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1.0 ABSTRACT 

In 2006, the NASA Subsonic Rotary Wing Aeronautics Program sponsored the experimental and 
analytical evaluation of an externally deployable composite honeycomb structure that is designed 
to attenuate impact energy during helicopter crashes.  The concept, which is designated the 
Deployable Energy Absorber (DEA), utilizes an expandable Kevlar® honeycomb structure to 
dissipate kinetic energy through crushing.  The DEA incorporates a unique flexible hinge design 
that allows the honeycomb to be packaged and stowed until needed for deployment.  A variety of 
deployment options such as linear, radial, and/or hybrid methods can be used.  Experimental 
evaluation of the DEA utilized a building block approach that included material characterization 
testing of its constituent, Kevlar®-129 fabric/epoxy, and flexural testing of single hexagonal 
cells.  In addition, the energy attenuation capabilities of the DEA were demonstrated through 
dynamic crush tests of multi-cell components, and vertical drop tests of a composite fuselage 
section, retrofitted with DEA blocks, onto concrete, water, and soft soil.  During each stage of 
DEA evaluation, finite element models of the test articles were developed and simulations were 
performed using the explicit, nonlinear transient dynamic finite element code, LS-DYNA.  This 
report documents the results of the experimental evaluation that was conducted to assess the 
energy absorption capabilities of the DEA.  In addition, details of the analytical simulations and 
test-analysis comparisons are presented. 

2.0 INTRODUCTION 

In 2005, the NASA Aeronautics Research Program was overhauled to focus on foundational 
physics and fundamental research in four flight regimes: hypersonics, supersonics, subsonic 
fixed wing, and subsonic rotary wing.  Three guiding principles were established:

• NASA is dedicated to the mastery and intellectual stewardship of the core competencies of     
Aeronautics for the Nation in all flight regimes,
• The research will be focused in areas that are appropriate to NASA’s unique capabilities, and
• Research will be conducted to address the fundamental needs of the Next Generation Air 
Transportation System  [1].

A four-step process was implemented in 2005-2006 to assess long-term research goals in each 
flight regime, solicit industry input regarding opportunities for cooperative partnerships, review 
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submitted proposals, and request additional proposals from universities for research in 
foundational physics.  As part of this process, several in-house research proposals on rotorcraft 
crashworthiness were submitted, reviewed, and supported by the Subsonic Rotary Wing (SRW) 
Aeronautics Program [2]. 

Since its inception in 2006, the NASA SRW Aeronautics Program in Rotorcraft Crashworthiness 
has focused attention on two areas of research: the evaluation of an externally deployable energy 
absorbing (DEA) concept and improved prediction of rotorcraft crashworthiness. The DEA 
concept is a composite honeycomb structure that can be deployed, much like an external airbag 
system, to provide energy attenuation [3-5].  The concept was originally proposed and studied as 
a passive energy attenuation system for the Orion crew module, and was designed to 
significantly reduce impact loads transmitted to the crew during land or water impact following 
capsule re-entry.  Eventually, the Orion Program Office focused on other energy attenuating 
concepts that had higher technical maturity [6].  However, during this early evaluation, the DEA 
concept demonstrated excellent energy absorption capabilities. As a result, the SRW Program 
selected the concept for further evaluation.  Pre- and post-test photographs of a sample DEA 
component are shown in Figure 1.

The second SRW Rotorcraft Crashworthiness focus area relates to modeling and simulation.  
Several research topics have been identified to achieve improved prediction of rotorcraft 
crashworthiness, including: occupant modeling and injury prediction, multi-terrain impact 
simulation, model validation studies that focus on probabilistic analysis, and development of 
system-integrated simulation models [2].  An important aspect of the DEA evaluation was to 
develop finite element models that could accurately simulate the DEA crushing response under 
dynamic loading. 

   
                (a) Pre-test photograph.                                            (b) Post-test photograph.

Figure 1. Pre- and post-test photographs of a sample DEA component. 

2.1 Motivation for DEA Development 

Landing and crash energy management systems, which dissipate energy by stroking, can be 
grouped into two general categories.  The first category consists of deployable devices such as 
hydraulic or pneumatic landing gears, vented airbags [7-10], non-vented airbags [11, 12], and 
hybrid airbag systems [13].  Non-deployable, or passive, energy absorbers belong to the second 
category which includes crushable honeycombs and cellular solids [14-17].  Generally, the type 
of crash energy management system chosen is governed by factors such as available volume, 
expected vehicle attitude, velocity at impact, mass allotment, and system reliability.  Deployable 
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systems offer several advantages including efficient packaging and relatively large available 
stroke; however, due to their complexity, they are generally less reliable than passive systems. 

External airbag systems have been utilized in many different aerospace applications.  The most 
notable examples include plug-vented air bags on the F-111 crew-escape module [7], and non-
vented air bags on the Mars Pathfinder [11].  Typically, non-vented airbag systems have an 
inherent degree of springiness due to residual gas pressure, which causes the vehicle to bounce 
several times before it comes to a complete rest.  To offer adequate protection, the airbag is 
required to cover the entire vehicle, which generally leads to a heavier and more complex 
system.  Because of sequential energy absorption (bouncing), non-vented airbag systems are not 
suitable for manned applications.  Vented bags are generally more efficient energy dissipators, 
when compared to non-vented systems.  These can be grouped into two general categories: 
automobile type airbags [8], which rely on time sensitive deployment in order to operate 
correctly, and bags with blow-out plugs [7, 13] which vent when a predetermined pressure is 
sensed. Unfortunately, when used on aircraft to improve crashworthiness, serious reliability 
issues can offset potential advantages in energy absorption.  

In the case of automobile-type airbags, which have been considered for external use on rotorcraft 
to mitigate crash loads [8-10], precise determination of impending impact over varying terrain is 
required, which is a very challenging problem.  Assuming that external airbags can be inflated 
fast enough and that all other sensors and systems function correctly, serious reliability issues 
can still arise for plug-vented systems when venting is partially or totally impaired due to the 
vehicle's unforeseen impact attitude.  When gas is trapped, due to choked vents, these systems 
can cause vehicle tumbling, as occurred during impact testing of the airbag system mounted to 
the F-111 crew-escape module, see Figure 2.  Finally, all gas-filled airbag systems suffer from 
low shear stability, loading-rate sensitivity, impact/venting synchronization (especially when 
multiple airbags are used), and sensitivity to extreme landing surface features such as rocks and 
steep slopes.  Consequently, extensive testing and/or analyses are often required for system 
development and qualification, as was demonstrated by the F-111 program [18, 19]. 

    

    

Figure 2. Series of photographs of an F-111 crew module impact test. 
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In order to avoid bottoming out, which is an inevitable negative aspect of vented airbags; a 
hybrid airbag approach was proposed for the Orion crew module [13].  The system consists of an 
internal non-vented bag (anti-bottoming) within a larger external vented bag (energy absorber).  
While this approach addresses the bottoming out issue, it does lead to a heavier and more 
complex system.  Moreover, the non-vented bag is essentially a spring, which under certain 
attitude conditions could contribute to vehicle tumbling.  To address the airbag shear issue, 
Mehaffie [17] studied a foam-filled airbag system for the recovery of small pilotless aircraft.  
While this concept appears to provide a viable solution to shear, time sensitive foam hardening 
and excess weight make it inappropriate for crashworthiness applications. 

2.2 Description of the DEA Concept 

The composite honeycomb Deployable Energy Absorber (DEA) possesses many of the desirable 
features of a deployable airbag system while overcoming most of their limitations.  As with the 
Bixby [15] and Schafer [16] concepts, the new energy absorber utilizes an expandable 
honeycomb structure to absorb impact energy by crushing.  However, unlike other cellular 
energy absorbers in use today, the new concept utilizes a unique and patented flexible hinge at 
each junction of its cell walls [3].  This feature enables almost any size and strength energy 
absorber to be fabricated and readily deployed either radially (omnidirectional energy 
absorption) or linearly (unidirectional energy absorption).  Like conventional honeycomb, once 
expanded the new energy absorber is transformed into an efficient orthotropic cellular structure, 
with greater stiffness and strength along the cell axis as compared to the transverse directions.

An example of an isolated cell-wall junction is shown in the schematic of Figure 3, and a 
photograph of a stitched junction is depicted in Figure 4.  In this example, a zigzag stitch pattern 
was used to eliminate delamination between the plies.  Typically, the hinge is made of Kevlar®-
129 fabric/epoxy with the fibers oriented at ±45° with respect to the hinge, or longitudinal, axis. 
The hinge consists of a fabric made of relatively strong, stiff, and tough fibers such as Spectra®,
Vectran®, or Technora®.  Other flexible materials can also be used for the construction of the 
hinges; however, advanced fiber reinforced fabrics are thought to offer some unique 
opportunities for structural tailoring. Examples of properties that can be optimized, individually 
or collectively, include minimal deployment force, shear rigidity, shear strength, hinge tearing 
resistance, and specific energy absorption.  For the purposes of this paper, all DEA structures 
were fabricated of Kevlar®-129 fabric with Reinfusion 8601 epoxy resin.  In addition, all DEA 
test articles were constructed of either single or multiple hexagonal cells. 

The flexible hinge enables various methods of expanding the cellular structure with the most 
basic ones shown in Figures 5-7.  The linear expansion mode, which is depicted in the schematic 
of Figure 5, represents the simplest mode.  When expanded in this fashion the energy absorber 
produces higher specific energy absorption due to a more efficient volumetric expansion (lower 
effective expanded density).  However, radial deployment, illustrated in Figure 6, produces an 
energy absorber with better omnidirectional capability.  Because most practical applications 
involve curved rather than flat surfaces, the two basic deployment methods can be combined into 
a hybrid approach, as shown in Figure 7.  To minimize the expanded density of the energy 
absorber, the cells are tapered, as shown in Figure 7(c).  An artist’s conception of how the energy 
absorber could be used on a rotorcraft to improve its crashworthiness is shown in Figure 8.  For 
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this application, the energy absorber would be stowed under a frangible (or removable) 
aerodynamic cowling until a command is given to deploy the energy absorbers.  Additional 
details regarding mathematical development of the DEA, the fabrication process, and 
deployment methods can be found in Reference 4. 

Figure 3. Schematic of the junction (hinge) of a square cell deployable structure. 

Figure 4. Photograph of square cell junction fabricated of Kevlar®-129 and E-glass fabrics.

2.3 Objectives 

The objectives of this paper are to document the results of testing and analytical simulations that 
were performed during evaluation of the DEA concept.  Experimental research included material
property characterization testing of the DEA constituent, Kevlar®-129 fabric/epoxy; flexural 
testing of single hexagonal cells; dynamic crush testing of multi-cell DEA components; and 
vertical drop tests of a composite fuselage section, retrofitted with DEA blocks, onto three 
different terrains.  An analytical effort was conducted to complement and augment the 
experimental program.  Finite element models were developed to assist in DEA evaluation using 

Crush load orientation�

Rigid cell-wall�
(web)�

Rotationally�
�exible hinge�
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the explicit, nonlinear transient dynamic code, LS-DYNA [20, 21].  Details of the analytical 
simulations and test-analysis comparisons are also presented. 

Figure 5. Basic steps required for linear deployment of a packed energy absorber. Deployment 
mechanisms could include springs or actuators of various kinds. 

Payload platform�

(a) Packed energy absorber�

(b) DEA rotated by 90°�

(c) DEA expanded linearly�
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Figure 6. Radial deployment of two energy absorbers. Note that deployment greater than 180° is 
possible if more vehicle coverage is required.

      
                                 (a) Packed DEA.                              (b) Partially deployed DEA. 

(c) Fully deployed DEA. 
Figure 7. Hybrid deployment example with the energy absorber deployed over a curved surface. 

Payload 
platform�

(b) Pair of DEA expanded radially�

(a) Packed energy absorber�
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Figure 8. Artist’s rendition of a rotorcraft with a set of energy absorbers deployed. The front 
energy absorbers are shaped to allow for egress.

3.0 EXPERIMENTAL PROGRAM 

This section of the paper summarizes the results of the experimental program that was conducted 
during evaluation of the DEA concept.  It includes materials testing of Kevlar®-129 fabric/epoxy,
flexural (3-point bend) testing of single hexagonal cells, dynamic crush tests of multi-cell DEA 
components, and vertical drop tests of a retrofitted fuselage section onto three different terrains.

3.1 Materials Testing of Kevlar®-129 Fabric/Epoxy 

As mentioned previously, all DEA structures that were tested as part of the concept evaluation
process were fabricated of Kevlar®-129 plain-weave woven fabric with Reinfusion 8601 epoxy 
resin, with a nominal ply thickness of 0.01-in.  Kevlar® is a tough, high-modulus composite 
material that is commonly used in bullet/fragment resistant apparel, fiber-optic cables, and 
automotive belts and tires.  In addition, Kevlar® has demonstrated excellent energy absorption 
capabilities under compressive loading [22].  During construction of the DEA, the Kevlar®-129
fabric/epoxy material was oriented at ±45° with respect to the longitudinal axis of the cells.  
Limited material testing was performed to provide data for concept design, and for input into the 
LS-DYNA finite element models.  Additional information regarding material testing may be 
found in Reference 4. 

3.1.1 Tensile Tests of 0°/90° Coupons 

Tensile tests were performed on single ply coupons of Kevlar®-129 fabric/epoxy with fibers 
oriented at 0°/90° with respect to the loading direction.  Coupon dimensions were: length of 6-in. 
(4.15-in. gage length), a width of 1.0-in. and a nominal thickness of 0.01-in.  Five coupons were 
tested quasi-statically at a displacement rate of 1.0-inch per minute (ipm) using a standard load 
test machine.  The individual and average stress-strain results are shown in Figures 9(a) and (b), 
respectively.  Based on the average test results, the material exhibits a nearly linear-elastic 
response to ultimate failure, which occurs at a strain of 0.05-in/in and a stress of 76-ksi.  A
tensile modulus of 1.5e06-psi was estimated based on a linear curve fit of the material response 
at low strain values.  Note that the noise seen in the raw test data is an artifact of the data 
acquisition system. 
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                         (a) 0°/90° response data.                              (b) 0°/90° average response. 

Figure 9. Tensile stress-strain response of 0°/90° Kevlar®-129 fabric/epoxy coupons. 

3.1.2 Tensile Tests of ±45° Coupons 

Two sets of tensile tests were performed using the same size of coupons as described previously; 
however, for these coupons the fibers were oriented at ±45° with respect to the loading direction.  
For each set, five coupons were tested at two different displacement rates: 1.0-ipm and 20-ipm. 
The individual stress-strain responses for the two different displacement rates are shown in 
Figure 10 and the average stress-strain results are shown in Figure 11.  As noted previously, the 
noise or chatter seen in the raw test data is an artifact of the data acquisition system. 

      
                    (a) ±45° response data at 1-ipm.               (b) ±45° response data at 20-ipm. 

Figure 10. Tensile stress-strain responses of ±45° Kevlar®-129 fabric/epoxy coupons tested at 
two different displacement rates. 
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Figure 11. Average stress-strain responses of ±45° Kevlar® fabric/epoxy tensile coupons tested at 
two different displacement rates. 

It is important to note that the data obtained from tensile tests of ±45° coupons can be used to 
derive material properties for shear including shear stiffness, shear strength, and ultimate shear 
strain-to-failure, as documented in Reference 23.  Based on the average test results, the material 
exhibits a linear response to approximately 8,000-psi, and then yields, followed by a nonlinear 
strain hardening response.  This portion of the stress-strain response is attributed to progressive 
matrix failure, which allows the fibers to reorient in the direction of loading (fiber scissoring), 
which, in turn, produces the stiffening effect seen in the response. It is also interesting to note 
that material testing performed at higher strain rates either produces the same response for 
materials that are not rate sensitive or provides higher stress-strain responses for strain-rate 
dependent materials.  For the results shown in Figure 11, the Kevlar®-129 fabric/epoxy material 
indicates a higher stress-strain response for the lower strain rate, which is opposite to the typical 
response.  Without testing at a third strain rate, it is impossible to know if this behavior is a trend 
for this material. 

3.2 Three-Point Bend Testing of Single Hexagonal Cells 

The effect of cell geometry on the shear stability of the DEA was studied through a series of 
simple, quasi-static tests. Three-point-bend tests were conducted on single-hexagonal-cell 
samples. Specimens were fabricated using the same materials and methods as the actual 
deployable structures, including hinge lines.  A typical test sample, under load, is shown in the 
photograph of Figure 12(a).  Each cell sample contained three 0.25-in.-thick hexagonal Bakelite 
stanchions located at each of the loading points. The role of the stanchions, which were bonded 
to the cell walls, was to preserve the hexagonal shape of the cell while distributing the load 
uniformly over the entire perimeter of the cell. To eliminate possible trapped air effects during 
loading, each stanchion was perforated. The test fixture, shown in Figure 12(a), was designed to 
accommodate samples of varying length, L, and load-displacement data were recorded until a 
peak load was reached. The three-point-bend study involved testing of four sets of scaled 
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specimens, five specimens per set, in which the ratio, L/W, was kept constant at 1.75 and the flat 
facet width, W, was varied (W=0.75-in., 1.0-in., 1.25-in. and 1.5-in.).  For the scaled specimens, 
displacement rates were prescribed by the width of the specimen.  For example, the specimen 
with a width of W=1.25-in. was tested at a displacement rate of 1.25-ipm.  The cross-sectional 
geometry of the W=1.0-in. specimen is shown in Figure 12(b).  All specimens were fabricated of 
single ply Kevlar®-129 fabric/epoxy with a nominal thickness of 0.01-in.  The fabric was 
oriented at ±45° with respect to the longitudinal axis of the cell.  One specimen of each size is 
depicted in the photograph of Figure 13.  Since specimens were scaled, only one was chosen for 
presentation, in this case the specimens with a width of W=1.0-in.  Individual sample and 
average load versus displacement responses for the W=1.0-in. single cells are shown in Figures
14(a) and (b), respectively. 

Characteristic instability modes in this type of sample were shear buckling in the lower oblique 
cell walls and compressive buckling on the top horizontal cell wall, as indicated in Figure 12(a). 
Due to considerable scatter in the results, as shown in Figure 14(a), at least five samples were 
tested for each geometry case.  In Reference 4, the maximum stress for each of the four single 
hexagonal cell specimens was calculated by dividing the peak load by the cross sectional area of 
the hexagonal cell, and the maximum stress was plotted versus t/W.  Based on these results and 
assuming that the three-point bend test is truly representative, the shear stability increases 
linearly with t/W. 

         (a) Photograph of 3-point bend test.                         (b) Geometry of W=1.0-in. specimen. 
Figure 12. Three-point-bend set-up for single cell tests.

Figure 13. Photographs of four scaled single hexagonal cell specimens. 
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                  (a) Responses of five samples.                         (b) Average of five responses. 

Figure 14. Load versus displacement response from 3-point-bend tests on samples with
t=0.01-in. and W= 1.0-in. 

3.3 Multi-Cell DEA Component Crush Testing 

Three multi-cell components were fabricated to evaluate the energy absorption capabilities of the 
DEA under both normal and off-axis loading conditions.  Each of the components was fabricated 
of hexagonal cells having a 1-in. flat facet width.  Two of the DEA components, consisting of 
59- and 104-cells, were manufactured such that the longitudinal axes of the cells were oriented in 
the same direction as loading (normal).  A third DEA component, consisting of 68-cells, was 
fabricated such that the longitudinal axis of the cells was canted by 27° with respect to the 
direction of loading (off-axis).  The top surface of each DEA component was curved slightly to 
reduce the high peak loads that can occur during initial impact. Also, transverse holes were 
drilled into the DEA components to allow entrapped air to escape.

Each component was impacted in a fully deployed state by a rigid impact mass, or block, that 
translated on vertical support rods through low-friction bearings.  The drop mass was 
instrumented with an accelerometer to record the vertical acceleration response.  Details 
regarding the dimensions of each DEA component and the impact test conditions are listed in 
Table 1.  Additional information on the DEA fabrication method and multi-cell component crush 
testing may be found in Reference 4. 

Table 1. Details of DEA Component Crush Testing 
Number
of cells 

Cell
orientation*

Length,
in.

Width,
in.

Height,
in.

Area,
in2

Impact block 
weight, lb. 

Velocity at 
impact, in/s 

59 0° 16 12.4 6.0 198 412.5 195.6 
104 0° 21 15.8 10.0 331 477.2 266.4 
68 27° 16 14.0 6.7 224 477.2 183.6 

*with respect to the vertical, or loading, direction 



 13�

3.3.1 59-Cell DEA Crush Test 

The measured acceleration time history obtained from the 59-cell DEA component crush test is 
plotted in Figure 15(a), and the integrated velocity and displacement time histories are plotted in 
Figures 15(b) and (c), respectively.  An average acceleration of 7.1-g was determined for the 
time interval of 0- to 0.03-s, prior to the large increase in acceleration that initiates at 0.034-s.  
The increase in acceleration is attributed to compaction or “bottoming out” of the DEA.  Also, 
the maximum vertical displacement of the DEA was 5.6-inches.  Given that the original height of 
the DEA was 6-in., a total crush stroke of 93% was obtained.  Note that the 59-cell DEA 
specimen exhibited stable crushing for 5-in. of vertical displacement, or 83% maximum stroke 
prior to initiation of compaction.  A close-up photograph of the post-test specimen is shown in 
Figure 16, which highlights the primary deformation and failure modes of the DEA.  The DEA 
dissipates kinetic energy through local buckling of the cell walls and plastic hinge formation.  In 
addition, some minor delamination and tearing at the cell wall interfaces are observed.    

   
   (a) Acceleration time history.         (b) Velocity time history.       (c) Displacement time history. 

Figure 15.  Test data from the dynamic compression test of the 59-cell DEA. 

Figure 16. Close-up photograph illustrating the energy absorption modes exhibited by the DEA. 
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3.3.2 104-Cell DEA Crush Test 

A second DEA component was fabricated that consisted of 104-hexagonal cells with specimen 
dimensions and impact loading conditions listed in Table 1.   The measured acceleration time 
history is plotted in Figure 17(a), and the integrated velocity and displacement time histories are 
plotted in Figures 17(b) and (c), respectively.  An average acceleration of 14.3-g was determined 
for the time interval of 0- to 0.03-s.  It is interesting to note the differences in acceleration 
responses between the 59- and the 104-cell DEA components, shown in Figures 15(a) and 17(a), 
respectively.  The acceleration response of the 59-cell DEA indicates that the component was 
compacted during crushing, which produces a large increase in acceleration near the end of the 
pulse.  However, the acceleration response of the 104-cell DEA indicates that the specimen did 
not achieve compaction, even though a higher impact mass and velocity were used during the 
impact test.  Obviously, the incident kinetic energy was insufficient to produce compaction due 
to the greater cross-sectional area and height of the 104-cell DEA.  Based on a maximum 
displacement of 6.6-in., a crush stroke of 65.6% was obtained for the 104-cell DEA.  A post-test 
photograph of the 104-cell DEA component is shown in Figure 18.  Similar deformation modes 
of local cell wall buckling, plastic hinge formation, minor delamination and tearing at the cell 
wall junctions are observed; however, considerably less damage is seen overall when compared 
with the 59-cell DEA component. 

       
      (a) Acceleration response.            (b) Velocity response.           (c) Displacement response. 

Figure 17. Results of the dynamic crush test of the 104-cell DEA component.

Figure 18. Post-test photograph of the 104-cell DEA component. 
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3.3.3 68-Cell DEA Crush Test 

A final DEA component was fabricated of 68 hexagonal cells in which the longitudinal axis of 
the cells was canted by 27° with respect to the vertical direction. Component dimensions and 
impact loading conditions are listed in Table 1.  The 68-cell DEA component was fabricated and 
tested specifically to determine how the DEA would respond under combined normal and shear 
loading.   Unlike the two previous component tests, the bottom surface of the DEA was attached 
to a flat aluminum plate using potting material prior to the impact test.

Acceleration, velocity, and displacement time histories are shown in Figure 19 for the 68-cell 
canted DEA component.  The acceleration curve, shown in Figure 19(a), achieves an initial 
acceleration of 10-g at 0.004-s, which subsequently drops to 5-g and then begins to increase to a 
second peak of 27.7-g at 0.0475-s.  The initial reduction in acceleration following the 10-g peak 
is attributed to global buckling and collapse of a row of perimeter cells.  Following this collapse, 
the interior cells begin to react the load and the acceleration increases as compaction begins to 
occur.  The second peak is attributed to compaction of the DEA component.  Based on the 
maximum displacement of 5.6-in., a crush stoke of 83.6% was determined.  An average 
acceleration of 6.5-g was calculated for the time interval of 0- and 0.03-s.  This value is only 8% 
lower than the value obtained for the 59-cell DEA component, which had all of its cells oriented 
in the same direction as the loading axis. 

     
     (a) Acceleration response.            (b) Velocity response.             (c) Displacement response. 

Figure 19. Results of the dynamic crush test of the 68-cell DEA component. 

The crush response of the 68-cell DEA was recorded using high-speed video and several 
photographs taken from the video are shown in Figure 20.  These photos indicate that the 
crushing response of the DEA is fairly uniform, despite the higher shear loading present in the 
off-axis test.  The off-axis orientation contributed to global buckling of a row of perimeter cells, 
which is evident on the left side of Figure 20(b).
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(a) EA prior to impact. 

(b) EA after approximately 35% of crush. 

(c) EA after approximately 60% of crush. 
Figure 20. High-speed video frames from 27° off axis test. 

3.3.4 Comparative Analysis of the DEA Component Results 

Test results for three DEA components have been presented, each of which was fabricated of 
Kevlar®-129 fabric/epoxy oriented at ±45° with respect to the longitudinal cell axis.  Also, each 
DEA component had a cell wall edge length of 1.0-in. and a nominal cell wall thickness of 0.01-
in.  This particular configuration of the DEA was designed to yield an average crush stress of 
approximately 20-psi [4].  The stress-strain responses of the 59-, 104-, and 68-cell DEA 
components were determined, based on the measured acceleration data.  The stress was 
calculated by adding 1 to the acceleration data in g’s, to account for the acceleration of gravity, 
and then multiplying the sum by the weight of the impact block, and then dividing by the cross-
sectional area of the DEA.  The strain was determined by double integration of the acceleration 
response to obtain displacement, which was divided by the initial vertical height of the DEA 
component.  Stress-strain responses for each DEA component are plotted in Figure 21.  The 
average stress for each DEA was determined by calculating the area under the stress curve for 
the strain interval of 0- to 0.6-in/in.  Then, the total area is divided by the strain interval.  The 
average stress values are 15.6-psi for the 68-cell DEA, 17.6-psi for the 59-cell DEA, and 22.0-psi 
for the 104-cell DEA.  If the crush stresses of the two normal DEA components (59- and 104-
cell) are averaged, a value of 19.8-psi is obtained, which is just slightly below the design goal.
Please note that values of average crush stress are reported in later sections of the report based on 
average acceleration over a time interval of 0.0-0.03-s.  These numbers may differ slightly from 
the ones shown in Figure 21, based on the different intervals used in the calculation. 
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One potential explanation for the reduction in average stress for the 59-cell DEA is the fact that 
this component has a larger percentage of circumferential cells, which tend to buckle globally 
instead of crushing uniformly, thus lowering the effective crush stress.  Unlike the interior cells, 
the circumferential cells are only partially supported by neighboring cells.  As mentioned 
previously, the 68-cell DEA exhibited crushing, as well as bucking of some cells on the 
perimeter of the component.  The large reduction in acceleration following the initial peak, 
shown in Figure 19(a), is attributed to global buckling of these cells.  However, the stiffness of 
the component is restored as the interior cells crush uniformly and eventually compact.  The 
performance of the DEA concept under off-axis loading is considered excellent, with a relatively 
small reduction in average acceleration when compared with the 59-cell DEA.  Typically, 
energy-absorbing components, such as tubes and truncated cones, show significant reductions in 
crush performance under off-axis loading [24, 25]. 

Figure 21. Crush stress versus strain of three DEA components. 

3.4 Multi-Terrain Impact Testing of a Composite Fuselage Section Retrofitted with DEA 

A major challenge that designers face when considering crashworthiness of helicopters arises 
from the unknown morphology of the crash site, including surfaces such as concrete, water, and 
soft soil.  In fact, helicopter accident data indicate that more than 80% of crashes occur onto 
multi-terrain surfaces such as water, soft soil, plowed or grassy fields, and shallow swamps, as 
opposed to smooth prepared surfaces [26].  In addition, research studies have shown that 
helicopters, designed for crash resistance onto hard surfaces, do not perform well during multi-
terrain impacts [27-32].  For hard and non-yielding impact surfaces, the vehicle’s kinetic energy 
has to be managed by the airframe and internal and/or external energy absorbing devices to 
ensure load attenuation and adequate post-crash cabin volume.  Often, legacy airframes have 
little or no internal structure designed for crash energy management. Consequently, external 
energy absorbers with large stroke capability are often necessary.

For hard surface impact, the cross-sectional shape of the external energy absorber is not 
important as long as stroking is not hindered.  Conversely, for water impact the energy absorber 
stroke is less relevant since peak dynamic loads are brief and typically last only as long as it 
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takes for the vehicle to break through the water surface.  However, the shape of the penetrating 
surface is much more critical and typically determines the magnitude of the peak load.  Devices 
such as landing gear and/or skids, which can be very effective in absorbing energy on relatively 
hard surfaces, are rendered useless during water impacts.  Moreover, protruding devices used for
energy absorption can become a liability during water or soft soil impacts that involve large 
forward velocities, causing the aircraft to be more sensitive to tumbling.  In addition to 
conventional retractable landing gear, other externally deployable devices, which have been 
proposed for helicopter active crash protection include vented airbags [9, 10], porous airbags, [8] 
and the composite honeycomb DEA concept [4, 5]. 

Since landing and/or skid gears are ineffective during water impact, Michielsen et al [33] have 
proposed the tensor skin panel concept where crash energy is dissipated by the deflection of an 
energy absorbing composite sandwich belly panel.  In essence, this approach is similar to the one 
previously proposed in Reference 34 where most of the crash energy is dissipated by crushable 
structure placed between a rigid floor and a flexible aerodynamic cowling.  Therefore, for both 
concepts, stroking is limited by the available subfloor space.  The multi-terrain capability of the 
concept proposed in Reference 34 was investigated by Sareen et al [27] for hard and soft surface 
impacts, and by Fasanella et al [28] for water impact.  While concepts with integrated subfloor 
energy absorption capability can help mitigate impact loads, their performance is limited by the 
crush stroke capacity – an area in which externally deployable energy absorbers have a clear 
advantage.

A necessary requirement for the successful utilization of the deployable honeycomb in multi-
terrain impact applications is the capability to transfer load from the impact surface into the cell 
walls to initiate progressive crushing.  Essentially, for soft surface impacts, the honeycomb must 
be prevented from acting as a “cookie cutter”.  Therefore, the honeycomb’s surface, which 
contacts the impact surface, must be covered.  While the primary role of a cover is to introduce 
the load into the honeycomb cells, the cover also has to be geometrically compatible with the 
energy absorber, both in its stowed and deployed stages.  Several energy absorber cover concepts 
were considered and the ones that met all design requirements for vertical impacts were 
fabricated and tested prior to full-scale impact testing, as described in Reference 5.  Friction, 
which is an important parameter in forward impact velocities, was not considered in this 
preliminary cover design study.  A typical geometry of a covered energy absorber is shown 
schematically in Figure 22. 

Figure 22. Schematic of a covered deployed energy absorber with a cylindrical impact nose. 
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In 2006 and 2007, vertical drop tests were conducted using a 5-ft-diameter, 5-ft-long composite 
fuselage section to evaluate the energy absorption capabilities of the DEA during multi-terrain 
impact.  In particular, tests were performed onto a rigid concrete surface, water, and soft soil 
(sand).  The composite fuselage section was developed during a prior research program [35] at 
NASA Langley Research Center and was used as a test bed to evaluate the responses of seats and 
dummies [36], to study quantitative correlation methods including experimental uncertainty [37], 
and to examine the influence of multi-terrain [38].  The fuselage section is fabricated using 
composite sandwich construction.  The upper fuselage cabin is fabricated of 3-lb/ft3 polyurethane 
closed-cell foam with E-glass/epoxy fabric face sheets, while the floor is fabricated of 8-lb/ft3

polyurethane closed-cell foam with hybrid E-glass/epoxy and graphite/epoxy fabric face sheets.  
The layers of graphite/epoxy fabric and the higher density foam provided increased stiffness and 
improved structural rigidity of the floor, which is designed to serve as primary, load-bearing 
structure.  As such, the floor must react the loads generated by crushing of subfloor energy 
absorbers or external energy attenuating systems.

For the multi-terrain impact tests that were conducted as part of the DEA evaluation program, the 
fuselage section was outfitted with ten 100-lb lead blocks that were mounted, five per side, to the 
floor of the fuselage section using standard seat rail fasteners.  Accelerometers (250-g maximum 
range) were mounted on the lead blocks to record the dynamic structural response of the floor.  
Four DEA blocks were fabricated and attached to the bottom surface of the fuselage section.  
The DEA blocks were made of a single woven-ply of Kevlar®-129 fabric/epoxy, oriented at ±45° 
with respect to the longitudinal direction, had a nominal cell edge length of 1.0-in., and weighed 
5.6-lb each.  The deployed size of the honeycomb blocks was 20-in. tall, 16.5-in. wide and 20.5-
in. deep and incorporated a curved surface (18-in. radius) on the bottom.  The 18-in. cylindrical 
curvature was necessary to attenuate the initial peak loads for rigid surface impacts. The DEA 
blocks were sized based on the rigid-surface impact test with the assumption that the crash 
energy of a 40-ft/s impact would be managed through crushing of the DEAs while restricting the 
dynamic loads to less than 20-g.  Therefore, 20-g was the target level for the sustained crushing 
load, also referred to as the energy absorber design crush load.  The results of the multi-terrain 
impact tests will be described in the following subsections of the paper. 

3.4.1 Rigid Surface Impact Test 

The rigid surface impact test was performed using the 70-ft. Vertical Drop Tower located at 
NASA Langley Research Center.  The test article was released from a height of 22.9-ft to 
achieve a vertical impact velocity of 38.4-ft/s (460.8-in/s).  A pre-test photograph of the 
suspended fuselage section is shown in Figure 23(a).  The total weight of the test article 
(fuselage section, lead blocks, and DEA) was 1,212 lb.  To prevent excessive flexing during the 
rigid surface test, the upper fuselage cabin was stiffened by a pair of ±45° woven glass straps.  
Four fully deployed energy absorbers were attached to the flat bottom surface of the fuselage 
section using tie-down straps, as shown in Figure 23(b).

Vertical accelerations were measured at six locations on the fuselage floor with accelerometers 
mounted in the center of selected lead blocks (one accelerometer each on the two front, center, 
and rear blocks).  Accelerometer locations are shown in the photograph of Figure 24(a) and are 



20

depicted in the floor schematic shown in Figure 24(b).  Data were collected at 10,000 samples 
per second.  Unfiltered acceleration time histories were used to evaluate the floor-level velocity 
response and to calculate crush displacements through double integration.

   
                                 (a) Pre-release photo.       (b) Pre-test photo of test article. 

Figure 23. Pre-test photographs of the rigid surface impact test. 

   
                            (a) Close-up photograph.                       (b) Floor instrumentation schematic. 

Figure 24.  Instrumentation locations for the rigid surface drop test. 

Acceleration-, velocity-, and displacement-time histories are plotted in Figure 25 for four 
accelerometer locations.  As expected of a flat impact, all of the acceleration time histories were 
similar in magnitude and duration.    Even though initial peak accelerations of 30- to 35-g were 
recorded, as shown in Figure 25(a), an average acceleration of 18.5-g is obtained over the pulse 
duration of 0.0-0.06 second.  Thus, the energy absorber design crush load was achieved.  A small 
rebound velocity of approximately 100-in/s was measured, as shown in Figure 25(b), indicating 
that some stored energy was available, likely due to entrapped air, following crushing of the 
DEA.  Maximum displacements ranged from 14.2- to 14.9-in. and were determined through 
double integration of the acceleration data, as shown in Figure 25(c).  These displacement values 
provide a range of maximum crush strokes between 71-75%, given the pre-test height of 20-in.
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        (a) Acceleration response.            (b) Velocity response.           (c) Displacement response. 

Figure 25. Test results for the rigid surface impact test at four different floor locations. 

The energy absorbers for the rigid surface impact test were sized for a 20-g acceleration level.  
As with most high-speed impacts, the plot of acceleration versus stroke, shown in Figure 26, 
indicates that the 20-g level was exceeded during the initial part of the crush.  Additional pulse 
attenuation may have been possible through more aggressive shaping of the energy absorbers. 
For this test, the DEA blocks were shaped with a single radius of curvature of 18-in.  The high-
speed video coverage of the test indicated that the majority of the fuselage’s kinetic energy was 
dissipated through crushing of the energy absorbers, which crushed progressively to 71-75% of 
full stroke.  A post-impact photograph illustrating the DEA crush response is shown in Figure 
27.  The accordion-like deformation pattern produced by local buckling of the cell walls of the 
DEA is evident in the photograph. 

Figure 26. Typical acceleration versus stroke response from the rigid surface impact test. 
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Figure 27. Post-test photograph illustrating DEA crush response. 

3.4.2 Water Impact Test 

Two water impact tests were conducted.  The first test was performed of the fuselage section 
with the DEA and the second with no DEA attached.  Pre-test photographs of the two test articles 
are shown in Figure 28.  The vertical drop tests were performed by releasing the test articles to 
impact a 15-ft-diameter pool of water (approximately 42-in. deep) that was placed at the base of 
the 70-ft drop tower at NASA Langley.  The fuselage section without energy absorbers, shown in 
Figure 28(a), was tested first to provide a datum for comparison with the second test, which 
included four deployable honeycomb energy absorbers, as shown in Figure 28(b).  Each energy 
absorber was fitted with a cover, fabricated of a single ply of Kevlar®-129 fabric/epoxy that was 
incorporated into the design of the structure.  A close-up photograph highlighting the cover is 
shown in Figure 29.   The energy absorbers were located as close to the edge of the flat portion 
of the floor as possible and were mounted symmetrically about the mid-surface and centerline of 
the section. 

Each fuselage section was fitted with ten 100-lb lead blocks that were mounted, five per side, to 
the floor of the fuselage section using standard seat rail fasteners.  Accelerometers (250-g 
maximum range) were mounted on the lead blocks to record the dynamic structural response of 
the floor, as indicated in the floor plan schematics of Figure 30.  For the drop test of the fuselage 
section without energy absorbers, only two accelerometers were used, one each on the right and 
left center lead blocks, as shown in Figure 30(a).  For the test of the fuselage section with energy 
absorbers, eight accelerometers were used, as indicated in Figure 30(b).  Data were collected at 
10,000 samples per second for both impact tests.  The experimental data were filtered using an 
SAE J211 filter with a Channel Filter Class (CFC) 180 [39].  The total weights of the fuselage 
sections, with and without energy absorbers, were 1,225-lb and 1,200-lb, respectively.  The 
measured velocities at impact were 24.7-ft/s (296.4-in/s) and 25.0-ft/s (300-in/s) for the test with 
and without energy absorbers, respectively. 
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                     (a) Fuselage section without DEA.              (b) Fuselage section with DEA. 

Figure 28. Pre-test photographs of the test articles. 

Figure 29. Close-up photograph showing the cover over the DEA block. 

      
         (a) Fuselage section without DEA.                         (b) Fuselage section with DEA. 

Figure 30. Instrumentation plans for two fuselage section drop tests. 



 24�

Acceleration-, velocity-, and displacement-time histories of the right- and left-center lead blocks 
are plotted in Figure 31 for the water impact test of the fuselage section without DEAs. During 
this drop test, the measured peak accelerations ranged from 150- to 220-g’s with a slight time 
shift between peaks.  Based on the time delay between pulses, it was determined that the fuselage 
section impacted the water with a 1°-rolled attitude, such that the right side of the fuselage 
impacted the water first.  Post-test damage to the fuselage section consisted of a minor 
delamination of a single E-glass/epoxy face sheet, which was repaired prior to the second drop 
test with energy absorbers.

     
   (a) Acceleration response.                 (b) Velocity response.            (c) Displacement response. 
Figure 31. Floor-level responses from the water impact test of the fuselage section without DEA. 

Acceleration-time histories are plotted for all eight accelerometer locations in Figure 32 for the 
water impact test of the fuselage section with DEA.  Data from symmetric locations are similar.  
For example, the left and right center inboard (IB) accelerometer responses, shown in Figure 
32(a), are nearly identical, with an initial peak acceleration of 17-g and an initial pulse duration 
of 0.0225-seconds.  The initial peak acceleration is attributed to contact of the DEA blocks with 
water, while the second large spike in acceleration, that is seen in the responses of the four center 
accelerometers and occurs just prior to 0.06-seconds, is attributed to impact of the bottom surface 
of the floor with water.  An average floor-level acceleration of 9.3-g was determined by 
averaging the data from all eight accelerometers for a pulse duration of 0.02-s.  Unlike the 
previous rigid surface test in which all of the acceleration traces were similar, significant 
differences are observed during the water impact test based on accelerometer location.  The front 
and rear acceleration responses, shown in Figures 32(c) and (d), respectively, exhibit a large 
initial peak ranging in magnitude between 34- and 42-g.  Following the initial peak, the 
acceleration responses decrease to approximately 7-g and exhibit an oscillatory response.  This 
behavior is quite different than the responses exhibited by the center lead blocks.
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            (a) Center inboard (IB) accelerometers.       (b) Center outboard (OB) accelerometers. 

       
                          (c) Front accelerometers.                       (d) Rear accelerometers. 

Figure 32. Acceleration time histories from the water impact test. 

The acceleration-, velocity- and displacement-time histories of the center left and right IB 
accelerometers are plotted in Figure 33, highlighting the initial portion of the pulse.  By 0.04-
seconds, the initial velocity has been reduced by less than 100-in/s.  For water impact, the initial 
pulse, as the structure breaks the surface of the water, is of short duration, or approximately 0.02-
second, for this test.  However, the total pulse duration, approximately 0.4-seconds, is fairly long 
and represents the time required for the structure to impact the bottom of the pool.  Less than 1-
in. of crush of the energy absorbers was observed post-test, which indicates that energy 
absorption was achieved primarily by momentum transfer to the water, rather than from 
honeycomb crushing.  The peak floor-level acceleration for the center lead blocks was reduced 
significantly in comparison to the test without DEA (17-g versus 150- to 220-g).  This reduction 
is attributed to the reduced cross-sectional area and the curved bottom surfaces of the DEA in 
comparison with the flat bottom of the fuselage floor. 
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   (a) Acceleration responses.             (b) Velocity responses.          (c) Displacement responses. 

Figure 33. Floor-level responses from the water impact test of the fuselage section with DEA. 

3.4.3 Soft Soil (Sand) Impact Test 

Prior to the soft soil impact test, a 12-ft x 12-ft wooden box, filled to a height of 2½-ft with high-
grade “washed” sand, was installed beneath the drop tower at NASA Langley.  Pre- and post-test 
photographs of the test article are shown in Figures 34(a) and (b), respectively.  As with the 
previous tests, four blocks of DEAs were mounted beneath the floor of the composite fuselage 
section, as shown in Figure 34(a).  A single layer of Kevlar® fabric was used to cover the bottom 
surfaces of the DEA blocks to ensure proper load transfer into the cell walls.  The fuselage 
section was instrumented with six accelerometers, one accelerometer attached to the two front, 
center, and rear lead blocks, to record the structural response of the floor.  This instrumentation 
layout was the same as used for the rigid surface impact, as illustrated in Figure 24(b).  Data 
were collected at 10,000 samples per second.  A 37.4-ft/s (448.8-in/s) vertical drop test was 
conducted using the 70-ft. Vertical Test Tower located at the Landing and Impact Research 
(LandIR) facility.

Following the impact test, the deployable energy absorbers were removed from the sand and 
post-test measurements of the depth of the impressions left in the sand were made.  A 
photograph illustrating the measurement technique is shown in Figure 35(a).  It was determined 
that the maximum crater depths ranged from 7- to 9-in.  Penetrometer impact tests were 
conducted from a drop height of approximately 48-in. soon after the fuselage drop test to ensure 
unaltered soil conditions (moisture content).  The intention of the penetrometer tests was 
twofold: to provide an indication of soil uniformity across the impact surface, and to provide soil 
characterization in the form of acceleration-time responses to facilitate analytical simulations of 
the impact surface.  The 20-lb. penetrometer had a hemispherical surface with a diameter of 8-in. 
and was instrumented with a triaxial accelerometer pack.  Five locations around the impact area 
were surveyed using the penetrometer, as shown in Figure 35(b).  Maximum penetration depth 
and acceleration-time histories from the five impacts indicated some variability within the impact 
area thought to be associated with the fact that the soil was not packed.  Measured penetrations 
were in the range of 3.5- to 5.0-in. deep and the average was 4.45-in. 
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                         (a) Pre-test photo.                                           (b) Post-test photo. 

Figure 34. Pre- and post-test photographs from the drop test onto sand. 

      
                    (a) Crater depth measurement.                         (b) Penetrometer test locations. 

Figure 35. Photographs illustrating post-test measurements. 

Unfiltered acceleration-, velocity- and displacement-time histories are shown in Figure 36 for the 
right and left center lead blocks obtained during the sand impact test.  The left side accelerometer 
exhibits more high frequency oscillations initially than that seen by the corresponding right side 
accelerometer; however, both responses are similar.  The velocity responses of the right and left 
center blocks are nearly identical and indicate a minimal rebound of approximately 30-in/s, as 
shown in Figure 36(b).  The displacement responses, shown in Figure 36(c), indicate a maximum 
displacement of approximately 15-in.  Based on this value of total vertical displacement, the 
maximum crush displacement of the DEA blocks can be estimated between 6- and 8-inches, 
given that the crater depths measured between 7- to 9-in.  For comparison, the unfiltered 
acceleration responses of the front and rear lead blocks are plotted in Figure 37.  These responses 
are similar in shape, magnitude, and duration to the center block responses, shown in Figure 
36(a).  An average acceleration of 17.5-g was determined for a pulse duration of 0.0- to 0.05-
seconds, based on data from all six accelerometers. 
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Interestingly, the sand acceleration responses are quite similar to the responses obtained for the 
rigid surface impact, which are plotted in Figure 25(a). Despite the different impact surfaces and 
complex modes of energy dissipation, the two responses appear to be similar in shape, with the 
magnitude of the peak acceleration being approximately 2- to 3-g lower for the soft soil impact. 

   
        (a) Acceleration response.           (b) Velocity response.              (c) Displacement response. 

Figure 36. Floor-level responses from the sand impact test of the fuselage section with DEA. 

     
                             (a) Front accelerometers.                   (b) Rear accelerometers. 

Figure 37. Floor-level responses from the sand impact test of the fuselage section with DEA. 

3.4.4 Comparative Results of Multi-Terrain Impact Testing 

Acceleration results from vertical drop tests of the composite fuselage section retrofitted with 
DEA blocks impacting onto a rigid (hard) surface, water, and soft soil (sand) are plotted in 
Figure 38.  Load attenuation through crushing occurred in both hard surface and soft soil 
impacts.  In these cases, the impact surface provided adequate reaction load to initiate and 
maintain stable crushing.  Given that the impact velocity conditions were nearly identical, 38.4- 
versus 37.4-ft/s, similar acceleration responses were obtained for these two tests, as indicated in 
Figure 38.  However, for water impact, kinetic energy was dissipated primarily by accelerating 
the displaced water volume.  Though effective in attenuating the initial peak, the energy 
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absorbers were not able to absorb kinetic energy through crushing.  This finding is by no means a 
drawback of the energy absorber but simply a reality associated with water impact.  The initial 
peak-load, which occurs during penetration of the water surface, is too brief to promote sustained 
crushing.  Once the energy absorbers break through the water surface there is simply not enough 
resistance to maintain crushing [5].  The large difference in peak acceleration measured during 
the fuselage section drop tests into water with and without the DEA (17-g versus 150- to 220-g) 
highlights the importance of surface shape and geometry during water impact.  Obviously, flat 
surfaces should be avoided. 

Figure 38. Acceleration responses for rigid surface, water, and soft-soil impact. 

A similar fuselage section with an integrated crushable foam subfloor concept and similar 
payload was used in previous studies to evaluate multi-terrain impact [27, 28, 38].  A photograph 
of the fuselage section with integrated foam subfloor taken just prior to a 25-ft/s impact onto a 
hard surface is shown in Figure 39(a), along with a comparable plot of floor-level acceleration 
responses obtained during multi-terrain impact testing, shown in Figure 39(b).  Sareen et al [27] 
studied the response of the fuselage section during 25-fps vertical drop tests onto a hard surface 
and soft soil (sand) and Fasanella et al [28] reported on the response of the same fuselage section 
during a 25-fps vertical drop on water.  Therefore, a loose comparison of the two concepts can be 
made for corresponding impact surfaces. 

For impact on a hard surface (concrete), the deployable honeycomb has a clear advantage over 
the integrated crushable foam concept.  Despite the fact that the kinetic energy at impact for the 
fuselage with the deployable honeycomb was 2.36 times greater than that of the fuselage with 
integrated crushable foam, the dynamic loads were attenuated to an average of less than 20-g for 
the deployable honeycomb as compared to 25-g for the more conventional concept. This 
advantage is attributed directly to the fact that the externally deployable honeycomb had a 
greater crush stoke available than the integrated crushable foam. 



30

      

                    (a) Photo prior to drop test.                  (b) Multi-terrain acceleration responses.

Figure 39. Photograph of fuselage section with integrated foam subfloor and floor-level 
acceleration responses from multi-terrain impact testing [reprinted from Reference 38]. 

In the case of the soft soil impact, the deployable honeycomb also exhibited a superior 
performance over the integrated crushable foam concept.  Despite the fact that the kinetic energy 
at impact for the fuselage with the deployable honeycomb was 2.24 times greater than that of the 
fuselage with integrated crushable foam, the peak dynamic loads were attenuated to less than 27-
g as compared to 31-g.  In this case, the honeycomb dissipated energy by both penetration and
crushing and maintained a relatively flat response.  To the contrary, the kinetic energy of the 
fuselage with the integrated foam concept was dissipated primarily by soil penetration. 

For water impact, stroke availability is less important and the most critical factor is the shape of 
the impacting object. Consequently, no significant amount of energy was dissipated by 
honeycomb crushing.  Instead most of the kinetic energy was absorbed through the acceleration 
of the displaced water.  With the exception of the initial peak, which was lower for the 
deployable honeycomb, the two concepts had comparable responses.

These results demonstrate that even for the simple case of vertical impact, designing for multi-
terrain impact capability can be extremely complex due to the different, and often opposing, 
requirements for each impact surface.  For example, the cylindrical-shaped nose of the 
deployable honeycomb was necessary for hard surface impacts in order to attenuate the initial 
peak [5]. However, for water impact the cylindrical nose promoted faster water-surface 
penetration (less water resistance) and hence less energy dissipation.  Moreover, the large energy 
absorber depth needed for stroking during hard surface impacts can become a liability in the case 
of water, or even soft-soil, impacts involving combined vertical and forward velocity conditions.  
Therefore, designing for multi-terrain impact applications could result in either a significant 
penalty in energy absorber mass, or reduced energy absorbing capability across multi-terrain
surfaces.
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4.0 LS-DYNA MODEL DEVELOPMENT AND TEST-ANALYSIS COMPARISONS 

The explicit nonlinear transient dynamic commercial code, LS-DYNA [20, 21], was used to 
perform finite element analyses for each of the tests described in Section 3.0.  The initial 
approach was to develop a robust and accurate material model to represent the behavior of 
Kevlar®-129 fabric/epoxy based on material property data, then perform test-analysis 
comparison studies using the single cell three-point-bend tests as a means of calibrating and 
refining the material model.  Once an accurate material model was available, then shell-based 
finite element models of the DEA components would be developed and validated through 
comparison with experimental data.  The final step would be development of finite element 
models to represent the multi-terrain impact tests of the composite fuselage section retrofitted 
with DEA.  This building block approach was followed; however, several challenging problems 
were encountered that required modifications to the approach and expansion of the scope of the 
research.  For example, a probabilistic methodology was implemented to generate input 
parameters for the LS-DYNA composite material model, for which reliable test data were not 
available [40].  In addition to the shell-element-based models, solid element models were also 
investigated, as a potential means of lowering the run times of the simulations and as an alternate 
modeling approach [41].  The objectives of the simulations were to utilize state-of-the-art 
nonlinear explicit transient dynamic analysis techniques to develop accurate finite element based 
models of the DEA; to simulate both normal and off-axis DEA component responses, as well as 
multi-terrain impacts; and, to demonstrate an analytical methodology that can be used with 
confidence as a design tool for the DEA.

As computational capabilities continue to improve and the cost associated with test programs 
continues to increase, certification of future aircraft will rely heavily on computational methods.  
Reliance on computational tools, however, will only come after rigorous demonstration of their 
predictive capabilities. NASA under the SRW Rotorcraft Crashworthiness Program is sponsoring 
the development and validation of such tools [2].  Jackson et al in Reference 42 discussed 
detailed requirements and challenges associated with certification by analysis.  Fundamental to 
the certification effort is the demonstration of verification, validation, and calibration metrics and 
algorithms for this class of problems.  Roach [43], Oberkampf [44], Thaker [45], and 
Atamturktur [46] have provided accepted definitions of these terms.  The process of model 
calibration, which follows the verification and validation phases, involves reconciling differences 
between test and analysis.  Most calibration efforts combine both heuristics and quantitative 
methods to assess model deficiencies, to consider uncertainty, to evaluate parameter importance, 
and to compute required model changes.  A particular challenge in model calibration for explicit 
nonlinear transient dynamic simulations comes because of the computational burden associated 
with even simple simulations.  Long execution times limit the number of solutions obtainable in 
a timely manner.  Oftentimes, calibration efforts are focused on predicting responses at critical 
locations as opposed to assessing the overall adequacy of the model [47].

Another complication with calibration of nonlinear models is the lack of universally accepted 
metrics to judge model adequacy. Work by Oberkampf et al [48] and later Schwer et al [49] are 
two noteworthy efforts that provide users with metrics to evaluate nonlinear time histories.  
Unfortunately, seldom does one see them used to assess model adequacy.  In addition, the 
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metrics, as stated in References 48 and 49, do not consider the multi-dimensional aspect of the 
problem explicitly.  The concept of using impact shapes as a metric for multi-dimensional 
calibration has been proposed by Anderson et al [50] and demonstrated by Horta et al [47, 51].  
Because most applications in this area use commercially available codes, it is assumed that code 
verification and validation have been addressed elsewhere.

This section of the report is divided into two main sections representing the shell- and solid- 
element modeling approaches.  The shell-element section is subdivided to present: material 
model development and test-analysis comparisons of the three-point bend testing of single 
hexagonal cells, dynamic compression testing of multi-cell DEA components, and multi-terrain 
impact testing of a composite fuselage section retrofitted with DEA blocks.  Likewise, the solid-
element section is subdivided to present: material model development and test-analysis 
comparisons for dynamic compression tests of multi-cell DEA components and multi-terrain 
impact testing.  Additional information regarding the analytical simulations may be found in 
References 40-41, 47, 52-57. 

4.1 Shell-Element Modeling of the DEA 

4.1.1 Material Model Development 

A major challenge in developing a reliable and robust shell-based model of the DEA is to 
generate an accurate material model to represent Kevlar®-129 fabric/epoxy.  The use of shell 
elements in modeling the thin composite honeycomb provides for a more realistic and accurate 
representation of the DEA geometry than can be generated using solid elements.  In addition, 
property diminishment of individual plies can be implemented based on damage mechanics 
models [58].  Success in simulating the crush response of the DEA is highly dependent on 
accurately modeling the cell wall material and geometry.  Modeling of composites has long been 
complicated by the variety of failure modes they exhibit under compression, such as local 
buckling, delamination, and tearing.  These interacting failure modes often complicate the ability 
to model the material crush response of the DEA under load.  To accurately characterize 
Kevlar®-129 fabric/epoxy, an LS-DYNA material model was needed with the capability to 
predict the observed failure mechanisms in the DEA and to demonstrate good functionality when 
used in conjunction with a shell-element-based model, which best captures the geometry of the 
DEA.  Two materials were investigated: *MAT_LAMINATED_COMPOSITE_FABRIC or Mat 
58 and *MAT_PIECEWISE_LINEAR_PLASTICITY of Mat 24 [21]. 

4.1.1.1 Laminated Composite Fabric Model
The Mat 58 material model was initially chosen based on past success in predicting the impact 
damage of the Reinforced Carbon-Carbon leading edge panels of the Space Shuttle Columbia 
[59, 60].  Mat 58 is a continuum damage mechanics material model based on the Matzenmiller-
Lubliner-Taylor theory [61] and is intended for use with shell elements to simulate composite 
tape laminates and woven fabrics.  The model requires input of material properties in tension, 
compression, and shear to define stress-strain behavior within the lamina or laminate.  The user 
specifies the in-plane elastic modulus and Poisson’s ratio in two primary directions, designated A 
and B in LS-DYNA.   The maximum strength in tension, compression, and shear is also 
specified at corresponding strain values.   A representation of the stress-strain curve for in-plane 
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tension is illustrated in Figure 40.  The tensile response is initially linear elastic with the modulus 
specified by EA.  Stress increases nonlinearly until XT, the maximum strength, is reached.  The 
nonlinear portion of the response is defined internally by LS-DYNA based on a continuum 
damage approach.  Once XT is reached, the stress is reduced based on the “stress limiting” factor 
SLIMT1, and is then held constant at the reduced value until elements reach a strain specified by 
the ERODS parameter in the material model, at which point the elements are deleted and 
removed from the solution.  Similar stress-strain responses are defined for in-plane compression 
and shear.  Additional information on this material model can be found in Reference 21. 

Figure 40. Typical in-plane tension stress-strain curve used for material within Mat 58. 

Initial input parameters for Mat 58 were determined based on data obtained from                    
tensile tests conducted on single-ply Kevlar®-129 fabric/epoxy coupons oriented at 0°/90° and 
±45º with respect to the loading axis, as plotted in Figures 9 and 10, respectively.  All coupons 
had a nominal thickness value of 0.01 inches.  Tensile properties for the model were obtained 
from 0°/90° tensile data while shear properties were obtained from ±45º tensile coupon tests.  
The ±45° coupons were pulled in tension at 1-ipm and 20-ipm to assess the effect of strain rate
on the stress-strain response, as shown in Figure 11.  LS-DYNA material model Mat 158 is 
capable of representing strain rate effects.   However, the simpler Mat 58 material model was 
used instead.  Input shear property values were based on the 20-ipm test data as being most 
representative of the response.

Mat 58 properties used in the modeling effort are listed in Table 2.  Note that since the Kevlar®

material is a plain weave fabric, the modulus in the longitudinal or fiber direction (EA) is the 
same as the modulus for the transverse direction (EB).  The Mat 58 material card requests input 
of the Poisson’s ratio in the BA direction, as opposed to the more standard AB direction.  The 
Poisson’s ratio in the BA direction can be derived from the ratio of EB to EA multiplied by the 
Poisson’s ratio in the AB direction.  However, since EA=EB, the two values of Poisson’s ratio 
are the same.  Typically, compressive strengths of Kevlar® materials are considerably lower than 
their corresponding tensile strengths.  Reference 62 states that “when a laminate using Kevlar®

reinforcement is loaded in compression…the individual fibrils buckle and split away from the 
bundle when the stress exceeds about one-fifth of what it would take in tension.”  Since no 
compressive testing was performed, a range of compressive strength values from 7,500- to 
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16,000-psi was considered.  The value of 16,000-psi was based on 1/5 the tensile strength of 
80,000-psi for the 0°/90° data.  A low value of compressive strength of 7,500-psi was based on 
the approximate yield stress of the ±45° coupons.  With Mat 58, a compressive strength value of 
10,000-psi provided the best fit to both the static single cell and the dynamic DEA component 
test data. 

Table 2. Mat 58 material properties used to represent the Kevlar®-129 fabric. 
Material Property Description Symbol Values 
Density, lb-s2/in4 RO 1.29E-4 
Young’s modulus longitudinal & transverse direction, psi EA, EB 1.3E+6 
Poisson’s ratio PRBA 0.3 
Stress limit of nonlinear portion of shear curve, psi TAU1 Not used 
Strain limit of nonlinear portion of shear curve, in/in GAMMA1 Not used 
Shear modulus AB, BC, and CA, psi GAB 1.54E+5 
Min stress factor for limit after max stress (fiber tension) SLIMT1 0.8 
Min stress factor for limit after max stress (fiber comp) SLIMC1 1.0 
Min stress facto for limit after max stress (matrix ten) SLIMT2 0.8 
Min stress factor for limit after max stress (matrix comp) SLIMC2 1.0 
Min stress factor for limit after max stress (shear) SLIMS 1.0 
Material axes option (model dependent)  AOPT  
Maximum effective strain for element layer failure ERODS 10.0 
Failure surface type FS 1.0 
Strain at longitudinal compressive strength, in/in E11C 0.02 
Strain at longitudinal tensile strength, in/in E11T 0.05 
Strain at transverse compressive strength, in/in E22C 0.02 
Strain at transverse tensile strength, in/in E22T 0.05 
Strain at shear strength, in/in GMS 0.02 
Longitudinal and transverse compressive strength, psi XC, YC 10,000. 
Longitudinal and transverse tensile strength, psi XT, YT 80,000. 
Shear strength, psi SC 5,000. 

4.1.1.2 Piecewise Linear Plasticity Material Model
Due to initial difficulty in characterizing the DEA material response, a less complex material 
model was sought to represent Kevlar®-129 fabric/epoxy. Thus, Mat 24, known as 
*MAT_PIECEWISE_LINEAR_PLASTICITY, was chosen [21].  In the model, the user can 
specify the elastic modulus, Poisson’s ratio, yield stress, and tangent modulus of the material.  
The user can also input an effective stress versus effective plastic strain curve that defines the 
isotropic material response.  Material property values used in Mat 24 to represent Kevlar®-129
fabric/epoxy are listed in Table 3 and the input stress-strain curve, which was based on the 
average tensile responses of  ±45° coupons at 20-ipm, is shown in Figure 41.  The higher strain 
rate curve was used since the material model application will involve high strain rates.  Also, it 
should be noted that the tangent modulus listed in Table 3 was set to zero in this case, indicating 
that the plastic response of the material was defined by the input stress-strain curve.  Finally, the 
compressive response was assumed to be equivalent to the tensile response for the initial portion 
of the curve.  Also, since crushing of the Kevlar®-129 fabric/epoxy occurs for material oriented 
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at ±45°, the rational seemed logical for modeling cases where the high tensile strength does not 
come into play. 

Table 3. Property values used in Mat 24. 
Parameter No. Symbol Description Value 

1 E (psi) Young’s modulus 340,000 
2 PRBA Poisson’s Ratio 0.3 
3 SIGY (psi) Yield stress 7,500 
4 ETAN (psi) Tangent modulus 0 

   
Figure 41. User-defined stress-strain input curve for Mat 24. 

4.1.2 Simulation of the Three-Point Bending Tests 

Even though the single cell specimen was loaded quasi-statically, a slowly-loaded dynamic finite 
element model was executed using LS-DYNA v971 for the sole purpose of verifying the input 
material properties for Mat 58, which will be used in future simulations of the energy absorber.  
A picture of the complete model is shown in Figure 42.  The model consists of three major parts: 
three “Bakelite” stanchions, the deformable composite cell wall, and the flanges.  These parts are 
shown separately in Figure 43. The cell dimensions were cell-wall width (W) = 1.0-in., cell-wall 
thickness (t) = 0.01-in. and overall length equal to 4.21-in.  The model was constructed using a 
nominal element edge length of 0.05-in. 

The walls of the single hexagonal cell were represented using Mat 58 with the property values 
shown in Table 2.  The flanges consisted of two layers of fabric, with a specified nominal 
thickness of 0.02-in.  However, measured thicknesses ranged between 0.03- to 0.04-in., which 
included areas of excessive adhesive.  The ±45° ply orientations were defined using the 
*SECTION_SHELL and *INTEGRATION_SHELL cards in LS-DYNA.  The Bakelite 
stanchions were represented using a linear elastic material with a density of 1.356E-4 lb-s2/in4,
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an elastic modulus of 1.09E+6-psi, and a Poisson’s ratio of 0.25.  The complete model consisted 
of 27,098 nodes; 12,000 hexagonal solid elements; and 13,600 Belytschko-Tsay shell elements. 

Figure 42.  Single cell model for 3-point-bend test. 

           
               (a) Hexagonal stanchions (Bakelite).               (b) Deformable skin. 

(c) Flanges. 
Figure 43. Three distinct parts of the LS-DYNA model with nominal dimensions. 

The test specimen was loaded in three-point bending by applying a compressive load at the 
center of the hexagonal cell using a 0.25-in. wide bar, as shown in Figure 12(a).  In the test, 
loading was performed in displacement control at a rate of 2.0-ipm.  The reaction points (0.25-in. 
from the bottom edge) were simply supported.  A *BOUNDARY_SPC_SET was defined in the 
model to represent the simply supported boundary conditions.  For this set, nodes within the 
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0.25-in. by 0.75-in. area at the bottom of both ends of the specimen were constrained from linear 
motion in the x- and y-directions.   The constrained nodes were free to move only in the z-
direction (no friction assumed), and free to rotate.  Note that the axis directions are shown in 
Figure 42. 

To represent the three-point loading condition, all of the nodes within the 0.25-in. by 0.75-in. 
loading area at the top center of the cell were assigned a *LOAD_NODE_SET condition.  This 
condition specified that at 0.0-seconds the load was 0.0-lb.  At the termination time, the 
maximum load per node was 2.1825-lb.  Note that 2.1825-lb times 126, which is the number of 
nodes included in the set, equals 275-lb, which is slightly over the maximum load observed in 
the test.  The simulation was conducted with a termination time of 0.1-second.  In this 
simulation, time serves as a scale factor for load, with the maximum loading applied at the end 
time.  Since the tests were performed under quasi-static loading, a fairly long end time was 
selected for the simulation to minimize impulsive loading effects.  The kinetic energy time 
history responses of the various parts within the model were monitored to ensure that a quasi-
static loading was applied.  The model was executed using double precision LS-DYNA v971 and 
required approximately 3 hours clock time to simulate 0.1 second of simulation time.

4.1.2.1 Results for the Laminated Composite Fabric Model
As described previously, the three-point-bend study involved four scaled (same L/W) cases (W= 
0.75-in., 1.0-in., 1.25-in. and 1.5-in.). Since specimens were scaled, only one was chosen for 
simulation and comparison with experiment.  Five individual tests were conducted on single-cell 
specimens with width equal to 1.0-in. and length equal to 4.21-in. as shown in Figure 14(a).  The 
upper- and lower bound test responses from these three-point-bend experiments are plotted with 
the LS-DYNA predicted response in Figure 44.   The model follows the upper bound of the test 
data to 100 pounds.  Then, as damage accumulates in the model and small buckles form, the 
predicted load falls below the lower bound test limit at a displacement of 0.05 inches.    Finally, 
after 0.08-in. of displacement, the model predictions are within the experimental range.  The 
response of the “paper-thin” material with nominal thickness of 0.01-in. is difficult to predict as 
the actual thickness varied due to epoxy variations and glue over-run at the support blocks.  
Parametric studies showed that boundary conditions and thickness variations of only 0.001-in. 
made a significant difference in model results. 

Initial buckling of the top surface on each side of the center support at a load of 160-lb and at a 
corresponding displacement of 0.045-in. is depicted in the fringe plot of Figure 45.  These two 
buckles were created at slightly different times and correspond to the two drops in load of 
approximately 10 pounds seen in Figure 44.  The buckling in the model corresponds to buckling 
observed in the test article in the same region.  The diagonal bands on each side of the center 
support illustrate the high shear loading in the bottom half of the cell.  In three-point bending, the 
top surface of the hexagonal cell is subjected to high compressive loads, while the bottom 
surface is subjected to high tensile loads.  Consequently, the test specimens exhibit initial 
instability in the form of compressive and shear buckling, as shown in Figure 12(a).  The 
deformed specimen is shown in Figure 46 near the end of the simulation at a displacement of 
0.1-in.  The test specimens do not collapse after maximum loading is achieved and exhibit a 
complex unloading response.  No attempt to model the unloading was made.  Finally, Horta [40] 
conducted a study utilizing a Response Surface Methodology (RSM) to assess the influence of 
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parameter uncertainty in the Mat 58 material model on the three-point bend response of a single-
cell.  Unfortunately, the compressive stress range investigated by Horta was much higher than 
what was finally determined to be correct.  Consequently, Horta’s model predicted the three-
point bend response quite well, but was unsuitable for the DEA component simulations, which 
required a lower compressive strength to capture the crushing behavior. 

Figure 44. Test/analysis correlation for three-point-bend test. 

Figure 45. Fringe plot of Von Mises stress for a displacement of 0.045-in. Fringe levels are in 
psi.

Figure 46. Fringe plot of Von Mises stress for a displacement of 0.1-in. 

4.1.2.2 Results for the Piecewise Linear Plasticity Model
The Mat 58 material model was replaced in the existing single-cell model for W=1.0-in. with the 
Mat 24 piecewise linear plasticity model.  As a reminder, the Mat 24 model is based on the 
tensile stress-strain response of the ±45° Kevlar®-129 fabric/epoxy coupons.  The boundary 
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conditions described previously for the single-cell models remained the same.  The angle layup 
within *SECTION_SHELL was removed since the model did not assume definition of a 
composite, but the *INTEGRATION_SHELL cards, setup for Mat 58, remained intact.  Use of 
this isotropic material model led to softer behavior and lower strength of the three-point bend 
response due to a lower input Young’s modulus and a yield stress value of only 7,500-psi for 
both compression and tension.  The response of the single cell is dominated by the tensile 
behavior in the lower half of the cell.  A comparison of the structural response using the two 
material models is shown in Figure 47.  Although Mat 24 performed poorly in correlating with 
the experimental three-point bend test data, it was evaluated further in simulations of the 
dynamic crush response of the DEA components due to the compression-dominated nature of 
those tests.

Figure 47. Test/analysis correlation of single cell using Mat 58 and Mat 24 models in LS-DYNA.

4.1.3 Simulation of the DEA Multi-Cell Component Tests 

Dynamic crush tests of multi-cell honeycomb components were simulated using Mat 58 and Mat 
24 in LS-DYNA to represent the Kevlar®-129 fabric/epoxy cell walls.  Shell-element-based 
models were developed to represent the 59- and 104-cell DEA components whose cells were 
oriented along the loading direction (normal), and the 68-cell DEA component in which the cells 
were canted by 27° with respect to the loading direction (off-axis).  The finite element models of 
these DEA components are shown in Figure 48.  All models consisted of four parts, including an 
impact block used to crush the DEA, a reaction surface placed under the honeycomb, one part for 
plies within the DEA having a thickness of 0.01-in., highlighted in blue, and another part defined 
for double plies with a 0.02-in. thickness, highlighted in green.  Like the single-cell models, the 
*SECTION_SHELL and *INTEGRATION_SHELL cards were used with Mat 58 to specify the 
±45° ply orientations of the composite cell walls. 
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For each simulation, the impact blocks were assigned a vertical impact velocity to match the test 
conditions, which are listed in Table 1.  Gravitational loading was included in all models.  A 
contact definition of *CONTACT_AUTOMATIC_SINGLE_SURFACE was used to represent 
contact between the impact block and the DEA, between the DEA and the reaction surface, and 
for internal contact between elements within the DEA.   A coefficient of friction of 0.35 was 
used and the SOFT parameter in the contact definition was set to 1, for soft-to-hard material
contact.  All nodes on the impact surface were fully constrained using the 
*BOUNDARY_SPC_SET.  The impact surface and impact block were both modeled as 
*MAT_RIGID in LS-DYNA.  The nominal edge length of the shell elements used to create the 
DEA models was 0.25 inches.   Information on all three DEA component models is listed in 
Table 4. 

                                                                (a) 59-cell DEA component.

                                      
                                              (b) 68-cell DEA component, 27° off-axis. 

                
            (c) 104-cell DEA component.                  (d) 104-cell DEA component (isometric view).

Figure 48. Pictures of the shell element DEA component models. 
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Table 4. Multi-Cell DEA component model information 
Property 59-Cell 104-Cell 68-Cell 

Number of nodes 22,161 53,329 27,435 
Number of solid elements 1,920 2,240 1,920 
Number of shell elements 20,096 56,052 25,515 
Number of parts 4 4 4 
Number of Linux-based processors 4 4 4 
Approximate run time, minutes  19 87 22 
Termination time, s 0.06 0.06 0.1 

Prior to presenting the test-analysis results, it is important to specify the calibration metrics used 
to assess the level of agreement.  For the dynamic crush tests of the DEA components, test-
analysis comparisons are presented for four parameters: initial peak acceleration, average 
acceleration over a specified time duration, average crush stress calculated from the average 
acceleration, and peak compaction acceleration.  In addition, plots showing unfiltered test and 
unfiltered predicted acceleration time history responses are provided.  These metrics were 
selected based on the stated design goal for the DEA.  The level of agreement between test and 
analysis is evaluated based on a simple percentage difference approach, where agreement within 
±15% is considered good. 

4.1.3.1 Results for the 59-Cell DEA Component Test
Both Mat 58 and Mat 24 material models were used to represent the Kevlar®-129 fabric/epoxy 
cell walls in the shell-based model of the 59-cell DEA crush test.   The material properties listed 
in Table 2 were used for Mat 58, while the material properties listed in Table 3 were assigned to 
Mat 24.  A plot of experimental and predicted acceleration time history responses are shown in 
Figure 49 and correlation metrics are listed in Table 5.  The acceleration response of the model 
with Mat 58 properties closely follows the test data up to 0.0175-seconds.  The predicted 
acceleration response then exceeds the test data by about 2-3 g’s for 0.015-seconds, which 
slowed the impact block enough to make the predicted compaction peak only 30-g as compared 
to 64.4-g for the test.

In comparison, the model that was executed with Mat 24 accurately predicted the initial peak 
acceleration and the uniform crush response up to 0.015-seconds.  This model demonstrated a 
slight compaction response; however, the magnitude of the predicted acceleration peak during 
compaction was under predicted (27.4-g for the model compared with 64.4-g for the test).  As 
listed in Table 5, the Mat 58 model generally showed better agreement with the test than did Mat 
24, though neither model did a good job of predicting the peak compaction acceleration.  Note 
that average stress values for the tests, shown in Table 5, may differ from those shown in Figure 
21, due to the fact that the calculations in Figure 21 were strain based (0- to 0.6-in/in), whereas 
the values shown in Table 5 are based on time (0- to 0.03-s).  Predicted DEA crush patterns are 
shown in Figure 50 at a time of 0.012-seconds.  At that time in the simulation, the DEA is being 
crushed in a stable and uniform manner and compaction has not been reached.  The two 
deformation patterns are similar and indicate folding of the cell walls, as well as a tendency for 
the outer cells to deform inwardly, towards the center of the component. 
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Figure 49. Comparisons of test and analysis for 59-Cell DEA acceleration-time responses. 

Table 5.  Test-Analysis Correlation Metrics for the 59-Cell DEA Component Models. 
Mat 24 Mat 58 Parameter Test

Value Percentage 
Difference

Value Percentage 
Difference

Initial peak acceleration, g 12.4 12.2 1.6 13.7 -10.5 
*Average acceleration, g 7.1 9.7 -36.6 7.8 -9.9 
Average crush stress, psi 16.9 22.3 -32.0 18.3 -8.3 

Compaction peak, g 64.4 27.4 57.5 30.0 53.4 
   * Average acceleration computed over time interval of 0.0-0.03 seconds. 

            (a) DEA crush patterns using Mat 24                (b) DEA crush patterns using Mat 58 
Figure 50. Comparisons of predicted DEA crush at 0.012-s using Mat 24 and Mat 58.

4.1.3.2 Results for the 104-Cell DEA Component Test
As with the 59-cell DEA component, both material models (Mat 58 and Mat 24) were used to 
represent the Kevlar®-129 fabric/epoxy cell walls in the shell-based model of the 104-cell DEA 
crush test.   Again, the material parameters listed in Table 2 were used for Mat 58, while the 
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material properties listed in Table 3 were assigned to Mat 24.  Experimental and predicted 
acceleration time history responses are plotted in Figure 51 and correlation metrics are listed in 
Table 6.   Both the Mat 58 and Mat 24 models accurately predict the average acceleration and 
crush stress within ±12%; however, neither model does a good job of matching the initial peak 
acceleration.  In addition, the Mat 58 predicted response matches the unloading slope of the 
experimental curve near the end of the pulse.  In comparison, the model that was executed with 
Mat 24 material properties exhibits a slight compaction acceleration starting at 0.035-s that is not 
present in the test data. 

Figure 51. Comparisons of test and analysis 104-Cell DEA acceleration-time responses. 

Table 6.  Test-analysis correlation metrics for the 104-cell DEA component models. 
Mat 24 Mat 58 Parameter Test

Value Percentage 
Difference

Value Percentage 
Difference

Initial peak acceleration, g 26.8 16.8 37.3 21.3 20.5 
*Average acceleration, g 14.3 13.0 9.1 12.7 11.2 
Average crush stress, psi 22.1 20.2 8.6 19.8 10.4 

Compaction peak, g - 18.0 - - - 
*Average acceleration computed over time interval of 0.0-0.03 seconds. 

The correlation metrics listed in Table 6 indicate that neither material model predicts the initial 
peak acceleration of the test response well.   However, over the first 0.03 seconds, the average 
acceleration of the Mat 24 model (13-g) is slightly closer to the test average of 14.3-g and the 
predicted average crush stress is also closer to the test (20.2-psi for the model compared with 
22.1-psi for the test) than for the Mat 58 model.  However, both models predict the uniform 
crushing response of the test within 12%.  After 0.03 seconds, the Mat 24 model deviates from 
the test data and shows a compaction peak, while the Mat 58 remains closer to the test data.  
Thus, visual inspection of the test-analysis comparison plot is as important, in this case, as the 
individual correlation metrics in evaluating the performance of the material model. 
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4.1.3.3 Results for the 68-Cell DEA Component Test
As with the 59- and 104-cell DEA component models, both materials (Mat 58 and Mat 24) were 
used to represent the Kevlar®-129 fabric/epoxy cell walls in the shell-based model of the 68-cell 
off-axis DEA crush test.   Experimental and predicted acceleration time history responses are 
plotted in Figure 52 and correlation metrics are listed in Table 7.  For this simulation, the model 
with Mat 58 properties matches the initial peak magnitude and the uniform crush response within 
±2% of the test.  The acceleration peak at compaction is over predicted by about 6-g (33.9-g 
versus 27.7-g for the test) and occurs approximately two milliseconds before the test peak 
occurs.   In comparison, the model that was executed with Mat 24 material properties over 
predicts the initial peak acceleration by approximately 7-g, but predicts the subsequent reduction 
in acceleration attributed to outer cell buckling, and the compaction response of the component.  
The magnitude of the peak acceleration during compaction is over predicted (29.8-g compared 
with 27.7-g for the test) and the predicted compaction peak occurs earlier in time than the test 
peak.  Early compaction occurs in the simulation with Mat 24 due to global buckling of the cell 
walls.

Figure 52. Comparisons of test and analysis 68-cell canted DEA acceleration-time responses. 

Table 7.  Test-analysis correlation metrics for the 68-cell DEA component material models. 
Mat 24 Mat 58 Parameter Test

Value Percentage 
Difference

Value Percentage 
Difference

Initial peak acceleration, g 9.9 16.8 -69.7 9.7 2.0 
*Average acceleration, g 6.5 7.6 -16.9 6.6 -1.5 
Average crush stress, psi 16.0 18.3 -14.4 16.2 -1.3 

Compaction peak, g 27.7 29.8 -7.6 33.9 -22.4 
             * Average acceleration computed over time interval of 0.0-0.03 seconds. 
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As indicated in Table 7, the Mat 58 model predicts the initial peak acceleration and the uniform 
crushing response of the 68-cell DEA component within ±2%.  Percentage differences for the 
model with Mat 24 are considerably higher.  However, the Mat 24 model predicts the magnitude 
of the compaction peak within 10%. 

4.1.3.4 Discussion of DEA Component Simulation Results
The complex combined loading mechanisms in tension, compression, and shear within the 
Kevlar®-129 fabric/epoxy make it extremely difficult to characterize the crushing response of the 
DEA components.  Tension and compression stress-strain responses and strengths are highly 
dependent on fiber orientation.  Consequently, it is difficult to find a single material model that 
can accurately represent both the linear response to failure of the 0°/90° Kevlar®-129 tensile test 
and the highly nonlinear response of the ±45° Kevlar®-129 tensile test, which exhibited matrix 
failure, scissoring, and high strain-to-failure.  Thus, approximations must be made, and the 
material model chosen will not likely represent all loading conditions equally well.  For example, 
plasticity in compression was simulated in Mat 58 by setting the SLIM parameter to 1.  
However, strain hardening, if present, must be neglected.

The Mat 58 model, which made use of both 0°/90° and ±45° tension test data, as well as an 
estimated compression strength, was able to predict the loading of the three-point bend test.  But, 
the buckling that was predicted by the Mat 58 model was somewhat exaggerated, which resulted 
in larger reductions in load than was measured.  The load-displacement response of the single 
hexagonal cell under three-point bending was not captured when Mat 24 material properties were 
used, since the material stress-strain behavior was generated by inputting the ±45° tensile coupon 
response directly.  While Mat 24 performed well in predicting the crush response of the DEA 
components, one must use caution when characterizing an orthotropic material as isotropic in a 
finite element model.  In these simulations, the defined stress-strain response of the composite 
fabric was obtained from ±45° tensile test data, which gave a reasonable approximation of the 
crushing response. However, if the DEA were subjected to a more complex loading scenario, 
especially involving transverse or combined loading, this material model may not be appropriate. 

Through examination of model data, the compression strength of the Kevlar®-129 fabric/epoxy 
material needs to be accurately characterized in Mat 24 to better capture the crush response. 
Unfortunately, no viable data were collected in compression due to the high degree of difficulty 
in overcoming buckling effects.   Even with these considerations, as observed by comparing 
analysis with test data, both the Mat 24 and Mat 58 models predicted the crushing response of 
the DEA components reasonably well.  If, in addition to crushing, tensile properties along the 
0°/90° fabric direction should become important, as could occur in combined loading cases, the 
Mat 58 model should be more accurate than the isotropic Mat 24 material model. 

4.1.4 Simulation of the Multi-Terrain Impact Tests 

LS-DYNA models were developed to simulate multi-terrain impacts of the composite fuselage 
section fitted with the DEA.  Three different impact surfaces were evaluated: concrete, water, 
and soft soil (sand).  Identical finite element models of the fuselage section and DEA were used 
in each simulation and only the impact medium was changed for the multi-terrain impact 
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simulations.  Originally, the finite element model of the fuselage section was developed in the 
late 1990’s using MSC.Dytran, which is an explicit transient dynamic simulation code similar to 
LS-DYNA.  When the model was converted to LS-DYNA in 2003, there were no easy methods 
to simulate hybrid composite laminates that were composed of two different material systems, in 
this case graphite/epoxy and E-glass/epoxy fabrics.  Consequently, some indirect methods were 
used to allow dissimilar material inputs.  These methods are no longer needed and the model was 
updated using the *PART_COMPOSITE card in LS-DYNA.

General model information regarding details of the multi-terrain simulations can be found in 
Table 8.  Note that a Kevlar®-129 fabric/epoxy sheet was placed beneath all DEA blocks to 
effectively transfer the impact loads into the cell walls.   The rigid impact surface was 
represented using shell elements, whereas the water and sand surfaces were represented using 
solid hexagonal elements.  Shell elements in the fuselage section model represented the inner and 
outer face sheets of the upper fuselage cabin and the DEA components.  Solid elements 
represented the upper cabin foam core and the floor foam core.  Beam elements in the model 
represented the seat tracks that were mounted to the floor of the fuselage and concentrated mass 
elements were used to represent the ten 100-lb lead masses attached to the seat tracks.

Table 8. Fuselage section with DEA model information.
Property Rigid impact Sand impact Water impact 

Number of nodes 126,500 220,305 202,472 
Number of solid elements 14,946 99,618 87,846 
Number of shell elements (total) 129,573 128,180 128,180 
Number of shell elements (DEA) 116,160 117,792 117,792 
Number of beam elements 188 188 188 
Number of concentrated
mass elements 

40 40 40 

Number of parts 12 13 14 
Number of Linux-based processors 4 4 4 
*MAT_24 run time, minutes  271 2366 2797 
*MAT_58 run time, minutes 250 2153 2675 

The model contained 7 different material models.  The material properties of E-glass/epoxy and 
graphite/epoxy fabric materials that were used in the face sheets in the upper fuselage cabin were 
determined from coupon tests and are represented using a bilinear elastic-plastic material model 
with strain hardening.  The 3- and 8-lb/ft3 polyurethane foam cores were modeled as linear 
elastic materials.  The laminate stacking sequences of the multi-layered face sheets were defined 
using *PART_COMPOSITE to specify the material designations of each ply, ply thicknesses 
and orientation, and the number of integration points per ply.   Shell elements used to represent 
the DEA blocks were assigned the same Mat 58 and Mat 24 material properties that were used 
previously to represent the DEA components.  The DEA shell elements had a nominal element 
edge length of 0.5-in.  Additional details regarding the fuselage section model can be found in 
References 34-38.

For the multi-terrain impacts, the selected calibration metrics were average floor-level 
accelerations over specified time durations and plots of acceleration time histories.  The selection 
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of these metrics was guided by the stated design goal for the DEA, which was to limit average 
floor-level accelerations to 20-g or less.  Finally, predicted acceleration results for the multi-
terrain simulations were filtered using an SAE low-pass filter [39]. Test data for the rigid surface 
and sand impact tests are presented unfiltered, whereas the water impact data are filtered using 
and SAE low-pass filter [39].  The multi-terrain impact simulations will be described in the 
following subsections of the paper.

4.1.4.1 Results for the Rigid Surface Impact
The finite element model for simulating impact of the composite fuselage section with DEA onto 
concrete is shown in Figure 53.  Nodes forming the concrete impact surface were fixed in the 
model.  The four DEA blocks were attached to the fuselage model using the 
*TIED_SHELL_EDGE_TO_SURFACE option in LS-DYNA.  A contact algorithm entitled 
*CONTACT_AUTOMATIC_SINGLE_SURFACE was used to define contact interfaces 
between the concrete surface and the DEA, in addition to modeling self-contact within element 
segments of the DEA.   An impact velocity of 38.4-ft/s (460.8-in/s) was prescribed to the 
fuselage section with DEA blocks using the *INITIAL_VELOCITY_GENERATION card in 
LS-DYNA.  A perfectly vertical orientation of the fuselage was assumed.  Two models were 
executed, one in which the DEA blocks were assigned Mat 24 and the second with Mat 58.  The 
simulations were executed with double precision using LS-DYNA version 971 for 0.1-seconds.  
Execution times are listed in Table 8.

Figure 53. Finite element model of the composite fuselage section with DEA impacting concrete. 

Acceleration time history comparisons, shown in Figure 54, are plotted for the left and right 
center, left front, and right rear lead blocks on the floor of the fuselage.  Note that these floor 
positions are depicted in Figure 24(b).  Unfiltered acceleration data is plotted with LS-DYNA 
results, which were filtered using an SAE Channel Filter Class (CFC) 60 low-pass filter [39].  As 
a method of judging the level of correlation, average accelerations were obtained for the 
experimental and analytical responses by calculating the area under the acceleration curves from 
0.0- to 0.05-seconds, and then dividing the area by the pulse duration.  The values of average 
acceleration are listed in the plot labels.  In general, the model executed with Mat 58 under 
predicts the average accelerations of the test by approximately 1-g, while the Mat 24 model over 
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predicts the test by approximately 2-g.  The Mat 24 responses show a large increase in 
acceleration at 0.05-s, as a result of the DEA reaching compaction.  A similar increase is not seen 
in the test data or in the Mat 58 predicted responses.  In general, the Mat 24 responses have 
shorter duration than either the test data or the Mat 58 responses. The Mat 24 material model 
predicted an average DEA crush of 13.7-in., while the Mat 58 model predicted the crush at 14.8-
in.  Experimental results indicated that the DEA blocks crushed between 14.2- to 14.9-in. based 
on double integration of measured floor-level acceleration responses.

      
                          (a) Center left block.                                      (b) Center right block. 

                
                              (c) Front left block.                                          (d) Rear right block 

Figure 54. Test-analysis comparisons from different locations for the rigid surface impact.
Average accelerations were calculated based on a time interval of 0.0- to 0.05-seconds. 

The average accelerations based on the test data ranged from 18.4- to 19.2-g, indicating a high 
level of consistency in the test data, with less than 1-g variability based on floor location.  In 
addition, these results show that the design goal for the DEA (to limit floor level accelerations to 
20-g) was achieved.  The Mat 58 predicted average accelerations ranged from 17.1- to 18.2-g, or 
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generally 1-g lower than the test data.  Conversely, the Mat 24 predicted average accelerations 
ranged from 20.2- to 21.0-g, or generally 2-g higher than the test data. 

4.1.4.2 Results for Water Impact
The same fuselage section and DEA model that was used during the rigid surface impact 
simulation was also executed for water impact using the Arbitrary Lagrange-Euler (ALE) 
formulation in LS-DYNA.  The physical model is shown in Figure 55.  Again, two material 
models were assigned to the DEA, Mat 24 and Mat 58.  The water (red mesh) and air (pink 
mesh) were modeled using 56,700 and 16,200 solid elements, respectively, to simulate the fluid-
structure interaction problem.  The air region above the water was added to accommodate the 
splash that occurs upon contact of the water surface with the DEA blocks located beneath the 
fuselage floor.    The Kevlar® cover sheet was attached to the bottom surface of the DEA blocks 
using the *TIED_SHELL_EDGE_TO_SURFACE option in LS-DYNA.  A perfectly flat attitude 
of the fuselage was also assumed, and an impact velocity of 27.4-ft/s (328.8-in/s) was prescribed 
to the fuselage section and DEA blocks.  Single-point constraints were applied to the 
circumference of the water and air meshes in addition to the bottom of the water.  The 
simulations were executed with double precision using LS-DYNA version 971 for 0.15-seconds.

Figure 55. ALE model of the composite fuselage section with DEA impacting fluid (air/water). 

As shown in Figure 56, the acceleration responses for both the Mat 24 and Mat 58 material 
models of the DEA, filtered with a SAE CFC 60 low-pass filter [39], show good qualitative
correlation with test data, that was filtered using an SAE CFC 180 low-pass filter.  In general, 
both models over predict the initial peak accelerations of the center lead blocks, but capture the 
higher initial peaks of the front and rear accelerometers.  Neither model predicts the second large 
spike in acceleration seen in the center accelerometer locations that is attributed to impact of the 
bottom of the fuselage section with the water. 

For water impact, the average accelerations based on the test data ranged from 6.6- to 9.2-g, 
indicating variability in the test data based on floor location.  Even with the variability, these 
results show that the design goal for the DEA (to limit floor level accelerations to 20-g) was 
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achieved.   The Mat 58 predicted average accelerations ranged from 12.4- to 12.8-g, and the Mat 
24 predicted average accelerations ranged from 12.4- to 12.7-g.  These ranges indicate a high 
degree of uniformity in the predicted floor responses that are not seen in the test data.

      
                                (a) Center left block.                           (b) Center right block. 

      
                              (c) Front left block.                                   (d) Rear right block. 
Figure 56. Acceleration time histories for water impact at locations on the fuselage floor.  
Average accelerations were calculated based on a time interval of 0.0- to 0.02-seconds. 

4.1.4.3 Results for Soft Soil (Sand) Impact
The same fuselage section model with a shell-based representation of the DEA blocks that was 
used during the rigid surface and water impact simulations was also executed for soft-soil 
impact. The finite element model is shown in Figure 57.  The sand was represented by an 
additional 84,672 solid elements that were assigned Mat 5, *MAT_SOIL_AND_FOAM, 
material property.  Information on the characterization of the sand used in this model can be 
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found in Reference 38.  Like the rigid impact model, the fuselage orientation for sand impact was 
assumed to be perfectly vertical.  Tied contacts were prescribed between the Kevlar® sheet and 
the DEA components, and the bottom of the fuselage and the DEA components through the 
*TIED_SHELL_EDGE_TO_SURFACE card in LS-DYNA. An automatic contact algorithm 
was specified to define contact between the sand and the DEA and self-contact within each DEA 
block.  An impact velocity of 37.4-ft/s (448.8-in/s) was prescribed to the fuselage section with 
the DEA components.  The simulation was executed with double precision using LS-DYNA 
version 971 for 0.2-seconds. 

Figure 57. Composite fuselage section model with DEA components and sand. 

In the simulation, the crater depths in the sand ranged between 9- and 10.5-in. for Mat 24 and 
between 9- and 11-in. for Mat 58, and the crush of each DEA component ranged between 5- and 
8-in. for Mat 24 and 3.75- and 5-in. for Mat 58.  In the test, between 7- and 9-in. of penetration 
into the sand was measured, and the amount of DEA crush was estimated to be 6- to 8-in. [5, 38].
Acceleration response comparisons of four different lead block locations on the floor of the 
fuselage are shown in Figure 58.  Predicted acceleration results were filtered using an SAE CFC 
60 low-pass filter [39], while test data is unfiltered.  The plot labels list the average accelerations 
determined for a time interval of 0.0- to 0.05-seconds.  The general analysis trends show good 
correlation with the test.

For the sand impact, the average accelerations based on the test data ranged from 16.9- to 17.8-g, 
indicating a high degree of consistency in the test data, with less than 1-g variation based on 
floor location.  In addition, these results show that the design goal for the DEA (to limit floor 
level accelerations to 20-g) was achieved.  The Mat 58 predicted average accelerations ranged 
from 17.8- to 23-g, and the Mat 24 predicted average accelerations ranged from 17.8- to 21.2-g.  
Both material models over predict the measured acceleration responses by as much as 5-g.  In 
addition, these acceleration ranges indicate a higher degree of variability in the predicted floor 
responses than observed in the test data. 
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                             (a) Center left block.                                 (b) Center right block. 

      
                            (c) Front left block.                                      (d) Rear right block. 

Figure 58. Test-analysis correlation from different locations on the fuselage floor during sand 
impact.  Average accelerations were calculated using a time interval of 0.0- to 0.05-seconds.�

4.1.4.4 Discussion of Multi-Terrain Simulation Results
Both the Mat 24 and the Mat 58 material models performed well in predicting floor-level 
acceleration responses of the vertical drop tests onto multi-terrain.  The Mat 58 model showed 
slightly better comparison with test data for the rigid surface impact, while the Mat 24 model 
compared better with the sand test.  Since the DEA blocks experience very little crushing during 
water impact, the two material models provided nearly equivalent results for this impact surface.  
It is anticipated that both models would provide similar results, except for cases involving 
combined loading where the orthotropic material behavior of the fabric becomes important. 

4.2 Solid-Element Modeling of the DEA 

Solid-element-based finite element models of the dynamic crush tests of the DEA components 
were developed for execution in LS-DYNA version 971.  Initially, solid elements were selected 
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for the simulations as a means of lowering execution times, compared with shell-element-based 
simulations.  However, it was understood that the use of solid-element-based models precluded 
the accurate prediction of deformation modes observed in the actual DEA specimens, which 
would require detailed shell-element-based models.  The major challenges of this simulation 
study were to define a material model that would enable accurate prediction of the dynamic 
crushing response of the normal (cells aligned with the loading direction) and off-axis (cells 
canted with respect to the loading direction) DEA components and to predict both the uniform 
crush and compaction responses of the DEA components.  Two different material property 
definitions available in LS-DYNA were assigned to the solid elements, including Mat 63 
(*MAT_CRUSHABLE_FOAM), and Mat 26 (*MAT_HONEYCOMB).  Solid-element-based 
models of the three DEA components were developed and executed using both material 
definitions.  In addition, the fuselage section model, previously described in Section 4.1.4, was 
updated with solid element representations of the DEA blocks and the multi-terrain impact 
simulations were executed in which both material models were assigned to the energy absorbers. 

4.2.1 Material Model Development 

The material property definitions in LS-DYNA that were selected to represent the DEA were 
*MAT_CRUSHABLE_FOAM (Mat 63) and *MAT_HONEYCOMB (Mat 26) [21].  A 
description of each material model is provided in the following subsections. 

4.2.1.1 Mat 63 Crushable Foam Material Model
This material model is intended to represent the properties of isotropic crushable foam and 
includes optional damping and a tensile cutoff stress.  Unloading is fully elastic to the tension 
cutoff stress and reloading follows the loading curve.  Tension is represented using an elastic-
perfectly-plastic response at the tension cutoff value [21].  Mat 63 allows input of a user-defined 
curve representing the yield stress versus volumetric strain of the material.  It is important to note 
that volumetric strain is defined as 1 minus the relative volume, which is the ratio of the current 
volume to the initial volume.  Thus, as crushing initiates, the volumetric strain is low and 
increases as crushing progresses.  The input values used in the Mat 63 material model are listed 
in Table 9. 

Table 9. Mat 63 input parameters. 
Parameter  Description Value 

RO Material density 2.182e-6 lb-s2/in4

E Young’s modulus 600 psi 
PR Poisson’s ratio 0.05 

LCID Identification number of user input 
stress-strain response 

8

TSC Tensile stress cutoff -5 psi 
DAMP Damping coefficient 0.05 

Input load curves (LCIDs) representing the stress versus volumetric strain responses of the 59- 
and 104-cell DEA were calculated from the filtered acceleration data obtained from the 
respective component tests.  The stress was determined by adding 1 to the filtered acceleration 
data in g’s (to account for gravitational loading), then multiplying the sum by the weight of the 
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impact block, and then dividing by the cross-sectional area of the DEA.  The strain was 
calculated by double integration of the raw acceleration response to obtain displacement, which 
was then divided by the initial height of the DEA component.  Note that this strain calculation 
represents the change in height of the DEA specimen, which is only one component of the 
volumetric strain.  However, given a low value of Poisson’s ratio (PR=0.05), this approach 
provides a reasonable approximation of the volumetric strain.

The raw stress-strain data for the 59- and 104-cell DEA components are plotted in Figures 59(a) 
and (b), respectively, along with the corresponding Mat 63 input curves.  Since the 104-cell DEA 
did not reach the compaction phase during the test, the Mat 63 curve was approximated to have 
the same response as the 59-cell DEA after a strain of approximately 0.8-in/in.  For this 
simulation study, the two Mat 63 curves based on the 59- and 104-cell DEA test data were input 
as user-defined load curves (LCIDs) in the DEA models.  Finally, it should be noted that the 
unloading curve for this material definition is elastic; however, the experimental responses of the 
59- and 104-cell DEA components, shown in Figure 59, indicate that the actual unloading curves 
are hysteretic. 

           
         (a) Mat 63 input curve for 59-cell DEA.          (b) Mat 63 input curve for 104-cell DEA. 

Figure 59. Mat 63 input load curves derived from the 59- and 104-cell DEA test data. 

4.2.1.2 Mat 26 Honeycomb Material Model 
The Mat 26 material model is used to represent honeycomb and foam materials with anisotropic 
behavior [21].  Nonlinear elastic-plastic material responses are defined separately for normal and 
shear stresses and these input curves are considered to be fully uncoupled.   The behavior of the 
material before compaction is orthotropic, where the components in the stress tensor are 
uncoupled.  Unloading is based on the interpolated Young’s modulus, which must provide an 
unloading tangent that exceeds the loading tangent.  The input values used in the Mat 26 material 
model for both the normal and off-axis DEA components are listed in Table 10.  One difference 
between Mat 63 and Mat 26 is that Young’s modulus (E) has been increased from 600-psi for 
Mat 63 to 6,000-psi for Mat 26.  The actual Young’s modulus as measured from test data is 600-
psi.  However, when this value is used in Mat 26, negative volume errors occurred in the 
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simulation, indicating that some elements have inverted due to the low value of stiffness.  
Consequently, the value of Young’s modulus used in Mat 26 was artificially increased to avoid 
this problem. 

Table 10. Mat 26 input parameters. 
ValueSymbol  Description 

Normal
DEA

Off-axis
DEA

RO Material density, lb-s2/in4 2.182e-6  2.182e-6 
E Young’s modulus of fully compacted honeycomb, psi 6000  6000 

PR Poisson’s ratio 0.05 0.05 
SIGY Yield stress of fully compacted honeycomb, psi 22.0  22.0 

VF Relative volume at which honeycomb is fully compacted 0.135 0.135 
MU Damping coefficient 0.065 0.065 

BULK Bulk viscosity flag, if equal 0.0, bulk viscosity is not used 0.0 0.0 
LCA Load curve id for stress sigma-aa versus volumetric strain SF*=0.1 SF*=0.1 
LCB Load curve id for stress sigma-bb versus volumetric strain SF=0.1 SF=0.1 
LCC Load curve id for stress sigma-cc versus volumetric strain SF=1.0 SF=1.0 
LCS Load curve id for shear stress versus volumetric strain No input No input 

LCAB Load curve id for stress sigma-ab versus volumetric strain SF=0.45 SF=0.45 
LCBC Load curve id for stress sigma-bc versus volumetric strain SF=0.45 SF=0.45 
LCCA Load curve id for stress sigma-ca versus volumetric strain SF=0.45 SF=0.45 
LCSR Load curve id for strain rate effects (optional) No input No input 
EAAU Elastic modulus Eaau in uncompressed configuration, psi 60.0 60.0 
EBBU Elastic modulus Ebbu in uncompressed configuration, psi 60.0 60.0 
ECCU Elastic modulus Eccu in uncompressed configuration, psi 566.7 566.7 
GABU Shear modulus Gabu in uncompressed configuration, psi 135.0 135 
GBCU Shear modulus Gbcu in uncompressed configuration, psi 270.0 270.0 
GCAU Shear modulus Gcau in uncompressed configuration, psi 270.0 270.0 
AOPT Material axes option (equal 2.0 – globally orthotropic 

material axes determined by vectors a and d)
2.0 2.0 

MACF Material axis change flag (default=1, no change) 1.0 1.0 
XP YP ZP Coordinates of point p for AOPT = 1 No input No input 
A1 A2 A3 Coordinates of vector a for AOPT = 2 1, 0, 0 0, -.454, .891 
D1 D2 D3 Coordinates of vector d for AOPT = 2 0, 1, 0 1, 0, 0 

TSEF Tensile strain at element failure (element will erode) No input No input 
SSEF Shear strain at element failure (element will erode) No input No input 

*SF is a Scale Factor applied to the primary input load curve (LCC) 

In this study, the input stress-strain curves are based on volumetric strain.  The user of this 
material model is cautioned in Reference 21 to ensure that each input curve contains the exact 
same number of points and this recommendation was followed.  The input load curves for Mat 
26 were, once again, based on the stress-strain responses of the 59- and 104-cell DEA 
components, as shown in Figures 60(a) and (b), respectively.  Unlike the input curves for Mat 63 
which begin at zero stress and zero strain, each of the two Mat 26 input curves begins with a 
point having negative strain and positive stress and the second point has a corresponding value of 
positive strain and the same value of positive stress.  This approach for inputting the load curves 
for Mat 26 is recommended in Reference 21.
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               (a) Mat 26 input curve for 59-cell DEA.      (b) Mat 26 input curve for 104-cell DEA. 

Figure 60. Mat 26 input curves for the 59- and 104-cell DEA components. 

The Mat 26 input curves, shown in Figure 60, correspond to the load curve for sigma-cc 
(LCC listed in Table 10) versus volumetric strain, where cc represents the local vertical 
direction.  Since no experimental data were available, load curve inputs for the two primary 
transverse directions (aa and bb) and for the shear directions (s, ab, bc, ca) were based on 
engineering judgment.  The load curves in these directions were assumed to be scaled 
versions of sigma-cc (LCC), with the scale factors listed in Table 10.  Finally, Mat 26 allows 
the user to define directions for the local material axis system using the AOPT parameter 
[21].  For these simulations, AOPT was set to 2.0 indicating globally orthotropic behavior 
with material axes determined by vectors a and d, such that a x d defines the primary 
material direction.  For the 59- and 104-cell DEA components, the vectors were chosen such 
that the primary material direction (cc) is oriented vertically, as illustrated in Figure 61(a).  
For the 68-cell DEA, the vectors were defined such that the primary material axis for LCC 
was canted 27° with respect to the vertical direction, as illustrated in Figure 61(b).

                          (a) Normal DEA.                                      (b) Off-axis DEA. 
Figure 61. Schematic drawings illustrating local material axis definitions for normal and off-

axis DEA components. 
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4.2.2 Simulation of the DEA Multi-Cell Component Tests 

The 59-, 104-, and 68-cell DEA component models are shown in Figure 62.  Each model consists 
of three main parts: the DEA, which is represented using hexagonal solid elements with element 
formation 1 (default constant stress solid element); an impact surface, located just beneath the 
bottom surface of the DEA, that is constructed of quadrilateral shell elements; and, a rigid block 
that is constructed of solid hexagonal elements that are assigned a *MAT_RIGID material 
property.  Each DEA model had a nominal element edge length of 0.5-in., which was determined 
based on a prior mesh discretization study.  The impact surface was included to prevent element 
deformation below the bottom surface of the DEA, which was especially needed for the 68-cell 
DEA.  All edge nodes on the impact surface were fully constrained.  The same *MAT_RIGID 
material property used for the impact block was assigned to the impact surface.  The density of 
the rigid material was chosen such that the weight of each rigid block matched the test 
conditions, which are listed in Table 1.  Likewise, nodal velocities were assigned to the block to 
match the test conditions.  For all models, a segment-based contact definition of 
*CONTACT_AUTOMATIC_SINGLE_SURFACE was used with a coefficient of friction of 
0.35.  This contact definition essentially prohibits any node from penetrating any surface and is 
used to represent contact between the impact block and the DEA, the DEA and the impact 
surface, and self-contact between elements within the DEA.  Finally, the DEA component 
simulations were executed to include gravity as a body load. 

   
         (a) 59-cell model.                  (b) 104-cell model.                       (c) 68-cell model. 

Figure 62. Solid element models of three DEA components. 

Single Point Constraints (SPCs) were assigned to the bottom nodes of each solid element DEA 
model to represent fixed boundary conditions used in the test.  For the 59- and 104-cell DEA 
components, the fully deployed DEA was held in place using double sticky back tape on the 
impact surface of the drop tower.  For the 68-cell DEA component, the bottom of the fully 
deployed DEA was attached to a plate using potting material.  To represent these conditions, 
variations in the SPCs were studied and the best results were found using fixed constraints in 
translation and rotation.  Consequently, the results shown in this paper are for these conditions.  
Nodal constraints were input using the *BOUNDARY_SPC_SET card in LS-DYNA.

Two different material models, Mat 63 and Mat 26 were evaluated.  For the 59-cell DEA, input 
curves to Mat 63 and Mat 26 were based on the 59-cell DEA stress-strain responses, plotted in 
Figures 59(a) and 60(a), respectively.  Likewise, for the 104-cell DEA, input curves were based 
on the 104-cell DEA stress-strain responses, plotted in Figures 59(b) and 60(b).  Both material 
models, along with both sets of input curves, were evaluated for the 68-cell DEA to determine 
which material model best predicted the actual response.
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Specific details of the three DEA component models are listed in Table 11.  Comparisons of the 
simulation predictions with the test data are made for each DEA component to evaluate the 
effectiveness of the two material models in predicting the DEA response.  In each case, raw 
experimental data are plotted with predicted responses that were filtered using an SAE CFC 180-
Hz low-pass filter [39].  In addition, four correlation metrics were selected to assess the level of 
agreement between test and analysis for the DEA components.  These metrics are initial peak 
acceleration, average acceleration for a time interval of 0.0-0.03 seconds, average crush stress 
based on average acceleration, and peak acceleration during compaction.

Table 11. Details of the solid-element models of the DEA components. 
Property 59-Cell 104-Cell 68-Cell 

Number of nodes 13,354 31,330 15,370 
Number of solid elements 10,892 27,776 12,928 
Number of shell elements 361 225 160 
Number of parts 3 3 3 

4.2.2.1 Results for the 59-cell DEA Component Test
Test-analysis comparisons for the 59-cell DEA component are shown in Figures 63(a) and (b) for 
two different material models, Mat 63 and Mat 26, respectively.  For both material models, the 
input stress-strain curves were based on the 59-cell DEA response.  The correlation metrics for 
each simulation are listed in Table 12.  The results indicate that both material models are able to 
predict the average acceleration and crushing stress within ±3%.  However, results for initial and 
peak compaction accelerations are not as good.  The Mat 63 predicted response indicates an 
increase of acceleration near the end of the pulse, representing compaction of the DEA.  
However, the magnitude of the compaction response is under predicted (49.3-g for the 
simulation versus 64.4-g for the test).  The timing of the Mat 63 compaction peak occurs 
approximately 0.002-s later in time than the test peak.  As shown in Figure 63(b), the model 
executed using Mat 26 over predicted the peak acceleration seen during compaction of the DEA 
(73.8-g for the simulation versus 64.4-g for the test).  However, the timing of the compaction 
peak closely matched the test.

                            
                  (a) Model executed using Mat 63.              (b) Model executed using Mat 26. 

Figure 63. Test-analysis comparisons for the 59-cell DEA component. 
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Table 12. Test-analysis correlation metrics for the 59-cell DEA component 
Model (Mat 63) Model (Mat 26 Parameter Test 

Value Percentage 
Difference

Value Percentage 
Difference

Initial peak acceleration, g 12.4 8.7 29.8 8.0 35.5 
*Average acceleration, g 7.1 6.9 2.8 7.1 0.0 
Average crush stress, psi 16.9 16.5 2.4 16.9 0.0 

Compaction peak, g 64.4 49.3 23.5 73.8 -14.6 
*Average acceleration calculated for a time interval of 0.0-0.03 seconds. 

4.2.2.2 Results for the 104-cell DEA Component Test
Test-analysis comparisons for the 104-cell DEA component are shown in Figures 64(a) and (b) 
for two different material models, Mat 63 and Mat 26, respectively, and correlation metrics are 
listed in Table 13.  Note that no data are shown in Table 13 for peak compaction acceleration, 
since the experimental and analytical responses did not exhibit this behavior.  The results 
indicate that both material models are able to predict the uniform crushing response of the test 
within ±4%.  No significant trends are observed in the correlation metrics to indicate significant 
differences based on material model.  However, one major difference between the simulation 
responses and the test data is that both of the analytical curves exhibit a sudden drop in the 
acceleration response at approximately .05-seconds, whereas the experimental response shows a 
more gradual reduction in acceleration. 

           
    (a) Model executed using Mat 63.             (b) Model executed using Mat 26. 
Figure 64. Test-analysis correlation results for the 104-cell DEA component. 

Table 13. Test-analysis correlation metrics for the 104-cell DEA component 
Model (Mat 63) Model (Mat 26 Parameter Test 

Value %Difference Value %Difference 
Initial peak accel., g 26.8 15.5 42.2 15.7 41.4 

*Average acceleration, g 14.3 13.8 3.5 14.2 0.7 
Average crush stress, psi 22.1 21.3 3.6 21.9 0.9 

*Average acceleration calculated for a time interval of 0.0-0.03 seconds. 
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4.2.2.3 Results for the 68-cell Off-Axis DEA Component Test
Test-analysis comparisons for the 68-cell DEA component are shown in Figures 65(a) and (b) for 
two different material models, Mat 63 and Mat 26, respectively, and correlation metrics are listed 
in Table 14.  Both input curves based on the 59- and 104-cell stress-strain curves were evaluated 
in Mat 63 and Mat 26, and the predicted responses were compared with test data.

                  
                   (a) Model executed using Mat 63.            (b) Model executed using Mat 26. 

Figure 65. Test-analysis correlation results for the 68-cell DEA component.

Table 14. Test-Analysis Correlation Metrics for the 68-Cell DEA Component 
 Input Load Curve Based on the 59-cell Test Data 

Parameter Test Mat 63 
59-Cell Input 

Mat 63 
104-Cell Input 

Mat 26 
59-cell Input 

Mat 26 
104-Cell Input 

Value %Error Value %Error Value %Error Value %Error 
Initial peak 

acceleration, g 
9.9 6.2 37.4 7.4 25.3 7.1 28.2 8.7 12.1 

*Average
acceleration, g 

6.5 6.0 7.7 8.0 -23.1 5.7 12.3 7.7 -18.5 

Average crush 
stress, psi 

16.0 14.9 6.9 19.2 -20.0 14.3 10.6 18.5 -15.6 

Compaction
peak, g 27.7 29.4 -6.1 10.3 62.8 51.8 -87.0 11.0 60.3

*Average acceleration calculated for a pulse duration of 0.0-0.03 seconds. 

Test-analysis results, shown in Figure 65, indicate that both material models, Mat 63 and Mat 26, 
are generally capable of predicting the complex response of the 68-cell DEA when the 59-cell 
DEA stress-strain response is used as input.  Neither model captures the initial 10-g peak or the 
subsequent 5-g reduction in acceleration, which is attributed to buckling of perimeter cells in the 
component.  Instead, the predicted responses show a gradual increase in acceleration from initial 
peaks ranging from 6.2- to 7.1-g until compaction.  The correlation metrics listed in Table 14 
indicate that both material models are capable of predicting the average acceleration and crush 
stress within ±13%, when the 59-cell stress-strain response in used.  Also, both the Mat 63 and 



 61�

Mat 26 models predict compaction of the DEA when the 59-cell stress-strain responses are input.  
The Mat 63 model predicts a peak compaction acceleration of 29.4-g, compared with 27.7-g for 
the test.  The Mat 26 model over predicts the peak compaction acceleration (51.8-g for the 
simulation compared with 27.7-g for the test).  However, the Mat 26 model demonstrates better 
prediction of the timing of the compaction peak than does Mat 63.  In general, the material 
models that were executed using the 104-cell stress-strain input responses over predict the 
average acceleration and either demonstrate no compaction (Mat 63) or only a minor compaction 
response (Mat 26).

4.2.2.4 Discussion of Material Model and DEA Component Simulation Results
Two material models, Material Type 63 (*MAT_CRUSHABLE_FOAM) and Material Type 26 
(*MAT_HONEYCOMB), were selected for evaluation in the solid-element-based models of the 
DEA components.  As documented in Reference 21, LS-DYNA offers many additional material 
models that would be appropriate for representing the behavior of the DEA including Mat 83 
(*MAT_FU_CHANG_FOAM), Mat 126 (*MAT_MODIFIED_HONEYCOMB), and Mat 142 
(*MAT_TRANSVERSELY_ANISOTROPIC_CRUSHABLE_FOAM).  Generally, these models 
were developed to represent the crushing response of isotropic, orthotropic, and anisotropic 
foams including hysteretic unloading and strain rate effects.   Mat 63 was selected for the present 
study because it is the simplest, most straightforward material model and has demonstrated good 
performance in past simulations, even under severe element deformations.  Mat 26 was selected 
over Mat 126 based on prior research documented in Reference 41 in which models executed 
with Mat 126 developed problems with contact penetration, severe element distortion, and high 
values of hourglass energy in comparison with the total energy of the simulation.  Mat 142 is a 
relatively new material model that was added to LS-DYNA for modeling an extruded foam 
material that is transversely isotropic, crushable, and of low density with no significant Poisson’s 
effect.  This material was used successfully, as an alternative to Mat 26 and Mat 126, to represent 
the off-axis crushing response of anisotropic foam, as documented in Reference 63.  Future work 
may include evaluation of additional material models in LS-DYNA in predicting the DEA 
response.

During the development of the Mat 26 material model, two parameters, VF (the relative volume 
at which the honeycomb is fully compacted) and MU (the damping coefficient), were found to 
control the compaction response of the simulation.  Parameter studies were conducted in which 
VF and MU were varied independently using the 68-cell DEA model with 59-cell stress-strain 
input curves, with results shown in Figures 66(a) and (b), respectively.  For the plot of Figure 
66(a), VF was varied independently with values ranging from 0.1 to 0.15 in increments of 0.01, 
while MU was held constant at 0.065.  Based on this plot, the selection of VF strongly 
determines the shape and magnitude of the acceleration response during compaction, as well as 
timing of the peak acceleration.  Likewise, a separate parameter study was performed in which 
MU was varied independently with values of 0.05, 0.1, and 0.15, while VF was held constant at 
0.135.  The results indicate that changes in MU also influence the magnitude of the peak 
acceleration during compaction, with MU=0.05 providing the highest magnitude response.  
Based on the parametric studies, the values of VF (0.135) and MU (0.065) were selected to 
provide correlation with the 59-cell DEA response using Mat 26, as listed in Table 10. 
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                        (a) Variations in VF.                                           (b) Variations in MU. 

Figure 66. Influence of variations in VF and MU on the 68-cell DEA predicted response. 

One reason for evaluating solid-element-based models of the DEA was to demonstrate improved 
run times as compared with the shell-element-based models.  All solid element DEA simulations 
were executed in double precision using LS-DYNA version 971 Shared Memory Processor 
(SMP) on a single Linux processor with a prescribed termination time of 0.1-seconds.  Table 15 
lists the run times for each simulation, which are comparable to the run times for the shell 
element simulations of the DEA components, listed in Table 4.  However, a true comparison of 
run times is not feasible given that each solid element model contained considerably fewer 
elements than did their shell element counterparts.  Also, solid elements were larger in size with 
a nominal element edge length of 0.5-in. compared with 0.25-in. for the shell elements.  Finally, 
shell-element simulations were executed for 0.06-s, compared with 0.1-s for the solid element 
models.

Table 15. Run times for solid-element DEA simulations. 
Parameter 59-cell DEA 104-cell DEA 68-cell DEA 

w/59-cell input 
68-cell DEA 

w/104-cell input 
 Mat 63 Mat 26 Mat 63 Mat 26 Mat 63 Mat 26 Mat 63 Mat 26 

Run time 
required,
minutes 

25 31 72 63 33 39 30 36

In general, the results of the solid element simulations of the DEA components indicate that both 
material models, Mat 63 and Mat 26, are capable of predicting the uniform crushing response of 
the DEA.  In addition, both models were able to predict compaction of the DEA when input load 
curves were based on the 59-cell DEA response.  In comparison, poor correlation was seen when 
the 104-cell stress-strain responses were input to Mat 63 and Mat 26 to predict the behavior of 
the 68-cell off-axis DEA, as shown in Figure 65.  The 104-cell DEA component has a 20% 
higher average crush stress than the 59-cell DEA component (22.0-psi for the 104-cell DEA 
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versus 17.6-psi for the 59-cell DEA, based on the data shown in Figure 21).  Consequently, for 
two identical impact simulations in which the compressive response of one energy absorber is 
based on the 104-cell DEA response and the second is based on the 59-cell DEA response, a 
greater amount of the incident kinetic energy is converted to internal (strain) energy for an 
equivalent amount of crush stroke for the energy absorber whose response is defined by the 104-
cell DEA, leaving less energy for additional stroke or compaction.   Both material models (Mat 
63 and Mat 26) and input curves (59- and 104-cell DEA responses) will continue to be evaluated 
in subsequent solid-element simulations of the DEA for multi-terrain impact. 

Finally, it is important to note that the use of stress-strain responses, which were determined 
from acceleration time histories of the 59- and 104-cell DEA components, to define the material 
behavior of the DEA in Mat 63 and Mat 26 is not the ideal approach.  The fact that the two DEA 
components exhibited significantly different responses indicates that the derived stress-strain 
curves do not represent a “material” behavior.  Likely, these curves, shown in Figures 59 and 60, 
also contain geometric effects based on upper surface curvature and collapse of circumferential 
cells.  Unfortunately, no quasi-static crush test data were available to establish an effective 
material response of the DEA in compression.  It is also important to note that repeated tests of 
multiple DEA components of similar configuration were not conducted.  An average crush stress 
of 19.8-psi was estimated by averaging the individual crush stress values obtained for the two 
normal DEA components (22.0-psi for the 104-cell component and 17.6-psi for the 59-cell 
component, based on the data shown in Figure 21).

4.2.3 Simulation of the Multi-Terrain Impact Tests 

Modifications were made to the fuselage section model, shown in Figure 53, by removing the 
shell-element-based representation of the DEA blocks and adding solid hexagonal elements in 
their place.  This change significantly reduced the number of shell elements in the model and 
increased the number of solid elements.  The same fuselage section model was used for each 
multi-terrain impact simulation, and this model contained: 51,860 nodes; 13,413 Belytschko-
Tsay shell elements; 40,000 hexagonal solid elements of which 28,128 elements represent the 
DEA blocks; 188 beam elements; 40 element masses; 12 parts; and, 7 material property 
definitions.  For each multi-terrain simulation, physical representations of the impact media were 
added, as described in the following subsections.  For the rigid surface and sand impact tests, 
comparisons of unfiltered acceleration data are made with predicted responses that were filtered 
using an SAE low-pass filter [39].  For the water impact case, both test data and predicted 
responses were filtered.  Average acceleration was selected as the correlation metric for these 
simulations.

4.2.3.1 Results for the Rigid Surface Impact
A picture of the rigid surface impact simulation model is shown in Figure 67.  With the 
exception that solid elements were used to represent the DEA blocks, the fuselage section model 
is otherwise the same as the previous model described in Section 4.1.4.  An impact surface 
consisting of an additional 3,025 quadrilateral shell elements was added to the model and it was 
assigned a *MAT_RIGID material property.  All nodes used in forming the impact surface were 
fixed using SPCs.  Finally, a *CONTACT_AUTOMATIC_SINGLE_SURFACE was designated 
for the simulation with a coefficient of friction of 0.1. 
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                          (a) Front view.                                                (b) Three-quarter view. 

Figure 67. Composite fuselage section model with curved bottom surface of the DEA. 

As seen in Figure 67, the DEA blocks were configured to incorporate the 18-in. radius of 
curvature of the bottom surface.  Both Mat 63 and Mat 26 material models were assigned to the 
DEA bocks with input stress-strain curves based on the dynamic crush responses of the 59- and 
104-cell DEA components, as shown in Figures 59 and 60, respectively.  The models were 
executed using LS-DYNA version 971, SMP, on a single Linux-based processor.  Given a 
termination time of 0.15-seconds, the model with Mat 63 required 480 minutes and the model 
with Mat 26 required 540 minutes of clock time to achieve normal completion.  These simulation 
times are considerably lower than those of the comparable shell-element based models, which 
are listed in Table 8. 

Test-analysis results are shown in Figures 68-71 for the left and right center accelerometers, the 
front left accelerometer, and the right rear accelerometer, respectively.  These floor-level 
accelerometer locations are shown in Figure 24(b).  As a method of judging the level of 
correlation, average accelerations were obtained for the experimental and analytical responses by 
calculating the area under the acceleration curves from 0.0- to 0.05-seconds, and then dividing 
the area by the time interval (0.05-seconds).  The 0.05-second pulse duration was selected as the 
minimum value based on all of the simulation results.  The average accelerations determined for 
each curve are listed in the plot legends in Figures 68 through 71.  Based on this assessment, the 
test responses are fairly consistent with average accelerations ranging from 18.4- to 19.2-g.
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  (a) Model executed using Mat 63.                 (b) Model executed using Mat 26. 

Figure 68. Test-analysis comparisons of the rigid surface impact test (left center accelerometer). 

             
  (a) Model executed using Mat 63.                   (b) Model executed using Mat 26. 

Figure 69. Test-analysis comparisons of the rigid surface impact test (right center accelerometer). 

In general, average accelerations obtained from the models in which input stress-strain curves 
were based on the 59-cell response were consistently lower than the test data by approximately 
1-g, with predicted values ranging from 17.4- to 18.8-g.  Regardless of material model (Mat 63 
or Mat 26), when the input stress-strain response curves are based on the 104-cell test data, the 
average accelerations are too high, ranging from 23.3- to 23.7-g, and the predicted pulse 
durations are too short as compared with the test data.  Longer pulse durations are seen when the 
59-cell stress-strain response curves are input; however, even these responses have a shorter 
duration than the experimental curves. 
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  (a) Model executed using Mat 63.                 (b) Model executed using Mat 26. 

Figure 70. Test-analysis comparisons of the rigid surface impact test (front left accelerometer). 

        
  (a) Model executed using Mat 63.                   (b) Model executed using Mat 26. 

Figure 71. Test-analysis comparisons of the rigid surface impact test (right rear accelerometer). 

4.2.3.2 Results for Water Impact
The Arbitrary Lagrange-Euler (ALE) method, available in LS-DYNA, was used to simulate the 
fuselage section impact test into water.  The fuselage section with DEA blocks represented the 
Lagrangian portion of the model, while a cylindrical-shaped mesh represented the Eulerian 
portion, as shown in Figure 72.  Note that the fuselage section model shown in Figure 72 is the 
same model used for the rigid surface impact.  In this case, the rigid surface was removed, and 
two Euler meshes were added representing the water and the air above the water.  A total of 
72,900 additional solid elements are included in this model to represent the air and water.  
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                               (a) Complete model.                        (b) Front view without air. 
Figure 72. ALE models of fuselage section with DEA impact into water. 

Predicted responses are compared with test data for four different floor locations in Figures 73-
76 for simulations in which the DEA blocks were assigned Mat 63 and Mat 26 with two different 
input curves, one based on the 59-cell DEA component crush data and the other based on the 
104-cell test data.   Comparisons are made with the inboard (IB) accelerometers located on the 
left and right center lead blocks, and from the left front and right rear blocks.  These 
accelerometer locations are shown in Figure 30(b).  As was done for the rigid surface impact, 
average accelerations were determined for the test and the analytical responses, based on a time 
interval of 0.02-s.  This duration was selected as being representative of the amount of time 
needed for the DEA blocks to completely break through the surface of the water.  The values of 
average acceleration are shown in the legends of each plot.

         
                       (a) Mat 63 model of DEA.                  (b) Mat 26 model of the DEA. 

Figure 73. Test-analysis results for water impact at the left center IB location. 
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                       (a) Mat 63 model of DEA.                           (b) Mat 26 model of the DEA. 

Figure 74. Test-analysis results for water impact at the right center IB location. 

        
                       (a) Mat 63 model of DEA.                      (b) Mat 26 model of the DEA. 

Figure 75. Test-analysis results for water impact at the left front location. 

As mentioned previously, the water impact test was different from the rigid surface and sand 
impact tests in that the floor-level acceleration responses differed based on location.  For 
example, the accelerometers located on the center blocks recorded an initial 15-g pulse of 0.02-s 
duration. At about 0.05-s, these same accelerometers recorded a second spike in the response, of 
equal or larger magnitude than the first, which was attributed to impact of the bottom surface of 
the floor with the water.  Conversely, the front left and right rear accelerometers recorded a high 
magnitude (36-g) pulse of 0.01- to 0.015-s duration.  No strong secondary impact was observed.  
All of the solid-element models performed well in simulating these different test responses.  Also 
of note, prior trends in the rigid surface simulations indicated differences in average acceleration 
based on which stress-strain input curves were used.  These differences are no longer seen in the 
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water impact simulation.  As mentioned previously, very little crushing of the DEA was 
measured during the water impact test and the curved shape of the DEA blocks played an 
important role in lowering the floor-level accelerations.  Based on these factors, the importance 
of the material response of the DEA is downplayed for this terrain. 

        
                       (a) Mat 63 model of DEA.                        (b) Mat 26 model of the DEA. 

Figure 76. Test-analysis results for water impact at the right rear location. 

4.2.3.3 Results for the Soft Soil (Sand) Impact
The soft soil (sand) impact test of the fuselage section was simulated using LS-DYNA in which 
the DEA blocks were represented using solid elements.  A picture of the fuselage, DEA, and 
sand model is shown in Figure 77.  The same fuselage section model that was used in the rigid 
and water surface simulations was used for this simulation.  As with the rigid surface and water 
impact simulations, the DEA blocks were assigned two different material properties, Mat 63 and 
Mat 26, with two different input curves based on the 59- and 104-cell DEA crush test responses.

The sand was modeled using 84,672 hexagonal solid elements with material properties obtained 
from a model that was developed in 2001 for correlation with test data obtained in a drop test 
onto a similar type of sand [27].  Initially, pre-test predictions of the soft soil (sand) impact test 
were generated in LS-DYNA using a Mat 63 material model to represent the soil, as documented 
in Reference 38.  However, test-analysis correlation results indicated that the Mat 63 model 
retains too much elastic energy, which is released to produce excessive rebound.  Another 
shortcoming of the Mat 63 model is that the unloading curve cannot be specified independently, 
and Poisson’s ratio is effectively zero.  A soft soil may initially load with a relatively small 
modulus, while unloading may require a very large modulus.  The tensile cutoff stress must be 
nonzero to prevent element failure under small element strains.  Consequently, other soil models 
were investigated and the Mat 5 (*MAT_SOIL_AND_FOAM) model was chosen for additional 
analysis due to its simplicity and added flexibility [21].  The Mat 5 model has a shear failure 
surface that is pressure dependent, which is a basic property of geo-materials, and unlike Mat 63 
allows for a separate unloading bulk modulus.  In addition, the Mat 5 model is more fluid-like 
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under many conditions, which is ideal for a soft soil.  In the Mat 5 material model, the yield 
surface, i.e., the strength of the soil, increases with larger confining pressures.  As documented in 
Reference 38, the specific material input parameters to Mat 5 were partially determined from the 
post-test penetrometer drops, which were simulated using LS-DYNA as a means of calibrating 
the material model.  The input values for the model are shown in Table 16.

Figure 77. LS-DYNA model of fuselage with DEA above sand. 

Table 16. Mat 5 input properties for soft soil 
Variable Name LS-DYNA 

Symbol
Value Units 

Density RO 1.36e-04 lb-s2/in4

Shear Modulus G 267 psi 
Bulk Unloading Mod K 10000. psi 
Yield Surface Coeff A0 0 psi2

Yield Surface Coeff A1 0 psi 
Yield Surface Coeff A2 0.3 - 
Pressure Cutoff PC 0 psi 
Crushing option VCR 0 (default) - 
Reference Geometry REF 0 (default) - 

Comparisons of predicted and experimental acceleration responses are shown in Figures 78-81 
for four different floor locations including the left and right center blocks, the left front, and right 
rear blocks.  These accelerometer locations are depicted in Figure 24(b).  As before, average 
accelerations were determined for the experimental and analytical time history responses for a 
time interval of 0.0- to 0.05-seconds.  Based on this simple comparison, uniformity in the test 
results is seen with average accelerations ranging from 16.9- to 17.7-g.  The experimental 
acceleration pulses exhibit an initial peak ranging from 27- to 40-g, which gradually decreases 
over time.

Generally, all of the simulations exhibit the same trends as the test data.  As with the rigid 
surface impact, differences in average acceleration are observed based on which input stress-
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strain curves are used.  For simulations executed using the 59-cell stress-strain input, the average 
accelerations are always lower than the test by approximately 1-g, regardless of which material 
model is used.  These values range from 16.1- to 17.4-g.  For simulations executed using the 
104-cell-based input, the average accelerations are always higher than the experiment by 
approximately 3-g, ranging from 19.9- to 21.3-g.  Also, the DEA models with input curves based 
on the 104-cell dynamic crush test data have a shorter pulse duration than the test data. 

             
                         (a) Mat 63 material model.                       (b) Mat 26 material model. 

Figure 78. Test-analysis results for sand impact (left center block). 

                
                         (a) Mat 63 material model.                         (b) Mat 26 material model. 

Figure 79. Test-analysis results for sand impact (right center block). 
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                         (a) Mat 63 material model.                       (b) Mat 26 material model. 

Figure 80. Test-analysis results for sand impact (left front block). 

        
                         (a) Mat 63 material model.                       (b) Mat 26 material model. 

Figure 81. Test-analysis results for sand impact (right rear block). 

5.0 DISCUSSION OF RESULTS 

An externally deployable composite honeycomb structure was evaluated through experimental 
testing and found to be an effective energy absorber that could be used to mitigate the crash 
energy of light aircraft and rotorcraft.  The energy absorption capabilities of the DEA were 
demonstrated through dynamic crush tests of multi-cell components.  The specific energy 
absorption properties of the DEA are compared with those of aluminum and paper honeycomb in 
Table 17.  These data show that the current configuration of the DEA is comparable to aluminum 
honeycomb.  Unlike the DEA, however, aluminum honeycomb is not deployable.  Also, it 
should be noted that the DEA used in this study was not optimized, either through experimental 
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testing or analytical studies.  It may be possible through selection of a different material system, 
or different combinations of cell width, thickness, or cross-sectional shape to tailor the energy 
absorption properties of the DEA while minimizing its weight.

Table 17. Comparison of specific energy absorption properties 
Type of 

honeycomb
Material

specification
Cell

width, in. 
Cell wall 

thickness, in. 
Honeycomb

density, lb/ft3
Crush
stress,

psi
DEA Kevlar®-129

fabric/epoxy
oriented at ±45° 
longitudinally

1.0 0.01 1.15-1.59 16.4-20.7

Hexcell
HexWeb®

CR III 

Aluminum
5052 0.375 0.0007 1.0 25.0

IPS paper 
honeycomb

Kraft paper 
w/o face sheets 

0.375 0.007 3.2 41.5 

As documented in this paper, the DEA components were subjected primarily to loading in the 
normal direction, or in the same direction as the longitudinal axes of the cells.  However, actual 
aircraft crashes rarely occur under conditions in which only vertical velocity is present.  
Consequently, as a final step in the building block approach to demonstrate the energy absorbing 
capabilities of the DEA, a full-scale crash test of a light helicopter that was retrofitted with the 
DEA was conducted at the NASA Landing and Impact Research Facility in December 2009.  
This test was conducted under combined velocity conditions of 40-ft/s forward and 26-ft/s 
vertical velocities.  Crushing of the DEA blocks beneath the helicopter successfully limited the 
floor-level accelerations to approximately 10-g during this severe crash test.  A thorough 
description of this experiment is beyond the scope of the present paper; however, additional 
information is available in References 64-70.

Finally, a new approach for quantifying test/analysis correlation needs to be developed and 
utilized.  In the present paper, test-analysis correlations are presented as plots of acceleration 
time histories, and data obtained from acceleration responses such as initial peak, average 
acceleration, average crush stress, and peak compaction acceleration.  In comparing experimental 
and analytical acceleration time histories, the level of agreement is determined by comparing the 
onset rate, magnitude, timing, and averages of the acceleration responses, and the pulse duration.   
Rarely will the analyst see “good” correlation between test and analysis in the sense of an 
absolute match for all of these parameters.  In general, the level of correlation is deemed “good 
or reasonable” if these parameters are “in the ball park.”  Thus, the need to re-evaluate the 
current crash data analysis and correlation methodologies for use with detailed finite element 
model simulations has been identified [42].  Recently, a project was initiated at NASA Langley 
to better quantify the accuracy of crash simulation results.  The motivation for the project, as 
stated in Reference 37, was “to document modeling improvements, to evaluate design 
configurations analytically, and to enable certification or qualification by analysis.”  
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Several important findings are repeated from Reference 37, as follows.  “It is necessary to 
quantify and understand experimental variations, channel-to-channel, for symmetric locations, as 
well as test-analysis variations.  Future crash finite element model development could be 
expedited by correlation with experimental modal analysis results, especially since the modal 
correlation will depend on the accuracy of the global stiffness and mass distribution of the finite 
element model.  Also, this approach provides a second set of data for correlation, which is 
important given that most test articles are destroyed during crash testing.”  Continued work is 
needed to automate rigorous test-analysis correlation methodologies to improve and redefine the 
level of accuracy.

6.0 CONCLUDING REMARKS 

An experimental and analytical study was conducted to assess the energy absorption capabilities 
of a novel Deployable Energy Absorber (DEA).  The DEA is a composite honeycomb structure 
that can be deployed, much like an external airbag system, to provide energy attenuation during 
aircraft or rotorcraft crash events.  A building block approach was taken during the experimental 
program that included: material characterization testing of the DEA constituent, Kevlar®-129
fabric/epoxy; three-point bend testing of single hexagonal cells to highlight shear and 
compressive buckling failures; dynamic crushing of multi-cell DEA components subjected to 
both normal and off-axis loading to assess energy absorption capabilities; and vertical drop 
testing of a composite fuselage section, retrofitted with four DEA blocks, onto multi-terrain 
surfaces.  At each stage of the testing, finite element simulations were performed using the 
explicit nonlinear transient dynamic code, LS-DYNA.  Major findings of the research program 
are listed, as follows. 

• Even though many different material systems could have been used in the construction of 
the DEA, Kevlar®-129 fabric/epoxy proved to be a good choice based on its inherent 
toughness and ability to mimic plastic-like behavior when loaded in compression.  Only 
limited material characterization testing was performed that provided some data for input 
into LS-DYNA material models.  However, a complete data set was not generated; 
consequently, many LS-DYNA input values had to be input based on engineering 
assessment.

• Flexural testing of four different sizes of single hexagonal cells indicated that the shear 
stability increased linearly as a function of the ratio of cell wall thickness divided by cell 
wall width.  A laminated composite material model (Mat 58) in LS-DYNA was 
successfully calibrated through test-analysis comparison using a shell-element-based 
finite element model.  A second isotropic material model (Mat 24), which is based on an 
input user-defined stress-strain response, was also evaluated; however, the level of 
agreement for this model was poor based on comparison with the flexural test results.  
However, Mat 24 was evaluated further in simulations of the dynamic crush response of 
the DEA components due to the compression-dominated nature of those tests. 

• Dynamic crush tests of three multi-cell DEA components were performed for both 
normal and off-axis loading. The specific DEA configuration used in this study (±45° 
Kevlar®-129 fabric/epoxy, with a ply thickness of 0.01-in. with hexagonal cross-section 
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cells having an edge length of 1-in.) was designed to provide a 20-psi average crush 
stress. A measured average crush stress of 19.8-psi was determined by averaging the 
individual crush stress values obtained from the two normal DEA components (22.0-psi 
for the 104-cell component and 17.6-psi for the 59-cell component), indicating that the 
design goal was achieved.

• A comparison of specific energy absorption properties shows that the DEA blocks 
provide comparable energy absorption to aluminum honeycomb.  However, it should also 
be noted that the current configuration of the DEA was not optimized to minimize 
weight.

• Both shell- and solid-element models were developed to represent the DEA components.  
These models were evaluated to determine if they could accurately predict initial loading, 
sustained crushing, and compaction responses of the DEA components.  For the shell-
element models, both Mat 58 and Mat 24 material models were able to capture the 
uniform crushing response and compaction behavior of the DEA components.  However, 
the reader is cautioned against using an isotropic material model (Mat 24) to simulate a 
highly orthotropic material when subjected to more complex loading scenarios.

• For the solid-element models, both Mat 63 (crushable foam) and Mat 26 (honeycomb) 
models were evaluated.  These models relied on input of stress versus volumetric strain 
responses obtained from test data.  Both material models demonstrated reasonable 
correlation with test data; however, unlike the shell-element models, the solid-element 
models were unable to predict the observed deformation modes. 

• Vertical drop tests of a composite fuselage section retrofitted with four DEA blocks were 
conducted to evaluate the performance of the DEA during multi-terrain impact (rigid 
surface, water, and soft soil).  The DEA blocks were designed to limit floor-level 
accelerations to 20-g.  These tests required that a cover be designed and incorporated into 
the DEA to permit effective load transfer into the honeycomb cells.  Load attenuation 
through crushing occurred in both rigid surface and soft soil impacts.  In these cases, the 
impact surface provided adequate reaction load to initiate and maintain stable crushing.  
Given that the impact velocity conditions were nearly identical, 38.4- versus 37.4-ft/s, 
similar acceleration responses were obtained for these two tests.  However, for water 
impact, kinetic energy was dissipated primarily by accelerating the displaced water 
volume.  Though effective in attenuating the initial peak, the energy absorbers were not 
able to absorb kinetic energy through crushing.  This finding is by no means a drawback 
of the energy absorber but simply a reality associated with water impact.  For all multi-
terrain impact tests, measured average floor-level accelerations were below the 20-g 
limit, thus the design crush load of the energy absorber was achieved. 

• A finite element model of the fuselage section was modified with shell- and solid-
element representations of the DEA blocks and simulations of the multi-terrain impact 
tests were performed.  Generally good correlation was obtained for both models. 
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Testing performed during the experimental program demonstrated that the DEA concept exhibits 
excellent energy absorption capabilities.  During each stage of the DEA evaluation process, finite 
element models of the test articles were developed and simulations were performed using the 
explicit, nonlinear transient dynamic code, LS-DYNA.  The generally high level of test-analysis 
correlation provides confidence in the use of analytical tools for design of energy absorbing 
structures.
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