulation, OptProblem instances also allow for
the specification of the optimal solution. This includes the optimal values for all design variables, coupling
variables, and objectives. The inclusion of this information allows for a direct scoring of the performance of
any MDAO architecture relative to the optimal solution. All the test problems implemented for this work
were written as subclasses of OptProblem in the optproblems section of the OpenMDAO standard library.

2. Architecture Class

An MDAO architecture derives a new problem formulation from the fundamental one. This new problem
formulation is composed of one or more optimization problems which when solved will yield an answer
that also minimizes the fundamental problem formulation. The new formulation, in addition to the existing
design variables, objectives, and constraints, may also have new variables, objectives, and constraints as well.
For example, the top level optimization in CO adds a compatibility constraint to minimize the difference
between the design variables in the sub-optimizations and the targets in the global optimization The goal
of this refactoring is to provide a more effective (e.g. fewer function calls, greater stability, lower objective,
etc.) optimization.

In OpenMDAO the reformulation is implemented by building up a set of drivers and associated work-
flows. For some simple MDAO architectures, this would be fairly straightforward to do. However, in many
situations, the initial setup can be difficult because the reformulated problem looks vastly different from the
original and can have many different steps. To simplify the process, OpenMDAO provides the Architecture
class which defines an automatic process that builds up the new problem formulation based on an inspection
of the problem formulation from a specific Optproblem instance. All of the architectures investigated here
are coded as sub-classes of Architecture in the architectures section of the OpenMDAO standard library.

An Architecture builds up a new problem formulation by instantiating new drivers and then organizing
them with workflows to build an algorithmic representation of the architecture’s mathematical formulation.
In other words, an architecture instance just arranges a specific set of Driver, Component, Assembly and
Workflow instances to represent the decomposed problem. After the process is configured, the users are free
to make modifications to suit their needs. For instance, users could change the optimizer from a Sequential
Quadratic Programming algorithm to Conjugate Gradient algorithm. In some sense it is correct to think
about a specific architecture implementation as defining a recommended or initial configuration. If the
specifics of a problem demand a deviation then the change can be made easily after initial configuration.

Although this kind of flexibility is valuable for real-world problems, from the point of view of a test suite
it is not a realistic approach. For this work, no deviations to the default configuration of any architecture
were made before testing an architecture on any given test problem.

NASA/TM—2012-217652 5

Figure 2: UML class diagram for the OpenMDAO classes that support MDAO architectures.

III. Architectures

The architecture implementations used here are not presented as definitive implementations of each
architecture. While they do follow the formulations spelled out by their creators, their primary purpose is to
demonstrate a wide range of MDAO architecture implementations in OpenMDAO. They serve as templates
for future researchers to work from when building new and improved MDAO architectures. When taken as a
set these architectures demonstrate the flexibility of OpenMDAO and provide examples of the fundamental
elements necessary to create any other MDAO architecture. There are examples of nested workflows, training
of metamodels with a DOE, optimization of metamodels, and convergence loops.

By default of all the architectures in this research used the the SLSQP22 optimizer. Usage of a single
optimizer allowed for the direct comparison of architecture performance. However, for completeness, some
data was also collected using the COBYLA23 optimizer. It should also be noted that in the implementation
of each architecture there are a number of parameters that can be adjusted to fine tune its performance.
Some of these parameters are inherent to the optimizers used in each implementation. Other parameters,
such as the ones in BLISS and BLISS-2000, are fundamental features of the architecture itself. For each
architecture, specific values for these parameters were selected and then held fixed.

Below are descriptions of the process and formulation for each of the 5 architectures implemented. The
notation used to describe the formulations is described in Table 1. The workflows for each architecture are
defined using the Extended Design Structure Matrix (XDSM) notation defined by Lambe and Martins.24 for
all the test problems. XDSM diagrams describe both data flow and process flow, so they provide a complete
description of the algorithm. The thin-black lines in the diagram describe process flow, indicating what
order the blocks get executed in. The thick-grey lines describe the movement of data, with vertical lines
indicating inputs to a given block and horizontal lines indicating outputs. All of the parallelogram blocks
are data-blocks, representing variables. All other blocks represent components or drivers in the analysis.
When any given block is shown stacked up , and has an i in the title (e.g. Analysis i), that indicates that n
such blocks could exist and could be run in parallel if desired. Each step in the process is given a numeric
label (the first step in the process is always 0), which applies to both process both process flow and data
flow. For process flow, the labels are used to indicate loops (e.g. solver loops, optimizations). For example
in Fig. 3 the optimization loop is given the label “0, 3 → 1”. This indicates that starting at 0, you follow

NASA/TM—2012-217652 6

the path through from 1 to 2 to 3 and then step 3 loops back through step 1 until an optimum is reached.
The numeric labels in the data-blocks indicate during which step the data is either input to or output from
the block.

Table 1: Notation for the description of MDAO problem formulations.

Symbol Definition

x Vector of design variables

y Vector of coupling variable responses (outputs from a discipline analysis)

yt Vector of coupling variable targets (inputs to a discipline analysis)

xt Design variable target values, created as extra inputs for certain architectures

f Objective function

g Constraint function

N Number of disciplines

()0 Functions or variables that are shared by more than one discipline (global)

()i Functions or variables that apply only to discipline i (local)

()∗ Functions or variables at their optimal value

(̃) Approximation of a given function or vector of functions

()c Functions or variables related to coupling variables

A. Individual Design Feasible (IDF)

This is one of the simplest architectures. It uses a single optimizer to drive the whole process. To ensure
that the coupled system is consistent, IDF adds one equality constraint per set of coupling variables in the
original formulation. The XDSM for IDF is shown in Fig. 3.

The problem formulation is as follows:

min f0(x, y(x))

w.r.t. x

s.t. g0(x, y(x)) ≥ 0 (2)

gi(x, y(x)) ≥ 0 for i...N

gci (x, y(x)) = yti − yi(x) = 0 for i...N

B. MultiDisciplinary Feasible (MDF)

Like IDF, MDF does not modify the problem formulation at all. The primary distinction is in the handling
of the coupling variables. System coupling is handled by a solver which drives the system to compatibility
for every iteration of the optimizer. In MDF the optimizer never sees anything except a compatible system.
The XDSM formulation for MDF is shown in Fig. 4.

In Fig. 4, the loop 3 → 1 represents the MultiDisciplinary Analysis (MDA). In this implementation
convergence is accomplished using the BroydenSolver in the OpenMDAO standard library. However, that
driver could be replaced with either FixedPointIterator from the standard library or any other solver a user
wished to specify at run time.

min f0(x, y(x))

w.r.t. x

s.t. g0(x, y(x)) ≥ 0 (3)

gi(x, y(x)) ≥ 0 for i...N

NASA/TM—2012-217652 7

x, yt

x∗
0,3→1:

Optimization
1 : x0, xi, y

t
j 6=i 2 : x, yt

y∗i
1:

Analysis i
2 : yi

3 : f, g, gc
2:

Functions

Figure 3: XDSM diagram for IDF

x yt

x∗
0, 5→1:

Optimization
2 : x0, xi 4 : x

1, 3→2:
MDA

2 : ytj 6=i

y∗i 3 : yi
2:

Analysis i
4 : yi

5 : f, g
4:

Functions

Figure 4: XDSM diagram for MDF

NASA/TM—2012-217652 8

C. Collaborative Optimization (CO)

CO decomposes a problem into separate global and local optimizations. One optimizer is used at the global
level, and then one additional optimizer is employed for each individual discipline. Since each discipline is
optimized independently, a number of new target variables must be introduced for each coupling variable at
the global level. Likewise a new constraint must be introduced for each discipline that drives the residual
between the target variable and the real variable to zero. In addition, target variables are created for any
local variables which show up explicitly in the objective function, and their residuals are included in the
respective discipline’s residual constraint. The XDSM for CO is shown in Fig. 5.

In Fig. 5 the loop from 1.3→ 1.1 demonstrates a basic nested optimization loop. This type of workflow
is trivially generated by adding the sub-optimizers to the workflow of the global optimizer in OpenMDAO.

For the global optimization the problem formulation is as follows:

min f0(x0, x
t, yt)

w.r.t. x0, x
t, yt

s.t. g0(x0, x
t, yt) ≥ 0 (4)

g∗i = ||xt0i − x0||22 + ||xti − xi||22+

||yti − yi(x0i, xi, ytj 6=i)||22 = 0 for i...N

For the local optimizations the problem formulation is as follows:

min gi

w.r.t. xt0i, xi (5)

s.t. gi(x
t
0i, xi, yi(x

t
0i, xi, y

t
j 6=i)) ≥ 0

x0, x
t
1···N , yt xt

0i, xi

x∗0

0, 2→1:
System

Optimization
1 : x0, x

t
1···N , yt 1.1 : ytj 6=i 1.2 : x0, x

t
i, y

t

2 : f0, g0

1:
System

Functions

x∗i
1.0, 1.3→1.1:
Optimization i

1.1 : xt
0i, xi 1.2 : xt

0i, xi

y∗i
1.1:

Analysis i
1.2 : yi

2 : J∗i 1.3 : fi, gi, Ji

1.2:
Discipline i
Functions

Figure 5: XDSM diagram for CO

D. Bi-Level Integrated Systems Synthesis (BLISS)

BLISS operates on a series of linear approximations of the actual objective function and constraints. To
get those approximations the architecture can use either a numerical finite difference engine or analytic

NASA/TM—2012-217652 9

derivatives. For the system level problem, sensitivities are only taken with respect to global variables.
Likewise, for the discipline level problem sensitivities are only taken with respect to local design variables
for that specific discipline.

The general process is to generate a linearized approximation of the system, optimize on that and then
generate a new linearized approximation at the optimum point. Target variables are created for all the
design variables, and a fixed-point iteration is used to converge the targets with the design variables. So the
defining feature is that no optimization ever occurs directly on the actual discipline analyses, only on the
approximate models. BLISS uses move limits to constrain the distance the optimization can move during
one iteration. To enforce system compatibility, BLISS uses a solver to perform an MDA for each major
iteration. Hence the coupling variables do not show up in the problem formulation. The XDSM for BLISS
is shown in Fig. 6.

Steps 5 and 8 from Fig. 6 indicate the explicit calculation of discipline and system level sensitivities.
These sensitivities are then used to construct a linearized model which is optimized. To calculate these
sensitivities we used an instance of SensitivityDriver, from the driver section of the OpenMDAO standard
library. This driver is configured with the same parameters, objectives, and constraints as its associated
optimizer/solver in workflow. SensitivityDriver makes use of OpenMDAO’s built in derivative calculation
capabilities in order to automatically calculate the derivatives of all objectives and constraints with respect
to all parameters. If any of the components provide analytic derivatives, those are used automatically instead
of running finite difference calculations.

The problem formulation for the system level is as follows:

min (f∗0)0 +

(
df∗0
dx0

)
(xt0 − x0)

w.r.t. xt0

s.t. (g∗0)0 +

(
dg∗0
dx0

)
(xt0 − x0) ≥ 0 (6)

(g∗i)0 +

(
dg∗i
dx0

)
(xt0 − x0) ≥ 0 for i...N

|xt0 − x0| ≤ ∆x0limit

The discipline level problem formulation is as follows:

min (f0)0 +

(
df0
dxi

)
(xti − xi)

w.r.t. xti

s.t. (g0)0 +

(
dg0
dxi

)
(xti − xi) ≥ 0 (7)

(gi)0 +

(
dgi
dxi

)
(xti − xi) ≥ 0 for i...N

|xti − xi| ≤ ∆xilimit

E. Bi-Level Integrated Systems Synthesis 2000 (BLISS-2000)

BLISS-2000 is a a reformulation of the original BLISS algorithm developed to eliminate the need for calculat-
ing sensitivities on the MDA.25 BLISS-2000 does not perform an MDA at all. It uses an IDF-like formulation
to drive the system level problem, which is run on quadratic response surface approximations of the system.
The disciplines are each then optimized directly with respect to their local variables and constraints. The
XDSM for BLISS-2000 is shown in Fig. 7.

As seen in Fig. 7, in step 5 of the process, a metamodel for each of the i disciplines must be created
based on training data. This data is collected by executing a LatinHypercube Design of Experiments (DOE),
where the number of points executed are governed by Eqn. 8 with n being the number of design variables,
in a neighborhood around the current point.26

n2 + 3n+ 2

2
(8)

NASA/TM—2012-217652 10

To accomplish this, a specific sub-class of DOEdriver was added to the standard library called Neighbor-
hoodDOEdriver. During every major iteration a DOE must be re-run around the current global design point
for each discipline and then a new metamodel must be trained from that data.

For the global optimization the problem formulation is as follows:

min f0(x, ỹ(x, yt))

w.r.t. x0, y
t

s.t. c0(x, ỹ(x, yt)) ≥ 0 (9)

gi = yti − ỹi(x0i, xi, ytj 6=i) = 0 for i...N

For each discipline the problem formulation is as follows:

min
∑

yi

w.r.t. xi (10)

s.t. ci(x0, xi, y(x0, xi, yj 6=i)) ≥ 0 for i...N

yt x0 xi

(no data)
0,2→1,10→1:

MDA
5, 8 : ytj 6=i 5, 8 : ytj 6=i 8 : ytj 6=i 5 : ytj 6=i 1, 4 : ytj 6=i

x∗0

7,9:
System

Optimization
5, 8 : x0 5, 8 : x0 8 : x0 5 : x0 1, 4 : x0

x∗i
3,6:

Optimization i
5, 8 : xi 5, 8 : xi 8 : xi 5 : xi 1, 4 : xi

9 : f0, g0 6 : f0, g0

5,8:
System

Functions

9 : fi, gi 6 : fi, gi

5,8:
Discipline i
Functions

9 : f./x. 0, g./x. 0

8:
Shared
Variable

Derivatives

6 : f./x. i, g./x. i

5:
Discipline i
Variable

Derivatives

y∗i 2 : yi 5, 8 : yi 5, 8 : yi 8 : yi 5 : yi
1,4:

Analysis i

Figure 6: XDSM diagram for BLISS

NASA/TM—2012-217652 11

x
(0)
0 x

(0)
0 , yt,(0), w(0) x

(0)
0 , y

t,(0)
j 6=i , w

(0)
i x

(0)
i

(no data)
0,12→1:

Convergence
Check

x∗0, w∗ 12 : x0

8,11→9:
System

Optimization
10 : x0, y

t 9 : x0, y
t
j 6=i, wi 1 : x0, y

t
j 6=i, wi

11 : f0, g0, g
c

10:
System

Functions

x∗i , y
∗
i 10 : xi, ỹi

6,9
Metamodel i

6 : x0, y
t
j 6=i, wi

1,7→2:
DOE i

4 : x0, wi 3 : x0, y
t
j 6=i

6 : xi
2,5→3:

Optimization i
4 : xi 3 : xi

5 : fi, gi

4:
Discipline i
Functions

6 : yi 4 : yi
3:

Analysis i

Figure 7: XDSM diagram for BLISS-2000

IV. Test Problems

Using a common set of test problem implementations – not just a common set of test problem formulations
– provides two key advantages for researchers. Firstly, it dramatically reduces the time necessary to start
testing new algorithms since no implementation of the test problems is necessary. With only two test
problems, the benefit is somewhat small; however, as the test problem suite grows in size and complexity
the time savings grow with it. Secondly, using the same implementations for the test problems gives a basis
for true apples-to-apples comparison between results. There can be no question of the results on grounds of
differences or problems in the implementations.

This section presents the fundamental problem formulation for the two test problems used for this work.
These problems do not comprise a comprehensive problem set. But they demonstrate the way in which more
complex and realistic problems could be implemented in OpenMDAO with complete problem formulations
and initial conditions being specified. Complete implementation details are not fully described here, but have
been included in the OpenMDAO version 0.2.5 (or later) software distribution. The problems are included
in the optproblems module in the standard library. They are available by downloading the framework.

A. Sellar Problem

This algebraic problem was introduced by Sellar et al. in 1996.27 It has since become a commonly used
test problem for MDAO architectures.28,29 The problem is fairly small, having two disciplines and a limited
number of design variables, but it does provide some behaviors that mimic larger more realistic problems.
Hence it is an ideal test case on which to perform benchmarks. At the very least, the simplicity of Sellar
Problem allows for it to be solved by any effective architecture. The problem formulation is given in Eq. 11
and parameter values for the initial and known optimal solution are given in Table 2.

NASA/TM—2012-217652 12

min x21 + z2 + y1 + e−y2

w.r.t. z1, z2, x1

s.t. 1− y1
3.16

≤ 0

y2
24
− 1 ≤ 0 (11)

− 10 ≤ z1 ≤ 10

0 ≤ z2 ≤ 10

0 ≤ x1 ≤ 10

Table 2: Initial conditions and known optimal solution for the Sellar Problem

Initial Optimal

z1 5.000 1.978

z2 2.000 0.000

x1 1.000 0.000

y1 0.000 3.160

y2 0.000 3.756

objective 31.001 3.183

In addition to the standard version for the Sellar Problem a second version that includes the use of
analytic derivatives was also implemented. The problem formulation remains exactly the same between the
two versions. Derivatives for both y1 and y2 as a function of all inputs were specified, and the framework
automatically makes use of them. This allows for performance comparisons between two identical problems,
where one uses finite differences and the other uses analytic derivatives.

B. Scalable Problem

This problem was introduced by Martins et al. in 2002.29 It provides the ability to change the number
of local design variables, global design variables, disciplines, and the degree of coupling between them to
any size the user desires. The Scalable Problem is designed to allow investigation of how architectures scale
to larger-sized problems without adding too much computational burden. The problem has a quadratic
objective function and linear dependence between the disciplines. The general problem formulation is given
in Eq. (12). Equation (13) gives the governing equation for each discipline, where Cz, Cxi , and Cyj are all
matrices of positive coefficients.

min zT z +
N∑
i

yTi yi

w.r.t. z, x (12)

s.t. 1− yi
Ci
≤ 0, i = 1, ..., N

− 10 ≤ z ≤ 10

− 10 ≤ x ≤ 10

yi(z, xi, yj) = − 1

Cyi

(
Czz + Cxi

xi − Cyj
yj
)

(13)

For this work, the problem was configured with three disciplines, each having three local design variables,
three global design variables, and three output state variable. Each discipline was coupled to the two other
disciplines. Cz and Cxi

, were each defined as 3 × 3 matrices of ones. Cyj
was defined as a 3 × 3 Identity

NASA/TM—2012-217652 13

matrix. The outputs of each discipline, were scaled with appropriate values of Cyi so that at the optimum
solution their values would all be 1. This creates a more complex problem than Sellar with a difficult coupling
challenge. We named this form of the Scalable Problem the Unit Scalable Problem. The initial state and
known optimal state for the Unit Scalable Problem are given in Table 3.

Table 3: Initial conditions and known optimal solution for the Scalable Problem

Initial Optimal

z -1.0 0.000

x -1.0 -0.666

y 0.000 1.000

objective 40.000 3.000

V. Test Results

There are a number of different ways to measure the effectiveness of a given MDAO architecture. The
most obvious way is simply to compare optimal objective value found to the known optimum objective.
Assuming that one architecture finds a lower objective than the other, is it then considered more effective?
The reality of the situation is not that simple. Other relevant pieces of information need to be considered.
For instance, how many function evaluations did each architecture make for the disciplines? Did the lower
objective function value come at a higher computational cost? Along a similar line of reasoning, it might be
important to consider the ability of an architecture to take advantage of parallelization. Different potential
users will want to analyze performance from a number of different metrics, all of which should be calculated
automatically when running the MDAO test suite. To allow for this OpenMDAO has a section of the test
suite where new metrics can be added. As with architectures and test problems, community contribution
can help provide the most complete set of test metrics and ensure that new metrics are added to keep the
measurement set relevant. For this work we considered three different performance metrics:

1. Proximity to known optimal solution

2. Total function evaluations for each discipline

3. Convergence characteristics

A. Proximity to Known Optimal Solution

All optimization test problems in the OpenMDAO framework are required to include a complete specification
of the known optimal solution. To enforce this requirement, OpenMDAO includes a specific test in its unit
test suite which checks the specified solution point against validity. If there is no solution, or if the specified
solution does not match the calculated one, then the test fails. So test problems cannot be added to a
distribution of OpenMDAO without a proper solution specified. The given solution data must include the
expected values for all of the design variables, all of the coupling variables, and the objectives.

The OptProblem class provides a utility method, check solution(), which will compare the current state
of any instance against it’s specified condition. For each combination of architecture and test problem in the
test suite, this method is run and the results reported to the user. The results are reported in terms of an
absolute difference from the specified solution. So if some variable, x, has a solution of 1.0 and the current
solution is at 1.5, then the error reported would be 0.5.

The data in Table 4 shows that all of the architectures solved the Sellar Problem to essentially the exact
solution. MDF was the most accurate, but the deviations are not significant for the other architectures.
This performance substantiates the assertion above that the Sellar Problem can be considered a baseline
test problem that must be solvable by any reasonable architecture.

The performance of the architectures did not change significantly when run on the Sellar Problem with
analytic derivatives. The data in Table 5 shows the results of this test. CO got more accurate with the use
of analytic derivatives, but otherwise the data was effectively the same.

The results from the optimizations on the Scalable Problem are shown in Table 6. Note that the values
reported for the z, x, and y are the maximum error from the known solution from all three disciplines. Each

NASA/TM—2012-217652 14

Table 4: Absolute difference from optmium solution for all architectures solving the Sellar Problem.

z1 z2 x1 y1 y2 Objective

Optimum 1.978 0.000 0.000 3.160 3.756 3.183

IDF 0.006 0.00 0.000 0.039 -0.085 0.039

MDF 0.000 0.000 0.000 -0.001 0.000 0.000

CO -0.001 0.000 0.000 -0.070 -0.025 0.003

BLISS 0.002 0.000 0.000 0.006 0.003 0.006

BLISS-2000 0.003 0.013 0.000 0.066 -0.072 0.050

Table 5: Absolute difference from optimum solution for all architectures solving the Sellar Problem
with analytic derivatives.

z1 z2 x1 y1 y2 Objective

Optimum 1.978 0.000 0.000 3.160 3.756 3.183

IDF 0.000 0.000 0.000 0.001 0.001 0.000

MDF 0.000 0.000 0.000 0.000 0.001 0.000

CO 0.000 0.000 0.011 -0.030 -0.054 0.001

BLISS 0.001 0.000 0.002 0.000 0.000 0.000

BLISS-2000 -0.002 0.000 0.007 0.010 -0.001 0.001

discpline has three gloabal, three local, and three output variables but each group takes the same value at
the optimal solution. Variations in the values each architectures found did occur , but the maximum error
indicates how the maximum deviation from the optimum for each architecture. For the Scalable Problem, not
all of the architectures were able to satisfactorily solve the problem. In particular, BLISS could not converge
on the proper solution and was ineffective. CO also had significant trouble converging to a consistent answer.
Once again MDF provided the deepest convergence and got closest to the true optimum.

Table 6: Maximum distance from the optimum solution for all architectures solving the Scalable
Problem.

z x y Objective

Optimum 0.000 -0.333 1.000 3.000

IDF 0.000 0.000 -0.001 0.000

MDF 0.000 0.000 0.000 0.000

CO 1.721 -3.635 -0.052 5.547

BLISS 10.820 -2.833 -1.830 127.958

BLISS-2000 -0.021 0.030 0.001 0.030

B. Total Function Evaluations

When OpenMDAO executes, it tracks the number of times that all Component instances are executed. This
tally includes any executions made while performing finite difference calculations. This data is presented for
all optimizations at the end of the execution of the test procedure.

The data from the optimizations on the Sellar Problem, listed in Table 7, indicates that IDF uses the
fewest function calls, followed by MDF. BLISS-2000 uses more function evaluations for Discipline 1 than
MDF, but less for Discipline 2. For the Sellar Problem, Discipline 2 does not have any local design variables
so in this case, BLISS-2000 does not need to make any response surface approximations of this discipline
and the system optimizer calls the analysis code directly. The function counts for BLISS-2000 are averages
of 5 test runs, as indicated by the “*”. This was necessary since the response surface approximations are
trained by a randomly generated Latin Hypercube DOE, which is a stochastic process. Hence, the function

NASA/TM—2012-217652 15

counts vary slightly from test to test. For the Sellar Problem, CO and BLISS are by far the most expensive
and represent an order of magnitude higher cost than the other architectures.

Table 7: Function evaluation counts for all architectures solving the Sellar Problem.

Discipline 1 Discipline 2

IDF 60 54

MDF 222 216

CO 5647 8252

BLISS 3344 3130

BLISS-2000* 1007 141

Table 8: Function evaluation counts for all architectures solving the Sellar Problem with analytic
derivatives. Number of derivative evaluations are in parenthesis.

Discipline 1 Discipline 2

IDF 6 (6) 6 (6)

MDF 42 (6) 42 (6)

CO 191 (673) 661 (707)

BLISS 1017 (543) 946 (543)

BLISS-2000* 600 (269) 132 (0)

Table 9: Function evaluation counts for all architectures solving the Scalable Problem.

Discipline 1 Discipline 2 Discipline 3

IDF 80 88 88

MDF 546 541 545

CO 52900 51999 52747

BLISS 7881 8665 6502

BLISS-2000* 2059 2029 1991

For the Sellar Problem with analytic derivatives, the results are somewhat different. In addition to the
number of function evaluations the number of derivative evaluations are also presented in parenthesis, in
Table 8. For some analyses, the cost of the derivative evaluation may be negligible and not worth considering
for the overall computational cost of an optimization. However in some of the modern adjoint methods for
computing analytic derivatives with CFD, the calculation of the adjoint can be as expensive as a function
evaluation. In those cases, the total cost would be better represented by the sum of the function evaluations
and the derivative evaluations. So the data for both function evaluations and derivative calculations are
presented separately.

The data shows that IDF and MDF are still the least expensive options. Both architectures used ap-
proximately half as many function calls when analytic derivatives were provided. CO displayed an order
of magnitude reduction in the number of function calls, while BLISS benefited by a factor of about three.
BLISS-2000 only showed a decrease in the function calls for Discipline 1. Analytic derivatives only assist
in the creation of the response surface equations, when there are local design variables that need to be
optimized for each DOE case. The end result for the Sellar Problem is that when derivatives are present,
BLISS and CO are significantly less expensive and are more competitive with BLISS-2000.

The data for the Scalable Problem is listed in Table 9. This data also shows that IDF is the least
computationally expensive, followed by MDF. However, for this problem BLISS-2000 is in third place, and
similar to the data from the Sellar Problem uses about 4 times as many function evaluations. CO and BLISS
are both significantly more expensive than any of the other three architectures, but given their accuracy
their cost is not really relevant.

NASA/TM—2012-217652 16

C. Convergence Characteristics

Figure 8: Relative error vs iteration # for all architectures run on the Sellar Problem

The convergence behavior for all five architectures was tracked for the two test problems. The data
presented is relative error vs the iteration for the global optimization step of each architecture. The data
for the Sellar Problem, in Fig. 8, indicates a clear convergence trend for the MDF and IDF architectures.
The slow convergence issues that Braun et al. identified for CO30 are clearly visible in the data. BLISS
demonstrate a stepped convergence behavior, where improvements to the objective are made in bursts
followed by periods of stagnation. BLISS-2000 has a difficult time converging and shows a lot of scatter in
the data.

The convergence behavior for the Sellar problem with and without analytic derivatives is considerably
different. The trends with analytic derivatives are shown in in Fig. 9. Both MDF and IDF, with analytic
derivatives, show a clear convergence trend with each iteration showing improvement. BLISS-2000 shows
a similar convergence trend at first but the algorithm appears to loose sensitivity. CO shows a more well
behaved convergence behavior as well. The stepped behavior for BLISS also changes, so that convergence
improves initially and the algorithm stagnates at the end.

NASA/TM—2012-217652 17

Figure 9: Relative error vs iteration # for all architectures run on the Sellar Problem with analytic
derivatives.

Figure 10: Relative error vs iteration # for all architectures run on the Scalable Problem.

NASA/TM—2012-217652 18

In comparison to the convergence trends from the Sellar Problem, the data for the Scalable Problem in
Fig. 10 looks very similar for IDF, MDF, and CO. However BLISS-2000 converges with a clear stepped trend
and BLISS fails to converge to an acceptable solution. The erratic convergence for BLISS in the data gives
some insight into why. The algorithm appears to lose all sensitivity and starts searching wide sections of the
design space near the true optimum. One possible cause of this is a very flat gradient for the Scalable Problem
near the optimum. Since BLISS uses linear approximations for all models, a flat gradient would allow large
movements. BLISS employs move limits, where design variables are constrained to a neighborhood around
their current value, for any one iteration. Our implementation uses fixed move limits, but its possible that
adding some kind of decay into the move limits would help convergence.

D. Optimizer Choice

The “no free lunch” theorem proves that no one optimizer can be the most effective for all problems. By
extension then, it’s impossible to select a single optimizer to use for any given architecture and expect the best
performance for all problems. By making use of the flexibility of OpenMDAO architectures we reconfigured
the architectures to use the COBYLA optimizer instead of SLSQP, but made no other changes to them.
The COBYLA optimizer is a derivative free optimization algorithm which may be useful for problems where
analytic derivatives are not available and finite differencing is not feasible. The results in Table 10 show that
the COBYLA converged well for the Sellar Problem and accuracy was not significantly affected.

Table 10: Absolute difference from optimum solution for all architectures solving the Sellar Problem
using the COBYLA optimizer.

z1 z2 x1 y1 y2 Objective

Optimum 1.978 0.000 0.000 3.160 3.756 3.183

IDF 0.000 0.000 0.000 0.001 0.001 0.000

MDF 0.000 0.000 0.000 0.000 0.000 0.000

CO 0.003 0.000 0.000 -0.026 0.050 -0.001

BLISS 0.000 0.000 0.000 0.001 0.000 0.001

BLISS-2000 0.000 0.000 0.007 0.010 -0.020 0.010

Table 11: Function evaluation counts for all architectures solving the Sellar Problem with the
COBYLA optimizer.

Discipline 1 Discipline 2

IDF 43 42

MDF 179 179

CO 8313 5250

BLISS 2062 1843

BLISS-2000 502 77

Table 11 shows that that the number of function evaluations and hence the computational cost of the
optimizations was reduced for IDF, MDF, and BLISS when using COBYLA compared to the Sellar Problem
with finite differencing. CO and BLISS-2000 showed a negligible change in computational cost.

In Fig. 11 the convergence data is shown for the COBYLA tests. Most of the architectures display a more
noisy convergence path, with the exception of BLISS-2000 which gets less noisy with COBYLA. Despite the
less smooth path COBYLA may be a better choice for problems where analytic derivatives are not available
if you’re using IDF, MDF, or CO.

NASA/TM—2012-217652 19

Figure 11: Relative error vs iteration # for all architectures run on the Sellar Problem with the
COBYLA optimizer. Problem

VI. Community Contribution

There are multiple other existing MDAO architectures which have not yet been implemented in Open-
MDAO, such as Analytical Target Cascading,31,32 Enhanced Collaborative Optimization,28 or Asymmetric
SubOptimization.33 There are also additional test problems which need to be implemented to provide a
stronger basis for comparison of architecture performance. For instance, this study did not include any test
problems which simulated the presence of noise in results or displayed problems with analysis failures. Both
kinds of problems have the potential to strongly impact the performance of MDAO architectures. The code
from the OpenMDAO code base that defines the Sellar Problem is listed in Appendix A. This code shows
that addition of new problems to the framework is strait forward and does not require an excessive knowledge
of the OpenMDAO framework.

OpenMDAO is developed and distributed under the Apache V2.0 open source license,34 so it is possible
for the MDAO community to contribute additional architectures and test problems as needed. OpenMDAO
hosts its source code on the GitHub social coding website, which combines social networking with a public
source code repository to encourage community participation on software development.35 The OpenMDAO
code repository can be found at http://github.com/OpenMDAO. Interested parties are able to visit the source
code repository and browse the code right from the website. They can also fork, or copy, the repository to
their own workspace to make changes and add additional architectures or test problems. GitHub provides all
the necessary tools to merge, or re-combine, the code from each person’s fork back into the main repository
through a web-based interface,36 which makes it easy for the community to submit code contributions.

GitHub also provides an automated means for tracking contributions to the codebase, so that appropriate
credit can be given for contributions from researchers. Figure 12 shows a sample network graph from the
OpenMDAO repository on GitHub. The graph gives an indication of who has code out there that has not
been incorporated into the main development branch.37 The network graph, is interactive so that clicking
on a node will take you to the particular version of the code being worked on by a specific researcher at any
given time. So it becomes simple to work not only off the main development version of OpenMDAO, but

NASA/TM—2012-217652 20

also from any researchers personal fork and keep track of where the collective code base is headed.

Figure 12: Sample commit network from the OpenMDAO repository on GitHub. Problem

From the perspective of a researcher working on a new test problem or new architecture, a large test
suite built by community contributions would provide a solid benchmark to test against. The easiest way
to test against the existing test suite would be to add the new material into a fork of the OpenMDAO
software. Then it would be simple to contribute the new material to the community by issuing a pull request
to have the fork integrated back into main code base. By using open source software development processes
OpenMDAO provides the means for establishing this test suite and also ensures its continued relevance
through community contributions of new test problems and MDAO architectures.

VII. Conclusions

Initially we laid out four required elements for establishing a successful MDAO testing framework:

1. Selecting a common software framework on top of which the MDAO community could develop and
share a testing platform

2. Constructing a large set of MDAO architectures which are implemented as efficiently as possible

3. Compiling a suite of test problems which have properties that simulate a wide range of engineering
analyses and problem scales

4. Ensuring that new test problems and architectures, as well as improvments, can be added into the test
suite by the community

This work has demonstrated that the OpenMDAO framework has the necessary features to address all
four of the above needs. We have implemented five different MDAO architectures: IDF, MDF, CO, BLISS,
and BLISS-2000. These implementations prove that there is sufficient flexibility to handle a very wide range
of architecture designs, including nested optimizations and the algorithmic creation of metamodels as part of
a workflow. New components (SensitivityDriver and NeighboorhoodDOEdriver) were added to the standard
library to support this effort, and those components are now available to developers who wish to use them
for new architecture concepts. Additionally, we demonstrated that OpenMDAO can easily support the use
of multiple optimization algorithms for any given architecture. This feature is important so that architecture
implementations can be usable for real problems outside the test suite.

NASA/TM—2012-217652 21

Building off this foundation, a testing procedure was defined and built into the OpenMDAO framework
to automatically run all of the architectures for all of the test problems. The results of each optimization
were compared using a number of performance metrics. The data indicates that IDF and MDF are the most
effective of the tested architectures and by far the least computationally expensive. BLISS-2000 is also fairly
inexpensive, when analytic derivatives are not available.

This work used the number of function evaluations and derivative evaluations as an indication of compu-
tational cost for each architecture. This assumes a completely serial execution of all discipline analyses. CO,
BLISS, and BLISS-2000 all offer varying degrees of potential parallelization which could be taken advantage
of given enough computational resources. Quantifying the effect of parallelism on the overall algorithms
cost is not trivial and is highly dependent on implementation details of a given architecture. So even two
implementations of MDF, using different kinds of solver configurations, might have different parallelization
potentials. Regardless, given that BLISS-2000 was relatively close to MDF in terms of function calls without
analytic derivatives, further investigation into the effective cost of BLISS-2000 when considering its parallel
potential is warranted.

Since only two test problems were considered in this work, the resulting benchmarks can not be considered
definitive. A larger set of test problems in OpenMDAO would better indicate to potential users which
architectures would be effective for their needs. The data collected for the Sellar Problem with and without
analytic derivatives demonstrates that the availability of analytic derivatives can dramatically alter the
performance potential of different architectures.

Using the established testing procedure with a larger test suite would provide a clear and consistent basis
for comparison among architectures. As new architectures are developed, running them on the test set would
provide apples-to-apples performance comparisons against established architectures.

Community contributions are needed to expand the test suite beyond the five architectures and two test
problems already implemented. Using the OpenMDAO code-hosting site on GitHub, researchers could make
development forks of the code and merge those forks back to the project to grow the set of architectures and
test problems. GitHub provides a number of tools to facilitate community collaboration on the OpenMDAO
codebase.

Establishing a consistent test procedure is necessary for the continued progress of the MDAO field. With-
out such a procedure, no obvious measurement exists to judge the effectiveness of new MDAO architectures
and potential users will continue to have a difficult time determining which architecture is appropriate to
solve their problem.

NASA/TM—2012-217652 22

References

1Martins, J. R. R. A. and Lambe, A. B., “Multidisciplinary Design Optimization: Survey of Architectures,” 2011, pp. 1–46.
2Alexandrov, N., “Initial results of an MDO method evaluation study,” AIAA Paper , 1998, pp. 1–13.
3Alexandrov, N. M. and Lewis, R. M., “Comparative Properties of Collaborative Optimization and Other Approaches to

MDO,” Proceedings of the First ASMO UK ISSMO Conference on Engineering Design Optimization, , No. 99, 1999.
4Kodiyalam, S. and Yuan, C., “Evaluation of Methods for Multidisciplinary Design Optimization (MDO), Part II,” Tech.

Rep. November, NASA/CR-2000-210313, Hampton, Virginia, Nov. 2000.
5Marler, R. and Arora, J., “Survey of multi-objective optimization methods for engineering,” Structural and Multidisci-

plinary Optimization, Vol. 26, No. 6, April 2004, pp. 369–395.
6Hulme, K. F. and Bloembaum, C. L., “A MULTIDISCIPLINARY DESIGN TEST SIMULATOR,” Sixth

AIAA/NASA/ISSMO Symposium on Multidisciplinary Analysis and Optimization, Bellevue, WA, 1996, pp. 438–447.
7Martins, J., Marriage, C., and Tedford, N., “pyMDO: an object-oriented framework for multidisciplinary design opti-

mization,” ACM Transactions on Mathematical Software (TOMS), Vol. 36, No. 4, 2009, pp. 1–25.
8Tedford, N. P. and Martins, J. R. R. a., “Benchmarking multidisciplinary design optimization algorithms,” Optimization

and Engineering, Vol. 11, No. 1, March 2009, pp. 159–183.
9Marriage, C. J. and Martins, J. R. R. A., “Reconfigurable Semi-Analytic Sensitivity Methods and MDO Architectures

within the πMDO Framework,” 12th AIAAISSMO Multidisciplinary Analysis and Optimization Conference, No. September,
2008.

10Padula, S. L. S., Alexandrov, N., and Green, L. L., “MDO Test Suite at NASA Langley Research Center,” Proceedings
of the 6th AIAANASAISSMO Symposium on Multidisciplinary Analysis and Optimization, No. 96, NASA Langley Research
Center, Bellevue, WA, 1996, pp. 1–13.

11Perez, R. E., Liu, H. H. T., and Behdinan, K., “Evaluation of Multidisciplinary Optimization Approaches for Air-
craft Conceptual Design,” Proceedings of the 10th AIAAISSMO Muldisiciplinary Analysis and Optimization Conference, No.
September, 2004, pp. 1–11.

12Brown, N. F. and Olds, J. R., “Evaluation of Multidisciplinary Optimization Techniques Applied to a Reusable Launch
Vehicle,” Journal of Spacecraft and Rockets, Vol. 43, No. 6, 2005, pp. 1289–1300.

13Felder, J. L., Kim, H. D., and Brown, G. V., “Turboelectric Distributed Propulsion Engine Cycle Analysis for Hybrid-
Wing-Body Aircraft,” 47th AIAA Aerospace Sciences Meeting Including The New Horizons Forum and Aerospace Exposition
AIAA Paper 20091132 , , No. January, 2009, pp. 1–25.

14Kim, H., Brown, G., and Felder, J., “Distributed turboelectric propulsion for hybrid wing body aircraft,” 9th International
Powered Lift Conference, London, United Kingdom, 2008.

15Moore, K., Naylor, B., and Gray, J., “The development of an open source framework for multidisciplinary analysis and
optimization,” 12th AIAA/ISSMO multidisciplinary analysis and optimization conference, AIAA, Victoria, Canada, Aug. 2008.

16Langtangen, H. P., “Python Scripting for Computational Science,” New York , Vol. 3, 2008, pp. 727.
17Parsons, D., Rashid, A., and Speck, A., “A framework for object oriented frameworks design,” IEEE Society, Technology

of Object-Oriented Lanauges and System, 29th Int’l Conference and Exhibition, Nancy, France, 1999, pp. 141–151.
18Parnas, D. L., “On the criteria to be used in decomposing systems into modules,” Communications of the ACM , Vol. 15,

No. 12, 1972, pp. 1053–1058.
19Peterson, P., Martins, J. R. R. A., and Alonso, J. J., “Fortran to Python interface generator with an application to

aerospace engineering,” Proceedings of the 9th International Python Conference, 2001.
20Moore, K. T., “Wrapping an External Module Using F2PY OpenMDAO Documentation, V 0.1.7,” 2011.
21Perez, R. E., Jansen, P. W., and Martins, J. R. R. A., “pyOpt : A Python-Based Object-Oriented Framework for

Nonlinear Constrained Optimization,” Optimization and Engineering, Vol. V, 1993, pp. 1–22.
22Kraft, “A software package for sequential quadratic programming.” Tech. rep., DLR German Aerospace Center Institute

for Flight Mechanics, Koln, Germany, 1998.
23Powell, M., “A direct search optimization method that models the objective and constraint functions by linear interpo-

lation,” Advances in Optimization and Numerical Analysis, edited by Dordrecht, Kluwer Academic, 1994, pp. 51–67.
24Lambe, A. B. and Martins, J. R. R. A., “Extensions to the Design Structure Matrix for the Description of Multidisciplinary

Design, Analysis, and Optimization Processes,” Structural and Multidisciplinary Optimization, 2012.
25Sobieski, J., Altus, T. D., Phillips, M., and Sandusky, R., “Bilevel Integrated System Synthesis for Concurrent and

Distributed Processing,” AIAA Journal , Vol. 41, No. 10, 2003, pp. 1996–2003.
26Altus, T. D., “A Response Surface Methodology for Bi-Level Integrated System Synthesis (BLISS),” Tech. Rep. May,

NASA Langley Research Center, Hampton Virginua, May 2002.
27Sellar, R., Batill, S., and Renaud, J., “Response surface based, concurrent subspace optimization for multidisciplinary

system design,” 34th AIAA Aerospace Sciences Meeting and Exhibit , AIAA, Citeseer, Reno, NV, Jan. 1996.
28Roth, B. and Kroo, I., “Enhanced collaborative optimization: application to an analytic test problem and aircraft design,”

12th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference, AIAA, Victoria, British Columbia, 2008.
29Martins, J. R. R. A. and Marige, C., “An Object-Oriented Framework for Multidisciplinary Design Optimization,” 3rd

AIAA Multidisciplinary Design Optimization Specialist Conference, AIAA, Waikiki, Hawaii, 2007.
30Braun, R. D., Gage, P. J., Kroo, I. M., and Sobiesiki, I., “Implementation and Performance Issues in Collaborative

Optimization,” 1996.
31Allison, J., Kokkolaras, M., Zawislak, M., and Papalambros, P., “On the use of analytical target cascading and collab-

orative optimization for complex system design,” Proceedings of the 6th world congress on structural and multidisciplinary
optimization, Rio de Janeiro, Brazil , Citeseer, 2005, pp. 1–10.

32Michalek, J. J. and Papalambros, P. Y., “An Efficient Weighting Update Method to Achieve Acceptable Consistency
Deviation in Analytical Target Cascading,” Journal of Mechanical Design, Vol. 127, No. 2, 2005, pp. 206.

NASA/TM—2012-217652 23

33Chittick, I. R. and Martins, J. R. R. A., “An Asymmetric Suboptimization Approach to Aerostructural Optimization,”
Optimization and Engineering, Vol. 10, No. 1, 2009, pp. 133–152.

34“Apache License, Version 2.0,” The Apache Software Foundation http://www.apache.org/licenses/LICENSE-2.0.html .
35Storey, M.-A. and Treude, C., “The Impact of Social Media on Software Engineering Practices and Tools,” Research

Studies, 2010, pp. 359–363.
36Eaves, D., “How GitHub Saved OpenSource,” eaves.ca http://eaves.ca/2011/06/14/how-github-saved-opensource/ .
37Preston-Werner, T., “Say Hello to the Network Graph Visualizer,” GitHub Blog, April 2008,

pp. https://github.com/blog/39–say–hello–to–the–networ.

NASA/TM—2012-217652 24

A. Sellar Problem Definition

Below is the code from the OpenMDAO code base that defines the Sellar Test Problem

from openmdao.main.api import Component, ComponentWithDerivatives

from openmdao.main.problem_formulation import OptProblem

from openmdao.lib.datatypes.api import Float

class Discipline1(Component):

"""Component containing Discipline 1"""

z1 = Float(0.0, iotype=’in’, desc=’Global Design Variable’)

z2 = Float(0.0, iotype=’in’, desc=’Global Design Variable’)

x1 = Float(0.0, iotype=’in’, desc=’Local Design Variable’)

y2 = Float(0.0, iotype=’in’, desc=’Disciplinary Coupling’)

y1 = Float(iotype=’out’, desc=’Output of this Discipline’)

def execute(self):

"""Evaluates the equation

y1 = z1**2 + z2 + x1 - 0.2*y2"""

z1 = self.z1

z2 = self.z2

x1 = self.x1

y2 = self.y2

self.y1 = z1**2 + z2 + x1 - 0.2*y2

class Discipline2(Component):

"""Component containing Discipline 2"""

z1 = Float(0.0, iotype=’in’, desc=’Global Design Variable’)

z2 = Float(0.0, iotype=’in’, desc=’Global Design Variable’)

y1 = Float(0.0, iotype=’in’, desc=’Disciplinary Coupling’)

y2 = Float(iotype=’out’, desc=’Output of this Discipline’)

def execute(self):

"""Evaluates the equation

y2 = y1**(.5) + z1 + z2"""

z1 = self.z1

z2 = self.z2

#abs deals with some convergence issues if solver tries negative values

y1 = abs(self.y1)

self.y2 = y1**(.5) + z1 + z2

#Note: Inherits from OptProblem

class SellarProblem(OptProblem):

""" Sellar test problem definition."""

def __init__(self):

""" Creates a new Assembly with this problem

NASA/TM—2012-217652 25

Optimal Design at (1.9776, 0, 0)

Optimal Objective = 3.18339"""

super(SellarProblem, self).__init__()

#add the discipline components to the assembly

self.add(’dis1’, Discipline1())

self.add(’dis2’, Discipline2())

#START OF MDAO Problem Definition

#Global Des Vars

self.add_parameter(("dis1.z1","dis2.z1"),name="z1",low=-10,high=10,start=5.0)

self.add_parameter(("dis1.z2","dis2.z2"),name="z2",low=0,high=10,start=2.0)

#Local Des Vars

self.add_parameter("dis1.x1",low=0,high=10,start=1.0)

#Coupling Vars

self.add_coupling_var(("dis2.y1","dis1.y1"),name="y1",start=0.0)

self.add_coupling_var(("dis1.y2","dis2.y2"),name="y2",start=0.0)

#Objectives and Constraints

self.add_objective(’(dis1.x1)**2 + dis1.z2 + dis1.y1 + math.exp(-dis2.y2)’,name="obj1")

self.add_constraint(’3.16 < dis1.y1’)

self.add_constraint(’dis2.y2 < 24.0’)

#solution to the opt problem

self.solution = {

"z1":1.9776,

"z2":0.0,

"dis1.x1":0.0,

"y1":3.16,

"y2": 3.756,

’obj1’:3.1834

}

#END OF MDAO Problem Definition

NASA/TM—2012-217652 26

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the
data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this
burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302.
Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB
control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY)
01-08-2012

2. REPORT TYPE
Technical Memorandum

3. DATES COVERED (From - To)

4. TITLE AND SUBTITLE
A Standard Platform for Testing and Comparison of MDAO Architectures

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S)
Gray, Justin, S.; Moore, Kenneth, T.; Hearn, Tristan, A.; Naylor, Bret, A.

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER
WBS 561581.02.08.03.42.01

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
National Aeronautics and Space Administration
John H. Glenn Research Center at Lewis Field
Cleveland, Ohio 44135-3191

8. PERFORMING ORGANIZATION
 REPORT NUMBER
E-18330

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
National Aeronautics and Space Administration
Washington, DC 20546-0001

10. SPONSORING/MONITOR'S
 ACRONYM(S)
NASA

11. SPONSORING/MONITORING
 REPORT NUMBER
NASA/TM-2012-217652

12. DISTRIBUTION/AVAILABILITY STATEMENT
Unclassified-Unlimited
Subject Category: 05
Available electronically at http://www.sti.nasa.gov
This publication is available from the NASA Center for AeroSpace Information, 443-757-5802

13. SUPPLEMENTARY NOTES

14. ABSTRACT
The Multidisciplinary Design Analysis and Optimization (MDAO) community has developed a multitude of algorithms and techniques,
called architectures, for performing optimizations on complex engineering systems which involve coupling between multiple discipline
analyses. These architectures seek to efficiently handle optimizations with computationally expensive analyses including multiple
disciplines. We propose a new testing procedure that can provide a quantitative and qualitative means of comparison among architectures.
The proposed test procedure is implemented within the open source framework, OpenMDAO, and comparative results are presented for five
well-known architectures: MDF, IDF, CO, BLISS, and BLISS-2000. We also demonstrate how using open source soft- ware development
methods can allow the MDAO community to submit new problems and architectures to keep the test suite relevant.
15. SUBJECT TERMS
Multidisciplinary Design Analysis and Optimization (MDAO); Optimization; Systems analysis

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
 ABSTRACT

UU

18. NUMBER
 OF
 PAGES

34

19a. NAME OF RESPONSIBLE PERSON
STI Help Desk (email:help@sti.nasa.gov)

a. REPORT
U

b. ABSTRACT
U

c. THIS
PAGE
U

19b. TELEPHONE NUMBER (include area code)
443-757-5802

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. Z39-18

	Introduction
	Common Software Framework
	Fundamental Classes
	Component Class
	Driver Class
	Workflow Class
	Assembly Class

	Problem Formulation
	OptProblem Class
	Architecture Class

	Architectures
	Individual Design Feasible (IDF)
	MultiDisciplinary Feasible (MDF)
	Collaborative Optimization (CO)
	Bi-Level Integrated Systems Synthesis (BLISS)
	Bi-Level Integrated Systems Synthesis 2000 (BLISS-2000)

	Test Problems
	Sellar Problem
	Scalable Problem

	Test Results
	Proximity to Known Optimal Solution
	Total Function Evaluations
	Convergence Characteristics
	Optimizer Choice

	Community Contribution
	Conclusions
	Sellar Problem Definition

