

August 2010

NASA/TM–2010-216834

Fault Injection and Monitoring Capability for a
Fault-Tolerant Distributed Computation System

Wilfredo Torres-Pomales, Amy M. Yates, and Mahyar R. Malekpour
Langley Research Center, Hampton, Virginia

NASA STI Program . . . in Profile

 Since its founding, NASA has been dedicated to
the advancement of aeronautics and space science.
The NASA scientific and technical information (STI)
program plays a key part in helping NASA maintain
this important role.

 The NASA STI program operates under the
auspices of the Agency Chief Information Officer. It
collects, organizes, provides for archiving, and
disseminates NASA’s STI. The NASA STI program
provides access to the NASA Aeronautics and Space
Database and its public interface, the NASA Technical
Report Server, thus providing one of the largest
collections of aeronautical and space science STI in
the world. Results are published in both non-NASA
channels and by NASA in the NASA STI Report
Series, which includes the following report types:

• TECHNICAL PUBLICATION. Reports of

completed research or a major significant phase
of research that present the results of NASA
programs and include extensive data or
theoretical analysis. Includes compilations of
significant scientific and technical data and
information deemed to be of continuing
reference value. NASA counterpart of peer-
reviewed formal professional papers, but having
less stringent limitations on manuscript length
and extent of graphic presentations.

• TECHNICAL MEMORANDUM. Scientific

and technical findings that are preliminary or of
specialized interest, e.g., quick release reports,
working papers, and bibliographies that contain
minimal annotation. Does not contain extensive
analysis.

• CONTRACTOR REPORT. Scientific and

technical findings by NASA-sponsored
contractors and grantees.

• CONFERENCE PUBLICATION. Collected

papers from scientific and technical
conferences, symposia, seminars, or other
meetings sponsored or co-sponsored by NASA.

• SPECIAL PUBLICATION. Scientific,

technical, or historical information from NASA
programs, projects, and missions, often
concerned with subjects having substantial
public interest.

• TECHNICAL TRANSLATION. English-

language translations of foreign scientific and
technical material pertinent to NASA’s mission.

 Specialized services also include creating custom
thesauri, building customized databases, and
organizing and publishing research results.

 For more information about the NASA STI
program, see the following:

• Access the NASA STI program home page at

http://www.sti.nasa.gov

• E-mail your question via the Internet to

help@sti.nasa.gov

• Fax your question to the NASA STI Help Desk

at 443-757-5803

• Phone the NASA STI Help Desk at

443-757-5802

• Write to:

 NASA STI Help Desk
 NASA Center for AeroSpace Information
 7115 Standard Drive
 Hanover, MD 21076-1320

National Aeronautics and
Space Administration

Langley Research Center
Hampton, Virginia 23681-2199

August 2010

NASA/TM–2010-216834

Fault Injection and Monitoring Capability for a
Fault-Tolerant Distributed Computation System

Wilfredo Torres-Pomales, Amy M. Yates, and Mahyar R. Malekpour
Langley Research Center, Hampton, Virginia

Available from:

NASA Center for AeroSpace Information
7115 Standard Drive

Hanover, MD 21076-1320
443-757-5802

Acknowledgments

The system described in this report originated from an initial experiment concept
developed in collaboration with Dr. Oscar R. González and Dr. W. Steven Gray of Old
Dominion University. We are grateful for their productive discussions in the development
of system requirements.

We would like to thank Sandra V. Koppen and Truong X. Nguyen for their contributions
to the definition of the system configuration for fault-injection experiments in a HIRF
environment.

The work described here was made possible by the support from Eric G. Cooper,
Associate Principal Investigator for NASA’s IVHM Project.

The work performed by Old Dominion University as part of this research collaboration is
funded by the NASA Langley Research Center under grant NNX07AD52A.

The use of trademarks or names of manufacturers in this report is for accurate reporting and does not
constitute an official endorsement, either expressed or implied, of such products or manufacturers by the
National Aeronautics and Space Administration.

 iii

Abstract

The Configurable Fault-Injection and Monitoring System (CFIMS) is

intended for the experimental characterization of effects caused by a

variety of adverse conditions on a distributed computation system

running flight control applications. A product of research collaboration

between NASA Langley Research Center and Old Dominion University,

the CFIMS is the main research tool for generating actual fault response

data with which to develop and validate analytical performance models

and design methodologies for the mitigation of fault effects in distributed

flight control systems. Rather than a fixed design solution, the CFIMS is

a flexible system that enables the systematic exploration of the problem

space and can be adapted to meet the evolving needs of the research.

The CFIMS has the capabilities of system-under-test (SUT) functional

stimulus generation, fault injection and state monitoring, all of which are

supported by a configuration capability for setting up the system as

desired for a particular experiment. This report summarizes the work

accomplished so far in the development of the CFIMS concept and

documents the first design realization.

iv

Table of Contents

List of Figures ... vii

List of Tables ... x

1. Introduction ... 1

2. Concept for a Configurable Fault-Injection and Monitoring Capability .. 4
2.1. SUT Functional Stimulation and Monitoring ... 6
2.2. Fault Injection ... 6
2.3. State Monitoring ... 10
2.4. System Configuration ... 10

3. Overview of the ROBUS-2 Communication System .. 12
3.1. System Structure ... 12
3.2. Distributed Coordination .. 13
3.3. Redundancy Management... 14
3.4. Operational Modes.. 15

3.4.1. Clique Preservation .. 15
3.4.2. Self-Test... 16
3.4.3. Clique Detection .. 17
3.4.4. Clique Join ... 17
3.4.5. Clique Initialization ... 17

3.5. ROBUS Messages .. 17
3.6. Point-to-Point Communication ... 18
3.7. Communication Patterns ... 19

3.7.1. Collective Diagnosis .. 19
3.7.2. Schedule Update .. 20
3.7.3. PE Broadcast .. 20
3.7.4. Accusation Exchange ... 21
3.7.5. Synchronization Preservation .. 21
3.7.6. Local Diagnosis Acquisition .. 22
3.7.7. Synchronization Acquisition.. 22
3.7.8. Collective Diagnosis Acquisition .. 23
3.7.9. Initial Diagnosis ... 23
3.7.10. Initial Synchronization ... 24

3.8. Communication between PEs and BIUs ... 24

4. Overview of the Configurable Fault-Injection and Monitoring System .. 27
4.1. Initial Application ... 27
4.2. Execution Platform ... 28

4.2.1. Reconfigurable SPIDER Prototyping Platform 1 .. 28
4.2.2. Reconfigurable SPIDER Prototyping Platform 2 .. 30

4.3. Initial Configurable Fault Injection and Monitoring System .. 31
4.3.1. SUT Function Testing .. 34

4.3.1.1. PE Synchronization .. 34
4.3.1.2. Application Testing .. 36

4.3.2. Fault Injection .. 39
4.3.2.1. Mapping the OTH Fault Modes to Component Fault Modes ... 39
4.3.2.2. Design Approach .. 41
4.3.2.3. Current Design ... 42

4.3.3. State Monitoring .. 44

v

4.3.4. Round Control ... 45
4.3.5. Data Collection .. 47
4.3.6. System Configuration .. 47

5. Hardware Controller Coordination Protocol .. 49
5.1. Normal Run Modes... 50
5.2. Stop Scenarios .. 54

6. Data Links ... 57
6.1. Word-Mode Communication Unit .. 61
6.2. Packet-Mode Communication Unit .. 64
6.3. Multiple-Access Controller... 67

7. Test Control Messages ... 68
7.1. Round Control .. 69
7.2. Function Testing ... 70

7.2.1. PE Synchronization ... 71
7.2.2. Application Testing ... 71

7.3. Fault Injection ... 71
7.4. State Monitoring ... 73

8. Fault Injectors .. 75
8.1. Common Architecture .. 75
8.2. Fail-Silent Fault Injector ... 77

9. PE-BIU Node ... 78
9.1. PE Setup Unit ... 79
9.2. Processing Element ... 80

9.2.1. Main Functions .. 80
9.2.2. Operational Modes ... 81
9.2.3. Organization and Error Checks .. 82

9.3. Embedded Node Monitor ... 85

10. RMU Node .. 87

11. Hardware Processes of the Primary Test Controller .. 88
11.1. PTC Round Controller .. 90
11.2. SPIDER Function Tester .. 92

11.2.1. Function Timer .. 93
11.2.2. Function Monitor ... 99

11.3. Primary Fault-Injection Controller ... 100
11.4. PE-BIU State Monitor .. 102
11.5. SPIDER Health Monitor ... 104
11.6. Test Control Links .. 105
11.7. Software Interface ... 106

12. Hardware Processes of the Secondary Test Controller .. 108
12.1. STC Round Controller .. 109
12.2. Secondary Fault-Injection Controller ... 109
12.3. RMU State Monitor .. 111
12.4. Health Monitor ... 112
12.5. Test Control Links .. 112
12.6. Software Interface ... 112

13. Test Control Software .. 114

vi

13.1. Test Execution and Data Management ... 114
13.2. Data Management Software.. 117
13.3. Test Execution Software ... 118

14. Final Remarks .. 124

Appendix A. Test Specification File.. 125

Appendix B. Data Collected During Round Execution ... 129
B.1. Round Control .. 129
B.2. Round Timer .. 131
B.3. Function Timer ... 131
B.4. Function Monitors .. 132
B.5. PE-BIU State Monitors .. 132
B.6. RMU State Monitors .. 138

Appendix C. Test Control Software Pseudo-Code .. 143
C.1. PTC Data Management Software ... 143
C.2. STC Data Management Software ... 152
C.3. PTC Test Execution Software .. 156
C.4. STC Test Execution Software .. 175

References ... 183

Acronyms and Abbreviations .. 187

vii

List of Figures

Figure 1.1: SPIDER topology and services ... 2
Figure 2.1: Main components and information flows in the configurable fault injection and monitoring

capability ... 4
Figure 2.2: Application-level view of the SUT configured as the flight controller ... 5
Figure 2.3: High-level view of the CFIMS functions .. 5
Figure 2.4: Faultload generation and propagation of fault manifestations .. 7
Figure 3.1: ROBUS topology .. 12
Figure 3.2: Generic top-level node structure for BIUs and RMUs .. 13
Figure 3.3: Major operational mode transitions for ROBUS nodes ... 16
Figure 3.4: Minor mode transitions for Clique Preservation mode ... 16
Figure 3.5: Minor modes transitions for Clique Detection mode .. 17
Figure 3.6: Minor modes transitions for Clique Initialization mode ... 17
Figure 3.7: ROBUS Message format ... 18
Figure 3.8: Generic point-to-point communication path ... 18
Figure 3.9: Timing for synchronous communication... 19
Figure 3.10: Message flow graph for the Collective Diagnosis protocol... 20
Figure 3.11: Message flow graph for the Schedule Update protocol ... 20
Figure 3.12: Example of an access pattern during the PE Broadcast service .. 21
Figure 3.13: Message flow graph for the PE Broadcast protocol .. 21
Figure 3.14: Message flow graph for the Accusation Exchange protocol ... 21
Figure 3.15: Message flow graph for the Synchronization Preservation protocol ... 22
Figure 3.16: Message flow in a 3x3 system with a recovering RMU executing Local Diagnosis Acquisition 22
Figure 3.17: Message flow graph for Synchronization Preservation with the Synchronization Capture

processes ... 23
Figure 3.18: Message flow graph for the Initial Diagnosis protocol ... 23
Figure 3.19: Message flow graph for the Initial Synchronization protocol ... 24
Figure 3.20: Message exchange pattern between a BIU and its attached PE in Clique Preservation mode 25
Figure 4.1: Concept for initial SUT configuration ... 28
Figure 4.2: RSPP1 Node .. 29
Figure 4.3: Interconnection of the main physical design components on an RSPP1 Node ... 30
Figure 4.4: High-level architectural view of the CFIMS and SUT .. 32
Figure 4.5: Major-mode transition graph for a Processing Element .. 35
Figure 4.6: Message flow graph for the RCI agreement protocol.. 35
Figure 4.7: Mode transitions for Function Timer .. 36
Figure 4.8: Message flow pattern for testing ROBUS fault effects on PE messages... 37
Figure 4.9: Dataflow graph for a node state monitoring lane .. 45
Figure 4.10: State transition diagram for node condition assessment .. 45
Figure 4.11: Major mode transition diagram for CFIMS... 46
Figure 5.1: Major mode transition diagram for the CFIMS ... 49
Figure 5.2: Event sequence for normal System Enable mode ... 50
Figure 5.3: Event sequence for normal SPIDER Initialization mode .. 51
Figure 5.4: Event sequence for normal Fault Injection Setup mode .. 52
Figure 5.5: Event sequence for normal Function Setup mode ... 52
Figure 5.6: Event sequence for normal Function Execution mode .. 53
Figure 5.7: Event sequence for System Stop on completion of PTC fault injection or function execution 54
Figure 5.8: Event sequence for System Stop on STC software stop .. 55
Figure 5.9: Event sequence for System Stop on PTC software stop and with initiator Stop message error 55
Figure 6.1: Manchester encoding of NRZ data bits ... 59
Figure 6.2: Signaling structure for the transmission of a data word (with Sync0 and Sync1) 59
Figure 6.3: Block diagram for the word-mode transmitter .. 62
Figure 6.4: Simplified state diagram for WMCU Waveform Monitor .. 63
Figure 6.5: Block diagram for the Word-Mode Receiver .. 63

viii

Figure 6.6: PMCU packet format .. 64
Figure 6.7: Packet frame format .. 64
Figure 6.8: Block diagram for the packet-mode data link ... 65
Figure 6.9: Simplified state diagram for PMCU waveform monitor ... 65
Figure 6.10: Block diagram for the Packet Frame Decoder and list of packet error checks .. 66
Figure 6.11: Block diagram for the PMCU Multiple-Access Controller ... 67
Figure 7.1: TCL packet format for TCMs ... 68
Figure 7.2: TCM format: RC_ENABLE ... 69
Figure 7.3: TCM format: RC_READY and RC_START .. 70
Figure 7.4: TCM format: RC_STOP ... 70
Figure 7.5: TCM format: SF_SETUP .. 70
Figure 7.6: TCM format: SF_EXECUTE .. 70
Figure 7.7: TCM format: SYNC_PE_TIME ... 71
Figure 7.8: TCM format: SYNC_ROUND_TIME .. 71
Figure 7.9: TCM format: SF_DATA ... 71
Figure 7.10: Format of first TCM Payload Word for FI_RESET, FI_FAULT, FI_ACTIVATION,

FI_EXECUTE, and FI_FIRE .. 72
Figure 7.11: TCM format: FI_RESET ... 72
Figure 7.12: TCM format: FI_EXECUTE ... 72
Figure 7.13: TCM format: FI_FAULT, FI_ACTIVATION, and FI_FIRE ... 73
Figure 7.14: TCM format: FI_FIRE for current CFIMS ... 73
Figure 7.15: TCM format: SM_PE_BIU ... 73
Figure 7.16: TCM format: SM_RMU.. 74
Figure 8.1: Local Fault Injector State Machine ... 76
Figure 8.2: Local Fault Injector Architecture .. 76
Figure 9.1: Block diagram for a PE-BIU node .. 79
Figure 9.2: Mode transition diagram for the PE Setup Unit .. 80
Figure 9.3: Major-mode transition diagram for the PE .. 82
Figure 9.4: Minor-mode transition diagram for the PE ... 83
Figure 9.5: Block diagram for Processing Element ... 83
Figure 9.6: Block diagram for the Embedded Node Monitor .. 86
Figure 10.1: Block diagram for RMU node ... 87
Figure 11.1: Block diagram for the Hardware Processes of the Primary Test Controller.. 89
Figure 11.2: Block diagram for the PTC Round Controller .. 90
Figure 11.3: Major mode transition graph for the Master Controller of the PTC RCtlr .. 91
Figure 11.4: Top-level block diagram for SPIDER Function Tester ... 92
Figure 11.5: Mode transition graph for the Function Timer .. 94
Figure 11.6: Policy rules for managing the values of RCI and CCI .. 94
Figure 11.7: Block diagram for the Function Timer .. 96
Figure 11.8: Example sync pulses and corresponding Accept() Event Voter response for SP,P3IO,RCV = 2 98
Figure 11.9: Block Diagram for the ith Function Monitor .. 99
Figure 11.10: Primary Fault Injection Controller State Machine .. 100
Figure 11.11: Primary Fault Injection Controller Interface Architecture .. 101
Figure 11.12: Block Diagram for the PE-BIU State Monitor .. 103
Figure 11.13: Transition diagram for state-based node health assessment .. 104
Figure 11.14: Block diagram for the PTC Software Interface module .. 107
Figure 12.1: Block diagram for the Hardware Processes of the Secondary Test Controller 108
Figure 12.2: Block diagram for the STC Round Controller .. 109
Figure 12.3: Secondary Fault Injection Controller Interface Architecture .. 110
Figure 12.4: Secondary Fault Injection Controller Relay State Machine .. 110
Figure 12.5: Secondary Fault Injection Controller Control Signal State Machine .. 111
Figure 12.6: Block diagram for the STC Software Interface ... 113
Figure 13.1: Separation of the Test Execution and Data Management Software .. 114
Figure 13.2: Test Execution and Data Management Software Data Transfer.. 116
Figure 13.3: Test Execution and Data Management Software Data Transmission Protocol 117

ix

Figure 13.4: PTC and STC Data Management Software High Level Program Flow .. 118
Figure 13.5: PTC and STC Test Execution Software High Level Program Flow ... 119
Figure 13.6: PTC Test Execution Software CCP State Machine ... 120
Figure 13.7: PTC and STC Test Execution Software Check for Stop Subset of CCP State Machine 121
Figure 13.8: STC Test Execution Software CCP State Machine ... 122
Figure A.1: Test Specification File Format ... 125
Figure A.2: Test Specification File Setup Line Format ... 125
Figure A.3: Enabled_Nodes Format .. 126
Figure A.4: Example of Fault Injection Section of Test Specification file with multiple fault types 127
Figure A.5: Test Specification File Example ... 128

x

List of Tables

Table 2.1: Detectability-based fault model for one-to-one communication .. 8
Table 2.2: Omissive-Transmissive Hybrid fault model for one-to-many communication .. 9
Table 4.1: Defined observations for the communication path from sender FMoni to receiver FMonj 38
Table 4.2: Detectability-based fault manifestation at the receiver as a function of source node and link fault

types .. 39
Table 4.3: OTH fault classification based on Node Type and Link Type outputs ... 40
Table 6.1: Definition of WMCU waveform symbols .. 62
Table 7.1: TCM Sources .. 68
Table 7.2: TCM Tags ... 69
Table A.1: Test Specification File Setup Section Labels ... 126
Table B.1: Round Controller Status Word ... 129
Table B.2: Round Stop Conditions .. 130
Table B.3: Collected Function Timer Data .. 131
Table B.4: Observation codes for a Function Monitor .. 132
Table B.5: Main state record content for a PE-BIU State Monitor Lane ... 133
Table B.6: Main state record content for an RMU State Monitor Lane... 139

1

1. Introduction

The system described in this report, henceforth referred to as the Configurable Fault-Injection and
Monitoring System (CFIMS), is intended for the experimental characterization of effects caused by a
variety of adverse conditions on a distributed computation system running flight control applications.
The CFIMS is a product of collaborative research between NASA Langley Research Center (LaRC) and
Old Dominion University (ODU) in support of NASA‟s goal of developing technologies to improve the

intrinsic safety of aircraft [NASA06, Shin08]. The research is being performed under the organizational
framework of the Aviation Safety Program‟s Integrated Vehicle Health Management (IVHM) research

thrust, which aims to develop tools, technologies and techniques to mitigate hazardous events during
flight [IVHM08]. The NASA-ODU collaboration is focused on developing theoretical tools to analyze
the relationship between the design features of a representative computational platform and the
performance of a flight control system implemented using the platform and operating in harsh
environments [Gray08, Gray10, Chávez10].

The distributed computation platform selected for this research is the Scalable Processor Independent
Design for Extended Reliability (SPIDER) developed at Langley Research Center under a previous
research effort [Miner02, Torres05A]. SPIDER is a concept for a family of general-purpose fault-tolerant
architectures that provides a flexible set of design solutions capable of satisfying a wide range of
performance and reliability requirements, while preserving a consistent interface to applications. SPIDER
has a combination of attributes not found in existing architectures:

 Product family solution adaptable to many different applications;

 Suitable for safety-critical aircraft functions;

 Supports the Integrated Modular Avionics (IMA) architectural concept (i.e., the ability to host many
functions of mixed criticality on the same computational platform) [ARINC651];

 Redundancy management decoupled from applications (i.e., the fault tolerance and redundancy
management functions required by the applications are handled by the computational platform
itself);

 Customizable redundancy management strategy according to the requirements of the applications
(i.e., different fault tolerance and redundancy management strategies can be concurrently supported
for different applications);

 Byzantine-fault resilience (i.e., the ability to tolerate arbitrary fault manifestations) [Driscoll03];

 Function migration capability (i.e., the ability to dynamically move functions across a network to
different computing resources);

 Ability to survive or quickly recover from massive correlated transient upsets;

 Implemented using mostly off-the-shelf hardware and software;

 Support for dissimilar processors;

2

 Handles part obsolescence (i.e., the design can evolve to accommodate obsolescence of processors
and low-level communication hardware);

 High reliability-to-cost ratio; and

 Design assurance based on Formal Methods (i.e., algorithms and design are formally proven
correct) [Butler02]

Figure 1.1 illustrates the SPIDER topology and main system services. The architecture consists of
processing elements (PEs) executing the applications and other high-level system functions, and the
ROBUS (Robust Bus) communication system, which provides basic services as the foundation for higher-
level functions. The data network has a redundant active-star topology with the Bus Interface Units
(BIUs) serving as the access ports and the Redundancy Management Units (RMUs) providing
connectivity as network hubs. All the communication interfaces are bi-directional. The links between
BIUs and RMUs form a complete bipartite graph in which each node is directly connected to every node
of the opposite kind. A PE can be collocated and tightly coupled at the physical level to its corresponding
BIU (i.e., they can share a fault-containment region (FCR)) [Lala91], or they can be physically
independent components.

Figure 1.1: SPIDER topology and services

ROBUS implements basic distributed agreement protocols at the level they are most effective (i.e., in
hardware) and is intended to reduce the computational burden on the PEs by providing a simple
communication system abstraction for what is an inherently complex distributed processing problem.
ROBUS-2, an instance of ROBUS, is a time-division multiple access (TDMA) broadcast data
communication system (i.e., a data bus) with media access control by means of a time-indexed
communication schedule. ROBUS-2 provides guaranteed fault-tolerant services to the attached PEs in the
presence of a bounded number of internal faults. These services include message broadcast (Byzantine
Agreement), dynamic communication schedule update, time reference (clock synchronization), and
distributed diagnosis (group membership). ROBUS-2 also features fault-tolerant startup and restart

1 2 M

PEs

BIUs

RMUs

1 2 N

1 2 N

ROBUS

ROBUS
Interface

ROBUS
Links

PE Applications

PE Time Synchronization

PE Diagnosis

PE Communication

Message Transport

Bus Access Schedule Update

Bus Redundancy Management

Bus Time Synchronization

Bus Diagnosis

PE Redundancy Management

3

capabilities. ROBUS-2 tolerates internal as well as PE faults and incorporates a dynamic self-
reconfiguration capability driven by the internal diagnostic system. ROBUS-2 consists of custom-
designed hardware-based ROBUS Protocol Processors (RPPs) implementing the ROBUS-2 functionality,
and a lower-level physical communication network consisting of full-duplex data links [Stallings94]
interconnecting the RPPs (see ROBUS Links in Figure 1.1). Additional information about ROBUS-2 can
be found in [Torres05A] and [Torres05B]. For completeness, Section 3 of this report provides an
overview of ROBUS-2. The VHDL [Armstrong93] source code for the ROBUS-2 RPP is publicly
available on the Internet with an open-source license agreement [R2PP].

In the NASA-ODU research collaboration, the range of adverse events to be considered are those
characteristic of environmental threats like high-energy particle radiation [Taber93, Zhang08, Zhang09]
and electromagnetic interference (EMI) from sources such as lightning and high-intensity radiated fields
(HIRF) [Fuller95, Gray00, González01]. These environments have the potential to cause random fault
manifestations in individual avionics components and to generate simultaneous system-wide faults that
can overwhelm existing resource management mechanisms [Gray08, Hess97]. A flight control system
using SPIDER will be subjected to physical and simulated faults in controlled laboratory conditions
[Arlat89, Arlat03, Hsueh97, Torres08A] while gathering data suitable for characterizing fault effects at
the control system level and at the computation platform level. The CFIMS is a critical element of the
research effort as the means to generate experimental data for the development and validation of
performance models for operation in adverse conditions.

The purpose of this report is to summarize the work accomplished so far in the development of the
CFIMS concept and to document the design of its first realization. The next section describes the general
concept for the CFIMS capability. That is followed by an overview of the ROBUS-2 design. After a
high-level description for the current CFIMS, the report provides a description of the CFIMS hardware
and software elements. A summary and remarks about future work conclude the report.

4

2. Concept for a Configurable Fault-Injection and Monitoring Capability

Relative to the primary goals of the NASA-ODU collaboration, the CFIMS is the main research tool
for generating actual fault response data with which to develop and validate analytical performance
models and design methodologies for the mitigation of fault effects. It is expected that achieving the
project goals will involve a combination of systematic exploration of the problem space and an iterative
process of model refinement involving experimentation and data analysis. Given the uncertainty about
how this research will evolve, putting together a-priori a comprehensive list of well-defined design
requirements for the CFIMS is a difficult (if not impossible) task with a high likelihood for an
unfavorable outcome. Thus, rather than a fixed design solution, we envision a flexible system that can be
adapted to meet the evolving needs of the research. The CFIMS should be an enabling tool that allows
the investigators to focus on the research problem without being hampered by system limitations due to
prior design choices.

With this aim in mind, the first step in the development was to define a concept that captured the
essence of what is needed. Figure 2.1 shows a graphical depiction of the concept. The central element is
the system under test (SUT), which is a configurable version of SPIDER with added functionality to
support simulated fault injection and state monitoring. The CFIMS controls the environment within
which the SUT operates. The capabilities of the CFIMS include functional stimulation of the SUT, fault
injection, and state monitoring, all of which are supported by a configuration capability for setting up the
system as desired for a particular experiment. An experiment is defined by the specifications of the
system configuration, the SUT workload, and the faultload to which the SUT will be subjected.
Basically, the purpose of an experiment is to gather observations about the response of the SUT when
operating under conditions determined by the specifications of the configuration, workload and faultload.

Figure 2.1: Main components and information flows in the configurable fault injection and monitoring capability

In general, the SUT is a distributed computation system executing an application. Figure 2.2
illustrates the role of the SUT in a flight control system and shows a generic SUT functional architecture
at the application level consisting of a set of intercommunicating processes. The definition of the

SUT

Functional
Inputs

Functional
Outputs

Faults

Faultload
Specification

Observations Workload
Specification

Configuration

Configuration
Specification

CFIMS

State

5

application processes and the inter-process communication, as well as their mapping to the resources of
the computation platform, are determined by the configuration specification. In SPIDER, all the
application processes run on the PEs, which also handle the communication among the processes by
leveraging the lower level services provided by ROBUS.

Figure 2.2: Application-level view of the SUT configured as the flight controller

Figure 2.3: High-level view of the CFIMS functions

At a high level, the CFIMS can be viewed as a distributed set of intercommunicating processes (or
modules) as illustrated in Figure 2.3 where the SUT is depicted as an external communicating process.
The modularization of the CFIMS affords a reduction in the complexity of the development by containing
most design changes within individual functional modules and limiting the interaction between modules
to clearly defined interfaces. The function of the Configuration Handler process is to setup the system,
including the CFIMS and the SUT, as indicated in the configuration specification. This configuration
capability is one of the features that allow us to adapt the system to changing requirements. The
Functional Stimulus Generator process is responsible for implementing the plant functionality to be

Inter-Process Communication

Workload
Specification

Faultload
Specification

Configuration
Specification

State
Observations

Application
Observations

Fault
Generator

Configuration
Handler

State
Monitor

Functional
Stimulus
Generator

CFIMS

SUT

SUT (Controller)
Effector
Commands

Sensor
Readings

Plant

Inter-Process Communication

Processing Processing Processing Processing Processing Output Processing Processing Input

Control Application Processes

6

controlled by the application processes running on the SUT as shown in Figure 2.2. The Functional
Stimulus Generator also has the capability to monitor the behavior of the application and generate
observations for post-test analysis. The Fault Generator process injects faults into the SUT according to
the faultload specification. The injected faults can be actual physical faults at the hardware level or
simulated faults with similar manifestations. The State Monitor process collects state data from the SUT
and outputs another stream of observations for post-test analysis. The following subsections elaborate on
the desired features for the SUT and the CFIMS.

2.1. SUT Functional Stimulation and Monitoring

This aspect of the system determines the application implemented by the SUT and the CFIMS. As
previously described, the type of application of interest is a closed-loop flight control system with the
SUT performing the role of the controller and the CFIMS implementing the controlled object (or plant).
However, given that the SUT is a general purpose computer and that there may be circumstances in which
we may want to have a very simple application layer and focus on the fault effects on the lower level
services of the computation platform, it is advantageous to conceptualize the function performed by the
SUT as a generic application consuming inputs and generating outputs. The CFIMS provides the
workload for the SUT, receives the generated functional outputs, and gathers observations about the
response to injected faults.

In general, the mechanisms for testing (or “exercising”) the function of the SUT should be scalable
and flexible to accommodate a wide range of sizes of the computation platform, applications with various
degrees of complexity, and fine precision for the specification of functionality for the system response
monitors. There should also be mechanisms to allow various degrees of precision in the coordination
between the function testing activities, the injection of faults, and the collection of application and state
observations. The CFIMS should also provide the means to easily correlate the data in the output
observation streams.

2.2. Fault Injection

In the NASA-ODU collaborative research, only physical hardware faults (i.e., faults involving the
physical parts of the system) are of interest. For the purpose of this research, it is assumed that software
and design faults are not significant factors in the behavior of the SUT. In essence, a (physical hardware)
fault is a physical event that causes a malfunction (i.e., a deviation from correct operation) in a system
component. A system is composed of a collection of components organized such that their interaction
generates a behavior implementing the function described in the system specification [Avizienis04]. The
components of a system are themselves systems that implement lower-level functions.

The CFIMS fault injection capability is intended to force anomalous behavior on the components of
the SUT. It is expected that for every SUT function and state monitoring setup, there will be many
injection rounds with a variety of fault patterns, some of which may target multiple nodes, sometimes
simultaneously. The fault injection configuration is likely to be the configuration that will change most
often and the one to require the most flexible and precise solution for specification and execution of a test.
Following the terminology in [Arlat03], some of the desired properties for a fault injection capability to
assess the effectiveness of a fault-tolerant system include the following:

 Reachability: the degree to which the possible fault locations can actually be reached by the means
of injection;

7

 Controllability: the ability to control the location and time at which faults are injected (i.e., the
precision with which faults can be injected);

 Repeatability: the ability to repeat fault injection experiments with high accuracy;

 Reproducibility: the ability to reproduce results in a statistical sense (which does not imply highly
accurate fault repeatability); and

 Non-intrusiveness: the ability to avoid or minimize the impact of the fault injection instrumentation
on the behavior of the SUT.

The injection of faults will normally be seen as the main independently controlled variable in an
experiment. Figure 2.4 illustrates in concept the elements of the CFIMS fault injection capability for the
generation of a faultload based on the injection specification and how the manifestations of the injected
faults propagate and can be observed (and analyzed) at various SUT abstraction levels. In the CFIMS,
application-level observations will capture fault manifestations at the external SUT interfaces, and the
state monitoring capability will gather observations about fault manifestations within the SUT. As shown
in Figure 2.4, the fault injection capability supports injection of physical and simulated faults. Physical
fault injection will be effected indirectly by controlling the characteristics of environmental disturbances,
including high-energy particle radiation and high intensity electromagnetic fields, generated in controlled
laboratory conditions [Clough96, FAA93, Taber93, Torres08A]. In general, fault injection based on
particle radiation has high reachability, but controllability and repeatability are low [Arlat03, Karlsson95].
Electromagnetic radiation also has very low controllability and repeatability, and in addition, reachability
is lower than with particle radiation. Thus, in general, these environments are not the most effective for
achieving the desirable attributes for a fault injection capability intended for a thorough characterization
of effects. Nevertheless, these environments are representative of the types of conditions experienced by
operational systems and that makes the experimental results immediately applicable to the goals of the
NASA IVHM project. The data from experiments in these environments can be used to characterize the
bounds of the relevant fault space, which can then be methodically explored in detail with simulated fault
injections.

Figure 2.4: Faultload generation and propagation of fault manifestations

Environmental
Disturbances

Physical Faults

Manifestations
Internal to SUT

Nodes and Links

Manifestations at
SUT Internal

Interfaces

Manifestations at
SUT External

Interfaces

Simulated
Fault Injection

Faultload

Fault
Injection

Capability

Internal Fault
Response

Internal Fault
Response

External Fault
Response

Fault
Injection

Specification

8

In general, the system fault space can be large and complex when measured in terms of the possible
fault locations with respect to the actual smallest physical parts that make up the system. A strong
determining factor for the complexity of a fault effects analysis is the selection of the components that
constitute the smallest units of failure relevant to the analysis. In the SPIDER-based distributed SUT, the
nodes and their communication links are the smallest recognized entities in the distributed interaction
protocols, including resource management and agreement protocols. The system nodes and links are
natural boundaries that can be leveraged in the definition of the minimum component granularity for fault
effects analyses.

At their highest structural level, every SUT node is composed of a communication component and a
computation component (see Section 3 in this report and [Torres05A]). The communication component
of a node manages all the messaging interfaces to other nodes. The computation component performs all
the local data processing according to the definition of the distributed protocols and the system
application. A goal in the design of the SPIDER fault-tolerant system is to contain the internal
propagation of faults and errors to allow the delivery of correct services at the external interfaces. As part
of a node‟s error handling capability, the communication and computation components perform
acceptance checks (e.g., CRC checks [Stallings94] or time of arrival checks [Torres05A]) on received
messages with the intent of impeding the propagation of errors from other FCRs and minimize the
likelihood that such errors corrupt the state of the receiving node. It is possible to significantly reduce the
fault space to be analyzed by focusing on the manifestations of a transmitting node‟s behavior as

perceived by a receiving node taking into consideration the results of error checks at the receiving node.
The space of all possible faults that can occur at a transmitting node and its communication link can be
mapped to a simple classification by leveraging the concept of error detectability (which is related to the
property of integrity, i.e., the absence of improper state alteration) [Avizienis04, Paulitsch05] to establish
equivalence relations on the manifestations at a receiver. The fault classes in this model for
communication between a sending node and a receiving node are labeled Good, Omissive and
Transmissive (GOT). Alternatively, the classes can be respectively labeled Correct, Detected and
Undetected (CDU) (see [Torres08B]). In this GOT/CDU model, the fault categories are defined as shown
in Table 2.1, where correctness is determined by the system specification. This fault model for one-to-
one communication can be used through composition to study the propagation of errors and error
detection in a large distributed system network.

Table 2.1: Detectability-based fault model for one-to-one communication

Fault Mode Description

Good/Correct The receiver accepts a correct message (i.e., there is no fault or
fault manifestation).

Omissive/Detected The receiver detects a missing message or rejects an incorrect
message.

Transmissive/Undetected The receiver accepts an incorrect message.

A fault model better suited to the analysis of properties in distributed agreement protocols is the
omissive-transmissive hybrid (OTH) model [Azadmanesh00, Torres08B, Weber06], which adds the
concept of consistency of perception to the definition of the fault categories. In this model, the smallest
system component is a sending node and its transmission links to all the nodes receiving messages from it
(i.e., the observers). The receivers either agree on their observations (i.e., their observations are
symmetric) or they do not (i.e., their observations are asymmetric). The fault categories in this model are
defined in Table 2.2. The OTH model allows a further reduction in complexity by minimizing the fault

9

space to a small set of categories that are relevant to the analysis of distributed agreement properties.

Table 2.2: Omissive-Transmissive Hybrid fault model for one-to-many communication

Fault Mode Description

Correct All observers receives the same correct message.

Omissive Symmetric Each observer declares the message invalid, either because the
message was not received or it was detectably incorrect.

Transmissive Symmetric Each observer accepts the same incorrect message.

Strictly Omissive Asymmetric
Some observers receive the same correct message and others
declare the message invalid, either because they do not receive a
message or declare invalid their received message.

Single-Data Omissive Asymmetric
Some observers accept the same incorrect message and others
declare the message invalid, either because they do not receive a
message or declare invalid their received message.

Transmissive Asymmetric The observers have other patterns of disagreeing observations.

An enhancement to the OTH model is to add the dimension of time duration to the fault categories.
With the concept of persistence of a fault, each OTH category can be subdivided by fault duration
categories defined according to the particular conditions of the problem at hand (e.g., transient and
permanent duration). We refer to this classification as the Detectability, Consistency and Persistence
(DCP) fault model.

A peculiarity of these observer-based fault models is that the classification of any given physical fault
is not absolute but relative to the states of the observers, which normally change during system operation.
This may limit the achievable reduction in the fault space complexity.

These fault models can be used to characterize the faults in the physical fault injection experiments. In
addition to determining the proportion of faults within each category of the selected fault model, the
characterization must also include the modeling of the fault activation pattern in the time domain. The
characterization of physical fault effects can then be used as a reference to develop a library of simulated
faults that is in some sense equivalent to the actual physical faults. The simulated faults in the CFIMS are
injected by introducing errors in the behavior of SUT components. Multiple communication and
computation components within a node can be targeted for injection depending on the desired fault
manifestations.

An issue that will need to be addressed in the research is how to model the effects of transmissive (i.e.,
undetected) faults, whose actual impact on the behavior of a node and the system is likely to be dependent
on the particular state of a receiving node at the time of arrival of propagated errors. ROBUS uses voting
in its distributed protocols to mask the effects of transmissive faults. The degree of fault tolerance in
ROBUS (i.e., the number of faults it can tolerate) is determined by the available redundancy and number
of active transmissive faults in the system [Torres05A]. The ROBUS distributed diagnosis service allows
the system to continue coordinated operation by the exclusion of diagnosed faulty nodes from
participation in distributed decisions. In addition, ROBUS provides a bus failure detection and re-
initialization capability to restore coordinated operation after events of massive correlated transient faults
that exceed the fault tolerance capabilities of the network [Torres05A]. However, all these mechanisms
depend on the detection of abnormal operational conditions. It is uncertain what the behavior of the
system would be if its fault handling mechanisms were overwhelmed by a large number of undetected
faults.

10

2.3. State Monitoring

The state monitoring capability is intended to provide observability into the internal operation of the
SUT. This capability should provide the means to collect data of adequate fidelity to perform detailed
post-test event analyses and modeling of physical faults and fault manifestations. Given the functional
and physical distributed nature of the SUT, the state monitoring capability must gather data from many
different locations and package it into coherent observations. There will be observations of internal
activity at every node and of interactions between nodes at their interfaces. At a higher level, the state
monitoring capability must provide the means to precisely correlate the distributed system observations to
allow the analysis of causality in node and system event sequences. At a minimum, the timing of all the
observations should be referenced to a common timeline. The added state monitoring instrumentation
should not interfere with the execution of the SUT, but it will require support in the design of the SUT to
enable direct access to state information at its source. The state monitoring capability should be able to
properly handle operation of the SUT under the influence of injected faults as well as normal SUT
operation. This capability should be easily configurable to select the degree and amount of detail in the
observations and to specify complex observation-triggering conditions.

2.4. System Configuration

Although our knowledge of the research objectives allows us to develop abstract designs for the SUT
and the CFIMS, we assume that because of the uncertainty about the future direction of the research, it is
highly improbable that a single SUT and CFIMS implementation of reasonable complexity will be
adequate to meet the research needs over the duration of the project. The configuration capability is
intended to provide a flexible way to specify the functional and physical characteristics of the SUT and
the CFIMS to meet evolving research needs. Essentially, what we need is the capability to change the
system anywhere from the highest level architectural definition to the lowest implementation details.

The chosen configurability solution consists of custom system designs with hardware and software
components coded in-house and running on a generic reconfigurable execution platform for distributed
systems. The hardware and software code to be developed will be highly parameterized for structure and
behavior, with some parameters specified at synthesis or compilation and others at runtime. The
computing nodes of the generic reconfigurable platform have programmable computation and
communication resources with which to build specialized networks of interconnected nodes. The
computation resources include general purpose processing for software functions and programmable
hardware resources based on FPGAs (Field Programmable Gate Arrays) for hardware-implemented
functions. The communication resources provide basic mechanisms that enable the nodes to interact by
messages (see Section 4).

The specifications of the execution platform establish fundamental constraints on the capabilities of
systems implemented on it. So, in addition to allowing the reconfiguration of the system, the code
parameterization gives it reusability and portability in case there is a need to change the execution
platform.

The attributes of the SPIDER architecture and the ROBUS-2 communication system [Torres05B]
(e.g., physical modularity, layered services and time-triggered operation) makes them especially well
suited to support this system configuration concept.

This configurability approach minimizes the limitations on the systems that can be specified by

11

allowing modifications to be made at any level, including design, synthesis, and runtime. There is,
however, an associated fundamental tradeoff in that, although higher level changes allow more flexibility
in the configuration of the system, there is a cost increase in the time and effort needed to implement
those changes. This offers a motivation for maximizing the synthesis and runtime configurability of the
system to avoid the complications of making changes to the design itself. However, in the process of
design development and implementation, careful consideration should be given to how a design is likely
to be used and the available time for development so as to properly select the optimum balance between
configurability and complexity of the design.

12

3. Overview of the ROBUS-2 Communication System

This section presents a brief description of ROBUS-2, including the structure and operation of the
system. The existing ROBUS Protocol Processors [R2PP] are intended for systems with a relatively
small number of PEs due to the significant size-complexity of the RPP‟s implementation. More detailed
information about ROBUS can be found in [Torres05A] and [Torres05B].

3.1. System Structure

Figure 3.1 shows the ROBUS topology. The bus has an active-star architecture with the Bus Interface
Units (BIUs) serving as the bus access ports and the Redundancy Management Units (RMUs) providing
connectivity as network hubs. The network between BIUs and RMUs forms a complete bipartite graph in
which each node is directly connected to every node of the opposite kind. Only the links shown are
available for communication. All the communication links are bidirectional.

Figure 3.1: ROBUS topology

Figure 3.2 depicts the basic structural components of BIU and RMU nodes. The Communication
Module handles all the point-to-point communication. The links between BIUs and RMUs can be either
one-to-one or one-to-many links, as long as broadcast communication is supported. The nature of the
links between BIUs and PEs depends on how they are physically related. If a BIU and its corresponding
PE are physically independent, then they are interconnected by a one-to-one data communication link. If
a PE-BIU pair are physically integrated (e.g., same printed circuit board), then some other means of local
data exchange can be used (e.g., a dual port memory).

The Computation Module, also known as the ROBUS Protocol Processor (RPP), handles all the
ROBUS-specific functions including mode transition logic, low-level protocols, error detection,
diagnosis, reconfiguration, and distributed coordination. The main difference between BIUs and RMUs is
the functionality of their RPPs. Normally, the main determining factor for the number of BIUs in a
ROBUS implementation is the number of PEs needed to meet functional and reliability system
requirements. The number of RMUs is determined by the system reliability target and is independent of
the number of BIUs or PEs.

1 2 M

PEs

BIUs

RMUs

1 2 N

1 2 N

ROBUS

13

Figure 3.2: Generic top-level node structure for BIUs and RMUs

3.2. Distributed Coordination

Each ROBUS node is driven by an independent, free-running physical oscillator. These oscillators are
characterized by known upper and lower bounds on their drift rates with respect to real time. Each node
also has a logical-time clock, referred to as the local-time clock, which keeps track of the passage of time
as indicated by the physical oscillator. Given an initial precision of synchronization for the local times at
any two nodes, the precision can worsen over time at a rate determined by the drift rate bounds of the
physical oscillators.

There are two main categories of ROBUS protocols: synchronization and synchronous. The
synchronization protocols use event-triggered communication and event-processing operations to
generate high-precision distributed events that are used to synchronize the local-time clocks. The
synchronous protocols use the synchronized local-time clocks to process information using time-triggered
communication and operations. To achieve proper coordinated action in the execution of the synchronous
protocols, the local-time clocks of the participating nodes must be synchronized within some known
bounded precision.

ROBUS has two synchronization states: synchronized and unsynchronized. In the synchronized state,
the precision of synchronization is determined by an internal distributed reference event generated by a
clock synchronization protocol. The precision of this event allows the nodes to achieve very tight local-
time synchronization. The bus is in the unsynchronized state when it transitions to the startup and restart
processes. The precision of synchronization in this state is mainly determined by events not directly
controlled by the bus. It is assumed that the synchronization precision in this mode has a known bound
that can be large relative to the precision in the synchronized state. The bus transitions from the
unsynchronized state to the synchronized state after the execution of a synchronization protocol. Because
the local times can drift apart, a synchronization protocol must be re-executed at regular intervals to
ensure that the local times are kept synchronized. The rate of re-synchronization is constrained by
physical parameters of the design (e.g., oscillator drift rates) as well as precision and accuracy goals. The
fault-tolerance attribute of the synchronization protocols enables the bus to achieve and maintain
synchronization even in the presence of failed nodes.

The execution of synchronous protocols is driven by the local time and a time-indexed operation
schedule. The low-level distributed protocols specify the system activities by defining the active nodes,
operations, operation sequencing, and message flow patterns for each operation. The timing of operations
is determined using a model of distributed synchronous composition. This execution scheme and the high
synchronization precision in the synchronized state make the steady-state behavior of ROBUS highly
deterministic as it precisely specifies the timing of all the internal communication between BIUs and

Communication Module

Receivers Transmitters

Computation Module (RPP)

Received
Messages

Output
Messages

14

RMUs, as well as the communication with the PEs.

3.3. Redundancy Management

The purpose of redundancy management is to increase the probability of continued service delivery
through effective utilization of available resources. ROBUS is designed to manage its redundant BIU and
RMU components independently from the PEs.

Fault containment refers to the isolation of physical faults to prevent their propagation throughout the
system. This is achieved by establishing fault containment regions (FCR) that ensure a sufficiently high
degree of independence with respect to physical faults. Physical system components within an FCR are
considered to experience correlated faults because the cause of the faults can affect multiple components
simultaneously or because faults originating in one component can propagate to others within the FCR.
Thus, if any component within an FCR is affected by a fault, every component and function within the
FCR is considered untrustworthy. Ideally, the FCRs have independent power supply and are physically
and electrically isolated from each other. Communication between FCRs is through carefully specified
interfaces that ensure a sufficiently high degree of fault containment. In ROBUS, each RMU node is
contained in its own FCR, and each BIU can be located by itself in a separate FCR or it can share an FCR
with its corresponding PE.

Each BIU and RMU node is an observer of every node on the bus. An observed node is referred to as
a defendant. The diagnostic system of ROBUS is a distributed system divided into two layers. In the
local layer, the nodes monitor the communication and independently diagnose each individual node and
the bus as a whole. In the collective layer, the nodes exchange local diagnostic information to augment
their local assessments. Every ROBUS node performs the diagnostic functions of error detection, node
diagnosis, and bus diagnosis.

Error detection is the foundation of the diagnostic system. The following list covers all the categories
of error checks performed by the ROBUS nodes. These checks generate the syndromes from which
diagnostic decisions are made.

 Communication checks monitor the communication links between the nodes.

 In-line checks are applied to received messages and are based on expected timing and content
characteristics.

 Cross-lane checks also detect errors in received messages by comparing them against the result of
dynamic voting.

 Protocol checks inspect received messages and voting results with respect to expected properties for
intermediate and final protocol results.

 Self-checks are performed by a node to monitor its own operation.

 PE checks inspect the messages received by a BIU from its corresponding PE.

The diagnostic system assesses each node to determine its suitability to participate in the delivery of
services to the PEs. A trustworthy node can be relied upon to deliver the expected services.
Untrustworthy nodes do not behave as expected. A defendant is locally accused by an observer when the

15

observer determines that the defendant is untrustworthy but it is uncertain whether other observers have
reached the same conclusion. A defendant is collectively convicted when the observers agree that a
sufficient number of them consider the defendant untrustworthy. An observer forms a full diagnostic
assessment of a defendant based on local and collective diagnoses.

In the context of ROBUS, a clique is a group of BIUs and RMUs working together in a coordinated
way to deliver services to the PEs. A clique is considered trustworthy if its services are in accordance
with the ROBUS functional specification [Torres05A]. The diagnosis of the bus consists of determining
if exactly one trustworthy clique is in operation.

The BIU and RMU nodes use the diagnostic assessments to determine the clique membership. A
clique is reconfigured by adding or removing nodes from its membership. The purpose of reconfiguration
is to enhance the ability of a clique to establish and preserve proper service delivery in the presence of
untrustworthy nodes. A clique member is allowed to participate in the delivery of services to the PEs and
is referred to as a trusted node. A node searching for and trying to become part of a clique is called a
recovering node.

The FCRs ensure that the only error propagation path between nodes is through their interfaces. Error
containment for the interfaces between BIUs and RMUs is realized by placing barriers at both ends of
each interface. The BIUs and RMUs disable their outputs upon detection of a local failure or a bus failure
(i.e., they implement a fail-stop failure response). At the receiving end of the interfaces, the nodes use
input-error detection (e.g., communication and in-line checks) and dynamic voting to block propagated
errors from untrustworthy sources. The sources whose inputs are considered in a vote are called the
eligible voters.

3.4. Operational Modes

Figure 3.3 shows the major mode transitions for BIU and RMU nodes. A recovering node is in a
mode other than Clique Preservation. After a power-on enable, a recovering node goes to the Self-Test
major mode to perform a local initialization and test its circuitry. The recovering node will remain in this
mode indefinitely unless it successfully passes the test. After completing the self test, the recovering node
enters the Clique Detection mode to determine if there is a clique operating in the Clique Preservation
mode. If a clique is found, the recovering node transitions to the Clique Join mode, where it demonstrates
to the clique members that it is suitable for admission. If a clique is not found, the recovering node
transitions to the Clique Initialization mode to form a new clique. Upon successful completion of the
recovery process by either joining an existing clique or forming a new clique, a node transitions to the
Clique Preservation mode where, as member of a clique, it delivers services to the PEs according to the
ROBUS service specification [Torres05A]. At any time, if a node detects a local failure or a bus failure,
it transitions back to the Self-Test mode to reinitialize its operation and find nodes suitable for providing
communication services to the PEs.

3.4.1. Clique Preservation

Figure 3.4 illustrates the minor mode transitions for the Clique Preservation major mode. In the
Schedule Update mode, a schedule-download protocol is executed to allow the PEs to reprogram the bus
communication schedule according to their needs. During PE Communication, first the PE messages are
broadcast according to the communication schedule, and then the BIUs and RMUs exchange accumulated
accusations against nodes of the opposite kind, which serves to enhance the diagnosis and reconfiguration
capabilities of the bus. This is followed by a re-synchronization of the local time in the Synchronization

16

Preservation mode and then a reassessment of the clique membership in the Collective Diagnosis mode.

3.4.2. Self-Test

Upon entering the Self-Test mode, a node disables its output and performs a local hardware reset.
This mode serves as a checkpoint in which the nodes are required to exercise and assess the status of their
circuitry before attempting to join other nodes on the bus. This mode also provides a safe state to which
ROBUS nodes can go after detecting a failure and before attempting to re-engage.

Figure 3.3: Major operational mode transitions for ROBUS nodes

Figure 3.4: Minor mode transitions for Clique Preservation mode

Clique
Initialization

Power-on enable

Local failure or Bus failure

Enabled

Ready

Clique
Preservation

Clique
Detection

Self-Test

Clique found No clique found

Clique formed Clique joined

Deactivated

Disabled

Clique
Join

Collective
Diagnosis

PE
Communication

From Clique
Initialization
or Clique Join

Schedule
Update

Synchronization
Preservation

17

Figure 3.5: Minor modes transitions for Clique Detection mode

3.4.3. Clique Detection

Figure 3.5 shows the minor mode transitions in the Clique Detection major mode. In Local Diagnosis
Acquisition, a node uses asynchronous local observations to make a first assessment of the likely
members of a clique. In Synchronization Acquisition, the node attempts to synchronize to the clique. In
Collective Diagnosis Acquisition, the node captures the health assessment for each node as determined by
the clique during the execution of the distributed diagnosis protocol. If at any time during the Clique
Detection mode the node determines that a valid clique is not present, it will exit this mode and attempt to
form a new clique. Otherwise, it will assume that a clique exists and will try to join it.

3.4.4. Clique Join

When a node enters the Clique Join mode, its state is in agreement with the state of the clique. In this
mode, the node runs for two diagnostic cycles, essentially trying to demonstrate that it can be trusted.
The existing members of the clique will integrate the node as soon as they confirm that the admission
rules have been satisfied.

3.4.5. Clique Initialization

Figure 3.6 shows the minor mode transitions for the Clique Initialization major mode. A node
transitions to the Clique Initialization major mode to form a new clique. The first minor mode is Initial
Diagnosis, in which a node identifies other nodes that are also attempting to form a new clique. This is
followed by the Initial Synchronization and Collective Diagnosis minor modes, where the nodes
synchronize their local-time clocks and reach agreement on the clique membership.

Figure 3.6: Minor modes transitions for Clique Initialization mode

3.5. ROBUS Messages

The BIUs, RMUs, and PEs communicate using ROBUS Messages (RM). Figure 3.7 illustrates the
message format, which consists of a Tag field followed by a Payload field. The Tag field has one of two
values: SPECIAL or DATA. The format and content of the Payload field depends on the value of the Tag
field and the context in which the message is used.

Collective
Diagnosis

Acquisition

From
Self-Test

Synchronization
Acquisition

Local
Diagnosis

Acquisition
To
Clique Join

To Clique Initialization

No valid clique

Collective
Diagnosis

From Clique
Detection

Initial
Synchronization

Initial
Diagnosis

To Clique
Preservation

18

Figure 3.7: ROBUS Message format

A SPECIAL message carries a bit pattern corresponding to one of several labels including, among
others, the INIT and ECHO labels used by the synchronization protocols.

DATA messages carry data with a context-specific format. For Collective Diagnosis, the Payload
field of each message carries diagnostic information in the form of a Boolean vector. For Schedule
Update, a message carries the number of messages scheduled for a particular PE. For the PE Broadcast
protocol in the PE Communication mode, the messages carry information from the PEs with an
application-dependent format. The exchange of accusations after the completion of the scheduled PE
broadcasts uses the payload format for diagnostic messages.

3.6. Point-to-Point Communication

Figure 3.8 illustrates the structure of a one-way communication path between a sending node and a
receiving node. The link transmitter and receiver are part of the Communication Module at the source
and receiver nodes, respectively. The received messages are stored by the Computation Module at the
receiver node until the proper time for processing. This arrangement supports all the modes of point-to-
point communication between BIUs and RMUs: synchronous, fixed-delay, and asynchronous-monitoring.

Figure 3.8: Generic point-to-point communication path

Synchronous communication is used with the synchronous protocols. This is a time-triggered
communication scheme. Synchronous communication requires that the local-time clocks of the source
and receiver nodes be synchronized within some known bounded precision. Figure 3.9 illustrates the
main variables. A time TREF is chosen as a reference to coordinate the send and receive actions. A
message sent at time TSND with a nominal reception delay RPP is expected to be received at local time
TRCV,E. Taking into consideration the local-time skew between the source and the receiver, and the
uncertainty in the reception delay, a message from a trustworthy source should be received within an
expected-reception interval of duration WRCV centered at TRCV,E. A message that arrives outside this
interval is invalid. A valid received message is buffered until the scheduled time for processing TPROC.
This buffering performs a deskewing function in which the received message is synchronized to the local
time at the receiving node.

Tag Field Payload Field

1 bit fixed number of bits

Link
Transmitter

Transmission Send

Input
Buffer

To processing

Reception

Link
Receiver

19

Figure 3.9: Timing for synchronous communication

Fixed-delay communication is used with the synchronization protocols. For this communication mode
the information of interest is in the timing of the messages. A transmission is triggered by events at the
source. At the receiving end, the message is buffered for a predetermined duration of time before
processing it. This communication mode is used only with the INIT and ECHO messages of the
synchronization protocols. For the Synchronization Preservation protocol executed in the Clique
Preservation and Clique Join modes, it is possible to use local events at the nodes to determine a nominal
expected time of reception and an expected-reception interval for the synchronization messages.

Asynchronous-monitoring communication is used by a recovering node to observe the activity on the
bus before its local time is synchronized. This communication mode does not require coordination
between a source node (which could be a synchronized clique member) and the receiving recovering
node. Asynchronous monitoring is made possible by the fact that the BIUs and RMUs broadcast their
transmissions to all the nodes of the opposite kind and the point-to-point communication path allows the
recovering node to receive messages regardless of its state. The recovering node uses the buffer as a
fixed-delay queue, and the messages are processed in the order in which they are received. The delay is
not necessarily the same as for the fixed-delay communication mode used with the synchronization
protocols.

The PE Interface at the BIUs is designed using a first-in, first-out (FIFO) buffer abstraction for input
and output. For input, it is assumed that either a PE message is available when expected or there is a
corresponding error indication. For output, it is always assumed that the message can be output at its
scheduled time without having to confirm that the PE is ready to receive it.

3.7. Communication Patterns

This section presents the patterns of communication for the ROBUS-2 protocols. The description is
limited to the sequences of computation processes and message transmissions. The actual computation
operations performed by the nodes are not described here. [Torres05A] has a complete description of the
protocols.

3.7.1. Collective Diagnosis

Figure 3.10 shows the communication pattern for the Collective Diagnosis protocol. The circles
represent the processing done by the nodes. Each arrow represents a single-message broadcast
transmission from the sources to the receivers. BIUs and RMUs use synchronous communication. The
results of the protocol are convictions against BIUs and RMUs, which are stored locally by BIUs and
RMUs and are also forwarded to the PEs.

Local Time
at receiving node

TRCV,E

RPP

TREF

WRCV

TPROC

Local Time
at sending node

TSND TREF

20

Figure 3.10: Message flow graph for the Collective Diagnosis protocol

3.7.2. Schedule Update

Let N denote the number of BIUs, which is assumed to equal the number of PEs connected to the bus.
The PEs are identified according to statically assigned identification numbers which uniquely identify
each ROBUS port. The desired schedule is delivered by each PE to its BIU in the form of N consecutive
messages with the ordinal positions in the message sequence matching the PE identification numbers in
ascending order and the payload fields of each message indicating the desired number of messages to be
broadcast by the corresponding PE. The interval between the send time of one message and the send time
of the next (known as the data introduction interval or DII) [DeMicheli94] is constant. The submitted
schedule messages are processed using an agreement protocol, called the Schedule Update protocol, to
ensure that all the BIU and RMU clique members and their PEs agree on the number of scheduled
communication messages for each PE. Figure 3.11 shows the message flow graph for the Schedule
Update protocol. This is a synchronous-communication protocol. The protocol is applied independently
N times, with each iteration processing the messages delivered by the PEs that indicate the number of
messages to be broadcast by a particular PE. The result of each protocol iteration is sent to the PEs in
process P2. After all the messages have been processed, the ROBUS nodes individually assess the
resulting schedule. If the new schedule is valid, it is accepted. Otherwise, a default schedule known to all
the PE, BIU, and RMU nodes is used.

Figure 3.11: Message flow graph for the Schedule Update protocol

3.7.3. PE Broadcast

In PE Communication mode, ROBUS grants bus access to individual PEs according to the
communication schedule. An interactive consistency protocol, called the PE Broadcast protocol, is used
for each scheduled message to ensure that the PEs receive consistent messages. The bus access pattern is
a time-indexed, as-soon-as-possible (ASAP) round-robin sequence. Figure 3.12 provides an example of
the access pattern. The PEs access the bus in ascending order according to the port identification
numbers. The first scheduled message is sent at some predetermined time. The DII for PE messages is

RMUs

BIUs

PEs
Conv
BIUs

Conv
RMUs

 P0

 P0

 P1

 P1

 P2

 P2

 P3

 P3

 P4

 P4

RMUs

BIUs

PEs

 P0

 P1

 P2

 P3

 P4

21

constant. After all the scheduled messages for one PE have been sent, the messages for the next PE are
broadcast maintaining the proper DII between messages. If a PE is not scheduled to send messages, then
the messages for the next scheduled PE are sent. This continues until all the scheduled messages have
been sent.

Figure 3.12: Example of an access pattern during the PE Broadcast service

Figure 3.13 shows the message flow pattern for the PE Broadcast protocol. This protocol is used to
process each scheduled PE message. Only the scheduled PE and its corresponding BIU are required to
send messages. The other PEs and BIUs are allowed to send messages at the same time as the scheduled
PE and BIU (for example, in order to reduce node-error detection latency), but those messages will not be
forwarded by the RMUs. The result of the protocol is relayed to the PEs. The protocol uses synchronous
communication.

Figure 3.13: Message flow graph for the PE Broadcast protocol

3.7.4. Accusation Exchange

The broadcast of all the scheduled PE messages in the PE Communication mode is followed by the
Accusation Exchange protocol, in which the BIU and RMU nodes exchange accumulated accusations
against nodes of the opposite kind. Figure 3.14 shows the message flow pattern. This protocol uses
synchronous communication.

Figure 3.14: Message flow graph for the Accusation Exchange protocol

3.7.5. Synchronization Preservation

Figure 3.15 shows the communication pattern for the Synchronization Preservation protocol. The
message to be sent by each process is indicated in the figure. Fixed-delay communication is used for all

PE 1 PE 2 PE 4 PE 6 PE 7

Time

RMUs

BIUs

PEs

 P0

 P1

 P2

Source
PE only

Source
BIU only

RMUs

BIUs P0

 P1

 P2

22

the messages. For this protocol, it is possible to use the time of transmission of a message in one process
to determine an expected time of reception in another process. For example, the RMUs can estimate the
expected time of reception for process P3 based on the time of transmission in process P1. [Torres05A]
describes in detail how this can be done. A process uses the expected time of reception to perform a
timing check on received messages.

Figure 3.15: Message flow graph for the Synchronization Preservation protocol

3.7.6. Local Diagnosis Acquisition

In Local Diagnosis Acquisition, a recovering node monitors the activity on the bus to determine a
trusted set of opposite-kind nodes operating in the Clique Preservation mode. The recovering node uses
the asynchronous-monitoring communication mode to make its observations. A node in this mode does
not transmit messages. Figure 3.16 illustrates the nominal message flow for a recovering RMU P0 in a
3x3 system (i.e., 3 BIUs and 3 RMUs). The PEs and their links are not shown. The solid arrows
represent the message flow from the BIUs to the recovering node. The dashed lines represent the
bidirectional communication between the BIUs and the other RMUs. The message flow is similar for a
recovering BIU.

Figure 3.16: Message flow in a 3x3 system with a recovering RMU executing Local Diagnosis Acquisition

3.7.7. Synchronization Acquisition

The Synchronization Acquisition mode has two protocols: Frame Synchronization and
Synchronization Capture. The Frame Synchronization protocol monitors the activity on the bus to find
the gap between consecutive executions of the Synchronization Preservation protocol. Figure 3.16 also
applies to this protocol. The recovering node can use fixed-delay or asynchronous-monitoring
communication.

The Synchronization Capture protocol is activated by the end of the Frame Synchronization protocol.
A recovering node executing Synchronization Capture receives messages only from the opposite kind

RMUs

BIUs

PEs

 P0

 P1

 P2

 P3

 P4

INIT

INIT
INIT

ECHO
ECHO

Recovering

BIUs 2 1

 2 1 RMUs

 3

 P0

23

nodes and does not generate any messages. In that sense, Figure 3.16 also applies to this protocol.
Synchronization Capture uses fixed-delay communication applied to ECHO messages from the
Synchronization Preservation protocol. Figure 3.17 shows the message flow graph for the
Synchronization Preservation protocol expanded to include the Synchronization Capture processes P3C
and P4C. As shown, a recovering RMU executing process P3C receives the ECHO message broadcast by
process P2, and a recovering BIU in process P4C receives the ECHO message from process P3. A
recovering BIU executing process P4C also sends an ECHO message to its attached PE.

Figure 3.17: Message flow graph for Synchronization Preservation with the Synchronization Capture processes

3.7.8. Collective Diagnosis Acquisition

A recovering node executing the Collective Diagnosis Acquisition protocol is assumed to be
synchronized to a clique. The processing in this protocol is essentially the same as for the Collective
Diagnosis protocol and is executed by a recovering node in parallel with the execution of the Collective
Diagnosis protocol by the clique members. Figure 3.10 shows the message flow pattern for the Collective
Diagnosis protocol. A recovering node receives messages using the synchronous communication model.
In terms of the communication pattern, the main difference between Collective Diagnosis Acquisition and
Collective Diagnosis is that a recovering node does not broadcast messages during the Collective
Diagnosis Acquisition protocol. In that sense, Figure 3.16 also applies to this protocol.

3.7.9. Initial Diagnosis

In the Initial Diagnosis minor mode, the nodes execute a synchronous protocol to determine an initial
trusted set taking advantage of the known bound on the synchronization precision when operating in the
unsynchronized state. Figure 3.18 illustrates the message flow pattern. This protocol uses synchronous
communication.

Figure 3.18: Message flow graph for the Initial Diagnosis protocol

RMUs

BIUs

PEs

 P0

 P1

 P2 P4

INIT

INIT
INIT

ECHO
ECHO

 P4C

ECHO

 P3C

 P3

RMUs

BIUs P0

 P0

 P1

 P1

24

3.7.10. Initial Synchronization

The Initial Synchronization protocol is similar to the Synchronization Preservation protocol. The
differences in processing are the result of the possibly larger bound on the relative local-time skew at the
beginning of the protocol execution. Figure 3.19 shows the message flow pattern. For this protocol, the
BIUs send ECHO messages to the PEs from process P4, instead of INIT messages from process P2. This
protocol uses fixed-delay communication.

Figure 3.19: Message flow graph for the Initial Synchronization protocol

3.8. Communication between PEs and BIUs

ROBUS requires a bidirectional communication capability between BIUs and their attached PEs. A
BIU and its PE can be in separate FCRs or they can share an FCR. If a BIU and its PE are in separate
FCRs, the physical communication links must provide adequate barriers to the propagation of faults
between the FCRs. In this case, the physical failure of the BIU is independent from the failure of the PE
and the failure recovery process of the BIU is completely independent from the PE. Note that if a BIU
fails, its attached PE is, in effect, disconnected from the bus. On the other hand, if a BIU and its PE share
an FCR, a fault can propagate between the BIU and the PE. In this case, the physical failure of one is no
different from a failure of the other. Therefore, the design must provide for the simultaneous recovery of
both components. In ROBUS-2, this can be handled by a common process that resets the BIU and the PE
when a failure is detected on either of them. Irrespective of the FCR configuration, it is the responsibility
of the PE to monitor the communication in order to determine the state of the BIU.

BIUs and PEs exchange messages using two communication models: fixed-delay and synchronous.
The fixed-delay model is used with the time synchronization protocols and is essentially the same as for
the communication between BIUs and RMUs. The fixed-delay model allows the PEs to synchronize their
time using reference events at the BIU interfaces. Synchronous communication is used with the
synchronous protocols. Two different synchronous communication models are allowed. In the “tight”

model, the transmission of messages between BIUs and PEs follows a strict schedule in which timing is
specified down to the tick level. This is the model used for synchronous communication between BIUs
and RMUs. In the “loose” synchronous communication model, the sending and receiving of messages by
the PEs is only required to satisfy simple timing constraints. Since the BIUs have time-triggered
operation, their input and output of PE messages follows a detailed time-indexed schedule. The send
timing requirement for the PEs is that their messages must be available at the BIUs at or before the time at
which the BIUs will read them. The receive timing requirement for the PEs is that they will get the
messages after the BIUs generate them according to their schedule. The specific time at which the PEs
send their messages and the delay in receiving BIU messages for the “loose” synchronous communication

model is dependent on the implementation and the applications run by the PEs. The PE Interface at the

RMUs

BIUs

PEs

 P0

 P1

 P2

 P3

 P4

ECHO

INIT
INIT

ECHO
ECHO

25

BIUs is designed using a first-in, first-out (FIFO) buffer abstraction for input and output. For input, it is
assumed that each expected PE message is available or there is a corresponding error indication. For
output, it is always assumed that the message can be output at its scheduled time without having to
confirm that the PE is ready to receive it.

The PEs send messages only during the schedule update and PE Broadcast services. In both cases,
only DATA messages are sent. For these messages, the BIUs read the messages and broadcast them on
the bus. PE-error checks are not described in this document. These checks are used to signal the BIU
when expected messages are not available or otherwise invalid. In either case, a BIU will replace the
expected PE message with a SPECIAL message with the payload field set to PE_ERROR.

In addition to service messages, the PEs receive mode and identification messages from the BIUs.
The mode messages enable a PE to track the mode of its BIU. A BIU will send a mode message to its PE
every time there is a major mode transition and after every diagnostic cycle during the Clique Join and
Clique Preservation modes. The mode messages are SPECIAL messages with the payload field set to
SELF_TEST, CLIQUE_DETECTION, CLIQUE_INITIALIZATION, CLIQUE_JOIN or
CLIQUE_PRESERVATION, as appropriate. The ID message carries the BIU‟s identification number,
which is the identification number to be used also by the PE. These are DATA messages with the
payload field equal to the BIU‟s identification number. This way of giving an identification number to a

PE is preferred over setting it directly at the PE because it allows the use of generic software at the PEs
and prevents a mismatch between the BIU and the PE identification numbers.

Figure 3.20: Message exchange pattern between a BIU and its attached PE in Clique Preservation mode

A: PE-to-BIU messages; B: Bus services; C: BIU-to-PE messages

LTBIU

LTBIU

A:

PE Broadcast Time
Reference

Schedule
Update

Self-
Diagnosis

Schedule
Update

LTBIU

B:

C:

Mode
and ID

Schedule
assessment

Mode
and ID

BIU and RMU
diagnosis

PE messages

Synchronization
message

Schedule
processing

results

Desired
schedule

PE
messages

Schedule
processing

results

Desired
schedule

26

Figure 3.20 illustrates the message exchange between a BIU and its attached PE during the Clique Join
and the Clique Preservation modes. The mode and identification messages are sent to the PE between the
Self-Diagnosis and Schedule Update services. During Schedule Update, the BIU reads the schedule
submitted by its PE and sends to the PE the results determined by the bus for each PE. This is followed
by a single message with the assessment result for the new schedule. This consists of a SPECIAL
message with the payload set to VALID_SCHEDULE, ZERO_SCHEDULE (i.e., the schedule is valid
and equal to zero for all the PEs), or INVALID_SCHEDULE. If the schedule is invalid, ROBUS will
automatically switch to a default schedule. During the PE Broadcast service, a BIU will read the
scheduled messages from its PE and output to the PE the result for all the scheduled messages. A
broadcast result equal to PE_ERROR indicates that there was an error at the source PE. If the bus
determines that the BIU of a source PE is not operating properly, then the result of the broadcast will be
SOURCE_ERROR or NO_MAJORITY. A result of NO_MAJORITY indicates that the RMUs received
different messages from the source BIU. If the assessment of the schedule was ZERO_SCHEDULE, the
PE Broadcast service is not executed and ROBUS simply waits until it is time to execute the Time
Reference service. During the Time Reference service, a BIU outputs a SPECIAL message with the
payload set to INIT. The sending of this message is triggered by the reference event that the BIU will use
to reset its local-time clock. For Initial Synchronization and Synchronization Acquisition, the payload is
set to ECHO to explicitly indicate that a different protocol event is used as a reference to reset the local-
time clock. During the Self-Diagnosis service, the output of a BIU consists of two messages containing
the diagnostic results for the BIUs and the RMUs. These messages complete the service cycle. The next
cycle begins with the mode and identification messages.

27

4. Overview of the Configurable Fault-Injection and Monitoring System

The system described in this section is the first step in the capability development to serve the NASA-
ODU research needs. We give a high level description of the initial CFIMS realization based on the
concept presented in Section 2. The first two subsections here are overviews of the application and the
execution platform, as they are strong determining factors for many SUT and CFIMS design and
implementation decisions. The description of the CFIMS and the relevant aspects of the SUT are
presented after that. A more detailed description of all system aspects is given in the remaining sections
of this report.

4.1. Initial Application

The goal in the first set of experiments is to characterize the application-level effects of faults in the
ROBUS-2 communication system. For this, ROBUS-2 will be exposed to physical and simulated faults
while data is collected on the effects on PE messages carrying application data. Then, the experimental
communication-fault effects data will be used in closed-loop simulations of a Boeing 747 airplane
controlled by an autopilot to measure the fault effects on the performance of the closed-loop system. The
expected results of this work are validated models of fault effects on the ROBUS-2 communication
service and the performance of the closed-loop system.

In essence, the experimental setup consists of a set of PEs exchanging messages according to a
predetermined communication schedule while faults are injected into ROBUS and observations are
collected about the results of expected message receptions at the PEs. The PEs will not be programmed
for dynamical closed-loop control of a plant. Instead, they exchange static messages of appropriate length
for sensor readings and effector commands with a pattern of communication over the bus that is
representative of an actual control application. The PEs execute their operations repetitively with a
predetermined constant execution period. An execution iteration is referred to as a control cycle. The
PEs will be grouped and labeled according to the functions they would perform in an actual control
system, with some PEs executing input and output application processes and others executing the control
process, as illustrated in Figure 4.1. This arrangement with a group of PEs running both input and output
processes (see IO PEs in Figure 4.1) reduces the total number of PEs required in the system and allows
the use of the existing ROBUS Protocol Processor design [R2PP], which is not intended for large
systems. In every control cycle, each IO PE transmits on the bus one set of sensor readings and each
Control PE transmits one set of commands. An application-level PE message maps to one or more
ROBUS messages. A control cycle consists of one or more ROBUS cycles.

Other than application data communication, none of the standard PE-level SPIDER services described
in Section 1 will be implemented in the first configuration. The operation of the PEs will be coordinated
by an external centralized process responsible for providing control cycle-level synchronization. Future
system configurations may implement internal distributed coordination protocols for PE-level diagnosis,
synchronization and redundancy management.

Although the intended fault injection targets for the initial experiments are the ROBUS components,
namely BIUs and RMUs and their communication links, the minimum units of failure in a fault tolerance
and redundancy management sense are actually defined in terms of fault and error containment regions
(FCRs and ECRs). If a PE and a BIU share an FCR, any fault affecting the BIU makes the PE

28

untrustworthy and both are considered to fail as a unit. Even if a PE and its BIU do not share an FCR, the
PE still does not fail independently of its BIU because a PE requires a properly operating BIU for access
to the bus, without which a PE becomes untrustworthy as it has no means to coordinate its operations with
the rest of the system. In effect, the failure of a BIU propagates and corrupts the PE. Thus, given that the
BIU is a fault injection target, a PE-BIU pair must be treated as a single unit of failure.

Figure 4.1: Concept for initial SUT configuration

4.2. Execution Platform

In a full SPIDER system, the RPPs for BIUs and RMUs have custom hardware designs [Torres05B],
and the PEs have hardware- and software-implemented functions. The execution platform selected for
this project enables the implementation of distributed computation networks and consists of general
purpose reconfigurable processing nodes with hardware and software programmable resources and basic
communication resources. The execution platform is used to implement the SPIDER-based SUT and the
CFIMS. As such, the execution platform must support simulated fault injection experiments and physical
fault injections in HIRF and neutron radiation environments.

This subsection describes the execution platforms for this project. The first platform, RSPP1, where
RSPP stands for Reconfigurable SPIDER Prototyping Platform, is an existing platform acquired from a
previous project. The second platform, RSPP2, is an upgraded version with increased performance and
higher damage tolerance in neutron radiation environments.

4.2.1. Reconfigurable SPIDER Prototyping Platform 1

The RSPP1 was developed for NASA by Derivation Systems, Inc (DSI) under a phase III SBIR
contract and consists entirely of commercial off-the-shelf (COTS) parts. The RSPP1 is a Field
Programmable Gate Array (FPGA)-based development system for the design and testing of SPIDER
prototypes. The architecture is a scalable modular system composed of individual RSPP1 nodes
interconnected with point-to-point fiber optic links. Figure 4.2 shows two views of an RSPP1 node. An
RSPP1 node is a PC/104-plus [PC/104] computer system with the following functional hardware
components.

Transmission:
Sensor

Readings

ROBUS-2

Input-Output
PEs

Injected
Faults

Injected
Faults

Transmission:
Effector

Commands

Control/Processing
PEs IO Ctrl Ctrl IO

Centralized
Coordinator

29

 PF3100-2V3000 PC/104+ FPGA Module: PF3100 with the Xilinx Virtex-II XC2V3000 (3 million
gates) FPGA.

 PFBR104 PC/104 Fiber Optic Transceiver Module: Interfaces with the PF3100 over the PF3100 IO
connector and provides four Agilent HFBR-5905 fiber optic transceivers. Each RSPP1 node has two
PFBR104 modules providing a total of 8 fiber optic IO channels.

 PC/104+ CPU Module: The PC/104+ CPU module is a Lippert CRR2 with a 300 MHz Pentium class
processor, 64MB SDRAM, 256MB Compact Flash, 10/100 Ethernet, VGA, Keyboard, RS232 serial
port, parallel port, USB port, and cables. The White Dwarf Linux operating system is installed on the
CPU module.

Figure 4.2: RSPP1 Node

Figure 4.3 shows the interconnection of the main physical components in an RSPP1 node. The custom
hardware functions of a node are implemented as hardware processes running on the static random-access
memory (SRAM)-based FPGA. The program for the FPGA is stored in non-volatile flash memory
together with functional parameters for the hardware processes. The FPGA is connected via low-voltage
differential signaling (LVDS) [XAPP230] lines to a group of eight fiber-optic transceivers, each
composed of independent transmit (Tx) and receive (Rx) sections used for point-to-point communication
with other nodes. The complex programmable logic device (CPLD) controls the loading of the FPGA
from flash when triggered by the CPU-controlled reset signal on the ISA bus. The CPLD acts as a pass-
through for reset requests generated by the FPGA. This node-wide reset feature supports a policy in the
ROBUS-2 design that requires a node to reset itself immediately upon the detection of an internal error or
a bus failure [Torres05A].

8 Bi-Directional Fiber
Optic Channels

PC Ports
and Power

CPU Module
FPGA Module
Optical Transceiver Modules (2)
Fan Module
DC/DC Power Supply

PC/104 Stack

30

Figure 4.3: Interconnection of the main physical design components on an RSPP1 Node

4.2.2. Reconfigurable SPIDER Prototyping Platform 2

The RSPP1 has several disadvantages in the operating system, the FPGA and the fiber optic
transceivers. The RSPP1 operating system, White Dwarf Linux, is a version of Linux intended for
embedded applications with a small memory footprint. This version of Linux does not provide support
for hard-real-time software execution, and that makes it unsuitable for PE-level software functions in a
time-triggered system like SPIDER.

The SRAM-based FPGA on RSPP1 has the drawbacks that it loses its programming every time there
is a hardware reset, and there is a long delay in loading the program. This programming delay has a
severe impact on the re-initialization delay of a ROBUS-2 system with RPPs running on these FPGAs.
The communication system in a flight controller must have very short fault recovery delay to enable fast
system recovery for preservation of closed-loop system stability. (Note that the long recovery delay of a
ROBUS-2 system using RSPP1 is not a problem in the experiments because no actual controller is being
implemented in the initial SUT configuration and what we are trying to measure is the failure statistics
without the temporal component in a typical communication exchange.)

The RSPP1 fiber optic transceivers are standard commercial-grade communication parts that have
high functional sensitivity and low damage tolerance in high-energy particle radiation environments. If a
SPIDER system executing on RSPP1 is exposed to such environments, there is a high probability that
most observed faults will be due to fiber optic transceiver faults and that the transceivers will only operate
for a short time before being permanently damaged by the radiation.

In the RSPP2 platform, which will be developed in-house at LaRC, the CPU module will be replaced
by one with a more recent processor and a real-time operating system. A new reconfigurable hardware
module eliminates the CPLD and replaces the SRAM-based FPGA with a flash-based FPGA that does not
lose its programming after a power cycle and does not need to be reprogrammed after reset. The fiber
optic communication module will be replaced by an electrical communication module that has higher
tolerance to particle radiation. In addition, a latch-up protection circuit will be added to the PC/104 stack
to reduce the likelihood of permanent damage due to the radiation. [Layton98] describes the performance
of one such latch-up protection circuit.

Flash

FPGA

CPU

Tx

Rx

Tx

Rx

CPU Reset

ISA
Bus

Transceiver

Optical
Fibers

1

8

LVDS

Reconfigurable Hardware Module

CPLD

Fiber-Optic
Transceiver Modules

31

4.3. Initial Configurable Fault Injection and Monitoring System

Figure 4.4 illustrates the architecture of the SUT and the CFIMS. As described in Section 2, the
CFIMS enables the collection of observations about the response of the SUT when operating under
conditions determined by the configuration, workload and faultload specifications. The system functions
are SUT function testing, fault injection, state monitoring, execution control, data collection, and system
configuration. These functions are implemented as a set of coordinated distributed processes running on
test control nodes and the SUT.

For the given initial application, SPIDER consists of PE-BIU and RMU functional nodes running on
separate RSPP physical nodes, with each node forming an independent fault and error containment
region. Each PE-BIU functional pair executes on the same RSPP node because of the failure
interdependence between the PE and the BIU. That arrangement is also the most representative of an
actual fielded system. Each SPIDER node includes local processes for fault injection and state
monitoring to support the CFIMS functions. The runtime configuration capability of the nodes is
embedded in their local processes.

As shown in Figure 4.4, the main CFIMS functions reside in the test controllers. This distributed
multi-controller arrangement satisfies a design requirement of at least one dedicated test communication
link for each SPIDER node in SUT configurations as large as 12 BIUs by 4 RMUs, which is believed to
be the largest system that may be of interest relative to the NASA-ODU research goals. That connectivity
requirement cannot be supported by a controller running on a single RSPP node with only 8 customizable
point-to-point communication ports. The chosen control architecture consists of one primary controller
connected to as many secondary controllers as needed to reach each SPIDER node with a dedicated test
link. The configuration in Figure 4.4 is intended for SUTs with at most seven PEs due to number of
available communication ports on an RSPP node.

In the Primary and Secondary Test Controllers (PTC and STC), the functional processes are allocated
to either hardware or software taking into consideration the performance requirements of the design, as
well as the strengths and weaknesses of each computation paradigm. The following are among the
critical design requirements for the test controllers.

 Referencing of distributed observations to a common timeline

 Time-triggered operation for interaction with SPIDER

 High error detection coverage in the communication between the controllers and SPIDER

 Support very high rate of execution on ROBUS

 High fault injection controllability and repeatability

All these requirements are best satisfied by exploiting the high degree of distributed time
synchronization precision and operation coordination achievable with hardware implemented functions.
However, hardware implementations tend to be limited by available resources and time-consuming to
design and analyze due to high execution parallelism and complex interactions between functional
components. Software implementations tend to have large available resources (e.g., memory) and be less
time consuming due to the sequential-programming model, but also tend to allow only coarse timing
control and coordination (relative to what can be achieved with hardware) between parallel processes.

32

The process allocation shown in Figure 4.4 has a mix of hardware and software functionality that offers a
reasonable balance between performance and design complexity.

Figure 4.4: High-level architectural view of the CFIMS and SUT

The Test Control Links (TCLs) are a communication infrastructure shared by the CFIMS hardware
processes. The TCLs include the Controller Coordination Link (CCL) between the Primary Test
Controller and the Secondary Test Controller, the Primary Test Links (PTLs) between the PTC and the
PE-BIU nodes, and the Secondary Test Links (STLs) between the STC and the RMU nodes. The TCLs
use custom-designed data communication units with high-precision point-to-point communication delay
and very low bit-error rate (see Section 6). The Test Control Messages (TCMs) communicated over these
links have a common format which is described in Section 7.

At the PTC and STC, the Round Control hardware processes are responsible for overall coordination
of activities at the test controllers. A (test) round is the sequence of actions by the system to perform the

Repository

Environment
Controller

Configuration
Management

Data
Collection

Fault Injection
Management

Software

Secondary Test Controller

State
Monitoring

Data
Collection

Round
Control

Hardware

Controller Coordination Link

Secondary
Test Links

ROBUS Links

Test
Specification

Experimental
Data

Experimental
Data

Experimental
Data

SPIDER

Fault Injection
Control

Data

Collection
Configuration
Management

Fault Injection
Management

Software

Primary Test Controller

State
Monitoring

Fault Injection
Control

Round
Control

Data
Collection

Hardware

Primary
Test Links

 PE-BIU

RPP: BIU Local Fault
Injectors

Local State
Monitoring

PE

Function
Testing

 RMU

Local Fault
Injectors

RPP: RMU

Local State
Monitoring

.

.

.

.

33

work described in a Test Specification file (see Section 13 and Appendix A). The Round Controllers
execute a Controller Coordination Protocol (CCP) over the CCL to synchronize and coordinate their
actions (see Sections 4.3.4 and 5). This protocol leverages the SUT function-based time reference
generated by the Function Testing process at the PTC to enable the Round Controllers to provide the
common global time service needed to correlate the activities and observations in separate parts of the
system for the duration of the round.

The Function Testing process at the PTC has two main components: a function timer, and a function
tester and monitor. The function timer is the centralized PE coordinator introduced in Section 4.1. Its
purpose is to enable the PEs to synchronize their application level activities and to provide a precise SUT-
based time reference with which to coordinate the CFIMS operations. The function tester and monitor
component generates the application data to be exchanged by the PEs over ROBUS and gathers fault
effects observations based on the messages sent back by the PEs. Section 4.3.1 gives a more detailed
description of the Function Testing process.

The Fault Injection processes work together to generate a physical or simulated faultload according to
the Test Specification. For physical fault injection, the PTC and STC interact with the Environment
Controller to coordinate the activation of environmental disturbances with the operation and monitoring
of the SUT. The simulated fault injection capability is intended to be highly flexible and configurable to
achieve the desired trade-off between complexity of design and effectiveness of fault injection relative to
the properties presented in Section 2.2 (i.e., reachability, controllability, repeatability, reproducibility, and
non-intrusiveness). The simulated fault injection processes can be present in both hardware and software
in every node of the system, and their individual actions can range from independent decisions based on
locally available system state information to globally coordinated actions using the high-bandwidth
communication infrastructure. The actions of the fault injection processes can be event-triggered based
on monitoring of local or global conditions, or the actions can be driven by time using the available SUT-
derived function time. Random fault injection is also possible using the available resources. More details
about the fault injection capability are given in Section 4.3.2.

For State Monitoring, every SPIDER node has a local process that reports state observations through
the TCLs to higher level monitoring processes. The embedded monitoring processes can be configured
for the triggering conditions and the variables to be sampled. In addition to forwarding these observations
to the data collection software processes, the state observations can be combined with observations about
the SUT application to ascertain in real time the general health status of the SUT.

The Data Collection processes at the test controllers gather observations about the operation of the
SUT and the CFIMS throughout the round. The collected data is organized into separate buffers and
transferred at the end of the round to files at the Repository, where they remain available for post-test
analyses.

The software Configuration Management process is responsible for setting up the system according to
the description given in the Test Specification. The configuration information is applied directly at the
test controllers, or it can be routed through the system using TCMs to reach particular destination
processes. Each receiving process must then apply its configuration information as appropriate in
preparation for the next execution round.

The following subsections provide additional information about the design of the SUT and the
CFIMS.

34

4.3.1. SUT Function Testing

As stated previously, the PEs in the initial version of the SUT will not implement any of the standard
PE-level distributed coordination and resource management protocols over ROBUS (for example,
synchronization, diagnosis and redundancy management), and instead will use an external time
synchronization agent to enable coordinated message-passing on the bus. In this subsection, we give an
overview of the PE synchronization protocol and the function to exercise and monitor the communication
of the PEs over ROBUS.

4.3.1.1. PE Synchronization

The initial SUT application consists of the PEs executing a pattern of communication over the bus that
is representative of actual control applications with messages for sensor readings and effector commands.
On SPIDER, the coordination of distributed operations is based on the fault-tolerant time service provided
by ROBUS in the form of a constant-period cyclic time reference. For a control application with
periodicity requirements on the updates of sensor readings and effector commands, the duration of a
control cycle would normally be specified as a multiple of the ROBUS cycle. The actual durations of the
ROBUS cycle and the control cycle are selected considering a variety of factors like the required
synchronization precision, available communication bandwidth, fault arrival rate, fault recovery delay,
and control-cycle period and period jitter.

The PE communication pattern over the duration of a control cycle can be optimized by changing the
PE communication schedule in every ROBUS cycle using the ROBUS dynamic schedule update service.
To do this, the PE communication schedule for a control cycle is defined as an indexed set of ROBUS
communication schedules, with one ROBUS schedule for each ROBUS cycle in a control cycle, and with
the schedule index identifying the ROBUS cycle in which to apply a particular ROBUS schedule.
Accordingly, for proper coordinated communication, the PEs must have agreement on the current time,
which includes the ROBUS Time (RT) (i.e., the time within a ROBUS cycle) and the ROBUS Cycle
Index (RCI) (i.e., the identifying sequence number for a ROBUS cycle within the control cycle). The
ROBUS time service ensures agreement on the RT among the PEs. In the first SUT implementation, RCI
agreement among the PEs is achieved by means of a centralized agreement generation and preservation
process residing at the PTC and referred to as the Function Timer (FTmr). In addition to providing RCI
agreement for the PEs, the FTmr maintains a Control Cycle Index (CCI) to identify and count the control
cycles since the beginning of SUT application execution in the current round. The PE RCI agreement
protocol described below enables the FTmr to provide all CFIMS components with an SUT-referenced
time service consisting of the 3-tuple (RT, RCI, CCI).

Figure 4.5 shows the transition graph for the PE major modes. The OCL, which stands for Operation
Coordination Level, measures the degree of readiness of a PE to participate in distributed SPIDER
operations. After a reset, in OCL0 a PE must first synchronize to the ROBUS Time as indicated by its
attached BIU. Then, in OCL1 the PE waits to confirm that its BIU has reached steady-state in the Clique
Preservation Mode (CPM) (see Section 3). Once the PE has stable access to the bus in OCL2, the next
step is to synchronize the local RCI and transition to OCL3 at the next control cycle boundary, which is
identified by an FTmr synchronization message with RCI set to 0. A PE in OCL3 is ready for normal
control-cycle-level communication on the bus. Whenever the PE detects a failure condition, it
immediately halts all internal operations and remains there until an external reset is applied.

Figure 4.6 shows the message-flow graph for the RCI agreement protocol. A PE participates in this
protocol only after it has reached OCL2, by which time its local RT is synchronized by INIT messages

35

from the attached BIU executing the ROBUS Synchronization Preservation protocol. In process P2IO, a
PE transmits a synchronization message after a predetermined constant delay from the time it received the
INIT message. The PE message contains the local RCI value. Given known bounds on the point-to-point
communication delay, the FTmr can use the time of reception of the message in process P3IO to estimate
the RT at the sending PE. In the initial version of the protocol, the FTmr discards the received RCI values
and performs a middle-value-select event vote on the time of reception of PE messages. The FTmr then
transmits a message a fixed delay after the event vote produces its output. This message carries internally
generated values for the RCI and CCI. In process P4IO, the PEs accept the received RCI and use it as the
communication schedule index in the next execution of the ROBUS schedule update protocol. The FTmr
message (referred to as the “sync message”) is also distributed throughout the CFIMS to enable SUT-
referenced time-coordinated distributed actions.

Figure 4.5: Major-mode transition graph for a Processing Element

Figure 4.6: Message flow graph for the RCI agreement protocol

The design of the FTmr uses many synchronization concepts from ROBUS and the RPP. Figure 4.7
shows the FTmr mode transition graph. After a reset, the FTmr operates asynchronously with respect to
SPIDER. It first enters a passive phase (i.e., no output generation) of monitoring and diagnosing the
synchronization messages from the PEs in order to establish an initial set of trusted PEs. This minor
mode is similar to the RPP‟s Local Diagnosis Acquisition in the Clique Detection major mode. When the
FTmr determines an initial valid set of PEs, it transitions to RT Frame Synchronization mode where it
finds the gap between consecutive bursts of synchronization messages from the PEs. Notice that the PEs

RMUs

BIUs

PEs

 P0

 P1

 P2

 P3

 P4

INIT

INIT

INIT

ECHO

ECHO

FTmr P3IO

(SYNC, RCI, CCI)

To CFIMS

ROBUS
Synchronization
Preservation
Protocol

RCI Agreement
Protocol

(SYNC, RCI)

P2IO P4IO

(SYNC, RCI, CCI)

Reset

OCL0

OCL1

OCL3

OCL2

Failure
Halt

RT Sync

BIU in CPM

RCI Sync

Run

36

send their synchronization messages from process P2IO in Figure 4.6 as a result of receiving
synchronized INIT messages from the BIUs, which are generated periodically when ROBUS executes its
Synchronization Preservation protocol. The FTmr Frame Synchronization protocol ensures that RT
Synchronization Capture will not start while a burst of synchronization messages from trustworthy PEs is
being received. The FTmr synchronizes to the current RT in the Synchronization Capture mode. When
RT synchronization is achieved, the FTmr transitions to RT Synchronization Preservation and begins
SUT-synchronous operation. Whenever a failure condition is detected, the FTmr restarts the
synchronization process in the Initialization major mode.

Additional information about the RCI agreement protocol can be found in Section 9 for the PEs and in
Section 11 for the FTmr.

Figure 4.7: Mode transitions for Function Timer

This version of the RCI agreement protocol satisfies the intent of having a single agent external to
SPIDER that generates the RCI values to ensure agreement among the PEs. However, discarding the
received RCI values at the FTmr introduces an unnecessary degree of artificiality in the behavior of the
system due to the fact that there is no relation between the RCI value generated by the FTmr and the RCI
values at the PEs, which are part of the system state at the PEs. It is a simple exercise to modify this
protocol to compute the RCI at the FTmr using a majority word vote over the received values from the
PEs. That modified version of the protocol can be used to fully synchronize the FTmr as a slave process
to SPIDER in future versions of the system in which the PEs execute a distributed agreement protocol by
exchanging their local RCIs over ROBUS. In that system, process P4IO at the PEs is redundant and can
be removed.

4.3.1.2. Application Testing

In the first SUT application, the PEs exchange messages over ROBUS while observations are
collected about fault effects. The PEs are grouped into IO PEs that transmit sensor reading messages and
Processing (or Control) PEs that transmit effector command messages. Every PE is allowed to transmit
exactly one application-level message per control cycle. The application communication schedule is
predetermined and repeated every control cycle. The assignment of applications to the PEs as either IO or
Processing is given in the Test Specification (see Figure 4.4). The Test Specification also indicates which
PEs will be active during the test round.

Reset

Passive PE Diagnosis

RT Frame Synchronization

RT Synchronization Preservation

RT Synchronization Capture

Failure

Initialization

Preservation

37

Continuing with the model of having a centralized PE coordinator, in every control cycle the PTC
Function Testing process sends to the PEs the application data to be transmitted on ROBUS and generates
observations based on the communication results reported by the PEs. Essentially, the goal is to check
the communication paths between PEs. To do this, the PTC Function Testing process has a dedicated
lane Function Monitor (FMon) for each PE. Figure 4.8 illustrates the message flow from FMoni to
FMonj. The FMons read the current system time from the FTmr. At the beginning of a control cycle,
FMoni sends a message to PEi containing either sensor readings or effector commands, depending on
whether PEi is configured for IO or Processing, respectively. If PEi detects an error in the message from
FMoni, it makes a record of the error and sets the appropriate field in the message content to be
transmitted on ROBUS, assuming PEi is scheduled to transmit. PEi broadcasts a message on ROBUS at
the scheduled time, and the message is received by every active PE, including PEi itself. If PEj detects an
error in the message received on ROBUS, it makes a record of it. When PEj is ready, it adds the
scheduled source Id to the message (i.e., the Id for PEi) and an indication in the appropriate message field
if a message reception error was detected, and then sends the message over to FMonj. FMonj inspects the
received message and generates an observation based on the content. At the end of every control cycle,
FMonj outputs one observation result for each PE as a source, irrespective of whether the PE actually was
a message source during the cycle.

Figure 4.8: Message flow pattern for testing ROBUS fault effects on PE messages

Table 4.1 lists the possible observation results for the path from FMoni to FMonj. To generate this
table, it is assumed that there are no faults at the FMons, there are no restrictions in how the PEs, BIUs, or
RMUs may fail (i.e., they may experience omissive or transmissive faults, with transmissive faults having
a non-negligible probability), and there is near-perfect integrity in the communication over the PTLs and
RLs (i.e., either a message receiver gets the correct message or it detects a bad message) such that
transmissive communication faults are possible but unlikely. These assumptions are supported by the fact
that fault injection does not target the FMons directly; the implementation of the PE, BIU, and RMU
nodes may not have local-error detection mechanisms with high detection coverage; and the point-to-
point communication links to be used are designed for high integrity (see Section 6). Every FMon
handles received messages from its corresponding PE in an event-triggered manner (i.e., messages are
immediately processed when they arrive) and with a control-cycle time granularity for the generation of
observations (i.e., messages are processed at their actual time of arrival during the control cycle, but all
the observations are outputted at the end of the control cycle). If an FMon does not receive a message
with a particular Sender Id during the control cycle, then the observation result for that Sender Id at the
end of the cycle will be the default one (i.e., Omitted Sender Id). When the FMon receives a message, the
error checks are applied in the priority order indicated in Table 4.1. The outputted observation for a
message will be determined by the first check to detect an error. A message is considered good (i.e.,
correct) only if it passes all the checks. Note that transmissive faults are considered more serious (and
interesting) from an effects characterization standpoint.

PEi

Observations

 Snd

PEj

Rcv FMoni

ROBUS
 BIUs

 RMUs

 BIUs

FMonj

Sensors or
Commands

 PEN

 PE1

 PE1

 PEN

38

Table 4.1: Defined observations for the communication path from sender FMoni to receiver FMonj

Observation

by FMonj

Check

Priority
Check Description Explanation of Observation at FMonj

Omitted
Sender Id 0 FMonj received no message from

FMoni.
- Default observation applicable to the case of PEi disabled or not scheduled to transmit.
- May also be due to a fault in PEj or the PTL from PEj to FMonj.

Invalid
Sender Id 1

FMonj received a message from
FMoni in a system configuration
in which PEi (and thus, FMoni)
does not exist or is not active.

- Mostly likely due to a transmissive fault in PEj.
- May also be due to a transmissive fault in the PTL from PEj to FMonj.
- The check for this observation is given higher priority than the one for “Bad Payload Length”

because the outputted observations are indexed by the sender Id. It is also given higher
priority than “Repeated Sender Id” because it could be interpreted as an error due to a fault in
PEj.

Repeated
Sender Id 2 FMonj received multiple

messages from FMoni.

- Most likely due to a transmissive fault in PEj.
- May also be due to a transmissive fault in the PTL from PEj to FMonj.
- There is no basis to give priority and check the content of any one of multiple messages with

the same sender id.
- The check for this observation is given higher priority than the one for “Bad Payload Length”

because the outputted observations are indexed by the sender Id.

Bad Payload
Length 3

FMonj received a message from
FMoni with an incorrect message
length for the application
assignment given to PEi.

- Most likely due to a transmissive fault in PEj.
- May also be due to a transmissive fault in the PTL from PEj to FMonj.
- The correct message length is determined based on the application assignment for the PE

with the received sender Id.
Detected
Reception
Error at
Receiver PE

4
FMonj received a message from
FMoni with a reception error
reported by PEj.

- Most likely due to an omissive fault in PEi or ROBUS.
- May also be due to a transmissive fault in PEj or the PTL from PEj to FMonj.

Detected
Reception
Error at
Sender PE

5
FMonj received a message from
FMoni with a reception error
reported by PEi.

- Most likely due to an omissive fault in the PTL from FMoni to PEi.
- May also be due to a transmissive fault in PEi, ROBUS, PEj or the PTL from PEj to FMonj.

Bad Message
Content 6

FMonj received a message from
FMoni with an incorrect message
content for the application
assignment given to PEi.

- Most likely due to a transmissive fault in PEi or PEj.
- May also be due to a transmissive fault in the PTL from FMoni to PEi, ROBUS or the PTL

from PEj to FMonj.
- The correct message content is determined based on the application assignment for the PE

with the received sender Id.
Good
Message 7 --- - A received message at FMonj is considered good (i.e., correct) if it passes all the error

checks.

39

4.3.2. Fault Injection

This subsection gives an overview of the fault injection capability designed according to the concept
described in Section 2.2.

4.3.2.1. Mapping the OTH Fault Modes to Component Fault Modes

The smallest units of failure relevant to the design and analysis of the SPIDER protocols and services
are nodes and links (i.e., computation and communication functions). In general, the functionality (or
service) delivered by a component can be specified in terms of a generated sequence of output service
items, each of which is characterized by a value-time tuple (i.e., a value delivered at some time)
[Powell92]. From this viewpoint, the failure of a component is manifested as a corruption of the output
service in the value and/or time domains.

Consider the case of one-to-one communication between a source node and a receiving node. The
information arriving at the receiver is the result of the behavior of the source node and the communication
link between the source and the receiver. Let Fault Typeone-to-one denote the fault manifestation at the
receiver, which is expressed in terms of the fault types (or “modes”) of the source node and the link as
follows:

Fault Typeone-to-one = {Node Type, Link Typeone-to-one}

Here, Node Type and Link Typeone-to-one are each one of good (g), detectably bad (d), or undetectably bad
(u). In this detectability-based model, the classification of a component malfunction is based on the effect
of the errors in an output service item as perceived by an observer using value and/or time checks to
detect bad service items. A service item arriving at the receiver is good if it is coming from a correctly
functioning component (i.e., that meets its service specification and has uncorrupted internal state). In a
properly functioning system, a good service item always passes all the value and time checks (i.e., there
are no false-positive detections). A bad service item from an incorrectly functioning component is
undetectable only if it passes all the value and time checks (i.e., false-negative detection is possible).
Because the error checks performed by an observer can be dependent on its mode of operation, it is
possible that a particular error pattern in a service item can be interpreted differently in different modes of
operation of the observer. Table 4.2 captures the relation between the source node and link fault types
and the resulting fault type at the receiver. An asterisk „*‟ is used to indicate that a type can be any of „g‟,
„d‟, or „u‟. Note that because of the series connection of the source node and the link, the fault type of the
source node is visible at the receiver only if the link is good.

Table 4.2: Detectability-based fault manifestation at the receiver as a function of source node and link fault types

Source Node Type Link Typeone-to-one

Fault Typeone-to-one

at the Receiving Node

g g g
d g d
u g u
* d d
* u u

If a node has more than one output link, the classification of the Link Type must be expanded to cover

40

all possible combinations of misbehavior in the output links of the source node. For this case of one-to-
many communication, we add the dimension of consistency (or “symmetry” or “agreement”) of
manifestations at the receivers to the definition of communication fault types. The definition of
consistency depends on the context. In general, a group of observations are consistent if all the pair wise
differences are within a particular bound. Consistency can be defined in terms of approximate agreement,
where the differences are within a predetermined, non-zero bound. Consistency can also be defined as an
exact agreement with no difference between observations (i.e., a bound of zero). A service item is
consistently perceived at the receivers if it is consistent in the value and time domains. When a receiver
detects an error on a service item, the error indication supersedes the actual received (or missing) service
item. So, with respect to error detectability at the receivers, all detectably bad outputs are symmetric
irrespective of whether the actual errors that triggered the detections were the same. For undetectably bad
outputs, for which there is indication of an error, the symmetry of the errors is an important fault mode
characteristic. For these, the classification is further refined to distinguish symmetric and asymmetric
undetectably bad outputs. These refinements are labeled „su‟ and „au‟, respectively. The list below gives
several examples of the Link Type for one-to-many communication with a refined notation based on the
concepts of detectability and consistency.

g = all sysmmetrically good
d = all symmetrically detectably bad
su = all symmetrically undetectably bad
au = all asymmetrically undetectably bad
g/d = asymmetric with some good and others detectably bad
g/su = asymmetric with some good and others symmetrically undetectably bad
g/d/au = asymmetric with some good, some detectably bad, and others asymmetrically

undetectably bad

With this scheme, the OTH fault classification in Table 2.2 can be restated as shown in Table 4.3.

Fault Typeone-to-many defines the behavior of the nodes and links in the OTH model in a way that is suitable
for the realization of a fault injection capability.

Table 4.3: OTH fault classification based on Node Type and Link Type outputs

Fault Mode Description

Fault Typeone-to-many

perceived at the

receiving nodes

Correct All observers receives the same correct message. {g, g}
Omissive
Symmetric

Each observer declares the message invalid, either because the
message was not received or it was detectably incorrect. {d, g}, {*, d}

Transmissive
Symmetric Each observer accepts the same incorrect message. {*, su}, {u, g}

Strictly
Omissive
Asymmetric

Some observers receive the same correct message and others
declare the message invalid, either because they do not receive
a message or declare invalid their received message.

{g, g/d}

Single-Data
Omissive
Asymmetric

Some observers accept the same incorrect message and others
declare the message invalid, either because they do not receive
a message or declare invalid their received message.

{u, g/d}, {*, d/su}

Transmissive
Asymmetric The observers have other patterns of disagreeing observations. All other combinations.

41

4.3.2.2. Design Approach

The fault injection capability must support physical and simulated fault injection. For physical fault
injection, SUT faults are generated by means of environmental disturbances. In this case, the CFIMS
interacts with an Environment Controller (see Figure 4.4) to coordinate the activation of the disturbances
with the operation of the system, and no additional internal local action is required by the CFIMS for the
generation of faults. For simulated fault injection, the Test Specification describes the desired faultload
and the CFIMS has exclusive control over the generation of faults. We want a flexible and configurable
simulated fault injection capability that satisfies the properties of reachability, controllability,
repeatability, reproducibility, and non-intrusiveness for a faultload based on the Detectability,
Consistency and Persistence (DCP) fault model (see Section 2.2) applied to fault manifestations in the
value and time domains. We want to be able to inject simulated faults in any of the operational modes of
a node (see Section 3.4). We also want the capability to independently control fault injection at different
locations and to set up complex patterns of fault injection throughout the SUT, including scenarios of
multiple simultaneous faults. The CFIMS architecture (depicted in Figure 4.4), the selection of SUT fault
injection points and the design of the fault injectors are critical elements in achieving the desired
attributes for the simulated fault injection capability.

The CFIMS architecture, especially its connectivity, enables a high degree of coordination between the
fault injection sites at the SUT nodes. The centralized PTC and STC fault injection controllers can
monitor SUT activity by means of the Function Testing process (see Figure 4.4). It is also possible to add
a capability in which the controllers receive additional SUT-related event information sent out via the
TCLs by the distributed Local State Monitoring or Local Fault Injector processes at the SUT nodes. With
this detailed level of real-time information about the state of the SUT, the fault injection controllers can
send out coordinated commands to all the local fault injectors to achieve virtually any desired fault
pattern, with repeatability constrained mainly by the quality of the SUT-related information made
available to the controllers.

Structurally, the SUT is composed of processing nodes and communication links, and each node is
further composed of a computation module and a communication module. We would like our fault
injection points to be selected and organized along the same categories of computation and
communication based on the functionality targeted for disruption. Computation faults can be realized by
fault injectors attached to the computation modules of the nodes, and fault injectors at the communication
modules can generate communication faults. Given that the OTH model classifies faults by partitioning
the fault effects space, every OTH fault category can effectively be realized by injections at the source or
at the observers. Source-side fault injections, including computation and communication faults, have the
advantage of being centralized at the source node, which means that local state information at the source
can be used as a common reference to coordinate the activation of fault injections. A disadvantage of
source-side injection is that the mapping from injected faults to a particular OTH fault class at the
observers may be difficult (or even impossible) to predict because of the dependence of the classification
on the state of the observers. Receiver-side fault injections can be implemented by placing fault injectors
on the output signals from the receiver‟s communication module that are connected to inputs of the
computation module. This way of injecting faults has the disadvantage of a more complicated
coordination problem to control the fault injectors to achieve a particular OTH fault class, with the
effectiveness determined by factors like the precision of the timing information available to the fault
injection controllers. The main advantage of receiver-side injection is that, assuming that the actions of
the fault injectors are adequately coordinated, there is a direct mapping from the injected faults to a
particular OTH fault class. In a time-triggered system like SPIDER, it is possible to simplify the receiver-
side fault injection coordination problem by using the fault injection controllers to set up the fault

42

injectors and giving fault-activation control to the fault injectors themselves, which would then use the
local state of their respective receivers (including the local time) as references to trigger the activation of
faults.

The fault injectors are the only components of the fault injection system that have a direct influence on
the functionality of the SUT. As such, their defining features are strong determinants of the effectiveness
of the fault injection system. The purpose of a fault injector is to corrupt signals at some level in the SUT
structural hierarchy. To achieve this signal corruption, a fault injector is attached to a signal line and the
correct signal is replaced by a faulty signal that is different in the value and/or time domains. A fault is
active when the signal on the line is not the correct one. The faulty signal can be a function of the correct
signal or independent from it. While the fault is active, the characteristics of the faulty signal can be
static (i.e., stuck-at) or dynamic. The duration (or “persistence”) of a fault may vary from one activation
to the next. The correct signal is restored when a fault becomes passive.

Because a potentially large number of fault injectors may be integrated into the SUT, they should have
a simple interface and be easily configured as described in the Test Specification. The design of the fault
injectors must support injection on the computation and communication modules of a node. To support
the centralized and distributed patterns of injection control, a fault injector must be able to receive
commands from the injection controllers and to monitor as needed the state of the node at its location.
The chosen fault injector design concept must not preclude having the capability to send status messages
back to the main controllers via the local TCL. The design of the fault injector must also be modular in
order to support evolution of the design to allow increasing complexity of fault injection patterns.

For physical fault injection experiments, the main requirement on the fault injection capability is that
the faults experienced by the SUT be caused only by the test environmental disturbances. A simple way
to achieve this is to send a command to the fault injectors to disable them before an experiment.
However, this solution has an associated risk of unintended activation of a fault injector during an
experiment due the environmental disturbances. The only way to guarantee that the fault injectors will
not be activated during a physical fault injection experiment is to remove them from the SUT.

For the first set of simulated-fault experiments intended to characterize the control system-level effects
of faults in the ROBUS-2 communication system, only BIU and RMU faults are of interest and the only
fault type is the fail silent (or fail stop) mode in which a node stops producing outputs when it fails
[Butler08]. This failure mode provides source-guaranteed integrity (i.e., absence of improper state
alteration) [Avizienis04, Paulitsch05] on the node‟s output service and requires simple error decision
logic at the observers to validate the service: all received service items are correct and missing items are
bad and detectable by a timeout check. This failure mode was selected in order to simplify the modeling
and analysis of propagated fault effects on ROBUS-2 and the control system [Gray08]. In essence, the
analytical models were developed assuming that there are no propagated fault effects other than those
caused by the persistence of node service unavailability. To implement this kind of fault injection
capability, a fault injector was attached to the reset signal at each of the BIUs and RMUs, and the
activation of the injectors is directly controlled by the main fault injection controller at the PTC following
the pattern of fault locations and timing specified in the Test Specification.

4.3.2.3. Current Design

The design of the Local Fault Injectors reflects the levels of abstraction as well as the fault models
described in Section 2.2. The Local Fault Injectors have a general structure so they can be placed on any
control or data signal within the SPIDER nodes, causing the signal to deviate from normal operation.

43

This architecture allows the location of the fault injectors within the nodes, also referred to as injection
points, to vary. The faults have two parameters to indicate their behavior and persistence. The behavior,
or fault type, specifies what values the faulty signal will undergo for the persistence of the fault specified
by the activation pattern. The activation pattern and duration specify when the faulty value is used in the
node operation. The fault value might take on a value independent of the original signal or might be a
function of the target signal itself. The fault injection setup section of the Test Specification file (see
Appendix A) defines the fault type and activation pattern of the target signals.

The software interprets the fault injection setup section of the Test Specification file. The fault
injection setup data from the Test Specification file is passed from the Repository, or Data Management,
to the PTC software Fault Injection Management process, where the setup data is sent to the PTC Fault
Injection Controller of the hardware during the fault injection setup mode of the CCP. With the current
setup, the PTC Fault Injection Controller forwards the setup messages across the PTLs to all of the PE-
BIUs and also across the CCL to the STC. The STC Fault Injection Controller then forwards the setup
messages across the STLs to all RMUs. Once the PE-BIUs and the RMUs receive the fault injection
setup data, the Local Fault Injectors parse the data and set up the corresponding fault type and activation
pattern. The fault specification capability may be expanded to allow the STC software to send setup
information to the hardware when it is needed to send separate fault injection setup data to the RMUs or
to eliminate the data forwarding in the STC hardware.

In the current implementation of the CFIMS, we assume the nodes are fail-silent. When errors are
detected in a BIU or RMU, the outputs of the node are disabled (see Section 3.3), indicating an inherently
fail-silent behavior. The fail-silent fault is implemented by asserting the reset signal for the duration of
the scheduled exchange of PE messages (see Section 4.1). The start and end times of the fault must be
declared in order to only affect the node for a portion of the control cycle. Within the Test Specification
file two lines are used to specify the RCI (see Section 4.3.1.1) to activate and deactivate the fault. By
deactivating the fault soon after the sensor and command exchange is complete, the rest of the control
cycle is left for the SUT to recover for the next independent control cycle (see Section 4.1).

The architecture of the SUT can be divided into two main parts: application-level computation and
communication. The computation portion of the system contains PE nodes, and the communication
portion contains BIUs, RMUs, and data links. Applying failures on the nodes and links of the SUT is a
plausible high-level system fault model. Observing fail-silent fault effects on the nodes provides this
system-level model. After studying the effects of physical faults, it might be necessary to trace system
failures to the component-level. The fault injection system is designed to be flexible for both high- and
low-level injections. The depth in the lower levels of fault injection abstraction determines the quality of
the results and the complexity of the analysis.

The capability to execute a round without conducting any simulated fault injection is included in the
design of the fault injection subsystem. This capability allows the gathering of data to establish a base
case that the fault injection experiments can be compared against. Additionally, the no-fault-injection
setting is used for the physical fault injection experiments, such as in HIRF environments. The
specification that the round has no fault injection replaces the fault type and activation of the fault
injection setup information in the Test Specification file (see Appendix A). The PTC software sets the
no-fault-injection status and the PTC Fault Injection Controller does not send any fault injection setup
data, therefore, allowing the round to be completed, including the collection of the monitoring data,
without injecting any simulated faults into the system.

Each SPIDER node is specified to either behave normal (0) or fail-silent (1) for each control cycle

44

within the round (see Section 4.3). A 16-bit fault vector (or test vector) describes which nodes contain
faults for a single control cycle. Similar to the fault injection setup data, the fault vectors defined in the
Test Specification file are sent from the Repository to the PTC software Fault Injection Management
process. Before the start of the round, the software preloads some fault vectors into a buffer in the
hardware where it waits until the first control cycle of the test. Throughout the execution of the test, the
PTC Fault Injection Controller reads fault vectors from the buffer to pass on to the PE-BIUs and the STC
Fault Injection Controller. The STC Fault Injection Controller forwards the fault vectors to the RMUs.
As fault vectors are read from the buffer, the software continues to write the fault vectors onto the buffer
until all fault vectors have been sent. At the SPIDER nodes, the Local Fault Injectors receive the fault
vectors and locate the corresponding bit that applies to their Node Id to either activate or deactivate faults.

4.3.3. State Monitoring

The data collected about the internal operation of the SUT is used for real-time health assessment and
post-test event analyses. Figure 4.9 shows a dataflow diagram for the state monitoring function of one
SUT node. Every SUT node has an embedded node monitor (ENM) that can gather state information
from the local components, including a ROBUS Protocol Processor (RPP) programmed as either a BIU or
an RMU, several ROBUS Links (RLs), one or more local Fault Injectors (FI), and a Processing Element
(PE) if the node is a PE-BIU node. The ENM can be reconfigured to change the monitored node
variables and the triggering conditions for sampling individual variables. The data samples are taken as
their respective sampling conditions are triggered, and they are retained in local memory until at least one
of the configured conditions for the transmission of a state message is triggered. If there are variables for
which there is not a sample in memory when the transmission trigger occurs, those variables will be
sampled immediately in order to complete the data sample record. The state data in memory is then
packaged into a TCM and sent over the local TCL to the State Message Receiver (SMR) at the
corresponding test controller (i.e., the PTC for PE-BIU nodes or the STC for RMU nodes). There, a Node
Condition Monitor (NCM) examines the received state data to determine the current health status of the
node. Figure 4.10 shows the state transition diagram for the current health condition assessment
algorithm. The selection of health indicators (i.e., the state variables used in the node condition
assessment) and the condition assessment algorithm are configurable elements of the state monitoring
function. In Figure 4.10, the assessed node condition is Disabled until a new set of indicator values (i.e.,
a new health record) is received. When that happens, the condition is upgraded to Recovering, where it
remains until there is sufficient evidence that the node is in good and stable health condition. The
definition of what constitutes a good and stable health condition is part of the system configuration. As
currently configured, good and stable health is indicated by a continuous sequence of health records with
content matching a predefined set of good-health indicator values for a pre-set minimum time duration.
When the transition condition for the Recovering state is satisfied, the condition is upgraded to Restored.
The node condition is set back to Recovering if there is evidence that the node is not in good health. As
currently defined, this is triggered by a timeout in the gap between health record updates or a health
record content that does not match the good-health indicator values. The assessed node condition is
forwarded to the SPIDER Health Monitor at the local test controller and also merged with the received
state data to form an output node state record to be collected by the software.

More detailed information about the state monitoring function is given with the design descriptions for
the SUT and CFIMS nodes in sections 9 through 12, and also in Appendix B, which provides a
comprehensive list of the current set of state variables in the node state records.

45

Figure 4.9: Dataflow graph for a node state monitoring lane

Figure 4.10: State transition diagram for node condition assessment

4.3.4. Round Control

The purpose of the CFIMS Round Control function is to provide common direction for global
coordinated interaction among all the SUT and CFIMS processes. The main Round Control processes in
the current system are implemented in hardware at the PTC and STC, as shown in Figure 4.4. The
Controller Coordination Protocol (CCP) executed over the CCL allows the distributed round control
processes to present a tightly coordinated, SUT-status-aware control interface to the other hardware and
software processes. Figure 4.11 shows the major mode transition graph for the Round Control function.
After a reset, the system remains idle until the software commands the start of a round. The first step
after a software enable is for the hardware round control processes to synchronize their actions. When
that has been accomplished, the controllers command SPIDER to initialize and get ready to run when
commanded, which currently involves enabling ROBUS to initialize and enter its Clique Preservation
mode and for the PEs to monitor the PTLs for incoming round setup commands. The CFIMS state
monitoring function begins tracking the state of the SUT at this time. The fault injection (FI) processes,
including the fault injectors at the SUT nodes, are then configured according to the Test Specification.
Next, the SUT function, realized mainly at the PEs, and the function testing process at the PTC are also
configured. The SUT function is enabled when the system setup phase is completed. The system
executes until a workload or fault injection completion condition in the Test Specification is satisfied, or
until some error condition is detected, including the possibility of a permanent SPIDER failure. After the
CFIMS processes have safely ended their operations, the system returns to the idle state until the control
software is ready for another round.

Disabled

Recovering

Restored

New Health Record Update

Reset

Poor Health
Indicators

Stable Good
Health Indicators

PE

 ENM

RPP

RLs

FI

 NCM

TCL
SMR

To Local SPIDER
Health Monitor

State
Data

Node
Condition

Node
State
Record

At SPIDER Node

At Test Controller

Only at PE-BIU nodes

46

Figure 4.11: Major mode transition diagram for CFIMS

The Round Control function is supported by a SPIDER Health Monitoring function whose main
purpose is to determine when the SUT has been successfully initialized and when it has experienced an
unrecoverable failure. The health of the SUT is monitored at the PTC using data from the PE-BIU state
monitors and the Function Testing process, and at the STC using RMU state monitor data. As currently
configured, there are three health monitoring phases. The first health monitoring phase is during the
SPIDER Initialization round control mode, where it must be determined when the SUT has been
successfully initialized. In the current implementation, this is indicated by the node condition reported by
the state monitors at the PTC and STC reaching the Restored state for every active SUT. The second
health monitoring phase begins when SPIDER is initialized and extends until the SUT begins executing
its application. During this time, which corresponds to the interval of the FI Setup and Function Setup
round control modes, the node condition reported by the state monitors at the PTC and STC for every
active PE-BIU and RMU node should remain in the Restored state (see Figure 4.10) for the complete time
interval because no faults are being injected into the SUT. A SPIDER failure is immediately declared if
the node condition for any active node is other than Restored at any time during this phase. The third
health monitoring phase extended for the duration of the Function Execution mode of the Round Control
function. During this mode, SPIDER is considered to be working properly as long as an attempted re-
initialization does not last longer than a theoretically derived maximum based on system fault
assumptions and a timing model of the recovery dynamics. For the current implementation, the mode of
the FTmr is used as an indirect means to determine when the SUT is re-initializing. A SPIDER failure is
declared if the FTmr remains in the Initialization mode (see Figure 4.7) longer than expected under the
conditions covered by the fault assumptions.

In addition to a common mechanism for distributed hardware and software process coordination, the
CFIMS Round Control function also provides a global time-reference service used to time tag
observations for use in post-test event analyses. This service leverages the CCP messages between the

Reset

Function Execution

System
Run

Function Setup

FI Setup

System Enable

System Idle

System Stop

SPIDER Initialization

Stop Trigger

Software Enable

47

PTC and STC controllers during the system setup phase (i.e., from major mode System Enable to mode
Function Setup), as well as the synchronization messages from the FTmr during the Function Execution
mode, to synchronize a pair of Round Timers (RTmrs) at the PTC and STC. The Round Time has two
elements: the Interval Count (IC) and the Interval Time (IT). The Interval Count is the number of times
the RTmrs have been synchronized by messages sent across the CCL since the beginning of the round.
The Interval Time measures the time elapse since the last synchronization event. The synchronization
dynamics of the RTmrs is closely tied to the CCP. Section 5 of this report provides a detailed description
of the CCP using event sequence diagrams.

4.3.5. Data Collection

As stated in a previous section, the purpose of an experiment is to gather observations about the
response of the SUT when operating under conditions determined by the configuration, workload and
faultload specifications. From Figure 4.4, it is easy to see that the CFIMS can be viewed abstractly as
providing a user service that reads a Test Specification and outputs a number of files containing the
corresponding experimental data. In its current version, the main outputs to the system user include data
generated by the Round Timer (RTmrs), Function Timer (FTmr), Function Monitors (FMons) and State
Monitors (SMons). The data from each output stream is organized into records (or snapshots) about the
activity happening at the source process at a particular point in time. Each output record is time tagged
with the RTmr value at the time the record is generated. The data records from the RTmrs themselves
(one at each controller) capture the values of IT and IC every time the RTmrs are synchronized. In
addition to the raw experimental data, the system also generates a test log with round control-related
entries, including the condition that triggered the round stop. Test control software at the PTC and STC
saves all the output data to files in the Repository. Appendix B gives a detailed description of the output
files.

4.3.6. System Configuration

From a configuration perspective, the system consists of the SUT, PTC, STC, Repository and
Environment Controller. All of these have hardware and software elements that can be changed to meet
experiment requirements. The interaction between the repository and the test controllers is determined by
data transfer protocols implemented in software. Likewise, a software-implemented protocol is used to
coordinate the operation of the Environment Controller with the activities at the SUT and the CFIMS.
These software protocols, which are not expected to change significantly throughout the duration of the
research project, are described in Section 13 of this report. The execution platform for the SUT and the
test controllers will eventually transition from RSPP1 to RSPP2 for the reasons described earlier in this
report (see Section 4.2). It is expected that the transition may have an impact on the software and
hardware implementation of the SUT and the test controllers, but the functionality and configurability of
the system should be largely unaffected. Also, as described in Section 2.4, the system configuration
strategy involves the ability to set up the system as desired at any level in the development, including
design, synthesis, and runtime. The need to modify the system design is determined by whether or not the
requirements of an experiment can be met with the existing system configurability for synthesis and
runtime. The selected system architecture is such that most design changes should involve functionally
related processes (e.g., fault injection processes in hardware and software) and the system capabilities
should be expandable mostly through localized design changes without significantly increasing the
overall design complexity. This enables the introduction of a high degree of synthesis and runtime
configurability for a particular design, which extends the longevity of the design and reduces the
frequency and extent of design changes.

48

Accordingly, the focus here is on the synthesis and runtime configurability for the initial system
design of the SUT, PTC and STC. In that context, configuring the system consists of assigning values to
structural and behavioral design-implementation parameters for architectural components like ROBUS
and the PEs at the SUT, and at the CFIMS processes of SUT function testing, fault injection, SUT
monitoring, round control and data collection. The current approach to determine appropriate parameter
values is to use system architecture and implementation models that capture desired high-level
requirements (e.g., number of PE-BIUs and RMUs, desired ROBUS cycle rate, number of ROBUS cycles
per control cycle), as well as lower-level implementation requirements in the form of explicit parameter
constraints (e.g., valid parameter value ranges) and requirements (e.g., ROBUS message width),
execution platform specifications (e.g., clock rates, oscillator drift rates, point-to-point communication
delays and timing uncertainty), functional design constraints (e.g., minimum input-output delay for
certain components, minimum reset delays), and environmental constraints (e.g., maximum fault
duration). Determining the values for the synthesis parameters is a two step process. In the first step, a
model solution is found that meets the requirements and constraints and is optimized for performance
where possible. In the second step, the parameter values are computed so the synthesized system matches
the model solution. For the most part, the synthesis-time hardware parameters correspond to structural
and behavioral implementation details like register and counter bit-widths, data buffer sizes, time delays,
timeout durations, and event count triggers. The compilation-time software parameters set up how the
software allocates the available memory and how it interacts with the CFIMS hardware processes, the
Repository, the Environment Controller, and the operator interfaces (i.e., display and keyboard).

The Test Specification gives the runtime parameters, which cover two aspects of the system: SUT
function and fault injection. The runtime parameters for the SUT function include the selection of which
PE-BIUs and RMUs will be active during the round, the function assignment (IO or Processing) for each
PE, the number of ROBUS cycles per control cycle, the PE communication schedule over the duration of
a control cycle and the application level data to be exchanged by the PEs. For a simulated fault injection
round, the runtime parameters set up the fault injectors by selecting the fault type and activation pattern
for each injector. Depending on the type of fault to be used, the Test Specification may also include the
necessary information to allow the fault injection process at the PTC (i.e., the Primary Fault Injection
Controller, PFIC) to centrally and directly control the injection of all the faults. Appendix A provides a
detailed description of the Test Specification.

Setting up the parameters requires a complete system configuration analysis to ensure that the values
are compatible with one another and that the experiment requirements are satisfied. This is currently
performed using a combination of automated and manual analyses covering the SUT and CFIMS. The
automated analysis tool is based on the ROBUS-2 configuration analysis program [Torres05B] with
expanded capabilities to cover most of the PE and the CFIMS synthesis-time parameterization for
hardware processes. Manual analysis is used for the remainder of the hardware synthesis parameters and
for all the software and runtime parameters. Due to the large number of system configuration parameters,
there is significant interest in completely automating the process of analysis and computation of
parameter values in order to reduce the likelihood of configuration errors and to simplify the
reconfiguration of the system to adapt to evolving research needs.

49

5. Hardware Controller Coordination Protocol

The hardware-implemented CCP enables the PTC and STC Round Control processes (see Section 4.3)
to coordinate their actions and provide overall round-level coordination for other hardware and software
processes at the PTC and STC. The CCP is implemented in hardware to ensure fast response to local
events. A hardware implementation also enables the generation of events with very high synchronization
precision (equivalently, very low timing skew) at the PTC and STC. With these events, the Round
Controllers can drive a pair of synchronized Round Timers (RTmrs) that constitute a common distributed
time reference and are used to time tag output observations.

Figure 5.1 shows the round execution flow at the major-mode level. After a reset, the system remains
idle until the PTC and STC software enable the execution of a round. In the System Enable mode, the
hardware round controllers confirm that they are both active, establish initial synchronization for
coordinated action, and reset the PTC and STC hardware processes to prepare for the round. Next, the
round controllers issue a command to reset and initialize SPIDER. After SUT initialization is confirmed,
the controllers command setting up of the fault injection system and the SUT function, including the SUT
testing processes at the PTC. The SUT is then enabled to begin full execution. Once enabled to run by
the software, a round will continue until the specified fault injection campaign is complete, the execution
of the SUT reaches a predefined endpoint, SPIDER experiences an unrecoverable failure, or some other
error condition is detected. The following subsections describe the CCP activities for each of the major
modes.

Figure 5.1: Major mode transition diagram for the CFIMS

Reset

Function Execution

System
Run

Function Setup

FI Setup

System Enable

System Idle

System Stop

SPIDER Initialization

Stop Trigger

Software Enable

50

5.1. Normal Run Modes

The CCP is described using event sequence diagrams as shown in Figure 5.2. Dots on a vertical line
represent events at the corresponding hardware or software process. Horizontal and slanted arrows
connecting dots represent the propagation or communication of events between processes. Time flows
down along the vertical lines in the figure. The process labels at the top are for the following processes.

 RCtlr = Hardware Round Control Process FMon = Function Monitor

 RTmr = Round Timer FIC = Fault Injection Controller

 HMon = SPIDER Health Monitor SMon = State Monitor

 FTmr = Function Timer SW = Software

Figure 5.2: Event sequence for normal System Enable mode

Figure 5.2 illustrates the normal sequence of CCP events (i.e., with no unexpected round-stop triggers)
for the System Enable mode. The system enters this mode from the System Idle mode. The optional
CCL_Buffer_Clear signal events sent from the software to the round controllers are used to clear the
round controllers‟ input buffers for CCL messages. This action may be necessary to delete any

unprocessed messages resulting from an abnormal round stop scenario, as described in the next
subsection. To start the PTC, the software loads the Round_Index and the Enabled_Nodes specifications
for the round. The Round_Index is generated only at the PTC and is used to uniquely identify the data

RTmr_Enable RTmr_Enable

STC

RCtlr HMon FTmr FMon SMon SW FIC RCtlr HMon SMon SW FIC

PTC

Round_Index, Enabled_Nodes
Round_Begin

Round_Begin

Enable

Enable, Round_Index, Enabled_Nodes

RTmr RTmr

Enable, Enabled_Nodes Enable, Round_Index, Enabled_Nodes

Communication
over CCL

RTmr_Reset

RTmr_Reset

Must satisfy delay constraint Time Time

 Source Dependency Note Key: Destinations Synchronized
Events

* Optional

* CCL_Buffer_Clear

* CCL_Buffer_Clear

51

sent to the Repository at the end of the round. The Enabled_Nodes specification indicates which PE-
BIUs and RMUs will be active during the round. The Round_Begin signal from the SW enables the
RCtlrs, whose first action is to reset the RTmrs to prepare for the round. The PTC RCtlr then monitors
the CCL for the arrival of the Enable message from the STC which is expected to arrive before the PTC
RCtlr times out and triggers a stop condition. Upon reception of the Enable message, the PTC RCtlr
replies with an Enable message carrying the Round_Index and Enabled_Nodes values. Using the known
communication delay over the CCL, the PTC and STC can use the times of transmission and arrival,
respectively, to synchronize the RTmr_Enable signals to start the RTmrs (see Appendix B in [Torres05A]
for a detailed description of how this is done). The RCtlrs also enable all of their respective hardware and
software processes.

The normal event sequence for the SPIDER Initialization mode is shown in Figure 5.3. To achieve the
initialization, the CFIMS takes advantage of SPIDER‟s built-in fault recovery capability by using the
local fault injectors to trigger the re-initialization procedure. To do this, the PTC RCtlr issues a command
to reset all the fault injectors embedded in the SPIDER nodes, as a result of which the fault injectors also
reset all the PE-BIU and RMU nodes. The reset is cleared only for the nodes specified in the
Enabled_Nodes variable, and the others remain disabled for the duration of the round. As the enabled
nodes begin operation, the Embedded Node Monitors (ENMs) start sending snapshots of the state to the
SMons at the PTC and STC. When the node condition monitors at the SMons indicate that the enabled
nodes are in the Restored state (see Section 4.3.3), the HMons signal the RCtlrs that SPIDER has
completed the initialization and is ready for operation. As a result, the RCtlrs exchange Ready messages,
resynchronize the RTmrs and signal the software that SPIDER is initialized and ready.

Figure 5.3: Event sequence for normal SPIDER Initialization mode

Once SPIDER has been initialized, the next step is to configure the fault injection and SUT functions
for the round. Figure 5.4 shows the normal event sequence for the Fault Injection Setup mode. The
procedure is started by commands from the RCtlrs to the FICs, which handle all the interaction with the
software to load the fault injection (FI) configuration information given in the Test Specification file. In
the current implementation, all the FI setup information is loaded at the PTC and forwarded to the STC as
needed. Although currently there is no setup interaction between the SW and FIC at the STC, that

RTmr_Sync

STC

RCtlr HMon FTmr FMon SMon SW FIC RCtlr HMon SMon SW FIC

PTC

RTmr RTmr

Communication
over CCL

FI_Reset

FI_Reset
Triggers
reset of
RMU
nodes

Triggers
reset of
PE-BIU
nodes

SPIDER_Ready
SPIDER_Ready

Ready

Ready

SPIDER_Ready SPIDER_Ready

RTmr_Sync

Triggered when
the health
condition for every
enabled PE-BIU
node is Restored

Triggered when
the health
condition for every
enabled RMU node
is Restored

Time Time

 Source Dependency Note Key: Destinations Synchronized
Events

* Optional

52

capability is available as a future design option. When the STC FIC has finished its local setup
procedure, the STC RCtlr sends a message to the PTC indicating that it is ready and waiting for the PTC
to finish setting up the fault injection and SUT function testing. The STC Start message remains buffered
at the PTC RCtlr until the setup procedure is complete.

Figure 5.4: Event sequence for normal Fault Injection Setup mode

Figure 5.5: Event sequence for normal Function Setup mode

As shown in Figure 5.5, the function setup procedure consists of a data-transfer interaction between
the PTC SW and the FMons to load the setup given in the Test Specification. Note that the PTC is

Triggers wait for echo Start from PTC Enables PTC transition to Function Setup mode

STC

RCtlr HMon FTmr FMon SMon SW FIC RCtlr HMon SMon FIC

PTC

RTmr RTmr

Communication
over CCL

SW

FI_Setup_Enable FI_Setup_Enable

FI_Setup_Begin

FI_Setup_End

Start

Setup
Data

Loading

FI_Setup_Begin

FI_Setup_End

* Setup
Data

Loading

Setup
Data Forwarding

FI_Setup_Done

FI_Setup_Done

Enables echo Start from PTC at the end of Function Setup
mode

Time Time

 Source Dependency Note Key: Destinations Synchronized
Events

* Optional

Depends on reception of Start from STC Start

STC

RCtlr HMon FTmr FMon SMon FIC RCtlr HMon SMon FIC

PTC

RTmr RTmr SW

Function_Setup_Enable

SW

Setup Data
Loading

Function_Setup_End

Function_Setup_Done

Function_Setup_Begin

RTmr_Sync RTmr_Sync

Enable transition to Function Execution mode

Time Time

 Source Dependency Note Key: Destinations Synchronized
Events

* Optional

Communication
over CCL

53

directly connected to the PE-BIU nodes (see Figure 4.4 in section 4.3). The STC does not receive any
SUT function setup data as the PEs are the only SPIDER elements involved. When the FMons are
finished setting up for the round, the PTC sends a Start message to the STC and the RTmrs are
resynchronized.

Figure 5.6 shows the event sequence for the Function Execution mode. In this mode the PEs execute
the application and interact with the FTmr and the FMons while the FICs inject faults and the SMons
collect internal SUT state data. After the RCtlrs enable the execution of the SUT application function, the
PEs synchronize to ROBUS and to each other through the FTmr. When the FTmr achieves initial
synchronization to the PEs, it generates a Sync event that is distributed throughout the system as a
common timing reference. During the Function Execution mode, the RTmrs are synchronized with
respect to the FTmr Sync events. Depending on the particular system setup, the software may load SUT
function testing and fault injection data during this mode. In addition to that, the SW receives execution
data records from the RTmrs, FMons and SMons to be used for post-test analyses. Normally, this mode
continues until either the SUT function reaches a predetermined endpoint or the FI injection subsystem
completes the injection campaign specified for the round.

Figure 5.6: Event sequence for normal Function Execution mode

RTmr_Sync

Output continues for the duration of the
mode or until disabled by the software

* FI Control
and Data

Output continues for the
duration of the mode

SUT Function Testing
Control and Data

Sync

RTmr_Sync

STC

RCtlr HMon FTmr FMon SMon FIC RCtlr HMon SMon FIC

PTC

RTmr RTmr

Communication
over CCL

SW SW

Time Time

Sync

Function_Enable Function_Enable

First SYNC event triggered by
initial synchronization of the
FTmr to the PEs

Sync

This event pattern repeats every
ROBUS cycle when the FTmr is
synchronized to the PEs

 Source Dependency Note Key: Destinations Synchronized
Events

* Optional

Exchange continues
as needed

State Records
Output continues for the duration of the
mode or until disabled by the software

State Records

* FI Control
and Data Exchange continues

as needed Exchange continues for
the duration of the mode

SUT Function Time Records
Output continues for the
duration of the mode

Round Time Records

Round Time Records

Output continues for the
duration of the mode

54

5.2. Stop Scenarios

The goal of the System Stop mode is to halt system operation as soon as possible after normal
completion of execution or the occurrence of an unexpected error condition, and then to guide the system
to a graceful and coordinated stop with whole data records properly saved and the system returned to a
safe state from which it is ready to begin another round. Figure 5.7 shows the event sequence for a
normal System Stop mode in which the stop trigger is reaching a predefined endpoint for fault injection or
SUT function execution. Both of these events are normally triggered at the PTC, where the response of
the RCtlr is to command an execution stop of all local hardware and software processes and to inform the
STC of the stop condition. In this scenario, the PTC is referred to as the stop initiator and the STC is the
stop follower. When the STC RCtlr receives the Stop message, it issues a command to stop all local
processes and acknowledges reception of the Stop message by echoing it back to the PTC. When the
PTC RCtlr has confirmation that the STC and all the local processes that directly interact with the SUT
have stopped, it disables the RTmr and informs the SW that all hardware processes have stopped. The
STC RCtlr performs a similar action. The SW processes continue execution until they have collected all
the data records.

Figure 5.7: Event sequence for System Stop on completion of PTC fault injection or function execution

Figure 5.8 shows a System Stop event sequence for a trigger originated at the STC. In this scenario,
the STC takes the role of stop initiator and the PTC is the follower.

RTmr_Disable
RTmr_Disable

Stop,
Condition

Stop,
Condition

STC

RCtlr HMon FTmr FMon SMon FIC RCtlr HMon SMon FIC

PTC

RTmr RTmr

Communication
over CCL

SW SW

Time Time

 Source Dependency Note Key: Destinations Synchronized
Events

* Optional

* FI_Control_Data_End

* FI_Done

* Function_Done

Stop trigger for completion

of fault injection
or

Stop trigger for completion
of function execution

Execution_Stop

Function_Stop

FI_Stop
SMon_Stop

Execution_Stop

Round_Stop, Condition

FI_Stop
SMon_Stop

Round_Stop, Condition

55

Figure 5.8: Event sequence for System Stop on STC software stop

Figure 5.9: Event sequence for System Stop on PTC software stop and with initiator Stop message error

RTmr_Disable

STC

RCtlr HMon FTmr FMon SMon FIC RCtlr HMon SMon FIC

PTC

RTmr RTmr

Communication
over CCL

SW SW
Software_Stop
Execution_Stop

Stop,
Condition

Execution_Stop

Function_Stop

FI_Stop
SMon_Stop

Stop,
Condition

Round_Stop, Condition

SMon_Stop

FI_Stop
Time Time

 Source Dependency Note Key: Destinations Synchronized
Events

* Optional

RTmr_Disable

Round_Stop, Condition

RTmr_Disable

RTmr_Disable

Error: No valid
message received

Stop,
Condition

Stop,
Condition

STC

RCtlr HMon FTmr FMon SMon FIC RCtlr HMon SMon FIC

PTC

RTmr RTmr

Communication
over CCL

SW SW

Time Time

 Source Dependency Note Key: Destinations Synchronized
Events

* Optional

Software_Stop

Execution_Stop

Function_Stop

FI_Stop
SMon_Stop

Execution_Stop

Round_Stop, Condition

FI_Stop

SMon_Stop

Round_Stop, Condition

Stop,
Condition

Onetime retransmission
on Stop-echo timeout

Received message is buffered. It must be
deleted at the beginning of the next round.

Stop_Echo_Timeout

56

The event sequence in Figure 5.9 is for a case of a stop trigger at the PTC and a CCL communication
error for the first Stop message. After stopping the local hardware processes and sending a Stop message
to the STC, the PTC RCtlr times out waiting for the echo from the STC. This timeout can be due to
persistent or transient CCL faults in one or both communication direction. A persistent CCL fault can
only be handled by the system software or the operator. In case of a transient fault in the PTC-to-STC
CCL direction, a message retransmission is likely to succeed. A transient fault in the STC-to-PTC CCL
direction is not critical to properly stop the round at the PTC and STC. The specified PTC RCtrl response
to a Stop echo timeout is to resend the Stop message once and then inform the SW of the timeout
condition so that appropriate action can be taken if the STC does not receive the second message. For the
scenario in Figure 5.9, the second Stop message is received by the STC, which then follows the normal
sequence of events to stop its execution. Because the PTC is in an idle state when the STC Stop message
arrives, the message remains buffered until read or deleted. To prevent a false round start, this message
must be deleted as described previously in regards to Figure 5.2.

57

6. Data Links

This section describes the design of the custom physical data links (DLs) for point-to-point
communication between hardware processes in the SUT and the CFIMS. These custom DLs are used in
the ROBUS Links (RLs) interconnecting the ROBUS RPPs, and the Test Control Links (TCLs), which
include the Primary Test Links (PTLs) between the PTC and the PE-BIU nodes, the Secondary Test Links
(STLs) between the STC and the RMU nodes, and the Controller Coordination Link (CCL) between the
PTC and the STC. High-level overviews of the SUT ROBUS and the CFIMS are given in sections 3 and
4 of this report. Figure 4.4 illustrates the process architecture of the SUT and the CFIMS, and identifies
the data links for hardware process communication. The software processes running on the CPUs of the
Reconfigurable SPIDER Prototyping Platform (RSPP) (see Section 4.2) use standard solutions to
communicate with other entities (e.g., Ethernet and RS-232 for communication with software processes
running on other nodes, and the ISA and/or PCI bus for communication with hardware processes running
on local FPGAs).

The DLs can be viewed as low-level functions that provide point-to-point data transfer services
between hardware processes running on RSPP FPGAs. The DLs were developed to be generic and
reusable designs that satisfy the requirements of the SUT and CFIMS processes within the constraints
imposed by the available RSPP resources. The RLs are used exclusively by the RPPs to communicate
with one another using ROBUS Messages, which have a predetermined format and fixed message length
(see Section 3). To support the various RPP communication modes, the RLs require deterministic access
latency at the transmitter end and RPP-to-RPP communication delay with known upper and lower
bounds. There is no inherent performance requirement for any particular level of throughput from the
RLs as the RPPs can be configured to support practically any message rate, but it is desirable to have
links that will not be significant performance bottlenecks for any likely SUT configuration. It is also
desirable for the RLs to have high error-detection coverage and very low intrinsic bit-error-rate (BER).
High error-detection coverage is intended to minimize the likelihood of transmissive faults (i.e.,
undetected faults; see Section 2.2) due to the communication links. Low communication BER prevents
frequent nuisance faults that may activate the SUT fault tolerance mechanisms even in benign
environments. Low intrinsic BER also supports the presumption that observed communication errors
during an experiment are due to injected faults and not due to poorly designed links.

For the CFIMS TCLs, a DL must have the capability of being shared among multiple source hardware
processes and also be able to handle messages of different lengths. From the overview in Section 4 (see
Figure 4.4), some nodes have multiple processes that communicate with one or more processes at other
nodes. Given the limited RSPP communication resources, including a small number of communication
ports, the preferred approach to realize all the needed functional communication is to provide mechanisms
that enable multiple source processes to share DLs, as well as providing mechanisms that allow receiving
processes to accept only specific messages. In addition, because different processes have different data
communication needs and the size of the data transfers initiated by a source process may vary throughout
an execution round, it is desirable to have DLs with the capability to handle messages of varying lengths
as individual and independent atomic transactions with whole-message integrity guarantees.

The design of the DLs must take into consideration the available RSPP resources that can be used in
solutions to the node-to-node data transfer problem. The communication channels of a node are intended
for serial communications. Each channel has a transmitter and a receiver for physical digital signaling

58

between nodes. At the FPGAs, which are the endpoints of the communication links and the execution
hosts for the custom hardware processes, there are a number of clock signal generators with frequency
multiply and divide capabilities, but there are no built-in capabilities to extract a reference sampling clock
from a self-clocked serial communication signal (i.e., there are no suitable digital phase-lock loops).
However, the FPGAs can implement synchronous logic circuits running at very high clock rates, and the
ability of the FPGA logic circuitry to quickly recover from metastable states results in an extremely low
probability of processing errors caused by asynchronous sampling of input signals [XAPP077].

We are interested in DLs that offer high availability (i.e., readiness for correct service) and high
integrity (i.e., absence of improper system state alterations) [Paulitsch05]. This can be achieved with
designs that have high reliability (i.e., low probability of communication errors), high error-detection
coverage (i.e., low probability that an error will remain undetected), and fast error recovery, which
requires low error-detection latency. In developing the DLs, it is assumed that there are no faults at the
transmitter or the receiver, and the focus is on handling message corruption in the communication path
between the two. The principal sources of errors in the context of a DL are signal distortions in the point-
to-point communication path from the serial transmitter to the receiver, and signal sampling errors at the
receiver. Given that the RSPP FPGA clock signals have low drift rates (specified as ±100 parts per
million, ppm, for RSPP1) and low jitter (estimated at just a few picoseconds), it is expected that the
transmitter and receiver circuits will have a relatively small impact on the overall communication error
rate. The largest error contributor is expected to be signal distortions in the communication path due to,
for example, intersymbol interference and noise. The chosen approach for minimizing signal distortions
is to operate at a communication signal rate (i.e., the baud rate) much lower than the channel signal
bandwidth, and to provide shielding for electromagnetic interference (EMI) noise (for example, by using
optical fibers or twisted-pair cables with optional metallic shields for increased noise immunity).
Achieving high coverage and low latency for error detection is handled by the chosen signaling technique,
message formatting and design of the transmitter and receiver.

The chosen data link designs for the RLs and TCLs are based on the work presented in [Torres08B],
where the fundamental concept for channel signaling is to apply Manchester coding to a non-return-to-
zero (NRZ) (i.e., unencoded data) bit stream. Figure 6.1 illustrates the encoding of NRZ bits. Every
Manchester bit consists of two half-bits, with the first half matching the level of the NRZ bit and the
second half having the opposite level. A characteristic of a Manchester encoded bit stream is the presence
of a mid-point transition in every valid bit. Transitions at bit boundaries are present only when successive
bits have the same value. As shown in Figure 6.1, Manchester encoding is a biphase coding technique in
which the phase of the signal relative to a reference clock indicates the corresponding value of the data
bit. From this perspective, phases of 00

 and 1800 correspond to bit values of 1 and 0, respectively. This
maximization of nominal-phase separation between code symbols serves to reduce the susceptibility to
signal distortions and, thus, enhance the overall communication BER. The benefits of the Manchester
code include self-clocking (in the sense that the clock signal is embedded with the data), no DC frequency
component (which enables communication without direct physical attachment of DL transmission and
reception components, i.e., the DLs can serve to contain the propagation of faults and thus define the
boundaries of fault containment regions, FCRs), and simple bit-level error detection (as a comparison of
the signal levels before and after the mid-point of a bit can detect all bit errors that do not invert both
levels simultaneously) [Stallings94]. One significant disadvantage of Manchester encoding is that it
requires twice as much signal bandwidth as NRZ for the same data rate.

59

Figure 6.1: Manchester encoding of NRZ data bits

Figure 6.2: Signaling structure for the transmission of a data word (with Sync0 and Sync1)

Figure 6.2 illustrates the signaling structure for the communication of a k-bit data word. At the lowest
physical signaling level, the objective is to transfer a bit-string payload from the transmitter to the
receiver. Any content-specific formatting of the payload word is irrelevant to this objective. The payload
data word is serially transmitted one bit at a time in some predetermined sequence. The payload word is
preceded by a synchronization (or “sync”) pattern whose purpose is to identify the beginning of a payload

word and to provide a timing reference to sample the Manchester encoded data bits. A sync pattern can
be viewed as a special code symbol different than the Manchester code symbols, but sharing the
characteristic of a mid-point level transition. As shown in Figure 6.2, a sync pattern consists of an
invalid-valid-invalid code sequence where the first and third bits have opposite NRZ-encoded values (and
so, in a strict sense, are both invalid relative to the Manchester code), and the level transition in the valid
second bit provides the timing reference for data sampling. The polarity of the half-bit immediately
preceding a sync pattern is forced to be such that there is a level transition at the beginning of the sync
pattern in order to minimize the uncertainty about the starting point of a sync pattern and to increase the
message integrity by rejecting any sync pattern that does not meet a strict timing criteria. Both of the two
possible sync patterns (i.e., Sync0 and Sync1) serve equally well for the purposes of payload demarcation

NRZ

 Manchester

1

0

Reference Clock

0

1

Half-Bit

(Full) Bit

0o

180o

180o

0o

Sync0

b1

bk

. . .

Inv0

Val0

Inv1

Manchester-Encoded Data

Half-bit
high

 Sync1

b1

bk

. . .

Inv1

Val1

Inv0

Manchester-Encoded Data

Half-bit
low

Idle

Idle

Idle

Idle

. . .

. . .

. . .

. . .

60

and timing reference, and this flexibility in the selection of a sync pattern provides an opportunity to
efficiently send a control bit with each data transmission (for example, as a tag to mark the beginning of a
word sequence or to identify the word content as command or data). At this signaling level, the sequence
of a sync pattern followed by a data word is called a word frame. During the idle interval between word
frames, a DL sends a constant-phase clock signal corresponding to a stream of Manchester-encoded 1‟s or
0‟s. The inter-message (or “inter-word-frame”) gap, which is delimited by the end of one word frame and
the sync pattern of the next, must last at least one full bit-time to accommodate the forced half-bit before a
sync pattern.

Signal analyses performed at the time of the work reported in [Torres08B] estimated the bit-error
probability at less than 10-9, or less than one error per billion bits, for this signaling scheme using the
RSPP resources under worst-case conditions. Given that it is highly unlikely that the system will operate
under worst-case conditions except, possibly, during fault injection experiments, the communication BER
was assessed to be better than adequate for the intended use of the system.

After low BER, the next critical requirement for the design of the DLs is high error-detection
coverage. As it is expected that no single technique will provide sufficient error coverage, the DLs are
designed with a multi-layer approach in which different error checks are applied at each level in the
design hierarchy. Some of the basic error checks are introduced here. Other design-specific checks are
presented in later subsections describing the DL designs.

The first layer of error protection is to monitor the signal waveform at the receiving end of a DL. A
normal incoming signal has three major states (sync, data, and idle) with only one valid major-state
transition sequence (idle sync data idle). If we define the level and duration of a signal between
level transitions as a (waveform) symbol, then, all together, there is only a small set of strictly-defined
valid symbols and a few valid symbol sequences. Any deviation from these is an indication of a
transmission fault. Waveform monitoring is described further in the next subsections.

As previously described, the Manchester code offers an opportunity for a simple and effective error
check based on the comparison of signal levels before and after the mid-point of an encoded data bit. An
error is detected whenever the levels are the same. This error check can be applied to each coded bit in
the data section of a word frame, and it can detect all bit errors that do not invert both levels
simultaneously.

The other general error detection technique used in the DLs is to add redundancy to the data in the
form of a cyclic-redundancy-code (CRC) bit sequence (also referred to as a frame check sequence, FCS)
to enable detection of data corruption during transmission [Ramabadran88, Koopman04]. CRC checks
are applied to individual word frames and also to blocks of data words transmitted over multiple word
frames.

Given a DL design with high reliability, the availability can be improved by incorporating techniques
that offer short error-detection latency and fast recovery. One option for enhanced end-to-end DL error
detection is the use of redundancy in the designs of the DL transmitter and receiver. Transmitter-side
error detection can be most easily realized using self-checking pair (SCP) redundancy techniques to
immediately stop a transmission if the output does not correspond with the data to be sent. An SCP
approach could also be used at the receiver end. In addition to contributing to minimize the error-
detection latency, such modular redundancy approaches would also contribute to higher error-detection
coverage. In the actual DL designs, however, hardware redundancy is not used, as it is considered
excessive for the intended application of the DLs and appropriate only in a context of node-level design

61

redundancy. Instead, all error detection is done at the receiver exploiting the knowledge of message
formatting and information redundancy.

At the DL-user level, a transaction involves the transmission of a data packet consisting of one or
more data words. A design goal is to handle error detection at the receiver on a per-transaction basis
ensuring no interference between transactions and with a small required gap between transactions in order
to have as little impact on throughput as possible. To do this, a DL should have a design with cyclic
operation that is fast enough to always complete the processing of a transaction, including all error
detection, before the start of a new transaction. At the end of a processing cycle, the DL should be ready
for another cycle with a properly initialized state. The critical design problem is how to do the processing
with minimum delay and implementation size.

Two DL designs were developed for the SUT and the CFIMS. The RLs use a simple word-mode
design in which each transaction handles a user-level message with one data word of predefined length
specified at the time of system synthesis. The word-mode DL is a direct evolution of the design in
[Torres08B] with enhanced error detection capabilities. The TCLs use a packet-mode design handling
one or more data words per transaction as specified by the DL user on a per-transaction basis. The
packet-mode DL is based on the word-mode DL design with added functionality to handle multiple data
words as a single user message. The packet-mode DL design is supported by a multiple-access controller
to arbitrate shared-link access by multiple sending processes.

6.1. Word-Mode Communication Unit

A Word-Mode Communication Unit (WMCU) includes a transmitter, a waveform monitor and a
receiver. A word-frame consists of a sync pattern followed by the serialized user data followed by a CRC
computed over the used data bits. Figure 6.3 shows a block diagram for the Word-Mode Transmitter.
The design differs from the one in [Torres08B] in the use of a CRC generator to replace the simpler and
less effective parity-bit generator. Also, after every word frame, the transmitter automatically inserts an
idle pattern of sufficient length to accommodate the extra time needed at the receiver to complete a CRC
check.

The design of the WMCU Waveform Monitor is unchanged from the one in [Torres08B]. The main
purpose of this monitor is to reduce the likelihood that, due to the sampling operation of the receiver and
the concomitant limited signal observability, an incoming random or highly distorted input signal may be
interpreted as a valid word frame simply by chance. This waveform monitor tracks the input signal at the
receiving end to detect timing envelope violations. A valid DL signal has two types of signaling
intervals: sync coding and Manchester coding. A Manchester signaling interval includes the data and
CRC sections of a word frame, and also the idle interval between word frames when a clock signal is
transmitted. We define two valid waveform symbols in a sync coding interval: S0 and S1. Likewise,
there are two valid Manchester coding waveform symbols: D0 and D1. Table 6.1 describes the symbols.
Figure 6.4 illustrates the state transitions for the waveform monitor. After detecting a valid S0 symbol,
the monitor follows the input signal as long as it satisfies the timing envelope constraints given by the
valid symbol transitions. The signal is declared invalid immediately upon the detection of an envelope
violation. The signal is declared valid only after a sufficient number of consecutive valid symbols have
been received. [Torres08B] provides additional details about the design of the Waveform Monitor.

62

Figure 6.3: Block diagram for the word-mode transmitter

Table 6.1: Definition of WMCU waveform symbols

Signal Encoding Symbol Signal Level
Nominal Level Duration

(in half-bit time units)

Sync S0 0 3
Sync S1 1 3

Manchester D0 0 1-2
Manchester D1 1 1-2

Shift Register

Manchester
Encoder

CRC
Generator

Sync
Generator

Controller

Mux

Bit Clock
Generator

 Mux

Manchester
Bit Stream

NRZ

Bit Select

 Validity

T

F

Strobe_In

Ready

NRZ Stream
Generator

XOR

Data

bn-1 . . . b0

63

Figure 6.4: Simplified state diagram for WMCU Waveform Monitor

Figure 6.5: Block diagram for the Word-Mode Receiver

Figure 6.5 shows a block diagram for the Word-Mode Receiver. The Manchester-encoded Bit Stream
(MBS) input is the signal received from the transmitter. The MBS signal is inspected by the Waveform
Monitor before forwarding it to the receiver module. Valid Signal is generated by the Waveform
Monitor. The Sampler block buffers the input signals long enough to resolve any possible metastable
states. The Sync Detector examines the MBS input searching for a valid sync pattern. If one is found and
Valid Signal remains asserted, a timing reference signal is generated and the Controller activates loading
the remainder of the word frame. The Sync Detector is deactivated until the word frame processing is
complete. Irrespective of any detected error, once New_Sync is asserted, the receiver will generate an
output with data and error syndromes and a time delay determined by the word frame length. If Valid
Signal is deasserted at any time during the word frame, the corresponding error output (or “syndrome”)

will be asserted. The Manchester Code Check is applied to the data and CRC parts of the word frame,

Sampler

Sampling
Clock

Generator

Sync
Detector

MBS

Valid
Signal

Data

Timing
Reference

Controller

 Error

Syndromes

Strobe_Out

New_Sync

Shift
Register

bn-1 . . . b0

Manchester
Code Check

Signal
Check

CRC
Check

S0

S1

D0

D1

Wait For S0
Signal Error
(on invalid transition)

Valid symbol
transitions

Output assessment:
Invalid Signal (immediately)

Output assessment:
Valid Signal (delayed)

Reset

64

and an error is reported if there is code violation. The CRC Check compares the received CRC bit string
with the locally computed CRC. The Strobe-Out signal is asserted once after the word frame processing
is complete. The receiver then returns to the ready state and the sync Detector is reactivated.

6.2. Packet-Mode Communication Unit

A Packet-Mode Communication Unit (PMCU) consists of a packet-mode transmitter, a waveform
monitor and a receiver. The purpose of the PMCU is to transfer data packets (i.e., blocks of data) from a
sending process to a receiving process in a single transaction. Henceforth, the sending and receiving
processes are referred to as the (link) users. The size of the data packet is specified by the sending
process at the beginning of a transaction. As stated previously, the packet-mode DL is based on the word-
mode DL with expanded functionality to handle blocks of user data as a single message. Figure 6.6
illustrates the packet format used by the PMCU. The packet header has a user-specified tag and the
length of the payload section, which is denoted by L. The tag field value is meaningful only to the users
and, relative to the PMCU operation, it is simply another user data item. The packet length is sufficient
information to properly receive a packet. Because of the critical importance of the packet length, the
integrity of the packet header is protected by its own CRC-based FCS, referred to as the header FCS
(HFCS). The payload section has L user data words as indicated in the header. The trailer is the payload
FCS (PFCS) consisting of a CRC code computed over the content of the packet payload section.

Tag Payload Length (L) Header FCS
Payload Word 0

Payload Word L-1
Payload FCS

Figure 6.6: PMCU packet format

Figure 6.7 illustrates the format for a packet frame, which consists of a sequence of word frames with
the packet content. Notice the use of the Sync1 pattern to mark the word frame carrying the packet
header.

Sync1 Packet Header
Sync0 Payload Word 0

Sync0 Payload Word L-1
Sync0 Packet Trailer

Figure 6.7: Packet frame format

Figure 6.8 shows a high-level block diagram for a packet-mode data link using PMCU components.
The Packet Frame Encoder (PFE) serves as a user interface and generates a packet with null FCS fields
(see Figure 6.6). The Word Frame Encoder (WFE) is a modified version of the NRZ Stream Generator
block in the WMCU transmitter (see Figure 6.3) with the capability to generate Sync0 and Sync1 patterns
and the CRCs for the HFCS and PFCS of a packet. The WFE output is a bit-serial, NRZ-encoded packet
frame as in Figure 6.7. The PFE generates the packet words at a predetermined constant rate that is
sustainable by the WFE to generate the word frames. The Bit Encoder is identical to the Manchester
Encoder in Figure 6.3.

Payload

Trailer

Header

L+2 word frames

65

Figure 6.8: Block diagram for the packet-mode data link

Figure 6.9: Simplified state diagram for PMCU waveform monitor

The PMCU design expands the WMCU Waveform Monitor design to accept Sync1 patterns. Figure
6.9 is a simplified state transition diagram for the Packet-Mode Waveform Monitor. Now, symbols S0_0
and S0_1 denote Sync0 levels 0 and 1, respectively. Likewise, symbols S1_1 and S1_0 respectively
denote Sync1 levels 1 and 0. The duration constraints for Sync1 are the same as for Sync0 and are given
in Table 6.1. Notice that, similarly to the WMCU Waveform Monitor, the PMCU Waveform Monitor
does not incorporate constraints for the minimum separation between consecutive valid sync patterns.
This is a deliberate omission to limit the design complexity. That error check capability can be easily
added if deemed sufficiently beneficial in terms of increased error coverage.

Packet Frame
Encoder

Word Frame

Encoder

Bit
Encoder

Packet Frame
Decoder

Word Frame

Decoder

Bit
Decoder

User Data

Packet Words

Word Frames

Valid

Waveform
Monitor

MBS

Packet-Mode
Transmitter

User Data

Packet Words

Word Frames

Packet-Mode
Receiver

At receiving node

At sending node

MBS

NRZ

Wait For Transition Signal Error
(on invalid transition)

Valid symbol
transitions

Output assessment:
Invalid Signal (immediately)

Output assessment:
Valid Signal (delayed)

S0_0

S0_1 S1_0

S1_1

D0 D1

0 to 1

1 to 0

Reset

66

In Figure 6.8, the purpose of the Bit Decoder is to detect valid sync patterns and generate the sampling
clock reference used by the Word Frame Decoder (WFD). The WFD deserializes the word frames and
computes the HFCS for received header words and the PFCS for packet payloads. The WFD also
performs signal validity and Manchester encoding checks on every received word frame.

Figure 6.10: Block diagram for the Packet Frame Decoder and list of packet error checks

The purpose of the Packet Frame Decoder (PFD) is to organize the words from the WFD into valid
packets and buffer the packets until the user is ready to read them. Figure 6.10 shows a simplified block
diagram for the PFD and the list of defined packet error checks. The Packet Receiver stores received
words in the Packet Buffer. The Header and Payload Summary Buffers hold the error syndromes for
received packet headers and payloads. The Packet Receiver is designed such that, for every Header
Summary Buffer entry, there is a corresponding Packet Summary Buffer entry and a corresponding
Packet Buffer entry consisting of one of more words, including a packet header. The Output Controller
manages reading of the buffers based on the content of the Summary Buffers and the readiness of the user
to accept received packets. The Packet Receiver performs a significant number of checks, as can be seen
by the listed error outputs in Figure 6.10. The Header Error checks are the same performed by the
WMCU receiver for a generic word frame. The SD (Signal Detect, or Valid Signal, as generated by the
Waveform Monitor) and MC (Manchester Code) checks are applied to every payload word, including the
PFCS. An error in any of them invalidates the whole packet. The Payload CRC Error is based on the
result of the PFCS check. The Length Error indicates that the packet was rejected due to the arrival of a
new header word before the PFCS for the current packet was received. The Timing Error is based on a
timeout check for the gap between packet words, which can be bounded using the known word generation
rate at the transmitter. The Buffer Overflow error occurs when the Packet Buffer becomes full before all
the words of an apparently valid packet being received have been stored. The Packet Flow Errors are
reported by the Packet Receiver directly to the user interface as they can occur at any time and can affect
the ability to use the buffers. These errors are assumed to be due to a break-down in packet transfer
coordination between the transmitter and the receiver, or between the receiver and the user. The Packet
Receiver rejects incoming packets as long as any of the three buffers is full. If a Packet Buffer overflows,

Payload
Summary Buffer

Header
Summary Buffer

Packet
Buffer

Packet
Receiver

Output
Controller

Ready

Strobe

From WFD

Packet Data

Header Errors

Payload Errors

Packet Flow Errors

Header Errors:
- SD Error
- MC Error
- CRC Error

Payload Errrors:
- SD Error
- MC Error
- CRC Error
- Length Error
- Timing Error
- Buffer Overflow

Packet Flow Errors:
- Unexpected Header
- Unexpected OTH
- Packet Buffer Unavailable
- Summary Buffer Unavailable

67

the Packet Receiver stalls and rejects incoming words until the Output Controller has flushed out all the
buffers.

The Output Controller uses the error syndromes stored in the Summary Buffers to determine how to
process the content of the Packet Buffer. If a Header Error is asserted, it is assumed that the Packet
Receiver stored the packet header but aborted the process of receiving and loading the packet payload
onto the buffer. In this case, the Output Controller outputs the received header as stored in the buffer,
together with all the corresponding header and payload errors in the Summary Buffers. If there are no
Header Errors but at least one Payload Error is asserted, the Output Controller outputs the packet header
and the error syndromes, and then discards any part of the payload stored in the Packet Buffer. If none of
the Header or Payload Errors is asserted, the full packet content is forwarded to the user.

6.3. Multiple-Access Controller

The PMCU Multiple-Access Controller allows multiple sending processes to share a data link. Figure
6.11 is a block diagram of the Multiple-Access Controller. The signals in Figure 6.11 are prefixed to
identify the source or sink as either the transmitter (prefix “Tx_”) or the user processes (prefix “User_”).
Simple priority was chosen for the access policy as it is well suited for the intended use in which there is
clear precedence among the sending processes (e.g., round control, function testing, and fault injection
processes, in that order, at the PTC). To request access to the transmitter, a user asserts its User_RTS
signal (RTS = Request To Send) and waits for the corresponding User_CTS signal (CTS = Clear To
Send). When the transmitter is available, as indicated by signal Tx_Ready, the controller gives access to
the waiting user of highest priority by asserting the corresponding User_CTS, selecting the proper port at
the multiplexers and starting a transmitter transaction (i.e., a data packet transmission) by asserting
Tx_Strobe. The selected user retains access to the transmitter for one transaction, at the end of which
Tx_Ready is reasserted and access is re-evaluated.

Figure 6.11: Block diagram for the PMCU Multiple-Access Controller

Priority
Encoder

Decoder

Reg

And

Load

Tx_Strobe

Tx_Ready

Code
(Port Selection)

Any

User_Data

1

r

Mux

Tx_Data

User_Tag

1

r

Mux

Tx_Tag

User_Length

1

r

Mux

Tx_Length

User_RTS

1

r

User_CTS

1

r

68

7. Test Control Messages

The Test Control Links (TCLs) are a point-to-point communication infrastructure that enables
message-based interaction between CFIMS hardware processes running on different nodes at the Test
Controllers and the SUT (see Section 4.3). The functional-level messages exchanged by hardware
processes over the TCLs are called Test Control Messages (TCMs).

Figure 7.1 shows the format of a TCL packet carrying a TCM. In the current version of the system, a
TCL packet is a series of 16-bit data words with a packet header, a set of one or more payload words and
a packet trailer. The TCM content includes the message source id, a tag indentifying the nature of the
TCM, and W 16-bit payload words. The bits to the right of the TCM tag field may also be used to carry
context-dependent TCM payload data. The TCM sources in the current version of the system are listed in
Table 7.1. Table 7.2 lists the TCM tags, which identify the content of the TCMs. In general, the format
of the TCMs is specific to the message context and varies with the TCM tag. The following subsections
describe the content and format of the TCMs.

0 TCM Source Id Packet Payload Length (W+1) HFCS
1 TCM Tag Available for additional TCM Payload data
2 TCM Payload Word 0

W+1 TCM Payload Word W-1
W+2 PFCS

Figure 7.1: TCL packet format for TCMs

Table 7.1: TCM Sources

Source Node Source Process Source Id

PTC

Round Controller (RCtlr) PTC_ROUND_CONTROLLER
Function Timer (FTmr) PTC_FUNCTION_TIMER
Function Tester (Function Monitors, FMons) PTC_FUNCTION_TESTER
Fault Injection Controller (FIC) PTC_PE_BIU_FIC

STC Round Controller (RCtlr) STC_ROUND_CONTROLLER
Fault Injection Controller (FIC) STC_RMU_FIC

PE-BIU Processing Element (PE) PE_BIU_PE
Embedded Node Monitor (ENM) PE_BIU_ENM

RMU Embedded Node Monitor (ENM) RMU_ENM

Packet Header

Data-Word Length: 16 bits

Packet Trailer

Packet Payload

69

Table 7.2: TCM Tags

Source Processes TCM Tag Description

PTC and STC Round
Controllers

RC_ENABLE CCP message used to signal that the controller sending the
message has been enabled by the software to begin a round

RC_READY
CCP message used to signal that the controller sending the
message has determined that SPIDER has been successfully
initialized

RC_START CCP message used to signal that the controller sending the
message has completed the round setup procedure

RC_STOP
CCP message used to signal that the controller sending the
message is in the process of stopping the execution of the
round

PEs SYNC_PE_TIME PE synchronization message

FTmr SYNC_ROUND_TIME PE synchronization message; also used to synchronize
CFIMS processes

Function Tester (FMons)
SF_SETUP Function setup message sent to the PE-BIU nodes during the

CCP Function Setup mode

SF_EXECUTE Function enable sent to the PE-BIU nodes during the CCP
Function Execution mode

PEs and FMons SF_DATA Application data exchanged by the PEs and the FMons

PTC FIC (relayed to
RMU nodes by STC
FIC)

FI_RESET Commands a reset of the fault injectors

FI_FAULT Fault-injector setup command sent during the CCP Fault
Injection Setup mode

FI_ACTIVATION Fault-injector setup command sent during the CCP Fault
Injection Setup mode

FI_EXECUTE Fault-injector enable command
FI_FIRE Fault injection reference event

PE-BIU ENM SM_PE_BIU Sample of PE-BIU node state
RMU ENM SM_RMU Sample of RMU node state

7.1. Round Control

The round control TCMs are exchanged between the PTC and STC Round Controllers during the
execution of the CCP (see Section 5). The Enable message (TCM tag: RC_ENABLE) is used in the
System Enable major mode. Figure 7.2 illustrates the format for this message. The values for the Round
Index and Enabled Nodes fields, which are, respectively, the unique identifier for the round and a runtime
configuration vector specifying the active nodes for the round, are supplied by the PTC software at the
beginning of the round. Both fields have arbitrary values in the initial CCP message from the STC to the
PTC.

1 Tag: RC_ENABLE --- Unused ---
2 Round Index
3 Enabled Nodes

Figure 7.2: TCM format: RC_ENABLE

Note that in Figure 7.2 the TCM fields are in the same relative location as in the actual
implementation, but the field lengths are not proportional to the actual field lengths. This is also true in
the other TCM format figures.

b1

b16

70

The Ready and Start messages do not carry any additional data beyond the TCM tag. Figure 7.3
shows the format for these messages.

1 Tag: RC_READY or RC_START --- Unused ---

Figure 7.3: TCM format: RC_READY and RC_START

The Stop messages help return the system to the idle mode in a coordinated manner. A Stop message
includes a field that specifies the Round Controller‟s stop condition, which is reported to the software at

the PTC and STC when the round execution has fully stopped. Figure 7.4 shows the format for the
RC_STOP TCM message. A full list and description of the stop conditions is given in Appendix B.

1 Tag: RC_STOP Stop Condition

Figure 7.4: TCM format: RC_STOP

7.2. Function Testing

Function testing includes setup and execution for PE synchronization and SUT application testing.
Figure 7.5 shows the format for the SUT setup message, which includes all the runtime configuration
information needed by the PEs. The Enabled Nodes field specifies the active nodes for the round. The
Application Assignment is a vector that specifies the function to be performed by each active PE as either
Input-Output or Control (see Section 4.3.1.2). The next field specifies the number of ROBUS Cycles
(RCs) per Control Cycle (CC), which specifies the duration of a control cycle. (Note that the duration of
a ROBUS Cycle is fixed at synthesis time.) The last series of words are the PE communication schedule.
As stated in Section 4.3.1.1, the PE communication schedule for a control cycle is defined as an indexed
set of ROBUS communication schedules, with one ROBUS schedule for each ROBUS cycle in a control
cycle, and with the schedule index identifying the ROBUS cycle in which to apply a particular ROBUS
schedule.

1 Tag: SF_SETUP --- Unused ---
2 Enabled Nodes
3 Application Assignment
4 RCs per CC
5 PE Schedule: Word 0

S + 4 PE Schedule: Word S-1

Figure 7.5: TCM format: SF_SETUP

The Execute message is sent to the PE-BIU nodes at the beginning of the CCP Function Execution
major mode (see Section 5) to enable the PEs. The TCM format is given in Figure 7.6.

1 Tag: SF_EXECUTE --- Unused ---

Figure 7.6: TCM format: SF_EXECUTE

b1

b16

b1

b16

b1

b16

b1

b16

71

The following subsections cover the TCMs for execution of the PE synchronization protocol and SUT
application testing.

7.2.1. PE Synchronization

The PE synchronization protocol is described in Section 4.3.1.1. Two types of messages are involved.
The messages from the PEs to the FTmr include the RCI at the PEs. The messages from the FTmr to the
PEs and other CFIMS processes include the RCI and CCI values as determined by the FTmr. The
formats for these messages are shown in Figures 7.7 and 7.8, respectively.

1 Tag: SYNC_PE_TIME --- Unused ---
2 ROBUS Cycle Index (RCI)

Figure 7.7: TCM format: SYNC_PE_TIME

1 Tag: SYNC_ROUND_TIME --- Unused ---
2 ROBUS Cycle Index (RCI)
3 Control Cycle Index (CCI)

Figure 7.8: TCM format: SYNC_ROUND_TIME

7.2.2. Application Testing

The application data TCM from an FMon to a PE contains the sensor or command data to be
transmitted by the PE over ROBUS as a single application-level message. In addition to the application
data, the TCM includes a PE-message header with fields for the Id of the sender PE, an error flag to be
asserted by the sender PE if it detects an error in the message from the FMon, and another error flag to be
asserted by the receiving PE if it detects an error in the message from the sender PE over ROBUS. After
the scheduled time to receive the message from the sender PE, the receiving PE sends to its corresponding
FMon a TCM with its ROBUS communication observations (see Section 4.3.1.2). Figure 7.9 shows the
format for an application testing data message.

1 Tag: SF_DATA --- Unused ---
2 PE Sender Id Error Detected at Sender PE Error Detected at Receiver PE --- Unused ---
3 Application Data Word 0

D+2 Application Data Word D-1

Figure 7.9: TCM format: SF_DATA

7.3. Fault Injection

The Fault Injection Controller in the PTC (see Section 11.3) builds each of the fault injection TCMs to
control the operation of the Local Fault Injectors (see Section 8). The messages are sent to the PE-BIUs
from the PTC Fault Injection Controller by means of the PTLs. The Fault Injection Controller also sends
the messages along the CCL to the STC, where the TCMs are forwarded to the RMUs by means of the

b1

b16

b1

b16

PE
Message

b1

b16

72

STLs. The format of the first payload word of all the fault injection TCM packets is the same. Figure
7.10 shows the format of the first payload word of the TCL packet format for all TCMs given in Figure
7.1. Bits 1 through 4 are used to identify the tag of the TCM. The rest of the payload word is left for the
fault injection destination. The destination address specifies the receiving Local Fault Injector. When the
message is meant for all Local Fault Injectors, the fault injection destination can set the message as
broadcast. Upon receiving a broadcast message, all of the Local Fault Injectors will process the fault
injection TCM. To reach individual fault injectors, the Broadcast bit is cleared and the Fault Injector ID,
Node Id, and Node Kind subsections of the destination are set to the address of the target fault injector.

Bit 5Bits 1-4 Bits 6-10 Bits 11-14
Bit

15

Bit

16

TCM Tag Fault Injector ID Node ID

Node Kind Broadcast

X

Figure 7.10: Format of first TCM Payload Word for FI_RESET, FI_FAULT, FI_ACTIVATION, FI_EXECUTE,

and FI_FIRE

The FI_RESET TCM is broadcast to all Local Fault Injectors at the start of a round. The format of
this message is shown in Figure 7.11. The second payload word contains the same Enabled Nodes field
as the RC_ENABLE TCM (see Section 7.1). The Local Fault Injectors use this field to determine when
they are located in an active node.

1 Tag: FI_RESET FI Destination
2 Enabled Nodes

Figure 7.11: TCM format: FI_RESET

The FI_EXECUTE message format shown in Figure 7.12 only contains the TCM tag. All Local Fault
Injectors receive this message by means of the Broadcast field. This TCM indicates the start of the
Execution mode for the Local Fault Injectors (see Section 8.1).

1 Tag: FI_EXECUTE FI Destination

Figure 7.12: TCM format: FI_EXECUTE

 Figure 7.13 gives the format of the Fault, Activation, and FIRE messages. These TCMs can be
applied to all of the Local Fault Injectors in the SUT by using the Broadcast field in the destination
section of the data word. Alternatively, multiple Fault, Activation, and FIRE TCMs can be used to
control faults at different Local Fault Injectors. The Fault or Activation ID in the payload of the TCM
indicates the fault type and activation pattern (see Section 4.3.2), respectively, whereas the FIRE ID
distinguishes which reference event has occurred. The multiplexer inputs chosen define what fault type
or activation pattern to set up for the test. Any subsequent payload data words in the TCM are optional
parameters relating to the particular fault type chosen.

b1

b16

b1

b16

73

1 Tag: FI_FAULT, FI_ACTIVATION, or FI_FIRE FI Destination
2 Fault or Activation or FIRE ID
3 Parameter: Word 1

P + 2 Parameter: Word P

Figure 7.13: TCM format: FI_FAULT, FI_ACTIVATION, and FI_FIRE

In the current version of the CFIMS, the only FI_FIRE TCM has a FIRE ID of 0. The format of this
message is given in Figure 7.14. This reference event is used to specify the faulty nodes for the control
cycle and remove these faults at the end of the control cycle, respectively, by means of the Fault Vector
and Disable Vector field (see Section 8.2).

1 Tag: FI_FIRE FI Destination
2 FIRE ID
3 Fault Vector or Disable Vector

Figure 7.14: TCM format: FI_FIRE for current CFIMS

7.4. State Monitoring

The collection of SUT node state data is described in Section 4.3.3. Basically, an Embedded Node
Monitor (ENM) gathers state data from its local node and sends it via the TCL to its corresponding State
Monitor process at a test controller. There are various transmission triggers programmed into the ENMs,
including local RPP mode transitions and failure detection events. Figure 7.15 shows the TCM format for
a PE-BIU state message. The Sequence Number field is an 8-bit message count intended to help identify
the loss of transmitted state messages. The Trigger Id field identifies the condition that triggered the
transmission of the state message. The ROBUS Links (RLs) Status indicates whether any of the RLs
detected a received-signal error (as reported by the WMCU Waveform Monitor of the RL) at any time
since the previous state message was transmitted. The remainder of the TCM includes snapshots of RPP
and PE state variables. The TCM format given in Figure 7.16 for RMU state messages is the same as for
PE-BIU state TCMs except for the absence of PE data. Appendix B provides more detailed information
about the content and format of the SUT state monitoring messages.

1 Tag: SM_PE_BIU Sequence Number
2 Trigger Id RLs Status
3 RPP: MCU Command
4 RPP: Accusations
5 RPP: Convictions
6 RPP: SMU State Sample
7 PE: State sample
8 PE: RCI

Figure 7.15: TCM format: SM_PE_BIU

RPP
(BIU)

b1

b16

PE

b1

b16

b1

b16

74

1 Tag: SM_RMU Sequence Number
2 Trigger Id RLs Status
3 RPP: MCU Command
4 RPP: Accusations
5 RPP: Convictions
6 RPP: SMU State Sample

Figure 7.16: TCM format: SM_RMU

RPP
(RMU)

b1

b16

75

8. Fault Injectors

To begin the design of the Local Fault Injectors, there must be a clear definition of where faults can
exist and what type of faults can be injected. Since the goal of the fault injection experiment is to
characterize faults in the ROBUS-2 system (see Section 4.1), which contains BIUs and RMUs, fault
injections in the system are only permitted within these regions. Each fault injector module operates on a
single-bit signal within the component. In order to be able to study various faults, the fault injector
architecture needs to be easily extended to include multiple fault types and activation patterns of these
faults.

8.1. Common Architecture

Each fault injector has a common internal structure for reusability in each component as well as on
different signals within a component. In order to induce faults in specific fault injectors, each injector is
individually addressable by the top-level Fault Injection Controller. The high level state machine of the
Local Fault Injector main controller is shown in Figure 8.1. The primary objective is to screen all
incoming TCMs and store the messages that apply to the fault injector. The controller checks whether the
TCM tag is one that applies to the Local Fault Injectors and if the message is meant for this particular
fault injector. For more information on the TCM tags see Section 7. When a Reset message (TCM tag:
FI_RESET) is received, the main controller sets the reset signal. The message contains the Enabled
Nodes vector that specifies active nodes for the round from the Test Specification file (see Appendix A).
In the case where the node is enabled, the reset signal is then disabled to allow the Local Fault Injector to
operate on the signal that is susceptible to faults. Upon receiving an Execute message (TCM tag:
FI_EXECUTE), the Execute flag is set in the register by the main controller allowing the activation
pattern selected for the fault to be applied to the Injection Multiplexer. Signals from the main controller
of the Local Fault Injector and the Packet Mode Communication Unit Receiver are sent through various
delays and logic to determine when to write to the Fault, Activation, Sync, and each Fault Injection
Reference Event (FIRE) buffer. See Section 7.3 for the format of each fault injection TCM. The fault
and activation buffers are used to store the selection signal used to choose the appropriate input of the
corresponding multiplexer. These buffers also have the ability to store additional parameters that affect
the operation of the input function. Setup parameters and reference events can be sent to particular fault
types and activation patterns to control their behavior. Consequently, the FIRE buffers were built in the
design to hold parameters of these events. The Sync message (see Section 4.3.1.1.) can also trigger a
specific behavior within these inputs, so the RCI and CCI are stored in the Sync buffer.

76

Load Fault Load Sync Load FIRE

Check New Message TCM Tag

Load

Activation

Set Execute

Flag
Set Reset

If Enabled,

clear Reset

Reset FIRE

Execute Sync
Activation

Fault

Figure 8.1: Local Fault Injector State Machine

Effector

Activation Mux

Fault Mux

Injection Mux

TF

F T

Unaltered Bit

DAM

S

R
alpha

Assigned Bit

Exec

S

R

Main

Controller

Set_Reset

Clear_Reset

FIRE 0 Buffer

FIRE i Buffer

.

.

.

Effector_
Reset

Buffer

Logic

SYNC Buffer

Activation

Buffer

Fault Buffer

Figure 8.2: Local Fault Injector Architecture

The general architecture of the Local Fault Injector is shown in Figure 8.2. The section of the Local

Fault Injector that alters the signal is called the Effector. Each input signal of the Activation Multiplexer
and the Fault Multiplexer can be changed to obtain the desired fault types. The Unaltered Bit is the signal
that is to be affected and the Assigned Bit is either the altered signal through the Fault Multiplexer or the
actual signal value from the Unaltered Bit input. The switching between the unaffected and faulty signal
is determined by the activation pattern from the Activation Multiplexer as long as the injector is in
Execute mode and the Effector is not reset. When the signal susceptible to fault injection is the reset

77

signal of the node, the Alpha signal is connected to the hardware reset. When the hardware reset is set, it
takes precedence over the signal from the Effector. However, when the Local Fault Injector is not
altering the reset signal, the Alpha signal is set to zero to allow the output of the Injection Multiplexer to
pass through as the Assigned Bit.

8.2. Fail-Silent Fault Injector

To implement fail-silent type faults (see Section 4.3.2) the Local Fault Injector with an address of 0 is
placed on the functional Reset signal of the SPIDER nodes. When a fault occurs on a node, the Reset
signal of the node is set so that the node resets and does not perform any function. This application of the
Reset signal satisfies the fail-silent definition because the node does not produce any outputs. When the
node is reset for any reason, this signal must override any altered signal of the fault injection. Therefore,
the Alpha signal is connected to the Effector‟s Reset signal allowing the node to be reset and bypass the

functionality of the Effector.

The first and second inputs of both of the Fault and Activation Multiplexers are set to a constant low
and high signal, respectively. For this CFIMS, the Direct Activation Mode (DAM) function was added as
a third input to the Activation Multiplexer. The activation value associated with the DAM is affected by
the reference event and parameters corresponding to FIRE 0. At the beginning of a round, the fault type
value is sent to the buffer to select the input that is always high on the Fault Multiplexer and the activation
value is sent to its buffer to select the DAM input. These values stay in the buffers throughout the
remainder of the round. When it is time within a control cycle, a FIRE TCM with the ID of 0 and the
fault vector (see Section 4.3.2) for the control cycle is sent to all of the SPIDER nodes through a
broadcast destination address. The DAM is notified when a new value has been written to the FIRE 0
buffer and the DAM finds the value in the fault vector corresponding to the ID of the node where the
injector is located to see whether or not the node is supposed to be upset for that control cycle. When the
node is supposed to be upset, the output of the Activation Multiplexer selects the output value of the Fault
Multiplexer. However, when the node is not defined as upset in the fault vector, then the Activation
Multiplexer chooses the Unaltered Bit, which is the value that has not been tampered with for the output
functional reset value. Toward the end of the control cycle, another FIRE TCM is sent with an ID of 0
and a fault vector with all values cleared to disable the fault. Similar to the previous FIRE message, the
DAM obtains the value within the cleared fault vector associated with the node where the fault injector is
located from the FIRE 0 buffer. This bit within the fault vector is never set, so the output of the
Activation Multiplexer always chooses the Unaltered Bit value to send on to the output of the Effector.
This process is then repeated for each control cycle throughout the execution phase of the test.

78

9. PE-BIU Node

At the functional level, the SUT consists of the ROBUS communication components (i.e., BIUs and
RMUs) and the application-level computation components (i.e., the PEs). At the physical level, the SUT
is implemented with PE-BIU physical nodes that execute PE and BIU functions, and RMU nodes
executing the RMU function. This subsection describes the function and implementation of a PE-BIU
node. The next section describes the RMU node.

In addition to implementing the PE and BIU functions, a PE-BIU node must include functionality for
fault injection, state monitoring and runtime configuration. Section 4.3 presents an overview of these
system design aspects. The PE-BIU node must also be able to interact with the PTC controller, which
executes a round according to the CCP protocol described in Section 5. Due to the limitations of the
RSPP1 execution nodes, all the PE-BIU node functionality in the current design is implemented as
hardware processes running on an FPGA.

Figure 9.1 shows a functional block diagram for a PE-BIU node. The components are divided into
SUT functional processes (i.e., processes performing SUT-specific functions) and CFIMS processes that
support the functions of configuration, application testing, fault injection and node monitoring. All of
these modules run on the FPGA of an RSPP node programmed as a PE-BIU node. The RPP configured
for BIU functionality is the central SUT component of a PE-BIU functional node. The design and
implementation of the RPP is described in [Torres05B]. The RPP was modified as described in
[Torres08B] to support state monitoring. The Node Id is manually programmed onto the flash memory of
the FPGA board (see Section 4.2.1) and is given to the RPP by a support module (not shown)
immediately after the FPGA is programmed. The WMCU components connected to the BIU handle the
communication with the RMU nodes (i.e., transmission and reception of ROBUS messages). All the
ROBUS-specific processing is handled by the RPP.

The main function of the PE module is to relay application-level messages between ROBUS and
FMons at the PTC. For this, the PE must coordinate its operation with the local BIU and with other PEs
via the FTmr. The round-specific runtime configuration of the PE is handled by the PE Setup Unit, which
receives the setup information sent by the corresponding FMon during the CFIMS setup phase. The
design of the PE Setup Unit and the PE are described in the following subsections.

The PE and the BIU monitor their own operation and the operation of the system by means of local
error checks. If either of these modules detects a local- or SPIDER-level failure condition, the module
halts its execution and asserts an output signal to report the condition. As shown in Figure 9.1, these PE
and BIU failure signals are connected to a reset circuit whose function is to restart all the SUT functional
node modules, thus eliminating any persistent node state errors (assuming the faults are transient).

The output of the Reset module is routed through Fault Injector 0 to enable the simulation of a PE-BIU
fail-stop failure mode. Other optional fault injectors may be added to simulate particular faults and
observe the node response, or to force particular DCP failure modes (see Section 2) to observe the
system-level response.

The ENM module collects state information from the node components and packages it onto TCMs
that are transmitted to the PTC State Monitor (SMon) upon the occurrence of a trigger condition. The

79

design of the ENM is described in a later subsection.

The PMCU is shared by multiple modules for transmission and reception. The PE and the ENM share
the transmitter, with the PE connected to the highest priority port in the multiple-access controller. The
receiver is shared by the PE, the PE Setup Unit and the Fault Injectors.

Figure 9.1: Block diagram for a PE-BIU node

9.1. PE Setup Unit

The PE Setup Unit (PESU) is intended to complement the functionality of the PE by handling all the
interaction with the CFIMS prior to the execution phase of a test round. In particular, the PESU is
responsible for directly disabling the PE during the SPIDER Initialization CFIMS mode, configuring the
PE during the Function Setup mode, and enabling the PE at the beginning of the Function Execution
mode.

Figure 9.2 shows the mode transition diagram for the operation of the PESU. The PESU accepts
TCMs with three different tags: FI_RESET, SF_SETUP and SF_EXECUTE. TCMs with other tags are
ignored. A local FPGA reset triggers the PESU to disable the PE and wait for an FI_RESET TCM, which
is sent by the PTC Fault Injection Controller at the beginning of the SPIDER Initialization mode to trigger
a re-initialization of the SUT. After that message is received, the PESU expects the arrival of PE runtime
configuration data in an SF_SETUP TCM. The PE_Reset signal remains asserted by the PESU until the
arrival of the SF_EXECUTE message, which signals the transition of the CFIMS to the Function
Execution mode. At that point in time, the PE is released to execute its function. If the PESU receives a
message out of order, it immediately reasserts the PE Reset signal and restarts the process.

RL
WMCU

RL
WMCU

WMCU

PE

 RPP

BIU

PE Setup
Unit

ENM

Reset

Fault
Injector

Fault
Injector

Fault
Injector i

 CFIMS

Embedded Modules

FI Node
Reset

To RMUs

PE
Failure

RPP
Failure

Node
State

Primary
Test Link

PMCU

To PTC

With multiple-access controller

Fault
Injector 0

Node
Reset

SUT
Functional

Node
ROBUS

Links

PE Setup

PE Reset

Node Id

IO

80

Figure 9.2: Mode transition diagram for the PE Setup Unit

The configuration data carried by the SF_SETUP TCM (see Section 7.2) includes the selection of
which SUT nodes will be active during the round, the function to be performed by each active PE (i.e. IO
or Control), the duration of a control cycle in terms of the number of ROBUS cycles, and the PE
communication schedule to be used in every control cycle. The PESU performs a simple validity check
for each of the first three configuration parameters: if any of them is all zeros (which means, respectively,
that none of the PEs are active, all the active PEs are configured to perform IO functions, or the duration
of the control cycle is zero), the configuration process is aborted and the PESU returns to waiting for an
FI_RESET message while holding the PE is the reset state. The PE communication schedule at the
control-cycle level is an indexed set of ROBUS-cycle-level communication schedules (see Section 3.7.2),
with one ROBUS schedule for each ROBUS cycle in a control cycle, and with the schedule index
identifying the ROBUS cycle in which to apply a particular ROBUS schedule. The PE communication
schedule in the SF_SETUP TCM includes only the non-zero ROBUS communication schedules. The PE
is responsible for generating a full control cycle communication schedule using this compressed schedule
format. The PE also performs validity checks on the communication schedule after the reset signal is
cleared.

9.2. Processing Element

The PE is the SUT component that performs the user-level application. Currently, this consists of
bidirectional relaying of messages between the FMons and ROBUS. This user-level service is supported
by platform-specific services implemented at the PEs and lower-level services provided by ROBUS. The
PEs are fully implemented in hardware and each one shares an FCR with its attached BIU. There are two
main interface ports on a PE: the ROBUS port for interacting with the BIU, and the IO port for
communicating with its corresponding FMon at the PTC. The operations of a PE are time-driven after it
has achieved full time synchronization with the BIU and the FTmr.

9.2.1. Main Functions

The PE provides three levels of services to the application: time synchronization, communication
schedule update, and application-level communication. The time at a PE has two elements: the ROBUS
Time (RT) given by the ROBUS time service, and the ROBUS Cycle Index (RCI) given by the FTmr.
The RT is the current time within a ROBUS cycle, and the RCI is the number of the current cycle within a
Control Cycle (CC). As described in Section 4.3.1.1, the protocol to synchronize the PE expands the
ROBUS synchronization protocol (from which the PE gets the RT) by adding an exchange phase between
the PEs and the FTmr to generate agreement among the PEs on the RCI.

Wait_SF_Setup

Wait_SF_Execute

Wait_FI_Reset

Reset/PE_Reset

FI_RESET/ PE_Reset

SF_SETUP/--

Label Format: Input/Output

SF_EXECUTE or SF_SETUP/PE_Reset

FI_RESET or SF_EXECUTE/PE_Reset

FI_RESET or SF_SETUP/PE_Reset
SF_EXECUTE/PE_Reset , PE_Setup

X = Assert X
X = Deassert/Clear X
-- = No action

81

Using the RCI and the CC-level communication schedule delivered by the PESU, the PEs can generate
an RC-level communication schedule to program ROBUS during its Schedule Update minor mode. The
non-faulty PEs will proceed with the actual communication of application-level messages only if they
receive confirmation from ROBUS that the accepted schedule is equal to the desired schedule.

The purpose of the SUT application is to characterize the effects of ROBUS faults in the
communication between active PEs. Section 4.3.1.2 provides a description of the application.
Essentially, it consists of a three-step process. First, at the beginning of a control cycle, every active
FMon (i.e., an FMon connected to an active PE) sends a TCM with application data to its corresponding
PE. Section 7.2.2 describes the format of this TCM. Second, the PEs broadcast their data on ROBUS at
their scheduled time in the control cycle. An application-level message sent by a PE consists of a header,
the application data and a CRC-based frame check sequence (FCS). The header has three main fields: a
sender field identifying the source PE, an error-detected-at-sender field set to 1 (i.e., true) if the sender PE
detects an error in the message from its FMon, and an error-detected-at-receiver field set to 1 if the
receiving PE detects an error in the message from the sending PE over ROBUS. The CRC for the PE
message is computed by the sending PE itself over the whole message, including the header. Each PE
message is broken down into individual words, and each word is transmitted on ROBUS as a single
DATA-tagged ROBUS message (RM). In the final step of the application, for every scheduled source
PE, a receiving PE recovers the application-level message, if possible, and forwards the received data,
including an updated message header, to its corresponding FMon. It is assumed that each PE is scheduled
to send at most one application-level message per control cycle. At the end of the control cycle, an active
FMon outputs a set of observations for the communication paths from every PE to the FMon‟s PE.
Section 10 provides additional information about the FMons.

9.2.2. Operational Modes

In the layered services structure of SPIDER, there is a hierarchical service dependency in which
lower-level services must be operational before higher-level services can reach full operational status.
The PEs can interact with one another at the application level only if ROBUS is operating in the Clique
Preservation major mode (CPM) and the PEs have agreement on the current time. At a particular PE-BIU
node, the service dependency chain requires that the BIU synchronize to a ROBUS clique, after which the
PE can synchronize to the BIU at the ROBUS Time (RT) level. Next, the BIU must reach the CPM mode
in order for the PE to be given access to the bus. Finally, the PE can then interact with other PEs to
complete the agreement on the current time, as well as other PE-level state variables (e.g., the
communication schedule). For the version of SPIDER currently implemented, which lacks PE-level
distributed agreement protocols with communication over ROBUS, the FTmr at the PTC works as a
central coordinator to generate agreement on the RCI.

Figure 9.3 shows the major mode transition graph for a PE. The Operational Coordination Level
(OCL) is related to the degree of readiness of the PE to deliver application-level services. After a reset,
the PE enters the base OCL0 level, where it remains until it has RT synchronization. In OCL1, the PE
waits until the BIU has reached the CPM mode. OCL1 mode can be shorter than one ROBUS cycle if the
BIU is participating in a full ROBUS initialization sequence. Otherwise, the BIU is executing a
reintegration sequence, and the PE must wait several ROBUS cycles. The final state recovery step for the
PE is to communicate with the FTmr to synchronize the RCI. From that point on, in OCL3, the PE is in a
preservation mode to deliver user services indefinitely. At any time, the detection of processing error
triggers an immediate cessation of processing until a PE-external action is taken (e.g., a state reset
triggering a return to OCL0).

82

Figure 9.3: Major-mode transition diagram for the PE

Figure 9.4 shows the PE minor-mode transition graph. This graph captures the cycle of activities by a
PE during state initialization and preservation according to the OCL major-mode flow. Starting from a
reset, a PE must first synchronize its RT state variable using the sync message from the BIU. From that
point on, the operation of the PE is ROBUS-time-triggered and tightly coupled to the operation of the
BIU. Section 3.8 describes the activities at the interface between the PE and the BIU. After RT
synchronization, the PE receives the ROBUS diagnosis results for the BIU and RMU nodes. The local
BIU then reports its current operation major mode and its assigned Id. These two items of information
allow the PE to track the BIU mode transitions and to know its own Id number (which is the same as the
BIU‟s), respectively. If the PE has reached OCL3, it can properly communicate on the bus according to
the configured schedule. Otherwise, it must simply preserve its RT synchronization. RCI
synchronization for initialization or preservation is executed only if the PE is in OCL 2 or 3. The error
checks and failure conditions monitored by the PE are a function of the OCL.

9.2.3. Organization and Error Checks

The internal organization of the PE in simplified form is illustrated in Figure 9.5. We describe the
operation and interaction between modules for each minor mode.

After a reset, with the PE in OCL0, the Schedule Generator checks the content of the Control Cycle
(CC) schedule buffer and circularly shifts the content of the buffer until it reaches the beginning of the
schedule. An error in this check is a failure condition. If no error is detected, the Master Controller (MC)
starts the Watchdog module and waits for a synchronization message from the BIU. If the
synchronization message does not arrive before the Watchdog timer expires, a failure condition is
triggered. Otherwise, the RT state variable is synchronized and the PE transitions to the OCL1 major
mode. At this point, the PE restarts the Watchdog to expire after the maximum duration of one ROBUS
cycle.

In the next minor mode, the MC receives the ROBUS diagnoses for the BIU and RMU nodes. The
MC checks the content of these messages and triggers a failure condition if the acceptance criteria are not
satisfied.

Reset

OCL0

OCL1

OCL3

OCL2

Failure
Halt

RT Sync

BIU in CPM

RCI Sync

Run

83

Figure 9.4: Minor-mode transition diagram for the PE

Figure 9.5: Block diagram for Processing Element

The mode messages from the BIU are always checked for valid content and any violation is treated as
a failure condition. Once the PE has reached OCL1, it allows at most two ROBUS cycles for the BIU to
reach the CPM mode. If this condition is not satisfied, the PE declares a failure. In OCL3, the PE only

No

Reset
Get RT Initial Sync

Get ROBUS Diagnosis: BIUs

Get ROBUS Diagnosis: RMUs

Get BIU Major Mode

Get BIU Id

In
OCL3?

Yes

RC Schedule Update

RC Communication

Get RT Re-Sync

Get RCI

In OCL2
or OCL3?

Get Schedule Assessment

Yes

No

Reset

Buffer

Buffer

Mux

RCI

PE Setup:
Enabled_Nodes
App_Assignment
RC_Per_CC

Error

(Sync,RCI,CCI) (Sync,RCI) Error

From TCL
Receiver

From BIU
Output Port

IO
Receive
Unit

IO
Send
Unit

Schedule
Generator

To BIU
Input Port

To TCL
Transmitter

PE Setup:
CC Schedule

Id

Buffer

CRC

ROBUS
Receive
Unit

Buffer Rcv Error

RC
Schedule

Mux
Header Payload

Set Header
Fields

PE Reset
Node Reset

Failure

Mux

ROBUS
Send
Unit

Mux

IO Error

Header Payload

Set Header
Fields

RC
Schedule

Data

CRC
Buffer

RT

OCL
Id

RCI

Watchdog

Master
Controller

Sync
Message

Sync
Message

Error

Id

Data

0

Mux

or

84

accepts CPM mode messages from the BIU, and a failure condition is asserted if the BIU reports any
other mode.

The first time the Id message is received by the PE, it is checked for proper content. The Id value is
valid only if it is between 1 and the number of PEs in the system. From the second time that the PE
receives the Id message, the Id value must match the one received the first time. A violation of these
acceptance checks triggers a PE failure condition. If the Id is accepted the first time it is received, the
value is used to determine whether or not the PE is to remain active based on the entries in the
Enabled_Nodes configuration parameter received from the PESU. If the PE is not to remain active, it
ceases all activity and goes to an idle state. Otherwise, it continues with the next minor mode.

If the PE is not in OCL3, it is not ready to communicate with other PEs. In that case, it does not
actively participate in updating the ROBUS communication schedule or in sending messages on ROBUS.
In those minor modes, the PE simply monitors the RMs from the BIU for validity relative to the protocols
used by ROBUS.

To re-synchronize the RT state variable, the PE waits for a synchronization message from the BIU and
performs a content validity check before applying a correction to the RT variable. If a received message
is rejected or the watchdog timer expires before the sync message arrives and the local RT is updated, the
PE declares a failure and halts its operation. If the PE is in OCL2 or OCL3, it will send a TCM sync
message to the FTmr using the IO Send Unit. The TCM contains the value of the RCI state variable at
the MC. The PE will then wait to receive a sync message from the FTmr containing the current value of
the RCI as well as the Control Cycle Index (CCI), which is not used by the SUT in the current
implementation. A failure condition is declared if the received sync message does not satisfy the
acceptance criteria, including a sync message with RCI set to 0 within RC_Per_CC ROBUS cycles from
the time the PE entered the OCL2 mode. In OCL3, the arrival of a valid sync message with a new RCI
triggers the generation of the next RC communication schedule by the Schedule Generator. The ROBUS
Send and Receive Units load this schedule onto their own separate buffers and wait for a signal from the
MC to begin processing in the Schedule Update mode.

In the Schedule Update mode, the BIU reads the schedule from the ROBUS Send Unit (RSU)
according to a time-triggered execution pattern. Using the Id from the MC, the RSU records the number
of messages in the schedule for this PE to be used later on in the PE data communication mode. The MC
and the ROBUS Receive Unit (RRU) perform acceptance checks on the content of the scheduling results
received from the BIU. The RRU checks include a one-for-one comparison of the received schedule
against the submitted schedule. Any discrepancy in this check triggers an error signal, to which the MC
reacts by declaring a failure and stopping the processing. While checking the schedule update results
from ROBUS, the RRU also reduces the RC Schedule buffer content by eliminating any 0 entries. The
remaining entries are the actual schedule to be executed during the communication mode (see Section
3.7.3).

The schedule assessment reported by the BIU is inspected by the MC to confirm the validity of the
content and that the assessment corresponds to the schedule submitted (i.e., “zero” if all the entries in the
schedule are 0, but otherwise an assessment of “valid”). An unexpected schedule assessment message
from the BIU, in content or timing, triggers a failure condition and a halt of PE execution.

During PE communication in a ROBUS cycle, the PEs access the bus one at a time according to the
agreed upon schedule and all the PEs receive all the scheduled messages. The IO Receive Unit (IORU)
buffers the PE-message section in the payload of the TCM data message from the FMon (see Section

85

7.2.2). Under fault-free conditions, the message transmitted by the PE on ROBUS is the content of the
IORU buffer, which includes the message header and payload, followed by a CRC word. The RSU
replaces the content of the sender Id field with the Id from the MC, it sets the Error-Detected-at-Sender-
PE according to its error check results, and it clears the Error-Detected-at-Receiver-PE field. If the IORU
does not receive a valid data TCM from the FMon before the scheduled time for transmission on ROBUS,
the IORU data buffer will be empty or incomplete and the RSU uses whatever value happens to be at the
output of the buffer as the message payload content. At the scheduled transmission time, the BIU begins
reading the message data from the RSU prompting for a new word as the previous one is broadcast on
ROBUS as a DATA-tagged RM. For each PE, the number of scheduled RMs is equal to the size of the
application-level message to be transmitted by the PE, including the header, payload and CRC.

At the receiving end, the MC checks the validity of the individual received RMs, while simultaneously
the RRU uses the schedule to recover the application-level messages in the stream of received RMs. An
RM error detected by the MC is a failure condition due to a fault in ROBUS and/or the BIU and triggers
an execution halt. The RRU flags an application-level message as incorrect if any of the corresponding
received RMs has a tag other than DATA or the CRC computed over the data section of the RMs (i.e., not
including the tag field) does not match the received CRC in the last RM of the application-level message.
The RRU buffers the received data words as they arrive, except for the CRC, and then records the PE
source Id and error check result before requesting a TCM data message transmission by the IO Send Unit
(IOSU). When the IOSU is ready, the RRU overwrites the sender Id and Error-Detected-at-Receiver-PE
fields and forwards the content of the message to the IOSU, which sends it over to the FMon.

9.3. Embedded Node Monitor

The function of the ENM is to collect state information from the node and send it to the main State
Monitor (SMon) at the PTC. The ENM is a key system component used for debugging during system
development and for event analysis during experiments. The ENM must be easily reconfigured at design
or synthesis time to change the data to be collected and the trigger conditions for sending the data to the
SMon. The design and setup of the ENM must also minimize any possible interference with the normal
operation of the SUT components, especially the PE, as well as the fault injectors.

Figure 9.6 is a simplified block diagram for the ENM at a PE-BIU node. The central element of the
ENM is the Parallel-Input Serial-Output (PISO) buffer where the payload words for the TCM, including
the TCM header and the state data (see Section 7.4), are loaded in parallel and shifted out as the message
is read by the PMCU transmitter of the PTL. The sequence number is an 8-bit count that is incremented
every time a new message is generated. The data registers are independently loaded with state
information for the next message. This allows data from different sources (e.g., RPP, PE, etc) to be
recorded at different times based on context-dependent triggers. This two-stage data buffering with
independent data registers and a PISO buffer also enables the collection of new state data while a message
is in the process of being transmitted. When a message trigger occurs, any data register that does not
already contain updated state data will be automatically loaded with the current state at that time
independently of the data source context.

In the current implementation, the ENM uses a priority encoder to rank the set of defined message
transmission trigger events. The trigger events, in order of priority from highest to lowest, are the
following: failure of the RPP, failure of the PE, and RPP mode transitions to Self-Test Mode (STM),
Clique Detection Mode (CDM), Clique Initialization Mode (CIM), and Schedule Update in Clique Join
Mode (CJM) or Clique Preservation Mode (CPM). If multiple triggers occur simultaneously, only the
highest priority one will be reported in the TCM sent to the SMon.

86

Figure 9.6: Block diagram for the Embedded Node Monitor

 PISO
Sender

Data Reg

Seq Counter

To PTL Transmitter

RLs:Status
RPP:State
PE:State

RTS_Trigger

Data Reg

 PISO

Buffer RTS

TCM Tag

Priority
Encoder

RPP:Failure
PE:Failure
RPP:STM_Begin
RPP:CDM_Begin
RPP:CIM_Begin
RPP:CJM_Sched_Up
RPP:CPM_Sched_Up

Node
Data

TCM
Trigger
Events

87

10. RMU Node

The main purpose of an RMU node in the SPIDER-based SUT is to perform the ROBUS
communication function of an RMU component. In addition, an RMU node includes functionality to
support the CFIMS processes of configuration, fault injection and state monitoring. As a ROBUS
component, an RMU does not perform application-level functions. An RMU node must support the
CFIMS setup phase, in particular the SPIDER Initialization and Fault Injection Setup modes (see Section
5). For the current implementation on RSPP1, the RMU node‟s functionality is implemented as hardware
processes running on an FPGA.

Figure 10.1 shows a block diagram for an RMU node. The components are divided into the SUT
Functional Node group and the CFIMS Embedded Modules group. The RPP configured at design-time as
an RMU is the central component of the functional node. The RPP is supported by a set of WMCUs (one
per RL) to communicate with the BIUs and a Reset module that it triggered by an asserted failure
condition signal from the RPP. The output of the Reset module is routed through Fault Injector 0 to
enable the simulation of fail-stop behavior. Other fault injectors may be added to simulate more complex
failure patterns. The ENM collects data from the local components and sends it to the State Monitor at
the STC for debugging and event analysis. The PMCU is shared by local components. Currently, the
PMCU is configured with two transmission ports with the ENM connected to the highest priority port and
the other port disconnected and available for future use.

In terms of components, an RMU node has a subset of the components in a PE-BIU node. The RPP,
fault injectors and ENM in an RMU node are the same as in a PE-BIU node. Section 9 and other sections
of this report provide further details about the design of the RMU node components.

Figure 10.1: Block diagram for RMU node

RL
WMCU

RL
WMCU

WMCU

RPP
RMU

 ENM

Reset

Fault
Injector

Fault
Injector

Fault
Injector i

 CFIMS

Embedded Modules

FI Node
Reset

To BIUs

Failure

Node
State

Secondary
Test Link

PMCU

To STC

With multiple-access controller

Fault
Injector 0

Node
Reset

SUT
Functional

Node
ROBUS

Links

Node Id

Not Connected

88

11. Hardware Processes of the Primary Test Controller

The CFIMS must provide four main functions: system (i.e., SUT and CFIMS) reconfiguration, SUT
function testing, SUT fault injection and SUT monitoring. In the current version of the CFIMS, these
functions are realized by two test controllers (Primary and Secondary) and embedded processes at the
SUT nodes. With the available and planned RSPP execution platforms, multiple test controllers are
necessary to support SUT configurations with a number of SUT nodes larger than the number of custom
communication ports in one RSPP node (i.e., eight). As described in Section 4.3, at the functional level,
the PTC and STC consist of a set of intercommunicating hardware and software processes with the
hardware processes performing lower-level and timing-sensitive operations and the software processes
performing function management activities with more relaxed execution timing constraints. This section
covers the design of the PTC hardware processes. Section 12 covers the design of the STC hardware
processes. The PTC and STC software processes are described in Section 13.

The PTC hardware processes run on the FPGA of the RSPP node configured as the PTC. These
processes have three main interfaces to communicate with other processes: the RSPP node‟s peripheral
bus (i.e., ISA in RSPP1 or PCI in RSPP2) for the PTC software processes, the CCL for the STC, and the
PTLs for the PE-BIU nodes.

The PTC software processes interact with the hardware processes to configure the hardware according
to the content of the Test Specification file, supply fault-injection test vectors during execution, collect
execution data for post-test analysis and real-time monitoring by the test operators, and start and stop a
round as determined by the test operator (see Section 13). The interface between the software and
hardware processes must take into account the difference in execution rate and response delays between
the hardware and software processes to ensure efficiency of interaction without loss of data.

The CCL is used to coordinate the operation of the PTC and STC, including system configuration,
fault injection and round control. The overall objective in this coordination is to allow the controllers to
behave as a single large controller from the viewpoint of the SUT. The Controller Coordination Protocol
(CCP) described in Section 5 is used for overall coordination of round execution for the hardware and
software at the PTC and STC. Once the software enables the hardware controllers, they assume
command of round execution using the CCP to coordinate their actions, while the PTC and STC software
processes become closely coordinated indirectly as client (or slave) processes tracking the execution of
their respective hardware processes. Besides the round control processes, the CCL is also used by the
function testing and fault injection processes to achieve coordinated interaction with all the SUT nodes.
Thus, the CCL is a shared communication resource requiring mechanisms to ensure minimum access
interference between processes and complete and correct transactions every time the link is accessed.

The PTLs are the direct communication links between the PTC and the PE-BIU nodes. These links
are used for PE-BIU node setup, function testing, fault injection and state monitoring. As is the case for
the CCL, every PTL is a shared communication resource with the need for access coordination
mechanisms. The message traffic on the PTLs differs from that on the CCL mainly in the absence of the
high-priority CCP messages and the increased traffic volume due to the addition of PE synchronization
and application-level messages in both directions at a rate determined by the duration of the ROBUS
cycle and the control cycle. The selected TCL access-coordination mechanism must satisfy the added
requirement of not having a significant impact on the complexity of system design or analysis. The

89

number of PTLs is equal to the number of PE-BIU nodes specified at synthesis time, generally denoted by
N. Given the current CFIMS design and the number of custom communication ports in a RSPP node, the
maximum number of PE-BIU nodes that can be supported is seven (with the eighth communication port
used for the CCL). SUT configurations with a larger number of nodes require a redesign of the test
controllers.

Figure 11.1: Block diagram for the Hardware Processes of the Primary Test Controller

Figure 11.1 shows an abstract high-level view of the PTC hardware processes. The external interfaces
include the CCL and PTLs to communicate with remote hardware processes (i.e., running on different
physical nodes), as well as the interface to the local software processes. The Round Controller module
provides overall round-level coordination for the local hardware and software processes, and uses the
CCP to coordinate its actions with the remote Round Controller at the STC. The Round Controller also
provides a global time-reference service in the form of a Round Timer (RTmr) used to time tag
observations. The STC contains a similar RTmr, and both are continually synchronized throughout a
round via the CCL. The software collects data with snapshots of the Round Time (RTime) state from
which it is possible to reconstruct the round timeline during post-test analysis. The SPIDER Health
Monitor (HMon) supports the Round Controller as a dedicated monitor to check the condition of the SUT.
Specifically, the HMon confirms the successful initialization of the SUT during the system setup phase in
a round and, thereafter, it continuously monitors the SUT to detect unexpected responses that are
indicative of a physical or functional failure that requires a halt to the execution. The PE-BIU State
Monitor (SMon) receives state data sent by the ENMs and forwards it to the software. Each SMon lane
also performs a condition assessment on its corresponding PE-BIU node based on the received state
records to determine whether the node is operating normally or undertaking a recovery process. The
SPIDER Function Tester (SFT) contains the Function Timer (FTmr), which serves to synchronize the PEs

ENM(1..N)
Messages

To
PE-BIU(1..N)

PE-BIU
State

Monitor
SMon SMon

SUT
Condition
Classifier

SPIDER
Health

Monitor

Controller Fault
Injection

Controller
FI Buffer

PE-BIU(1..N)
Node Condition

FTime

FI Setup and
Fault-Vectors

Round Time

FTmr State

Function Setup
FMon(1..N)
Observations

Ready
Failure

PE-BIU(1..N) State

CCP Status

Software
Interface

Record Buffer

Record Buffer

Record Buffers

Record Buffers

Time Tag
(RTime)

Ready
Failure

To PTC
Software
Processes

CCP Setup

CCL

PMCU

PTL(1..N)

PMCU PMCU PMCU

FTmr

FMon FMon

SPIDER
Function

Tester

SMon
(1..N)

FMon
(1..N)

CCP

To
STC

FI Msgs

Sync
Sync

PE(1..N)
Messages

FI Msgs

FTime

FTime

RTmr

Master
Controller

Round
Controller

90

and provide an SUT-based time reference (called the FTime) to the test controllers, and the Function
Monitors (FMons), which interact with the PEs at the application level. The FTmr and FMons generate
data records for collection by the software. The Fault Injection Controller (FIC) configures the fault
injectors at the SUT nodes (i.e., PE-BIU and RMU) and controls the timing of injection based on the fault
specifications obtained from the software. The configuration and injection specifications from the
software are buffered locally at the FIC to accommodate the difference in timing response between the
hardware and software. The PMCUs for the TCLs (i.e., CCL and PTLs) use multiple-access controllers
to arbitrate access to the links. The PTC functional modules are also programmed to minimize access
interference (i.e., collisions) by using time-triggered operation (relative to the FTime) when possible.
However, the modules must also be capable of handling event-triggered transmit and receive transactions
(e.g., fault injection or state record arrival) to deal with unpredictable SUT behavior due to injected faults.

The following subsections expand on the design of the PTC components.

11.1. PTC Round Controller

The purpose of the Round Controller (RCtlr) is to provide overall round-level coordination for the
CFIMS test controllers. The PTC RCtlr interacts with and monitors the local hardware processes, the test
software, and the STC RCtlr throughout a round to maintain coordinated action and ensure proper
completion of the round.

Figure 11.2: Block diagram for the PTC Round Controller

Figure 11.2 shows a block diagram for the PTC RCtlr. The Master Controller (MC) is the central
execution coordinator. The MC‟s major mode transition graph is shown in Figure 11.3. The software

loads the Enabled_Nodes (which specifies the SUT nodes to be active in the round) and Round_Index
variables before enabling the controller to begin the round. From that point forth, the MC outputs the
CCP status to allow the software to follow the progress in the execution of the round. To interact with the
CCL, which is shared with other PTC hardware processes, the RCtlr uses dedicated send and receive

Round Time = (IT, IC)

CCL
Sender

Buffer

CCL
Receiver

Buffer

Round
Timer

 Interval
Timer

 Interval
Counter

 Priority
Encoder Output

Resolver Initiator Stop
Trigger Detector

 Received-Stop
Detector

Stop Trigger Monitor

Stop_As_Initiator
Stop_As_Follower
Stop_Condition

To CCL
PMCU

RTmr_Enable IT_Reset

FTime

Local Process Control Interface

CCP Setup
CCP Status

SPIDER_Ready
SPIDER_Failure

Master
Controller

 Major Mode

Msg_Seq_Error

To Software

From HMon

Enabled_Nodes

 Enabled_Nodes
 Round_Index

91

modules to relieve the MC from the tasks of waiting for CCL transmitter access arbitration and received-
message filtering. The CCL receiver loads only CCP messages, which have TCM tag fields of
RC_ENABLE, RC_READY, RC_START, and RC_STOP. The HMon asserts the PE_BIU_Ready signal
when SPIDER is initialized. The SPIDER_Failure signal can be asserted at any time after that point if
any of the monitored failure criteria at the HMon is satisfied. The Stop Trigger Monitor at the RCtlr
constantly monitors for any of a defined set of round stop conditions. The defined stop conditions include
the normal completion of a round as indicated by the FIC (when all fault test vectors have been applied)
or the SFT (when all specified control cycles have been completed), a CCP message sequence error
reported by the MC, a local hardware or software process stop request (on a detected error or some other
condition), SUT failure as detected by the HMon, and a received RC_STOP TCM from the STC while the
local MC is in normal System Run operational mode. Appendix B lists all the stop conditions defined in
the current system implementation. If the stop is triggered by a local event, the RCtlr begins the round
stop sequence as the initiator and sends an RC_STOP message to the STC to stop the execution there too.
If the local stop is triggered by a received RC_STOP message, the initial stop trigger was detected at the
other Test Controller and the local RCtlr executes the round stop sequence as the follower. In either case,
the Stop Trigger Monitor reports the highest priority stop triggering condition, and this is then relayed to
the software and the remote node (in the case of stopping as the initiator). The CCP does not provide a
mechanism to reach agreement on the stop condition if the PTC and STC simultaneously stop as
initiators. In that case, the system will stop, but the reported stop condition may be different at the PTC
and STC. Section 5 gives a detailed description of the CCP.

Figure 11.3: Major mode transition graph for the Master Controller of the PTC RCtlr

The Round Timer (RTmr) generates the global time reference used to time tag observations. The
RTmr measures the time relative to particular reference events. The Round Time (RTime) has two
components: the Interval Time (IT) that measures the time since the last reference event, and the Interval
Count (IC) that counts the number of times the IT has been reset upon a reference event. The MC enables
the RTmr in the System Enable major mode. That is the first reference event. During the setup phase, the
IT is reset when each of RC_ENABLE, RC_READY and RC_START is transmitted. Once the round
enters the execution phase, the RTmr is reset a short delay after the FTmr sends out the Sync message to
the STC at the beginning of every ROBUS cycle when the FTmr is in Preservation mode. This delay

Stop_as_Follower

Software Round_Begin

Reset

Function Execution

System
Run

Function Setup

FI Setup

System Enable

System Idle

Stop as Initiator
SPIDER Initialization Stop_as_Initiator

Stop as Follower

92

compensates for the message propagation delay over the CCL and is intended to synchronize the RTmrs
at the PTC and STC. The RTmr is stopped only at the end of the round.

11.2. SPIDER Function Tester

The SFT interacts with the PEs to coordinate their actions, provide the application workload and
monitor their operation at the application level. The SFT is responsible for configuring the PEs during
the round setup phase and then enabling them at the beginning of the execution phase. The SFT must
also be able to interact with the round controller to implement the CCP, with the software for setup and
data collection, and with the other CFIMS hardware processes to provide the FTime used as a time
reference for interacting with the SUT.

Figure 11.4: Top-level block diagram for SPIDER Function Tester

Figure 11.4 shows a block diagram for the SFT. The Master Controller (MC) handles the interaction
with the Round Controller, the setup of the PEs and the enabling of the FTmr and FMons specialized
modules. The Enabled_Nodes vector is received from the Round Controller at the beginning of the
round. During the Function Setup mode, the software loads the function configuration data from the Test
Specification, including the Application_Assignment, the number of ROBUS cycles per control cycle
RC_Per_CC, the round duration CC_Per_Round, and the PE communication schedule for a control cycle.
The software also loads on each FMon the sensor and command data to be used during the execution
phase. When the software is finished loading the function parameters, the MC builds the SF_SETUP
TCM and sends it to the PEs. At the beginning of the Function Execution mode, the MC enables the
FTmr and the FMons, and sends the SF_EXECUTE TCM to enable the PE. From then on, the MC waits
for the FTmr to complete the round duration specified by the software, or for a round stop command from
the Round Controller. A CC_Per_Round value of 0 means that the FTime will not be used to limit the
duration of the round and that the round stop trigger will occur elsewhere. The FTime consists of three
elements: the ROBUS Time (RT), the ROBUS Cycle Index (RCI) and the Control Cycle Index (CCI).
When the FMons are enabled, they use the FTime as a reference to trigger major transitions in their
internal operation. An FMon sends a sensor or command data message to its corresponding PE
(depending on the PE‟s application assignment) at the beginning of the control cycle, and then opens a

To
CCL

Function
Timer

 RT

 RCI

 CCI

To
PTL(1..N)

To
PTL(1..N).Tx

From
PTL(1..N).Rx

Mode_Is_Setup

Enable Enable

1 0

FTime

Sensors
Data
Buffer

Commands
Data
Buffer

 Observation
Classifier

Function Monitors

Sensors and
Commands Observations

To Software
Function

Setup
Setup

Control
Round
Control

To Software
To Round
Controller

Setup_Msgs Execution_Msgs

 Enabled_Nodes

 App_Assigment

Master Controller

CC
Schedule
Buffer

 RC_Per_CC

 CC_Per_Round

93

reception window to listen for and classify the observations for received PE data messages. When the
RCtlr issues a stop command, the SFT MC requests the FMons to stop.

11.2.1. Function Timer

The primary purpose of the FTmr is to provide the CFIMS with an SUT-referenced time (the FTime)
service that can be used to coordinate distributed actions. Given that the PEs in the current SUT
implementation do not execute PE-level coordination protocols with communication over ROBUS, the
FTmr function is expanded to also provide a distributed coordination reference service to the PEs.

The FTime is intended to measure the SUT function execution time from the moment the SUT is
enabled by the CFIMS in the Function Execution mode. The FTime differs from the RTime in that the
FTime measures the total time during which the SUT has been making forward progress in executing the
application without including execution discontinuities when the system as a whole is recovering from
injected faults (and so, is not executing the application), while the RTime measures the total elapsed real
time since the round was enabled. The structure of the FTime is related to the levels of services in the
SUT. The FTime is defined to consist of three elements: the ROBUS Time (RT) measuring the elapsed
time since the latest distributed synchronization event generated by the ROBUS synchronization protocol;
the ROBUS Cycle Index (RCI) measuring (or counting) the number of ROBUS cycles completed since
the beginning of the “current” application-level control cycle; and the Control Cycle Index measuring (or
counting) the number of control cycles since the SUT function execution was enabled.

The FTmr gets the RT from the PEs using the expanded version of the ROBUS synchronization
protocol described in Section 4.3.1.1. The FTmr must have the capability of initializing its time when the
CFIMS enters the Function Execution mode. Also, because of the possibility of ROBUS (and the SUT as
a whole) losing internal coordination among its nodes due to injected faults and then entering a system
recovery mode, the FTmr is designed with the capability to reacquire RT synchronization after a
temporary disruption of SYNC_PE_TIME TCMs from the PEs. Figure 11.5 shows the mode transitions
for the FTmr. The Initialization mode applies to recovery starting from reset and re-initialization from a
detected failure. This mode is functionally similar to the Clique Detection Mode of ROBUS-2 (see
[Torres05A]) and is concerned mainly with getting the RT from the PEs. Once RT synchronization has
been established, the FTmr transitions to Preservation mode to maintain synchronization precision by
means of periodic re-synchronizations. Additional details about the implementation of the
synchronization protocol at the FTmr and the failure conditions that trigger transitions to the Initialization
mode are given later in this section.

The management policy for the RCI and CCI at the FTmr must cover the operational disruptions
caused by detected failures. Figure 11.6 illustrates the chosen rules for managing these FTime elements.
Notice that RCI and CCI do not increment in the Initialization mode (even when there is an initialization
failure), and CCI is incremented when there is a transition from Preservation to Initialization mode. From
the perspective of the FTime, this means that a control cycle is valid and complete the moment it is started
irrespective of its actual duration, which is determined by events happening during the cycle. This
enables for even a partially executed control cycle to have a unique CCI value.

94

Figure 11.5: Mode transition graph for the Function Timer

Figure 11.6: Policy rules for managing the values of RCI and CCI

The RT synchronization process at the FTmr is based on the use of a middle-value-select event voter
with a dynamic eligible voter set. The voted events are the times of arrival of the SYNC_PE_TIME
TCMs from the PEs. The eligible voters are the subset of PEs whose inputs are considered in performing
the vote. Voting eligibility of individual PEs is determined from the diagnosis of message traffic
observations at the FTmr. To maximize the tolerance to faulty inputs, the diagnostic subsystem must
satisfy the property of correctness, which states that a PE shall be diagnosed as an ineligible voter only if
it is physically faulty or its state is incorrect. This ensures that fully operational PEs are not removed
from the eligible voter set. However, under conditions of less than perfect integrity, the FTmr does not
achieve 100% error detection and diagnosis coverage and some bad PEs may remain in the eligible voter
set. The fundamental requirement of the event voter to guarantee output validity is that a majority of
eligible voters be trustworthy (i.e., can be relied upon to provide correct inputs from which to correctly
compute and deliver the expected service). If it is not true that the majority of eligible voters are
trustworthy, there is no guarantee of correct voter output as the fault-masking ability of the voter (i.e., the

Reset

Passive PE Diagnosis

RT Frame Synchronization

RT Synchronization Preservation

RT Synchronization Capture

Failure

Initialization

Preservation

On RT re-synchronization:
 If RCI = RC_per_CC – 1 then
 RCI = 0, CCI++
 Else
 RCI++

RCI and CCI remain constant

Initialization

Preservation

Reset/(RCI = 0, CCI = 0) Transition label format:
Event/Action

Failure/(RCI = 0, CCI++) Failure/---

RT Synchronized/---

95

ability to deliver a valid output even in the presence of invalid inputs) is compromised. In that case, for
the current FTmr design, it is assumed that the voter output is unreliable and a failure has occurred.
Furthermore, in accordance with the model of a fault-causing phenomenon of known bounded duration
used in the design of ROBUS-2 (see [Torres05A]), it is assumed that the failure condition is not persistent
(i.e., it is transient) and can be corrected by a re-initialization of the system.

The purpose of the FTmr diagnostic capability is to identify untrustworthy PEs as soon as possible so
they can be removed from the eligible voter set to preserve the majority-trustworthy condition. The
diagnostic capability is also required to detect when such condition is not true and then trigger a re-
initialization. Note that the CFIMS fault injection targets are only the SUT nodes. The FTmr itself is
never directly affected by faults. This implies that the diagnosis performed by the FTmr is really a
diagnosis of the PEs and the SUT as a whole, and that when the FTmr declares a failure, what has actually
failed is the SUT. This is why the SPIDER Health Monitor (see Figure 11.1 and subsection 11.5) uses the
FTime to check the SUT health status in the Function Execution mode of the round.

The FTmr has two modes of operation relative to the ROBUS Time (RT): unsynchronized and
synchronized. Unsynchronized operation happens only in the Initialization mode. In the Passive PE
Diagnosis minor mode, the FTmr opens two consecutive observation windows, each with duration equal
to the longest ROBUS cycle. For each input PTL lane, the FTmr expects to receive one or two
SYNC_PE_TIME TCMs in each observation window. If this is not the case, the corresponding PE may
be accused of being bad (i.e., exhibiting incorrect operation). In the RT Frame Synchronization minor
mode, the FTmr searches for the gap between clusters of SYNC_PE_TIME TCMs from trusted PEs. The
trustworthy PEs send one cluster of synchronization TCMs every ROBUS cycle. The FTmr shall find the
gap between consecutive message clusters in less than one ROBUS cycle. While the FTmr is actively
searching for this gap, it expects to receive at most one synchronization message from each PE. The
arrival of two or more messages from a PE is sufficient evidence of incorrect operation by that PE. In the
RT Synchronization Capture minor mode, the middle-value-select event voter is enabled with the initial
set of input eligible voters (IIEVs) including those PEs that have not been accused up to that point. The
voter is designed to operate under the assumption that a majority of the trusted input eligible voters
(IEVs) are indeed trustworthy. If that is so, a majority of the received Sync events shall fall within a
known bounded time distance from the selected middle event. This bound on the synchronization
precision for trustworthy PEs is computed by analysis prior to system synthesis. A violation of this
synchronization precision property detected at the time the event voter generates an output is a failure
condition that triggers a restart of the Initialization mode. In addition, any one sync event that is not
within a particular bounded time distance of the middle event (also determined by analysis prior to system
synthesis) is sufficient evidence to accuse the corresponding PE of incorrect operation. If it is determined
by these accusations that less than a majority of IIEVs were trustworthy, that is also a failure condition
that triggers a re-entry into the Initialization mode. Finally, given the periodicity of execution of the
ROBUS Synchronization Preservation protocol, it is expected that the event voter will generate an output
within one ROBUS cycle from the time it is enabled. Otherwise, there is sufficient evidence that the IIEV
was invalid, and a re-initialization shall be started. In this unsynchronized mode, the FTmr behaves
similarly to the ROBUS Protocol Processor (RPP). Additional information can be found in [Torres05A]
and [Torres05B].

In synchronized operation in the Preservation mode, the FTmr expects to receive synchronization
messages from the PEs during a small time interval determined based on the ROBUS cycle period and the
achieved RT synchronization precision between the PEs and the FTmr. For each PTL lane, if a
synchronization message arrives outside of this expected reception window, or anything other than one
synchronization message arrives during the window, the corresponding PE is accused of incorrect

96

behavior. After the window closes, the event voter is enabled to operate with the latest set of trusted
inputs, and the output is used to synchronize the RT at the FTmr. If at any time in the Initialization or
Preservation mode the FTmr trusts none of the PEs, it declares a failure and returns to the Initialization
mode.

Figure 11.7 shows a block diagram for the Function Timer. The FTmr receives SYNC_PE_TIME
TCMs from the PEs arriving at the PTC over the PTLs. These TCMs contain two items of information:
the RCI at the sending PE, and the time of arrival of the message, from which the FTmr can infer the time
at which the PE sent the message using known bounds on the PTL communication delay. A TCM
Receiver module rejects any TCM with a different tag or errors indicated by the PTL PMCU receiver.
When a TCM Receiver receives a good TCM, the RCI is loaded onto a register and a one-tick “Sync”

pulse is generated a fixed delay after the message is received. Only the pulse is forwarded to the rest of
the FTmr.

Figure 11.7: Block diagram for the Function Timer

The Timing Check blocks are responsible for counting the number of received PE synchronization
messages during unsynchronized and synchronized reception windows. When a window is closed, this
module compares the actual number of received messages against the allowed range and signals an error
for each lane with a number of inputs outside the valid range.

Sync_Short/Long(1..N)

Send_Sync

TCM
Receiver
 Pulse RCI

 RT

 RCI

 CCI

Master
Controller

 Timeout
Timer

 Mode

TCM
Sender

Accept()
Event Voter

Accusations(1..N)

Mode

Convictions(1..N)

End_of_RC
Start_of_CC

Disagree_Accept(1..N)

No_Majority

Trusted(1..N)

From
PTL.Rx(1..N)

To
PTL.Tx(1..N)
And CCL.Tx

Frame
Synchronizer

 Error(1..N)

PE
Diagnostics

Rate_Error(1..N)

Pulse
Generator

FS_Error(1..N)

FS_Done

Accept

Timing
Check

Pulse
Sync(1..N)

 Conv
 Acc

Invalid
IEV Detector

 IIEV(1..N)
Invalid_IIEV

(RCI,CCI)

Trusted(1..N)

FTime

To
PTC

Modules FS_Done

Enabled_Nodes From
Round Controller

97

The Frame Synchronizer block reads the SYNC_PE_TIME TCMs from PEs and executes the frame
synchronization protocol described in Section 7.2.1 of [Torres05A]. When the frame gap is found, an
error report is generated for each input channel and the Master Controller is informed (by means of signal
FS_Done) to transition to the RT Synchronization Capture minor mode.

The PE Diagnostics module applies a diagnostic policy similar to the one used in ROBUS-2 (see
[Torres05A], Section 4). A PE is trusted if it is enabled, not accused and not convicted. The
Enabled_Nodes vector indicates which PE-BIU nodes are active. A PE is accused when an error is
detected in its behavior. In the Initialization mode, all the active PEs are initially trusted. If an error is
detected for a particular PE, that PE is accused and the accusation remains effective until there is a
transition from the Initialization mode (including a transition back to the same mode). Once a PE is
excluded from the trusted set in the Initialization mode, it remains excluded for the duration of that mode.
There are no convictions in the Initialization mode. An accusation in the Preservation mode is effective
from the time the error is reported to the PE Diagnostics module until the end of the ROBUS cycle at the
completion of execution of the RT synchronization protocol. In the Preservation mode, an accusation is
promoted to a conviction starting at the end of the ROBUS cycle in which the accusation occurred and
lasts for the duration of one ROBUS cycle. As long as an enabled PE continues to be accused, it will be
excluded from the trusted set. Readmission is possible only after the PE completes one ROBUS cycle
with no new accusations. When that happens, the conviction will be cleared (because there are no new
accusations to sustain it) and trust will be re-established. The Accusations and Convictions vectors are
available at the outputs of the FTmr as part of the records collected by the PTC Software Interface for
post-test analysis.

The Invalid IEV Detector module compares the trusted sets at the beginning and at the end of the RT
Synchronization Capture minor mode to determine if there was a violation of the trustworthy-majority
assumption for the eligible voters used by the event voter. A detected violation triggers a re-initialization
of the FTmr.

The Master Controller (MC) is the central coordinator of operation within the FTmr. The MC controls
the FTime elements RT, RCI and CCI. At the appropriate time, the MC commands the TCM Senders to
send a SYNC_ROUND_TIME TCM containing the RCI and CCI. The state information output by the
MC is used by PTC modules reading the FTime and for data records collected by the PTC Software
Interface.

The Pulse Generators and the Accept() Event Voter require special consideration in their description
as their operation and implementation are meant to be size and time efficient, but are not entirely
intuitive. When the FTmr is expecting to receive synchronization messages from the PEs in the RT
Synchronization Capture and RT Synchronization Preservation minor modes, a Pulse Generator generates
two pulses (Sync_Short and Sync_Long) when its corresponding TCM Receiver outputs a one-tick pulse
signaling the arrival of a PE synchronization message. The Sync_Short and Sync_Long pulses are
delayed by a predetermined time amount after a Sync pulse to allow sufficient time for error detection and
diagnosis on received messages. Let SP,P3IO,RCV denote the bound on the observed relative skew by the
FTmr for received synchronization messages from trustworthy PEs. SP,P3IO,RCV is measured in units of
oscillator clock ticks at the FTmr. P3IO is the process executed at the FTmr in the PE synchronization
protocol as shown in Figure 4.6 in Section 4.3.1.1. The duration of the Sync_Short pulse is set to

SP,P3IO,RCV + 1. The duration of the Sync_Long pulse is 2 SP,P3IO,RCV + 1. The Event Voter reads the set
of trusted PEs as the eligible voters at the time it is enabled by the MC. Note that if there is an agreeing
majority among the input sync events (i.e., the events are within SP,P3IO,RCV of one another), the middle
value will be found within the time interval delimited by that majority. The outputs of the voter include

98

the Accept signal, which is asserted to indicate that the middle event has been detected; the No_Majority
signal, which is asserted when it is not true that a majority of the input sync events agree; and the
Disagree_Accept(1..N), which is asserted to signal an error for each input sync event that is not within

SP,P3IO,RCV of the middle value (and thus is not part of the agreeing majority).

Figure 11.8 shows an example of a set of three eligible voters (lanes 1, 2, and 3) and the response by
the Accept() Event Voter. In this example, the maximum expected skew for pulses from trustworthy PEs
is assumed to be SP,P3IO,RCV = 2. A majority exists if 2 or more input sync events are within this skew of
one another. As shown, inputs 2 and 3 are within the skew bound and form a majority. Input 1 is not part
of the agreeing majority as it is three clock ticks away from its nearest sync pulse. The Event Voter
detects a majority when the number of agreeing inputs is at least (IEV + 1)/2 , where * is the ceiling
function and IEV is the cardinality of the set of input eligible voters. The Sync_Short pulses are used to
check for agreement between the inputs, such that the overlapping pulses correspond to inputs that are
within SP,P3IO,RCV of one another. Note the overlap of Sync_Short(2) and Sync_Short(3) in Figure 11.8.
The Sync_Long pulses are used to check agreement with the middle event. In Figure 11.8, the middle
event is the pulse in lane 2 as indicated by signal Internal_Accept. Agreement with this event is checked
by delaying that pulse by SP,P3IO,RCV and determining which Sync_Long pulses overlap with the delayed
Internal_Accept pulse. The Sync_Long pulses that do not overlap with the delayed Internal_Accept
indicate that the corresponding input events disagree with the middle event, as illustrated in Figure 11.8
for Sync_Long(1). Based on the current SUT and FTmr designs, disagreement with the middle event is
sufficient basis for an accusation against the corresponding PE.

Figure 11.8: Example sync pulses and corresponding Accept() Event Voter response for SP,P3IO,RCV = 2

Clk

Sync_Short(1)

Sync_Short(2)

Sync_Short(3)

Sync_Long(1)

Sync_Long(2)

Sync_Long(3)

Internal_Accept

Accept = Internal_Accept(t - SP,P3IO,RCV)

Invert(No_Majority) = Majority

To check for
agreeing majority

To check for
disgreement with
middle event

Disagree_Accept(1)

Disagree_Accept(2)

Disagree_Accept(3)

99

11.2.2. Function Monitor

For the current SUT, in which the application consists of a simple sequence of PE message broadcasts
on ROBUS, the main purpose of a Function Monitor (FMon) is to observe and report the results of
receptions at a particular PE. The SFT has one FMon per PE. At the beginning of every control cycle, an
FMon sends to its corresponding PE an SF_DATA TCM with the application data to be broadcast by that
PE in that control cycle. After sending the data TCM, the FMon switches to a reception mode and waits
for arrival of messages from the PE on what it received on ROBUS. The FMon forms and collects its
observations based on what it received during the control cycle and outputs the final results at the end of
the cycle. An FMon is active during a round only if its corresponding PE is active, as indicated by the
Enabled_Nodes runtime configuration parameter.

Figure 11.9 shows a block diagram of an FMon connected to PTLi to interact with PEi. The software
loads the sensors and commands data onto the buffers during the Function Setup mode. These buffers
have a circular operation mode that enables the FMon to reuse their content as needed during the round.
The FMon sends the SF_DATA TCM when the FTime reaches a predetermined value set at synthesis
time (i.e., the transmission is a time-triggered operation). To send the TCM (see Section 7.2.2 for
message format information), FMoni “prepends” a TCM tag word and a PE message header word before
sending the proper application data based on the application-level role played by PEi as indicated by the
App_Assignment configuration variable. The FMon then switches to receive mode for the remainder of
the control cycle. The Controller processes messages as they arrive (i.e., as an event-triggered operation)
irrespective of the fact that the PE normally sends time-triggered TCMs. Thus, time of arrival is not taken
into consideration in the classification of received messages. This simplifies the design and analysis of
the system, but it also reduces the error detection coverage at the FMon. Time-triggered reception based
on the PE communication schedule may be added as an enhancement in future version of the FMon. The
processing of messages and the definition of observations is described in Section 4.3.1.2 of this report.
The FMon continues operation normally as long as the FTmr remains in the Preservation mode. If the
FTmr transitions to the Initialization mode, the FMon discontinues its operation as soon as processing of
the current message is complete and remains idle until the FTmr recovers. The FMon does not generate
an output observation report for a control cycle unless the cycle continues uninterrupted to completion.
When the Round Controller issues a round-stop command, the SFT MC waits until the end of the current
control cycle before disabling the FMons.

Figure 11.9: Block Diagram for the ith Function Monitor

To
SFT MC

Application Data
TCM Tag: SF_DATA

To
PTL(i).Tx

Observations

Sns
1

Cmd
0

Sensors
Data
Buffer

PE Message Header

Commands
Data
Buffer

Controller
(Observation Classifier)

Tag Data Hdr 1 N

From
PTL(i).Rx

Enable
Ready

From
Software Interface

RC_Per_CC

To
Software
Interface

CC_Obs_Ready
CC_Observations

Enabled_Nodes
App_Assignment

Circular Buffers

FTime

From FTmr

100

11.3. Primary Fault-Injection Controller

The purpose of the Primary Fault Injection Controller (PFIC) is to create the fault injection messages
to manage the Local Fault Injectors within the SPIDER nodes. The PFIC requires status information
about the system from the Round Controller, software, and Function Timer. Each PTL for
communication with the PE-BIU nodes has one sender. Another sender is allocated for the CCL to pass
fault injection messages to the STC. The current implementation of the CFIMS uses the PFIC state
machine in Figure 11.10 which is controlled by the signals on the interfaces shown in Figure 11.11.

No FI

FI Control Data End

Wait for Round Enable

Start

Wait for FI Reset

Build and Send Reset Message

with Enabled Node Vector

Wait for FI Setup Enable

Check Msg Summary Send FI Setup Word

Wait for Function Enable

Send FI Execute Msg Wait for Execution Stop

Wait for Preservation Mode

Wait for Activation Send Time

Send Activation Msg

Wait for Deactivation Send Time

Send Deactivation Msg

Figure 11.10: Primary Fault Injection Controller State Machine

101

FIC_Msg_Length

Sum_Load

Payload_Load

Payload_Data_In

Sum_Full_Flag

Payload_Full_Flag

FI_Done

Round_Enable

FI_Reset

FI_Setup_Enable

Function_Enable

Enabled_Nodes

FI_Setup_Done

FI_Stop

Execution_Stop

SOFTWARE

S

R

FI_setup

_begin

S

R

FI_control_

data_end

S

R

FI_setup_

end

D

No_FI_

Flag

D D

RCI_Test

_Vector

RCI_All_

Disable

Exec_

Flag

Msg_

Length

FI_Setup

Exec

Data

Sum_

Data

FI_

Data

R

O

U

N

D

C

O

N

T

R

O

L

L

E

R

S

E

N

D

E

R

i

FUNCTION TIMER

ROBUS

_Time
RCI Mode

Reset

PRIMARY FAULT INJECTION CONTROLLER

Figure 11.11: Primary Fault Injection Controller Interface Architecture

Throughout the state machine, the PFIC performs error-checking as well as polls the signal used to
stop execution from the Round Controller. When an error is detected in the state machine, the PFIC stops
executing and requests an execution stop to the Round Controller through the FI_Stop signal. Then the
PFIC waits until the Execution_Stop has been set and cleared again before resetting the state machine.
Alternatively, when another module within the CFIMS requests to stop the test, the Execution_Stop
signal is set. The PFIC stops executing and resets the state machine once the signal from the Round
Controller to stop execution is cleared.

At the start of a test, the PFIC waits for the round to be enabled by the Round Controller. Once
received, the state machine clears the buffers and then waits for the fault injection reset signal also from
the Round Controller. The PFIC then builds a TCM with a FI_Reset tag (see Section 7). This message is
broadcast to the senders of all PTLs and the CCL. Within the reset message is the Node Enable Vector
(NEV). The NEV has the same format as the fault vectors (see Figure A.3). Each bit signifies whether
the node for that position is enabled (1) or not (0) for this particular test. The configuration section of the
Test Specification file contains the NEV (see Appendix A). After the message has been sent, the PFIC
waits for the start of the fault injection setup period triggered by the Round Controller. Then the software
is notified the fault injection setup has begun. The PFIC obtains the length of the fault injection setup
message from the Summary buffer. This length tells the state machine how many data words to pop off
of the Data buffer and give to all of the senders. When the Summary buffer is empty and the software has
sent notification that the fault injection setup is finished, then the PFIC waits for the Function_Enable
signal from the Round Controller. When the software specified the test to have no fault injections, then
the state machine waits until the end of the test for the Execution_Stop signal from the Round Controller.
Otherwise, the state machine builds and sends a broadcast fault injection execute message, which allows

102

the output of the Activation Multiplexer in the Local Fault Injectors to take function on the signal
susceptible to faults (see Figure 8.2). Then the PFIC waits for the Function Timer to be in preservation
mode (see Section 11.2.1) before the state machine moves on to send FIRE messages. Once the Function
Timer mode is set, the PFIC waits for the RCI specified by the Test Specification file and the time within
the ROBUS cycle to pop the FIRE message containing the fault vector off the buffers from the software
and give the message to the senders. When the software does not signal that fault injection is finished and
the FIRE message is sent, the PFIC waits for the RCI and the time within the ROBUS cycle to build and
send the FIRE message to disable the faults that were injected. This disable message is identical to the
FIRE message to activate the faults except that there is a data word of all zeros to deactivate the faults in
place of the fault vector. Once the disable message is sent, the state machine returns to waiting for the
time to activate the fault within the next control cycle. The process of waiting for the activation time of
the fault through sending the FIRE disable message is repeated for each control cycle until the software
signals that there is no more fault injection control data. If at this point the software buffers are empty,
then the PFIC signals the Round Controller that the fault injection is done and waits for the
Execution_Stop signal from the Round Controller. Then the PFIC waits for the Execution_Stop signal to
be cleared to return to the beginning of the state machine and wait for the test to be enabled.

11.4. PE-BIU State Monitor

The PE-BIU State Monitor (SMon) serves two main functions: to receive the state data messages sent
by the ENMs, and to determine the health status of individual PE-BIU nodes. The TCMs with
SM_PE_BIU tag contain snapshots of PE-BIU state variables sent by the ENMs when triggered by node-
local events. Once enabled, the SMon must monitor the arriving PTL traffic at the PTC and be ready to
accept these state TCMs whenever they arrive. The state data must then be processed and forwarded to
the Software Interface module for collection by the software. In addition, the SMon is required to assess
the health status of individual PE-BIU nodes to contribute to the overall SPIDER-level health assessment
and to provide the software (and the system user) with a simple health-based classification criterion for
sifting through the state records to find evidence of fault-injection effects.

Figure 11.12 shows a block diagram of the PE-BIU State Monitor. It consists of a set of Lane State
Monitors (LSM), with one dedicated monitor for every PE-BIU node, and a top-level Master Controller
(MC) responsible for overall coordination and interaction with the Round Controller (RCtlr). The MC
enables the LSMs when the RCtlr issues the round enable command. Only the LSMs assigned to active
PE-BIU nodes, as indicated by the Enabled_Nodes configuration parameter, are actually enabled to run
during the round. In addition, the SMon has the added feature of allowing the software to control which
LSMs can transfer their outputs to the Software Interface module. With this feature, the software has the
option of servicing the record buffers of a subset of LSMs and can prevent the other buffers from
overflowing. This capability may be useful in situations where there is limited available bandwidth
between the hardware processes and the software, thus requiring a selective approach for transferring
data.

103

Figure 11.12: Block Diagram for the PE-BIU State Monitor

Internally, an LSM consists of a State Message Receiver (SMR) that monitors the assigned PTL for
the arrival of SM_PE_BIU TCMs and a Node Condition Monitor (NCM) for assessing the health status of
the corresponding PE-BIU node. The SMR‟s output state data is the payload section of the TCM as

described in Section 7.4. The SMR can process back-to-back TCMs without an inter-message gap, which
is necessary given the event-triggered operation of the ENM at the PE-BIU node. The main component
of the NCM is the Node Health Monitor, which uses the state-based algorithm illustrated in Figure 11.13
to assess the status of the PE-BIU node. A Health Record contains a select subset of the variables in a
state-data record referred to as the health indicators. For the current version of the system, the health
indicators include the following.

 Current RPP Major Mode: Normally, the RPP operates in the Clique Preservation Mode (CPM).
Execution in any other mode is due to a power-on reset or a reset triggered by the detection of a
local fault or a bus failure condition (see [Torres05A]).

 RPP accusations against nodes of the opposite kind: Accusations against opposite kind nodes (i.e.,
RMUs in the case of a monitored BIU RPP) are due to detected errors in the direct communication
links with those nodes, or due to errors in the relaying of messages as detected by the RPP suspicion
mechanism (see [Torres05A]). In general, these accusations are an indication that the accused node
is faulty, the accusing node is faulty, or both nodes are faulty. This can also happen if the fault
assumptions of the ROBUS fault-tolerance mechanisms have been violated.

 RPP failure signal: This is a direct indication that the RPP has detected a local node failure or a
ROBUS failure.

From Round
Controller

From PTL
Receivers(1..N)

Enabled_Nodes

Master
Controller

State Message
Receiver

Health Record
Generator

Reference
Health Record

Generator

=

Node
Condition
Monitor Node Health

Monitor

 Record DII
Timer

 Health Stability
Timer

Run_Enable

Lane State Monitor

Node_Condition(i)

State_Data(i) PTL.Rx(i)

Enabled_Nodes

Ready(1..N)

Round Control

From Software
Interface

 Output_Enable(1..N)

State_Data(1..N)

Node_Condition(1..N)

Lane_Run_Enable(1..N) To Software
Interface

To
Software Interface

and
SPIDER Health

Monitor

104

Figure 11.13: Transition diagram for state-based node health assessment

In a Reference Health Record for good health, the RPP‟s major mode is CPM, none of the enabled

RMUs (as per the Enabled_Nodes parameter) are accused, and there is no failure reported by the RPP. As
shown in Figure 11.13, after a reset, the initial assessed health state is Disabled. When a new health
record arrives, irrespective of its content, the health state transitions from Disabled to Recovering. The
node condition remains Recovering until consecutive good health records are received for a sufficiently
long time. This is consistent with the assumption that the injected faults are always transient. The
definition of the time duration for a stable good-health assessment to transition from Recovering to
Restored state is a synthesis configuration parameter set on the basis on some diagnostic policy or as a
result of fault effects analyses taking into consideration the assumed duration of fault-causing
disturbances. In the current implementation, this parameter is arbitrarily set to two consecutive good-
health records. The assessed health state transitions immediately from Restored back to Recovering
whenever anything other than a good-health record is received or when the time between new health
records (i.e., the data introduction interval, DII) exceeds an expected maximum value determined based
on the duration of a ROBUS cycle.

When the Round Controller issues a command to stop execution of the round, the SMon MC clears the
Run_Enable control signals and waits for all the LSMs to report that they are Ready to stop. The LSMs
assert this signal only when they are idling and waiting for the arrival of a state TCM (i.e., the LSMs do
not halt their operation in the middle of processing a TCM).

11.5. SPIDER Health Monitor

The purpose of this module is to support the Round Controller by constantly monitoring the SUT and
reporting when there are relevant changes in its status. The SPIDER Health Monitor (HMon) has three
phases of operation during a round. The first phase happens during the SPIDER Initialization mode,
where the HMon monitors the health of the PE-BIU nodes as reported by the SMon Node Condition
Monitors to detect when all the enabled nodes have reached the Restored state. This is indicative that the
SUT initialization process is complete and the Round Controller can continue on to the next setup mode.
The Round Controller does a timeout check on the SUT completing the initialization process and triggers
a round stop if the maximum expected delay is exceeded.

The second phase of HMon operation covers the FI Setup and Function Setup major modes. As no
faults are injected during these modes, it is expected that the Node Condition Monitors report that all the
enabled nodes remain in the Restored state. If the condition of at least one node changes from Restored
state, the HMon reports a failure to the Round Controller, which then initiates a round stop.

The third HMon phase covers the Function Execution mode. Here, the HMon monitors the operation

Disabled

Recovering

Restored

New Health Record Update

Reset

Poor Health
Indicators

Stable Good
Health Indicators

105

of the FTmr as an indirect means to assess the status of the SUT. After the Round Controller issues the
Function_Enable command to begin the execution, the HMon enters a wait state to allow time for the
FTmr to transition from Initialization to Preservation mode. The HMon declares a failure if the FTmr has
not completed the transition within the allowed time. Otherwise, the HMon monitors the FTmr mode to
detect transitions back to the Initialization mode, which signal the occurrence of an SUT failure. If the
FTmr mode does not return to Preservation within a predetermined time, the HMon reacts by declaring a
failure because the assumptions about the characteristics of faults experienced by the SUT have been
violated.

The timeout delays used in the HMon are derived from assumptions about the faults and the dynamics
of system recovery. All of these delays are synthesis parameters.

The implementation of the HMon consists of a state machine with the functionality described above.
The HMon has no other significant components.

11.6. Test Control Links

The Test Control Links of the PTC include the CCL for direct communication with the STC and the
Primary Test Links for direct interaction with the PE-BIU nodes. The Packet Mode Communication
Units (PMCUs) described in Section 6.2 are used to implement these links. In addition, the transmitters
for the CCL and PTLs are coupled to multiple-access controllers (see Section 6.3) to arbitrate access to
the links by multiple PTC hardware processes. The sequential design of the CCP (see Section 5) ensures
that during the system configuration phase of a round there are never access collisions (i.e., instances of
multiple senders simultaneously attempting to access a transmitter). For the execution phase of a round,
the FTmr, FMon, and Fault Injection Controller (FIC) processes access the CCL and PTLs only on
FTime-referenced triggers selected to ensure that the transmission attempts of these processes never
collide. A time-triggered access pattern eliminates the possibility of TCL access interference between
processes during normal operation.

The use of the priority-based access controllers at the TCL transmitters ensures that there is a
predictable access control mechanism to handle event-triggered accesses and ensure that these
transactions are completed without messages being dropped under most multiple-access scenarios. This
simple, fixed-priority-based arbitration has the vulnerability of allowing possible scenarios of high
priority sending processes indefinitely blocking lower priority processes. The PTC processes should be
designed to prevent such scenarios, or to detect them and take appropriate action in case of message loss,
potentially including stopping the round and reporting the incident.

At the CCL, the transmitter access ports are assigned in the following decreasing priority sequence:
Round Controller, FTmr, and FIC. During normal operation in the setup and execution phases of a round,
none of these process attempt to access the CCL transmitter simultaneously. The Round Controller is
given highest priority because during the Function Execution phase it accesses the CCL only to transmit
an RC_STOP message to end a round. The transmission of a FTmr or FIC message after an RC_STOP is
inconsequential. In the execution phase, the FTmr‟s SYNC_ROUND_TIME messages carry time-critical
information that must have a known bounded communication delay with the least possible delay
uncertainty. The FIC is allowed to access the CCL whenever the Round Controller and FTmr are not
accessing the link. The FIC should be designed to ensure that there is never a collision between FTmr
and FIC messages.

At the PTLs, the assigned access priority, in decreasing order, is: FTmr, FIC, and FMon. The FTmr is

106

given highest priority because of the timing-critical nature of its messages. The FIC messages are
normally very short and generally require higher propagation precision than FMon messages. The FMons
operate on a control cycle time scale and have longer and less time-sensitive messages.

11.7. Software Interface

The purpose of the Software Interface module is to serve as a communication bridge translating the
format and timing of control, status, and data signals between the PTC functional processes implemented
as custom hardware circuits running on the FPGA and the functional processes implemented as code
segments on a software program running on the CPU. On the RSPP1 nodes, the communication link
between the FPGA and the CPU is an ISA bus (see Section 4.2.1). Data transfers on the bus are initiated
by the CPU, with the timing of the transactions being influenced by the application program, the
operating system, and the hardware layer of the CPU board. The transactions on the bus consist of 16-bit
read or write accesses. The FPGA board is configured with an ISA interface of sixteen 16-bit read and
write ports. All communication between the PTC hardware and software processes is constrained to
happen through this interface. The Software Interface module handles the conversion between the custom
data types in the hardware and the fixed-width read and write ports of the ISA interface.

Figure 11.14 shows a block diagram for the Software Interface module. This module consists of two
main sections: the multiplexing-demultiplexing (mux-demux) interface (to the right) between the ISA and
the non-multiplexed read and write ports, and the functional interfaces (to the left) that interact directly
with other PTC hardware processes. The mux-demux ISA Interface is a generic module developed in a
previous project. The functional interfaces are custom modules that realize an agreed-upon detailed
interface between the hardware and software processes of the PTC.

The Round Controller Functional Interface handles the direct interaction between the Round
Controller and the software processes for the implementation of the CCP, as described in Section 5.

The Round Timer Functional Interface is a simple buffer for records of significant events in the
evolution of the RTmr value during the round. The goal is to faithfully regenerate the RTmr timeline
during post-test processing. This is accomplished by recording the value of the IT and IC elements of the
RTmr at the end of every time interval when the IT holds the duration of the interval and just before the
IC is incremented. The purpose of the RTmr Record Writer is to package the data into records with a
particular format for use by the software. The configured depth of the buffer is dependent on the
maximum record input rate (which is determined by the ROBUS cycle duration) and the bound on the
longest time interval that records will accumulate in the buffer while the software is busy tending to other
tasks. It is assumed that during a read burst the software is capable of reading the record buffer much
faster than the input rate. The Round Time is shared with other functional interface modules for use as
the record time tag.

The Fault Injection Controller Functional Interface consists of Control and Status Interface logic for
transferring data and signals. All the buffering required for setup and injection of faults is done locally at
the FIC process (see Section 11.3).

As in the case for RTmr, the Functional Timer (FTmr) Functional Interface consists of a simple buffer
to record significant events in the FTime. In addition to allowing, a recreation of the FTime timeline
during the round, the FTmr state information included in the records provides insight into the status of the
SUT and the effects of injected faults. An FTmr record is created when the FTime reaches the end of a
ROBUS cycle or when the operational mode of the FTmr transitions from Preservation to Initialization.

107

Both of the FMon and SMon functional interface modules contain one record buffer per PE-BIU node.
The interface modules also contain additional control and status logic to setup and manage the operation
of these hardware processes.

Figure 11.14: Block diagram for the PTC Software Interface module

ISA
Bus

From State Monitor:
PE-BIU(1..N) State, Node
Condition(1..N) and SMon
Output_Enable variable

Time Tag
(RTime)

To Round Controller:
Round_Index, Enabled_Nodes,
and other round control signals

To CPU of
PTC Node

Read-and-Write
Mux-Demux

ISA-Bus Interface

RCtlr Functional Interface

Control and
Status Interface

RTmr Functional Interface

RTmr
Record Writer Buffer

FTmr Functional Interface

 Buffer FMon
Record Writer

 Buffer
FMon

Record Writer

Control and
Status Interface

SFT and FMon Functional Interface

Control and
Status Interface

SMon Functional Interface

 Buffer
SMon

Record Writer

FIC Functional Interface

Control and
Status Interface

From Round Timer:
Round Time

To Fault Injection Controller:
Injection setup and test vectors

From Funtion Timer:
FTmr state

To SFT and Funtion Monitor:
Function setup, application
data, and function execution
observations

Multiplexed port for
read and write

Non-multiplexed ports:
16 read and 16 write ports

108

12. Hardware Processes of the Secondary Test Controller

The main reason for having multiple test controllers is to support SUT configurations with a total
number of nodes larger than the number of custom communication ports available in one RSPP node
(currently, only eight ports). As currently configured, the PTC handles all direct communication with the
PE-BIU nodes, and the STC interacts directly with the RMUs. At a higher level, the PTC and STC
coordinate their actions with the goal of behaving as a single large controller from the viewpoint of the
SUT.

Figure 12.1: Block diagram for the Hardware Processes of the Secondary Test Controller

Figure 12.1 shows a block diagram for the STC hardware processes. Compared to the PTC as
described in Section 11, the STC has a much simpler design as there are no processes to interact with PE-
level service protocols and the SUT application. The STC Round Controller (RCtlr) has essentially the
same design as the PTC RCtlr, but it is slightly simpler as it interacts with fewer processes. The STC
RTmr also behaves similarly to the one at the PTC, with the exception that during the Function Execution
mode of the CCP (see Section 5), it synchronizes to the FTmr by means of the SYNC_ROUND_TIME
TCMs (i.e., the “Sync” messages) received from the FTmr over the CCL. The STC Fault Injection
Controller (FIC) is configured as a simple function for relaying Primary Fault Injection Controller (PFIC)
messages received over the CCL and sent out to the RMUs on the Secondary Test Links (STLs). The
RMU State Monitor (SMon) receives state messages sent by the ENMs at the RMUs and forwards their
content to the Software Interface, where they are buffered until the software can read them. The SMon
also contains Node Condition Monitors (NCMs) to assess the health status of individual RMU nodes.
These node health assessments are sent to the SPIDER Health Monitor process, whose function is to
support the RCtlr by monitoring the health of the SUT.

The following subsections provide additional information about the STC hardware processes. The
descriptions are kept brief as most of the necessary insight has already been given with the presentation of
the PTC hardware processes in Section 11.

CCP
Sync

ENM(1..M)
Messages

To
RMU (1..M)

RMU
State

Monitor
SMon SMon

SUT
Condition
Classifier

SPIDER
Health

Monitor
RMU(1..M)
Node Condition

FI Setup

Round Time

Ready
Failure

RMU(1..M) State

CCP Status

Software
Interface

Record Buffer

Record Buffers

Time Tag
(RTime)

Ready
Failure

To STC
Software
Processes

CCP Setup

CCL

PMCU

STL(1..M)

PMCU PMCU PMCU

SMon
(1..M)

To
PTC

FI Msgs

RTmr

Master
Controller

Round
Controller

Fault
Injection

Controller
 Message

Relay

109

12.1. STC Round Controller

The operation of the STC RCtlr is similar to the operation of the PTC RCTlr. The differences are
reflected in the design of the CCP as described in Section 5. A block diagram of the STC RCtlr is shown
in Figure 12.2. Structurally, the STC RCtlr and PTC RCtlr (see Figure 11.2) are identical. The only
significant difference is that the RTmr accepts Sync messages received over the CCL from the FTmr.
These messages are used to synchronize the RTime during the Function Execution mode of the CCP.
Additional information about the RCtlr can be found in Section 11.1.

Figure 12.2: Block diagram for the STC Round Controller

12.2. Secondary Fault-Injection Controller

The purpose of the Secondary Fault Injection Controller (SFIC) is to pass messages from the PFIC to
the RMUs. A PFIC sender connected to the CCL sends messages to the STC. The SFIC monitors the
incoming messages on the CCL and forwards the fault injection messages on to the STLs for the RMUs.
The senders in the SFIC are only connected to the STLs because the PFIC does not need any information
from the SFIC through the CCL. The SFIC also has the responsibility of updating the status of the fault
injection to the Round Controller and software. The two independent tasks of the SFIC led to the design
of two separate, concurrent state machine processes. The Relay State Machine handles the forwarding of
messages to the RMUs, while the Control Signal State Machine handles the control of the fault injection
by interfacing with the Round Controller and software. Similar to the PFIC, both of these state machines
perform error-checking, and the Control Signal State Machine polls the signal used to stop execution from
the Round Controller through the FI_Stop signal shown in Figure 12.3.

Round Time = (IT, IC)

CCL
Sender

Buffer

CCL
Receiver

Buffer

Round
Timer

 Interval
Timer

 Interval
Counter

 Priority
Encoder Output

Resolver Initiator Stop
Trigger Detector

 Received-Stop
Detector

Stop Trigger Monitor

Stop_As_Initiator
Stop_As_Follower
Stop_Condition

To CCL
PMCU

RTmr_Enable IT_Reset

For Sync messages

Local Process Control Interface

CCP Setup
CCP Status

SPIDER_Ready
SPIDER_Failure

Master
Controller

 Major Mode

Msg_Seq_Error

To Software

From HMon

Enabled_Nodes

 Enabled_Nodes
 Round_Index

110

FIC_Msg_Length

Sum_Load

Payload_Load

Payload_Data_In

Sum_Full_Flag

Payload_Full_Flag

FI_Done

Round_Enable

FI_Reset

FI_Setup_Enable

Function_Enable

Enabled_Nodes

FI_Setup_Done

FI_Stop

Execution_Stop

SOFTWARE

S

R

FI_setup

_begin

S

R

FI_control_

data_end

S

R

FI_setup_

end

D

No_FI_

Flag

D D

RCI_Test

_Vector

RCI_All_

Disable

R

O

U

N

D

C

O

N

T

R

O

L

L

E

R

S

E

N

D

E

R

i

CCL Receiver

Reset
Buff_

Read

Msg_

Available

Buff_

BoM

Buff_

EoM

Buff_

Data

Buff_

Overflow

SECONDARY FAULT INJECTION

CONTROLLER

Figure 12.3: Secondary Fault Injection Controller Interface Architecture

Wait for CCL Msg

Start

Send Data Word of Msg to STLs

Send Length of Msg in Summary

End of Msg

Figure 12.4: Secondary Fault Injection Controller Relay State Machine

The Relay State Machine, shown in Figure 12.4, monitors the CCL for messages from the PFIC that

need to be forwarded to the RMUs. When a CCL message is available, the state machine sends each data
word of the message to the STLs via the Payload_Data_In signal of each Sender i. It specifies that it is
part of the message by setting the sender Payload_Load signal. Once the entire message has been sent,
the state machine sends the summary data word containing the length of the message that was just sent.
This time the Sum_Load signal is set instead of the Payload_Load. After the summary is sent, the Relay

111

State Machine returns to wait for another CCL message. This process repeats for all CCL messages
unless there is an error.

Throughout the execution of a round, the Control Signal State Machine, shown in Figure 12.5, handles
all of the control signals used by the PFIC in the interfaces with the software and Round Controller. At
the beginning of a round, the state machine waits for the Round Enable signal to be set by the Round
Controller before it resets its buffers. Then it waits for the FI_Reset and the FI_Setup_Enable signals
from the Round Controller to be set before it sets the FI_setup_begin signal to the software. Once the
software completes the fault injection setup phase, it sets the FI_setup_end flag. When the PFIC state
machine sees FI_setup_end set, it sends the FI_Setup_Done signal to the Round Controller. After the
Function_Enable is set by the Round Controller, the Control Signal State Machine waits for the stop
condition from the Execution_Stop signal of the Round Controller to become true before it sets up for the
next round.

Wait for Round Enable to

Reset Buffers

Start

Wait for FI Reset

Wait for FI Setup Enable to

send FI Setup Begin

Wait for FI Setup End to

send FI Setup Done

Wait for Function Enable

Wait for Round Complete to

set FI Stop

Figure 12.5: Secondary Fault Injection Controller Control Signal State Machine

12.3. RMU State Monitor

The function and implementation of the RMU SMon are similar to the ones for the PE-BIU SMon at
the PTC. The SMon is responsible for receiving the SM_RMU TCMs from the RMU ENMs, forwarding
the state data to the software interface, and monitoring the health of the RMU nodes. Additional relevant
information about the operation and implementation of this module can be found with the description of
the PTC‟s PE-BIU SMon in Section 11.4.

112

12.4. Health Monitor

The STC Health Monitor (HMon) covers two phases of operation in a round: SPIDER initialization
and system setup. In the SPIDER Initialization phase, the HMon signals to the RCtlr that SPIDER is
ready when the SMon reports that all the RMU nodes are in the Restored state. In the next phase of
operation, which continues until the CCP enters the Function Execution mode, the HMon reports an SUT
failure if the SMon reports that the health condition of at least one of the RMUs has transitioned back to
the Recovering state, even if it did so momentarily. The STC HMon is not active in the Function
Execution mode as it does not have access to any additional relevant SUT information beyond what the
PTC monitors.

As is the case for the PTC HMon, the implementation of the STC HMon consists of a single state
machine with no other major structural elements.

12.5. Test Control Links

The STC TCLs have similar desired access attributes as the PTC TCLs. However, the simpler design
of the STC simplifies the TCL access problem. Currently, the RCtlr and the FIC are connected to the
CCL transmitter, but only the RCtlr is actually sending any messages on the link. The RCtlr is given
higher access priority than the FIC as the only time a simultaneous access may be attempted is on the
transmission of an RC_STOP message by the RCtlr, which makes additional FIC messages irrelevant as
the RC_STOP message is only sent to finish a round. The connection by the FIC is a provision for future
expanded fault-injection capabilities requiring message flow from the STC to the PTC. At the STL, only
the FIC is connected to the transmitter.

Additional information about interfacing to the TCLs can be found in Section 11.6.

12.6. Software Interface

The function of the STC Software Interface module is a subset of the function by the PTC Software
Interface. The main difference is the absence of the SFT functional interfaces for the FTmr and FMons.
Figure 12.6 shows a block diagram for the STC Software Interface. Additional information about the
component modules can be found in Section 11.7.

113

Figure 12.6: Block diagram for the STC Software Interface

ISA
Bus

From State Monitor:
RMU(1..M) State, Node
Condition(1..M) and SMon
Output_Enable variable

Time Tag
(RTime)

To Round Controller:
Round_Index, Enabled_Nodes,
and other round control signals

To CPU of
STC Node

Read-and-Write
Mux-Demux

ISA-Bus Interface

RCtlr Functional Interface

Control and
Status Interface

RTmr Functional Interface

RTmr
Record Writer Buffer

Control and
Status Interface

SMon Functional Interface

 Buffer
SMon

Record Writer

FIC Functional Interface

Control and
Status Interface

From Round Timer:
Round Time

To Fault Injection Controller:
Injection setup and test vectors

Multiplexed port for
read and write

Non-multiplexed ports:
16 read and 16 write ports

114

13. Test Control Software

The Test Control Software consists of several programs implemented in C to provide an interface
between the test operator and the hardware of the SUT. The software communicates with the hardware
via the Software Interface module of each Test Controller described in sections 11.7 and 12.6. Compared
to hardware processes, the software processes have a much more coarse timing. The Software Interface
translates the format and timing of control, status, and data signals between the software and the RCtlr,
RTmr, FIC, FTmr, SFT, FMon, and SMon of the PTC and STC hardware. Each Test Controller (PTC
and STC) contains its own software program running on separate CPUs as shown in Figure 13.1. These
two Test Execution Software programs have separate but closely related functional processes because of
the different roles the PTC and STC have in the system.

SPIDER

PTC

STCSTC

PTC

Storage

Device

Fiber Optic

Cables

Ethernet

Ethernet

Fiber Optic

Cables

Test Execution Data Management

Figure 13.1: Separation of the Test Execution and Data Management Software

The Test Specification file (see Appendix A) contains a setup and an execution section. The setup
section consists of system configuration parameters for the SUT and the faults to be injected, whereas the
execution section consists of the list of fault vectors to be injected on the control cycles. Since the PTC
hardware forwards setup messages to the STC via the CCL, only the PTC Test Execution Software has
the Configuration Management process to decipher the Test Specification file setup section and pass the
configuration setup to the hardware. During the test, the fault vectors in the execution section of the Test
Specification file are supplied by the software to the hardware. Only the PTC Test Execution Software
needs to read and send the fault vectors because of the automatic forwarding built into the PTC hardware.
Therefore, only the PTC is required to have any interaction with the Test Specification file. However,
both the PTC and STC Test Execution Software programs have the responsibility of collecting execution
data for post-test analysis, providing real-time monitoring for the test operators, and starting and stopping
a round as determined by the test operator.

13.1. Test Execution and Data Management

The amount of I/O data is directly proportional to the number of control cycles, i.e., duration of a
round. Data management is needed to handle the considerable amount of I/O data for typical test
durations. Pre-test data is generated before the round execution, while observation data is generated
during the round execution. The Test Specification file contains all of the pre-test data including data to

115

establish the setup configuration of the system and one 16-bit fault vector for each control cycle of the
round. The observation data includes all of the data described in Appendix B. The condition of the
system that caused the round to stop and error reports for the round are recorded in the test log. The
RTmrs, FTmr, FMons and SMons report their respective observations to the software. In order for the
observation data to be available post-test, it is written to files for permanent storage and future analysis.

Since the PTC and STC Test Execution Software programs are located on nodes with a PC/104 stack
described in Section 4.2, the RAM and flash memory of the node are not adequate for storage of the data.
The nodes do not have enough room to store multiple test rounds of output files in their flash memory.
Periodically, the output files would have to be transferred to a permanent storage device to allow space in
the flash for new rounds. The constant rewriting to the same location in flash memory on the nodes could
potentially damage the memory device. To prevent rewriting to a file on the nodes, the data is stored in
RAM on the nodes during the test and then transferred to the permanent storage device after the execution
phase of the round. The storage device requires a Data Management Software to read and write the Test
Specification file and observation files, respectively. Data is passed between the Data Management
Software and the Test Execution Software, as illustrated in Figure 13.1, using Ethernet sockets for the
communication channels. Sections 13.2 and 13.3 describe the high level Data Management and Test
Execution Software, respectively, while the detailed pseudo-code of all of the software is found in
Appendix C.

During the test, pre-test data is read from the input Test Specification file and observation data is
written to an output file for post-test analysis. File I/O is known to take a significant amount of time. To
avoid time-critical operations being delayed because of file I/O, the Test Control Software does not
perform any file interaction during the execution of a round. The software reads the entire Test
Specification file prior to starting a round and stores the contents in volatile memory (RAM). During the
round, the software stores the data it gathers from the hardware in RAM. A key benefit of using the
software for the data management is that it typically has access to a larger amount of RAM. At the end of
the test execution, the software transfers the observation data from RAM to files on storage devices.

The modules in Figure 13.1 are built on a variety of devices. As described in Section 4.3, each
functional PE-BIU and RMU node in the SPIDER module of the diagram run on separate RSPP physical
nodes. The functionality of the SPIDER nodes is located on the FPGA board of the PC/104 stack (see
Section 4.2.2). The PTC and STC are located on separate RSPP physical nodes with both hardware-
implemented functions on the FPGA and the Test Execution Software on the processor. Since the RSPP
nodes have a White Dwarf Linux operating system, the Test Execution Software is compiled with a Linux
gcc compiler. The PTC and STC nodes are connected to a separate desktop PC (Personal Computer) used
for data management. The Data Management Software is compiled on the PC with a Windows operating
system using a gcc compiler on the Cygwin Linux-like environment. The shared PC runs the PTC and
STC Data Management Software processes during a test. The hard drive of the data management PC acts
as the storage device during a test. The operator copies the files periodically to an external hard drive
connected to the PC that is used as a backup storage device.

The data format for socket communication and permanent storage influences the speed of transmission
and size of the data on the storage device, respectively. All observation data, with the exception of the
test log, is stored in RAM as 16-bit unsigned short integers. If the observation data was converted to text
format and then sent to the Data Management software, each character would take 8 bits, which would be
a total of 136 bits for the 16-bit word and a newline character. Therefore, the bulk of the observation data
is sent using the unsigned short integer format, which only requires 16 bits for each data entry. This is
about 8.5 times faster than transferring in text format. Initially, the entries of the observation data were

116

stored to text files in 16-bit binary format. However, the amount of space required on the hard drive for a
binary file format using unsigned short integers is much less than using the text file version. Similar to
the transmission, the observation data storage of the Data Management software uses binary file types
rather than text for the hardware observation files. Since less space is required for the binary format, the
files are more compact. A complication with the binary format for the files is that it is not readable;
however, the binary files containing the observation data can be post-processed in various formats to
make the analysis simple.

The PTC and STC software processes provide the high level test execution and data management of
the CFIMS. Figure 13.2 depicts the sequence of data transferred between the software processes in
relation to the execution of a round. The repository containing the storage device with all the I/O data
uses a Windows XP operating system. The PTC and STC Data Management Software programs are a
part of the data repository and are located on the same machine as the storage device. The PTC program
deciphers the Test Specification file and sends the runtime parameters and fault vectors via Ethernet to the
Test Execution Software located in the PTC node. The PTC Test Execution Software configures the
hardware. The Test Execution Software associated with both test controllers receives the observation
data from the hardware and stores it in RAM until the end of the round. Then the corresponding Data
Management Software writes the received observation to the storage device.

PTC Data

Management

PTC Test

Execution

Execute Round Execute Round

Test Spec

characters

Fault Vectors

Test Log

characters

FMon Values

FTmr Values

RTmr Values

SMon Values

Test Log

characters

RTmr Values

SMon Values

Time

STC Data

Management

STC Test

Execution

Figure 13.2: Test Execution and Data Management Software Data Transfer

Each block of Figure 13.2 represents the data transmission protocol described in Figure 13.3. Each
horizontal arrow in Figure 13.2 represents the transmission of data from the transmit side to the receive
side of Figure 13.3. The data transmission protocol was developed to ensure no data is lost during the
socket transfer. Socket transfer has built-in CRCs for error detection in transmission. Therefore, the
protocol only needs to check for the omission of data being transferred, or when data is dropped during
the transmission. During the exchange of setup information at the beginning of a round, the roles of the
Transmitter and Receiver are associated with the Data Management and Test Execution, respectively.

117

Once the round of execution is over, the roles are reversed to transfer the results. Before sending the data,
the Transmitter counts how many data words will be sent and transmits this count, called the Tx Count, to
the Receiver. Then the Transmitter sends each data entry and waits to receive a count response from the
Receiver. The Receiver counts the data entries as they arrive in a Rx Count variable. Once the Rx Count
at the Receiver matches the Tx Count, the Receiver sends the Rx Count to the Transmitter. The
transmitter then compares the Tx Count and the Rx Count. If they are equal, the data transfer is
considered a success. Otherwise, the Transmitter will consider the transfer a failure. If a failure occurs in
the transfer of Test Specification file data, the round will not execute and an error is reported. If a failure
occurs in the transfer of observation data, the data on the transmit side is stored in a file to be transferred
post-test. Each transmission has a timeout associated with it at the receiving end of the arrow. If the data
does not arrive within the allotted time-window, the transfer is considered a failure and is treated the same
way as the Tx Count not equaling the Rx Count above. The duration of the timeouts of each data word
are one second because the data should be transmitted back-to-back. The timeout duration for the Rx
Count is also relatively short because the Receiver will send it immediately after receiving the last data
word. However, the duration of the Tx Count timeout will vary depending on what data is to be
transferred. For example, the PTC Data Management Software will wait indefinitely for the test log
character Tx Count because the duration of the round may vary.

Transmitter Receiver

Tx Count

Data 1

Rx Count

Time

Data 2

Data 3

Data i

.

.

.

.

.

.

.

.

.

Timeout_Data_Word

Timeout_Data_Word

Timeout_Data_Word

Timeout_Rx_Count

Data i-1

Timeout_Data_Word

Check

Tx_Count

=?

Rx_Count

Timeout_Tx_Count

Figure 13.3: Test Execution and Data Management Software Data Transmission Protocol

13.2. Data Management Software

The Data Management Software transmits the configuration and test flow control input data and stores
the observation data results for analysis. The PTC and STC follow the same high level program flow of
the Data Management Software as shown in Figure 13.4. At the start of the program, the system is
initialized by setting up the communication socket with the Test Execution Software located on the
physical PTC and STC nodes. The initialization phase on the PTC Data Management Software also
includes reading the Test Specification file and sending the contents to the PTC Test Execution Software.
Then the PTC and STC Data Management Software monitor the socket waiting for data from the Test

118

Execution Software. Since the entire round duration must be completed before the Test Execution
Software sends any observation data over the socket, the Data Management Software does not have a
timeout for the first piece of observation data. When data is received at the Data Management Software,
it is written to the appropriate observation file (see Appendix B for the observation data). Figure 13.2
shows that the transmission of the PTC observation data always starts with the Test Log data followed by
the FMon, FTmr, RTmr, and SMon data. The STC observation data follows the same order as the PTC
without the FMon and FTmr data. If there is another block of observation data to be received, the
program returns to monitoring the socket for that data. Once all of the observation data has been received
and written to file, the Data Management Software closes all of the files and the socket before ending the
program.

Enter

Program

F

T

F

T

Initialize the

system

Close socket

and files

Exit

Program

Output Received from

Test Execution?

Write Output to

File

More Output

Data?

Figure 13.4: PTC and STC Data Management Software High Level Program Flow

13.3. Test Execution Software

The Test Execution Software interacts with the Data Management Software for data storage and with
the hardware of the CFIMS to control the test execution. The PTC and STC follow the same high level
program flow of the Test Execution Software as shown in Figure 13.5. At the beginning of the program,
the system is initialized. The FPGA is configured to use the appropriate hardware file for either the PTC
or the STC. The system is reset to clear out any uninitialized data before the start of the test. The socket
to the Data Management Software is configured. The PTC Test Execution Software also receives the
setup and execution sections of the Test Specification file to configure the system from the socket to the
Data Management Software. The monitor of both the PTC and STC Test Execution Software programs is
set up with the initial values to give the operator insight into the test. After the hardware system is reset,

119

it remains idle until the Round_Begin signal is sent from the Test Execution Software. The software
waits for the operator to press a key on both controllers signaling the start of a round. Once a key is
pressed, the software sends the Round_Begin signal to the hardware, which gives the hardware control of
the round while the software mainly tracks the progress of the hardware round. The Test Execution
software enters the main loop where it follows the hardware execution waiting for the declaration that the
round is finished. Throughout the round, when the Data Collection processes of the Test Execution
Software see there is available observation data from the hardware, the software gathers the observations
about the operation of the SUT and the CFIMS and stores the data in RAM until the end of the round. At
the end of the round, all of the observation data stored in RAM is then transferred to the Data
Management Software, where the data is written to file for post-test analysis.

If there is no available observation data during iterations of the Test Execution Software main loop,
then it checks a half-second timer. Every half second, the software alternates between checking the
keyboard for a manual stop by the operator and updating the status information on the screen of the
monitor. Thus, each task is done once per second during a round. If there is no data available and it is
not time for the screen or keyboard to be updated, the software will execute the CCP State Machine,
which coordinates the interaction of the hardware and software during the setup and execution of a round.
The CCP State Machine for the PTC is more complex than that of the STC since the STC has a much
more passive role in round execution.

Enter

Program

Initialize the System and

Wait for Key Press

Send

Round_Begin

CCP_Round

_Finished?

Get Data from

Hardware

Output Data

Available?

F

T

T

F

Half

Second?

Timed

Task?

Update

Screen

Screen

Check

Keyboard

Keyboard

CCP State

Machine

Send Data to

Repository

Exit

Program

T

F

Figure 13.5: PTC and STC Test Execution Software High Level Program Flow

120

Figure 13.6 illustrates the CCP State Machine for the PTC. The execution of the state machine
follows closely the event sequences of Section 5.1. All of the states except the final
FINISH_UP_ROUND state check for a stop condition (see Figure 13.7) before they execute. If the
hardware is stopped in any CCP state, the state machine transitions to the FINISH_UP_ROUND state
where the final observations are recorded and the round ends. If there was an overflow in the observation
data being received from the hardware or the operator presses a key, a signal is sent to the hardware
signifying the end of the round and the state machine transitions to the WAIT_HW_ROUND_STOP state.

Enter CCP

State Machine

WAIT_SPIDER_READY

Round_Enable

WAIT_FI_SETUP_END

SPIDER_Ready

FI_Setup_End

WAIT_FN_SETUP_BEGIN
SEND_DATA_FI_SETUP

WAIT_ROUND_ENABLE

Fault OR Activation Not End of Line

SEND_SUMMARY_FI_SETUP
LOAD Parameter States

Function_Setup_Begin

PRELOAD_FAULT_VECTORS

SEND_FIRE_IDWAIT_FN_ENABLE

Otherwise

(Not Preload Total) AND (Not End of File)

SEND_DATA_FAULTLOAD

SEND_SUMMARY_FAULTLOAD
Preloading

SEND _FAULTLOAD

Otherwise
Otherwise

WAIT_HW_ROUND_STOP

End of File

Preload

End of File
Otherwise

FINISH_UP_ROUND

Round Stop

Exit CCP State

Machine

Figure 13.6: PTC Test Execution Software CCP State Machine

121

Hardware

Stopped?

T

Overflow or

Key Pressed?

F

Set Round Stop

in Hardware

FINISH_UP_

ROUND

WAIT_HW_ROUND

_STOP

T

Exit to State

Machine

Enter Check

for Stop

Figure 13.7: PTC and STC Test Execution Software Check for Stop Subset of CCP State Machine

Continuing in Figure 13.6, when none of the above stop conditions have occurred, the CCP state
machine will continue normal operation of the states beginning with the WAIT_ROUND_ENABLE
state. The software waits for the round to be enabled by the hardware in this state and then waits for the
round controller to signal that SPIDER has completed initialization and is ready for operation in the
WAIT_SPIDER_READY state. Then the software enters the WAIT_FI_SETUP_END state and the
hardware is now in the fault injection setup mode. In this state, the Test Execution Software looks at the
Test Specification data that was sent from the Data Management Software. The Test Specification file
(see Appendix A) contains a number of setup lines. Each line can be one of the fault injection setup
subsection. If there are no fault injections for the round, the No_FI line is found, the FI_Setup_End signal
in the hardware is set, and there are no other fault injection setup subsection lines. Otherwise, the other
fault injection setup subsection lines can be in any order with the FI_Setup_Done line at the end. If a
fault or activation line is found in the Test Specification data, the number of data words to define the line
may vary depending on the fault type. The state machine goes through a sequence of send states to
transfer all of the necessary data to the hardware. When the FI_Setup_Done line is found, the
FI_Setup_End signal is set in the hardware, allowing the state machine to begin waiting for the Function
Setup round control mode.

When the hardware signals that it has entered the Function Setup mode by setting the
Function_Setup_Begin signal during the WAIT_FN_SETUP_BEGIN state, the software CCP State
Machine moves to a series of load states. In these states, the software interprets the Test Specification
data and sends it to the hardware. The function setup data includes the Application_Assignment for the
PEs, the number of ROBUS cycles per control cycle (RC_Per_CC), the number of control cycles per
round (CC_Per_Round), and the PE communication schedule during a control cycle. The final two
function setup load states send the sensor and command data to the hardware for the FMons to send
during the round of execution. Also, while in the Function Setup mode, several fault vectors (see Section
4.3.2.2) are preloaded into the hardware when the round has fault injections. The CCP State Machine
enters the PRELOAD_FAULT_VECTORS state, which will send the first part of the FI_FIRE TCM (see
Section 7.3) as long as there is a fault vector that has not been sent in the Test Specification data and the
total preloaded fault vectors to this point do not exceed a predetermined number. Then the CCP State
Machine proceeds to a series of states that build and send the rest of the TCM to the hardware. Once the
TCM is sent, the state machine returns to the PRELOAD_FAULT_VECTORS state. This cycle
continues until either there are no more fault vectors in the round or the predetermined number of
preloaded fault vectors is reached. In both cases, the Function_Setup_End flag is set signaling the

122

hardware to start the Function Execution mode.

If the preloading ended because there were no more fault vectors and the end of file was reached, then the state
machine transitions to the WAIT_HW_ROUND_STOP state. However, if there are more fault vectors, the state
machine transitions to the SEND_FAULTLOAD state, where it sends the first part of the FI_FIRE TCM and then
proceeds to the series of states that build and send the rest of the TCM to the hardware according to the format in
Section 7.3. After the TCM is complete, the state machine transitions back to the SEND_FAULTLOAD state. As
long as there are more fault vectors, the cycle from SEND_FAULTLOAD through the series of FI_FIRE TCM
states continues. When there are no more fault vectors, which means the end of file was reached, then the CCP State
Machine transitions to the WAIT_HW_ROUND_STOP state. At this point, the software is not required to do
anything other than wait for the round to be completed by monitoring the Round_Stop signal from the hardware.
The next state is FINISH_UP_ROUND, where the final stop condition is written to the Test Log data and the
CCP_Round_Finished signal is set. The CCP State machine ends with this state. The CCP_Round_Finished
triggers the exit of the main loop in the high level program of Figure 13.5 and sends the observation data to the Data
Management Software before exiting the program.

Enter CCP

State Machine

WAIT_SPIDER_READY

Round_Enable

WAIT_FI_SETUP_END

SPIDER_Ready

FI_Setup_End

WAIT_FN_ENABLE

WAIT_ROUND_ENABLE

Function_Enable

WAIT_HW_ROUND_STOP

FINISH_UP_ROUND

Round Stop

Exit CCP State

Machine

Figure 13.8: STC Test Execution Software CCP State Machine

The STC CCP State Machine tracks the hardware execution of a round closely but is not required to
transfer as much data to the hardware as the PTC CCP State Machine. The STC CCP State Machine has
a basic structure without loops or branching as shown in Figure 13.8. Similar to that of the PTC, the STC
CCP State Machine checks for a stop condition in all states other than the FINISH_UP_ROUND state
before executing the state. When there is no stop condition, the CCP State Machine continues execution.
The first state is the WAIT_ROUND_ENABLE state. When the hardware signals that the round is
enabled, the software gets the Round Index and the Enabled Nodes vector from the hardware that were
specified by the PTC Test Execution Software in the initialization phase. Then the STC CCP State
Machine transitions to the WAIT_SPIDER_READY state. Once the hardware round controller signals

123

that SPIDER has completed initialization and is ready for operation, the state becomes the
WAIT_FI_SETUP_END state. In the WAIT_FI_SETUP_END, WAIT_FN_ENABLE, and
WAIT_HW_ROUND_STOP states, the CCP State Machine waits for the corresponding hardware signal
to be set before continuing to the next state. The final state is the FINISH_UP_ROUND state which
behaves the same as in the PTC CCP State Machine.

124

14. Final Remarks

The Configurable Fault-Injection and Monitoring System (CFIMS) is a flexible system that enables
physical and simulated fault injection experiments for the systematic exploration of effects caused by
adverse conditions on a distributed computation system running flight control applications. The CFIMS
has a distributed architecture with capabilities for configurability and SUT functional stimulus generation,
fault injection and state monitoring. This report has presented the CFIMS design concept and provided a
comprehensive description of the first implementation.

The CFIMS has already been used in simulated fault injection experiments for an initial assessment of
analytical performance models for a B747 flight control system under harsh conditions. The CFIMS was
also used successfully in extensive physical fault injection experiments in a HIRF environment [Yates10].
Additional simulated fault injection experiments may be performed to study the behavior of the SUT
under carefully controlled conditions in order to gain additional insight into the observed system response
during the HIRF experiments and refine the analytical system models.

The CFIMS is currently being considered for fault injection experiments to support validation and
verification activities for advanced distributed systems, such as an implementation of the self-stabilizing
fault-tolerant clock synchronization protocol described in [Malekpour09] and a revised version of the
ROBUS communication system with a robust self-stabilization capability.

125

Appendix A. Test Specification File

The Test Specification File contains the set of runtime parameters necessary for the CFIMS to perform
a round of operation. The file is divided into the setup section and the execution section as shown in
Figure A.1. The setup section of the file has all of the parameters needed before the start of the round.
Each setup specification has one line and contains a text description, or label, stating the purpose of the
line followed by zero or more values as shown in Figure A.2. The execution section of the file is located
at the bottom and has one fault vector for each control cycle in a round. The fault vector lines do not have
a text description at the beginning of each line.

Execution

Setup

RC_per_CC

Schedule

Sensors

Commands

Enabled_Nodes

Fault Injection Setup

CC_per_Round

Num_BIU

Num_RMU

App_Assignments

Fault Vectors

Figure A.1: Test Specification File Format

Label Value(s)

Figure A.2: Test Specification File Setup Line Format

126

Table A.1 gives a summary of all the types of lines in the setup section of the Test Specification file.
The Num_BIU and Num_RMU lines in the setup section gives the software the SUT configuration used
to generate the parameters for the hardware at synthesis. The Enabled_Nodes specification is a subset of
the SUT configuration and indicates which PE-BIUs and RMUs will be active for the test. The
Enabled_Nodes can handle up to twelve PE-BIUs and four RMUs (see Section 4.3 for the maximum
configuration size) and contains one bit for each SPIDER node in the format given in Figure A.3. The
fault injection setup subsection is located after the Enabled_Nodes line in the Test Specification file. This
subsection is general because it defines the types of faults for the test. Fault and activation type lines that
specify the behavior of the fault are within the fault injection setup section. Each specification has a 16-
bit data word corresponding to each TCM Payload Word given in the FI_FAULT and FI_ACTIVATION
TCMs (see Section 7.3). Since the fault injection capability is designed to be easily extended, the number
of fault injection lines within the file varies, creating the need to denote the end of the fault injection setup
section. The end of the section of the Test Specification file is indicated by the FI_Setup_Done line.
When a test requires no fault injection to be done, a line with a text descriptor of NO_FI exists in place of
the entire fault injection setup section of the file including the end of fault injection setup section line.

Table A.1: Test Specification File Setup Section Labels

Label Description

Num_BIU Number of BIUs in SUT configuration at synthesis
Num_RMU Number of RMUs in SUT configuration at synthesis
Enabled_Nodes Active PE-BIU and RMU nodes
No_FI No fault injection during this test
RCI_Test_Vector RCI within control cycle to activate the fault vectors
RCI_All_Disable RCI within control cycle to deactivate the fault vectors
FI_Fault TCM for fault type (see Section 4.3.2)
FI_Activation TCM for activation pattern (see Section 4.3.2)
FI_Setup_Done End of fault injection setup section
App_Assignments PE application; Either IO communication or computing control commands
RC_per_CC Number of ROBUS cycles per control cycle
CC_per_Round Number of control cycles per round
Schedule Number of data word transmission from each PE in configuration for the given RCI
Sensors Sensor data words transmitted by the IO communication PEs
Commands Command data words transmitted by the computing control commands PEs

PE-BIU0 PE-BIU1 PE-BIU11. . . RMU4 RMU2 RMU1. . .

Figure A.3: Enabled_Nodes Format

The fault injection setup section of the Test Specification file either describes the fault injection to be
completed or states that no fault injection is to be performed for the test. In the no fault injection case, the
only line in the fault injection setup section is the line to specify that there is no fault injection. No extra
data words or parameters are required in the no fault injection line. The line used to signal the end of the
fault injection setup section is not needed when there is no fault injection because the section contains
exactly one line. In Figure A.4, the TCM tag value for a fault type line is 1010 in binary, and the value
for an activation type line is 1011 in binary. Figure A.4 has two fault and activation types (see Section
4.3.2) sent to specific Local Fault Injectors to show the generality of adding more types of faults in
various locations within the SPIDER nodes. The first Fault Type 1 and Activation Type 2 are sent to the

127

Local Fault Injector with an ID of 1 inside PE-BIU 1. The second Fault Type 1 and Activation Type 3 are
sent to the Local Fault Injector with an ID of 2 inside RMU 1. Note that the four lines that make up the
two file descriptions can be in any order as long as they appear before the line designating the end of fault
injection setup section.

FI_Fault

FI_Activation

FI_Setup_Done

1010 0000 1000 0110 0000 0000 0000 0001

1011 0000 1000 0110 0000 0000 0000 0011

FI_Fault

FI_Activation

1010 0000 0100 0100 0000 0000 0000 0001

1011 0000 0100 0100 0000 0000 0000 0010

Figure A.4: Example of Fault Injection Section of Test Specification file with multiple fault types

Directly after the fault injection setup subsection is the App_Assignments where the applications are
given to the PEs. The App_Assignments have the same format as the fault vectors except that the
positions pertain to the enabled PEs. Each bit indicates if the application of the PE is an IO
communication PE (0) or a PE computing the control commands (1). The RC_per_CC specification
denotes the number of ROBUS cycles in one control cycle. The CC_per_Round line gives the number of
control cycles to be executed during the round. Rather than setting the maximum number of control
cycles, the CC_per_Round might be set to 0 to indicate the round will not end based on the number of
control cycles. With the setting of 0, the test has to wait for another stop condition (see Section 5.2), such
as executing all the given fault vectors, to end the round. The Schedule specification defines how many
ROBUS messages (see Section 3.5) each PE in the configuration will send during the given ROBUS
cycle. The first number of the Schedule specification is the RCI of each control cycle that has PEs
transmitting with that schedule. Each subsequent number in the line is the number of messages each PE
is scheduled to transmit for the RCI. Since a Schedule line only describes the PE transmissions for a
single ROBUS cycle, multiple Schedule lines are required when PEs transmit on more than one ROBUS
cycle per control cycle. The Sensors and Commands lines specify the data each PE transmits. Each
number following the text description of these two lines is one data word. IO PEs send the sensor data,
whereas Control PEs send the command data (see Section 4.1). The last section of the Test Specification
file contains one fault vector (see Section 4.3.2) for each control cycle within the round. The format of
the fault vector is the same as the format of the Enabled_Nodes given in Figure A.3.

Figure A.5 is an example Test Specification file with the appropriate line formats for the current
version of the CFIMS. The system is configured to have 4 PE-BIUs and 3 RMUs. The Enabled_Nodes
line specifies that PE 0, PE 1, PE 2, RMU 1, and RMU 2 are the only active nodes for this round. The
fault injection setup section of this Test Specification file includes the RCI within the control cycle to
begin and end the fault. The Fault Injection Controller activates the fault in RCI 0 and deactivates it in
RCI 1. The fault and activation type lines are broadcast to all Local Fault Injectors. The only fault
injectors in this version are located on the Reset signal of each node. Fault type 1 and activation type 2
are used in this setup to direct the Local Fault Injectors. Similar to the Figure A.4, the first four lines of
the fault injection setup section can be in any order as long as they are before the end of fault injection
setup line. The App_Assignments line makes PE 0 an IO PE and PEs 1 and 2 Control PEs. The example
calls for 10 ROBUS cycles in each control cycle and does not set a maximum number of control cycles
for the round. Each of the three active PEs is scheduled to transmit 50 words in RCI 1 as provided in the

128

Schedule line. The Sensors and Commands lines each give the 50 data word values that are transmitted
by the PEs. The execution section contains a total of six fault vectors, which implies a total of six control
cycles for the round. Most of the fault vectors are all zeros, indicating no fault injection for that control
cycle. However, control cycles 3 and 5 have a fault in PE-BIU 2 and RMU 2, respectively.

Num_BIU

4

Num_RMU 3
Enabled_Nodes 1110000000000011
RCI_Test_Vector 0000000000000000
RCI_All_Disable 0000000000000001
FI_Fault 1010000000000001 0000000000000001
FI_Activation 1011000000000001 0000000000000010
FI_Setup_Done
App_Assignments 0110000000000000
RC_per_CC 10
CC_per_Round 0
Schedule 1 50 50 50 0
Sensors 7 100 87 98 7 53 17 37 62 52 …
Commands 65 82 77 58 36 80 2 62 48 77 …
0000000000000000
0000000000000000
0010000000000000
0000000000000000
0000000000000010
0000000000000000

Figure A.5: Test Specification File Example

129

Appendix B. Data Collected During Round Execution

This section describes the data collected by the CFIMS software processes during the execution of a
round, at the end of which the data is organized into output files and sent to the repository for post-test
analysis. The data collected at the PTC and STC covers every major system function, including round
control, round time, function time, function monitoring, and state monitoring. As stated earlier in this
report, the CFIMS can be viewed abstractly as providing a user service that reads a Test Specification and
outputs a number of files containing the corresponding experimental data. From that perspective, this
section is intended to provide a detailed description of the collected data at the CFIMS output service
interface.

B.1. Round Control

The collected PTC and STC round control data are stored in corresponding separate log files with the
following content.

1. A list of all Software Interface buffers that overflowed during the round, if any. Buffer overflows are
an indication of an execution timing error and are generally accompanied by the loss of data. As
such, they trigger an end to the execution of the round. At the PTC, the list of existing Software
Interface buffers includes RTmr, FTmr, FMons, and SMons. At the STTC, the list includes RTmr
and SMons.

2. A 16-bit status word as generated by the hardware Round Controller at the end of the round. The
format is described in Table B.1. The bits are numbered 15 down to 0, with the leftmost bit
numbered bit 15. See Section 5 for a description of the Controller Coordination Protocol (CCP)
executed by the PTC and STC Round Controllers.

3. The round-stop condition is also saved as a separate item in decimal format.

Table B.1: Round Controller Status Word

Bit or Bit

Slice
Variable Description

15 Round_Enable Set to 1 when the CCP Round Enable mode is complete.
Otherwise, set to 0.

14 SPIDER_Ready Set to 1 when the CCP SPIDER Initialization mode is
complete. Otherwise, set to 0.

13 Function_Enable Set to 1 when the CCP Function Execution mode begins.
Otherwise, set to 0.

12 Execution_Stop Set to 1 when the CCP System Stop mode begins.
Otherwise, set to 0.

11 Round_Stop Set to 1 when all hardware operation for the round stops.
Otherwise, set to 0.

10 Stop_Echo_Timeout Set to 1 by the CCP Stop Initiator when it does not
receive an echo RC_STOP TCM. Otherwise, set to 0.

9-4 Stop_Condition Condition that triggered the round stop. See Table B.2
for a full list of currently defined conditions.

3-0 --- Unused

130

Table B.2: Round Stop Conditions

Stop

Condition

Number

Label Description

0 PTC_TCL_FAULT

An unexpected communication error was detected on a TCL
link directly connected to the PTC (i.e., the CCL or a PTL).
The error was detected by a PMCU receiver. Currently, this
error reporting and round-stop triggering feature is not
implemented.

1 PTC_RC_RCV_BUF_OVERFLOW Buffer overflow on the CCL receive module of the PTC‟s

Round Controller.

2 PTC_ENABLE_SEQ_ERROR The PTC Round Controller received an unexpected
RC_ENABLE TCM.

3 PTC_READY_SEQ_ERROR The PTC Round Controller received an unexpected
RC_READY TCM.

4 PTC_START_SEQ_ERROR The PTC Round Controller received an unexpected
RC_START TCM.

5 PTC_SPIDER_FAILURE SPIDER failure detected by the SPIDER Health Monitor at
the PTC.

6 PTC_SOFTWARE_STOP Round stop triggered by the software processes at the PTC.

7 PTC_FI_STOP Round stop triggered by the Fault Injection Controller at the
PTC.

8 PTC_FUNCTION_STOP Round stop triggered by the SPIDER Function Tester at the
PTC.

9 PTC_STATE_MON_STOP Round stop triggered by the PE-BIU State Monitor at the
PTC.

10 PTC_ROUND_ENABLE_T_O Timeout on the completion of the CCP Round Enable mode.

11 PTC_SPIDER_INIT_T_O Timeout on the completion of the CCP SPIDER
Initialization mode.

12 PTC_FI_SETUP_T_O Timeout on the completion of the CCP Fault Injection Setup
mode.

13 PTC_FUNCTION_SETUP_T_O Timeout on the completion of the CCP Function Setup
mode.

14 PTC_FUNCTION_DONE Function execution completed at the PTC.
15 PTC_FI_DONE Fault injection completed at the PTC.

16 STC_TCL_FAULT

An unexpected communication error was detected on a TCL
link directly connected to the STC (i.e., the CCL or an STL).
The error was detected by a PMCU receiver. Currently, this
error reporting and round-stop triggering feature is not
implemented.

17 STC_RC_RCV_BUF_OVERFLOW Buffer overflow on the CCL receive module of the STC‟s

Round Controller.

18 STC_ENABLE_SEQ_ERROR The STC Round Controller received an unexpected
RC_ENABLE TCM.

19 STC_READY_SEQ_ERROR The STC Round Controller received an unexpected
RC_READY TCM.

20 STC_START_SEQ_ERROR The STC Round Controller received an unexpected
RC_START TCM.

21 STC_SPIDER_FAILURE SPIDER failure detected by the SPIDER Health Monitor at
the STC.

22 STC_SOFTWARE_STOP Round stop triggered by the software processes at the STC.

23 STC_FI_STOP Round stop triggered by the Fault Injection Controller at the
STC.

131

Stop

Condition

Number

Label Description

24 STC_STATE_MON_STOP Round stop triggered by the RMU State Monitor at the STC.
25 STC_ROUND_ENABLE_T_O Timeout on the completion of the CCP Round Enable mode.

26 STC_SPIDER_INIT_T_O Timeout on the completion of the CCP SPIDER
Initialization mode.

27 STC_FI_SETUP_T_O Timeout on the completion of the CCP Fault Injection Setup
mode.

28 STC_FUNCTION_SETUP_T_O Timeout on the completion of the CCP Function Setup
mode.

29 STC_FI_DONE Fault injection completed at the STC.

B.2. Round Timer

The PTC and STC Round Timers (RTmrs) serve as event timers for all the data records generated by
the CFIMS. The RTmrs are frequently resynchronized to each other during the setup and execution
phases of the round to enable the construction of a global timeline of events during the round. A new
RTmr record is generated at the end of each RTmr interval, just before the Interval Time (IT) component
is reset and the Interval Count (IC) is incremented by one. A record consists of (1 +
SWXF_Num_RTmr_IC_DW) 16-bit data words. SWXF_Num_RTmr_IC_DW is a system configuration
parameter currently set to 2. The first word is the value of the IT. The remaining words are 16-bit slices
of the IC, with the most significant slice listed first.

B.3. Function Timer

An FTmr record is created when the FTime reaches the end of a ROBUS cycle or when the
operational mode of the FTmr transitions from Preservation to Initialization. A record consists of (5 + (1
+ SWXF_Num_RTmr_IC_DW)) 16-bit data words, with the first five words containing information
about the FTmr state at the time the record was generated, and the remaining words are the record time
tag with the format described for the RTmr in Section B.2. The format of the FTmr data is described in
Table B.3.

Table B.3: Collected Function Timer Data

Word

Number
Bit Slice

Bit Description

Note: Xd denotes decimal value X.

1 Leftmost N bits

Accusations against PE(1..N). N is the total number of PEs. The leftmost bit
corresponds to PE(1). The bit corresponding to PE(i) is set to 1 if the FTmr
accused PE(i) in the time interval covered by the current record. Otherwise,
the bit is set to 0.

Rightmost 2 bits FTmr mode: 0d = Initialization, 1d = Preservation.

2 Leftmost N bits
Conviction against PE(1..N). The leftmost bit corresponds to PE(1). The bit
corresponding to PE(i) is set to 1 if the FTmr convicted PE(i) in the time
interval covered by the current record. Otherwise, the bit is set to 0.

3 All 16 bits ROBUS Time (RT)
4 All 16 bits ROBUS Cycle Index (RCI)
5 All 16 bits Control Cycle Index (CCI)

132

B.4. Function Monitors

The data records from all the Function Monitors (FMons) are saved to the same file. An FMon record
consists of 1 + (SWXF_Num_CC_Obs_DW + (1 + SWXF_Num_RTmr_IC_DW)) data items, with the
first item being a decimal-valued FMon identifier with a unique value assignment for each of the N
FMons.

The next SWXF_Num_CC_Obs_DW (currently set to 2) 16-bit words contain the observations made
by the FMon based on the received transmissions over the PTL from its corresponding PE during the
control cycle. An FMon outputs N observations, one per PE with each PE viewed as a source of
messages on ROBUS, independent of the actual communication schedule. The observations are packaged
into a long bit string formed of consecutive end-to-end bit slices starting with the observations for PE 1 at
the leftmost position. Each observation bit-slice has a width of CC_Obs_Width bits (currently set to 4)
and is binary encoded as shown in Table B.4 (using decimal format). (A full description of the FMon
observations can be found in Section 4.3.1.2.) The full observation bit string is divided into
SWXF_Num_CC_Obs_DW 16-bit slices when the record is created.

The remaining words in an FMon record are the time tag with the format described for the RTmr in
Section B.2.

Table B.4: Observation codes for a Function Monitor

Observation Code

(in decimal format) Observation by FMonj

0 Omitted Sender Id
1 Invalid Sender Id
2 Repeated Sender Id
3 Bad Payload Length
4 Detected Reception Error at Receiver PE
5 Detected Reception Error at Sender PE
6 Bad Message Content
7 Good Message

B.5. PE-BIU State Monitors

The data records from all the lane State Monitors (SMons) are saved to the same file. An SMon
record consists of 1 + (PE_BIU_State_Msg_Length + 1 + (1 + SWXF_Num_RTmr_IC_DW)) data items,
with the first item being a decimal-valued SMon lane identifier with a unique value assignment for each
of the N lanes. Note that the number of PEs (denoted Num_PE) is equal to the number of BIUs (denoted
Num_BIU). Both of these quantities are also denoted N.

The content of the next PE_BIU_State_Msg_Length + 1 (currently, a total of 9) 16-bit words is
described in Table B.5. The words in the state message are updated during normal operation as indicated
in the Table, or immediately at the time of an unscheduled-message triggering event (i.e., an RPP failure
or a PE failure).

The remaining words in an SMon lane record are the time tag with the format described for the RTmr
in Section B.2.

133

Table B.5: Main state record content for a PE-BIU State Monitor Lane

Word

Number
Word Update Condition Bit or Bit Slice Bit Description

1 This word is updated every time a
new message is generated.

Leftmost TCM_Tag_Width (currently 4)
bits

Binary encoded value of the TCM tag as set by the
Embedded Node Monitor at the PE-BIU node. This
corresponds to tag SM_PE_BIU.

Rightmost State_Msg_Seq_Num_Width
(currently 8) bits

State message sequence number. The sequence number
is incremented by one every time a new state message is
generated, and it rolls over after reaching the maximum
binary value.

2 This word is updated every time a
new message is generated.

Leftmost
Node_Monitor_RTS_Trigger_Width

(currently 4) bits

Binary encoded value of the condition that triggered the
state message. The currently defined values are as
follows.
0 = RPP_FAILURE
1 = PE_FAILURE
2 = STM_BEGIN
3 = CDM_BEGIN
4 = CIM_BEGIN
5 = CJM_SCHED_UP
6 = CPM_SCHED_UP
7 = TCL_ERROR (currently not used)

Rightmost Num_RMU bits

Status of the BIU's word-mode communication units
since the last data record was generated. The rightmost
bit is the status for the first communication unit (i.e., the
one receiving from RMU 1); the second rightmost bit is
the status for the second communication unit; etc. A
communication unit‟s status bit is set to 0 if the unit
reported an invalid input waveform at any time since
the last state message was triggered. A value of 1
indicates that the corresponding communication unit
consistently detected a valid Manchester-encoded input
signal since the last state message was triggered.

3

This word is updated whenever
the RPP/BIU Mode Control Unit
(MCU) issues a command
satisfying one of the following

Bit 15 (Leftmost bit)

RPP Input Unit‟s (IU) Zero_Schedule flag;
0 = non-empty schedule
1 = new schedule is 0 (i.e., empty; no scheduled PE
messages in the current ROBUS cycle)

134

Word

Number
Word Update Condition Bit or Bit Slice Bit Description

conditions: the first command in
Self-Test mode, the first in Clique
Detection Mode, the first in
Clique Initialization mode, a
Schedule Update command in
Clique Join mode, or a Schedule
Update command in Clique
Preservation mode.

14
RPP Input Unit‟s (IU) Invalid_Schedule flag;
0 = new schedule is valid
1 = new schedule is invalid

13 Node kind: 0 = PE_BIU, 1 = RMU
12-9

(Next RPP_Node_Id_Vect_Width
(currently 4) bits)

RPP Node Id with valid binary value range 1 to
max(Num_RMU, Num_BIU).

 8-6
(Next RPP_Major_Mode_Vect_Width

(currently 3) bits)

Binary encoded value of the RPP major mode;
0 = Self Test
1 = Clique Detection
2 = Clique Join
3 = Clique Initialization
4 = Clique Preservation

5

Current diagnostic cycle when the current major mode
is Clique Join mode;
0 = diagnostic cycle 0
1 = diagnostic cycle 1

4-2
(Next RPP_Minor_Mode_Vect_Width

(currently 3) bits)

Binary encoded value of the RPP minor mode;
0 = Reset
1 = Self Test
2 = Preliminary Diagnosis and Synchronization Capture
3 = Initial Diagnosis and Initial Synchronization
4 = Collective Diagnosis
5 = Schedule Update
6 = PE Communication
7 = Synchronization Preservation

1-0
(Next RPP_Sched_Status_Vect_Width

(currently 2) bits)

Binary encoded value of the schedule status reported by
the MCU;
0 = Valid
1 = Zero
2 = Invalid

4
This word is updated whenever
the RPP/BIU enters the Collective
Diagnosis minor mode.

Leftmost Num_RMU bits

Accusations against RMUs generated by the local
RPP/BIU. The leftmost bit corresponds to RMU 1.
0 = not accused
1 = accused

135

Word

Number
Word Update Condition Bit or Bit Slice Bit Description

Rightmost Num_BIU bits

Accusations against BIUs in reversed order. The
rightmost bit corresponds to BIU 1.
0 = not accused
1 = accused

5

This word is updated when the
RPP/BIU enters the Schedule
Update minor mode in the Clique
Join or Clique Preservation major
mode.

Leftmost Num_RMU bits

Convictions against RMUs generated by the local
RPP/BIU. The leftmost bit corresponds to RMU 1.
0 = not convicted
1 = convicted

Rightmost Num_BIU bits

Convictions against BIUs in reversed order. The
rightmost bit corresponds to BIU 1.
0 = not convicted
1 = convicted

6 This word is updated when there
is an RPP detected failure.

Bit 15 (leftmost bit)

SMU_Failure flag generated by the RPP Status
Monitoring Unit (SMU);
0 = no detected failure
1 = detected failure

14
RPP‟s SMU_No_Clique flag;
0 = no-clique condition not detected
1 = no-clique condition detected

13
RPP‟s SMU_Accusation_Against_Self flag;
0 = RPP has not accused itself
1 = RPP has accused itself

12

RPP‟s SMU_OK_Distrusted flag;
0 = RPP trusts at least one node of the opposite kind
(i.e., RMUs) (i.e., RMUs)
1 = RPP distrusts (i.e., has accused or convicted) every
node of the opposite kind

11

RPP‟s SMU_SK_Distrusted flag;
0 = RPP trusts at least one node of the same kind (i.e.,
BIUs)
1 = RPP distrusts (i.e., has accused or convicted) every
node of the same kind

136

Word

Number
Word Update Condition Bit or Bit Slice Bit Description

10

RPP‟s SMU_Timeout flag;
0 = no timeout detected
1 = SMU detected a timeout condition for
Synchronization Capture in the Clique Detection mode,
Initial Synchronization in the Clique Initialization
mode, or for a ROBUS cycle in the Clique Join or
Clique Preservation modes.

9
RPP‟s SMU_Protocol_Error flag;
0 = no protocol error detected
1 = protocol error detected

8-4
(Next

RPP_SMU_Protocol_Error_Code_Width
(currently 5) bits)

Binary encoded value of RPP‟s

MU_Protocol_Error_Code signal. See Appendix B in
[Torres08B] for a full list of error codes.

7

This word is updated when there
is a detected PE failure or the RPP
issues a Schedule Update
command in the Clique
Preservation mode.

Bits 15-14
(Leftmost PE_OCL_Width (currently 2)

bits)

Binary encoded value of the PE major mode (OCL =
Operation Coordination Level);
0 = OCL0
1 = OCL1
2 = OCL2
3 = OCL3

13
PE_Failure flag;
0 = PE did not detect a failure condition
1 = PE detected a failure condition

12-8
(Next PE_Failure_Code_Width

(currently 5) bits)

Binary encoded value of the failure code reported by the
PE. See the VHDL description of the PE Master
Controller‟s finite state machine for the conditions

corresponding to the reported failure codes.

8

This word is updated when there
is a detected PE failure or the RPP
issues a Schedule Update
command in the Clique
Preservation mode.

All 16 bits ROBUS Cycle Index (RCI) as reported by the PE.

137

Word

Number
Word Update Condition Bit or Bit Slice Bit Description

9 This word is generated at the PTC.
Bits 15-14

(Leftmost Node_Condition_Width
(currently 2) bits)

Binary encoded value of the node condition as reported
by the Health Monitor at the lane State Monitor for the
corresponding PE-BIU node.
0 = Disabled
1 = Recovering
2 = Restored
3 = unused code

138

B.6. RMU State Monitors

The data records generated by the RMU State Monitor have essentially the same format at the PE-BIU
records. The main difference is due to the absence of PEs at the RMU nodes.

The data records from all the lane State Monitors (SMons) are saved to the same file. An SMon
record consists of 1 + (RMU_State_Msg_Length + 1 + (1 + SWXF_Num_RTmr_IC_DW)) data items,
with the first item being a decimal-valued SMon lane identifier with a unique value assignment for each
of the SMon lanes monitoring the RMUs. The number of RMUs is denoted Num_RMU.

Note that the number of PEs (denoted Num_PE) is equal to the number of BIUs (denoted Num_BIU).
Both of these quantities are also denoted N.

The content of the next RMU_State_Msg_Length + 1 (currently, a total of 7) 16-bit words is described
in Table B.6. The words in the state message are updated during normal operation as indicated in the
Table, or immediately at the time of an unscheduled-message triggering event (i.e., an RPP failure).

The remaining words in an SMon lane record are the time tag with the format described for the RTmr
in Section B.2.

139

Table B.6: Main state record content for an RMU State Monitor Lane

Word

Number
Word Update Condition Bit or Bit Slice Bit Description

1 This word is updated every time a
new message is generated.

Leftmost TCM_Tag_Width (currently 4)
bits

Binary encoded value of the TCM tag as set by the
Embedded Node Monitor at the RMU node. This
should correspond to tag SM_RMU.

Rightmost State_Msg_Seq_Num_Width
(currently 8) bits

State message sequence number. The sequence number
is incremented by one every time a new state message is
generated, and it rolls over after reaching the maximum
binary value.

2 This word is updated every time a
new message is generated.

Leftmost
Node_Monitor_RTS_Trigger_Width

(currently 4) bits

Binary encoded value of the condition that triggered the
state message. The currently defined values are as
follows.
0 = RPP_FAILURE
1 = PE_FAILURE (not applicable to RMU nodes)
2 = STM_BEGIN
3 = CDM_BEGIN
4 = CIM_BEGIN
5 = CJM_SCHED_UP
6 = CPM_SCHED_UP
7 = TCL_ERROR (not currently used)

Rightmost Num_BIU bits

Status of the RMU's word-mode communication units
since the last data record was generated. The rightmost
bit is the status for the first communication unit (i.e., the
one receiving from BIU 1); the second rightmost bit is
the status for the second communication unit; etc. A
communication unit bit is set to 0 if the unit reported an
invalid input waveform at any time since the last state
message was triggered. A value of 1 indicates that the
corresponding communication unit consistently
detected a valid Manchester-encoded input signal since
the last state message was triggered.

3

This word is updated whenever
the RPP/RMU Mode Control Unit
(MCU) issues a command
satisfying the following

Bit 15 (Leftmost bit)

RPP Input Unit‟s (IU) Zero_Schedule flag;
0 = non-empty schedule
1 = new schedule is 0 (i.e., empty; no scheduled PE
messages during the current ROBUS cycle)

140

Word

Number
Word Update Condition Bit or Bit Slice Bit Description

conditions: the first command in
Self-Test mode, the first in Clique
Detection Mode, the first in
Clique Initialization mode, a
Schedule Update command in
Clique Join mode, or a Schedule
Update command in Clique
Preservation mode.

14
RPP Input Unit‟s (IU) Invalid_Schedule flag;
0 = new schedule is valid
1 = new schedule is invalid

13 Node kind: 0 = PE_BIU, 1 = RMU
12-9

(Next RPP_Node_Id_Vect_Width
(currently 4) bits)

RPP Node Id with binary value range 1 to
Max_Value(Num_RMU, Num_BIU)

8-6
(Next RPP_Major_Mode_Vect_Width

(currently 3) bits)

Binary encoded value of the RPP major mode;
0 = Self Test
1 = Clique Detection
2 = Clique Join
3 = Clique Initialization
4 = Preservation

5

Current diagnostic cycle when the current major mode
is Clique Join mode;
0 = diagnostic cycle 0
1 = diagnostic cycle 1

4-2
(Next RPP_Minor_Mode_Vect_Width

(currently 3) bits)

Binary encoded value of the RPP minor mode;
0 = Reset
1 = Self Test
2 = Preliminary Diagnosis and Synchronization Capture
3 = Initial Diagnosis and Initial Synchronization
4 = Collective Diagnosis
5 = Schedule Update
6 = PE Communication
7 = Synchronization Preservation

1-0
(Next RPP_Sched_Status_Vect_Width

(currently 2) bits)

Binary encoded value of the schedule status reported by
the MCU;
0 = Valid
1 = Zero
2 = Invalid

4
This word is updated whenever
the RPP/RMU enters the
Collective Diagnosis minor mode.

Leftmost Num_BIU bits

Accusations against BIUs generated by the local
RPP/RMU. The leftmost bit corresponds to BIU 1.
0 = not accused
1 = accused

141

Word

Number
Word Update Condition Bit or Bit Slice Bit Description

Rightmost Num_RMU bits

Accusations against RMUs in reversed order.
Rightmost bit corresponds to RMU 1.
0 = not accused
1 = accused

5

This word is updated when the
RPP/RMU enters the Schedule
Update minor mode in the Clique
Join or Clique Preservation major
modes.

Leftmost Num_BIU bits

Convictions against BIUs generated by the local
RPP/RMU. The leftmost bit corresponds to BIU 1.
0 = not convicted
1 = convicted

Rightmost Num_RMU bits

Convictions against RMUs in reversed order.
Rightmost bit corresponds to RMU 1.
0 = not convicted
1 = convicted

6 This word is updated when there
is an RPP detected failure.

Bit 15 (leftmost bit)

Value of the SMU_Failure flag generated by the RPP
Status Monitoring Unit (SMU);
0 = no detected failure
1 = detected failure

14
RPP‟s SMU_No_Clique flag;
0 = no-clique condition not detected
1 = no-clique condition detected

13
RPP‟s SMU_Accusation_Against_Self flag;
0 = RPP has not accused itself
1 = RPP has accused itself

12

RPP‟s SMU_OK_Distrusted flag;
0 = RPP trusts at least one node of the opposite kind
(i.e., BIUs)
1 = RPP distrusts (i.e., has accused or convicted) every
node of the opposite kind

11

RPP‟s SMU_SK_Distrusted flag;
0 = RPP trusts at least one node of the same kind (i.e.,
RMUs)
1 = RPP distrusts (i.e., has accused or convicted) every
node of the same kind

142

Word

Number
Word Update Condition Bit or Bit Slice Bit Description

10

RPP‟s SMU_Timeout flag;
 0 = no timeout detected
1 = SMU detected a timeout condition for
Synchronization Capture in the Clique Detection mode,
Initial Synchronization in the Clique Initialization
mode, or for a ROBUS cycle in the Clique Join or
Clique Preservation modes.

9
RPP‟s SMU_Protocol_Error flag;
0 = no protocol error detected
1 = protocol error detected

8-4
(Next

RPP_SMU_Protocol_Error_Code_Width
(currently 5) bits)

Binary encoded value of RPP‟s

SMU_Protocol_Error_Code signal. See Appendix B in
[Torres08B] for a full list of error codes.

7 This word is generated at the STC.
Bits 15-4

(Leftmost Node_Condition_Width
(currently 2) bits)

Binary encoded value of the node condition as reported
by the Health Monitor at the lane State Monitor for the
corresponding RMU node.
0 = Disabled
1 = Recovering
2 = Restored
3 = unused code

143

Appendix C. Test Control Software Pseudo-Code

The Test Control Software of the CFIMS is composed of Data Management and Test Execution
Software for each Test Controller (PTC and STC) as described in Section 13. The following sections
give the detailed pseudo-code of these software programs.

C.1. PTC Data Management Software

Open Test_Spec file
Count number of characters in specification part of Test_Spec and save the characters and count in RAM
Count fault vectors from Test_Spec and save the fault vectors and count in RAM
Close Test_Spec file
Create a socket
Get Host Name IP address
Bind the socket to the IP address or Name

Listen for connection request
Enable standard I/O on socket

///

//Send Test spec character section

Make all of the following writes blocking
Status = Send_UInt_To_Socket(TS_char_count)
If errno != 0
{

Display on screen “Error in sending Test Spec count: (errno)”
Exit Program

}
Else If status != 4
{

Display on screen “Write returned status of (status) on Test Spec count”
Exit Program

}

For each character in specification

Send_Char_To_Socket(TS_char)

//Check that the correct number of Test spec characters was received at client
Make all of the following reads non-blocking
Start timer 1 – Client Test Spec character count
Initialize status = -1
While status = -1
{

Status = Read_UInt_From_Socket(Cli_TS_char_count)
If (status == -1) and (timer >= TIMEOUT_CLI_TS_CHAR_CNT)
{

Display on screen “Timeout occurred while waiting for Test Spec character count”
 Exit Program
}

}
If status = 0
{

Display on screen “Socket was closed prematurely when trying to read Test Spec character count”
Exit Program

144

}
Else If status < sizeof(Cli_TS_char_count)
{

Display on screen “Partial Test Spec character count received: (status) bytes”
Exit Program

}
Else If Cli_TS_char_count != TS_char_count //check that client got all
{

Display on screen “Client received (Cli_TS_char_count) Test Spec characters when (TS_char_count) were
sent”

 Exit Program
}
//Else it was successful

///

//Send fault vectors

Make all of the following writes blocking
Status = Send_UInt_To_Socket(FV_count)
If errno != 0
{

Display on screen “Error in sending fault vector count: (errno)”
Exit Program

}
Else If status != 4
{

Display on screen “Write returned status of (status) on fault vector count”
Exit Program

}

For each fault vector //if there are none, it will go on
{

Send_USInt_To_Socket(fault_vector[])
If errno != 0
{

Display on screen “Error in sending fault vector data: (errno)”
Write_All_Output_To_File()
Exit Program

}
Else If status != 2
{

Display on screen “Write returned status of (status) on fault vector data”
Write_All_Output_To_File()
Exit Program

}
}

//Check that the correct number of fault vectors was received at client
Make all of the following reads non-blocking
Start timer 2 – Client fault vectors count
Initialize status = -1
While status = -1
{

Status = Read_UInt_From_Socket(Cli_FV_count)
If (status == -1) and (timer >= TIMEOUT_CLI_FV_CNT)
{

145

Display on screen “Timeout occurred while waiting for fault vector count”
 Exit Program
}

}
If status = 0
{

Display on screen “Socket was closed prematurely when trying to read fault vector count”
Exit Program

}
Else If status < sizeof(Cli_FV_count)
{

Display on screen “Partial fault vector count received: (status) bytes”
Exit Program

}
Else If Cli_FV_count!= FV_count //check that client got all
{

Display on screen “Client received (Cli_FV_count) fault vector entries when (FV_count) were sent”
 Exit Program
}
//Else it was successful

///

//Open files

Open 5 output files – 4 binary (FMon, FTmr, RTmr, SMon) and 1 text (Test_Log)

///

//Receive Test_Log data and write to file

//Not have it timeout #3
Initialize status = -1
While status = -1
{

Status = Read_UInt_From_Socket(Cli_TL_count) //This one will wait until there is data
If (status == -1) and (Key_Pressed)
{

Display on screen “Operator pressed a key while waiting for Test Log character count to end the program”
 Exit Program
}

}
If status = 0
{

Display on screen “Socket was closed prematurely when trying to read Test Log character count”
Exit Program

}
Else If status < sizeof(Cli_TL_count)
{

Display on screen “Partial Test Log character count received: (status) bytes”
Exit Program

}

Start timer 4 – Test Log characters
TL_count = 0
While (TL_count < Cli_TL_count)
{

Initialize status = -1
While status = -1

146

{
Status = Read_Char_From_Socket(TL_char)
If (status == -1) and (timer >= TIMEOUT_DATA_WORD)
{

Display on screen “Timeout occurred while waiting for Test Log characters”
 Exit Program
}

}
If status = 0
{

Display on screen “Socket was closed prematurely when trying to read Test Log characters”
Exit Program

}
Else If status < sizeof(TL_char)
{

Display on screen “Partial Test Log characters received: (status) bytes”
Exit Program

}
//Else it was successful
TL_count++
Write_char(Test_Log_File, TL_char)
Reset timer

}

//Send count of characters received for check
Make all of the following writes blocking
Status = Send_UInt_To_Socket(TL _count)
If errno != 0
{

Display on screen “Error in sending test log count: (errno)”
Exit Program

}
Else If status != 4
{

Display on screen “Write returned status of (status) on test log count”
Exit Program

}

///

//Receive FMon data and write to file

Make all of the following reads non-blocking
Start timer 5 – FMon count
Initialize status = -1
While status = -1
{

Status = Read_UInt_From_Socket(Cli_FMon_count)
If (status == -1) and (timer >= TIMEOUT_FMON_CNT)
{
 Display on screen “Timeout occurred while waiting for FMon count”
 Exit Program
}

}
If status = 0
{

Display on screen “Socket was closed prematurely when trying to read FMon count”

147

Exit Program
}
Else If status < sizeof(Cli_FMon_count)
{

Display on screen “Partial FMon count received: (status) bytes”
Exit Program

}

Start timer 6 – FMon
FMon_count = 0
While (FMon_count < Cli_FMon_count)
{

Initialize status = -1
While status = -1
{

Status = Read_USInt_From_Socket(FMon_val)
If (status == -1) and (timer >= TIMEOUT_DATA_WORD)
{

Display on screen “Timeout occurred while waiting for FMon [FMon_count]”
 Exit Program
}

}
If status = 0
{

Display on screen “Socket was closed prematurely when trying to read FMon [FMon_count]”
Exit Program

}
Else If status < sizeof(FMon_val)
{

Display on screen “Partial FMon received: (status) bytes”
Exit Program

}
//Else it was successful
FMon[FMon_count] = FMon_val
FMon_count++
Reset timer

}

Write each FMon[] value to binary FMon_File

//Send count of entries received for check
Make all of the following writes blocking
Status = Send_UInt_To_Socket(FMon_count)
If errno != 0
{

Display on screen “Error in sending FMon count: (errno)”
Write_All_Output_To_File()
Exit Program

}
Else If status != 4
{

Display on screen “Write returned status of (status) on FMon count”
Write_All_Output_To_File()
Exit Program

}

148

///

//Receive FTmr data and write to file

Make all of the following reads non-blocking
Start timer 7 – FTmr count
Initialize status = -1
While status = -1
{

Status = Read_UInt_From_Socket(Cli_ FTmr _count)
If (status == -1) and (timer >= TIMEOUT_FTMR_CNT)
{
 Display on screen “Timeout occurred while waiting for FTmr count”
 Exit Program
}

}
If status = 0
{

Display on screen “Socket was closed prematurely when trying to read FTmr count”
Exit Program

}
Else If status < sizeof(Cli_FTmr_count)
{

Display on screen “Partial FTmr count received: (status) bytes”
Exit Program

}

Start timer 8 – FTmr
FTmr_count = 0
While (FTmr_count < Cli_FTmr_count)
{

Initialize status = -1
While status = -1
{

Status = Read_USInt_From_Socket(FTmr_val)
If (status == -1) and (timer >= TIMEOUT_DATA_WORD)
{

Display on screen “Timeout occurred while waiting for FTmr [FTmr_count]”
 Exit Program
}

}
If status = 0
{

Display on screen “Socket was closed prematurely when trying to read FTmr [FTmr_count]”
Exit Program

}
Else If status < sizeof(FTmr_val)
{

Display on screen “Partial FTmr received: (status) bytes”
Exit Program

}
//Else it was successful
FTmr_count++
Write FTmr_val to binary file FTmr_File
Reset timer

}

149

//Send count of entries received for check
Make all of the following writes blocking
Status = Send_UInt_To_Socket(FTmr_count)
If errno != 0
{

Display on screen “Error in sending FTmr count: (errno)”
Write_All_Output_To_File()
Exit Program

}
Else If status != 4
{

Display on screen “Write returned status of (status) on FTmr count”
Write_All_Output_To_File()
Exit Program

}

///

//Receive RTmr data and write to file

Make all of the following reads non-blocking
Start timer 9 – RTmr count
Initialize status = -1
While status = -1
{

Status = Read_UInt_From_Socket(Cli_ RTmr _count)
If (status == -1) and (timer >= TIMEOUT_RTMR_CNT)
{
 Display on screen “Timeout occurred while waiting for RTmr count”
 Exit Program
}

}
If status = 0
{

Display on screen “Socket was closed prematurely when trying to read RTmr count”
Exit Program

}
Else If status < sizeof(Cli_ RTmr _count)
{

Display on screen “Partial RTmr count received: (status) bytes”
Exit Program

}

Start timer 10 – RTmr
RTmr_count = 0
While (RTmr_count < Cli_RTmr_count)
{

Initialize status = -1
While status = -1
{

Status = Read_USInt_From_Socket(RTmr_val)
If (status == -1) and (timer >= TIMEOUT_DATA_WORD)
{

Display on screen “Timeout occurred while waiting for RTmr [RTmr_count]”
 Exit Program
}

150

}
If status = 0
{

Display on screen “Socket was closed prematurely when trying to read RTmr [RTmr_count]”
Exit Program

}
Else If status < sizeof(RTmr_val)
{

Display on screen “Partial RTmr received: (status) bytes”
Exit Program

}
//Else it was successful
RTmr_count++
Write RTmr_val to binary file RTmr_File
Reset timer

}

//Send count of entries received for check
Make all of the following writes blocking
Status = Send_UInt_To_Socket(RTmr_count)
If errno != 0
{

Display on screen “Error in sending RTmr count: (errno)”
Write_All_Output_To_File()
Exit Program

}
Else If status != 4
{

Display on screen “Write returned status of (status) on RTmr count”
Write_All_Output_To_File()
Exit Program

}

///

//Receive SMon data and write to file

Make all of the following reads non-blocking
Start timer 11 – SMon count
Initialize status = -1
While status = -1
{

Status = Read_UInt_From_Socket(Cli_SMon_count)
If (status == -1) and (timer >= TIMEOUT_SMON_CNT)
{
 Display on screen “Timeout occurred while waiting for SMon count”
 Exit Program
}

}
If status = 0
{

Display on screen “Socket was closed prematurely when trying to read SMon count”
Exit Program

}
Else If status < sizeof(Cli_SMon_count)
{

Display on screen “Partial SMon count received: (status) bytes”

151

Exit Program
}

Start timer 10 – SMon
SMon_count = 0
While (SMon_count < Cli_SMon_count)
{

Initialize status = -1
While status = -1
{

Status = Read_USInt_From_Socket(SMon_val)
If (status == -1) and (timer >= TIMEOUT_DATA_WORD)
{

Display on screen “Timeout occurred while waiting for SMon [SMon_count]”
 Exit Program
}

}
If status = 0
{

Display on screen “Socket was closed prematurely when trying to read SMon [SMon_count]”
Exit Program

}
Else If status < sizeof(SMon_val)
{

Display on screen “Partial SMon received: (status) bytes”
Exit Program

}
//Else it was successful
SMon_count++
Write SMon_val to binary file SMon_File
Reset timer

}

//Send count of entries received for check
Make all of the following writes blocking
Status = Send_UInt_To_Socket(SMon_count)
If errno != 0
{

Display on screen “Error in sending SMon count: (errno)”
Write_All_Output_To_File()
Exit Program

}
Else If status != 4
{

Display on screen “Write returned status of (status) on SMon count”
Write_All_Output_To_File()
Exit Program

}

Close files and socket

152

C.2. STC Data Management Software

Create a socket
Get Host Name IP address
Bind the socket to the IP address or Name

Listen for connection request
Create child process to service the client
Enable standard I/O on socket
Make all of the following reads non-blocking

Open 3 output files – 2 binary (RTmr, SMon) and 1 text (Test_Log)

///

//Receive Test_Log data and write to file

//Not have it timeout #1
Initialize status = -1
While status = -1
{

Status = Read_UInt_From_Socket(Cli_TL_count) //This one will wait until there is data
If (status == -1) and (Key_Pressed)
{

Display on screen “Operator pressed a key while waiting for Test Log character count to end the program”
 Exit Program
}

}
If status = 0
{

Display on screen “Socket was closed prematurely when trying to read Test Log character count”
Exit Program

}
Else If status < sizeof(Cli_TL_count)
{

Display on screen “Partial Test Log character count received: (status) bytes”
Exit Program

}

Start timer 2 – Test Log characters
TL_count = 0
While (TL_count < Cli_TL_count)
{

Initialize status = -1
While status = -1
{

Status = Read_Char_From_Socket(TL_char)
If (status == -1) and (timer >= TIMEOUT_DATA_WORD)
{

Display on screen “Timeout occurred while waiting for Test Log characters”
 Exit Program
}

}
If status = 0
{

Display on screen “Socket was closed prematurely when trying to read Test Log characters”
Exit Program

153

}
Else If status < sizeof(TL_char)
{

Display on screen “Partial Test Log characters received: (status) bytes”
Exit Program

}
//Else it was successful
TL_count++
Write_char(Test_Log_File, TL_char)
Reset timer

}

//Send count of characters received for check
Make all of the following writes blocking
Status = Send_UInt_To_Socket(TL _count)
If errno != 0
{

Display on screen “Error in sending test log count: (errno)”
Exit Program

}
Else If status != 4
{

Display on screen “Write returned status of (status) on test log count”
Exit Program

}

///

//Receive RTmr data and write to file

Make all of the following reads non-blocking
Start timer 3 – RTmr count
Initialize status = -1
While status = -1
{

Status = Read_UInt_From_Socket(Cli_ RTmr _count)
If (status == -1) and (timer >= TIMEOUT_RTMR_CNT)
{
 Display on screen “Timeout occurred while waiting for RTmr count”
 Exit Program
}

}
If status = 0
{

Display on screen “Socket was closed prematurely when trying to read RTmr count”
Exit Program

}
Else If status < sizeof(Cli_ RTmr _count)
{

Display on screen “Partial RTmr count received: (status) bytes”
Exit Program

}

Start timer 4 – RTmr
RTmr_count = 0
While (RTmr_count < Cli_RTmr_count)
{

154

Initialize status = -1
While status = -1
{

Status = Read_USInt_From_Socket(RTmr_val)
If (status == -1) and (timer >= TIMEOUT_DATA_WORD)
{

Display on screen “Timeout occurred while waiting for RTmr [RTmr_count]”
 Exit Program
}

}
If status = 0
{

Display on screen “Socket was closed prematurely when trying to read RTmr [RTmr_count]”
Exit Program

}
Else If status < sizeof(RTmr_val)
{

Display on screen “Partial RTmr received: (status) bytes”
Exit Program

}
//Else it was successful
RTmr_count++
Write RTmr_val to binary file RTmr_File
Reset timer

}

//Send count of entries received for check
Make all of the following writes blocking
Status = Send_UInt_To_Socket(RTmr_count)
If errno != 0
{

Display on screen “Error in sending RTmr count: (errno)”
Write_All_Output_To_File()
Exit Program

}
Else If status != 4
{

Display on screen “Write returned status of (status) on RTmr count”
Write_All_Output_To_File()
Exit Program

}

///

//Receive SMon data and write to file

Make all of the following reads non-blocking
Start timer 5 – SMon count
Initialize status = -1
While status = -1
{

Status = Read_UInt_From_Socket(Cli_SMon_count)
If (status == -1) and (timer >= TIMEOUT_SMON_CNT)
{
 Display on screen “Timeout occurred while waiting for SMon count”
 Exit Program
}

155

}
If status = 0
{

Display on screen “Socket was closed prematurely when trying to read SMon count”
Exit Program

}
Else If status < sizeof(Cli_SMon_count)
{

Display on screen “Partial SMon count received: (status) bytes”
Exit Program

}

Start timer 6 – SMon
SMon_count = 0
While (SMon_count < Cli_SMon_count)
{

Initialize status = -1
While status = -1
{

Status = Read_USInt_From_Socket(SMon_val)
If (status == -1) and (timer >= TIMEOUT_DATA_WORD)
{

Display on screen “Timeout occurred while waiting for SMon [SMon_count]”
 Exit Program
}

}
If status = 0
{

Display on screen “Socket was closed prematurely when trying to read SMon [SMon_count]”
Exit Program

}
Else If status < sizeof(SMon_val)
{

Display on screen “Partial SMon received: (status) bytes”
Exit Program

}
//Else it was successful
SMon_count++
Write SMon_val to binary file SMon_File
Reset timer

}

//Send count of entries received for check
Make all of the following writes blocking
Status = Send_UInt_To_Socket(SMon_count)
If errno != 0
{

Display on screen “Error in sending SMon count: (errno)”
Write_All_Output_To_File()
Exit Program

}
Else If status != 4
{

Display on screen “Write returned status of (status) on SMon count”
Write_All_Output_To_File()

156

Exit Program
}

Close files and socket

C.3. PTC Test Execution Software

Create a socket
Resolve server address
Connect to server
Enable standard I/O on socket
Make all of the following reads non-blocking

///

//Receive Test Spec data

Start Timeout1(TIMEOUT_TS_CHAR_CNT)
Initialize status = -1
While (status = -1)
{

Status = Read_UInt_From_Socket(Srv_TS_char_count)
If ((status = -1) AND (Timeout1))
{
 Display on screen “Timeout occurred while waiting for Test Spec character count”
 Exit Program
}

}
If (status = 0)
{

Display on screen “Socket was closed prematurely when trying to read Test Spec character count”
Exit Program

}
Else If (status < sizeof(Srv_TS_char_count))
{

Display on screen “Partial Test Spec character count received: (status) bytes”
Exit Program

}
Else If (Srv_TS_char_count > MAX_TS_CHARS)
{

Display on screen “Received Test Spec character count of (Srv_TS_char_count) exceeds maximum”
Exit Program

}

Start Timeout2(TIMEOUT_DATA_WORD)
TS_char_count = 0
While (TS_char_count < Srv_TS_char_count)
{

Initialize status = -1
While (status = -1)
{

Status = Read_Char_From_Socket(spec_setup_lines[TS_char_count])
If ((status = -1) AND (Timeout2))
{

Display on screen “Timeout occurred while waiting for Test Spec data character [TS_char_count]”

157

Exit Program
}

}
If (status = 0)
{

Display on screen “Socket was closed prematurely when trying to read Test Spec character”
Exit Program

}
Else If (status < sizeof(spec_setup_lines[TS_char_count]))
{

Display on screen “Partial Test Spec data character [TS_char_count] received: (status) bytes”
Exit Program

}
//Else it was successful
TS_char_count++
Reset Timeout2

}
//Send count of characters received for check
Make all of the following writes blocking
Status = Send_UInt_To_Socket(TS_char_count)
If (errno != 0)
{

Display on screen “Error in sending Test Spec count: (errno)”
Exit Program

}
Else If (status != 4)
{

Display on screen “Write returned status of (status) on Test Spec count”
Exit Program

}

///

//Receive fault vector data

Make all of the following reads non-blocking
Start Timeout3(TIMEOUT_FV_CNT)
Initialize status = -1
While (status = -1)
{

Status = Read_UInt_From_Socket(Srv_FV_count)
If ((status = -1) AND (Timeout3))
{
 Display on screen “Timeout occurred while waiting for fault vector count”
 Exit Program
}

}
If (status = 0)
{

Display on screen “Socket was closed prematurely when trying to read fault vector count”
Exit Program

}
Else If (status < sizeof(Srv_FV_count))
{

Display on screen “Partial fault vector count received: (status) bytes”
Exit Program

}

158

Else If (Srv_FV_count > MAX_FVS)
{

Display on screen “Received fault vector count of (Srv_FV_count) exceeds maximum”
Exit Program

}

Start Timeout4(TIMEOUT_DATA_WORD)
FV_count = 0
While (FV_count < Srv_FV_count)
{

Initialize status = -1
While (status = -1)
{

Status = Read_USInt_From_Socket(fault_vector[FV_count])
If ((status = -1) AND (Timeout4))
{

Display on screen “Timeout occurred while waiting for fault vectors”
 Exit Program
}

}
If (status = 0)
{

Display on screen “Socket was closed prematurely when trying to read fault vectors”
Exit Program

}
Else If (status < sizeof(fault_vector[FV_count]))
{

Display on screen “Partial fault vector [FV_count] received: (status) bytes”
Exit Program

}
//Else it was successful
FV_count++
Reset Timeout4

}

//Send count of fault vector received for check
Make all of the following writes blocking
Status = Send_UInt_To_Socket(FV_count)
If (errno != 0)
{

Display on screen “Error in sending fault vector count: (errno)”
Exit Program

}
Else If (status != 4)
{

Display on screen “Write returned status of (status) on fault vector count”
Exit Program

}

///

// Execute Test

Initialize FPGA (load bit file)
Functional HW Reset
Initialize screen

159

While NOT (Keyboard_Input = „y‟)
{

Key_Pressed = Check_Keyboard()
If (Key_Pressed)
{

Keyboard_Input = Get_Char()
If (Keyboard_Input = „n‟)

Exit Program
}

}
Key_Pressed = 0

Clear CCL Buffers
Send Round_Begin to HW
Start Timer for half second intervals

While NOT CCP_Round_Finished
{

Get RTmr_Word, FTmr_Word, SMon_Word, FMon_Word from HW
SMon_Avail = SMon_Word and SMON_BUFF_REC_AVAIL_ALL_MASK
FMon_Avail = FMon_Word and CC_OBS_BUFF_REC_AVAIL_ALL_MASK

// Select buffers to service
If (SERVICE_RTMR_BUFFER = 0)

RTmr_ Word = 0
If (SERVICE_FTMR_BUFFER = 0)

FTmr_Word = 0
If (SERVICE_SMON_BUFFER = 0)

SMon_Word = 0
If (SERVICE_FMON_BUFFER = 0)

FMon_Word = 0

//Is there any data in the serviced buffers?
If ((RTmr _Word(RTMR_BUFF_REC_AVAIL_MASK) != 0) OR
 (FTmr_Word(FTMR_BUFF_REC_AVAIL_MASK) != 0) OR (SMon_Word != 0) OR
 (FMon_Word != 0))

Buffers_Empty = FALSE
Else

Buffers_Empty = TRUE

If ((Buffers_Empty = FALSE) AND (Buffer_Overflow_Stop = FALSE))
{

//FMon
If (FMon_Word(CC_OBS_BUFF_OVERFLOW_MASK) = 1)
{

FMon_Overflow = TRUE
Write “FMon buffer Overflow” to Test_Log_File_Data

}
Else

FMon_Overflow = FALSE

All_Lanes_Data = TRUE
For each I = 0 to Enabled_PEs – 1
{

160

BIU_Avail = CC_OBS_BUFF_REC_AVAIL_PE_MASK[I] and FMon_Word
If (BIU_Avail <= 0)

All_Lanes_Data = FALSE
}

If (All_Lanes_Data)
{

Increment Count_FV_Results
For each I = 0 to Num_BIU
{

Choose PE FMon lane
Write I to FMon_File_Data
For J = 1 to (SWXF_Num_CC_Obs_DW + SWXF_Num_RTmr_IC_DW + 1)
{

Get FMon_Data from HW
Write FMon_Data to FMon_File_Data

}

Partial_pop = FMon_Word and CC_OBS_BUFF_PARTIAL_POP_MASK

If (Partial_pop != 0)
{

FMon_Partial_Pop = TRUE
SW_End_Error_Flag = TRUE
Write “FMon partial pop” to Test_Log_File_Data
Write “SW End Round Error Detected” to SW_Error

}
}

}

//FTmr
If (FTmr_Word(FTMR_BUFF_REC_AVAIL_MASK) = 1)
{

If (FTmr_Word(FTMR_BUFF_OVERFLOW_MASK) = 1)
{

FTmr_Overflow = TRUE
Write “FTmr buffer Overflow” to Test_Log_File_Data

}
Else

FTmr_Overflow = FALSE

Choose FTmr in Data Port Select

For I = 1 to (6 + SWXF_Num_RTmr_IC_DW)
{

Get FTmr_Data from HW
Write FTmr_Data to FTmr_File_Data

}

Partial_pop = FTmr_Word and FTMR_BUFF_PARTIAL_POP_MASK

If (Partial_pop != 0)
{

FTmr_Partial_Pop = TRUE
SW_End_Error_Flag = TRUE

161

Write “FTmr partial pop” to Test_Log_File_Data
Write “SW End Round Error Detected” to SW_Error

}
}

//RTmr
If (RTmr_Word(RTMR_BUFF_REC_AVAIL_MASK) = 1)
{

If (RTmr_Word(RTMR_BUFF_OVERFLOW_MASK) = 1)
{

RTmr_Overflow = TRUE
Write “RTmr buffer Overflow” to Test_Log_File_Data

}
Else

FTmr_Overflow = FALSE

Choose RTmr in Data Port Select

For I = 1 to (1 + SWXF_Num_RTmr_IC_DW)
{

Get RTmr_Data from HW
Write RTmr_Data to RTmr_File_Data

}

Partial_pop = RTmr_Word and RTMR_BUFF_PARTIAL_POP_MASK

If (Partial_pop != 0)
{

RTmr_Partial_Pop = TRUE
SW_End_Error_Flag = TRUE
Write “RTmr partial pop” to Test_Log_File_Data
Write “SW End Round Error Detected” to SW_Error

}
}

//SMon
If (SMon_Word(SMON_BUFF_OVERFLOW_MASK) = 1)
{

SMon_Overflow = TRUE
Write “SMon buffer Overflow” to Test_Log_File_Data

}
Else

SMon_Overflow = FALSE

For each I = 0 to Num_BIU
{

BIU_Avail = SMON_BUFF_REC_AVAIL_PE_MASK[I] AND SMon_Word2

If (BIU_Avail > 0)
{

Get Output_Enable = Data_Word and OUTPUT_ENA_ALL_MASK
Data_Word = Output_Enable or SET_SMON_BUFF_SELECT_PE[I]
Choose PE SMon lane
Write I to SMon_File_Data
For J = 1 to (PE_BIU_State_Msg_Length + SWXF_Num_RTmr_IC_DW + 2)

162

{
Get SMon_Data from HW
Write SMon_Data to SMon_File_Data

}

Partial_pop = SMon_Word and SMON_BUFF_PARTIAL_POP_MASK

If (Partial_pop != 0)
{

SMon_Partial_Pop = TRUE
SW_End_Error_Flag = TRUE
Write “SMon partial pop” to Test_Log_File_Data
Write “SW End Round Error Detected” to SW_Error

}
}

}

//Set overflow stop condition
If ((FMon_Overflow) OR (FTmr_Overflow) OR (RTmr_Overflow) OR (SMon_Overflow))

Buffer_Overflow_Stop = 1
Else

Buffer_Overflow_Stop = 0
}

Else If (time_elapsed >= 0.5 seconds)
{

If (Next_Timed_Task = SCREEN_UPDATE)
{

update_screen()
Next_Timed_Task = KEYBOARD_CHECK

}
Else //Next_Timed_Task = KEYBOARD_CHECK
{

Key_Pressed = Check_Keyboard()
Next_Timed_Task = SCREEN_UPDATE

}
Reset time_elapsed

}

Else //CCP_State
{

Set RC_Status, FIC_Status, and SFT_Status from HW

If (CCP_State = FINISH_UP_ROUND)
{

Write RC_Status to Test_Log_File_Data
Stop_Condition = RC_Status and STOP_CONDITION_MASK
Write Integer version of Stop_Condition to Test_Log_File_Data
update_screen()
Set CCP_Round_Finished to exit loop

}

Else
{

If (RC_Status(RND_STOP_MASK))

163

CCP_State = FINISH_UP_ROUND

Else If ((Buffer_Overflow_Stop) OR (Key_Pressed) OR (SW_End_Error_Flag))
{

Set Round Stop in HW
CCP_State = WAIT_HW_ROUND_STOP

}

Else If (CCP_State = WAIT_HW_ROUND_STOP)
{

If (RC_Status(RND_STOP_MASK))
CCP_State = FINISH_UP_ROUND

}

Else If (CCP_State = WAIT_ROUND_ENABLE)
{

If (RC_Status(RND_ENA_MASK))
CCP_State = WAIT_SPIDER_READY

}

Else If (CCP_State = WAIT_SPIDER_READY)
{

If (RC_Status(SPIDER_RDY_MASK))
CCP_State = WAIT_FI_SETUP_END

}

Else If (CCP_State = WAIT_FI_SETUP_END)
{

If (FIC_Status(FI_SETUP_END_MASK))
CCP_State = WAIT_FN_SETUP_BEGIN

Else
{

Get Spec_Token from Test_Spec Data
If (Spec_Token = “No_FI”)

Set No_FI_flag and FI_Setup_End in HW
Else If (Spec_Token = “FI_Setup_Done”)

Set FI_Setup_End in HW
Else If (Spec_Token = “RCI_Test_Vector”)

Write RCI_Test_Vec from Test_Spec data to HW
Else If (Spec_Token = “RCI_All_Disable”)

Write RCI_All_Dis from Test_Spec data to HW
Else If ((Spec_Token = “FI_Fault”) OR (Spec_Token = “FI_Activation”))
{

Fault_Act_Field_Count = 0
CCP_State = SEND_DATA_FI_SETUP

}
Else
{

Write “Wrong Test_Spec format - Expecting FI_Setup Line.” to Test_Log_File_Data
Write “SW End Round Error Detected” to SW_Error
Set Round Stop in HW
CCP_State = WAIT_HW_ROUND_STOP

}
}

}

164

Else If (CCP_State = SEND_DATA_FI_SETUP)
{

If (NOT (FIC_Status(FI_DATA_BUFF_FULL_MASK)))
{

If (NOT the End_of_Line(Test_Spec))
{

Get the next Data_Word from Test_Spec and send to HW
Increment Fault_Act_Field_Count

}
Else //it is the end of the line

CCP_State = SEND_SUMMARY_FI_SETUP
}

}

Else If (CCP_State = SEND_SUMMARY_FI_SETUP)
{

If (NOT (FIC_Status(FI_SUMMARY_BUFF_FULL_MASK)))
{

Convert Fault_Act_Field_Count to binary
Data_Word = Shift binary value to FI_MSG_LENGTH_MASK position
Write Data_Word to Summary Buffer of HW
CCP_State = WAIT_FI_SETUP_END

}
}

Else If (CCP_State = WAIT_FN_SETUP_BEGIN)
{

If (SFT_Status(FUNC_SETUP_BEGIN_MASK))
CCP_State = LOAD_FN_SETUP_APP_ASSIG

}

Else If (CCP_State = LOAD_FN_SETUP_APP_ASSIG)
{

Get Spec_Token from Test_Spec Data
If (Spec_Token = “App_Assignments”)
{

Get App_Assig value from Test_Spec Data
App_Assig_Read = TRUE
Choose Application Assignment in Data Port Select of HW
Write App_Assig to HW
CCP_State = LOAD_FN_SETUP_RC_PER_CC

}
Else
{

Write “Wrong Test_Spec format - Expecting App_Assignments Line.” To

Test_Log_File_Data
Write “SW End Round Error Detected” to SW_Error
Set Round Stop in HW
CCP_State = WAIT_HW_ROUND_STOP

}
}

Else If (CCP_State = LOAD_FN_SETUP_RC_PER_CC)
{

165

Get Spec_Token from Test_Spec Data
If (Spec_Token = “RC_per_CC”)
{

Get RC_per_CC value from Test_Spec Data
Choose RC_per_CC in Data Port Select of HW
Write RC_per_CC to HW
CCP_State = LOAD_FN_SETUP_CC_PER_RND

}
Else
{

Write “Wrong Test_Spec format - Expecting RC per CC Line.” To Test_Log_File_Data
Write “SW End Round Error Detected” to SW_Error
Set Round Stop in HW
CCP_State = WAIT_HW_ROUND_STOP

}
}

Else If (CCP_State = LOAD_FN_SETUP_CC_PER_RND)
{

Get Spec_Token from Test_Spec Data
If (Spec_Token = “CC_per_Round”)
{

Get CC_per_Rnd value from Test_Spec Data
Choose CC_per_Rnd in Data Port Select of HW
Write CC_per_Rnd to HW
CCP_State = LOAD_FN_SETUP_ SCHEDULES

}
Else
{

Write “Wrong Test_Spec format - Expecting CC per Round Line.” To Test_Log_File_Data
Write “SW End Round Error Detected” to SW_Error
Set Round Stop in HW
CCP_State = WAIT_HW_ROUND_STOP

}
}

Else If (CCP_State = LOAD_FN_SETUP_SCHEDULES)
{

// choose schedule in data port select and clear buffers
Data_Word = SET_DATA_PORT_SELECT_SCHED OR CLR_SCHED_BUFF_MASK OR

CLR_SENSOR_BUFF_MASK OR CLR_COMMAND_BUFF_MASK
Write Data_Word to HW
Get Spec_Token from Test_Spec Data
If (Spec_Token = “Schedule”)
{

While (Spec_Token = “Schedule”)
{

For each Num_BIU+1
{

Get Schedule_Field from Test_Spec Data
Write Schedule_Field to HW

}
Get Spec_Token from Test_Spec Data

}
CCP_State = LOAD_FN_SETUP_SENSORS

166

}
Else
{

Write “Wrong Test_Spec format - Expecting Schedule Line.” To Test_Log_File_Data
Write “SW End Round Error Detected” to SW_Error
Set Round Stop in HW
CCP_State = WAIT_HW_ROUND_STOP

}
}

Else If (CCP_State = LOAD_FN_SETUP_SENSORS)
{

If (Spec_Token = “Sensors”)
{

While not End_of_Line(Test_Spec)
{

Get Sensors_Field from Test_Spec Data
Write Sensors_Field to HW

}
CCP_State = LOAD_FN_SETUP_COMMANDS

}
Else
{

Write “Wrong Test_Spec format - Expecting Sensors Line.” To Test_Log_File_Data
Write “SW End Round Error Detected” to SW_Error
Set Round Stop in HW
CCP_State = WAIT_HW_ROUND_STOP

}
}

Else If (CCP_State = LOAD_FN_SETUP_COMMANDS)
{

Get Spec_Token from Test_Spec Data
If (Spec_Token = “Commands”)
{

While not End_of_Line(Test_Spec)
{

Get Commands_Field from Test_Spec Data
Write Commands_Field to HW

}
Preload_Count = 0
Set Function_Setup_End in HW
CCP_State = PRELOAD_FAULT_VECTORS

}
Else
{

Write “Wrong Test_Spec format - Expecting Commands Line.” To Test_Log_File_Data
Write “SW End Round Error Detected” to SW_Error
Set Round Stop in HW
CCP_State = WAIT_HW_ROUND_STOP

}
}

Else If (CCP_State = PRELOAD_FAULT_VECTORS)
{

167

If ((Preload_Count != PRELOAD_FAULT_TOTAL) AND
 (NOT Preload_End_of_File_Flag))
{

If (FV_Index < FV_count)
{

Increment FV_Index, SW_CCI, and Preload_Count
Data_Word = FI_FIRE_TAG OR BROADCAST //header
Send Data_Word to HW
CCP_State = SEND_FIRE_ID

}
Else //end of file

Preload_End_of_File_Flag = 1
}
Else //once the fault vectors have been preloaded
{

Preload_Flag = 0
Set Function_Setup_End in HW to exit func setup phase (start func exec)
CCP_State = WAIT_FN_ENABLE

}
}

Else If (CCP_State = WAIT_FN_ENABLE)
{

If (RC_Status(FUNC_ENA_MASK) = 1)
{

If (Preload_End_of_File_Flag = 0)
CCP_State = SEND_FAULTLOAD

Else
{

Set Control_Data_End in HW
CCP_State = WAIT_HW_ROUND_STOP

}
}

}

Else If (CCP_State = SEND_FAULTLOAD)
{

If (FIC_Status(FI_DATA_BUFF_FULL_MASK) = 0) // not full
{

If (FV_Index < FV_count)
{

Get Fault_Vector from Test_Spec Data
Increment FV_Index and SW_CCI
Data_Word = FI_FIRE_TAG OR Broadcast
Send Data_Word to HW
CCP_State = SEND_FIRE_ID

}
Else //end of file
{

Set Control_Data_End in HW
CCP_State = WAIT_HW_ROUND_STOP

}
}

}

168

Else If (CCP_State = SEND_FIRE_ID)
{

If (FIC_Status(FI_DATA_BUFF_FULL_MASK) = 0) // not full
{

Write FIRE_ID to HW
CCP_State = SEND_DATA_FAULTLOAD

}
}

Else If (CCP_State = SEND_DATA_FAULTLOAD)
{

If (FIC_Status(FI_DATA_BUFF_FULL_MASK) = 0) // not full
{

Write Fault_Vector to HW
CCP_State = SEND_SUMMARY_FAULTLOAD

}
}

Else If (CCP_State = SEND_SUMMARY_FAULTLOAD)
{

If (FIC_Status(FI_SUMMARY_BUFF_FULL_MASK) = 0) // not full
{

Data_Word = FI_EXEC_FLAG_MASK OR Shift binary value of 3 to
FI_MSG_LENGTH_MASK position

Write Data_Word to HW
If (Preload_Flag = 1)

CCP_State = PRELOAD_FAULT_VECTORS
Else

CCP_State = SEND _FAULTLOAD
}

}
}

}
}

///

//Send Test_Log_File_Data

Status = Send_UInt_To_Socket(TL_char_count)
If (errno != 0)
{

Display on screen “Error in sending test log count: (errno)”
Write_All_Output_To_File()
Exit Program

}
Else If (status != 4)
{

Display on screen “Write returned status of (status) on test log count”
Write_All_Output_To_File()
Exit Program

}

For each character in Test Log //if there are none, it will go on

Send_Char_To_Socket(TL_char[])

//Check that the correct number of Test Log characters was received at server

169

Make all of the following reads non-blocking
Start Timeout5(TIMEOUT_SRV_TL _CNT)
Initialize status = -1
While (status = -1)
{

Status = Read_UInt_From_Socket(Srv_TL_char_count)
If ((status = -1) AND (Timeout5))
{

Display on screen “Timeout occurred while waiting for Test Log character count”
Write_All_Output_To_File()

 Exit Program
}

}
If (status = 0)
{

Display on screen “Socket was closed prematurely when trying to read Test Log character count”
Write_All_Output_To_File()
Exit Program

}
Else If (status < sizeof(Srv_TL_char_count))
{

Display on screen “Partial Test Log character count received: (status) bytes”
Write_All_Output_To_File()
Exit Program

}
Else If (Srv_TL_char_count != TL_char_count) //check that server got all
{

Display on screen “Server received (Srv_TL_char_count) Test Spec characters when (TL_char_count) were
sent”

Write_All_Output_To_File()
 Exit Program
}
//Else it was successful

///

//Send FMon File Data

Make all of the following writes blocking
Status = Send_UInt_To_Socket(FMon_count)
If (errno != 0)
{

Display on screen “Error in sending FMon count: (errno)”
Write_All_Output_To_File()
Exit Program

}
Else If (status != 4)
{

Display on screen “Write returned status of (status) on FMon count”
Write_All_Output_To_File()
Exit Program

}

For each entry in FMon //if there are none, it will go on
{

Send_USInt_To_Socket(FMon_val[])
If (errno != 0)

170

{
Display on screen “Error in sending FMon data: (errno)”
Write_All_Output_To_File()
Exit Program

}
Else If (status != 2)
{

Display on screen “Write returned status of (status) on FMon data”
Write_All_Output_To_File()
Exit Program

}
}

//Check that the correct number of FMon was received at server
Make all of the following reads non-blocking
Start Timeout6 (TIMEOUT_SRV_FMON _CNT)
Initialize status = -1
While status = -1
{

Status = Read_UInt_From_Socket(Srv_FMon_count)
If ((status = -1) AND (Timeout6))
{

Display on screen “Timeout occurred while waiting for FMon count”
Write_All_Output_To_File()
Exit Program

}
}
If (status = 0)
{

Display on screen “Socket was closed prematurely when trying to read FMon count”
Write_All_Output_To_File()
Exit Program

}
Else If (status < sizeof(Srv_FMon_count))
{

Display on screen “Partial FMon count received: (status) bytes”
Write_All_Output_To_File()
Exit Program

}
Else If (Srv_FMon_count != FMon_count) //check that server got all
{

Display on screen “Server received (Srv_ FMon _count) FMon entries when (FMon _count) were sent”
Write_All_Output_To_File()
Exit Program

}
//Else it was successful

///

//Send FTmr File Data

Make all of the following writes blocking
Status = Send_UInt_To_Socket(FTmr_count)
If (errno != 0)
{

Display on screen “Error in sending FTmr count: (errno)”
Write_All_Output_To_File()

171

Exit Program
}
Else If (status != 4)
{

Display on screen “Write returned status of (status) on FTmr count”
Write_All_Output_To_File()
Exit Program

}

For each entry in FTmr //if there are none, it will go on
{

Send_USInt_To_Socket(FTmr_val[])
If (errno != 0)
{

Display on screen “Error in sending FTmr data: (errno)”
Write_All_Output_To_File()
Exit Program

}
Else If (status != 2)
{

Display on screen “Write returned status of (status) on FTmr data”
Write_All_Output_To_File()
Exit Program

}
}

//Check that the correct number of FTmr was received at server
Make all of the following reads non-blocking
Start Timeout7 (TIMEOUT_SRV_FTMR _CNT)
Initialize status = -1
While status = -1
{

Status = Read_UInt_From_Socket(Srv_FTmr_count)
If ((status = -1) AND (Timeout7))
{

Display on screen “Timeout occurred while waiting for FTmr count”
Write_All_Output_To_File()
Exit Program

}
}
If (status = 0)
{

Display on screen “Socket was closed prematurely when trying to read FTmr count”
Write_All_Output_To_File()
Exit Program

}
Else If (status < sizeof(Srv_FTmr_count))
{

Display on screen “Partial FTmr count received: (status) bytes”
Write_All_Output_To_File()
Exit Program

}
Else If (Srv_FTmr_count != FTmr_count) //check that server got all
{

Display on screen “Server received (Srv_FTmr_count) FTmr entries when (FTmr_count) were sent”

172

Write_All_Output_To_File()
Exit Program

}
//Else it was successful

///

//Send RTmr File Data

Make all of the following writes blocking
Status = Send_UInt_To_Socket(RTmr_count)
If (errno != 0)
{

Display on screen “Error in sending RTmr count: (errno)”
Write_All_Output_To_File()
Exit Program

}
Else If (status != 4)
{

Display on screen “Write returned status of (status) on RTmr count”
Write_All_Output_To_File()
Exit Program

}

For each entry in RTmr //if there are none, it will go on
{

Send_USInt_To_Socket(RTmr_val[])
If (errno != 0)
{

Display on screen “Error in sending RTmr data: (errno)”
Write_All_Output_To_File()
Exit Program

}
Else If (status != 2)
{

Display on screen “Write returned status of (status) on RTmr data”
Write_All_Output_To_File()
Exit Program

}
}

//Check that the correct number of RTmr was received at server
Make all of the following reads non-blocking
Start Timeout8 (TIMEOUT_SRV_RTMR _CNT)
Initialize status = -1
While status = -1
{

Status = Read_UInt_From_Socket(Srv_RTmr_count)
If ((status = -1) AND (Timeout8))
{

Display on screen “Timeout occurred while waiting for RTmr count”
Write_All_Output_To_File()
Exit Program

}
}
If (status = 0)
{

173

Display on screen “Socket was closed prematurely when trying to read RTmr count”
Write_All_Output_To_File()
Exit Program

}
Else If (status < sizeof(Srv_RTmr_count))
{

Display on screen “Partial RTmr count received: (status) bytes”
Write_All_Output_To_File()
Exit Program

}
Else If (Srv_RTmr_count != RTmr_count) //check that server got all
{

Display on screen “Server received (Srv_RTmr_count) RTmr entries when (RTmr_count) were sent”
Write_All_Output_To_File()
Exit Program

}
//Else it was successful

///

//Send SMon File Data

Make all of the following writes blocking
Status = Send_UInt_To_Socket(SMon_count)
If (errno != 0)
{

Display on screen “Error in sending SMon count: (errno)”
Write_All_Output_To_File()
Exit Program

}
Else If (status != 4)
{

Display on screen “Write returned status of (status) on SMon count”
Write_All_Output_To_File()
Exit Program

}

For each entry in SMon //if there are none, it will go on
{

Send_USInt_To_Socket(SMon_val[])
If (errno != 0)
{

Display on screen “Error in sending SMon data: (errno)”
Write_All_Output_To_File()
Exit Program

}
Else If (status != 2)
{

Display on screen “Write returned status of (status) on SMon data”
Write_All_Output_To_File()
Exit Program

}
}

//Check that the correct number of SMon was received at server
Make all of the following reads non-blocking
Start Timeout9 (TIMEOUT_SRV_SMON _CNT)

174

Initialize status = -1
While status = -1
{

Status = Read_UInt_From_Socket(Srv_SMon_count)
If ((status = -1) AND (Timeout9))
{

Display on screen “Timeout occurred while waiting for SMon count”
Write_All_Output_To_File()
Exit Program

}
}
If (status = 0)
{

Display on screen “Socket was closed prematurely when trying to read SMon count”
Write_All_Output_To_File()
Exit Program

}
Else If (status < sizeof(Srv_SMon_count))
{

Display on screen “Partial SMon count received: (status) bytes”
Write_All_Output_To_File()
Exit Program

}
Else If (Srv_SMon_count != SMon_count) //check that server got all
{

Display on screen “Server received (Srv_SMon_count) SMon entries when (SMon_count) were sent”
Write_All_Output_To_File()
Exit Program

}
//Else it was successful

Close socket

///

//Write_All_Output_To_File()

//Test_Log_File
Open Test Log File
Write_string(Test_Log_File_Data, TL_char)

//FMon_File
Open FMon File
Index = 0
For index < FMon_count
{

Write_binary(FMon_File, FMon_val[index])
Index++

}

//FTmr_File
Open FTmr File
Index = 0
For index < FTmr_count
{

Write_binary(FTmr_File, FTmr_val[index])
Index++

175

}

//RTmr_File
Open RTmr File
Index = 0
For index < RTmr_count
{

Write_binary(RTmr_File, RTmr_val[index])
Index++

}

//SMon_File
Open SMon File
Index = 0
For index < SMon_count
{

Write_binary(SMon_File, SMon_val[index])
Index++

}
Close files (Test_Log_File, FMon_File, FTmr_File, RTmr_File, SMon_File)

C.4. STC Test Execution Software

Create a socket
Resolve server address
Connect to server
Enable standard I/O on socket

Initialize FPGA (load bit file)
Functional HW Reset
Initialize screen

While NOT (Keyboard_Input = „y‟)
{

Key_Pressed = Check_Keyboard()
If (Key_Pressed)
{

Keyboard_Input = Get_Char()
If (Keyboard_Input = „n‟)

Exit Program
}

}
Key_Pressed = 0

Clear CCL Buffers
Send Round_Begin to HW
Start Timer for half second intervals

While NOT CCP_Round_Finished
{

Get RTmr_Word and SMon_Word from HW
SMon_Avail = SMon_Word and SMON_BUFF_REC_AVAIL_ALL_MASK

176

// Select buffers to service
If (SERVICE_RTMR_BUFFER = 0)

RTmr_ Word = 0
If (SERVICE_SMON_BUFFER = 0)

SMon_Word = 0

//Is there any data in the serviced buffers?
If ((RTmr_Word(RTMR_BUFF_REC_AVAIL_MASK) != 0) OR (SMon_Word != 0))

Buffers_Empty = FALSE
Else

Buffers_Empty = TRUE

If (Buffers_Empty = FALSE)
{

//RTmr
If (RTmr_Word(RTMR_BUFF_REC_AVAIL_MASK) = 1)
{

If (RTmr_Word(RTMR_BUFF_OVERFLOW_MASK) = 1)
{

RTmr_Overflow = TRUE
Write “RTmr buffer Overflow” to Test_Log_File_Data

}
Else

FTmr_Overflow = FALSE

Choose RTmr in Data Port Select

For I = 1 to (1 + SWXF_Num_RTmr_IC_DW)
{

Get RTmr_Data from HW
Write RTmr_Data to RTmr_File_Data

}

Partial_pop = RTmr_Word and RTMR_BUFF_PARTIAL_POP_MASK

If (Partial_pop != 0)
{

RTmr_Partial_Pop = TRUE
SW_End_Error_Flag = TRUE
Write “RTmr partial pop” to Test_Log_File_Data
Write “SW End Round Error Detected” to SW_Error

}
}

//SMon
If (SMon_Word(SMON_BUFF_OVERFLOW_MASK) = 1)
{

SMon_Overflow = TRUE
Write “SMon buffer Overflow” to Test_Log_File_Data

}
Else

SMon_Overflow = FALSE

For each I = 0 to Num_BIU
{

177

BIU_Avail = SMON_BUFF_REC_AVAIL_PE_MASK[I] AND SMon_Word2

If (BIU_Avail > 0)
{

Get Output_Enable = Data_Word and OUTPUT_ENA_ALL_MASK
Data_Word = Output_Enable or SET_SMON_BUFF_SELECT_PE[I]
Choose PE SMon lane
Write I to SMon_File_Data
For J = 1 to (PE_BIU_State_Msg_Length + SWXF_Num_RTmr_IC_DW + 2)
{

Get SMon_Data from HW
Write SMon_Data to SMon_File_Data

}

Partial_pop = SMon_Word and SMON_BUFF_PARTIAL_POP_MASK

If (Partial_pop != 0)
{

SMon_Partial_Pop = TRUE
SW_End_Error_Flag = TRUE
Write “SMon partial pop” to Test_Log_File_Data
Write “SW End Round Error Detected” to SW_Error

}
}

}

//Set overflow stop condition
If ((RTmr_Overflow) OR (SMon_Overflow))

Buffer_Overflow_Stop = 1
Else

Buffer_Overflow_Stop = 0
}

Else If (time_elapsed >= 0.5 seconds)
{

If (Next_Timed_Task = SCREEN_UPDATE)
{

update_screen()
Next_Timed_Task = KEYBOARD_CHECK

}
Else //Next_Timed_Task = KEYBOARD_CHECK
{

Key_Pressed = Check_Keyboard()
Next_Timed_Task = SCREEN_UPDATE

}
Reset time_elapsed

}

Else //CCP_State
{

Set RC_Status and FIC_Status from HW

If (CCP_State = FINISH_UP_ROUND)
{

Write RC_Status to Test_Log_File_Data

178

Stop_Condition = RC_Status and STOP_CONDITION_MASK
Write Integer version of Stop_Condition to Test_Log_File_Data
update_screen()
Set CCP_Round_Finished to exit loop

}

Else
{

If (RC_Status(RND_STOP_MASK))
CCP_State = FINISH_UP_ROUND

Else If ((Buffer_Overflow_Stop) OR (Key_Pressed) OR (SW_End_Error_Flag))
{

Set Round Stop in HW
CCP_State = WAIT_HW_ROUND_STOP

}
Else If (CCP_State = WAIT_HW_ROUND_STOP)
{

If (RC_Status(RND_STOP_MASK))
CCP_State = FINISH_UP_ROUND

}
Else If (CCP_State = WAIT_ROUND_ENABLE)
{

If (RC_Status(RND_ENA_MASK))
{

Choose Round Index in Data Port Select in HW
Get Round_Index from HW
Choose Enabled Nodes in Data Port Select in HW
Get Enabled_Nodes from HW
Set Num_RMU based on Enabled_Nodes
Enable SMon Output lanes based on Enabled_Nodes
CCP_State = WAIT_SPIDER_READY

}
}
Else If (CCP_State = WAIT_SPIDER_READY)
{

If (RC_Status(SPIDER_RDY_MASK))
CCP_State = WAIT_FI_SETUP_END

}
Else If (CCP_State = WAIT_FI_SETUP_END)
{

If (FIC_Status(FI_SETUP_END_MASK))
CCP_State = WAIT_FN_ENABLE

Else
Set FI_Setup_End in HW

}
Else If (CCP_State = WAIT_FN_ENABLE)
{

If (RC_Status(FUNC_ENA_MASK) = 1)
CCP_State = WAIT_HW_ROUND_STOP

}
}

}
}

179

///

//Send Test_Log_File_Data

Status = Send_UInt_To_Socket(TL_char_count)
If (errno != 0)
{

Display on screen “Error in sending test log count: (errno)”
Write_All_Output_To_File()
Exit Program

}
Else If (status != 4)
{

Display on screen “Write returned status of (status) on test log count”
Write_All_Output_To_File()
Exit Program

}

For each character in Test Log //if there are none, it will go on

Send_Char_To_Socket(TL_char[])

//Check that the correct number of Test Log characters was received at server
Make all of the following reads non-blocking
Start Timetou1 (TIMEOUT_SRV_TL _CNT)
Initialize status = -1
While status = -1
{

Status = Read_UInt_From_Socket(Srv_TL_char_count)
If ((status = -1) and (Timeout1))
{

Display on screen “Timeout occurred while waiting for Test Log character count”
Write_All_Output_To_File()

 Exit Program
}

}
If (status = 0)
{

Display on screen “Socket was closed prematurely when trying to read Test Log character count”
Write_All_Output_To_File()
Exit Program

}
Else If (status < sizeof(Srv_TL_char_count))
{

Display on screen “Partial Test Log character count received: (status) bytes”
Write_All_Output_To_File()
Exit Program

}
Else If (Srv_TL_char_count != TL_char_count) //check that server got all
{

Display on screen “Server received (Srv_TL_char_count) Test Spec characters when (TL_char_count) were
sent”

Write_All_Output_To_File()
 Exit Program
}
//Else it was successful

///

180

//Send RTmr File Data

Make all of the following writes blocking
Status = Send_UInt_To_Socket(RTmr_count)
If (errno != 0)
{

Display on screen “Error in sending RTmr count: (errno)”
Write_All_Output_To_File()
Exit Program

}
Else If (status != 4)
{

Display on screen “Write returned status of (status) on RTmr count”
Write_All_Output_To_File()
Exit Program

}

For each entry in RTmr //if there are none, it will go on
{

Send_USInt_To_Socket(RTmr_val[])
If (errno != 0)
{

Display on screen “Error in sending RTmr data: (errno)”
Write_All_Output_To_File()
Exit Program

}
Else If (status != 2)
{

Display on screen “Write returned status of (status) on RTmr data”
Write_All_Output_To_File()
Exit Program

}
}

//Check that the correct number of RTmr was received at server
Make all of the following reads non-blocking
Start Timeout2 (TIMEOUT_SRV_RTMR _CNT)
Initialize status = -1
While status = -1
{

Status = Read_UInt_From_Socket(Srv_RTmr_count)
If ((status = -1) and (Timeout2))
{

Display on screen “Timeout occurred while waiting for RTmr count”
Write_All_Output_To_File()
Exit Program

}
}
If (status = 0)
{

Display on screen “Socket was closed prematurely when trying to read RTmr count”
Write_All_Output_To_File()
Exit Program

}
Else If (status < sizeof(Srv_RTmr_count))
{

181

Display on screen “Partial RTmr count received: (status) bytes”
Write_All_Output_To_File()
Exit Program

}
Else If (Srv_RTmr_count != RTmr_count) //check that server got all
{

Display on screen “Server received (Srv_RTmr_count) RTmr entries when (RTmr_count) were sent”
Write_All_Output_To_File()
Exit Program

}
//Else it was successful

///

//Send SMon File Data

Make all of the following writes blocking
Status = Send_UInt_To_Socket(SMon_count)
If (errno != 0)
{

Display on screen “Error in sending SMon count: (errno)”
Write_All_Output_To_File()
Exit Program

}
Else If (status != 4)
{

Display on screen “Write returned status of (status) on SMon count”
Write_All_Output_To_File()
Exit Program

}

For each entry in SMon //if there are none, it will go on
{

Send_USInt_To_Socket(SMon_val[])
If (errno != 0)
{

Display on screen “Error in sending SMon data: (errno)”
Write_All_Output_To_File()
Exit Program

}
Else If (status != 2)
{

Display on screen “Write returned status of (status) on SMon data”
Write_All_Output_To_File()
Exit Program

}
}

//Check that the correct number of SMon was received at server
Make all of the following reads non-blocking
Start Timeout3 (TIMEOUT_SRV_SMON _CNT)
Initialize status = -1
While status = -1
{

Status = Read_UInt_From_Socket(Srv_SMon_count)
If ((status = -1) and (Timeout3))
{

182

Display on screen “Timeout occurred while waiting for SMon count”
Write_All_Output_To_File()
Exit Program

}
}
If (status = 0)
{

Display on screen “Socket was closed prematurely when trying to read SMon count”
Write_All_Output_To_File()
Exit Program

}
Else If (status < sizeof(Srv_SMon_count))
{

Display on screen “Partial SMon count received: (status) bytes”
Write_All_Output_To_File()
Exit Program

}
Else If (Srv_SMon_count != SMon_count) //check that server got all
{

Display on screen “Server received (Srv_SMon_count) SMon entries when (SMon_count) were sent”
Write_All_Output_To_File()
Exit Program

}
//Else it was successful

Close socket

///

//Write_All_Output_To_File()

//Test_Log_File
Open Test Log File
Write_string(Test_Log_File, TL_char)

//RTmr_File
Open RTmr File
Index = 0
For index < RTmr_count
{

Write_binary(RTmr_File, RTmr_val[index])
Index++

}

//SMon_File
Open SMon File
Index = 0
For index < SMon_count
{

Write_binary(SMon_File, SMon_val[index])
Index++

}
Close files (Test_Log_File, RTmr_File, SMon_File)

183

References

[ARINC651] ARINC 651-1: Design Guidance for Integrated Modular Avionics. Aeronautical Radio,
Inc., November 7, 1997.

[Arlat03] Arlat, Jean; et al: Comparison of Physical and Software-Implemented Fault Injection

Techniques. IEEE Transaction on Computers, Vol. 52, No. 9, September 2003, pp.
1115-1133.

[Arlat89] Arlat, Jean; et al: Fault Injection for Dependability Validation of Fault-Tolerant

Computing Systems. 19th International Symposium on Fault Tolerant Computing
Symposium (FTCS 19), 1989, pp. 348-355.

[Armstrong93] Armstrong, James R.; and Gray, F. Gail: Structured Logic Design with VHDL. Prentice
Hall PTR, 1993.

[Avizienis04] Avizienis, Algirdas; et al: Basic Concepts and Taxonomy of Dependable and Secure

Computing. IEEE Transactions on Dependable and Secure Computing, Vol. 1, No. 1,
January-March 2004, pp. 11-33.

[Azadmanesh00] Azadmanesh, M.H.; and Kieckhafer, R.M.: Exploiting omissive faults in synchronous

approximate agreement. IEEE Transaction on Computers, Vol. 49, No. 10, October
2000, pp. 1031–1042.

[Butler02] Butler, Ricky W.; et al: NASA Langley’s Research and Technology Transfer Program in

Formal Methods. NASA Langley Research Center, May 2002. Available on the World
Wide Web at http://shemesh.larc.nasa.gov/fm/NASA-over.pdf.

[Butler08] Butler, Ricky W.; A Primer on Architectural Level Fault Tolerance. NASA/TM-2008-
215108, 2008.

[Chávez10] Chávez-Fuentes, J. R.; González, O. R.; and Gray, W. S.: Performance Analysis of Fault

Tolerant Control Systems with I.I.D. Upsets. Proc. 2010 American Control Conference,
Baltimore, Maryland, 2010, to appear

[Clough96] Clough, B. T.: Effects of electromagnetic interference on digital control systems. Wright-
Patterson AFB, Dayton, OH, Internal Report WL-TR-96-3122, 1996.

[DeMicheli94] De Micheli, Giovanni: Synthesis and Optimization of Digital Circuits. McGraw-Hill,
1994.

[Driscoll03] Driscoll, Kevin; Hall, Brendan; Sivencrona, Hakan; and Zumsteg, Phil: Byzantine Fault

Tolerance, from Theory to Reality. 22nd International Conference on Computer Safety,
Reliability and Security (SAFECOMP03), Edinburgh, Scotland, UK, October 2003, pp.
235-248.

[FAA93] FAA: Certification of aircraft electrical/electronic systems for operation in the high

intensity radiated fields (HIRF) environment. Federal Aviation Administration,
Proposed FAA Circular ARD 50040 Draft 16, August 1993.

184

[Fuller95] Fuller, Gerald L.: Understanding HIRF – High Intensity Radiated Fields. Aviation
Communications, Inc., Leesburg, VA, 1995, p. 7-2

[González01] González, O. R.; Gray, W. S.; and Tejada, A.: Analytical Tools for the Design and

Verification of Safety Critical Control Systems. 2001 SAE Transactions - Journal of
Aerospace, vol. 110, Section 1, 2001, pp. 481-490

[Gray00] Gray, W. S.; González, O. R.; and Dogan, M.: Stability Analysis of Digital Linear Flight

Controllers Subject to Electromagnetic Disturbances. IEEE Transactions on Aerospace
and Electronic Systems, vol. 36, no. 4, October 2000, pp. 1204-1218.

[Gray08] Gray, W. Steven; Wang, Rui; and González, Oscar R.: A Performance Model for a

Distributed Flight Control System Subject to Random Upsets. Proc. 2008 IEEE
Conference on Control Applications, San Antonio, Texas, 2008, pp. 918-923.

[Gray10] Gray, W. S.; Wang, R.; González, O. R.; and Chávez-Fuentes, J. R.: Tracking

Performance Analysis of a Distributed Recoverable Boeing 747 Flight Control System

Subject to Digital Upsets. Proc. 2010 American Control Conference, Baltimore,
Maryland, 2010, to appear

[Hess97] Hess, Richard: Computing Platform Architectures for Robust Operation in the Presence of

Lightning and Other Electromagnetic Threats. Presented at the 16th Digital Avionics
Systems Conference (DASC), Irvine, California, October 26-30, 1997

[Hsueh97] Hsueh, Mei-Chen; Tsai, T.K.; and Iyer, R. K.: Fault Injection Techniques and Tools.
Computer, Vol. 30, Issue 4, April 1997, pp. 75-82.

[IVHM08] Integrated Vehicle Health Management, Technical Plan, Version 2.02. NASA, Aeronautic
Mission Research Directorate, Aviation Safety Program, December 8, 2008.

[Karlsson95] Karlsson, J.; et al: Application of Three Physical Fault Injection Techniques to the

Experimental Assessment of the MARS Architecture. Proc. 5th IFIP Working Conference
on Dependable Computing for Critical Applications (DCCA-5), IEEE Computer Society
Press, Urbana-Champaign, IL, USA, September 1995, pp. 267-287.

[Koopman04] Koopman, Philip; and Chakavarty, Tridib: Cyclic Redundancy Code (CRC) Polynomial

Selection for Embedded Networks. The International Conference on Dependable
Systems and Networks (DSN), 2004, pp. 145 - 154.

[Lala91] Lala, Jaynarayan H.; Harper, Richard E.; and Alger, Linda S.: A Design Approach for

Ultrareliable Real-Time Systems. IEEE Computer, Vol. 24, No. 5, May 1991, pp. 12-
22.

[Layton98] Layton, P. J.; et al: Single Event Latchup Protection of Integrated Circuits. Fourth
European Conference on radiation and Its Effects on Components and Systems,
(RADECS 97), Cannes, France, 1997, pp. 327 - 331.

[Malekpour09] Malekpour, Mahyar R.: A Self-Stabilizing Byzantine-Fault-Tolerant Clock

Synchronization Protocol. NASA/TM-2009-215758, June 2009, pp. 43.

185

[Miner02] Miner, Paul S.; Malekpour, Mahyar; and Torres, Wilfredo: A Conceptual Design for a

Reliable Optical Bus (ROBUS). Presented at the 21st Digital Avionics Systems
Conference (DASC), Irvine, California, October 27-31, 2002.

[NASA06] 2006 NASA Strategic Plan. NP-2006-02-423-HQ, 2006.

[Paulitsch05] Paulitsch, Michael; et al: Coverage and the Use of Cyclic Redundancy Codes in Ultra-

Dependable Systems. International Conference on Dependable Systems and Networks
(DSN), June 2005.

[PC/104] PC/104-Plus Specification. Version 1.1, PC/104 Consortium, June 1997.

[Powell92] Powell, David: Failure Mode Assumptions and Assumption Coverage. 22nd International
Symposium on Fault Tolerant Computing Systems, 1992, pp. 396 - 395.

[R2PP] On the World Wide Web at http://opensource.arc.nasa.gov/project/robus-2/

[Ramabadran88] Ramabadran, Tenkasi V.; and Gaitonde, Sunil S.: A Tutorial on CRC Computations. IEEE
Micro, Vol. 8, Issue 4, 1998, pp. 62 - 75.

[Shin08] Shin, Jaiwon. Associate Administrator, Aeronautic Mission Research Directorate.
Opening Remarks, Aviation Safety Program. 2008 Annual Technical Meeting, Denver,
CO, October 21, 2008.

[Stallings94] Stallings, William: Data and Computer Communications. 4th Edition, Prentice-Hall, Inc.,
1994, p. 166.

[Taber93] Taber, A.; and Normand, E.: Single Event Upset in Avionics. IEEE Transactions on
Nuclear Science, Vol. 40, No. 2, April 1993, pp. 120-126.

[Torres05A] Torres-Pomales, Wilfredo; Malekpour, Mahyar; and Miner, Paul S.: ROBUS-2: A Fault-

Tolerant Broadcast Communication System. NASA TM-2005-213540, 2005.

[Torres05B] Torres-Pomales, Wilfredo; Malekpour, Mahyar; and Miner, Paul S.: Design of the

Protocol Processor for the ROBUS-2 Communication System. NASA TM-2005-
213934, 2005.

[Torres08A] Torres-Pomales, Wilfredo; Malekpour, Mahyar R.; Miner, Paul S.; and Koppen, Sandra
V.: Plan for the Characterization of HIRF Effects on a Fault-Tolerant Computer

Communication System. NASA/TM-2008-215306, 2008.

[Torres08B] Torres-Pomales, Wilfredo; Malekpour, Mahyar R.; Miner, Paul S.; and Koppen, Sandra
V.: Design of Test Articles and Monitoring System for the Characterization of HIRF

Effects on a Fault-Tolerant Computer Communication System. NASA/TM-2008-
215322, 2008.

[Weber06] Weber, Paul J.: Dynamic Reduction Algorithms for Fault Tolerant Convergent Voting with

Hybrid Faults. Doctoral Dissertation, Michigan Technological University, May 2006.

[XAPP077] Xilinx Application Note XAPP077: Metastability Considerations. Version 1.0, Xilinx
Corporation, January 1997.

186

[XAPP230] Xilinx Application Note XAPP230: The LVDS I/O Standard. Version 1.1, Xilinx
Corporation, November 1999.

[Yates10] Yates, Amy M.; Torres-Pomales, Wilfredo; Malekpour, Mahyar R.; González, Oscar R.;
and Gray, W. Steven: Design of a High-Intensity Radiated Field Fault-Injection

Experiment for a Fault-Tolerant Distributed Computation and Communication System.
Proc. 2010 Digital Avionics Systems Conference (DASC), Salt Lake City, Utah, 2010,
to appear.

[Zhang08] Zhang, H.; Gray, W. S.; and González, O. R.: Performance Analysis of Digital Flight

Control Systems with Rollback Error Recovery Subject to Simulated Neutron-Induced

Upsets. IEEE Transactions on Control Systems Technology, vol. 16, no. 1, January
2008, pp. 46-59.

[Zhang09] Zhang, H.; Gray, W. S.; González, O. R.; and Lakdawala, A. V.: Output Tracking

Performance of a Recoverable Digital Flight Control System in Neutron

Environments. IEEE Transactions on Aerospace and Electronic Systems, vol. 45, no. 1,
January 2009, pp. 321-335.

187

Acronyms and Abbreviations

ASAP As Soon As Possible
ASCII American Standard Code for Information Interchange
BER Bit Error Rate
BIU Bus Interface Unit
CC Control Cycle
CCI Control Cycle Index
CCL Controller Coordination Link
CCP Controller Coordination Protocol
CDM Clique Detection Mode
CDU Correct, Detected, Undetected
CFIMS Configurable Fault Injection and Monitoring System
CIM Clique Initialization Mode
CJM Clique Join Mode
COTS Commercial Off-The-Shelf
CPLD Complex Programmable Logic Device
CPM Clique Preservation Mode
CRC Cyclic Redundancy Code
CTS Clear To Send
DCP Detectability, Consistency and Persistence
DII Data Introduction Interval
DL Data Link
ECR Error Containment Region
EMI Electromagnetic Interference
ENM Embedded Node Monitor
FCR Fault Containment Region
FCS Frame Check Sequence
FI Fault Injection; Fault Injectors
FIC Fault Injection Controller
FIFO First-In, First-Out
FMon Function Monitor
FPGA Field-Programmable Gate Array
FTmr Function Timer
GOT Good, Omissive, Transmissive
HFCS Header Frame Check Sequence
HIRF High Intensity Radiated Field
HMon Health Monitor
IC Interval Count
IEV Input Eligible Voters
IIEV Initial Input Eligible Voters
IMA Integrate Modular Avionics
IO Input-Output
IORU Input-Output Receive Unit
IOSU Input-Output Send Unit
IT Interval Time
IU Input Unit
IVHM Integrated Vehicle Health Management
LaRC Langley Research Center
LSM Lane State Monitor
LVDS Low-Voltage Differential Signaling
M Number of BIUs (equal in value to Num_RMU)
MBS Manchester Bit Stream
MC Manchester Code; Master Controller

188

MCU Mode Control Unit
N Number of BIUs (equal in value to Num_BIU and Num_PE)
NASA National Aeronautics and Space Administration
NCM Node Condition Monitor
NRZ Non-Return-To-Zero
Num_BIU Number of BIUs
Num_PE Number of PEs
Num_RMU Number of RMUs
OCL Operation Coordination Level
ODU Old Dominion University
OK Opposite Kind
OTH Omissive-Transmissive Hybrid
PE Processing Element
PESU PE Setup Unit
PFCS Packet Frame Check Sequence
PFD Packet Frame Decoder
PFE Packet Frame Encoder
PISO Parallel-In Serial-Out
PMCU Packet-Mode Communication Unit
PTC Primary Test Controller
PTL Primary Test Link
RC Round Control; ROBUS Cycle
RCI Round Cycle Index
RCtlr Round Controller
RL ROBUS Link
RM ROBUS Message
RMU Redundancy Management Unit
ROBUS Reliable Optical Bus (obsolete as an acronym; now ROBUS is the name given to the

communication system concept); Robust Bus
RPP ROBUS Protocol Processor
RRU ROBUS Receive Unit
RSPP Reconfigurable SPIDER Prototyping Platform
RSU ROBUS Send Unit
RT Round Time
RTmr Round Timer
RTS Request To Send
Rx Receiver
SCP Self-Checking Pair
SD Signal Detect
SFT SPIDER Function Tester
SK Same Kind
SMon State Monitor
SMR State Message Receiver
SMU State Monitoring Unit
SPIDER Scalable Processor-Independent Design for Extended Reliability
SRAM Static Random Access Memory
STC Secondary Test Controller
STL Secondary Test Link
STM Self-Test Mode
STMon Stop Trigger Monitor
SUT System Under Test
SW Software
SWXF Software Interface
Sync Synchronization
TCL Test Control Link

189

TCM Test Control Message
TDMA Time-Division Multiple Access
Tx Transmitter
VHDL VHSIC (Very-High-Speed Integrated Circuit) Hardware Description Language
WFD Word Frame Decoder
WFE Word Frame Encoder
WMCU Word-Mode Communication Unit

REPORT DOCUMENTATION PAGE
Form Approved

OMB No. 0704-0188

2. REPORT TYPE

Technical Memorandum
 4. TITLE AND SUBTITLE

Fault Injection and Monitoring Capability for a Fault-Tolerant Distributed
Computation System

5a. CONTRACT NUMBER

 6. AUTHOR(S)

Torres-Pomales, Wilfredo; Yates, Amy M.; Malekpour, Mahyar R.

 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

NASA Langley Research Center
Hampton, VA 23681-2199

 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

National Aeronautics and Space Administration
Washington, DC 20546-0001

 8. PERFORMING ORGANIZATION
 REPORT NUMBER

L-19899

10. SPONSOR/MONITOR'S ACRONYM(S)

NASA

13. SUPPLEMENTARY NOTES

12. DISTRIBUTION/AVAILABILITY STATEMENT

Unclassified - Unlimited
Subject Category 62
Availability: NASA CASI (443) 757-5802

19a. NAME OF RESPONSIBLE PERSON

STI Help Desk (email: help@sti.nasa.gov)

14. ABSTRACT

The Configurable Fault-Injection and Monitoring System (CFIMS) is intended for the experimental characterization of effects caused by a
variety of adverse conditions on a distributed computation system running flight control applications. A product of research collaboration
between NASA Langley Research Center and Old Dominion University, the CFIMS is the main research tool for generating actual fault
response data with which to develop and validate analytical performance models and design methodologies for the mitigation of fault effects
in distributed flight control systems. Rather than a fixed design solution, the CFIMS is a flexible system that enables the systematic
exploration of the problem space and can be adapted to meet the evolving needs of the research. The CFIMS has the capabilities of
system-under-test (SUT) functional stimulus generation, fault injection and state monitoring, all of which are supported by a configuration
capability for setting up the system as desired for a particular experiment. This report summarizes the work accomplished so far in the
development of the CFIMS concept and documents the first design realization.

15. SUBJECT TERMS

Data communication systems; Distributed systems; Fault injection; Fault tolerance; System monitoring

18. NUMBER
 OF
 PAGES

202
19b. TELEPHONE NUMBER (Include area code)

(443) 757-5802

a. REPORT

U

c. THIS PAGE

U

b. ABSTRACT

U

17. LIMITATION OF
 ABSTRACT

UU

Prescribed by ANSI Std. Z39.18
Standard Form 298 (Rev. 8-98)

3. DATES COVERED (From - To)

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

645846.02.07.07.15.02

11. SPONSOR/MONITOR'S REPORT
 NUMBER(S)

NASA/TM-2010-216834

16. SECURITY CLASSIFICATION OF:

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this
collection of information, including suggestions for reducing this burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and
Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person
shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY)
08 - 201001-

