
 

    

August 2010 

NASA/TM–2010-216834 
 

 
 

Fault Injection and Monitoring Capability for a 
Fault-Tolerant Distributed Computation System  
 

Wilfredo Torres-Pomales, Amy M. Yates, and Mahyar R. Malekpour 
Langley Research Center, Hampton, Virginia 
 
 

 

 

 
 
 

 

 
 
 



 

NASA STI Program . . . in Profile 
 

     Since its founding, NASA has been dedicated to 
the advancement of aeronautics and space science. 
The NASA scientific and technical information (STI) 
program plays a key part in helping NASA maintain 
this important role. 

 
     The NASA STI program operates under the 
auspices of the Agency Chief Information Officer. It 
collects, organizes, provides for archiving, and 
disseminates NASA’s STI. The NASA STI program 
provides access to the NASA Aeronautics and Space 
Database and its public interface, the NASA Technical 
Report Server, thus providing one of the largest 
collections of aeronautical and space science STI in 
the world. Results are published in both non-NASA 
channels and by NASA in the NASA STI Report 
Series, which includes the following report types: 

 
• TECHNICAL PUBLICATION. Reports of 

completed research or a major significant phase 
of research that present the results of NASA 
programs and include extensive data or 
theoretical analysis. Includes compilations of 
significant scientific and technical data and 
information deemed to be of continuing 
reference value. NASA counterpart of peer-
reviewed formal professional papers, but having 
less stringent limitations on manuscript length 
and extent of graphic presentations. 

 
• TECHNICAL MEMORANDUM. Scientific 

and technical findings that are preliminary or of 
specialized interest, e.g., quick release reports, 
working papers, and bibliographies that contain 
minimal annotation. Does not contain extensive 
analysis. 

 
• CONTRACTOR REPORT. Scientific and 

technical findings by NASA-sponsored 
contractors and grantees. 

 

 
• CONFERENCE PUBLICATION. Collected 

papers from scientific and technical 
conferences, symposia, seminars, or other 
meetings sponsored or co-sponsored by NASA. 

 
• SPECIAL PUBLICATION. Scientific, 

technical, or historical information from NASA 
programs, projects, and missions, often 
concerned with subjects having substantial 
public interest. 

 
• TECHNICAL TRANSLATION. English-

language translations of foreign scientific and 
technical material pertinent to NASA’s mission. 

 
     Specialized services also include creating custom 
thesauri, building customized databases, and 
organizing and publishing research results. 
 
     For more information about the NASA STI 
program, see the following: 
 
• Access the NASA STI program home page at 

http://www.sti.nasa.gov 
 
• E-mail your question via the Internet to 

help@sti.nasa.gov 
 
• Fax your question to the NASA STI Help Desk 

at 443-757-5803 
 
• Phone the NASA STI Help Desk at  

443-757-5802 
 
• Write to: 

           NASA STI Help Desk 
           NASA Center for AeroSpace Information 
           7115 Standard Drive 
           Hanover, MD 21076-1320



 

National Aeronautics and  
Space Administration 
 
Langley Research Center   
Hampton, Virginia 23681-2199  

    

August 2010 
 

NASA/TM–2010-216834 
 

 
 

Fault Injection and Monitoring Capability for a 
Fault-Tolerant Distributed Computation System  
 

Wilfredo Torres-Pomales, Amy M. Yates, and Mahyar R. Malekpour 
Langley Research Center, Hampton, Virginia 
 

 

 

 

 

 



 

Available from: 
 

NASA Center for AeroSpace Information 
7115 Standard Drive 

Hanover, MD 21076-1320 
443-757-5802 

 
 

Acknowledgments  

The system described in this report originated from an initial experiment concept 
developed in collaboration with Dr. Oscar R. González and Dr. W. Steven Gray of Old 
Dominion University. We are grateful for their productive discussions in the development 
of system requirements. 
  
We would like to thank Sandra V. Koppen and Truong X. Nguyen for their contributions 
to the definition of the system configuration for fault-injection experiments in a HIRF 
environment. 
  
The work described here was made possible by the support from Eric G. Cooper, 
Associate Principal Investigator for NASA’s  IVHM Project. 
  
The work performed by Old Dominion University as part of this research collaboration is 
funded by the NASA Langley Research Center under grant NNX07AD52A. 

 

 

 

 

 

 

 

 
 

 

 

 

 

The use of trademarks or names of manufacturers in this report is for accurate reporting and does not 
constitute an official endorsement, either expressed or implied, of such products or manufacturers by the 
National Aeronautics and Space Administration. 



 

 
 
 
 
  
  
                                                                                            
                                                                                            iii

 

 

 

Abstract 

The Configurable Fault-Injection and Monitoring System (CFIMS) is 

intended for the experimental characterization of effects caused by a 

variety of adverse conditions on a distributed computation system 

running flight control applications.  A product of research collaboration 

between NASA Langley Research Center and Old Dominion University, 

the CFIMS is the main research tool for generating actual fault response 

data with which to develop and validate analytical performance models 

and design methodologies for the mitigation of fault effects in distributed 

flight control systems.  Rather than a fixed design solution, the CFIMS is 

a flexible system that enables the systematic exploration of the problem 

space and can be adapted to meet the evolving needs of the research.  

The CFIMS has the capabilities of system-under-test (SUT) functional 

stimulus generation, fault injection and state monitoring, all of which are 

supported by a configuration capability for setting up the system as 

desired for a particular experiment.  This report summarizes the work 

accomplished so far in the development of the CFIMS concept and 

documents the first design realization. 
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1.   Introduction  

The system described in this report, henceforth referred to as the Configurable Fault-Injection and 
Monitoring System (CFIMS), is intended for the experimental characterization of effects caused by a 
variety of adverse conditions on a distributed computation system running flight control applications.  
The CFIMS is a product of collaborative research between NASA Langley Research Center (LaRC) and 
Old Dominion University (ODU) in support of NASA‟s goal of developing technologies to improve the 

intrinsic safety of aircraft [NASA06, Shin08].  The research is being performed under the organizational 
framework of the Aviation Safety Program‟s Integrated Vehicle Health Management (IVHM) research 

thrust, which aims to develop tools, technologies and techniques to mitigate hazardous events during 
flight [IVHM08].  The NASA-ODU collaboration is focused on developing theoretical tools to analyze 
the relationship between the design features of a representative computational platform and the 
performance of a flight control system implemented using the platform and operating in harsh 
environments [Gray08, Gray10, Chávez10].   

The distributed computation platform selected for this research is the Scalable Processor Independent 
Design for Extended Reliability (SPIDER) developed at Langley Research Center under a previous 
research effort [Miner02, Torres05A].  SPIDER is a concept for a family of general-purpose fault-tolerant 
architectures that provides a flexible set of design solutions capable of satisfying a wide range of 
performance and reliability requirements, while preserving a consistent interface to applications.  SPIDER 
has a combination of attributes not found in existing architectures:  

 Product family solution adaptable to many different applications;  

 Suitable for safety-critical aircraft functions; 

 Supports the Integrated Modular Avionics (IMA) architectural concept (i.e., the ability to host many 
functions of mixed criticality on the same computational platform) [ARINC651]; 

 Redundancy management decoupled from applications (i.e., the fault tolerance and redundancy 
management functions required by the applications are handled by the computational platform 
itself); 

 Customizable redundancy management strategy according to the requirements of the applications 
(i.e., different fault tolerance and redundancy management strategies can be concurrently supported 
for different applications); 

 Byzantine-fault resilience (i.e., the ability to tolerate arbitrary fault manifestations) [Driscoll03];  

 Function migration capability (i.e., the ability to dynamically move functions across a network to 
different computing resources);  

 Ability to survive or quickly recover from massive correlated transient upsets;  

 Implemented using mostly off-the-shelf hardware and software;  

 Support for dissimilar processors; 
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 Handles part obsolescence (i.e., the design can evolve to accommodate obsolescence of processors 
and low-level communication hardware);  

 High reliability-to-cost ratio; and 

 Design assurance based on Formal Methods (i.e., algorithms and design are formally proven 
correct) [Butler02]   

Figure 1.1 illustrates the SPIDER topology and main system services.  The architecture consists of 
processing elements (PEs) executing the applications and other high-level system functions, and the 
ROBUS (Robust Bus) communication system, which provides basic services as the foundation for higher-
level functions.  The data network has a redundant active-star topology with the Bus Interface Units 
(BIUs) serving as the access ports and the Redundancy Management Units (RMUs) providing 
connectivity as network hubs.  All the communication interfaces are bi-directional.  The links between 
BIUs and RMUs form a complete bipartite graph in which each node is directly connected to every node 
of the opposite kind.  A PE can be collocated and tightly coupled at the physical level to its corresponding 
BIU (i.e., they can share a fault-containment region (FCR)) [Lala91], or they can be physically 
independent components. 

 

Figure 1.1: SPIDER topology and services 

ROBUS implements basic distributed agreement protocols at the level they are most effective (i.e., in 
hardware) and is intended to reduce the computational burden on the PEs by providing a simple 
communication system abstraction for what is an inherently complex distributed processing problem.  
ROBUS-2, an instance of ROBUS, is a time-division multiple access (TDMA) broadcast data 
communication system (i.e., a data bus) with media access control by means of a time-indexed 
communication schedule.  ROBUS-2 provides guaranteed fault-tolerant services to the attached PEs in the 
presence of a bounded number of internal faults.  These services include message broadcast (Byzantine 
Agreement), dynamic communication schedule update, time reference (clock synchronization), and 
distributed diagnosis (group membership).  ROBUS-2 also features fault-tolerant startup and restart 
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capabilities.  ROBUS-2 tolerates internal as well as PE faults and incorporates a dynamic self-
reconfiguration capability driven by the internal diagnostic system.  ROBUS-2 consists of custom-
designed hardware-based ROBUS Protocol Processors (RPPs) implementing the ROBUS-2 functionality, 
and a lower-level physical communication network consisting of full-duplex data links [Stallings94] 
interconnecting the RPPs (see ROBUS Links in Figure 1.1).  Additional information about ROBUS-2 can 
be found in [Torres05A] and [Torres05B].  For completeness, Section 3 of this report provides an 
overview of ROBUS-2.  The VHDL [Armstrong93] source code for the ROBUS-2 RPP is publicly 
available on the Internet with an open-source license agreement [R2PP]. 

In the NASA-ODU research collaboration, the range of adverse events to be considered are those 
characteristic of environmental threats like high-energy particle radiation [Taber93, Zhang08, Zhang09] 
and electromagnetic interference (EMI) from sources such as lightning and high-intensity radiated fields 
(HIRF) [Fuller95, Gray00, González01].  These environments have the potential to cause random fault 
manifestations in individual avionics components and to generate simultaneous system-wide faults that 
can overwhelm existing resource management mechanisms [Gray08, Hess97].  A flight control system 
using SPIDER will be subjected to physical and simulated faults in controlled laboratory conditions 
[Arlat89, Arlat03, Hsueh97, Torres08A] while gathering data suitable for characterizing fault effects at 
the control system level and at the computation platform level.  The CFIMS is a critical element of the 
research effort as the means to generate experimental data for the development and validation of 
performance models for operation in adverse conditions.   

The purpose of this report is to summarize the work accomplished so far in the development of the 
CFIMS concept and to document the design of its first realization.  The next section describes the general 
concept for the CFIMS capability.  That is followed by an overview of the ROBUS-2 design.  After a 
high-level description for the current CFIMS, the report provides a description of the CFIMS hardware 
and software elements.  A summary and remarks about future work conclude the report. 
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2.   Concept for a Configurable Fault-Injection and Monitoring Capability 

Relative to the primary goals of the NASA-ODU collaboration, the CFIMS is the main research tool 
for generating actual fault response data with which to develop and validate analytical performance 
models and design methodologies for the mitigation of fault effects.  It is expected that achieving the 
project goals will involve a combination of systematic exploration of the problem space and an iterative 
process of model refinement involving experimentation and data analysis.  Given the uncertainty about 
how this research will evolve, putting together a-priori a comprehensive list of well-defined design 
requirements for the CFIMS is a difficult (if not impossible) task with a high likelihood for an 
unfavorable outcome.  Thus, rather than a fixed design solution, we envision a flexible system that can be 
adapted to meet the evolving needs of the research.  The CFIMS should be an enabling tool that allows 
the investigators to focus on the research problem without being hampered by system limitations due to 
prior design choices. 

With this aim in mind, the first step in the development was to define a concept that captured the 
essence of what is needed.  Figure 2.1 shows a graphical depiction of the concept.  The central element is 
the system under test (SUT), which is a configurable version of SPIDER with added functionality to 
support simulated fault injection and state monitoring.  The CFIMS controls the environment within 
which the SUT operates.  The capabilities of the CFIMS include functional stimulation of the SUT, fault 
injection, and state monitoring, all of which are supported by a configuration capability for setting up the 
system as desired for a particular experiment.  An experiment is defined by the specifications of the 
system configuration, the SUT workload, and the faultload to which the SUT will be subjected.  
Basically, the purpose of an experiment is to gather observations about the response of the SUT when 
operating under conditions determined by the specifications of the configuration, workload and faultload. 

 

 

 

 

 

 

 

 

Figure 2.1: Main components and information flows in the configurable fault injection and monitoring capability 

In general, the SUT is a distributed computation system executing an application.  Figure 2.2 
illustrates the role of the SUT in a flight control system and shows a generic SUT functional architecture 
at the application level consisting of a set of intercommunicating processes.  The definition of the 
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application processes and the inter-process communication, as well as their mapping to the resources of 
the computation platform, are determined by the configuration specification.  In SPIDER, all the 
application processes run on the PEs, which also handle the communication among the processes by 
leveraging the lower level services provided by ROBUS. 

 

 

 

 

 

 

 

 

Figure 2.2: Application-level view of the SUT configured as the flight controller  

 

 

 

 

 

 

 

 

Figure 2.3: High-level view of the CFIMS functions 

At a high level, the CFIMS can be viewed as a distributed set of intercommunicating processes (or 
modules) as illustrated in Figure 2.3 where the SUT is depicted as an external communicating process.  
The modularization of the CFIMS affords a reduction in the complexity of the development by containing 
most design changes within individual functional modules and limiting the interaction between modules 
to clearly defined interfaces.  The function of the Configuration Handler process is to setup the system, 
including the CFIMS and the SUT, as indicated in the configuration specification.  This configuration 
capability is one of the features that allow us to adapt the system to changing requirements.  The 
Functional Stimulus Generator process is responsible for implementing the plant functionality to be 

Inter-Process Communication 

Workload  
Specification  

Faultload 
Specification  

Configuration 
Specification 

State  
Observations  

Application 
Observations  

Fault 
Generator 

 

Configuration 
Handler 

State 
Monitor 

Functional 
Stimulus 
Generator 

 

CFIMS  

SUT 

SUT (Controller)  
Effector 
Commands 

Sensor 
Readings 

Plant 

Inter-Process Communication 

Processing Processing Processing Processing Processing Output Processing Processing Input 

Control Application Processes 

 



 

 
 

6 
 

controlled by the application processes running on the SUT as shown in Figure 2.2.  The Functional 
Stimulus Generator also has the capability to monitor the behavior of the application and generate 
observations for post-test analysis.  The Fault Generator process injects faults into the SUT according to 
the faultload specification.  The injected faults can be actual physical faults at the hardware level or 
simulated faults with similar manifestations.  The State Monitor process collects state data from the SUT 
and outputs another stream of observations for post-test analysis.  The following subsections elaborate on 
the desired features for the SUT and the CFIMS. 

2.1.   SUT Functional Stimulation and Monitoring 

This aspect of the system determines the application implemented by the SUT and the CFIMS.  As 
previously described, the type of application of interest is a closed-loop flight control system with the 
SUT performing the role of the controller and the CFIMS implementing the controlled object (or plant).  
However, given that the SUT is a general purpose computer and that there may be circumstances in which 
we may want to have a very simple application layer and focus on the fault effects on the lower level 
services of the computation platform, it is advantageous to conceptualize the function performed by the 
SUT as a generic application consuming inputs and generating outputs.  The CFIMS provides the 
workload for the SUT, receives the generated functional outputs, and gathers observations about the 
response to injected faults.   

In general, the mechanisms for testing (or “exercising”) the function of the SUT should be scalable 
and flexible to accommodate a wide range of sizes of the computation platform, applications with various 
degrees of complexity, and fine precision for the specification of functionality for the system response 
monitors.  There should also be mechanisms to allow various degrees of precision in the coordination 
between the function testing activities, the injection of faults, and the collection of application and state 
observations.  The CFIMS should also provide the means to easily correlate the data in the output 
observation streams. 

2.2.   Fault Injection 

In the NASA-ODU collaborative research, only physical hardware faults (i.e., faults involving the 
physical parts of the system) are of interest.  For the purpose of this research, it is assumed that software 
and design faults are not significant factors in the behavior of the SUT.  In essence, a (physical hardware) 
fault is a physical event that causes a malfunction (i.e., a deviation from correct operation) in a system 
component.  A system is composed of a collection of components organized such that their interaction 
generates a behavior implementing the function described in the system specification [Avizienis04].  The 
components of a system are themselves systems that implement lower-level functions.   

The CFIMS fault injection capability is intended to force anomalous behavior on the components of 
the SUT.  It is expected that for every SUT function and state monitoring setup, there will be many 
injection rounds with a variety of fault patterns, some of which may target multiple nodes, sometimes 
simultaneously.  The fault injection configuration is likely to be the configuration that will change most 
often and the one to require the most flexible and precise solution for specification and execution of a test.  
Following the terminology in [Arlat03], some of the desired properties for a fault injection capability to 
assess the effectiveness of a fault-tolerant system include the following: 

  Reachability:  the degree to which the possible fault locations can actually be reached by the means 
of injection;  
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 Controllability: the ability to control the location and time at which faults are injected (i.e., the 
precision with which faults can be injected); 

 Repeatability: the ability to repeat fault injection experiments with high accuracy; 

 Reproducibility: the ability to reproduce results in a statistical sense (which does not imply highly 
accurate fault repeatability); and 

 Non-intrusiveness: the ability to avoid or minimize the impact of the fault injection instrumentation 
on the behavior of the SUT.  

The injection of faults will normally be seen as the main independently controlled variable in an 
experiment.  Figure 2.4 illustrates in concept the elements of the CFIMS fault injection capability for the 
generation of a faultload based on the injection specification and how the manifestations of the injected 
faults propagate and can be observed (and analyzed) at various SUT abstraction levels.  In the CFIMS, 
application-level observations will capture fault manifestations at the external SUT interfaces, and the 
state monitoring capability will gather observations about fault manifestations within the SUT.  As shown 
in Figure 2.4, the fault injection capability supports injection of physical and simulated faults.  Physical 
fault injection will be effected indirectly by controlling the characteristics of environmental disturbances, 
including high-energy particle radiation and high intensity electromagnetic fields, generated in controlled 
laboratory conditions [Clough96, FAA93, Taber93, Torres08A].  In general, fault injection based on 
particle radiation has high reachability, but controllability and repeatability are low [Arlat03, Karlsson95].  
Electromagnetic radiation also has very low controllability and repeatability, and in addition, reachability 
is lower than with particle radiation.  Thus, in general, these environments are not the most effective for 
achieving the desirable attributes for a fault injection capability intended for a thorough characterization 
of effects.  Nevertheless, these environments are representative of the types of conditions experienced by 
operational systems and that makes the experimental results immediately applicable to the goals of the 
NASA IVHM project.  The data from experiments in these environments can be used to characterize the 
bounds of the relevant fault space, which can then be methodically explored in detail with simulated fault 
injections.   

 

 

 

 

 

 

 

 

Figure 2.4: Faultload generation and propagation of fault manifestations 

Environmental 
Disturbances 

 
Physical Faults 

Manifestations 
Internal to SUT 

Nodes and Links  

Manifestations at 
SUT Internal 

Interfaces  

Manifestations at 
SUT External 

Interfaces 

Simulated  
Fault Injection 

Faultload 

Fault 
Injection 

Capability 

Internal Fault 
Response  

Internal Fault 
Response  

External Fault 
Response  

Fault 
Injection 

Specification  



 

 
 

8 
 

In general, the system fault space can be large and complex when measured in terms of the possible 
fault locations with respect to the actual smallest physical parts that make up the system.  A strong 
determining factor for the complexity of a fault effects analysis is the selection of the components that 
constitute the smallest units of failure relevant to the analysis.  In the SPIDER-based distributed SUT, the 
nodes and their communication links are the smallest recognized entities in the distributed interaction 
protocols, including resource management and agreement protocols.  The system nodes and links are 
natural boundaries that can be leveraged in the definition of the minimum component granularity for fault 
effects analyses. 

At their highest structural level, every SUT node is composed of a communication component and a 
computation component (see Section 3 in this report and [Torres05A]).  The communication component 
of a node manages all the messaging interfaces to other nodes.  The computation component performs all 
the local data processing according to the definition of the distributed protocols and the system 
application.  A goal in the design of the SPIDER fault-tolerant system is to contain the internal 
propagation of faults and errors to allow the delivery of correct services at the external interfaces.  As part 
of a node‟s error handling capability, the communication and computation components perform 
acceptance checks (e.g., CRC checks [Stallings94] or time of arrival checks [Torres05A]) on received 
messages with the intent of impeding the propagation of errors from other FCRs and minimize the 
likelihood that such errors corrupt the state of the receiving node.  It is possible to significantly reduce the 
fault space to be analyzed by focusing on the manifestations of a transmitting node‟s behavior as 

perceived by a receiving node taking into consideration the results of error checks at the receiving node.  
The space of all possible faults that can occur at a transmitting node and its communication link can be 
mapped to a simple classification by leveraging the concept of error detectability (which is related to the 
property of integrity, i.e., the absence of improper state alteration) [Avizienis04, Paulitsch05] to establish 
equivalence relations on the manifestations at a receiver.  The fault classes in this model for 
communication between a sending node and a receiving node are labeled Good, Omissive and 
Transmissive (GOT).  Alternatively, the classes can be respectively labeled Correct, Detected and 
Undetected (CDU) (see [Torres08B]).  In this GOT/CDU model, the fault categories are defined as shown 
in Table 2.1, where correctness is determined by the system specification.  This fault model for one-to-
one communication can be used through composition to study the propagation of errors and error 
detection in a large distributed system network. 

Table 2.1: Detectability-based fault model for one-to-one communication 
 

Fault Mode Description 

Good/Correct The receiver accepts a correct message (i.e., there is no fault or 
fault manifestation). 

Omissive/Detected  The receiver detects a missing message or rejects an incorrect 
message. 

Transmissive/Undetected The receiver accepts an incorrect message. 
 

A fault model better suited to the analysis of properties in distributed agreement protocols is the 
omissive-transmissive hybrid (OTH) model [Azadmanesh00, Torres08B, Weber06], which adds the 
concept of consistency of perception to the definition of the fault categories.  In this model, the smallest 
system component is a sending node and its transmission links to all the nodes receiving messages from it 
(i.e., the observers).  The receivers either agree on their observations (i.e., their observations are 
symmetric) or they do not (i.e., their observations are asymmetric).  The fault categories in this model are 
defined in Table 2.2.  The OTH model allows a further reduction in complexity by minimizing the fault 
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space to a small set of categories that are relevant to the analysis of distributed agreement properties.   

Table 2.2: Omissive-Transmissive Hybrid fault model for one-to-many communication 
 

Fault Mode Description 

Correct All observers receives the same correct message. 

Omissive Symmetric  Each observer declares the message invalid, either because the 
message was not received or it was detectably incorrect. 

Transmissive Symmetric  Each observer accepts the same incorrect message. 

Strictly Omissive Asymmetric  
Some observers receive the same correct message and others 
declare the message invalid, either because they do not receive a 
message or declare invalid their received message. 

Single-Data Omissive Asymmetric  
Some observers accept the same incorrect message and others 
declare the message invalid, either because they do not receive a 
message or declare invalid their received message. 

Transmissive Asymmetric  The observers have other patterns of disagreeing observations. 
 

An enhancement to the OTH model is to add the dimension of time duration to the fault categories.  
With the concept of persistence of a fault, each OTH category can be subdivided by fault duration 
categories defined according to the particular conditions of the problem at hand (e.g., transient and 
permanent duration).  We refer to this classification as the Detectability, Consistency and Persistence 
(DCP) fault model. 

A peculiarity of these observer-based fault models is that the classification of any given physical fault 
is not absolute but relative to the states of the observers, which normally change during system operation.  
This may limit the achievable reduction in the fault space complexity. 

These fault models can be used to characterize the faults in the physical fault injection experiments.  In 
addition to determining the proportion of faults within each category of the selected fault model, the 
characterization must also include the modeling of the fault activation pattern in the time domain.  The 
characterization of physical fault effects can then be used as a reference to develop a library of simulated 
faults that is in some sense equivalent to the actual physical faults.  The simulated faults in the CFIMS are 
injected by introducing errors in the behavior of SUT components.  Multiple communication and 
computation components within a node can be targeted for injection depending on the desired fault 
manifestations.      

An issue that will need to be addressed in the research is how to model the effects of transmissive (i.e., 
undetected) faults, whose actual impact on the behavior of a node and the system is likely to be dependent 
on the particular state of a receiving node at the time of arrival of propagated errors.  ROBUS uses voting 
in its distributed protocols to mask the effects of transmissive faults.  The degree of fault tolerance in 
ROBUS (i.e., the number of faults it can tolerate) is determined by the available redundancy and number 
of active transmissive faults in the system [Torres05A].  The ROBUS distributed diagnosis service allows 
the system to continue coordinated operation by the exclusion of diagnosed faulty nodes from 
participation in distributed decisions.  In addition, ROBUS provides a bus failure detection and re-
initialization capability to restore coordinated operation after events of massive correlated transient faults 
that exceed the fault tolerance capabilities of the network [Torres05A].  However, all these mechanisms 
depend on the detection of abnormal operational conditions.  It is uncertain what the behavior of the 
system would be if its fault handling mechanisms were overwhelmed by a large number of undetected 
faults. 
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2.3.   State Monitoring  

The state monitoring capability is intended to provide observability into the internal operation of the 
SUT.  This capability should provide the means to collect data of adequate fidelity to perform detailed 
post-test event analyses and modeling of physical faults and fault manifestations.  Given the functional 
and physical distributed nature of the SUT, the state monitoring capability must gather data from many 
different locations and package it into coherent observations.  There will be observations of internal 
activity at every node and of interactions between nodes at their interfaces.  At a higher level, the state 
monitoring capability must provide the means to precisely correlate the distributed system observations to 
allow the analysis of causality in node and system event sequences.  At a minimum, the timing of all the 
observations should be referenced to a common timeline.  The added state monitoring instrumentation 
should not interfere with the execution of the SUT, but it will require support in the design of the SUT to 
enable direct access to state information at its source.  The state monitoring capability should be able to 
properly handle operation of the SUT under the influence of injected faults as well as normal SUT 
operation.  This capability should be easily configurable to select the degree and amount of detail in the 
observations and to specify complex observation-triggering conditions.   

2.4.   System Configuration  

Although our knowledge of the research objectives allows us to develop abstract designs for the SUT 
and the CFIMS, we assume that because of the uncertainty about the future direction of the research, it is 
highly improbable that a single SUT and CFIMS implementation of reasonable complexity will be 
adequate to meet the research needs over the duration of the project.  The configuration capability is 
intended to provide a flexible way to specify the functional and physical characteristics of the SUT and 
the CFIMS to meet evolving research needs.  Essentially, what we need is the capability to change the 
system anywhere from the highest level architectural definition to the lowest implementation details.   

The chosen configurability solution consists of custom system designs with hardware and software 
components coded in-house and running on a generic reconfigurable execution platform for distributed 
systems.  The hardware and software code to be developed will be highly parameterized for structure and 
behavior, with some parameters specified at synthesis or compilation and others at runtime.  The 
computing nodes of the generic reconfigurable platform have programmable computation and 
communication resources with which to build specialized networks of interconnected nodes.  The 
computation resources include general purpose processing for software functions and programmable 
hardware resources based on FPGAs (Field Programmable Gate Arrays) for hardware-implemented 
functions.  The communication resources provide basic mechanisms that enable the nodes to interact by 
messages (see Section 4).   

The specifications of the execution platform establish fundamental constraints on the capabilities of 
systems implemented on it.  So, in addition to allowing the reconfiguration of the system, the code 
parameterization gives it reusability and portability in case there is a need to change the execution 
platform.  

The attributes of the SPIDER architecture and the ROBUS-2 communication system [Torres05B] 
(e.g., physical modularity, layered services and time-triggered operation) makes them especially well 
suited to support this system configuration concept. 

This configurability approach minimizes the limitations on the systems that can be specified by 
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allowing modifications to be made at any level, including design, synthesis, and runtime.  There is, 
however, an associated fundamental tradeoff in that, although higher level changes allow more flexibility 
in the configuration of the system, there is a cost increase in the time and effort needed to implement 
those changes.  This offers a motivation for maximizing the synthesis and runtime configurability of the 
system to avoid the complications of making changes to the design itself.  However, in the process of 
design development and implementation, careful consideration should be given to how a design is likely 
to be used and the available time for development so as to properly select the optimum balance between 
configurability and complexity of the design. 
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3.   Overview of the ROBUS-2 Communication System 

This section presents a brief description of ROBUS-2, including the structure and operation of the 
system.  The existing ROBUS Protocol Processors [R2PP] are intended for systems with a relatively 
small number of PEs due to the significant size-complexity of the RPP‟s implementation.  More detailed 
information about ROBUS can be found in [Torres05A] and [Torres05B]. 

3.1.   System Structure 

Figure 3.1 shows the ROBUS topology.  The bus has an active-star architecture with the Bus Interface 
Units (BIUs) serving as the bus access ports and the Redundancy Management Units (RMUs) providing 
connectivity as network hubs.  The network between BIUs and RMUs forms a complete bipartite graph in 
which each node is directly connected to every node of the opposite kind.  Only the links shown are 
available for communication.  All the communication links are bidirectional.   

 

 

 

 

 

 

Figure 3.1: ROBUS topology 

Figure 3.2 depicts the basic structural components of BIU and RMU nodes.  The Communication 
Module handles all the point-to-point communication.  The links between BIUs and RMUs can be either 
one-to-one or one-to-many links, as long as broadcast communication is supported.  The nature of the 
links between BIUs and PEs depends on how they are physically related.  If a BIU and its corresponding 
PE are physically independent, then they are interconnected by a one-to-one data communication link.  If 
a PE-BIU pair are physically integrated (e.g., same printed circuit board), then some other means of local 
data exchange can be used (e.g., a dual port memory). 

The Computation Module, also known as the ROBUS Protocol Processor (RPP), handles all the 
ROBUS-specific functions including mode transition logic, low-level protocols, error detection, 
diagnosis, reconfiguration, and distributed coordination.  The main difference between BIUs and RMUs is 
the functionality of their RPPs.  Normally, the main determining factor for the number of BIUs in a 
ROBUS implementation is the number of PEs needed to meet functional and reliability system 
requirements.  The number of RMUs is determined by the system reliability target and is independent of 
the number of BIUs or PEs.   
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Figure 3.2: Generic top-level node structure for BIUs and RMUs  

3.2.   Distributed Coordination 

Each ROBUS node is driven by an independent, free-running physical oscillator.  These oscillators are 
characterized by known upper and lower bounds on their drift rates with respect to real time.  Each node 
also has a logical-time clock, referred to as the local-time clock, which keeps track of the passage of time 
as indicated by the physical oscillator.  Given an initial precision of synchronization for the local times at 
any two nodes, the precision can worsen over time at a rate determined by the drift rate bounds of the 
physical oscillators. 

There are two main categories of ROBUS protocols: synchronization and synchronous.  The 
synchronization protocols use event-triggered communication and event-processing operations to 
generate high-precision distributed events that are used to synchronize the local-time clocks.  The 
synchronous protocols use the synchronized local-time clocks to process information using time-triggered 
communication and operations.  To achieve proper coordinated action in the execution of the synchronous 
protocols, the local-time clocks of the participating nodes must be synchronized within some known 
bounded precision.   

ROBUS has two synchronization states: synchronized and unsynchronized.  In the synchronized state, 
the precision of synchronization is determined by an internal distributed reference event generated by a 
clock synchronization protocol.  The precision of this event allows the nodes to achieve very tight local-
time synchronization.  The bus is in the unsynchronized state when it transitions to the startup and restart 
processes.  The precision of synchronization in this state is mainly determined by events not directly 
controlled by the bus.  It is assumed that the synchronization precision in this mode has a known bound 
that can be large relative to the precision in the synchronized state.  The bus transitions from the 
unsynchronized state to the synchronized state after the execution of a synchronization protocol.  Because 
the local times can drift apart, a synchronization protocol must be re-executed at regular intervals to 
ensure that the local times are kept synchronized.  The rate of re-synchronization is constrained by 
physical parameters of the design (e.g., oscillator drift rates) as well as precision and accuracy goals.  The 
fault-tolerance attribute of the synchronization protocols enables the bus to achieve and maintain 
synchronization even in the presence of failed nodes. 

The execution of synchronous protocols is driven by the local time and a time-indexed operation 
schedule.  The low-level distributed protocols specify the system activities by defining the active nodes, 
operations, operation sequencing, and message flow patterns for each operation.  The timing of operations 
is determined using a model of distributed synchronous composition.  This execution scheme and the high 
synchronization precision in the synchronized state make the steady-state behavior of ROBUS highly 
deterministic as it precisely specifies the timing of all the internal communication between BIUs and 
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RMUs, as well as the communication with the PEs. 

3.3.   Redundancy Management 

The purpose of redundancy management is to increase the probability of continued service delivery 
through effective utilization of available resources.  ROBUS is designed to manage its redundant BIU and 
RMU components independently from the PEs. 

Fault containment refers to the isolation of physical faults to prevent their propagation throughout the 
system.  This is achieved by establishing fault containment regions (FCR) that ensure a sufficiently high 
degree of independence with respect to physical faults.  Physical system components within an FCR are 
considered to experience correlated faults because the cause of the faults can affect multiple components 
simultaneously or because faults originating in one component can propagate to others within the FCR.  
Thus, if any component within an FCR is affected by a fault, every component and function within the 
FCR is considered untrustworthy.  Ideally, the FCRs have independent power supply and are physically 
and electrically isolated from each other.  Communication between FCRs is through carefully specified 
interfaces that ensure a sufficiently high degree of fault containment.  In ROBUS, each RMU node is 
contained in its own FCR, and each BIU can be located by itself in a separate FCR or it can share an FCR 
with its corresponding PE. 

Each BIU and RMU node is an observer of every node on the bus.  An observed node is referred to as 
a defendant.  The diagnostic system of ROBUS is a distributed system divided into two layers.  In the 
local layer, the nodes monitor the communication and independently diagnose each individual node and 
the bus as a whole.  In the collective layer, the nodes exchange local diagnostic information to augment 
their local assessments.  Every ROBUS node performs the diagnostic functions of error detection, node 
diagnosis, and bus diagnosis.   

Error detection is the foundation of the diagnostic system.  The following list covers all the categories 
of error checks performed by the ROBUS nodes.  These checks generate the syndromes from which 
diagnostic decisions are made. 

 Communication checks monitor the communication links between the nodes. 

 In-line checks are applied to received messages and are based on expected timing and content 
characteristics.   

 Cross-lane checks also detect errors in received messages by comparing them against the result of 
dynamic voting. 

 Protocol checks inspect received messages and voting results with respect to expected properties for 
intermediate and final protocol results.   

 Self-checks are performed by a node to monitor its own operation.   

 PE checks inspect the messages received by a BIU from its corresponding PE.   

The diagnostic system assesses each node to determine its suitability to participate in the delivery of 
services to the PEs.  A trustworthy node can be relied upon to deliver the expected services.  
Untrustworthy nodes do not behave as expected.  A defendant is locally accused by an observer when the 
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observer determines that the defendant is untrustworthy but it is uncertain whether other observers have 
reached the same conclusion.  A defendant is collectively convicted when the observers agree that a 
sufficient number of them consider the defendant untrustworthy.  An observer forms a full diagnostic 
assessment of a defendant based on local and collective diagnoses. 

In the context of ROBUS, a clique is a group of BIUs and RMUs working together in a coordinated 
way to deliver services to the PEs.  A clique is considered trustworthy if its services are in accordance 
with the ROBUS functional specification [Torres05A].  The diagnosis of the bus consists of determining 
if exactly one trustworthy clique is in operation. 

The BIU and RMU nodes use the diagnostic assessments to determine the clique membership.  A 
clique is reconfigured by adding or removing nodes from its membership.  The purpose of reconfiguration 
is to enhance the ability of a clique to establish and preserve proper service delivery in the presence of 
untrustworthy nodes.  A clique member is allowed to participate in the delivery of services to the PEs and 
is referred to as a trusted node.  A node searching for and trying to become part of a clique is called a 
recovering node. 

The FCRs ensure that the only error propagation path between nodes is through their interfaces.  Error 
containment for the interfaces between BIUs and RMUs is realized by placing barriers at both ends of 
each interface.  The BIUs and RMUs disable their outputs upon detection of a local failure or a bus failure 
(i.e., they implement a fail-stop failure response).  At the receiving end of the interfaces, the nodes use 
input-error detection (e.g., communication and in-line checks) and dynamic voting to block propagated 
errors from untrustworthy sources.  The sources whose inputs are considered in a vote are called the 
eligible voters. 

3.4.   Operational Modes 

Figure 3.3 shows the major mode transitions for BIU and RMU nodes.  A recovering node is in a 
mode other than Clique Preservation.  After a power-on enable, a recovering node goes to the Self-Test 
major mode to perform a local initialization and test its circuitry.  The recovering node will remain in this 
mode indefinitely unless it successfully passes the test.  After completing the self test, the recovering node 
enters the Clique Detection mode to determine if there is a clique operating in the Clique Preservation 
mode.  If a clique is found, the recovering node transitions to the Clique Join mode, where it demonstrates 
to the clique members that it is suitable for admission.  If a clique is not found, the recovering node 
transitions to the Clique Initialization mode to form a new clique.  Upon successful completion of the 
recovery process by either joining an existing clique or forming a new clique, a node transitions to the 
Clique Preservation mode where, as member of a clique, it delivers services to the PEs according to the 
ROBUS service specification [Torres05A].  At any time, if a node detects a local failure or a bus failure, 
it transitions back to the Self-Test mode to reinitialize its operation and find nodes suitable for providing 
communication services to the PEs.  

3.4.1.   Clique Preservation 

Figure 3.4 illustrates the minor mode transitions for the Clique Preservation major mode.  In the 
Schedule Update mode, a schedule-download protocol is executed to allow the PEs to reprogram the bus 
communication schedule according to their needs.  During PE Communication, first the PE messages are 
broadcast according to the communication schedule, and then the BIUs and RMUs exchange accumulated 
accusations against nodes of the opposite kind, which serves to enhance the diagnosis and reconfiguration 
capabilities of the bus.  This is followed by a re-synchronization of the local time in the Synchronization 
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Preservation mode and then a reassessment of the clique membership in the Collective Diagnosis mode. 

3.4.2.   Self-Test 

Upon entering the Self-Test mode, a node disables its output and performs a local hardware reset.  
This mode serves as a checkpoint in which the nodes are required to exercise and assess the status of their 
circuitry before attempting to join other nodes on the bus.  This mode also provides a safe state to which 
ROBUS nodes can go after detecting a failure and before attempting to re-engage.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.3: Major operational mode transitions for ROBUS nodes 

 

 

 

Figure 3.4: Minor mode transitions for Clique Preservation mode 
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Figure 3.5: Minor modes transitions for Clique Detection mode 

3.4.3.   Clique Detection 

Figure 3.5 shows the minor mode transitions in the Clique Detection major mode.  In Local Diagnosis 
Acquisition, a node uses asynchronous local observations to make a first assessment of the likely 
members of a clique.  In Synchronization Acquisition, the node attempts to synchronize to the clique.  In 
Collective Diagnosis Acquisition, the node captures the health assessment for each node as determined by 
the clique during the execution of the distributed diagnosis protocol.  If at any time during the Clique 
Detection mode the node determines that a valid clique is not present, it will exit this mode and attempt to 
form a new clique.  Otherwise, it will assume that a clique exists and will try to join it. 

3.4.4.   Clique Join 

When a node enters the Clique Join mode, its state is in agreement with the state of the clique.  In this 
mode, the node runs for two diagnostic cycles, essentially trying to demonstrate that it can be trusted.  
The existing members of the clique will integrate the node as soon as they confirm that the admission 
rules have been satisfied. 

3.4.5.   Clique Initialization 

Figure 3.6 shows the minor mode transitions for the Clique Initialization major mode.  A node 
transitions to the Clique Initialization major mode to form a new clique.  The first minor mode is Initial 
Diagnosis, in which a node identifies other nodes that are also attempting to form a new clique.  This is 
followed by the Initial Synchronization and Collective Diagnosis minor modes, where the nodes 
synchronize their local-time clocks and reach agreement on the clique membership. 

 

 

Figure 3.6: Minor modes transitions for Clique Initialization mode 

3.5.   ROBUS Messages  

The BIUs, RMUs, and PEs communicate using ROBUS Messages (RM).  Figure 3.7 illustrates the 
message format, which consists of a Tag field followed by a Payload field.  The Tag field has one of two 
values: SPECIAL or DATA.  The format and content of the Payload field depends on the value of the Tag 
field and the context in which the message is used.   
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Figure 3.7: ROBUS Message format 

A SPECIAL message carries a bit pattern corresponding to one of several labels including, among 
others, the INIT and ECHO labels used by the synchronization protocols.   

DATA messages carry data with a context-specific format.  For Collective Diagnosis, the Payload 
field of each message carries diagnostic information in the form of a Boolean vector.  For Schedule 
Update, a message carries the number of messages scheduled for a particular PE.  For the PE Broadcast 
protocol in the PE Communication mode, the messages carry information from the PEs with an 
application-dependent format.  The exchange of accusations after the completion of the scheduled PE 
broadcasts uses the payload format for diagnostic messages.  

3.6.   Point-to-Point Communication 

Figure 3.8 illustrates the structure of a one-way communication path between a sending node and a 
receiving node.  The link transmitter and receiver are part of the Communication Module at the source 
and receiver nodes, respectively.  The received messages are stored by the Computation Module at the 
receiver node until the proper time for processing.  This arrangement supports all the modes of point-to-
point communication between BIUs and RMUs: synchronous, fixed-delay, and asynchronous-monitoring.  

 

 

 

Figure 3.8: Generic point-to-point communication path 

Synchronous communication is used with the synchronous protocols.  This is a time-triggered 
communication scheme.  Synchronous communication requires that the local-time clocks of the source 
and receiver nodes be synchronized within some known bounded precision.  Figure 3.9 illustrates the 
main variables.  A time TREF is chosen as a reference to coordinate the send and receive actions.  A 
message sent at time TSND with a nominal reception delay RPP is expected to be received at local time 
TRCV,E.  Taking into consideration the local-time skew between the source and the receiver, and the 
uncertainty in the reception delay, a message from a trustworthy source should be received within an 
expected-reception interval of duration WRCV centered at TRCV,E.  A message that arrives outside this 
interval is invalid.  A valid received message is buffered until the scheduled time for processing TPROC.  
This buffering performs a deskewing function in which the received message is synchronized to the local 
time at the receiving node. 
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Figure 3.9: Timing for synchronous communication 

Fixed-delay communication is used with the synchronization protocols.  For this communication mode 
the information of interest is in the timing of the messages.  A transmission is triggered by events at the 
source.  At the receiving end, the message is buffered for a predetermined duration of time before 
processing it.  This communication mode is used only with the INIT and ECHO messages of the 
synchronization protocols.  For the Synchronization Preservation protocol executed in the Clique 
Preservation and Clique Join modes, it is possible to use local events at the nodes to determine a nominal 
expected time of reception and an expected-reception interval for the synchronization messages. 

Asynchronous-monitoring communication is used by a recovering node to observe the activity on the 
bus before its local time is synchronized.  This communication mode does not require coordination 
between a source node (which could be a synchronized clique member) and the receiving recovering 
node.  Asynchronous monitoring is made possible by the fact that the BIUs and RMUs broadcast their 
transmissions to all the nodes of the opposite kind and the point-to-point communication path allows the 
recovering node to receive messages regardless of its state.  The recovering node uses the buffer as a 
fixed-delay queue, and the messages are processed in the order in which they are received.  The delay is 
not necessarily the same as for the fixed-delay communication mode used with the synchronization 
protocols. 

The PE Interface at the BIUs is designed using a first-in, first-out (FIFO) buffer abstraction for input 
and output.  For input, it is assumed that either a PE message is available when expected or there is a 
corresponding error indication.  For output, it is always assumed that the message can be output at its 
scheduled time without having to confirm that the PE is ready to receive it. 

3.7.   Communication Patterns 

This section presents the patterns of communication for the ROBUS-2 protocols.  The description is 
limited to the sequences of computation processes and message transmissions.  The actual computation 
operations performed by the nodes are not described here.  [Torres05A] has a complete description of the 
protocols. 

3.7.1.   Collective Diagnosis 

Figure 3.10 shows the communication pattern for the Collective Diagnosis protocol.  The circles 
represent the processing done by the nodes.  Each arrow represents a single-message broadcast 
transmission from the sources to the receivers.  BIUs and RMUs use synchronous communication.  The 
results of the protocol are convictions against BIUs and RMUs, which are stored locally by BIUs and 
RMUs and are also forwarded to the PEs. 
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Figure 3.10: Message flow graph for the Collective Diagnosis protocol 

3.7.2.   Schedule Update 

Let N denote the number of BIUs, which is assumed to equal the number of PEs connected to the bus.  
The PEs are identified according to statically assigned identification numbers which uniquely identify 
each ROBUS port.  The desired schedule is delivered by each PE to its BIU in the form of N consecutive 
messages with the ordinal positions in the message sequence matching the PE identification numbers in 
ascending order and the payload fields of each message indicating the desired number of messages to be 
broadcast by the corresponding PE.  The interval between the send time of one message and the send time 
of the next (known as the data introduction interval or DII) [DeMicheli94] is constant.  The submitted 
schedule messages are processed using an agreement protocol, called the Schedule Update protocol, to 
ensure that all the BIU and RMU clique members and their PEs agree on the number of scheduled 
communication messages for each PE.  Figure 3.11 shows the message flow graph for the Schedule 
Update protocol.  This is a synchronous-communication protocol.  The protocol is applied independently 
N times, with each iteration processing the messages delivered by the PEs that indicate the number of 
messages to be broadcast by a particular PE.  The result of each protocol iteration is sent to the PEs in 
process P2.  After all the messages have been processed, the ROBUS nodes individually assess the 
resulting schedule.  If the new schedule is valid, it is accepted.  Otherwise, a default schedule known to all 
the PE, BIU, and RMU nodes is used. 

 

 

 

 

Figure 3.11: Message flow graph for the Schedule Update protocol 

3.7.3.   PE Broadcast 

In PE Communication mode, ROBUS grants bus access to individual PEs according to the 
communication schedule.  An interactive consistency protocol, called the PE Broadcast protocol, is used 
for each scheduled message to ensure that the PEs receive consistent messages.  The bus access pattern is 
a time-indexed, as-soon-as-possible (ASAP) round-robin sequence.  Figure 3.12 provides an example of 
the access pattern.  The PEs access the bus in ascending order according to the port identification 
numbers.  The first scheduled message is sent at some predetermined time.  The DII for PE messages is 
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constant.  After all the scheduled messages for one PE have been sent, the messages for the next PE are 
broadcast maintaining the proper DII between messages.  If a PE is not scheduled to send messages, then 
the messages for the next scheduled PE are sent.  This continues until all the scheduled messages have 
been sent. 

 

 

Figure 3.12: Example of an access pattern during the PE Broadcast service 

Figure 3.13 shows the message flow pattern for the PE Broadcast protocol.  This protocol is used to 
process each scheduled PE message.  Only the scheduled PE and its corresponding BIU are required to 
send messages.  The other PEs and BIUs are allowed to send messages at the same time as the scheduled 
PE and BIU (for example, in order to reduce node-error detection latency), but those messages will not be 
forwarded by the RMUs.  The result of the protocol is relayed to the PEs.  The protocol uses synchronous 
communication.   

 

 

 

 

 

Figure 3.13: Message flow graph for the PE Broadcast protocol 

3.7.4.   Accusation Exchange 

The broadcast of all the scheduled PE messages in the PE Communication mode is followed by the 
Accusation Exchange protocol, in which the BIU and RMU nodes exchange accumulated accusations 
against nodes of the opposite kind.  Figure 3.14 shows the message flow pattern.  This protocol uses 
synchronous communication. 

 

 

 

Figure 3.14: Message flow graph for the Accusation Exchange protocol 

3.7.5.   Synchronization Preservation 

Figure 3.15 shows the communication pattern for the Synchronization Preservation protocol.  The 
message to be sent by each process is indicated in the figure.  Fixed-delay communication is used for all 
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the messages.  For this protocol, it is possible to use the time of transmission of a message in one process 
to determine an expected time of reception in another process.  For example, the RMUs can estimate the 
expected time of reception for process P3 based on the time of transmission in process P1.  [Torres05A] 
describes in detail how this can be done.  A process uses the expected time of reception to perform a 
timing check on received messages. 

 

 

 

 

 

Figure 3.15: Message flow graph for the Synchronization Preservation protocol 

3.7.6.   Local Diagnosis Acquisition 

In Local Diagnosis Acquisition, a recovering node monitors the activity on the bus to determine a 
trusted set of opposite-kind nodes operating in the Clique Preservation mode.  The recovering node uses 
the asynchronous-monitoring communication mode to make its observations.  A node in this mode does 
not transmit messages.  Figure 3.16 illustrates the nominal message flow for a recovering RMU P0 in a 
3x3 system (i.e., 3 BIUs and 3 RMUs).  The PEs and their links are not shown.  The solid arrows 
represent the message flow from the BIUs to the recovering node.  The dashed lines represent the 
bidirectional communication between the BIUs and the other RMUs.  The message flow is similar for a 
recovering BIU. 

 

 

 

 

Figure 3.16: Message flow in a 3x3 system with a recovering RMU executing Local Diagnosis Acquisition  

3.7.7.   Synchronization Acquisition 

The Synchronization Acquisition mode has two protocols: Frame Synchronization and 
Synchronization Capture.  The Frame Synchronization protocol monitors the activity on the bus to find 
the gap between consecutive executions of the Synchronization Preservation protocol.  Figure 3.16 also 
applies to this protocol.  The recovering node can use fixed-delay or asynchronous-monitoring 
communication.  

The Synchronization Capture protocol is activated by the end of the Frame Synchronization protocol.  
A recovering node executing Synchronization Capture receives messages only from the opposite kind 
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nodes and does not generate any messages.  In that sense, Figure 3.16 also applies to this protocol.  
Synchronization Capture uses fixed-delay communication applied to ECHO messages from the 
Synchronization Preservation protocol.  Figure 3.17 shows the message flow graph for the 
Synchronization Preservation protocol expanded to include the Synchronization Capture processes P3C 
and P4C.  As shown, a recovering RMU executing process P3C receives the ECHO message broadcast by 
process P2, and a recovering BIU in process P4C receives the ECHO message from process P3.  A 
recovering BIU executing process P4C also sends an ECHO message to its attached PE. 

 

 

 

 

 

 

 

Figure 3.17: Message flow graph for Synchronization Preservation with the Synchronization Capture processes 

3.7.8.   Collective Diagnosis Acquisition 

A recovering node executing the Collective Diagnosis Acquisition protocol is assumed to be 
synchronized to a clique.  The processing in this protocol is essentially the same as for the Collective 
Diagnosis protocol and is executed by a recovering node in parallel with the execution of the Collective 
Diagnosis protocol by the clique members.  Figure 3.10 shows the message flow pattern for the Collective 
Diagnosis protocol.  A recovering node receives messages using the synchronous communication model.  
In terms of the communication pattern, the main difference between Collective Diagnosis Acquisition and 
Collective Diagnosis is that a recovering node does not broadcast messages during the Collective 
Diagnosis Acquisition protocol.  In that sense, Figure 3.16 also applies to this protocol.  

3.7.9.   Initial Diagnosis 

In the Initial Diagnosis minor mode, the nodes execute a synchronous protocol to determine an initial 
trusted set taking advantage of the known bound on the synchronization precision when operating in the 
unsynchronized state.  Figure 3.18 illustrates the message flow pattern.  This protocol uses synchronous 
communication. 

 

 

 

Figure 3.18: Message flow graph for the Initial Diagnosis protocol 
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3.7.10.   Initial Synchronization 

The Initial Synchronization protocol is similar to the Synchronization Preservation protocol.  The 
differences in processing are the result of the possibly larger bound on the relative local-time skew at the 
beginning of the protocol execution.  Figure 3.19 shows the message flow pattern.  For this protocol, the 
BIUs send ECHO messages to the PEs from process P4, instead of INIT messages from process P2.  This 
protocol uses fixed-delay communication. 

 

 

 

 

 

Figure 3.19: Message flow graph for the Initial Synchronization protocol 

3.8.   Communication between PEs and BIUs 

ROBUS requires a bidirectional communication capability between BIUs and their attached PEs.  A 
BIU and its PE can be in separate FCRs or they can share an FCR.  If a BIU and its PE are in separate 
FCRs, the physical communication links must provide adequate barriers to the propagation of faults 
between the FCRs.  In this case, the physical failure of the BIU is independent from the failure of the PE 
and the failure recovery process of the BIU is completely independent from the PE.  Note that if a BIU 
fails, its attached PE is, in effect, disconnected from the bus.  On the other hand, if a BIU and its PE share 
an FCR, a fault can propagate between the BIU and the PE.  In this case, the physical failure of one is no 
different from a failure of the other.  Therefore, the design must provide for the simultaneous recovery of 
both components.  In ROBUS-2, this can be handled by a common process that resets the BIU and the PE 
when a failure is detected on either of them.  Irrespective of the FCR configuration, it is the responsibility 
of the PE to monitor the communication in order to determine the state of the BIU. 

BIUs and PEs exchange messages using two communication models: fixed-delay and synchronous.  
The fixed-delay model is used with the time synchronization protocols and is essentially the same as for 
the communication between BIUs and RMUs.  The fixed-delay model allows the PEs to synchronize their 
time using reference events at the BIU interfaces.  Synchronous communication is used with the 
synchronous protocols.  Two different synchronous communication models are allowed.  In the “tight” 

model, the transmission of messages between BIUs and PEs follows a strict schedule in which timing is 
specified down to the tick level.  This is the model used for synchronous communication between BIUs 
and RMUs.  In the “loose” synchronous communication model, the sending and receiving of messages by 
the PEs is only required to satisfy simple timing constraints.  Since the BIUs have time-triggered 
operation, their input and output of PE messages follows a detailed time-indexed schedule.  The send 
timing requirement for the PEs is that their messages must be available at the BIUs at or before the time at 
which the BIUs will read them.  The receive timing requirement for the PEs is that they will get the 
messages after the BIUs generate them according to their schedule.  The specific time at which the PEs 
send their messages and the delay in receiving BIU messages for the “loose” synchronous communication 

model is dependent on the implementation and the applications run by the PEs.  The PE Interface at the 
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BIUs is designed using a first-in, first-out (FIFO) buffer abstraction for input and output.  For input, it is 
assumed that each expected PE message is available or there is a corresponding error indication.  For 
output, it is always assumed that the message can be output at its scheduled time without having to 
confirm that the PE is ready to receive it. 

The PEs send messages only during the schedule update and PE Broadcast services.  In both cases, 
only DATA messages are sent.  For these messages, the BIUs read the messages and broadcast them on 
the bus.  PE-error checks are not described in this document.  These checks are used to signal the BIU 
when expected messages are not available or otherwise invalid.  In either case, a BIU will replace the 
expected PE message with a SPECIAL message with the payload field set to PE_ERROR. 

In addition to service messages, the PEs receive mode and identification messages from the BIUs.  
The mode messages enable a PE to track the mode of its BIU.  A BIU will send a mode message to its PE 
every time there is a major mode transition and after every diagnostic cycle during the Clique Join and 
Clique Preservation modes.  The mode messages are SPECIAL messages with the payload field set to 
SELF_TEST, CLIQUE_DETECTION, CLIQUE_INITIALIZATION, CLIQUE_JOIN or 
CLIQUE_PRESERVATION, as appropriate.  The ID message carries the BIU‟s identification number, 
which is the identification number to be used also by the PE.  These are DATA messages with the 
payload field equal to the BIU‟s identification number.  This way of giving an identification number to a 

PE is preferred over setting it directly at the PE because it allows the use of generic software at the PEs 
and prevents a mismatch between the BIU and the PE identification numbers. 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.20: Message exchange pattern between a BIU and its attached PE in Clique Preservation mode 
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Figure 3.20 illustrates the message exchange between a BIU and its attached PE during the Clique Join 
and the Clique Preservation modes.  The mode and identification messages are sent to the PE between the 
Self-Diagnosis and Schedule Update services.  During Schedule Update, the BIU reads the schedule 
submitted by its PE and sends to the PE the results determined by the bus for each PE.  This is followed 
by a single message with the assessment result for the new schedule.  This consists of a SPECIAL 
message with the payload set to VALID_SCHEDULE, ZERO_SCHEDULE (i.e., the schedule is valid 
and equal to zero for all the PEs), or INVALID_SCHEDULE.  If the schedule is invalid, ROBUS will 
automatically switch to a default schedule.  During the PE Broadcast service, a BIU will read the 
scheduled messages from its PE and output to the PE the result for all the scheduled messages.  A 
broadcast result equal to PE_ERROR indicates that there was an error at the source PE.  If the bus 
determines that the BIU of a source PE is not operating properly, then the result of the broadcast will be 
SOURCE_ERROR or NO_MAJORITY.  A result of NO_MAJORITY indicates that the RMUs received 
different messages from the source BIU.  If the assessment of the schedule was ZERO_SCHEDULE, the 
PE Broadcast service is not executed and ROBUS simply waits until it is time to execute the Time 
Reference service.  During the Time Reference service, a BIU outputs a SPECIAL message with the 
payload set to INIT.  The sending of this message is triggered by the reference event that the BIU will use 
to reset its local-time clock.  For Initial Synchronization and Synchronization Acquisition, the payload is 
set to ECHO to explicitly indicate that a different protocol event is used as a reference to reset the local-
time clock.  During the Self-Diagnosis service, the output of a BIU consists of two messages containing 
the diagnostic results for the BIUs and the RMUs.  These messages complete the service cycle.  The next 
cycle begins with the mode and identification messages. 
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4.   Overview of the Configurable Fault-Injection and Monitoring System 

The system described in this section is the first step in the capability development to serve the NASA-
ODU research needs.  We give a high level description of the initial CFIMS realization based on the 
concept presented in Section 2.  The first two subsections here are overviews of the application and the 
execution platform, as they are strong determining factors for many SUT and CFIMS design and 
implementation decisions.  The description of the CFIMS and the relevant aspects of the SUT are 
presented after that.  A more detailed description of all system aspects is given in the remaining sections 
of this report. 

4.1.   Initial Application  

The goal in the first set of experiments is to characterize the application-level effects of faults in the 
ROBUS-2 communication system.  For this, ROBUS-2 will be exposed to physical and simulated faults 
while data is collected on the effects on PE messages carrying application data.  Then, the experimental 
communication-fault effects data will be used in closed-loop simulations of a Boeing 747 airplane 
controlled by an autopilot to measure the fault effects on the performance of the closed-loop system.  The 
expected results of this work are validated models of fault effects on the ROBUS-2 communication 
service and the performance of the closed-loop system.  

In essence, the experimental setup consists of a set of PEs exchanging messages according to a 
predetermined communication schedule while faults are injected into ROBUS and observations are 
collected about the results of expected message receptions at the PEs.  The PEs will not be programmed 
for dynamical closed-loop control of a plant.  Instead, they exchange static messages of appropriate length 
for sensor readings and effector commands with a pattern of communication over the bus that is 
representative of an actual control application.  The PEs execute their operations repetitively with a 
predetermined constant execution period.  An execution iteration is referred to as a control cycle.  The 
PEs will be grouped and labeled according to the functions they would perform in an actual control 
system, with some PEs executing input and output application processes and others executing the control 
process, as illustrated in Figure 4.1.  This arrangement with a group of PEs running both input and output 
processes (see IO PEs in Figure 4.1) reduces the total number of PEs required in the system and allows 
the use of the existing ROBUS Protocol Processor design [R2PP], which is not intended for large 
systems.  In every control cycle, each IO PE transmits on the bus one set of sensor readings and each 
Control PE transmits one set of commands.  An application-level PE message maps to one or more 
ROBUS messages.  A control cycle consists of one or more ROBUS cycles. 

Other than application data communication, none of the standard PE-level SPIDER services described 
in Section 1 will be implemented in the first configuration.  The operation of the PEs will be coordinated 
by an external centralized process responsible for providing control cycle-level synchronization.  Future 
system configurations may implement internal distributed coordination protocols for PE-level diagnosis, 
synchronization and redundancy management. 

Although the intended fault injection targets for the initial experiments are the ROBUS components, 
namely BIUs and RMUs and their communication links, the minimum units of failure in a fault tolerance 
and redundancy management sense are actually defined in terms of fault and error containment regions 
(FCRs and ECRs).  If a PE and a BIU share an FCR, any fault affecting the BIU makes the PE 
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untrustworthy and both are considered to fail as a unit.  Even if a PE and its BIU do not share an FCR, the 
PE still does not fail independently of its BIU because a PE requires a properly operating BIU for access 
to the bus, without which a PE becomes untrustworthy as it has no means to coordinate its operations with 
the rest of the system.  In effect, the failure of a BIU propagates and corrupts the PE.  Thus, given that the 
BIU is a fault injection target, a PE-BIU pair must be treated as a single unit of failure. 

 

 

 

 

 

 

 

 

Figure 4.1: Concept for initial SUT configuration 

4.2.   Execution Platform 

In a full SPIDER system, the RPPs for BIUs and RMUs have custom hardware designs [Torres05B], 
and the PEs have hardware- and software-implemented functions.  The execution platform selected for 
this project enables the implementation of distributed computation networks and consists of general 
purpose reconfigurable processing nodes with hardware and software programmable resources and basic 
communication resources.  The execution platform is used to implement the SPIDER-based SUT and the 
CFIMS.  As such, the execution platform must support simulated fault injection experiments and physical 
fault injections in HIRF and neutron radiation environments. 

This subsection describes the execution platforms for this project.  The first platform, RSPP1, where 
RSPP stands for Reconfigurable SPIDER Prototyping Platform, is an existing platform acquired from a 
previous project.  The second platform, RSPP2, is an upgraded version with increased performance and 
higher damage tolerance in neutron radiation environments. 

4.2.1.   Reconfigurable SPIDER Prototyping Platform 1 

The RSPP1 was developed for NASA by Derivation Systems, Inc (DSI) under a phase III SBIR 
contract and consists entirely of commercial off-the-shelf (COTS) parts.  The RSPP1 is a Field 
Programmable Gate Array (FPGA)-based development system for the design and testing of SPIDER 
prototypes.  The architecture is a scalable modular system composed of individual RSPP1 nodes 
interconnected with point-to-point fiber optic links.  Figure 4.2 shows two views of an RSPP1 node.  An 
RSPP1 node is a PC/104-plus [PC/104] computer system with the following functional hardware 
components. 
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 PF3100-2V3000 PC/104+ FPGA Module: PF3100 with the Xilinx Virtex-II XC2V3000 (3 million 
gates) FPGA. 

 PFBR104 PC/104 Fiber Optic Transceiver Module: Interfaces with the PF3100 over the PF3100 IO 
connector and provides four Agilent HFBR-5905 fiber optic transceivers.  Each RSPP1 node has two 
PFBR104 modules providing a total of 8 fiber optic IO channels. 

 PC/104+ CPU Module: The PC/104+ CPU module is a Lippert CRR2 with a 300 MHz Pentium class 
processor, 64MB SDRAM, 256MB Compact Flash, 10/100 Ethernet, VGA, Keyboard, RS232 serial 
port, parallel port, USB port, and cables.  The White Dwarf Linux operating system is installed on the 
CPU module. 

 

 

 

 

 

 

 

 

 

 

Figure 4.2: RSPP1 Node 

Figure 4.3 shows the interconnection of the main physical components in an RSPP1 node.  The custom 
hardware functions of a node are implemented as hardware processes running on the static random-access 
memory (SRAM)-based FPGA.  The program for the FPGA is stored in non-volatile flash memory 
together with functional parameters for the hardware processes.  The FPGA is connected via low-voltage 
differential signaling (LVDS) [XAPP230] lines to a group of eight fiber-optic transceivers, each 
composed of independent transmit (Tx) and receive (Rx) sections used for point-to-point communication 
with other nodes.  The complex programmable logic device (CPLD) controls the loading of the FPGA 
from flash when triggered by the CPU-controlled reset signal on the ISA bus.  The CPLD acts as a pass-
through for reset requests generated by the FPGA.  This node-wide reset feature supports a policy in the 
ROBUS-2 design that requires a node to reset itself immediately upon the detection of an internal error or 
a bus failure [Torres05A].   

 

 

8 Bi-Directional Fiber 
Optic Channels  

PC Ports 
and Power 

CPU Module 
FPGA Module  
Optical Transceiver Modules (2) 
Fan Module 
DC/DC Power Supply  
 
 
 

PC/104 Stack  



 

 
 

30 
 

 

 

 

 

 

 

 

 

Figure 4.3: Interconnection of the main physical design components on an RSPP1 Node  

4.2.2.   Reconfigurable SPIDER Prototyping Platform 2 

The RSPP1 has several disadvantages in the operating system, the FPGA and the fiber optic 
transceivers.  The RSPP1 operating system, White Dwarf Linux, is a version of Linux intended for 
embedded applications with a small memory footprint.  This version of Linux does not provide support 
for hard-real-time software execution, and that makes it unsuitable for PE-level software functions in a 
time-triggered system like SPIDER.   

The SRAM-based FPGA on RSPP1 has the drawbacks that it loses its programming every time there 
is a hardware reset, and there is a long delay in loading the program.  This programming delay has a 
severe impact on the re-initialization delay of a ROBUS-2 system with RPPs running on these FPGAs.  
The communication system in a flight controller must have very short fault recovery delay to enable fast 
system recovery for preservation of closed-loop system stability.  (Note that the long recovery delay of a 
ROBUS-2 system using RSPP1 is not a problem in the experiments because no actual controller is being 
implemented in the initial SUT configuration and what we are trying to measure is the failure statistics 
without the temporal component in a typical communication exchange.) 

The RSPP1 fiber optic transceivers are standard commercial-grade communication parts that have 
high functional sensitivity and low damage tolerance in high-energy particle radiation environments.  If a 
SPIDER system executing on RSPP1 is exposed to such environments, there is a high probability that 
most observed faults will be due to fiber optic transceiver faults and that the transceivers will only operate 
for a short time before being permanently damaged by the radiation. 

In the RSPP2 platform, which will be developed in-house at LaRC, the CPU module will be replaced 
by one with a more recent processor and a real-time operating system.  A new reconfigurable hardware 
module eliminates the CPLD and replaces the SRAM-based FPGA with a flash-based FPGA that does not 
lose its programming after a power cycle and does not need to be reprogrammed after reset.  The fiber 
optic communication module will be replaced by an electrical communication module that has higher 
tolerance to particle radiation.  In addition, a latch-up protection circuit will be added to the PC/104 stack 
to reduce the likelihood of permanent damage due to the radiation.  [Layton98] describes the performance 
of one such latch-up protection circuit. 
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4.3.   Initial Configurable Fault Injection and Monitoring System 

Figure 4.4 illustrates the architecture of the SUT and the CFIMS.  As described in Section 2, the 
CFIMS enables the collection of observations about the response of the SUT when operating under 
conditions determined by the configuration, workload and faultload specifications.  The system functions 
are SUT function testing, fault injection, state monitoring, execution control, data collection, and system 
configuration.  These functions are implemented as a set of coordinated distributed processes running on 
test control nodes and the SUT. 

For the given initial application, SPIDER consists of PE-BIU and RMU functional nodes running on 
separate RSPP physical nodes, with each node forming an independent fault and error containment 
region.  Each PE-BIU functional pair executes on the same RSPP node because of the failure 
interdependence between the PE and the BIU.  That arrangement is also the most representative of an 
actual fielded system.  Each SPIDER node includes local processes for fault injection and state 
monitoring to support the CFIMS functions.  The runtime configuration capability of the nodes is 
embedded in their local processes. 

As shown in Figure 4.4, the main CFIMS functions reside in the test controllers.  This distributed 
multi-controller arrangement satisfies a design requirement of at least one dedicated test communication 
link for each SPIDER node in SUT configurations as large as 12 BIUs by 4 RMUs, which is believed to 
be the largest system that may be of interest relative to the NASA-ODU research goals.  That connectivity 
requirement cannot be supported by a controller running on a single RSPP node with only 8 customizable 
point-to-point communication ports.  The chosen control architecture consists of one primary controller 
connected to as many secondary controllers as needed to reach each SPIDER node with a dedicated test 
link.  The configuration in Figure 4.4 is intended for SUTs with at most seven PEs due to number of 
available communication ports on an RSPP node. 

In the Primary and Secondary Test Controllers (PTC and STC), the functional processes are allocated 
to either hardware or software taking into consideration the performance requirements of the design, as 
well as the strengths and weaknesses of each computation paradigm.  The following are among the 
critical design requirements for the test controllers.  

 Referencing of  distributed observations to a common timeline 

 Time-triggered operation for interaction with SPIDER  

 High error detection coverage in the communication between the controllers and SPIDER  

 Support very high rate of execution on ROBUS  

 High fault injection controllability and repeatability   

All these requirements are best satisfied by exploiting the high degree of distributed time 
synchronization precision and operation coordination achievable with hardware implemented functions.  
However, hardware implementations tend to be limited by available resources and time-consuming to 
design and analyze due to high execution parallelism and complex interactions between functional 
components.  Software implementations tend to have large available resources (e.g., memory) and be less 
time consuming due to the sequential-programming model, but also tend to allow only coarse timing 
control and coordination (relative to what can be achieved with hardware) between parallel processes.  
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The process allocation shown in Figure 4.4 has a mix of hardware and software functionality that offers a 
reasonable balance between performance and design complexity.    

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

Figure 4.4: High-level architectural view of the CFIMS and SUT  

The Test Control Links (TCLs) are a communication infrastructure shared by the CFIMS hardware 
processes.  The TCLs include the Controller Coordination Link (CCL) between the Primary Test 
Controller and the Secondary Test Controller, the Primary Test Links (PTLs) between the PTC and the 
PE-BIU nodes, and the Secondary Test Links (STLs) between the STC and the RMU nodes.  The TCLs 
use custom-designed data communication units with high-precision point-to-point communication delay 
and very low bit-error rate (see Section 6).  The Test Control Messages (TCMs) communicated over these 
links have a common format which is described in Section 7.    

At the PTC and STC, the Round Control hardware processes are responsible for overall coordination 
of activities at the test controllers.  A (test) round is the sequence of actions by the system to perform the 
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work described in a Test Specification file (see Section 13 and Appendix A).  The Round Controllers 
execute a Controller Coordination Protocol (CCP) over the CCL to synchronize and coordinate their 
actions (see Sections 4.3.4 and 5).  This protocol leverages the SUT function-based time reference 
generated by the Function Testing process at the PTC to enable the Round Controllers to provide the 
common global time service needed to correlate the activities and observations in separate parts of the 
system for the duration of the round.   

The Function Testing process at the PTC has two main components: a function timer, and a function 
tester and monitor.  The function timer is the centralized PE coordinator introduced in Section 4.1.  Its 
purpose is to enable the PEs to synchronize their application level activities and to provide a precise SUT-
based time reference with which to coordinate the CFIMS operations.  The function tester and monitor 
component generates the application data to be exchanged by the PEs over ROBUS and gathers fault 
effects observations based on the messages sent back by the PEs.  Section 4.3.1 gives a more detailed 
description of the Function Testing process. 

The Fault Injection processes work together to generate a physical or simulated faultload according to 
the Test Specification.  For physical fault injection, the PTC and STC interact with the Environment 
Controller to coordinate the activation of environmental disturbances with the operation and monitoring 
of the SUT.  The simulated fault injection capability is intended to be highly flexible and configurable to 
achieve the desired trade-off between complexity of design and effectiveness of fault injection relative to 
the properties presented in Section 2.2 (i.e., reachability, controllability, repeatability, reproducibility, and 
non-intrusiveness).  The simulated fault injection processes can be present in both hardware and software 
in every node of the system, and their individual actions can range from independent decisions based on 
locally available system state information to globally coordinated actions using the high-bandwidth 
communication infrastructure.  The actions of the fault injection processes can be event-triggered based 
on monitoring of local or global conditions, or the actions can be driven by time using the available SUT-
derived function time.  Random fault injection is also possible using the available resources.  More details 
about the fault injection capability are given in Section 4.3.2. 

For State Monitoring, every SPIDER node has a local process that reports state observations through 
the TCLs to higher level monitoring processes.  The embedded monitoring processes can be configured 
for the triggering conditions and the variables to be sampled.  In addition to forwarding these observations 
to the data collection software processes, the state observations can be combined with observations about 
the SUT application to ascertain in real time the general health status of the SUT.   

The Data Collection processes at the test controllers gather observations about the operation of the 
SUT and the CFIMS throughout the round.  The collected data is organized into separate buffers and 
transferred at the end of the round to files at the Repository, where they remain available for post-test 
analyses.  

The software Configuration Management process is responsible for setting up the system according to 
the description given in the Test Specification.  The configuration information is applied directly at the 
test controllers, or it can be routed through the system using TCMs to reach particular destination 
processes.  Each receiving process must then apply its configuration information as appropriate in 
preparation for the next execution round.  

The following subsections provide additional information about the design of the SUT and the 
CFIMS. 
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4.3.1.   SUT Function Testing  

As stated previously, the PEs in the initial version of the SUT will not implement any of the standard 
PE-level distributed coordination and resource management protocols over ROBUS (for example, 
synchronization, diagnosis and redundancy management), and instead will use an external time 
synchronization agent to enable coordinated message-passing on the bus.  In this subsection, we give an 
overview of the PE synchronization protocol and the function to exercise and monitor the communication 
of the PEs over ROBUS. 

4.3.1.1.   PE Synchronization  

The initial SUT application consists of the PEs executing a pattern of communication over the bus that 
is representative of actual control applications with messages for sensor readings and effector commands.  
On SPIDER, the coordination of distributed operations is based on the fault-tolerant time service provided 
by ROBUS in the form of a constant-period cyclic time reference.  For a control application with 
periodicity requirements on the updates of sensor readings and effector commands, the duration of a 
control cycle would normally be specified as a multiple of the ROBUS cycle.  The actual durations of the 
ROBUS cycle and the control cycle are selected considering a variety of factors like the required 
synchronization precision, available communication bandwidth, fault arrival rate, fault recovery delay, 
and control-cycle period and period jitter.   

The PE communication pattern over the duration of a control cycle can be optimized by changing the 
PE communication schedule in every ROBUS cycle using the ROBUS dynamic schedule update service.  
To do this, the PE communication schedule for a control cycle is defined as an indexed set of ROBUS 
communication schedules, with one ROBUS schedule for each ROBUS cycle in a control cycle, and with 
the schedule index identifying the ROBUS cycle in which to apply a particular ROBUS schedule.  
Accordingly, for proper coordinated communication, the PEs must have agreement on the current time, 
which includes the ROBUS Time (RT) (i.e., the time within a ROBUS cycle) and the ROBUS Cycle 
Index (RCI) (i.e., the identifying sequence number for a ROBUS cycle within the control cycle).  The 
ROBUS time service ensures agreement on the RT among the PEs.  In the first SUT implementation, RCI 
agreement among the PEs is achieved by means of a centralized agreement generation and preservation 
process residing at the PTC and referred to as the Function Timer (FTmr).  In addition to providing RCI 
agreement for the PEs, the FTmr maintains a Control Cycle Index (CCI) to identify and count the control 
cycles since the beginning of SUT application execution in the current round.  The PE RCI agreement 
protocol described below enables the FTmr to provide all CFIMS components with an SUT-referenced 
time service consisting of the 3-tuple (RT, RCI, CCI).   

Figure 4.5 shows the transition graph for the PE major modes.  The OCL, which stands for Operation 
Coordination Level, measures the degree of readiness of a PE to participate in distributed SPIDER 
operations.  After a reset, in OCL0 a PE must first synchronize to the ROBUS Time as indicated by its 
attached BIU.  Then, in OCL1 the PE waits to confirm that its BIU has reached steady-state in the Clique 
Preservation Mode (CPM) (see Section 3).  Once the PE has stable access to the bus in OCL2, the next 
step is to synchronize the local RCI and transition to OCL3 at the next control cycle boundary, which is 
identified by an FTmr synchronization message with RCI set to 0.  A PE in OCL3 is ready for normal 
control-cycle-level communication on the bus.  Whenever the PE detects a failure condition, it 
immediately halts all internal operations and remains there until an external reset is applied. 

Figure 4.6 shows the message-flow graph for the RCI agreement protocol.  A PE participates in this 
protocol only after it has reached OCL2, by which time its local RT is synchronized by INIT messages 
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from the attached BIU executing the ROBUS Synchronization Preservation protocol.  In process P2IO, a 
PE transmits a synchronization message after a predetermined constant delay from the time it received the 
INIT message.  The PE message contains the local RCI value.  Given known bounds on the point-to-point 
communication delay, the FTmr can use the time of reception of the message in process P3IO to estimate 
the RT at the sending PE.  In the initial version of the protocol, the FTmr discards the received RCI values 
and performs a middle-value-select event vote on the time of reception of PE messages.  The FTmr then 
transmits a message a fixed delay after the event vote produces its output.  This message carries internally 
generated values for the RCI and CCI.  In process P4IO, the PEs accept the received RCI and use it as the 
communication schedule index in the next execution of the ROBUS schedule update protocol.  The FTmr 
message (referred to as the “sync message”) is also distributed throughout the CFIMS to enable SUT-
referenced time-coordinated distributed actions.   

 

 

 

 

 

 

Figure 4.5: Major-mode transition graph for a Processing Element 

 

  

 

 

 

 

 

Figure 4.6: Message flow graph for the RCI agreement protocol 

The design of the FTmr uses many synchronization concepts from ROBUS and the RPP.  Figure 4.7 
shows the FTmr mode transition graph.  After a reset, the FTmr operates asynchronously with respect to 
SPIDER.  It first enters a passive phase (i.e., no output generation) of monitoring and diagnosing the 
synchronization messages from the PEs in order to establish an initial set of trusted PEs.  This minor 
mode is similar to the RPP‟s Local Diagnosis Acquisition in the Clique Detection major mode.  When the 
FTmr determines an initial valid set of PEs, it transitions to RT Frame Synchronization mode where it 
finds the gap between consecutive bursts of synchronization messages from the PEs.  Notice that the PEs 
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send their synchronization messages from process P2IO in Figure 4.6 as a result of receiving 
synchronized INIT messages from the BIUs, which are generated periodically when ROBUS executes its 
Synchronization Preservation protocol.  The FTmr Frame Synchronization protocol ensures that RT 
Synchronization Capture will not start while a burst of synchronization messages from trustworthy PEs is 
being received.  The FTmr synchronizes to the current RT in the Synchronization Capture mode.  When 
RT synchronization is achieved, the FTmr transitions to RT Synchronization Preservation and begins 
SUT-synchronous operation.  Whenever a failure condition is detected, the FTmr restarts the 
synchronization process in the Initialization major mode.  

Additional information about the RCI agreement protocol can be found in Section 9 for the PEs and in 
Section 11 for the FTmr. 

 

 

 

 

 

 

 

Figure 4.7: Mode transitions for Function Timer 

This version of the RCI agreement protocol satisfies the intent of having a single agent external to 
SPIDER that generates the RCI values to ensure agreement among the PEs.  However, discarding the 
received RCI values at the FTmr introduces an unnecessary degree of artificiality in the behavior of the 
system due to the fact that there is no relation between the RCI value generated by the FTmr and the RCI 
values at the PEs, which are part of the system state at the PEs.  It is a simple exercise to modify this 
protocol to compute the RCI at the FTmr using a majority word vote over the received values from the 
PEs.  That modified version of the protocol can be used to fully synchronize the FTmr as a slave process 
to SPIDER in future versions of the system in which the PEs execute a distributed agreement protocol by 
exchanging their local RCIs over ROBUS.  In that system, process P4IO at the PEs is redundant and can 
be removed. 

4.3.1.2.   Application Testing 

In the first SUT application, the PEs exchange messages over ROBUS while observations are 
collected about fault effects.  The PEs are grouped into IO PEs that transmit sensor reading messages and 
Processing (or Control) PEs that transmit effector command messages.  Every PE is allowed to transmit 
exactly one application-level message per control cycle.  The application communication schedule is 
predetermined and repeated every control cycle.  The assignment of applications to the PEs as either IO or 
Processing is given in the Test Specification (see Figure 4.4).  The Test Specification also indicates which 
PEs will be active during the test round. 

Reset 

Passive PE Diagnosis 

RT Frame Synchronization 

RT Synchronization Preservation 

RT Synchronization Capture 

Failure 

Initialization 

Preservation 



 

 
 

37 
 

Continuing with the model of having a centralized PE coordinator, in every control cycle the PTC 
Function Testing process sends to the PEs the application data to be transmitted on ROBUS and generates 
observations based on the communication results reported by the PEs.  Essentially, the goal is to check 
the communication paths between PEs.  To do this, the PTC Function Testing process has a dedicated 
lane Function Monitor (FMon) for each PE.  Figure 4.8 illustrates the message flow from FMoni to 
FMonj.  The FMons read the current system time from the FTmr.  At the beginning of a control cycle, 
FMoni sends a message to PEi containing either sensor readings or effector commands, depending on 
whether PEi is configured for IO or Processing, respectively.  If PEi detects an error in the message from 
FMoni, it makes a record of the error and sets the appropriate field in the message content to be 
transmitted on ROBUS, assuming PEi is scheduled to transmit.  PEi broadcasts a message on ROBUS at 
the scheduled time, and the message is received by every active PE, including PEi itself.  If PEj detects an 
error in the message received on ROBUS, it makes a record of it.  When PEj is ready, it adds the 
scheduled source Id to the message (i.e., the Id for PEi) and an indication in the appropriate message field 
if a message reception error was detected, and then sends the message over to FMonj.  FMonj inspects the 
received message and generates an observation based on the content.  At the end of every control cycle, 
FMonj outputs one observation result for each PE as a source, irrespective of whether the PE actually was 
a message source during the cycle.   

 

 

 

 

 

Figure 4.8: Message flow pattern for testing ROBUS fault effects on PE messages 

Table 4.1 lists the possible observation results for the path from FMoni to FMonj.  To generate this 
table, it is assumed that there are no faults at the FMons, there are no restrictions in how the PEs, BIUs, or 
RMUs may fail (i.e., they may experience omissive or transmissive faults, with transmissive faults having 
a non-negligible probability), and there is near-perfect integrity in the communication over the PTLs and 
RLs (i.e., either a message receiver gets the correct message or it detects a bad message) such that 
transmissive communication faults are possible but unlikely.  These assumptions are supported by the fact 
that fault injection does not target the FMons directly; the implementation of the PE, BIU, and RMU 
nodes may not have local-error detection mechanisms with high detection coverage; and the point-to-
point communication links to be used are designed for high integrity (see Section 6).  Every FMon 
handles received messages from its corresponding PE in an event-triggered manner (i.e., messages are 
immediately processed when they arrive) and with a control-cycle time granularity for the generation of 
observations (i.e., messages are processed at their actual time of arrival during the control cycle, but all 
the observations are outputted at the end of the control cycle).  If an FMon does not receive a message 
with a particular Sender Id during the control cycle, then the observation result for that Sender Id at the 
end of the cycle will be the default one (i.e., Omitted Sender Id).  When the FMon receives a message, the 
error checks are applied in the priority order indicated in Table 4.1.  The outputted observation for a 
message will be determined by the first check to detect an error.  A message is considered good (i.e., 
correct) only if it passes all the checks.  Note that transmissive faults are considered more serious (and 
interesting) from an effects characterization standpoint. 
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Table 4.1: Defined observations for the communication path from sender FMoni to receiver FMonj 
 

Observation 

by FMonj 

Check  

Priority 
Check Description Explanation of Observation at FMonj 

Omitted 
Sender Id 0 FMonj received no message from 

FMoni. 
- Default observation applicable to the case of PEi disabled or not scheduled to transmit.   
- May also be due to a fault in PEj or the PTL from PEj to FMonj. 

Invalid 
Sender Id 1 

FMonj received a message from 
FMoni in a system configuration 
in which PEi (and thus, FMoni) 
does not exist or is not active. 

- Mostly likely due to a transmissive fault in PEj.   
- May also be due to a transmissive fault in the PTL from PEj to FMonj. 
- The check for this observation is given higher priority than the one for “Bad Payload Length” 

because the outputted observations are indexed by the sender Id.  It is also given higher 
priority than “Repeated Sender Id” because it could be interpreted as an error due to a fault in 
PEj.   

Repeated 
Sender Id 2 FMonj received multiple 

messages from FMoni. 

- Most likely due to a transmissive fault in PEj.   
- May also be due to a transmissive fault in the PTL from PEj to FMonj. 
- There is no basis to give priority and check the content of any one of multiple messages with 

the same sender id. 
- The check for this observation is given higher priority than the one for “Bad Payload Length” 

because the outputted observations are indexed by the sender Id. 

Bad Payload 
Length 3 

FMonj received a message from 
FMoni with an incorrect message 
length for the application 
assignment given to PEi. 

- Most likely due to a transmissive fault in PEj.   
- May also be due to a transmissive fault in the PTL from PEj to FMonj. 
- The correct message length is determined based on the application assignment for the PE 

with the received sender Id. 
Detected 
Reception 
Error at 
Receiver PE 

4 
FMonj received a message from 
FMoni with a reception error 
reported by PEj. 

- Most likely due to an omissive fault in PEi or ROBUS.   
- May also be due to a transmissive fault in PEj or the PTL from PEj to FMonj. 
 

Detected 
Reception 
Error at 
Sender PE 

5 
FMonj received a message from 
FMoni with a reception error 
reported by PEi. 

- Most likely due to an omissive fault in the PTL from FMoni to PEi.   
- May also be due to a transmissive fault in PEi, ROBUS, PEj or the PTL from PEj to FMonj. 

Bad Message 
Content 6 

FMonj received a message from 
FMoni with an incorrect message 
content for the application 
assignment given to PEi. 

- Most likely due to a transmissive fault in PEi or PEj.   
- May also be due to a transmissive fault in the PTL from FMoni to PEi, ROBUS or the PTL 

from PEj to FMonj. 
- The correct message content is determined based on the application assignment for the PE 

with the received sender Id. 
Good 
Message 7 --- - A received message at FMonj is considered good (i.e., correct) if it passes all the error 

checks. 
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4.3.2.   Fault Injection 

This subsection gives an overview of the fault injection capability designed according to the concept 
described in Section 2.2.  

4.3.2.1.   Mapping the OTH Fault Modes to Component Fault Modes 

The smallest units of failure relevant to the design and analysis of the SPIDER protocols and services 
are nodes and links (i.e., computation and communication functions).  In general, the functionality (or 
service) delivered by a component can be specified in terms of a generated sequence of output service 
items, each of which is characterized by a value-time tuple (i.e., a value delivered at some time) 
[Powell92].  From this viewpoint, the failure of a component is manifested as a corruption of the output 
service in the value and/or time domains.   

Consider the case of one-to-one communication between a source node and a receiving node.  The 
information arriving at the receiver is the result of the behavior of the source node and the communication 
link between the source and the receiver.  Let Fault Typeone-to-one denote the fault manifestation at the 
receiver, which is expressed in terms of the fault types (or “modes”) of the source node and the link as 
follows: 

Fault Typeone-to-one = {Node Type, Link Typeone-to-one} 
 

Here, Node Type and Link Typeone-to-one are each one of good (g), detectably bad (d), or undetectably bad 
(u).  In this detectability-based model, the classification of a component malfunction is based on the effect 
of the errors in an output service item as perceived by an observer using value and/or time checks to 
detect bad service items.  A service item arriving at the receiver is good if it is coming from a correctly 
functioning component (i.e., that meets its service specification and has uncorrupted internal state).  In a 
properly functioning system, a good service item always passes all the value and time checks (i.e., there 
are no false-positive detections).  A bad service item from an incorrectly functioning component is 
undetectable only if it passes all the value and time checks (i.e., false-negative detection is possible).  
Because the error checks performed by an observer can be dependent on its mode of operation, it is 
possible that a particular error pattern in a service item can be interpreted differently in different modes of 
operation of the observer.  Table 4.2 captures the relation between the source node and link fault types 
and the resulting fault type at the receiver.  An asterisk „*‟ is used to indicate that a type can be any of „g‟, 
„d‟, or „u‟.  Note that because of the series connection of the source node and the link, the fault type of the 
source node is visible at the receiver only if the link is good.   

Table 4.2: Detectability-based fault manifestation at the receiver as a function of source node and link fault types 
 

Source Node Type Link Typeone-to-one 

Fault Typeone-to-one  

at the Receiving Node 

g g g 
d g d 
u g u 
* d d 
* u u 

 

If a node has more than one output link, the classification of the Link Type must be expanded to cover 
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all possible combinations of misbehavior in the output links of the source node.  For this case of one-to-
many communication, we add the dimension of consistency (or “symmetry” or “agreement”) of 
manifestations at the receivers to the definition of communication fault types.  The definition of 
consistency depends on the context.  In general, a group of observations are consistent if all the pair wise 
differences are within a particular bound.  Consistency can be defined in terms of approximate agreement, 
where the differences are within a predetermined, non-zero bound.  Consistency can also be defined as an 
exact agreement with no difference between observations (i.e., a bound of zero).  A service item is 
consistently perceived at the receivers if it is consistent in the value and time domains.  When a receiver 
detects an error on a service item, the error indication supersedes the actual received (or missing) service 
item.  So, with respect to error detectability at the receivers, all detectably bad outputs are symmetric 
irrespective of whether the actual errors that triggered the detections were the same.  For undetectably bad 
outputs, for which there is indication of an error, the symmetry of the errors is an important fault mode 
characteristic.  For these, the classification is further refined to distinguish symmetric and asymmetric 
undetectably bad outputs.  These refinements are labeled „su‟ and „au‟, respectively.  The list below gives 
several examples of the Link Type for one-to-many communication with a refined notation based on the 
concepts of detectability and consistency. 

g  = all sysmmetrically good 
d  = all symmetrically detectably bad 
su = all symmetrically undetectably bad 
au  = all asymmetrically undetectably bad 
g/d  = asymmetric with some good and others detectably bad 
g/su  = asymmetric with some good and others symmetrically undetectably bad 
g/d/au  = asymmetric with some good, some detectably bad, and others asymmetrically 

undetectably bad 
 

 
With this scheme, the OTH fault classification in Table 2.2 can be restated as shown in Table 4.3.  

Fault Typeone-to-many defines the behavior of the nodes and links in the OTH model in a way that is suitable 
for the realization of a fault injection capability. 

Table 4.3:  OTH fault classification based on Node Type and Link Type outputs 
 

Fault Mode Description 

Fault Typeone-to-many 

perceived at the 

receiving nodes 

Correct All observers receives the same correct message. {g, g} 
Omissive 
Symmetric  

Each observer declares the message invalid, either because the 
message was not received or it was detectably incorrect. {d, g}, {*, d} 

Transmissive 
Symmetric  Each observer accepts the same incorrect message. {*, su}, {u, g} 

Strictly 
Omissive 
Asymmetric  

Some observers receive the same correct message and others 
declare the message invalid, either because they do not receive 
a message or declare invalid their received message. 

{g, g/d} 

Single-Data 
Omissive 
Asymmetric  

Some observers accept the same incorrect message and others 
declare the message invalid, either because they do not receive 
a message or declare invalid their received message. 

{u, g/d}, {*, d/su} 

Transmissive 
Asymmetric  The observers have other patterns of disagreeing observations. All other combinations. 

 



 

 
 

41 
 

4.3.2.2.   Design Approach 

The fault injection capability must support physical and simulated fault injection.  For physical fault 
injection, SUT faults are generated by means of environmental disturbances.  In this case, the CFIMS 
interacts with an Environment Controller (see Figure 4.4) to coordinate the activation of the disturbances 
with the operation of the system, and no additional internal local action is required by the CFIMS for the 
generation of faults.  For simulated fault injection, the Test Specification describes the desired faultload 
and the CFIMS has exclusive control over the generation of faults.  We want a flexible and configurable 
simulated fault injection capability that satisfies the properties of reachability, controllability, 
repeatability, reproducibility, and non-intrusiveness for a faultload based on the Detectability, 
Consistency and Persistence (DCP) fault model (see Section 2.2) applied to fault manifestations in the 
value and time domains.  We want to be able to inject simulated faults in any of the operational modes of 
a node (see Section 3.4).  We also want the capability to independently control fault injection at different 
locations and to set up complex patterns of fault injection throughout the SUT, including scenarios of 
multiple simultaneous faults.  The CFIMS architecture (depicted in Figure 4.4), the selection of SUT fault 
injection points and the design of the fault injectors are critical elements in achieving the desired 
attributes for the simulated fault injection capability.   

The CFIMS architecture, especially its connectivity, enables a high degree of coordination between the 
fault injection sites at the SUT nodes.  The centralized PTC and STC fault injection controllers can 
monitor SUT activity by means of the Function Testing process (see Figure 4.4).  It is also possible to add 
a capability in which the controllers receive additional SUT-related event information sent out via the 
TCLs by the distributed Local State Monitoring or Local Fault Injector processes at the SUT nodes.  With 
this detailed level of real-time information about the state of the SUT, the fault injection controllers can 
send out coordinated commands to all the local fault injectors to achieve virtually any desired fault 
pattern, with repeatability constrained mainly by the quality of the SUT-related information made 
available to the controllers.   

Structurally, the SUT is composed of processing nodes and communication links, and each node is 
further composed of a computation module and a communication module.  We would like our fault 
injection points to be selected and organized along the same categories of computation and 
communication based on the functionality targeted for disruption.  Computation faults can be realized by 
fault injectors attached to the computation modules of the nodes, and fault injectors at the communication 
modules can generate communication faults.  Given that the OTH model classifies faults by partitioning 
the fault effects space, every OTH fault category can effectively be realized by injections at the source or 
at the observers.  Source-side fault injections, including computation and communication faults, have the 
advantage of being centralized at the source node, which means that local state information at the source 
can be used as a common reference to coordinate the activation of fault injections.  A disadvantage of 
source-side injection is that the mapping from injected faults to a particular OTH fault class at the 
observers may be difficult (or even impossible) to predict because of the dependence of the classification 
on the state of the observers.  Receiver-side fault injections can be implemented by placing fault injectors 
on the output signals from the receiver‟s communication module that are connected to inputs of the 
computation module.  This way of injecting faults has the disadvantage of a more complicated 
coordination problem to control the fault injectors to achieve a particular OTH fault class, with the 
effectiveness determined by factors like the precision of the timing information available to the fault 
injection controllers.  The main advantage of receiver-side injection is that, assuming that the actions of 
the fault injectors are adequately coordinated, there is a direct mapping from the injected faults to a 
particular OTH fault class.  In a time-triggered system like SPIDER, it is possible to simplify the receiver-
side fault injection coordination problem by using the fault injection controllers to set up the fault 
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injectors and giving fault-activation control to the fault injectors themselves, which would then use the 
local state of their respective receivers (including the local time) as references to trigger the activation of 
faults. 

The fault injectors are the only components of the fault injection system that have a direct influence on 
the functionality of the SUT.  As such, their defining features are strong determinants of the effectiveness 
of the fault injection system.  The purpose of a fault injector is to corrupt signals at some level in the SUT 
structural hierarchy.  To achieve this signal corruption, a fault injector is attached to a signal line and the 
correct signal is replaced by a faulty signal that is different in the value and/or time domains.  A fault is 
active when the signal on the line is not the correct one.  The faulty signal can be a function of the correct 
signal or independent from it.  While the fault is active, the characteristics of the faulty signal can be 
static (i.e., stuck-at) or dynamic.  The duration (or “persistence”) of a fault may vary from one activation 
to the next.  The correct signal is restored when a fault becomes passive.    

Because a potentially large number of fault injectors may be integrated into the SUT, they should have 
a simple interface and be easily configured as described in the Test Specification.  The design of the fault 
injectors must support injection on the computation and communication modules of a node.  To support 
the centralized and distributed patterns of injection control, a fault injector must be able to receive 
commands from the injection controllers and to monitor as needed the state of the node at its location.  
The chosen fault injector design concept must not preclude having the capability to send status messages 
back to the main controllers via the local TCL.  The design of the fault injector must also be modular in 
order to support evolution of the design to allow increasing complexity of fault injection patterns. 

For physical fault injection experiments, the main requirement on the fault injection capability is that 
the faults experienced by the SUT be caused only by the test environmental disturbances.  A simple way 
to achieve this is to send a command to the fault injectors to disable them before an experiment.  
However, this solution has an associated risk of unintended activation of a fault injector during an 
experiment due the environmental disturbances.  The only way to guarantee that the fault injectors will 
not be activated during a physical fault injection experiment is to remove them from the SUT. 

For the first set of simulated-fault experiments intended to characterize the control system-level effects 
of faults in the ROBUS-2 communication system, only BIU and RMU faults are of interest and the only 
fault type is the fail silent (or fail stop) mode in which a node stops producing outputs when it fails 
[Butler08].  This failure mode provides source-guaranteed integrity (i.e., absence of improper state 
alteration) [Avizienis04, Paulitsch05] on the node‟s output service and requires simple error decision 
logic at the observers to validate the service: all received service items are correct and missing items are 
bad and detectable by a timeout check.  This failure mode was selected in order to simplify the modeling 
and analysis of propagated fault effects on ROBUS-2 and the control system [Gray08].  In essence, the 
analytical models were developed assuming that there are no propagated fault effects other than those 
caused by the persistence of node service unavailability.  To implement this kind of fault injection 
capability, a fault injector was attached to the reset signal at each of the BIUs and RMUs, and the 
activation of the injectors is directly controlled by the main fault injection controller at the PTC following 
the pattern of fault locations and timing specified in the Test Specification.   

4.3.2.3.   Current Design 

The design of the Local Fault Injectors reflects the levels of abstraction as well as the fault models 
described in Section 2.2.  The Local Fault Injectors have a general structure so they can be placed on any 
control or data signal within the SPIDER nodes, causing the signal to deviate from normal operation.  
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This architecture allows the location of the fault injectors within the nodes, also referred to as injection 
points, to vary.  The faults have two parameters to indicate their behavior and persistence.  The behavior, 
or fault type, specifies what values the faulty signal will undergo for the persistence of the fault specified 
by the activation pattern.  The activation pattern and duration specify when the faulty value is used in the 
node operation.  The fault value might take on a value independent of the original signal or might be a 
function of the target signal itself.  The fault injection setup section of the Test Specification file (see 
Appendix A) defines the fault type and activation pattern of the target signals. 

The software interprets the fault injection setup section of the Test Specification file.  The fault 
injection setup data from the Test Specification file is passed from the Repository, or Data Management, 
to the PTC software Fault Injection Management process, where the setup data is sent to the PTC Fault 
Injection Controller of the hardware during the fault injection setup mode of the CCP.  With the current 
setup, the PTC Fault Injection Controller forwards the setup messages across the PTLs to all of the PE-
BIUs and also across the CCL to the STC.  The STC Fault Injection Controller then forwards the setup 
messages across the STLs to all RMUs.  Once the PE-BIUs and the RMUs receive the fault injection 
setup data, the Local Fault Injectors parse the data and set up the corresponding fault type and activation 
pattern.  The fault specification capability may be expanded to allow the STC software to send setup 
information to the hardware when it is needed to send separate fault injection setup data to the RMUs or 
to eliminate the data forwarding in the STC hardware. 

In the current implementation of the CFIMS, we assume the nodes are fail-silent.  When errors are 
detected in a BIU or RMU, the outputs of the node are disabled (see Section 3.3), indicating an inherently 
fail-silent behavior.  The fail-silent fault is implemented by asserting the reset signal for the duration of 
the scheduled exchange of PE messages (see Section 4.1).  The start and end times of the fault must be 
declared in order to only affect the node for a portion of the control cycle.  Within the Test Specification 
file two lines are used to specify the RCI (see Section 4.3.1.1) to activate and deactivate the fault.  By 
deactivating the fault soon after the sensor and command exchange is complete, the rest of the control 
cycle is left for the SUT to recover for the next independent control cycle (see Section 4.1). 

The architecture of the SUT can be divided into two main parts: application-level computation and 
communication.  The computation portion of the system contains PE nodes, and the communication 
portion contains BIUs, RMUs, and data links.  Applying failures on the nodes and links of the SUT is a 
plausible high-level system fault model.  Observing fail-silent fault effects on the nodes provides this 
system-level model.  After studying the effects of physical faults, it might be necessary to trace system 
failures to the component-level.  The fault injection system is designed to be flexible for both high- and 
low-level injections.  The depth in the lower levels of fault injection abstraction determines the quality of 
the results and the complexity of the analysis. 

The capability to execute a round without conducting any simulated fault injection is included in the 
design of the fault injection subsystem.  This capability allows the gathering of data to establish a base 
case that the fault injection experiments can be compared against.  Additionally, the no-fault-injection 
setting is used for the physical fault injection experiments, such as in HIRF environments.  The 
specification that the round has no fault injection replaces the fault type and activation of the fault 
injection setup information in the Test Specification file (see Appendix A).  The PTC software sets the 
no-fault-injection status and the PTC Fault Injection Controller does not send any fault injection setup 
data, therefore, allowing the round to be completed, including the collection of the monitoring data, 
without injecting any simulated faults into the system. 

Each SPIDER node is specified to either behave normal (0) or fail-silent (1) for each control cycle 
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within the round (see Section 4.3).  A 16-bit fault vector (or test vector) describes which nodes contain 
faults for a single control cycle.  Similar to the fault injection setup data, the fault vectors defined in the 
Test Specification file are sent from the Repository to the PTC software Fault Injection Management 
process.  Before the start of the round, the software preloads some fault vectors into a buffer in the 
hardware where it waits until the first control cycle of the test.  Throughout the execution of the test, the 
PTC Fault Injection Controller reads fault vectors from the buffer to pass on to the PE-BIUs and the STC 
Fault Injection Controller.  The STC Fault Injection Controller forwards the fault vectors to the RMUs.  
As fault vectors are read from the buffer, the software continues to write the fault vectors onto the buffer 
until all fault vectors have been sent.  At the SPIDER nodes, the Local Fault Injectors receive the fault 
vectors and locate the corresponding bit that applies to their Node Id to either activate or deactivate faults. 

4.3.3.   State Monitoring 

The data collected about the internal operation of the SUT is used for real-time health assessment and 
post-test event analyses.  Figure 4.9 shows a dataflow diagram for the state monitoring function of one 
SUT node.  Every SUT node has an embedded node monitor (ENM) that can gather state information 
from the local components, including a ROBUS Protocol Processor (RPP) programmed as either a BIU or 
an RMU, several ROBUS Links (RLs), one or more local Fault Injectors (FI), and a Processing Element 
(PE) if the node is a PE-BIU node.  The ENM can be reconfigured to change the monitored node 
variables and the triggering conditions for sampling individual variables.  The data samples are taken as 
their respective sampling conditions are triggered, and they are retained in local memory until at least one 
of the configured conditions for the transmission of a state message is triggered.  If there are variables for 
which there is not a sample in memory when the transmission trigger occurs, those variables will be 
sampled immediately in order to complete the data sample record.  The state data in memory is then 
packaged into a TCM and sent over the local TCL to the State Message Receiver (SMR) at the 
corresponding test controller (i.e., the PTC for PE-BIU nodes or the STC for RMU nodes).  There, a Node 
Condition Monitor (NCM) examines the received state data to determine the current health status of the 
node.  Figure 4.10 shows the state transition diagram for the current health condition assessment 
algorithm.  The selection of health indicators (i.e., the state variables used in the node condition 
assessment) and the condition assessment algorithm are configurable elements of the state monitoring 
function.  In Figure 4.10, the assessed node condition is Disabled until a new set of indicator values (i.e., 
a new health record) is received.  When that happens, the condition is upgraded to Recovering, where it 
remains until there is sufficient evidence that the node is in good and stable health condition.  The 
definition of what constitutes a good and stable health condition is part of the system configuration.  As 
currently configured, good and stable health is indicated by a continuous sequence of health records with 
content matching a predefined set of good-health indicator values for a pre-set minimum time duration.  
When the transition condition for the Recovering state is satisfied, the condition is upgraded to Restored.  
The node condition is set back to Recovering if there is evidence that the node is not in good health.  As 
currently defined, this is triggered by a timeout in the gap between health record updates or a health 
record content that does not match the good-health indicator values.  The assessed node condition is 
forwarded to the SPIDER Health Monitor at the local test controller and also merged with the received 
state data to form an output node state record to be collected by the software. 

More detailed information about the state monitoring function is given with the design descriptions for 
the SUT and CFIMS nodes in sections 9 through 12, and also in Appendix B, which provides a 
comprehensive list of the current set of state variables in the node state records. 
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Figure 4.9: Dataflow graph for a node state monitoring lane 

 

 

 

 

 

Figure 4.10: State transition diagram for node condition assessment  

4.3.4.   Round Control 

The purpose of the CFIMS Round Control function is to provide common direction for global 
coordinated interaction among all the SUT and CFIMS processes.  The main Round Control processes in 
the current system are implemented in hardware at the PTC and STC, as shown in Figure 4.4.  The 
Controller Coordination Protocol (CCP) executed over the CCL allows the distributed round control 
processes to present a tightly coordinated, SUT-status-aware control interface to the other hardware and 
software processes.  Figure 4.11 shows the major mode transition graph for the Round Control function.  
After a reset, the system remains idle until the software commands the start of a round.  The first step 
after a software enable is for the hardware round control processes to synchronize their actions.  When 
that has been accomplished, the controllers command SPIDER to initialize and get ready to run when 
commanded, which currently involves enabling ROBUS to initialize and enter its Clique Preservation 
mode and for the PEs to monitor the PTLs for incoming round setup commands.  The CFIMS state 
monitoring function begins tracking the state of the SUT at this time.  The fault injection (FI) processes, 
including the fault injectors at the SUT nodes, are then configured according to the Test Specification.  
Next, the SUT function, realized mainly at the PEs, and the function testing process at the PTC are also 
configured.  The SUT function is enabled when the system setup phase is completed.  The system 
executes until a workload or fault injection completion condition in the Test Specification is satisfied, or 
until some error condition is detected, including the possibility of a permanent SPIDER failure.  After the 
CFIMS processes have safely ended their operations, the system returns to the idle state until the control 
software is ready for another round.   
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Figure 4.11: Major mode transition diagram for CFIMS 

The Round Control function is supported by a SPIDER Health Monitoring function whose main 
purpose is to determine when the SUT has been successfully initialized and when it has experienced an 
unrecoverable failure.  The health of the SUT is monitored at the PTC using data from the PE-BIU state 
monitors and the Function Testing process, and at the STC using RMU state monitor data.  As currently 
configured, there are three health monitoring phases.  The first health monitoring phase is during the 
SPIDER Initialization round control mode, where it must be determined when the SUT has been 
successfully initialized.  In the current implementation, this is indicated by the node condition reported by 
the state monitors at the PTC and STC reaching the Restored state for every active SUT.  The second 
health monitoring phase begins when SPIDER is initialized and extends until the SUT begins executing 
its application.  During this time, which corresponds to the interval of the FI Setup and Function Setup 
round control modes, the node condition reported by the state monitors at the PTC and STC for every 
active PE-BIU and RMU node should remain in the Restored state (see Figure 4.10) for the complete time 
interval because no faults are being injected into the SUT.  A SPIDER failure is immediately declared if 
the node condition for any active node is other than Restored at any time during this phase.  The third 
health monitoring phase extended for the duration of the Function Execution mode of the Round Control 
function.  During this mode, SPIDER is considered to be working properly as long as an attempted re-
initialization does not last longer than a theoretically derived maximum based on system fault 
assumptions and a timing model of the recovery dynamics.  For the current implementation, the mode of 
the FTmr is used as an indirect means to determine when the SUT is re-initializing.  A SPIDER failure is 
declared if the FTmr remains in the Initialization mode (see Figure 4.7) longer than expected under the 
conditions covered by the fault assumptions.   

In addition to a common mechanism for distributed hardware and software process coordination, the 
CFIMS Round Control function also provides a global time-reference service used to time tag 
observations for use in post-test event analyses.  This service leverages the CCP messages between the 
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PTC and STC controllers during the system setup phase (i.e., from major mode System Enable to mode 
Function Setup), as well as the synchronization messages from the FTmr during the Function Execution 
mode, to synchronize a pair of Round Timers (RTmrs) at the PTC and STC.  The Round Time has two 
elements: the Interval Count (IC) and the Interval Time (IT).  The Interval Count is the number of times 
the RTmrs have been synchronized by messages sent across the CCL since the beginning of the round.  
The Interval Time measures the time elapse since the last synchronization event.  The synchronization 
dynamics of the RTmrs is closely tied to the CCP.  Section 5 of this report provides a detailed description 
of the CCP using event sequence diagrams. 

4.3.5.   Data Collection 

As stated in a previous section, the purpose of an experiment is to gather observations about the 
response of the SUT when operating under conditions determined by the configuration, workload and 
faultload specifications.  From Figure 4.4, it is easy to see that the CFIMS can be viewed abstractly as 
providing a user service that reads a Test Specification and outputs a number of files containing the 
corresponding experimental data.  In its current version, the main outputs to the system user include data 
generated by the Round Timer (RTmrs), Function Timer (FTmr), Function Monitors (FMons) and State 
Monitors (SMons).  The data from each output stream is organized into records (or snapshots) about the 
activity happening at the source process at a particular point in time.  Each output record is time tagged 
with the RTmr value at the time the record is generated.  The data records from the RTmrs themselves 
(one at each controller) capture the values of IT and IC every time the RTmrs are synchronized.  In 
addition to the raw experimental data, the system also generates a test log with round control-related 
entries, including the condition that triggered the round stop.  Test control software at the PTC and STC 
saves all the output data to files in the Repository.  Appendix B gives a detailed description of the output 
files. 

4.3.6.   System Configuration 

From a configuration perspective, the system consists of the SUT, PTC, STC, Repository and 
Environment Controller.  All of these have hardware and software elements that can be changed to meet 
experiment requirements.  The interaction between the repository and the test controllers is determined by 
data transfer protocols implemented in software.  Likewise, a software-implemented protocol is used to 
coordinate the operation of the Environment Controller with the activities at the SUT and the CFIMS.  
These software protocols, which are not expected to change significantly throughout the duration of the 
research project, are described in Section 13 of this report.  The execution platform for the SUT and the 
test controllers will eventually transition from RSPP1 to RSPP2 for the reasons described earlier in this 
report (see Section 4.2).  It is expected that the transition may have an impact on the software and 
hardware implementation of the SUT and the test controllers, but the functionality and configurability of 
the system should be largely unaffected.  Also, as described in Section 2.4, the system configuration 
strategy involves the ability to set up the system as desired at any level in the development, including 
design, synthesis, and runtime.  The need to modify the system design is determined by whether or not the 
requirements of an experiment can be met with the existing system configurability for synthesis and 
runtime.  The selected system architecture is such that most design changes should involve functionally 
related processes (e.g., fault injection processes in hardware and software) and the system capabilities 
should be expandable mostly through localized design changes without significantly increasing the 
overall design complexity.  This enables the introduction of a high degree of synthesis and runtime 
configurability for a particular design, which extends the longevity of the design and reduces the 
frequency and extent of design changes.    
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Accordingly, the focus here is on the synthesis and runtime configurability for the initial system 
design of the SUT, PTC and STC.  In that context, configuring the system consists of assigning values to 
structural and behavioral design-implementation parameters for architectural components like ROBUS 
and the PEs at the SUT, and at the CFIMS processes of SUT function testing, fault injection, SUT 
monitoring, round control and data collection.  The current approach to determine appropriate parameter 
values is to use system architecture and implementation models that capture desired high-level 
requirements (e.g., number of PE-BIUs and RMUs, desired ROBUS cycle rate, number of ROBUS cycles 
per control cycle), as well as lower-level implementation requirements in the form of explicit parameter 
constraints (e.g., valid parameter value ranges) and requirements (e.g., ROBUS message width), 
execution platform specifications (e.g., clock rates, oscillator drift rates, point-to-point communication 
delays and timing uncertainty), functional design constraints (e.g., minimum input-output delay for 
certain components, minimum reset delays), and environmental constraints (e.g., maximum fault 
duration).  Determining the values for the synthesis parameters is a two step process.  In the first step, a 
model solution is found that meets the requirements and constraints and is optimized for performance 
where possible.  In the second step, the parameter values are computed so the synthesized system matches 
the model solution.  For the most part, the synthesis-time hardware parameters correspond to structural 
and behavioral implementation details like register and counter bit-widths, data buffer sizes, time delays, 
timeout durations, and event count triggers.  The compilation-time software parameters set up how the 
software allocates the available memory and how it interacts with the CFIMS hardware processes, the 
Repository, the Environment Controller, and the operator interfaces (i.e., display and keyboard).   

The Test Specification gives the runtime parameters, which cover two aspects of the system: SUT 
function and fault injection.  The runtime parameters for the SUT function include the selection of which 
PE-BIUs and RMUs will be active during the round, the function assignment (IO or Processing) for each 
PE, the number of ROBUS cycles per control cycle, the PE communication schedule over the duration of 
a control cycle and the application level data to be exchanged by the PEs.  For a simulated fault injection 
round, the runtime parameters set up the fault injectors by selecting the fault type and activation pattern 
for each injector.  Depending on the type of fault to be used, the Test Specification may also include the 
necessary information to allow the fault injection process at the PTC (i.e., the Primary Fault Injection 
Controller, PFIC) to centrally and directly control the injection of all the faults.  Appendix A provides a 
detailed description of the Test Specification. 

Setting up the parameters requires a complete system configuration analysis to ensure that the values 
are compatible with one another and that the experiment requirements are satisfied.  This is currently 
performed using a combination of automated and manual analyses covering the SUT and CFIMS.  The 
automated analysis tool is based on the ROBUS-2 configuration analysis program [Torres05B] with 
expanded capabilities to cover most of the PE and the CFIMS synthesis-time parameterization for 
hardware processes.  Manual analysis is used for the remainder of the hardware synthesis parameters and 
for all the software and runtime parameters.  Due to the large number of system configuration parameters, 
there is significant interest in completely automating the process of analysis and computation of 
parameter values in order to reduce the likelihood of configuration errors and to simplify the 
reconfiguration of the system to adapt to evolving research needs. 
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5.   Hardware Controller Coordination Protocol  

The hardware-implemented CCP enables the PTC and STC Round Control processes (see Section 4.3) 
to coordinate their actions and provide overall round-level coordination for other hardware and software 
processes at the PTC and STC.  The CCP is implemented in hardware to ensure fast response to local 
events.  A hardware implementation also enables the generation of events with very high synchronization 
precision (equivalently, very low timing skew) at the PTC and STC.  With these events, the Round 
Controllers can drive a pair of synchronized Round Timers (RTmrs) that constitute a common distributed 
time reference and are used to time tag output observations.   

Figure 5.1 shows the round execution flow at the major-mode level.  After a reset, the system remains 
idle until the PTC and STC software enable the execution of a round.  In the System Enable mode, the 
hardware round controllers confirm that they are both active, establish initial synchronization for 
coordinated action, and reset the PTC and STC hardware processes to prepare for the round.  Next, the 
round controllers issue a command to reset and initialize SPIDER.  After SUT initialization is confirmed, 
the controllers command setting up of the fault injection system and the SUT function, including the SUT 
testing processes at the PTC.  The SUT is then enabled to begin full execution.  Once enabled to run by 
the software, a round will continue until the specified fault injection campaign is complete, the execution 
of the SUT reaches a predefined endpoint, SPIDER experiences an unrecoverable failure, or some other 
error condition is detected.  The following subsections describe the CCP activities for each of the major 
modes. 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.1: Major mode transition diagram for the CFIMS 
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5.1.   Normal Run Modes 

The CCP is described using event sequence diagrams as shown in Figure 5.2.  Dots on a vertical line 
represent events at the corresponding hardware or software process.  Horizontal and slanted arrows 
connecting dots represent the propagation or communication of events between processes.  Time flows 
down along the vertical lines in the figure.  The process labels at the top are for the following processes. 

 RCtlr = Hardware Round Control Process  FMon = Function Monitor 

 RTmr = Round Timer  FIC = Fault Injection Controller 

 HMon = SPIDER Health Monitor  SMon = State Monitor 

 FTmr = Function Timer  SW = Software 

 

 

 

             

             

             

             

             

             

             

             

 

Figure 5.2: Event sequence for normal System Enable mode 
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round controllers‟ input buffers for CCL messages.  This action may be necessary to delete any 
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sent to the Repository at the end of the round.  The Enabled_Nodes specification indicates which PE-
BIUs and RMUs will be active during the round.  The Round_Begin signal from the SW enables the 
RCtlrs, whose first action is to reset the RTmrs to prepare for the round.  The PTC RCtlr then monitors 
the CCL for the arrival of the Enable message from the STC which is expected to arrive before the PTC 
RCtlr times out and triggers a stop condition.  Upon reception of the Enable message, the PTC RCtlr 
replies with an Enable message carrying the Round_Index and Enabled_Nodes values.  Using the known 
communication delay over the CCL, the PTC and STC can use the times of transmission and arrival, 
respectively, to synchronize the RTmr_Enable signals to start the RTmrs (see Appendix B in [Torres05A] 
for a detailed description of how this is done).  The RCtlrs also enable all of their respective hardware and 
software processes.   

The normal event sequence for the SPIDER Initialization mode is shown in Figure 5.3.  To achieve the 
initialization, the CFIMS takes advantage of SPIDER‟s built-in fault recovery capability by using the 
local fault injectors to trigger the re-initialization procedure.  To do this, the PTC RCtlr issues a command 
to reset all the fault injectors embedded in the SPIDER nodes, as a result of which the fault injectors also 
reset all the PE-BIU and RMU nodes.  The reset is cleared only for the nodes specified in the 
Enabled_Nodes variable, and the others remain disabled for the duration of the round.  As the enabled 
nodes begin operation, the Embedded Node Monitors (ENMs) start sending snapshots of the state to the 
SMons at the PTC and STC.  When the node condition monitors at the SMons indicate that the enabled 
nodes are in the Restored state (see Section 4.3.3), the HMons signal the RCtlrs that SPIDER has 
completed the initialization and is ready for operation.  As a result, the RCtlrs exchange Ready messages, 
resynchronize the RTmrs and signal the software that SPIDER is initialized and ready.   

 

 

             

             

             

             

             

             

 

Figure 5.3: Event sequence for normal SPIDER Initialization mode 
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capability is available as a future design option.  When the STC FIC has finished its local setup 
procedure, the STC RCtlr sends a message to the PTC indicating that it is ready and waiting for the PTC 
to finish setting up the fault injection and SUT function testing.  The STC Start message remains buffered 
at the PTC RCtlr until the setup procedure is complete. 

 

 

             

             

             

             

             

             

 

Figure 5.4: Event sequence for normal Fault Injection Setup mode 

 

 

 

             

             

             

             

             

             

 

Figure 5.5: Event sequence for normal Function Setup mode 
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directly connected to the PE-BIU nodes (see Figure 4.4 in section 4.3).  The STC does not receive any 
SUT function setup data as the PEs are the only SPIDER elements involved.  When the FMons are 
finished setting up for the round, the PTC sends a Start message to the STC and the RTmrs are 
resynchronized. 

Figure 5.6 shows the event sequence for the Function Execution mode.  In this mode the PEs execute 
the application and interact with the FTmr and the FMons while the FICs inject faults and the SMons 
collect internal SUT state data.  After the RCtlrs enable the execution of the SUT application function, the 
PEs synchronize to ROBUS and to each other through the FTmr.  When the FTmr achieves initial 
synchronization to the PEs, it generates a Sync event that is distributed throughout the system as a 
common timing reference.  During the Function Execution mode, the RTmrs are synchronized with 
respect to the FTmr Sync events.  Depending on the particular system setup, the software may load SUT 
function testing and fault injection data during this mode.  In addition to that, the SW receives execution 
data records from the RTmrs, FMons and SMons to be used for post-test analyses.  Normally, this mode 
continues until either the SUT function reaches a predetermined endpoint or the FI injection subsystem 
completes the injection campaign specified for the round.  

 

 

             

             

             

             

             

             

             

             

             

             

             

             

 

Figure 5.6: Event sequence for normal Function Execution mode 
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5.2.   Stop Scenarios 

The goal of the System Stop mode is to halt system operation as soon as possible after normal 
completion of execution or the occurrence of an unexpected error condition, and then to guide the system 
to a graceful and coordinated stop with whole data records properly saved and the system returned to a 
safe state from which it is ready to begin another round.  Figure 5.7 shows the event sequence for a 
normal System Stop mode in which the stop trigger is reaching a predefined endpoint for fault injection or 
SUT function execution.  Both of these events are normally triggered at the PTC, where the response of 
the RCtlr is to command an execution stop of all local hardware and software processes and to inform the 
STC of the stop condition.  In this scenario, the PTC is referred to as the stop initiator and the STC is the 
stop follower.  When the STC RCtlr receives the Stop message, it issues a command to stop all local 
processes and acknowledges reception of the Stop message by echoing it back to the PTC.  When the 
PTC RCtlr has confirmation that the STC and all the local processes that directly interact with the SUT 
have stopped, it disables the RTmr and informs the SW that all hardware processes have stopped.  The 
STC RCtlr performs a similar action.  The SW processes continue execution until they have collected all 
the data records. 

 

 

             

             

             

             

             

             

             

             

 

Figure 5.7: Event sequence for System Stop on completion of PTC fault injection or function execution 

Figure 5.8 shows a System Stop event sequence for a trigger originated at the STC.  In this scenario, 
the STC takes the role of stop initiator and the PTC is the follower.   

 

 

 

RTmr_Disable 
RTmr_Disable 

Stop, 
Condition 

Stop, 
Condition 

STC 

RCtlr HMon FTmr FMon SMon FIC RCtlr HMon SMon FIC 

PTC 

RTmr RTmr 

Communication 
over CCL 

SW SW 

Time Time 

 Source Dependency Note Key:  Destinations Synchronized 
Events 

* Optional 

* FI_Control_Data_End 

* FI_Done 

* Function_Done 

 
Stop trigger for completion 

of fault injection  
or 

Stop trigger for completion 
of function execution  

Execution_Stop 

Function_Stop 

FI_Stop 
SMon_Stop 

Execution_Stop 

Round_Stop, Condition 

FI_Stop 
SMon_Stop 

Round_Stop, Condition 



 

 
 

55 
 

 

 

 

             

             

             

             

             

             

 

Figure 5.8: Event sequence for System Stop on STC software stop 

 

 

 

             

             

             

             

             

             

             

             

             

 

Figure 5.9: Event sequence for System Stop on PTC software stop and with initiator Stop message error 
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The event sequence in Figure 5.9 is for a case of a stop trigger at the PTC and a CCL communication 
error for the first Stop message.  After stopping the local hardware processes and sending a Stop message 
to the STC, the PTC RCtlr times out waiting for the echo from the STC.  This timeout can be due to 
persistent or transient CCL faults in one or both communication direction.  A persistent CCL fault can 
only be handled by the system software or the operator.  In case of a transient fault in the PTC-to-STC 
CCL direction, a message retransmission is likely to succeed.  A transient fault in the STC-to-PTC CCL 
direction is not critical to properly stop the round at the PTC and STC.  The specified PTC RCtrl response 
to a Stop echo timeout is to resend the Stop message once and then inform the SW of the timeout 
condition so that appropriate action can be taken if the STC does not receive the second message.  For the 
scenario in Figure 5.9, the second Stop message is received by the STC, which then follows the normal 
sequence of events to stop its execution.  Because the PTC is in an idle state when the STC Stop message 
arrives, the message remains buffered until read or deleted.  To prevent a false round start, this message 
must be deleted as described previously in regards to Figure 5.2. 
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6.   Data Links 

This section describes the design of the custom physical data links (DLs) for point-to-point 
communication between hardware processes in the SUT and the CFIMS.  These custom DLs are used in 
the ROBUS Links (RLs) interconnecting the ROBUS RPPs, and the Test Control Links (TCLs), which 
include the Primary Test Links (PTLs) between the PTC and the PE-BIU nodes, the Secondary Test Links 
(STLs) between the STC and the RMU nodes, and the Controller Coordination Link (CCL) between the 
PTC and the STC.  High-level overviews of the SUT ROBUS and the CFIMS are given in sections 3 and 
4 of this report.  Figure 4.4 illustrates the process architecture of the SUT and the CFIMS, and identifies 
the data links for hardware process communication.  The software processes running on the CPUs of the 
Reconfigurable SPIDER Prototyping Platform (RSPP) (see Section 4.2) use standard solutions to 
communicate with other entities (e.g., Ethernet and RS-232 for communication with software processes 
running on other nodes, and the ISA and/or PCI bus for communication with hardware processes running 
on local FPGAs). 

The DLs can be viewed as low-level functions that provide point-to-point data transfer services 
between hardware processes running on RSPP FPGAs.  The DLs were developed to be generic and 
reusable designs that satisfy the requirements of the SUT and CFIMS processes within the constraints 
imposed by the available RSPP resources.  The RLs are used exclusively by the RPPs to communicate 
with one another using ROBUS Messages, which have a predetermined format and fixed message length 
(see Section 3).  To support the various RPP communication modes, the RLs require deterministic access 
latency at the transmitter end and RPP-to-RPP communication delay with known upper and lower 
bounds.  There is no inherent performance requirement for any particular level of throughput from the 
RLs as the RPPs can be configured to support practically any message rate, but it is desirable to have 
links that will not be significant performance bottlenecks for any likely SUT configuration.  It is also 
desirable for the RLs to have high error-detection coverage and very low intrinsic bit-error-rate (BER).  
High error-detection coverage is intended to minimize the likelihood of transmissive faults (i.e., 
undetected faults; see Section 2.2) due to the communication links.  Low communication BER prevents 
frequent nuisance faults that may activate the SUT fault tolerance mechanisms even in benign 
environments.  Low intrinsic BER also supports the presumption that observed communication errors 
during an experiment are due to injected faults and not due to poorly designed links.   

For the CFIMS TCLs, a DL must have the capability of being shared among multiple source hardware 
processes and also be able to handle messages of different lengths.  From the overview in Section 4 (see 
Figure 4.4), some nodes have multiple processes that communicate with one or more processes at other 
nodes.  Given the limited RSPP communication resources, including a small number of communication 
ports, the preferred approach to realize all the needed functional communication is to provide mechanisms 
that enable multiple source processes to share DLs, as well as providing mechanisms that allow receiving 
processes to accept only specific messages.  In addition, because different processes have different data 
communication needs and the size of the data transfers initiated by a source process may vary throughout 
an execution round, it is desirable to have DLs with the capability to handle messages of varying lengths 
as individual and independent atomic transactions with whole-message integrity guarantees.   

The design of the DLs must take into consideration the available RSPP resources that can be used in 
solutions to the node-to-node data transfer problem.  The communication channels of a node are intended 
for serial communications.  Each channel has a transmitter and a receiver for physical digital signaling 
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between nodes.  At the FPGAs, which are the endpoints of the communication links and the execution 
hosts for the custom hardware processes, there are a number of clock signal generators with frequency 
multiply and divide capabilities, but there are no built-in capabilities to extract a reference sampling clock 
from a self-clocked serial communication signal (i.e., there are no suitable digital phase-lock loops).  
However, the FPGAs can implement synchronous logic circuits running at very high clock rates, and the 
ability of the FPGA logic circuitry to quickly recover from metastable states results in an extremely low 
probability of processing errors caused by asynchronous sampling of input signals [XAPP077].  

We are interested in DLs that offer high availability (i.e., readiness for correct service) and high 
integrity (i.e., absence of improper system state alterations) [Paulitsch05].  This can be achieved with 
designs that have high reliability (i.e., low probability of communication errors), high error-detection 
coverage (i.e., low probability that an error will remain undetected), and fast error recovery, which 
requires low error-detection latency.  In developing the DLs, it is assumed that there are no faults at the 
transmitter or the receiver, and the focus is on handling message corruption in the communication path 
between the two.  The principal sources of errors in the context of a DL are signal distortions in the point-
to-point communication path from the serial transmitter to the receiver, and signal sampling errors at the 
receiver.  Given that the RSPP FPGA clock signals have low drift rates (specified as ±100 parts per 
million, ppm, for RSPP1) and low jitter (estimated at just a few picoseconds), it is expected that the 
transmitter and receiver circuits will have a relatively small impact on the overall communication error 
rate.  The largest error contributor is expected to be signal distortions in the communication path due to, 
for example, intersymbol interference and noise.  The chosen approach for minimizing signal distortions 
is to operate at a communication signal rate (i.e., the baud rate) much lower than the channel signal 
bandwidth, and to provide shielding for electromagnetic interference (EMI) noise (for example, by using 
optical fibers or twisted-pair cables with optional metallic shields for increased noise immunity).  
Achieving high coverage and low latency for error detection is handled by the chosen signaling technique, 
message formatting and design of the transmitter and receiver. 

The chosen data link designs for the RLs and TCLs are based on the work presented in [Torres08B], 
where the fundamental concept for channel signaling is to apply Manchester coding to a non-return-to-
zero (NRZ) (i.e., unencoded data) bit stream.  Figure 6.1 illustrates the encoding of NRZ bits.  Every 
Manchester bit consists of two half-bits, with the first half matching the level of the NRZ bit and the 
second half having the opposite level.  A characteristic of a Manchester encoded bit stream is the presence 
of a mid-point transition in every valid bit.  Transitions at bit boundaries are present only when successive 
bits have the same value.  As shown in Figure 6.1, Manchester encoding is a biphase coding technique in 
which the phase of the signal relative to a reference clock indicates the corresponding value of the data 
bit.  From this perspective, phases of 00

 and 1800 correspond to bit values of 1 and 0, respectively.  This 
maximization of nominal-phase separation between code symbols serves to reduce the susceptibility to 
signal distortions and, thus, enhance the overall communication BER.  The benefits of the Manchester 
code include self-clocking (in the sense that the clock signal is embedded with the data), no DC frequency 
component (which enables communication without direct physical attachment of DL transmission and 
reception components, i.e., the DLs can serve to contain the propagation of faults and thus define the 
boundaries of fault containment regions, FCRs), and simple bit-level error detection (as a comparison of 
the signal levels before and after the mid-point of a bit can detect all bit errors that do not invert both 
levels simultaneously) [Stallings94].  One significant disadvantage of Manchester encoding is that it 
requires twice as much signal bandwidth as NRZ for the same data rate. 
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Figure 6.1: Manchester encoding of NRZ data bits 

 

 

 

 

 

 

 

 

Figure 6.2:  Signaling structure for the transmission of a data word (with Sync0 and Sync1) 

Figure 6.2 illustrates the signaling structure for the communication of a k-bit data word.  At the lowest 
physical signaling level, the objective is to transfer a bit-string payload from the transmitter to the 
receiver.  Any content-specific formatting of the payload word is irrelevant to this objective.  The payload 
data word is serially transmitted one bit at a time in some predetermined sequence.  The payload word is 
preceded by a synchronization (or “sync”) pattern whose purpose is to identify the beginning of a payload 

word and to provide a timing reference to sample the Manchester encoded data bits.  A sync pattern can 
be viewed as a special code symbol different than the Manchester code symbols, but sharing the 
characteristic of a mid-point level transition.  As shown in Figure 6.2, a sync pattern consists of an 
invalid-valid-invalid code sequence where the first and third bits have opposite NRZ-encoded values (and 
so, in a strict sense, are both invalid relative to the Manchester code), and the level transition in the valid 
second bit provides the timing reference for data sampling.  The polarity of the half-bit immediately 
preceding a sync pattern is forced to be such that there is a level transition at the beginning of the sync 
pattern in order to minimize the uncertainty about the starting point of a sync pattern and to increase the 
message integrity by rejecting any sync pattern that does not meet a strict timing criteria.  Both of the two 
possible sync patterns (i.e., Sync0 and Sync1) serve equally well for the purposes of payload demarcation 
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and timing reference, and this flexibility in the selection of a sync pattern provides an opportunity to 
efficiently send a control bit with each data transmission (for example, as a tag to mark the beginning of a 
word sequence or to identify the word content as command or data).  At this signaling level, the sequence 
of a sync pattern followed by a data word is called a word frame.  During the idle interval between word 
frames, a DL sends a constant-phase clock signal corresponding to a stream of Manchester-encoded 1‟s or 
0‟s.  The inter-message (or “inter-word-frame”) gap, which is delimited by the end of one word frame and 
the sync pattern of the next, must last at least one full bit-time to accommodate the forced half-bit before a 
sync pattern.   

Signal analyses performed at the time of the work reported in [Torres08B] estimated the bit-error 
probability at less than 10-9, or less than one error per billion bits, for this signaling scheme using the 
RSPP resources under worst-case conditions.  Given that it is highly unlikely that the system will operate 
under worst-case conditions except, possibly, during fault injection experiments, the communication BER 
was assessed to be better than adequate for the intended use of the system. 

After low BER, the next critical requirement for the design of the DLs is high error-detection 
coverage.  As it is expected that no single technique will provide sufficient error coverage, the DLs are 
designed with a multi-layer approach in which different error checks are applied at each level in the 
design hierarchy.  Some of the basic error checks are introduced here.  Other design-specific checks are 
presented in later subsections describing the DL designs.   

The first layer of error protection is to monitor the signal waveform at the receiving end of a DL.  A 
normal incoming signal has three major states (sync, data, and idle) with only one valid major-state 
transition sequence (idle  sync  data  idle).  If we define the level and duration of a signal between 
level transitions as a (waveform) symbol, then, all together, there is only a small set of strictly-defined 
valid symbols and a few valid symbol sequences.  Any deviation from these is an indication of a 
transmission fault.  Waveform monitoring is described further in the next subsections.   

As previously described, the Manchester code offers an opportunity for a simple and effective error 
check based on the comparison of signal levels before and after the mid-point of an encoded data bit.  An 
error is detected whenever the levels are the same.  This error check can be applied to each coded bit in 
the data section of a word frame, and it can detect all bit errors that do not invert both levels 
simultaneously. 

The other general error detection technique used in the DLs is to add redundancy to the data in the 
form of a cyclic-redundancy-code (CRC) bit sequence (also referred to as a frame check sequence, FCS) 
to enable detection of data corruption during transmission [Ramabadran88, Koopman04].  CRC checks 
are applied to individual word frames and also to blocks of data words transmitted over multiple word 
frames.   

Given a DL design with high reliability, the availability can be improved by incorporating techniques 
that offer short error-detection latency and fast recovery.  One option for enhanced end-to-end DL error 
detection is the use of redundancy in the designs of the DL transmitter and receiver.  Transmitter-side 
error detection can be most easily realized using self-checking pair (SCP) redundancy techniques to 
immediately stop a transmission if the output does not correspond with the data to be sent.  An SCP 
approach could also be used at the receiver end.  In addition to contributing to minimize the error-
detection latency, such modular redundancy approaches would also contribute to higher error-detection 
coverage.  In the actual DL designs, however, hardware redundancy is not used, as it is considered 
excessive for the intended application of the DLs and appropriate only in a context of node-level design 
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redundancy.  Instead, all error detection is done at the receiver exploiting the knowledge of message 
formatting and information redundancy.   

At the DL-user level, a transaction involves the transmission of a data packet consisting of one or 
more data words.  A design goal is to handle error detection at the receiver on a per-transaction basis 
ensuring no interference between transactions and with a small required gap between transactions in order 
to have as little impact on throughput as possible.  To do this, a DL should have a design with cyclic 
operation that is fast enough to always complete the processing of a transaction, including all error 
detection, before the start of a new transaction.  At the end of a processing cycle, the DL should be ready 
for another cycle with a properly initialized state.  The critical design problem is how to do the processing 
with minimum delay and implementation size. 

Two DL designs were developed for the SUT and the CFIMS.  The RLs use a simple word-mode 
design in which each transaction handles a user-level message with one data word of predefined length 
specified at the time of system synthesis.  The word-mode DL is a direct evolution of the design in 
[Torres08B] with enhanced error detection capabilities.  The TCLs use a packet-mode design handling 
one or more data words per transaction as specified by the DL user on a per-transaction basis.  The 
packet-mode DL is based on the word-mode DL design with added functionality to handle multiple data 
words as a single user message.  The packet-mode DL design is supported by a multiple-access controller 
to arbitrate shared-link access by multiple sending processes. 

6.1.   Word-Mode Communication Unit 

A Word-Mode Communication Unit (WMCU) includes a transmitter, a waveform monitor and a 
receiver.  A word-frame consists of a sync pattern followed by the serialized user data followed by a CRC 
computed over the used data bits.  Figure 6.3 shows a block diagram for the Word-Mode Transmitter.  
The design differs from the one in [Torres08B] in the use of a CRC generator to replace the simpler and 
less effective parity-bit generator.  Also, after every word frame, the transmitter automatically inserts an 
idle pattern of sufficient length to accommodate the extra time needed at the receiver to complete a CRC 
check. 

The design of the WMCU Waveform Monitor is unchanged from the one in [Torres08B].  The main 
purpose of this monitor is to reduce the likelihood that, due to the sampling operation of the receiver and 
the concomitant limited signal observability, an incoming random or highly distorted input signal may be 
interpreted as a valid word frame simply by chance.  This waveform monitor tracks the input signal at the 
receiving end to detect timing envelope violations.  A valid DL signal has two types of signaling 
intervals: sync coding and Manchester coding.  A Manchester signaling interval includes the data and 
CRC sections of a word frame, and also the idle interval between word frames when a clock signal is 
transmitted.  We define two valid waveform symbols in a sync coding interval: S0 and S1.  Likewise, 
there are two valid Manchester coding waveform symbols: D0 and D1.  Table 6.1 describes the symbols.  
Figure 6.4 illustrates the state transitions for the waveform monitor.  After detecting a valid S0 symbol, 
the monitor follows the input signal as long as it satisfies the timing envelope constraints given by the 
valid symbol transitions.  The signal is declared invalid immediately upon the detection of an envelope 
violation.  The signal is declared valid only after a sufficient number of consecutive valid symbols have 
been received.  [Torres08B] provides additional details about the design of the Waveform Monitor. 
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Figure 6.3: Block diagram for the word-mode transmitter  

 

 

 

Table 6.1: Definition of WMCU waveform symbols 
 

Signal Encoding  Symbol Signal Level 
Nominal Level Duration 

(in half-bit time units) 

Sync S0 0 3 
Sync S1 1 3 

Manchester D0 0 1-2 
Manchester D1 1 1-2 
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Figure 6.4: Simplified state diagram for WMCU Waveform Monitor 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.5: Block diagram for the Word-Mode Receiver  

Figure 6.5 shows a block diagram for the Word-Mode Receiver.  The Manchester-encoded Bit Stream 
(MBS) input is the signal received from the transmitter.  The MBS signal is inspected by the Waveform 
Monitor before forwarding it to the receiver module.  Valid Signal is generated by the Waveform 
Monitor.  The Sampler block buffers the input signals long enough to resolve any possible metastable 
states.  The Sync Detector examines the MBS input searching for a valid sync pattern.  If one is found and 
Valid Signal remains asserted, a timing reference signal is generated and the Controller activates loading 
the remainder of the word frame.  The Sync Detector is deactivated until the word frame processing is 
complete.  Irrespective of any detected error, once New_Sync is asserted, the receiver will generate an 
output with data and error syndromes and a time delay determined by the word frame length.  If Valid 
Signal is deasserted at any time during the word frame, the corresponding error output (or “syndrome”) 

will be asserted.  The Manchester Code Check is applied to the data and CRC parts of the word frame, 
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and an error is reported if there is code violation.  The CRC Check compares the received CRC bit string 
with the locally computed CRC.  The Strobe-Out signal is asserted once after the word frame processing 
is complete.  The receiver then returns to the ready state and the sync Detector is reactivated. 

6.2.   Packet-Mode Communication Unit 

A Packet-Mode Communication Unit (PMCU) consists of a packet-mode transmitter, a waveform 
monitor and a receiver.  The purpose of the PMCU is to transfer data packets (i.e., blocks of data) from a 
sending process to a receiving process in a single transaction.  Henceforth, the sending and receiving 
processes are referred to as the (link) users.  The size of the data packet is specified by the sending 
process at the beginning of a transaction.  As stated previously, the packet-mode DL is based on the word-
mode DL with expanded functionality to handle blocks of user data as a single message.  Figure 6.6 
illustrates the packet format used by the PMCU.  The packet header has a user-specified tag and the 
length of the payload section, which is denoted by L.  The tag field value is meaningful only to the users 
and, relative to the PMCU operation, it is simply another user data item.  The packet length is sufficient 
information to properly receive a packet.  Because of the critical importance of the packet length, the 
integrity of the packet header is protected by its own CRC-based FCS, referred to as the header FCS 
(HFCS).  The payload section has L user data words as indicated in the header.  The trailer is the payload 
FCS (PFCS) consisting of a CRC code computed over the content of the packet payload section.  

Tag Payload Length (L) Header FCS 
Payload Word 0 
   

Payload Word L-1 
Payload FCS 

 
Figure 6.6: PMCU packet format 

Figure 6.7 illustrates the format for a packet frame, which consists of a sequence of word frames with 
the packet content.  Notice the use of the Sync1 pattern to mark the word frame carrying the packet 
header.   

Sync1 Packet Header 
Sync0 Payload Word 0 
      

Sync0 Payload Word L-1 
Sync0 Packet Trailer 

 
Figure 6.7: Packet frame format 

Figure 6.8 shows a high-level block diagram for a packet-mode data link using PMCU components.  
The Packet Frame Encoder (PFE) serves as a user interface and generates a packet with null FCS fields 
(see Figure 6.6).  The Word Frame Encoder (WFE) is a modified version of the NRZ Stream Generator 
block in the WMCU transmitter (see Figure 6.3) with the capability to generate Sync0 and Sync1 patterns 
and the CRCs for the HFCS and PFCS of a packet.  The WFE output is a bit-serial, NRZ-encoded packet 
frame as in Figure 6.7.  The PFE generates the packet words at a predetermined constant rate that is 
sustainable by the WFE to generate the word frames.  The Bit Encoder is identical to the Manchester 
Encoder in Figure 6.3.   
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Figure 6.8: Block diagram for the packet-mode data link 

 

 

 

 

 

 

 

Figure 6.9: Simplified state diagram for PMCU waveform monitor 

The PMCU design expands the WMCU Waveform Monitor design to accept Sync1 patterns.  Figure 
6.9 is a simplified state transition diagram for the Packet-Mode Waveform Monitor.  Now, symbols S0_0 
and S0_1 denote Sync0 levels 0 and 1, respectively.  Likewise, symbols S1_1 and S1_0 respectively 
denote Sync1 levels 1 and 0.  The duration constraints for Sync1 are the same as for Sync0 and are given 
in Table 6.1.  Notice that, similarly to the WMCU Waveform Monitor, the PMCU Waveform Monitor 
does not incorporate constraints for the minimum separation between consecutive valid sync patterns.  
This is a deliberate omission to limit the design complexity.  That error check capability can be easily 
added if deemed sufficiently beneficial in terms of increased error coverage. 
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In Figure 6.8, the purpose of the Bit Decoder is to detect valid sync patterns and generate the sampling 
clock reference used by the Word Frame Decoder (WFD).  The WFD deserializes the word frames and 
computes the HFCS for received header words and the PFCS for packet payloads.  The WFD also 
performs signal validity and Manchester encoding checks on every received word frame. 

 

 

 

 

 

 

 

 

 

 

Figure 6.10: Block diagram for the Packet Frame Decoder and list of packet error checks 

The purpose of the Packet Frame Decoder (PFD) is to organize the words from the WFD into valid 
packets and buffer the packets until the user is ready to read them.  Figure 6.10 shows a simplified block 
diagram for the PFD and the list of defined packet error checks.  The Packet Receiver stores received 
words in the Packet Buffer.  The Header and Payload Summary Buffers hold the error syndromes for 
received packet headers and payloads.  The Packet Receiver is designed such that, for every Header 
Summary Buffer entry, there is a corresponding Packet Summary Buffer entry and a corresponding 
Packet Buffer entry consisting of one of more words, including a packet header.  The Output Controller 
manages reading of the buffers based on the content of the Summary Buffers and the readiness of the user 
to accept received packets.  The Packet Receiver performs a significant number of checks, as can be seen 
by the listed error outputs in Figure 6.10.  The Header Error checks are the same performed by the 
WMCU receiver for a generic word frame.  The SD (Signal Detect, or Valid Signal, as generated by the 
Waveform Monitor) and MC (Manchester Code) checks are applied to every payload word, including the 
PFCS.  An error in any of them invalidates the whole packet.  The Payload CRC Error is based on the 
result of the PFCS check.  The Length Error indicates that the packet was rejected due to the arrival of a 
new header word before the PFCS for the current packet was received.  The Timing Error is based on a 
timeout check for the gap between packet words, which can be bounded using the known word generation 
rate at the transmitter.  The Buffer Overflow error occurs when the Packet Buffer becomes full before all 
the words of an apparently valid packet being received have been stored.  The Packet Flow Errors are 
reported by the Packet Receiver directly to the user interface as they can occur at any time and can affect 
the ability to use the buffers.  These errors are assumed to be due to a break-down in packet transfer 
coordination between the transmitter and the receiver, or between the receiver and the user.  The Packet 
Receiver rejects incoming packets as long as any of the three buffers is full.  If a Packet Buffer overflows, 
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the Packet Receiver stalls and rejects incoming words until the Output Controller has flushed out all the 
buffers. 

The Output Controller uses the error syndromes stored in the Summary Buffers to determine how to 
process the content of the Packet Buffer.  If a Header Error is asserted, it is assumed that the Packet 
Receiver stored the packet header but aborted the process of receiving and loading the packet payload 
onto the buffer.  In this case, the Output Controller outputs the received header as stored in the buffer, 
together with all the corresponding header and payload errors in the Summary Buffers.  If there are no 
Header Errors but at least one Payload Error is asserted, the Output Controller outputs the packet header 
and the error syndromes, and then discards any part of the payload stored in the Packet Buffer.  If none of 
the Header or Payload Errors is asserted, the full packet content is forwarded to the user. 

6.3.   Multiple-Access Controller  

The PMCU Multiple-Access Controller allows multiple sending processes to share a data link.  Figure 
6.11 is a block diagram of the Multiple-Access Controller.  The signals in Figure 6.11 are prefixed to 
identify the source or sink as either the transmitter (prefix “Tx_”) or the user processes (prefix “User_”).  
Simple priority was chosen for the access policy as it is well suited for the intended use in which there is 
clear precedence among the sending processes (e.g., round control, function testing, and fault injection 
processes, in that order, at the PTC).  To request access to the transmitter, a user asserts its User_RTS 
signal (RTS = Request To Send) and waits for the corresponding User_CTS signal (CTS = Clear To 
Send).  When the transmitter is available, as indicated by signal Tx_Ready, the controller gives access to 
the waiting user of highest priority by asserting the corresponding User_CTS, selecting the proper port at 
the multiplexers and starting a transmitter transaction (i.e., a data packet transmission) by asserting 
Tx_Strobe.  The selected user retains access to the transmitter for one transaction, at the end of which 
Tx_Ready is reasserted and access is re-evaluated. 

 

 

 

 

 

 

 

Figure 6.11: Block diagram for the PMCU Multiple-Access Controller 
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7.   Test Control Messages  

The Test Control Links (TCLs) are a point-to-point communication infrastructure that enables 
message-based interaction between CFIMS hardware processes running on different nodes at the Test 
Controllers and the SUT (see Section 4.3).  The functional-level messages exchanged by hardware 
processes over the TCLs are called Test Control Messages (TCMs).   

Figure 7.1 shows the format of a TCL packet carrying a TCM.  In the current version of the system, a 
TCL packet is a series of 16-bit data words with a packet header, a set of one or more payload words and 
a packet trailer.  The TCM content includes the message source id, a tag indentifying the nature of the 
TCM, and W 16-bit payload words.  The bits to the right of the TCM tag field may also be used to carry 
context-dependent TCM payload data.  The TCM sources in the current version of the system are listed in 
Table 7.1.  Table 7.2 lists the TCM tags, which identify the content of the TCMs.  In general, the format 
of the TCMs is specific to the message context and varies with the TCM tag.  The following subsections 
describe the content and format of the TCMs. 

 

0 TCM Source Id Packet Payload Length (W+1) HFCS 
1 TCM Tag Available for additional TCM Payload data 
2 TCM Payload Word 0 

    
W+1 TCM Payload Word W-1 
W+2 PFCS 

 
Figure 7.1: TCL packet format for TCMs 

 

Table 7.1: TCM Sources  
 

Source Node Source Process Source Id 

PTC 

Round Controller (RCtlr) PTC_ROUND_CONTROLLER 
Function Timer (FTmr) PTC_FUNCTION_TIMER 
Function Tester (Function Monitors, FMons) PTC_FUNCTION_TESTER 
Fault Injection Controller  (FIC) PTC_PE_BIU_FIC 

STC Round Controller (RCtlr) STC_ROUND_CONTROLLER 
Fault Injection Controller (FIC) STC_RMU_FIC 

PE-BIU Processing Element (PE) PE_BIU_PE 
Embedded Node Monitor (ENM) PE_BIU_ENM 

RMU Embedded Node Monitor (ENM) RMU_ENM 
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Table 7.2: TCM Tags 
 

Source Processes TCM Tag Description 

PTC and STC Round 
Controllers 

RC_ENABLE CCP message used to signal that the controller sending the 
message has been enabled by the software to begin a round 

RC_READY 
CCP message used to signal that the controller sending the 
message has determined that SPIDER has been successfully 
initialized 

RC_START CCP message used to signal that the controller sending the 
message has completed the round setup procedure 

RC_STOP 
CCP message used to signal that the controller sending the 
message is in the process of stopping the execution of the 
round 

PEs SYNC_PE_TIME PE synchronization message  

FTmr SYNC_ROUND_TIME PE synchronization message; also used to synchronize 
CFIMS processes 

Function Tester (FMons) 
SF_SETUP Function setup message sent to the PE-BIU nodes during the 

CCP Function Setup mode  

SF_EXECUTE Function enable sent to the PE-BIU nodes during the CCP 
Function Execution mode  

PEs and FMons SF_DATA Application data exchanged by the PEs and the FMons  

PTC FIC (relayed to 
RMU nodes by STC 
FIC) 

FI_RESET Commands a reset of the fault injectors  

FI_FAULT Fault-injector setup command sent during the CCP Fault 
Injection Setup mode  

FI_ACTIVATION Fault-injector setup command sent during the CCP Fault 
Injection Setup mode  

FI_EXECUTE Fault-injector enable command  
FI_FIRE Fault injection reference event  

PE-BIU ENM SM_PE_BIU Sample of PE-BIU node state  
RMU ENM SM_RMU Sample of RMU node state  

 

7.1.   Round Control 

The round control TCMs are exchanged between the PTC and STC Round Controllers during the 
execution of the CCP (see Section 5).  The Enable message (TCM tag: RC_ENABLE) is used in the 
System Enable major mode.  Figure 7.2 illustrates the format for this message.  The values for the Round 
Index and Enabled Nodes fields, which are, respectively, the unique identifier for the round and a runtime 
configuration vector specifying the active nodes for the round, are supplied by the PTC software at the 
beginning of the round.  Both fields have arbitrary values in the initial CCP message from the STC to the 
PTC.   

1 Tag: RC_ENABLE --- Unused --- 
2 Round Index 
3 Enabled Nodes 

 
Figure 7.2: TCM format: RC_ENABLE 

Note that in Figure 7.2 the TCM fields are in the same relative location as in the actual 
implementation, but the field lengths are not proportional to the actual field lengths.  This is also true in 
the other TCM format figures. 
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The Ready and Start messages do not carry any additional data beyond the TCM tag.  Figure 7.3 
shows the format for these messages. 

 
1 Tag: RC_READY or RC_START --- Unused --- 

 
Figure 7.3: TCM format: RC_READY and RC_START 

The Stop messages help return the system to the idle mode in a coordinated manner.  A Stop message 
includes a field that specifies the Round Controller‟s stop condition, which is reported to the software at 

the PTC and STC when the round execution has fully stopped.  Figure 7.4 shows the format for the 
RC_STOP TCM message.  A full list and description of the stop conditions is given in Appendix B. 

 
1 Tag: RC_STOP Stop Condition 

 
Figure 7.4: TCM format: RC_STOP 

7.2.   Function Testing 

Function testing includes setup and execution for PE synchronization and SUT application testing.  
Figure 7.5 shows the format for the SUT setup message, which includes all the runtime configuration 
information needed by the PEs.  The Enabled Nodes field specifies the active nodes for the round.  The 
Application Assignment is a vector that specifies the function to be performed by each active PE as either 
Input-Output or Control (see Section 4.3.1.2).  The next field specifies the number of ROBUS Cycles 
(RCs) per Control Cycle (CC), which specifies the duration of a control cycle.  (Note that the duration of 
a ROBUS Cycle is fixed at synthesis time.)  The last series of words are the PE communication schedule.  
As stated in Section 4.3.1.1, the PE communication schedule for a control cycle is defined as an indexed 
set of ROBUS communication schedules, with one ROBUS schedule for each ROBUS cycle in a control 
cycle, and with the schedule index identifying the ROBUS cycle in which to apply a particular ROBUS 
schedule.   

 
1 Tag: SF_SETUP --- Unused --- 
2 Enabled Nodes 
3 Application Assignment 
4 RCs per CC 
5 PE Schedule: Word 0 

    
S + 4 PE Schedule: Word S-1 

 
Figure 7.5: TCM format: SF_SETUP 

The Execute message is sent to the PE-BIU nodes at the beginning of the CCP Function Execution 
major mode (see Section 5) to enable the PEs.  The TCM format is given in Figure 7.6. 

 
1 Tag: SF_EXECUTE --- Unused --- 

 
Figure 7.6: TCM format: SF_EXECUTE 

b1 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

b16 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

   

 
 
 
 
 
 
 
 
 
 
 
 

b1 

 
 
 
 
 
 
 
 
 
 
 
 
 

b16 

 
 
 
 
 
 
 
 
 
 
 
 
 

   

 
 
 
 
 
 
 
 
 
 
 
 

b1 

 
 
 
 
 
 
 
 
 
 
 
 
 

b16 

 
 
 
 
 
 
 
 
 
 
 
 
 

   

 
 
 
 
 
 
 
 
 
 
 
 

  
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

  
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

b1 

 
 
 
 
 
 
 
 
 
 
 
 

b16 

 
 
 
 
 
 
 
 
 
 
 
 

   

 
 
 
 
 
 
 
 
 
 
 
 



 

 
 

71 
 

The following subsections cover the TCMs for execution of the PE synchronization protocol and SUT 
application testing. 

7.2.1.   PE Synchronization 

The PE synchronization protocol is described in Section 4.3.1.1.  Two types of messages are involved.  
The messages from the PEs to the FTmr include the RCI at the PEs.  The messages from the FTmr to the 
PEs and other CFIMS processes include the RCI and CCI values as determined by the FTmr.  The 
formats for these messages are shown in Figures 7.7 and 7.8, respectively. 

 
1 Tag: SYNC_PE_TIME --- Unused --- 
2 ROBUS Cycle Index (RCI) 

 
Figure 7.7: TCM format: SYNC_PE_TIME 

 
 

1 Tag: SYNC_ROUND_TIME --- Unused --- 
2 ROBUS Cycle Index (RCI) 
3 Control Cycle Index (CCI) 

 
Figure 7.8: TCM format: SYNC_ROUND_TIME 

7.2.2.   Application Testing 

The application data TCM from an FMon to a PE contains the sensor or command data to be 
transmitted by the PE over ROBUS as a single application-level message.  In addition to the application 
data, the TCM includes a PE-message header with fields for the Id of the sender PE, an error flag to be 
asserted by the sender PE if it detects an error in the message from the FMon, and another error flag to be 
asserted by the receiving PE if it detects an error in the message from the sender PE over ROBUS.  After 
the scheduled time to receive the message from the sender PE, the receiving PE sends to its corresponding 
FMon a TCM with its ROBUS communication observations (see Section 4.3.1.2).  Figure 7.9 shows the 
format for an application testing data message. 

 
1 Tag: SF_DATA --- Unused --- 
2 PE Sender Id Error Detected at Sender PE Error Detected at Receiver PE --- Unused --- 
3 Application Data Word 0 

    
D+2 Application Data Word D-1 

 
Figure 7.9: TCM format: SF_DATA 

7.3.   Fault Injection 

The Fault Injection Controller in the PTC (see Section 11.3) builds each of the fault injection TCMs to 
control the operation of the Local Fault Injectors (see Section 8).  The messages are sent to the PE-BIUs 
from the PTC Fault Injection Controller by means of the PTLs.  The Fault Injection Controller also sends 
the messages along the CCL to the STC, where the TCMs are forwarded to the RMUs by means of the 
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STLs.  The format of the first payload word of all the fault injection TCM packets is the same.  Figure 
7.10 shows the format of the first payload word of the TCL packet format for all TCMs given in Figure 
7.1.  Bits 1 through 4 are used to identify the tag of the TCM.  The rest of the payload word is left for the 
fault injection destination.  The destination address specifies the receiving Local Fault Injector.  When the 
message is meant for all Local Fault Injectors, the fault injection destination can set the message as 
broadcast.  Upon receiving a broadcast message, all of the Local Fault Injectors will process the fault 
injection TCM.  To reach individual fault injectors, the Broadcast bit is cleared and the Fault Injector ID, 
Node Id, and Node Kind subsections of the destination are set to the address of the target fault injector. 

Bit 5Bits 1-4 Bits 6-10 Bits 11-14
Bit 

15

Bit 

16

TCM Tag Fault Injector ID Node ID

Node Kind Broadcast

X

 
Figure 7.10: Format of first TCM Payload Word for FI_RESET, FI_FAULT, FI_ACTIVATION, FI_EXECUTE, 

and FI_FIRE 

The FI_RESET TCM is broadcast to all Local Fault Injectors at the start of a round.  The format of 
this message is shown in Figure 7.11.  The second payload word contains the same Enabled Nodes field 
as the RC_ENABLE TCM (see Section 7.1).  The Local Fault Injectors use this field to determine when 
they are located in an active node. 

1 Tag: FI_RESET FI Destination 
2 Enabled Nodes 

 
Figure 7.11: TCM format: FI_RESET 

The FI_EXECUTE message format shown in Figure 7.12 only contains the TCM tag.  All Local Fault 
Injectors receive this message by means of the Broadcast field.  This TCM indicates the start of the 
Execution mode for the Local Fault Injectors (see Section 8.1). 

1 Tag: FI_EXECUTE FI Destination 
 

Figure 7.12: TCM format: FI_EXECUTE 

 Figure 7.13 gives the format of the Fault, Activation, and FIRE messages.  These TCMs can be 
applied to all of the Local Fault Injectors in the SUT by using the Broadcast field in the destination 
section of the data word.  Alternatively, multiple Fault, Activation, and FIRE TCMs can be used to 
control faults at different Local Fault Injectors.  The Fault or Activation ID in the payload of the TCM 
indicates the fault type and activation pattern (see Section 4.3.2), respectively, whereas the FIRE ID 
distinguishes which reference event has occurred.  The multiplexer inputs chosen define what fault type 
or activation pattern to set up for the test.  Any subsequent payload data words in the TCM are optional 
parameters relating to the particular fault type chosen. 
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1 Tag: FI_FAULT, FI_ACTIVATION, or FI_FIRE FI Destination 
2 Fault or Activation or FIRE ID 
3 Parameter: Word 1 

    
P + 2 Parameter: Word P 

 
Figure 7.13: TCM format: FI_FAULT, FI_ACTIVATION, and FI_FIRE 

In the current version of the CFIMS, the only FI_FIRE TCM has a FIRE ID of 0.  The format of this 
message is given in Figure 7.14.  This reference event is used to specify the faulty nodes for the control 
cycle and remove these faults at the end of the control cycle, respectively, by means of the Fault Vector 
and Disable Vector field (see Section 8.2). 

1 Tag: FI_FIRE FI Destination 
2 FIRE ID 
3 Fault Vector or Disable Vector 

 
Figure 7.14: TCM format: FI_FIRE for current CFIMS 

7.4.   State Monitoring 

The collection of SUT node state data is described in Section 4.3.3.  Basically, an Embedded Node 
Monitor (ENM) gathers state data from its local node and sends it via the TCL to its corresponding State 
Monitor process at a test controller.  There are various transmission triggers programmed into the ENMs, 
including local RPP mode transitions and failure detection events.  Figure 7.15 shows the TCM format for 
a PE-BIU state message.  The Sequence Number field is an 8-bit message count intended to help identify 
the loss of transmitted state messages.  The Trigger Id field identifies the condition that triggered the 
transmission of the state message.  The ROBUS Links (RLs) Status indicates whether any of the RLs 
detected a received-signal error (as reported by the WMCU Waveform Monitor of the RL) at any time 
since the previous state message was transmitted.  The remainder of the TCM includes snapshots of RPP 
and PE state variables.  The TCM format given in Figure 7.16 for RMU state messages is the same as for 
PE-BIU state TCMs except for the absence of PE data.  Appendix B provides more detailed information 
about the content and format of the SUT state monitoring messages. 

 
1 Tag: SM_PE_BIU Sequence Number 
2 Trigger Id RLs Status 
3 RPP: MCU Command 
4 RPP: Accusations 
5 RPP: Convictions 
6 RPP: SMU State Sample 
7 PE: State sample 
8 PE: RCI 

 
Figure 7.15: TCM format: SM_PE_BIU 
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1 Tag: SM_RMU Sequence Number 
2 Trigger Id RLs Status 
3 RPP: MCU Command 
4 RPP: Accusations 
5 RPP: Convictions 
6 RPP: SMU State Sample 

 
Figure 7.16: TCM format: SM_RMU 
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8.   Fault Injectors 

To begin the design of the Local Fault Injectors, there must be a clear definition of where faults can 
exist and what type of faults can be injected.  Since the goal of the fault injection experiment is to 
characterize faults in the ROBUS-2 system (see Section 4.1), which contains BIUs and RMUs, fault 
injections in the system are only permitted within these regions.  Each fault injector module operates on a 
single-bit signal within the component.  In order to be able to study various faults, the fault injector 
architecture needs to be easily extended to include multiple fault types and activation patterns of these 
faults.   

8.1.   Common Architecture 

Each fault injector has a common internal structure for reusability in each component as well as on 
different signals within a component.  In order to induce faults in specific fault injectors, each injector is 
individually addressable by the top-level Fault Injection Controller.  The high level state machine of the 
Local Fault Injector main controller is shown in Figure 8.1.  The primary objective is to screen all 
incoming TCMs and store the messages that apply to the fault injector.  The controller checks whether the 
TCM tag is one that applies to the Local Fault Injectors and if the message is meant for this particular 
fault injector.  For more information on the TCM tags see Section 7.  When a Reset message (TCM tag: 
FI_RESET) is received, the main controller sets the reset signal.  The message contains the Enabled 
Nodes vector that specifies active nodes for the round from the Test Specification file (see Appendix A).  
In the case where the node is enabled, the reset signal is then disabled to allow the Local Fault Injector to 
operate on the signal that is susceptible to faults.  Upon receiving an Execute message (TCM tag: 
FI_EXECUTE), the Execute flag is set in the register by the main controller allowing the activation 
pattern selected for the fault to be applied to the Injection Multiplexer.  Signals from the main controller 
of the Local Fault Injector and the Packet Mode Communication Unit Receiver are sent through various 
delays and logic to determine when to write to the Fault, Activation, Sync, and each Fault Injection 
Reference Event (FIRE) buffer.  See Section 7.3 for the format of each fault injection TCM.  The fault 
and activation buffers are used to store the selection signal used to choose the appropriate input of the 
corresponding multiplexer.  These buffers also have the ability to store additional parameters that affect 
the operation of the input function.  Setup parameters and reference events can be sent to particular fault 
types and activation patterns to control their behavior.  Consequently, the FIRE buffers were built in the 
design to hold parameters of these events.  The Sync message (see Section 4.3.1.1.) can also trigger a 
specific behavior within these inputs, so the RCI and CCI are stored in the Sync buffer. 
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Figure 8.1: Local Fault Injector State Machine 
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Figure 8.2: Local Fault Injector Architecture 

 
The general architecture of the Local Fault Injector is shown in Figure 8.2.  The section of the Local 

Fault Injector that alters the signal is called the Effector.  Each input signal of the Activation Multiplexer 
and the Fault Multiplexer can be changed to obtain the desired fault types.  The Unaltered Bit is the signal 
that is to be affected and the Assigned Bit is either the altered signal through the Fault Multiplexer or the 
actual signal value from the Unaltered Bit input.  The switching between the unaffected and faulty signal 
is determined by the activation pattern from the Activation Multiplexer as long as the injector is in 
Execute mode and the Effector is not reset.  When the signal susceptible to fault injection is the reset 
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signal of the node, the Alpha signal is connected to the hardware reset.  When the hardware reset is set, it 
takes precedence over the signal from the Effector.  However, when the Local Fault Injector is not 
altering the reset signal, the Alpha signal is set to zero to allow the output of the Injection Multiplexer to 
pass through as the Assigned Bit. 

8.2.   Fail-Silent Fault Injector 

To implement fail-silent type faults (see Section 4.3.2) the Local Fault Injector with an address of 0 is 
placed on the functional Reset signal of the SPIDER nodes.  When a fault occurs on a node, the Reset 
signal of the node is set so that the node resets and does not perform any function.  This application of the 
Reset signal satisfies the fail-silent definition because the node does not produce any outputs.  When the 
node is reset for any reason, this signal must override any altered signal of the fault injection.  Therefore, 
the Alpha signal is connected to the Effector‟s Reset signal allowing the node to be reset and bypass the 

functionality of the Effector. 

The first and second inputs of both of the Fault and Activation Multiplexers are set to a constant low 
and high signal, respectively.  For this CFIMS, the Direct Activation Mode (DAM) function was added as 
a third input to the Activation Multiplexer.  The activation value associated with the DAM is affected by 
the reference event and parameters corresponding to FIRE 0.  At the beginning of a round, the fault type 
value is sent to the buffer to select the input that is always high on the Fault Multiplexer and the activation 
value is sent to its buffer to select the DAM input.  These values stay in the buffers throughout the 
remainder of the round.  When it is time within a control cycle, a FIRE TCM with the ID of 0 and the 
fault vector (see Section 4.3.2) for the control cycle is sent to all of the SPIDER nodes through a 
broadcast destination address.  The DAM is notified when a new value has been written to the FIRE 0 
buffer and the DAM finds the value in the fault vector corresponding to the ID of the node where the 
injector is located to see whether or not the node is supposed to be upset for that control cycle.  When the 
node is supposed to be upset, the output of the Activation Multiplexer selects the output value of the Fault 
Multiplexer.  However, when the node is not defined as upset in the fault vector, then the Activation 
Multiplexer chooses the Unaltered Bit, which is the value that has not been tampered with for the output 
functional reset value.  Toward the end of the control cycle, another FIRE TCM is sent with an ID of 0 
and a fault vector with all values cleared to disable the fault.  Similar to the previous FIRE message, the 
DAM obtains the value within the cleared fault vector associated with the node where the fault injector is 
located from the FIRE 0 buffer.  This bit within the fault vector is never set, so the output of the 
Activation Multiplexer always chooses the Unaltered Bit value to send on to the output of the Effector.  
This process is then repeated for each control cycle throughout the execution phase of the test. 
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9.   PE-BIU Node 

At the functional level, the SUT consists of the ROBUS communication components (i.e., BIUs and 
RMUs) and the application-level computation components (i.e., the PEs).  At the physical level, the SUT 
is implemented with PE-BIU physical nodes that execute PE and BIU functions, and RMU nodes 
executing the RMU function.  This subsection describes the function and implementation of a PE-BIU 
node.  The next section describes the RMU node. 

In addition to implementing the PE and BIU functions, a PE-BIU node must include functionality for 
fault injection, state monitoring and runtime configuration.  Section 4.3 presents an overview of these 
system design aspects.  The PE-BIU node must also be able to interact with the PTC controller, which 
executes a round according to the CCP protocol described in Section 5.  Due to the limitations of the 
RSPP1 execution nodes, all the PE-BIU node functionality in the current design is implemented as 
hardware processes running on an FPGA.   

Figure 9.1 shows a functional block diagram for a PE-BIU node.  The components are divided into 
SUT functional processes (i.e., processes performing SUT-specific functions) and CFIMS processes that 
support the functions of configuration, application testing, fault injection and node monitoring.  All of 
these modules run on the FPGA of an RSPP node programmed as a PE-BIU node.  The RPP configured 
for BIU functionality is the central SUT component of a PE-BIU functional node.  The design and 
implementation of the RPP is described in [Torres05B].  The RPP was modified as described in 
[Torres08B] to support state monitoring.  The Node Id is manually programmed onto the flash memory of 
the FPGA board (see Section 4.2.1) and is given to the RPP by a support module (not shown) 
immediately after the FPGA is programmed.  The WMCU components connected to the BIU handle the 
communication with the RMU nodes (i.e., transmission and reception of ROBUS messages).  All the 
ROBUS-specific processing is handled by the RPP.   

The main function of the PE module is to relay application-level messages between ROBUS and 
FMons at the PTC.  For this, the PE must coordinate its operation with the local BIU and with other PEs 
via the FTmr.  The round-specific runtime configuration of the PE is handled by the PE Setup Unit, which 
receives the setup information sent by the corresponding FMon during the CFIMS setup phase.  The 
design of the PE Setup Unit and the PE are described in the following subsections.   

The PE and the BIU monitor their own operation and the operation of the system by means of local 
error checks.  If either of these modules detects a local- or SPIDER-level failure condition, the module 
halts its execution and asserts an output signal to report the condition.  As shown in Figure 9.1, these PE 
and BIU failure signals are connected to a reset circuit whose function is to restart all the SUT functional 
node modules, thus eliminating any persistent node state errors (assuming the faults are transient).   

The output of the Reset module is routed through Fault Injector 0 to enable the simulation of a PE-BIU 
fail-stop failure mode.  Other optional fault injectors may be added to simulate particular faults and 
observe the node response, or to force particular DCP failure modes (see Section 2) to observe the 
system-level response. 

The ENM module collects state information from the node components and packages it onto TCMs 
that are transmitted to the PTC State Monitor (SMon) upon the occurrence of a trigger condition.  The 
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design of the ENM is described in a later subsection. 

The PMCU is shared by multiple modules for transmission and reception.  The PE and the ENM share 
the transmitter, with the PE connected to the highest priority port in the multiple-access controller.  The 
receiver is shared by the PE, the PE Setup Unit and the Fault Injectors.   

 

 

 

 

 

 

 

 

 

 

Figure 9.1: Block diagram for a PE-BIU node 

9.1.   PE Setup Unit 

The PE Setup Unit (PESU) is intended to complement the functionality of the PE by handling all the 
interaction with the CFIMS prior to the execution phase of a test round.  In particular, the PESU is 
responsible for directly disabling the PE during the SPIDER Initialization CFIMS mode, configuring the 
PE during the Function Setup mode, and enabling the PE at the beginning of the Function Execution 
mode.   

Figure 9.2 shows the mode transition diagram for the operation of the PESU.  The PESU accepts 
TCMs with three different tags: FI_RESET, SF_SETUP and SF_EXECUTE.  TCMs with other tags are 
ignored.  A local FPGA reset triggers the PESU to disable the PE and wait for an FI_RESET TCM, which 
is sent by the PTC Fault Injection Controller at the beginning of the SPIDER Initialization mode to trigger 
a re-initialization of the SUT.  After that message is received, the PESU expects the arrival of PE runtime 
configuration data in an SF_SETUP TCM.  The PE_Reset signal remains asserted by the PESU until the 
arrival of the SF_EXECUTE message, which signals the transition of the CFIMS to the Function 
Execution mode.  At that point in time, the PE is released to execute its function.  If the PESU receives a 
message out of order, it immediately reasserts the PE Reset signal and restarts the process. 
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Figure 9.2: Mode transition diagram for the PE Setup Unit 

The configuration data carried by the SF_SETUP TCM (see Section 7.2) includes the selection of 
which SUT nodes will be active during the round, the function to be performed by each active PE (i.e. IO 
or Control), the duration of a control cycle in terms of the number of ROBUS cycles, and the PE 
communication schedule to be used in every control cycle.  The PESU performs a simple validity check 
for each of the first three configuration parameters: if any of them is all zeros (which means, respectively, 
that none of the PEs are active, all the active PEs are configured to perform IO functions, or the duration 
of the control cycle is zero), the configuration process is aborted and the PESU returns to waiting for an 
FI_RESET message while holding the PE is the reset state.  The PE communication schedule at the 
control-cycle level is an indexed set of ROBUS-cycle-level communication schedules (see Section 3.7.2), 
with one ROBUS schedule for each ROBUS cycle in a control cycle, and with the schedule index 
identifying the ROBUS cycle in which to apply a particular ROBUS schedule.  The PE communication 
schedule in the SF_SETUP TCM includes only the non-zero ROBUS communication schedules.  The PE 
is responsible for generating a full control cycle communication schedule using this compressed schedule 
format.  The PE also performs validity checks on the communication schedule after the reset signal is 
cleared. 

9.2.   Processing Element 

The PE is the SUT component that performs the user-level application.  Currently, this consists of 
bidirectional relaying of messages between the FMons and ROBUS.  This user-level service is supported 
by platform-specific services implemented at the PEs and lower-level services provided by ROBUS.  The 
PEs are fully implemented in hardware and each one shares an FCR with its attached BIU.  There are two 
main interface ports on a PE: the ROBUS port for interacting with the BIU, and the IO port for 
communicating with its corresponding FMon at the PTC.  The operations of a PE are time-driven after it 
has achieved full time synchronization with the BIU and the FTmr. 

9.2.1.   Main Functions 

The PE provides three levels of services to the application: time synchronization, communication 
schedule update, and application-level communication.  The time at a PE has two elements: the ROBUS 
Time (RT) given by the ROBUS time service, and the ROBUS Cycle Index (RCI) given by the FTmr.  
The RT is the current time within a ROBUS cycle, and the RCI is the number of the current cycle within a 
Control Cycle (CC).  As described in Section 4.3.1.1, the protocol to synchronize the PE expands the 
ROBUS synchronization protocol (from which the PE gets the RT) by adding an exchange phase between 
the PEs and the FTmr to generate agreement among the PEs on the RCI.   
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Using the RCI and the CC-level communication schedule delivered by the PESU, the PEs can generate 
an RC-level communication schedule to program ROBUS during its Schedule Update minor mode.  The 
non-faulty PEs will proceed with the actual communication of application-level messages only if they 
receive confirmation from ROBUS that the accepted schedule is equal to the desired schedule.   

The purpose of the SUT application is to characterize the effects of ROBUS faults in the 
communication between active PEs.  Section 4.3.1.2 provides a description of the application.  
Essentially, it consists of a three-step process.  First, at the beginning of a control cycle, every active 
FMon (i.e., an FMon connected to an active PE) sends a TCM with application data to its corresponding 
PE.  Section 7.2.2 describes the format of this TCM.  Second, the PEs broadcast their data on ROBUS at 
their scheduled time in the control cycle.  An application-level message sent by a PE consists of a header, 
the application data and a CRC-based frame check sequence (FCS).  The header has three main fields: a 
sender field identifying the source PE, an error-detected-at-sender field set to 1 (i.e., true) if the sender PE 
detects an error in the message from its FMon, and an error-detected-at-receiver field set to 1 if the 
receiving PE detects an error in the message from the sending PE over ROBUS.  The CRC for the PE 
message is computed by the sending PE itself over the whole message, including the header.  Each PE 
message is broken down into individual words, and each word is transmitted on ROBUS as a single 
DATA-tagged ROBUS message (RM).  In the final step of the application, for every scheduled source 
PE, a receiving PE recovers the application-level message, if possible, and forwards the received data, 
including an updated message header, to its corresponding FMon.  It is assumed that each PE is scheduled 
to send at most one application-level message per control cycle.  At the end of the control cycle, an active 
FMon outputs a set of observations for the communication paths from every PE to the FMon‟s PE.  
Section 10 provides additional information about the FMons.   

9.2.2.   Operational Modes 

In the layered services structure of SPIDER, there is a hierarchical service dependency in which 
lower-level services must be operational before higher-level services can reach full operational status.  
The PEs can interact with one another at the application level only if ROBUS is operating in the Clique 
Preservation major mode (CPM) and the PEs have agreement on the current time.  At a particular PE-BIU 
node, the service dependency chain requires that the BIU synchronize to a ROBUS clique, after which the 
PE can synchronize to the BIU at the ROBUS Time (RT) level.  Next, the BIU must reach the CPM mode 
in order for the PE to be given access to the bus.  Finally, the PE can then interact with other PEs to 
complete the agreement on the current time, as well as other PE-level state variables (e.g., the 
communication schedule).  For the version of SPIDER currently implemented, which lacks PE-level 
distributed agreement protocols with communication over ROBUS, the FTmr at the PTC works as a 
central coordinator to generate agreement on the RCI. 

Figure 9.3 shows the major mode transition graph for a PE.  The Operational Coordination Level 
(OCL) is related to the degree of readiness of the PE to deliver application-level services.  After a reset, 
the PE enters the base OCL0 level, where it remains until it has RT synchronization.  In OCL1, the PE 
waits until the BIU has reached the CPM mode.  OCL1 mode can be shorter than one ROBUS cycle if the 
BIU is participating in a full ROBUS initialization sequence.  Otherwise, the BIU is executing a 
reintegration sequence, and the PE must wait several ROBUS cycles.  The final state recovery step for the 
PE is to communicate with the FTmr to synchronize the RCI.  From that point on, in OCL3, the PE is in a 
preservation mode to deliver user services indefinitely.  At any time, the detection of processing error 
triggers an immediate cessation of processing until a PE-external action is taken (e.g., a state reset 
triggering a return to OCL0).  
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Figure 9.3: Major-mode transition diagram for the PE 

Figure 9.4 shows the PE minor-mode transition graph.  This graph captures the cycle of activities by a 
PE during state initialization and preservation according to the OCL major-mode flow.  Starting from a 
reset, a PE must first synchronize its RT state variable using the sync message from the BIU.  From that 
point on, the operation of the PE is ROBUS-time-triggered and tightly coupled to the operation of the 
BIU.  Section 3.8 describes the activities at the interface between the PE and the BIU.  After RT 
synchronization, the PE receives the ROBUS diagnosis results for the BIU and RMU nodes.  The local 
BIU then reports its current operation major mode and its assigned Id.  These two items of information 
allow the PE to track the BIU mode transitions and to know its own Id number (which is the same as the 
BIU‟s), respectively.  If the PE has reached OCL3, it can properly communicate on the bus according to 
the configured schedule.  Otherwise, it must simply preserve its RT synchronization.  RCI 
synchronization for initialization or preservation is executed only if the PE is in OCL 2 or 3.  The error 
checks and failure conditions monitored by the PE are a function of the OCL. 

9.2.3.   Organization and Error Checks 

The internal organization of the PE in simplified form is illustrated in Figure 9.5.  We describe the 
operation and interaction between modules for each minor mode. 

After a reset, with the PE in OCL0, the Schedule Generator checks the content of the Control Cycle 
(CC) schedule buffer and circularly shifts the content of the buffer until it reaches the beginning of the 
schedule.  An error in this check is a failure condition.  If no error is detected, the Master Controller (MC) 
starts the Watchdog module and waits for a synchronization message from the BIU.  If the 
synchronization message does not arrive before the Watchdog timer expires, a failure condition is 
triggered.  Otherwise, the RT state variable is synchronized and the PE transitions to the OCL1 major 
mode.  At this point, the PE restarts the Watchdog to expire after the maximum duration of one ROBUS 
cycle. 

In the next minor mode, the MC receives the ROBUS diagnoses for the BIU and RMU nodes.  The 
MC checks the content of these messages and triggers a failure condition if the acceptance criteria are not 
satisfied. 
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Figure 9.4: Minor-mode transition diagram for the PE  

 

 

 

 

  

 

 

 

 

 

 

Figure 9.5: Block diagram for Processing Element 

The mode messages from the BIU are always checked for valid content and any violation is treated as 
a failure condition.  Once the PE has reached OCL1, it allows at most two ROBUS cycles for the BIU to 
reach the CPM mode.  If this condition is not satisfied, the PE declares a failure.  In OCL3, the PE only 

No 

Reset 
Get RT Initial Sync 

Get ROBUS Diagnosis: BIUs 

Get ROBUS Diagnosis: RMUs 

Get BIU Major Mode 

Get BIU Id 

In  
OCL3? 

Yes 

RC Schedule Update 

RC Communication 

Get RT Re-Sync 

Get RCI 

In OCL2 
or OCL3? 

Get Schedule Assessment 

Yes 

No 

Reset 

   
Buffer 

Buffer 

Mux 

RCI 

PE Setup: 
Enabled_Nodes 
App_Assignment 
RC_Per_CC 

Error 

(Sync,RCI,CCI) (Sync,RCI) Error 

From TCL 
Receiver 

From BIU  
Output Port 

IO  
Receive 
Unit 

IO  
Send  
Unit 

Schedule 
Generator 

To BIU  
Input Port 

To TCL 
Transmitter 

PE Setup: 
CC Schedule 

Id 

 

Buffer 

CRC 

ROBUS
Receive  
Unit 

Buffer Rcv Error 

RC 
Schedule 

Mux 
Header Payload 

Set Header 
Fields 

PE Reset 
Node Reset 

Failure 

 

Mux 

ROBUS 
Send  
Unit 

Mux 

IO Error 

Header Payload 

Set Header 
Fields 

RC 
Schedule 

Data 

CRC 
Buffer 

 

RT 

OCL 
Id 

RCI 

Watchdog 

Master 
Controller 

Sync  
Message 

Sync  
Message 

Error 

Id 

Data 

0 

Mux 

or 



 

 
 

84 
 

accepts CPM mode messages from the BIU, and a failure condition is asserted if the BIU reports any 
other mode. 

The first time the Id message is received by the PE, it is checked for proper content.  The Id value is 
valid only if it is between 1 and the number of PEs in the system.  From the second time that the PE 
receives the Id message, the Id value must match the one received the first time.  A violation of these 
acceptance checks triggers a PE failure condition.  If the Id is accepted the first time it is received, the 
value is used to determine whether or not the PE is to remain active based on the entries in the 
Enabled_Nodes configuration parameter received from the PESU.  If the PE is not to remain active, it 
ceases all activity and goes to an idle state.  Otherwise, it continues with the next minor mode.   

If the PE is not in OCL3, it is not ready to communicate with other PEs.  In that case, it does not 
actively participate in updating the ROBUS communication schedule or in sending messages on ROBUS.  
In those minor modes, the PE simply monitors the RMs from the BIU for validity relative to the protocols 
used by ROBUS.    

To re-synchronize the RT state variable, the PE waits for a synchronization message from the BIU and 
performs a content validity check before applying a correction to the RT variable.  If a received message 
is rejected or the watchdog timer expires before the sync message arrives and the local RT is updated, the 
PE declares a failure and halts its operation.  If the PE is in OCL2 or OCL3, it will send a TCM sync 
message to the FTmr using the IO Send Unit.  The TCM contains the value of the RCI state variable at 
the MC.  The PE will then wait to receive a sync message from the FTmr containing the current value of 
the RCI as well as the Control Cycle Index (CCI), which is not used by the SUT in the current 
implementation.  A failure condition is declared if the received sync message does not satisfy the 
acceptance criteria, including a sync message with RCI set to 0 within RC_Per_CC ROBUS cycles from 
the time the PE entered the OCL2 mode.  In OCL3, the arrival of a valid sync message with a new RCI 
triggers the generation of the next RC communication schedule by the Schedule Generator.  The ROBUS 
Send and Receive Units load this schedule onto their own separate buffers and wait for a signal from the 
MC to begin processing in the Schedule Update mode. 

In the Schedule Update mode, the BIU reads the schedule from the ROBUS Send Unit (RSU) 
according to a time-triggered execution pattern.  Using the Id from the MC, the RSU records the number 
of messages in the schedule for this PE to be used later on in the PE data communication mode.  The MC 
and the ROBUS Receive Unit (RRU) perform acceptance checks on the content of the scheduling results 
received from the BIU.  The RRU checks include a one-for-one comparison of the received schedule 
against the submitted schedule.  Any discrepancy in this check triggers an error signal, to which the MC 
reacts by declaring a failure and stopping the processing.  While checking the schedule update results 
from ROBUS, the RRU also reduces the RC Schedule buffer content by eliminating any 0 entries.  The 
remaining entries are the actual schedule to be executed during the communication mode (see Section 
3.7.3). 

The schedule assessment reported by the BIU is inspected by the MC to confirm the validity of the 
content and that the assessment corresponds to the schedule submitted (i.e., “zero” if all the entries in the 
schedule are 0, but otherwise an assessment of “valid”).  An unexpected schedule assessment message 
from the BIU, in content or timing, triggers a failure condition and a halt of PE execution. 

During PE communication in a ROBUS cycle, the PEs access the bus one at a time according to the 
agreed upon schedule and all the PEs receive all the scheduled messages.  The IO Receive Unit (IORU) 
buffers the PE-message section in the payload of the TCM data message from the FMon (see Section 
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7.2.2).  Under fault-free conditions, the message transmitted by the PE on ROBUS is the content of the 
IORU buffer, which includes the message header and payload, followed by a CRC word.  The RSU 
replaces the content of the sender Id field with the Id from the MC, it sets the Error-Detected-at-Sender-
PE according to its error check results, and it clears the Error-Detected-at-Receiver-PE field.  If the IORU 
does not receive a valid data TCM from the FMon before the scheduled time for transmission on ROBUS, 
the IORU data buffer will be empty or incomplete and the RSU uses whatever value happens to be at the 
output of the buffer as the message payload content.  At the scheduled transmission time, the BIU begins 
reading the message data from the RSU prompting for a new word as the previous one is broadcast on 
ROBUS as a DATA-tagged RM.  For each PE, the number of scheduled RMs is equal to the size of the 
application-level message to be transmitted by the PE, including the header, payload and CRC.   

At the receiving end, the MC checks the validity of the individual received RMs, while simultaneously 
the RRU uses the schedule to recover the application-level messages in the stream of received RMs.  An 
RM error detected by the MC is a failure condition due to a fault in ROBUS and/or the BIU and triggers 
an execution halt.  The RRU flags an application-level message as incorrect if any of the corresponding 
received RMs has a tag other than DATA or the CRC computed over the data section of the RMs (i.e., not 
including the tag field) does not match the received CRC in the last RM of the application-level message.  
The RRU buffers the received data words as they arrive, except for the CRC, and then records the PE 
source Id and error check result before requesting a TCM data message transmission by the IO Send Unit 
(IOSU).  When the IOSU is ready, the RRU overwrites the sender Id and Error-Detected-at-Receiver-PE 
fields and forwards the content of the message to the IOSU, which sends it over to the FMon. 

9.3.   Embedded Node Monitor 

The function of the ENM is to collect state information from the node and send it to the main State 
Monitor (SMon) at the PTC.  The ENM is a key system component used for debugging during system 
development and for event analysis during experiments.  The ENM must be easily reconfigured at design 
or synthesis time to change the data to be collected and the trigger conditions for sending the data to the 
SMon.  The design and setup of the ENM must also minimize any possible interference with the normal 
operation of the SUT components, especially the PE, as well as the fault injectors.   

Figure 9.6 is a simplified block diagram for the ENM at a PE-BIU node.  The central element of the 
ENM is the Parallel-Input Serial-Output (PISO) buffer where the payload words for the TCM, including 
the TCM header and the state data (see Section 7.4), are loaded in parallel and shifted out as the message 
is read by the PMCU transmitter of the PTL.  The sequence number is an 8-bit count that is incremented 
every time a new message is generated.  The data registers are independently loaded with state 
information for the next message.  This allows data from different sources (e.g., RPP, PE, etc) to be 
recorded at different times based on context-dependent triggers.  This two-stage data buffering with 
independent data registers and a PISO buffer also enables the collection of new state data while a message 
is in the process of being transmitted.  When a message trigger occurs, any data register that does not 
already contain updated state data will be automatically loaded with the current state at that time 
independently of the data source context.   

In the current implementation, the ENM uses a priority encoder to rank the set of defined message 
transmission trigger events.  The trigger events, in order of priority from highest to lowest, are the 
following: failure of the RPP, failure of the PE, and RPP mode transitions to Self-Test Mode (STM), 
Clique Detection Mode (CDM), Clique Initialization Mode (CIM), and Schedule Update in Clique Join 
Mode (CJM) or Clique Preservation Mode (CPM).  If multiple triggers occur simultaneously, only the 
highest priority one will be reported in the TCM sent to the SMon. 
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Figure 9.6: Block diagram for the Embedded Node Monitor 
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10.   RMU Node 

The main purpose of an RMU node in the SPIDER-based SUT is to perform the ROBUS 
communication function of an RMU component.  In addition, an RMU node includes functionality to 
support the CFIMS processes of configuration, fault injection and state monitoring.  As a ROBUS 
component, an RMU does not perform application-level functions.  An RMU node must support the 
CFIMS setup phase, in particular the SPIDER Initialization and Fault Injection Setup modes (see Section 
5).  For the current implementation on RSPP1, the RMU node‟s functionality is implemented as hardware 
processes running on an FPGA. 

Figure 10.1 shows a block diagram for an RMU node.  The components are divided into the SUT 
Functional Node group and the CFIMS Embedded Modules group.  The RPP configured at design-time as 
an RMU is the central component of the functional node.  The RPP is supported by a set of WMCUs (one 
per RL) to communicate with the BIUs and a Reset module that it triggered by an asserted failure 
condition signal from the RPP.  The output of the Reset module is routed through Fault Injector 0 to 
enable the simulation of fail-stop behavior.  Other fault injectors may be added to simulate more complex 
failure patterns.  The ENM collects data from the local components and sends it to the State Monitor at 
the STC for debugging and event analysis.  The PMCU is shared by local components.  Currently, the 
PMCU is configured with two transmission ports with the ENM connected to the highest priority port and 
the other port disconnected and available for future use. 

In terms of components, an RMU node has a subset of the components in a PE-BIU node.  The RPP, 
fault injectors and ENM in an RMU node are the same as in a PE-BIU node.  Section 9 and other sections 
of this report provide further details about the design of the RMU node components. 

 

 

 

 

 

 

 

 

 

Figure 10.1: Block diagram for RMU node 
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11.   Hardware Processes of the Primary Test Controller 

The CFIMS must provide four main functions: system (i.e., SUT and CFIMS) reconfiguration, SUT 
function testing, SUT fault injection and SUT monitoring.  In the current version of the CFIMS, these 
functions are realized by two test controllers (Primary and Secondary) and embedded processes at the 
SUT nodes.  With the available and planned RSPP execution platforms, multiple test controllers are 
necessary to support SUT configurations with a number of SUT nodes larger than the number of custom 
communication ports in one RSPP node (i.e., eight).  As described in Section 4.3, at the functional level, 
the PTC and STC consist of a set of intercommunicating hardware and software processes with the 
hardware processes performing lower-level and timing-sensitive operations and the software processes 
performing function management activities with more relaxed execution timing constraints.  This section 
covers the design of the PTC hardware processes.  Section 12 covers the design of the STC hardware 
processes.  The PTC and STC software processes are described in Section 13. 

The PTC hardware processes run on the FPGA of the RSPP node configured as the PTC.  These 
processes have three main interfaces to communicate with other processes: the RSPP node‟s peripheral 
bus (i.e., ISA in RSPP1 or PCI in RSPP2) for the PTC software processes, the CCL for the STC, and the 
PTLs for the PE-BIU nodes.   

The PTC software processes interact with the hardware processes to configure the hardware according 
to the content of the Test Specification file, supply fault-injection test vectors during execution, collect 
execution data for post-test analysis and real-time monitoring by the test operators, and start and stop a 
round as determined by the test operator (see Section 13).  The interface between the software and 
hardware processes must take into account the difference in execution rate and response delays between 
the hardware and software processes to ensure efficiency of interaction without loss of data. 

The CCL is used to coordinate the operation of the PTC and STC, including system configuration, 
fault injection and round control.  The overall objective in this coordination is to allow the controllers to 
behave as a single large controller from the viewpoint of the SUT.  The Controller Coordination Protocol 
(CCP) described in Section 5 is used for overall coordination of round execution for the hardware and 
software at the PTC and STC.  Once the software enables the hardware controllers, they assume 
command of round execution using the CCP to coordinate their actions, while the PTC and STC software 
processes become closely coordinated indirectly as client (or slave) processes tracking the execution of 
their respective hardware processes.  Besides the round control processes, the CCL is also used by the 
function testing and fault injection processes to achieve coordinated interaction with all the SUT nodes.  
Thus, the CCL is a shared communication resource requiring mechanisms to ensure minimum access 
interference between processes and complete and correct transactions every time the link is accessed. 

The PTLs are the direct communication links between the PTC and the PE-BIU nodes.  These links 
are used for PE-BIU node setup, function testing, fault injection and state monitoring.  As is the case for 
the CCL, every PTL is a shared communication resource with the need for access coordination 
mechanisms.  The message traffic on the PTLs differs from that on the CCL mainly in the absence of the 
high-priority CCP messages and the increased traffic volume due to the addition of PE synchronization 
and application-level messages in both directions at a rate determined by the duration of the ROBUS 
cycle and the control cycle.  The selected TCL access-coordination mechanism must satisfy the added 
requirement of not having a significant impact on the complexity of system design or analysis.  The 
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number of PTLs is equal to the number of PE-BIU nodes specified at synthesis time, generally denoted by 
N.  Given the current CFIMS design and the number of custom communication ports in a RSPP node, the 
maximum number of PE-BIU nodes that can be supported is seven (with the eighth communication port 
used for the CCL).  SUT configurations with a larger number of nodes require a redesign of the test 
controllers.   

 

 

 

 

 

 

 

 

 

 

 

 

Figure 11.1: Block diagram for the Hardware Processes of the Primary Test Controller  

Figure 11.1 shows an abstract high-level view of the PTC hardware processes.  The external interfaces 
include the CCL and PTLs to communicate with remote hardware processes (i.e., running on different 
physical nodes), as well as the interface to the local software processes.  The Round Controller module 
provides overall round-level coordination for the local hardware and software processes, and uses the 
CCP to coordinate its actions with the remote Round Controller at the STC.  The Round Controller also 
provides a global time-reference service in the form of a Round Timer (RTmr) used to time tag 
observations.  The STC contains a similar RTmr, and both are continually synchronized throughout a 
round via the CCL.  The software collects data with snapshots of the Round Time (RTime) state from 
which it is possible to reconstruct the round timeline during post-test analysis.  The SPIDER Health 
Monitor (HMon) supports the Round Controller as a dedicated monitor to check the condition of the SUT.  
Specifically, the HMon confirms the successful initialization of the SUT during the system setup phase in 
a round and, thereafter, it continuously monitors the SUT to detect unexpected responses that are 
indicative of a physical or functional failure that requires a halt to the execution.  The PE-BIU State 
Monitor (SMon) receives state data sent by the ENMs and forwards it to the software.  Each SMon lane 
also performs a condition assessment on its corresponding PE-BIU node based on the received state 
records to determine whether the node is operating normally or undertaking a recovery process.  The 
SPIDER Function Tester (SFT) contains the Function Timer (FTmr), which serves to synchronize the PEs 

ENM(1..N) 
Messages 

To  
PE-BIU(1..N) 

PE-BIU 
State 

Monitor 
SMon SMon  

SUT 
Condition 
Classifier 

SPIDER 
Health 

Monitor 

Controller Fault 
Injection 

Controller       
FI Buffer 

PE-BIU(1..N) 
Node Condition 

FTime 

FI Setup and 
Fault-Vectors 

Round Time 

FTmr State 

Function Setup 
FMon(1..N)  
Observations 

Ready 
Failure 

PE-BIU(1..N) State 

CCP Status 

Software 
Interface 

Record Buffer 

Record Buffer 

Record Buffers 

Record Buffers 

Time Tag 
(RTime) 

      

        

        

      

Ready 
Failure 

To PTC 
Software 
Processes 

CCP Setup 

CCL 

PMCU 

PTL(1..N) 

PMCU PMCU PMCU 

FTmr 

FMon FMon  

SPIDER 
Function 

Tester 

SMon 
(1..N) 

FMon 
(1..N) 

CCP 

To  
STC 

FI Msgs 

Sync 
Sync 

PE(1..N) 
Messages 

FI Msgs 

FTime 

FTime 

RTmr 

Master 
Controller 

Round 
Controller 



 

 
 

90 
 

and provide an SUT-based time reference (called the FTime) to the test controllers, and the Function 
Monitors (FMons), which interact with the PEs at the application level.  The FTmr and FMons generate 
data records for collection by the software.  The Fault Injection Controller (FIC) configures the fault 
injectors at the SUT nodes (i.e., PE-BIU and RMU) and controls the timing of injection based on the fault 
specifications obtained from the software.  The configuration and injection specifications from the 
software are buffered locally at the FIC to accommodate the difference in timing response between the 
hardware and software.  The PMCUs for the TCLs (i.e., CCL and PTLs) use multiple-access controllers 
to arbitrate access to the links.  The PTC functional modules are also programmed to minimize access 
interference (i.e., collisions) by using time-triggered operation (relative to the FTime) when possible.  
However, the modules must also be capable of handling event-triggered transmit and receive transactions 
(e.g., fault injection or state record arrival) to deal with unpredictable SUT behavior due to injected faults. 

The following subsections expand on the design of the PTC components. 

11.1.   PTC Round Controller 

The purpose of the Round Controller (RCtlr) is to provide overall round-level coordination for the 
CFIMS test controllers.  The PTC RCtlr interacts with and monitors the local hardware processes, the test 
software, and the STC RCtlr throughout a round to maintain coordinated action and ensure proper 
completion of the round.   

 

 

 

 

 

 

 

 

 

 

Figure 11.2: Block diagram for the PTC Round Controller 

Figure 11.2 shows a block diagram for the PTC RCtlr.  The Master Controller (MC) is the central 
execution coordinator.  The MC‟s major mode transition graph is shown in Figure 11.3.  The software 
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modules to relieve the MC from the tasks of waiting for CCL transmitter access arbitration and received-
message filtering.  The CCL receiver loads only CCP messages, which have TCM tag fields of 
RC_ENABLE, RC_READY, RC_START, and RC_STOP.  The HMon asserts the PE_BIU_Ready signal 
when SPIDER is initialized.  The SPIDER_Failure signal can be asserted at any time after that point if 
any of the monitored failure criteria at the HMon is satisfied.  The Stop Trigger Monitor at the RCtlr 
constantly monitors for any of a defined set of round stop conditions.  The defined stop conditions include 
the normal completion of a round as indicated by the FIC (when all fault test vectors have been applied) 
or the SFT (when all specified control cycles have been completed), a CCP message sequence error 
reported by the MC, a local hardware or software process stop request (on a detected error or some other 
condition), SUT failure as detected by the HMon, and a received RC_STOP TCM from the STC while the 
local MC is in normal System Run operational mode.  Appendix B lists all the stop conditions defined in 
the current system implementation.  If the stop is triggered by a local event, the RCtlr begins the round 
stop sequence as the initiator and sends an RC_STOP message to the STC to stop the execution there too.  
If the local stop is triggered by a received RC_STOP message, the initial stop trigger was detected at the 
other Test Controller and the local RCtlr executes the round stop sequence as the follower.  In either case, 
the Stop Trigger Monitor reports the highest priority stop triggering condition, and this is then relayed to 
the software and the remote node (in the case of stopping as the initiator).  The CCP does not provide a 
mechanism to reach agreement on the stop condition if the PTC and STC simultaneously stop as 
initiators.  In that case, the system will stop, but the reported stop condition may be different at the PTC 
and STC.  Section 5 gives a detailed description of the CCP. 

 

 

 

 

 

 

 

 

 

Figure 11.3: Major mode transition graph for the Master Controller of the PTC RCtlr  

The Round Timer (RTmr) generates the global time reference used to time tag observations.  The 
RTmr measures the time relative to particular reference events.  The Round Time (RTime) has two 
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Count (IC) that counts the number of times the IT has been reset upon a reference event.  The MC enables 
the RTmr in the System Enable major mode.  That is the first reference event.  During the setup phase, the 
IT is reset when each of RC_ENABLE, RC_READY and RC_START is transmitted.  Once the round 
enters the execution phase, the RTmr is reset a short delay after the FTmr sends out the Sync message to 
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compensates for the message propagation delay over the CCL and is intended to synchronize the RTmrs 
at the PTC and STC.  The RTmr is stopped only at the end of the round. 

11.2.   SPIDER Function Tester 

The SFT interacts with the PEs to coordinate their actions, provide the application workload and 
monitor their operation at the application level.  The SFT is responsible for configuring the PEs during 
the round setup phase and then enabling them at the beginning of the execution phase.  The SFT must 
also be able to interact with the round controller to implement the CCP, with the software for setup and 
data collection, and with the other CFIMS hardware processes to provide the FTime used as a time 
reference for interacting with the SUT. 

 

 

 

 

 

 

 

 

 

Figure 11.4: Top-level block diagram for SPIDER Function Tester  

Figure 11.4 shows a block diagram for the SFT.  The Master Controller (MC) handles the interaction 
with the Round Controller, the setup of the PEs and the enabling of the FTmr and FMons specialized 
modules.  The Enabled_Nodes vector is received from the Round Controller at the beginning of the 
round.  During the Function Setup mode, the software loads the function configuration data from the Test 
Specification, including the Application_Assignment, the number of ROBUS cycles per control cycle 
RC_Per_CC, the round duration CC_Per_Round, and the PE communication schedule for a control cycle.  
The software also loads on each FMon the sensor and command data to be used during the execution 
phase.  When the software is finished loading the function parameters, the MC builds the SF_SETUP 
TCM and sends it to the PEs.  At the beginning of the Function Execution mode, the MC enables the 
FTmr and the FMons, and sends the SF_EXECUTE TCM to enable the PE.  From then on, the MC waits 
for the FTmr to complete the round duration specified by the software, or for a round stop command from 
the Round Controller.  A CC_Per_Round value of 0 means that the FTime will not be used to limit the 
duration of the round and that the round stop trigger will occur elsewhere.  The FTime consists of three 
elements: the ROBUS Time (RT), the ROBUS Cycle Index (RCI) and the Control Cycle Index (CCI).  
When the FMons are enabled, they use the FTime as a reference to trigger major transitions in their 
internal operation.  An FMon sends a sensor or command data message to its corresponding PE 
(depending on the PE‟s application assignment) at the beginning of the control cycle, and then opens a 
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reception window to listen for and classify the observations for received PE data messages.  When the 
RCtlr issues a stop command, the SFT MC requests the FMons to stop. 

11.2.1.   Function Timer 

The primary purpose of the FTmr is to provide the CFIMS with an SUT-referenced time (the FTime) 
service that can be used to coordinate distributed actions.  Given that the PEs in the current SUT 
implementation do not execute PE-level coordination protocols with communication over ROBUS, the 
FTmr function is expanded to also provide a distributed coordination reference service to the PEs.   

The FTime is intended to measure the SUT function execution time from the moment the SUT is 
enabled by the CFIMS in the Function Execution mode.  The FTime differs from the RTime in that the 
FTime measures the total time during which the SUT has been making forward progress in executing the 
application without including execution discontinuities when the system as a whole is recovering from 
injected faults (and so, is not executing the application), while the RTime measures the total elapsed real 
time since the round was enabled.  The structure of the FTime is related to the levels of services in the 
SUT.  The FTime is defined to consist of three elements: the ROBUS Time (RT) measuring the elapsed 
time since the latest distributed synchronization event generated by the ROBUS synchronization protocol; 
the ROBUS Cycle Index (RCI) measuring (or counting) the number of ROBUS cycles completed since 
the beginning of the “current” application-level control cycle; and the Control Cycle Index measuring (or 
counting) the number of control cycles since the SUT function execution was enabled.   

The FTmr gets the RT from the PEs using the expanded version of the ROBUS synchronization 
protocol described in Section 4.3.1.1.  The FTmr must have the capability of initializing its time when the 
CFIMS enters the Function Execution mode.  Also, because of the possibility of ROBUS (and the SUT as 
a whole) losing internal coordination among its nodes due to injected faults and then entering a system 
recovery mode, the FTmr is designed with the capability to reacquire RT synchronization after a 
temporary disruption of  SYNC_PE_TIME TCMs from the PEs.  Figure 11.5 shows the mode transitions 
for the FTmr.  The Initialization mode applies to recovery starting from reset and re-initialization from a 
detected failure.  This mode is functionally similar to the Clique Detection Mode of ROBUS-2 (see 
[Torres05A]) and is concerned mainly with getting the RT from the PEs.  Once RT synchronization has 
been established, the FTmr transitions to Preservation mode to maintain synchronization precision by 
means of periodic re-synchronizations.  Additional details about the implementation of the 
synchronization protocol at the FTmr and the failure conditions that trigger transitions to the Initialization 
mode are given later in this section.   

The management policy for the RCI and CCI at the FTmr must cover the operational disruptions 
caused by detected failures.  Figure 11.6 illustrates the chosen rules for managing these FTime elements.  
Notice that RCI and CCI do not increment in the Initialization mode (even when there is an initialization 
failure), and CCI is incremented when there is a transition from Preservation to Initialization mode.  From 
the perspective of the FTime, this means that a control cycle is valid and complete the moment it is started 
irrespective of its actual duration, which is determined by events happening during the cycle.  This 
enables for even a partially executed control cycle to have a unique CCI value. 
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Figure 11.5: Mode transition graph for the Function Timer 

 

 

 

 

 

 

 

 

 

Figure 11.6: Policy rules for managing the values of RCI and CCI 

The RT synchronization process at the FTmr is based on the use of a middle-value-select event voter 
with a dynamic eligible voter set.  The voted events are the times of arrival of the SYNC_PE_TIME 
TCMs from the PEs.  The eligible voters are the subset of PEs whose inputs are considered in performing 
the vote.  Voting eligibility of individual PEs is determined from the diagnosis of message traffic 
observations at the FTmr.  To maximize the tolerance to faulty inputs, the diagnostic subsystem must 
satisfy the property of correctness, which states that a PE shall be diagnosed as an ineligible voter only if 
it is physically faulty or its state is incorrect.  This ensures that fully operational PEs are not removed 
from the eligible voter set.  However, under conditions of less than perfect integrity, the FTmr does not 
achieve 100% error detection and diagnosis coverage and some bad PEs may remain in the eligible voter 
set.  The fundamental requirement of the event voter to guarantee output validity is that a majority of 
eligible voters be trustworthy (i.e., can be relied upon to provide correct inputs from which to correctly 
compute and deliver the expected service).  If it is not true that the majority of eligible voters are 
trustworthy, there is no guarantee of correct voter output as the fault-masking ability of the voter (i.e., the 
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ability to deliver a valid output even in the presence of invalid inputs) is compromised.  In that case, for 
the current FTmr design, it is assumed that the voter output is unreliable and a failure has occurred.  
Furthermore, in accordance with the model of a fault-causing phenomenon of known bounded duration 
used in the design of ROBUS-2 (see [Torres05A]), it is assumed that the failure condition is not persistent 
(i.e., it is transient) and can be corrected by a re-initialization of the system.   

The purpose of the FTmr diagnostic capability is to identify untrustworthy PEs as soon as possible so 
they can be removed from the eligible voter set to preserve the majority-trustworthy condition.  The 
diagnostic capability is also required to detect when such condition is not true and then trigger a re-
initialization.  Note that the CFIMS fault injection targets are only the SUT nodes.  The FTmr itself is 
never directly affected by faults.  This implies that the diagnosis performed by the FTmr is really a 
diagnosis of the PEs and the SUT as a whole, and that when the FTmr declares a failure, what has actually 
failed is the SUT.  This is why the SPIDER Health Monitor (see Figure 11.1 and subsection 11.5) uses the 
FTime to check the SUT health status in the Function Execution mode of the round. 

The FTmr has two modes of operation relative to the ROBUS Time (RT): unsynchronized and 
synchronized.  Unsynchronized operation happens only in the Initialization mode.  In the Passive PE 
Diagnosis minor mode, the FTmr opens two consecutive observation windows, each with duration equal 
to the longest ROBUS cycle.  For each input PTL lane, the FTmr expects to receive one or two 
SYNC_PE_TIME TCMs in each observation window.  If this is not the case, the corresponding PE may 
be accused of being bad (i.e., exhibiting incorrect operation).  In the RT Frame Synchronization minor 
mode, the FTmr searches for the gap between clusters of SYNC_PE_TIME TCMs from trusted PEs.  The 
trustworthy PEs send one cluster of synchronization TCMs every ROBUS cycle.  The FTmr shall find the 
gap between consecutive message clusters in less than one ROBUS cycle.  While the FTmr is actively 
searching for this gap, it expects to receive at most one synchronization message from each PE.  The 
arrival of two or more messages from a PE is sufficient evidence of incorrect operation by that PE.  In the 
RT Synchronization Capture minor mode, the middle-value-select event voter is enabled with the initial 
set of input eligible voters (IIEVs) including those PEs that have not been accused up to that point.  The 
voter is designed to operate under the assumption that a majority of the trusted input eligible voters 
(IEVs) are indeed trustworthy.  If that is so, a majority of the received Sync events shall fall within a 
known bounded time distance from the selected middle event.  This bound on the synchronization 
precision for trustworthy PEs is computed by analysis prior to system synthesis.  A violation of this 
synchronization precision property detected at the time the event voter generates an output is a failure 
condition that triggers a restart of the Initialization mode.  In addition, any one sync event that is not 
within a particular bounded time distance of the middle event (also determined by analysis prior to system 
synthesis) is sufficient evidence to accuse the corresponding PE of incorrect operation.  If it is determined 
by these accusations that less than a majority of IIEVs were trustworthy, that is also a failure condition 
that triggers a re-entry into the Initialization mode.  Finally, given the periodicity of execution of the 
ROBUS Synchronization Preservation protocol, it is expected that the event voter will generate an output 
within one ROBUS cycle from the time it is enabled.  Otherwise, there is sufficient evidence that the IIEV 
was invalid, and a re-initialization shall be started.  In this unsynchronized mode, the FTmr behaves 
similarly to the ROBUS Protocol Processor (RPP).  Additional information can be found in [Torres05A] 
and [Torres05B]. 

In synchronized operation in the Preservation mode, the FTmr expects to receive synchronization 
messages from the PEs during a small time interval determined based on the ROBUS cycle period and the 
achieved RT synchronization precision between the PEs and the FTmr.  For each PTL lane, if a 
synchronization message arrives outside of this expected reception window, or anything other than one 
synchronization message arrives during the window, the corresponding PE is accused of incorrect 
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behavior.  After the window closes, the event voter is enabled to operate with the latest set of trusted 
inputs, and the output is used to synchronize the RT at the FTmr.  If at any time in the Initialization or 
Preservation mode the FTmr trusts none of the PEs, it declares a failure and returns to the Initialization 
mode. 

Figure 11.7 shows a block diagram for the Function Timer.  The FTmr receives SYNC_PE_TIME 
TCMs from the PEs arriving at the PTC over the PTLs.  These TCMs contain two items of information: 
the RCI at the sending PE, and the time of arrival of the message, from which the FTmr can infer the time 
at which the PE sent the message using known bounds on the PTL communication delay.  A TCM 
Receiver module rejects any TCM with a different tag or errors indicated by the PTL PMCU receiver.  
When a TCM Receiver receives a good TCM, the RCI is loaded onto a register and a one-tick “Sync” 

pulse is generated a fixed delay after the message is received.  Only the pulse is forwarded to the rest of 
the FTmr.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 11.7: Block diagram for the Function Timer 

The Timing Check blocks are responsible for counting the number of received PE synchronization 
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module compares the actual number of received messages against the allowed range and signals an error 
for each lane with a number of inputs outside the valid range.   
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The Frame Synchronizer block reads the SYNC_PE_TIME TCMs from PEs and executes the frame 
synchronization protocol described in Section 7.2.1 of [Torres05A].  When the frame gap is found, an 
error report is generated for each input channel and the Master Controller is informed (by means of signal 
FS_Done) to transition to the RT Synchronization Capture minor mode.   

The PE Diagnostics module applies a diagnostic policy similar to the one used in ROBUS-2 (see 
[Torres05A], Section 4).  A PE is trusted if it is enabled, not accused and not convicted.  The 
Enabled_Nodes vector indicates which PE-BIU nodes are active.  A PE is accused when an error is 
detected in its behavior.  In the Initialization mode, all the active PEs are initially trusted.  If an error is 
detected for a particular PE, that PE is accused and the accusation remains effective until there is a 
transition from the Initialization mode (including a transition back to the same mode).  Once a PE is 
excluded from the trusted set in the Initialization mode, it remains excluded for the duration of that mode.  
There are no convictions in the Initialization mode.  An accusation in the Preservation mode is effective 
from the time the error is reported to the PE Diagnostics module until the end of the ROBUS cycle at the 
completion of execution of the RT synchronization protocol.  In the Preservation mode, an accusation is 
promoted to a conviction starting at the end of the ROBUS cycle in which the accusation occurred and 
lasts for the duration of one ROBUS cycle.  As long as an enabled PE continues to be accused, it will be 
excluded from the trusted set.  Readmission is possible only after the PE completes one ROBUS cycle 
with no new accusations.  When that happens, the conviction will be cleared (because there are no new 
accusations to sustain it) and trust will be re-established.  The Accusations and Convictions vectors are 
available at the outputs of the FTmr as part of the records collected by the PTC Software Interface for 
post-test analysis. 

The Invalid IEV Detector module compares the trusted sets at the beginning and at the end of the RT 
Synchronization Capture minor mode to determine if there was a violation of the trustworthy-majority 
assumption for the eligible voters used by the event voter.  A detected violation triggers a re-initialization 
of the FTmr. 

The Master Controller (MC) is the central coordinator of operation within the FTmr.  The MC controls 
the FTime elements RT, RCI and CCI.  At the appropriate time, the MC commands the TCM Senders to 
send a SYNC_ROUND_TIME TCM containing the RCI and CCI.  The state information output by the 
MC is used by PTC modules reading the FTime and for data records collected by the PTC Software 
Interface.   

The Pulse Generators and the Accept() Event Voter require special consideration in their description 
as their operation and implementation are meant to be size and time efficient, but are not entirely 
intuitive.  When the FTmr is expecting to receive synchronization messages from the PEs in the RT 
Synchronization Capture and RT Synchronization Preservation minor modes, a Pulse Generator generates 
two pulses (Sync_Short and Sync_Long) when its corresponding TCM Receiver outputs a one-tick pulse 
signaling the arrival of a PE synchronization message.  The Sync_Short and Sync_Long pulses are 
delayed by a predetermined time amount after a Sync pulse to allow sufficient time for error detection and 
diagnosis on received messages.  Let SP,P3IO,RCV denote the bound on the observed relative skew by the 
FTmr for received synchronization messages from trustworthy PEs.  SP,P3IO,RCV is measured in units of 
oscillator clock ticks at the FTmr.  P3IO is the process executed at the FTmr in the PE synchronization 
protocol as shown in Figure 4.6 in Section 4.3.1.1.  The duration of the Sync_Short pulse is set to 

SP,P3IO,RCV + 1.  The duration of the Sync_Long pulse is 2 SP,P3IO,RCV + 1.  The Event Voter reads the set 
of trusted PEs as the eligible voters at the time it is enabled by the MC.  Note that if there is an agreeing 
majority among the input sync events (i.e., the events are within SP,P3IO,RCV of one another), the middle 
value will be found within the time interval delimited by that majority.  The outputs of the voter include 
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the Accept signal, which is asserted to indicate that the middle event has been detected; the No_Majority 
signal, which is asserted when it is not true that a majority of the input sync events agree; and the 
Disagree_Accept(1..N), which is asserted to signal an error for each input sync event that is not within 

SP,P3IO,RCV of the middle value (and thus is not part of the agreeing majority).   

Figure 11.8 shows an example of a set of three eligible voters (lanes 1, 2, and 3) and the response by 
the Accept() Event Voter.  In this example, the maximum expected skew for pulses from trustworthy PEs 
is assumed to be SP,P3IO,RCV = 2.  A majority exists if 2 or more input sync events are within this skew of 
one another.  As shown, inputs 2 and 3 are within the skew bound and form a majority.  Input 1 is not part 
of the agreeing majority as it is three clock ticks away from its nearest sync pulse.  The Event Voter 
detects a majority when the number of agreeing inputs is at least ( IEV + 1)/2 , where *  is the ceiling 
function and IEV is the cardinality of the set of input eligible voters.  The Sync_Short pulses are used to 
check for agreement between the inputs, such that the overlapping pulses correspond to inputs that are 
within SP,P3IO,RCV of one another.  Note the overlap of Sync_Short(2) and Sync_Short(3) in Figure 11.8.  
The Sync_Long pulses are used to check agreement with the middle event.  In Figure 11.8, the middle 
event is the pulse in lane 2 as indicated by signal Internal_Accept.  Agreement with this event is checked 
by delaying that pulse by SP,P3IO,RCV and determining which Sync_Long pulses overlap with the delayed 
Internal_Accept pulse.  The Sync_Long pulses that do not overlap with the delayed Internal_Accept 
indicate that the corresponding input events disagree with the middle event, as illustrated in Figure 11.8 
for Sync_Long(1).  Based on the current SUT and FTmr designs, disagreement with the middle event is 
sufficient basis for an accusation against the corresponding PE. 

 

 

 

 

 

 

 

 

 

 

 

Figure 11.8: Example sync pulses and corresponding Accept() Event Voter response for SP,P3IO,RCV = 2 
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11.2.2.   Function Monitor 

For the current SUT, in which the application consists of a simple sequence of PE message broadcasts 
on ROBUS, the main purpose of a Function Monitor (FMon) is to observe and report the results of 
receptions at a particular PE.  The SFT has one FMon per PE.  At the beginning of every control cycle, an 
FMon sends to its corresponding PE an SF_DATA TCM with the application data to be broadcast by that 
PE in that control cycle.  After sending the data TCM, the FMon switches to a reception mode and waits 
for arrival of messages from the PE on what it received on ROBUS.  The FMon forms and collects its 
observations based on what it received during the control cycle and outputs the final results at the end of 
the cycle.  An FMon is active during a round only if its corresponding PE is active, as indicated by the 
Enabled_Nodes runtime configuration parameter.   

Figure 11.9 shows a block diagram of an FMon connected to PTLi to interact with PEi.  The software 
loads the sensors and commands data onto the buffers during the Function Setup mode.  These buffers 
have a circular operation mode that enables the FMon to reuse their content as needed during the round.  
The FMon sends the SF_DATA TCM when the FTime reaches a predetermined value set at synthesis 
time (i.e., the transmission is a time-triggered operation).  To send the TCM (see Section 7.2.2 for 
message format information), FMoni “prepends” a TCM tag word and a PE message header word before 
sending the proper application data based on the application-level role played by PEi as indicated by the 
App_Assignment configuration variable.  The FMon then switches to receive mode for the remainder of 
the control cycle.  The Controller processes messages as they arrive (i.e., as an event-triggered operation) 
irrespective of the fact that the PE normally sends time-triggered TCMs.  Thus, time of arrival is not taken 
into consideration in the classification of received messages.  This simplifies the design and analysis of 
the system, but it also reduces the error detection coverage at the FMon.  Time-triggered reception based 
on the PE communication schedule may be added as an enhancement in future version of the FMon.  The 
processing of messages and the definition of observations is described in Section 4.3.1.2 of this report.  
The FMon continues operation normally as long as the FTmr remains in the Preservation mode.  If the 
FTmr transitions to the Initialization mode, the FMon discontinues its operation as soon as processing of 
the current message is complete and remains idle until the FTmr recovers.  The FMon does not generate 
an output observation report for a control cycle unless the cycle continues uninterrupted to completion.  
When the Round Controller issues a round-stop command, the SFT MC waits until the end of the current 
control cycle before disabling the FMons. 

 

 

 

 

 

 

 

Figure 11.9: Block Diagram for the ith Function Monitor 
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11.3.   Primary Fault-Injection Controller  

The purpose of the Primary Fault Injection Controller (PFIC) is to create the fault injection messages 
to manage the Local Fault Injectors within the SPIDER nodes.  The PFIC requires status information 
about the system from the Round Controller, software, and Function Timer.  Each PTL for 
communication with the PE-BIU nodes has one sender.  Another sender is allocated for the CCL to pass 
fault injection messages to the STC.  The current implementation of the CFIMS uses the PFIC state 
machine in Figure 11.10 which is controlled by the signals on the interfaces shown in Figure 11.11. 
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Figure 11.10: Primary Fault Injection Controller State Machine 
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Figure 11.11: Primary Fault Injection Controller Interface Architecture 

Throughout the state machine, the PFIC performs error-checking as well as polls the signal used to 
stop execution from the Round Controller.  When an error is detected in the state machine, the PFIC stops 
executing and requests an execution stop to the Round Controller through the FI_Stop signal.  Then the 
PFIC waits until the Execution_Stop has been set and cleared again before resetting the state machine.  
Alternatively, when another module within the CFIMS requests to stop the test, the Execution_Stop 
signal is set.  The PFIC stops executing and resets the state machine once the signal from the Round 
Controller to stop execution is cleared.   

At the start of a test, the PFIC waits for the round to be enabled by the Round Controller.  Once 
received, the state machine clears the buffers and then waits for the fault injection reset signal also from 
the Round Controller.  The PFIC then builds a TCM with a FI_Reset tag (see Section 7).  This message is 
broadcast to the senders of all PTLs and the CCL.  Within the reset message is the Node Enable Vector 
(NEV).  The NEV has the same format as the fault vectors (see Figure A.3).  Each bit signifies whether 
the node for that position is enabled (1) or not (0) for this particular test.  The configuration section of the 
Test Specification file contains the NEV (see Appendix A).  After the message has been sent, the PFIC 
waits for the start of the fault injection setup period triggered by the Round Controller.  Then the software 
is notified the fault injection setup has begun.  The PFIC obtains the length of the fault injection setup 
message from the Summary buffer.  This length tells the state machine how many data words to pop off 
of the Data buffer and give to all of the senders.  When the Summary buffer is empty and the software has 
sent notification that the fault injection setup is finished, then the PFIC waits for the Function_Enable 
signal from the Round Controller.  When the software specified the test to have no fault injections, then 
the state machine waits until the end of the test for the Execution_Stop signal from the Round Controller.  
Otherwise, the state machine builds and sends a broadcast fault injection execute message, which allows 



 

 
 

102 
 

the output of the Activation Multiplexer in the Local Fault Injectors to take function on the signal 
susceptible to faults (see Figure 8.2).  Then the PFIC waits for the Function Timer to be in preservation 
mode (see Section 11.2.1) before the state machine moves on to send FIRE messages.  Once the Function 
Timer mode is set, the PFIC waits for the RCI specified by the Test Specification file and the time within 
the ROBUS cycle to pop the FIRE message containing the fault vector off the buffers from the software 
and give the message to the senders.  When the software does not signal that fault injection is finished and 
the FIRE message is sent, the PFIC waits for the RCI and the time within the ROBUS cycle to build and 
send the FIRE message to disable the faults that were injected.  This disable message is identical to the 
FIRE message to activate the faults except that there is a data word of all zeros to deactivate the faults in 
place of the fault vector.  Once the disable message is sent, the state machine returns to waiting for the 
time to activate the fault within the next control cycle.  The process of waiting for the activation time of 
the fault through sending the FIRE disable message is repeated for each control cycle until the software 
signals that there is no more fault injection control data.  If at this point the software buffers are empty, 
then the PFIC signals the Round Controller that the fault injection is done and waits for the 
Execution_Stop signal from the Round Controller.  Then the PFIC waits for the Execution_Stop signal to 
be cleared to return to the beginning of the state machine and wait for the test to be enabled. 

11.4.   PE-BIU State Monitor 

The PE-BIU State Monitor (SMon) serves two main functions: to receive the state data messages sent 
by the ENMs, and to determine the health status of individual PE-BIU nodes.  The TCMs with 
SM_PE_BIU tag contain snapshots of PE-BIU state variables sent by the ENMs when triggered by node-
local events.  Once enabled, the SMon must monitor the arriving PTL traffic at the PTC and be ready to 
accept these state TCMs whenever they arrive.  The state data must then be processed and forwarded to 
the Software Interface module for collection by the software.  In addition, the SMon is required to assess 
the health status of individual PE-BIU nodes to contribute to the overall SPIDER-level health assessment 
and to provide the software (and the system user) with a simple health-based classification criterion for 
sifting through the state records to find evidence of fault-injection effects.   

Figure 11.12 shows a block diagram of the PE-BIU State Monitor.  It consists of a set of Lane State 
Monitors (LSM), with one dedicated monitor for every PE-BIU node, and a top-level Master Controller 
(MC) responsible for overall coordination and interaction with the Round Controller (RCtlr).  The MC 
enables the LSMs when the RCtlr issues the round enable command.  Only the LSMs assigned to active 
PE-BIU nodes, as indicated by the Enabled_Nodes configuration parameter, are actually enabled to run 
during the round.  In addition, the SMon has the added feature of allowing the software to control which 
LSMs can transfer their outputs to the Software Interface module.  With this feature, the software has the 
option of servicing the record buffers of a subset of LSMs and can prevent the other buffers from 
overflowing.  This capability may be useful in situations where there is limited available bandwidth 
between the hardware processes and the software, thus requiring a selective approach for transferring 
data. 
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Figure 11.12: Block Diagram for the PE-BIU State Monitor 

Internally, an LSM consists of a State Message Receiver (SMR) that monitors the assigned PTL for 
the arrival of SM_PE_BIU TCMs and a Node Condition Monitor (NCM) for assessing the health status of 
the corresponding PE-BIU node.  The SMR‟s output state data is the payload section of the TCM as 

described in Section 7.4.  The SMR can process back-to-back TCMs without an inter-message gap, which 
is necessary given the event-triggered operation of the ENM at the PE-BIU node.  The main component 
of the NCM is the Node Health Monitor, which uses the state-based algorithm illustrated in Figure 11.13 
to assess the status of the PE-BIU node.  A Health Record contains a select subset of the variables in a 
state-data record referred to as the health indicators.  For the current version of the system, the health 
indicators include the following. 

 Current RPP Major Mode:  Normally, the RPP operates in the Clique Preservation Mode (CPM).  
Execution in any other mode is due to a power-on reset or a reset triggered by the detection of a 
local fault or a bus failure condition (see [Torres05A]). 

 RPP accusations against nodes of the opposite kind:  Accusations against opposite kind nodes (i.e., 
RMUs in the case of a monitored BIU RPP) are due to detected errors in the direct communication 
links with those nodes, or due to errors in the relaying of messages as detected by the RPP suspicion 
mechanism (see [Torres05A]).  In general, these accusations are an indication that the accused node 
is faulty, the accusing node is faulty, or both nodes are faulty.  This can also happen if the fault 
assumptions of the ROBUS fault-tolerance mechanisms have been violated. 

 RPP failure signal:  This is a direct indication that the RPP has detected a local node failure or a 
ROBUS failure. 
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Figure 11.13: Transition diagram for state-based node health assessment 

In a Reference Health Record for good health, the RPP‟s major mode is CPM, none of the enabled 

RMUs (as per the Enabled_Nodes parameter) are accused, and there is no failure reported by the RPP.  As 
shown in Figure 11.13, after a reset, the initial assessed health state is Disabled.  When a new health 
record arrives, irrespective of its content, the health state transitions from Disabled to Recovering.  The 
node condition remains Recovering until consecutive good health records are received for a sufficiently 
long time.  This is consistent with the assumption that the injected faults are always transient.  The 
definition of the time duration for a stable good-health assessment to transition from Recovering to 
Restored state is a synthesis configuration parameter set on the basis on some diagnostic policy or as a 
result of fault effects analyses taking into consideration the assumed duration of fault-causing 
disturbances.  In the current implementation, this parameter is arbitrarily set to two consecutive good-
health records.  The assessed health state transitions immediately from Restored back to Recovering 
whenever anything other than a good-health record is received or when the time between new health 
records (i.e., the data introduction interval, DII) exceeds an expected maximum value determined based 
on the duration of a ROBUS cycle. 

When the Round Controller issues a command to stop execution of the round, the SMon MC clears the 
Run_Enable control signals and waits for all the LSMs to report that they are Ready to stop.  The LSMs 
assert this signal only when they are idling and waiting for the arrival of a state TCM (i.e., the LSMs do 
not halt their operation in the middle of processing a TCM). 

11.5.   SPIDER Health Monitor 

The purpose of this module is to support the Round Controller by constantly monitoring the SUT and 
reporting when there are relevant changes in its status.  The SPIDER Health Monitor (HMon) has three 
phases of operation during a round.  The first phase happens during the SPIDER Initialization mode, 
where the HMon monitors the health of the PE-BIU nodes as reported by the SMon Node Condition 
Monitors to detect when all the enabled nodes have reached the Restored state.  This is indicative that the 
SUT initialization process is complete and the Round Controller can continue on to the next setup mode.  
The Round Controller does a timeout check on the SUT completing the initialization process and triggers 
a round stop if the maximum expected delay is exceeded.   

The second phase of HMon operation covers the FI Setup and Function Setup major modes.  As no 
faults are injected during these modes, it is expected that the Node Condition Monitors report that all the 
enabled nodes remain in the Restored state.  If the condition of at least one node changes from Restored 
state, the HMon reports a failure to the Round Controller, which then initiates a round stop.   

The third HMon phase covers the Function Execution mode.  Here, the HMon monitors the operation 
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of the FTmr as an indirect means to assess the status of the SUT.  After the Round Controller issues the 
Function_Enable command to begin the execution, the HMon enters a wait state to allow time for the 
FTmr to transition from Initialization to Preservation mode.  The HMon declares a failure if the FTmr has 
not completed the transition within the allowed time.  Otherwise, the HMon monitors the FTmr mode to 
detect transitions back to the Initialization mode, which signal the occurrence of an SUT failure.  If the 
FTmr mode does not return to Preservation within a predetermined time, the HMon reacts by declaring a 
failure because the assumptions about the characteristics of faults experienced by the SUT have been 
violated.   

The timeout delays used in the HMon are derived from assumptions about the faults and the dynamics 
of system recovery.  All of these delays are synthesis parameters. 

The implementation of the HMon consists of a state machine with the functionality described above.  
The HMon has no other significant components.   

11.6.   Test Control Links 

The Test Control Links of the PTC include the CCL for direct communication with the STC and the 
Primary Test Links for direct interaction with the PE-BIU nodes.  The Packet Mode Communication 
Units (PMCUs) described in Section 6.2 are used to implement these links.  In addition, the transmitters 
for the CCL and PTLs are coupled to multiple-access controllers (see Section 6.3) to arbitrate access to 
the links by multiple PTC hardware processes.  The sequential design of the CCP (see Section 5) ensures 
that during the system configuration phase of a round there are never access collisions (i.e., instances of 
multiple senders simultaneously attempting to access a transmitter).  For the execution phase of a round, 
the FTmr, FMon, and Fault Injection Controller (FIC) processes access the CCL and PTLs only on 
FTime-referenced triggers selected to ensure that the transmission attempts of these processes never 
collide.  A time-triggered access pattern eliminates the possibility of TCL access interference between 
processes during normal operation.   

The use of the priority-based access controllers at the TCL transmitters ensures that there is a 
predictable access control mechanism to handle event-triggered accesses and ensure that these 
transactions are completed without messages being dropped under most multiple-access scenarios.  This 
simple, fixed-priority-based arbitration has the vulnerability of allowing possible scenarios of high 
priority sending processes indefinitely blocking lower priority processes.  The PTC processes should be 
designed to prevent such scenarios, or to detect them and take appropriate action in case of message loss, 
potentially including stopping the round and reporting the incident.   

At the CCL, the transmitter access ports are assigned in the following decreasing priority sequence: 
Round Controller, FTmr, and FIC.  During normal operation in the setup and execution phases of a round, 
none of these process attempt to access the CCL transmitter simultaneously.  The Round Controller is 
given highest priority because during the Function Execution phase it accesses the CCL only to transmit 
an RC_STOP message to end a round.  The transmission of a FTmr or FIC message after an RC_STOP is 
inconsequential.  In the execution phase, the FTmr‟s SYNC_ROUND_TIME messages carry time-critical 
information that must have a known bounded communication delay with the least possible delay 
uncertainty.  The FIC is allowed to access the CCL whenever the Round Controller and FTmr are not 
accessing the link.  The FIC should be designed to ensure that there is never a collision between FTmr 
and FIC messages. 

At the PTLs, the assigned access priority, in decreasing order, is: FTmr, FIC, and FMon.  The FTmr is 
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given highest priority because of the timing-critical nature of its messages.  The FIC messages are 
normally very short and generally require higher propagation precision than FMon messages.  The FMons 
operate on a control cycle time scale and have longer and less time-sensitive messages.   

11.7.   Software Interface 

The purpose of the Software Interface module is to serve as a communication bridge translating the 
format and timing of control, status, and data signals between the PTC functional processes implemented 
as custom hardware circuits running on the FPGA and the functional processes implemented as code 
segments on a software program running on the CPU.  On the RSPP1 nodes, the communication link 
between the FPGA and the CPU is an ISA bus (see Section 4.2.1).  Data transfers on the bus are initiated 
by the CPU, with the timing of the transactions being influenced by the application program, the 
operating system, and the hardware layer of the CPU board.  The transactions on the bus consist of 16-bit 
read or write accesses.  The FPGA board is configured with an ISA interface of sixteen 16-bit read and 
write ports.  All communication between the PTC hardware and software processes is constrained to 
happen through this interface.  The Software Interface module handles the conversion between the custom 
data types in the hardware and the fixed-width read and write ports of the ISA interface. 

Figure 11.14 shows a block diagram for the Software Interface module.  This module consists of two 
main sections: the multiplexing-demultiplexing (mux-demux) interface (to the right) between the ISA and 
the non-multiplexed read and write ports, and the functional interfaces (to the left) that interact directly 
with other PTC hardware processes.  The mux-demux ISA Interface is a generic module developed in a 
previous project.  The functional interfaces are custom modules that realize an agreed-upon detailed 
interface between the hardware and software processes of the PTC.   

The Round Controller Functional Interface handles the direct interaction between the Round 
Controller and the software processes for the implementation of the CCP, as described in Section 5.   

The Round Timer Functional Interface is a simple buffer for records of significant events in the 
evolution of the RTmr value during the round.  The goal is to faithfully regenerate the RTmr timeline 
during post-test processing.  This is accomplished by recording the value of the IT and IC elements of the 
RTmr at the end of every time interval when the IT holds the duration of the interval and just before the 
IC is incremented.  The purpose of the RTmr Record Writer is to package the data into records with a 
particular format for use by the software.  The configured depth of the buffer is dependent on the 
maximum record input rate (which is determined by the ROBUS cycle duration) and the bound on the 
longest time interval that records will accumulate in the buffer while the software is busy tending to other 
tasks.  It is assumed that during a read burst the software is capable of reading the record buffer much 
faster than the input rate.  The Round Time is shared with other functional interface modules for use as 
the record time tag.   

The Fault Injection Controller Functional Interface consists of Control and Status Interface logic for 
transferring data and signals.  All the buffering required for setup and injection of faults is done locally at 
the FIC process (see Section 11.3).   

As in the case for RTmr, the Functional Timer (FTmr) Functional Interface consists of a simple buffer 
to record significant events in the FTime.  In addition to allowing, a recreation of the FTime timeline 
during the round, the FTmr state information included in the records provides insight into the status of the 
SUT and the effects of injected faults.  An FTmr record is created when the FTime reaches the end of a 
ROBUS cycle or when the operational mode of the FTmr transitions from Preservation to Initialization. 
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Both of the FMon and SMon functional interface modules contain one record buffer per PE-BIU node.  
The interface modules also contain additional control and status logic to setup and manage the operation 
of these hardware processes. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 11.14: Block diagram for the PTC Software Interface module 
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12.   Hardware Processes of the Secondary Test Controller 

The main reason for having multiple test controllers is to support SUT configurations with a total 
number of nodes larger than the number of custom communication ports available in one RSPP node 
(currently, only eight ports).  As currently configured, the PTC handles all direct communication with the 
PE-BIU nodes, and the STC interacts directly with the RMUs.  At a higher level, the PTC and STC 
coordinate their actions with the goal of behaving as a single large controller from the viewpoint of the 
SUT.   

 

 

 

 

 

 

 

 

Figure 12.1: Block diagram for the Hardware Processes of the Secondary Test Controller  

Figure 12.1 shows a block diagram for the STC hardware processes.  Compared to the PTC as 
described in Section 11, the STC has a much simpler design as there are no processes to interact with PE-
level service protocols and the SUT application.  The STC Round Controller (RCtlr) has essentially the 
same design as the PTC RCtlr, but it is slightly simpler as it interacts with fewer processes.  The STC 
RTmr also behaves similarly to the one at the PTC, with the exception that during the Function Execution 
mode of the CCP (see Section 5), it synchronizes to the FTmr by means of the SYNC_ROUND_TIME 
TCMs (i.e., the “Sync” messages) received from the FTmr over the CCL.  The STC Fault Injection 
Controller (FIC) is configured as a simple function for relaying Primary Fault Injection Controller (PFIC) 
messages received over the CCL and sent out to the RMUs on the Secondary Test Links (STLs).  The 
RMU State Monitor (SMon) receives state messages sent by the ENMs at the RMUs and forwards their 
content to the Software Interface, where they are buffered until the software can read them.  The SMon 
also contains Node Condition Monitors (NCMs) to assess the health status of individual RMU nodes.  
These node health assessments are sent to the SPIDER Health Monitor process, whose function is to 
support the RCtlr by monitoring the health of the SUT.   

The following subsections provide additional information about the STC hardware processes.  The 
descriptions are kept brief as most of the necessary insight has already been given with the presentation of 
the PTC hardware processes in Section 11. 
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12.1.   STC Round Controller 

The operation of the STC RCtlr is similar to the operation of the PTC RCTlr.  The differences are 
reflected in the design of the CCP as described in Section 5.  A block diagram of the STC RCtlr is shown 
in Figure 12.2.  Structurally, the STC RCtlr and PTC RCtlr (see Figure 11.2) are identical.  The only 
significant difference is that the RTmr accepts Sync messages received over the CCL from the FTmr.  
These messages are used to synchronize the RTime during the Function Execution mode of the CCP.  
Additional information about the RCtlr can be found in Section 11.1. 

 

 

 

 

 

 

 

 

 

 

Figure 12.2: Block diagram for the STC Round Controller 

12.2.   Secondary Fault-Injection Controller 

The purpose of the Secondary Fault Injection Controller (SFIC) is to pass messages from the PFIC to 
the RMUs.  A PFIC sender connected to the CCL sends messages to the STC.  The SFIC monitors the 
incoming messages on the CCL and forwards the fault injection messages on to the STLs for the RMUs.  
The senders in the SFIC are only connected to the STLs because the PFIC does not need any information 
from the SFIC through the CCL.  The SFIC also has the responsibility of updating the status of the fault 
injection to the Round Controller and software.  The two independent tasks of the SFIC led to the design 
of two separate, concurrent state machine processes.  The Relay State Machine handles the forwarding of 
messages to the RMUs, while the Control Signal State Machine handles the control of the fault injection 
by interfacing with the Round Controller and software.  Similar to the PFIC, both of these state machines 
perform error-checking, and the Control Signal State Machine polls the signal used to stop execution from 
the Round Controller through the FI_Stop signal shown in Figure 12.3. 
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Figure 12.3: Secondary Fault Injection Controller Interface Architecture 
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Figure 12.4: Secondary Fault Injection Controller Relay State Machine 

 
The Relay State Machine, shown in Figure 12.4, monitors the CCL for messages from the PFIC that 

need to be forwarded to the RMUs.  When a CCL message is available, the state machine sends each data 
word of the message to the STLs via the Payload_Data_In signal of each Sender i.  It specifies that it is 
part of the message by setting the sender Payload_Load signal.  Once the entire message has been sent, 
the state machine sends the summary data word containing the length of the message that was just sent.  
This time the Sum_Load signal is set instead of the Payload_Load.  After the summary is sent, the Relay 
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State Machine returns to wait for another CCL message.  This process repeats for all CCL messages 
unless there is an error. 

Throughout the execution of a round, the Control Signal State Machine, shown in Figure 12.5, handles 
all of the control signals used by the PFIC in the interfaces with the software and Round Controller.  At 
the beginning of a round, the state machine waits for the Round Enable signal to be set by the Round 
Controller before it resets its buffers.  Then it waits for the FI_Reset and the FI_Setup_Enable signals 
from the Round Controller to be set before it sets the FI_setup_begin signal to the software.  Once the 
software completes the fault injection setup phase, it sets the FI_setup_end flag.  When the PFIC state 
machine sees FI_setup_end set, it sends the FI_Setup_Done signal to the Round Controller.  After the 
Function_Enable is set by the Round Controller, the Control Signal State Machine waits for the stop 
condition from the Execution_Stop signal of the Round Controller to become true before it sets up for the 
next round. 
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Figure 12.5: Secondary Fault Injection Controller Control Signal State Machine 

12.3.   RMU State Monitor 

The function and implementation of the RMU SMon are similar to the ones for the PE-BIU SMon at 
the PTC.  The SMon is responsible for receiving the SM_RMU TCMs from the RMU ENMs, forwarding 
the state data to the software interface, and monitoring the health of the RMU nodes.  Additional relevant 
information about the operation and implementation of this module can be found with the description of 
the PTC‟s PE-BIU SMon in Section 11.4. 
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12.4.   Health Monitor 

The STC Health Monitor (HMon) covers two phases of operation in a round: SPIDER initialization 
and system setup.  In the SPIDER Initialization phase, the HMon signals to the RCtlr that SPIDER is 
ready when the SMon reports that all the RMU nodes are in the Restored state.  In the next phase of 
operation, which continues until the CCP enters the Function Execution mode, the HMon reports an SUT 
failure if the SMon reports that the health condition of at least one of the RMUs has transitioned back to 
the Recovering state, even if it did so momentarily.  The STC HMon is not active in the Function 
Execution mode as it does not have access to any additional relevant SUT information beyond what the 
PTC monitors. 

As is the case for the PTC HMon, the implementation of the STC HMon consists of a single state 
machine with no other major structural elements. 

12.5.   Test Control Links 

The STC TCLs have similar desired access attributes as the PTC TCLs.  However, the simpler design 
of the STC simplifies the TCL access problem.  Currently, the RCtlr and the FIC are connected to the 
CCL transmitter, but only the RCtlr is actually sending any messages on the link.  The RCtlr is given 
higher access priority than the FIC as the only time a simultaneous access may be attempted is on the 
transmission of an RC_STOP message by the RCtlr, which makes additional FIC messages irrelevant as 
the RC_STOP message is only sent to finish a round.  The connection by the FIC is a provision for future 
expanded fault-injection capabilities requiring message flow from the STC to the PTC.  At the STL, only 
the FIC is connected to the transmitter.   

Additional information about interfacing to the TCLs can be found in Section 11.6. 

12.6.   Software Interface 

The function of the STC Software Interface module is a subset of the function by the PTC Software 
Interface.  The main difference is the absence of the SFT functional interfaces for the FTmr and FMons.  
Figure 12.6 shows a block diagram for the STC Software Interface.  Additional information about the 
component modules can be found in Section 11.7. 
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Figure 12.6: Block diagram for the STC Software Interface 
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13.   Test Control Software 

The Test Control Software consists of several programs implemented in C to provide an interface 
between the test operator and the hardware of the SUT.  The software communicates with the hardware 
via the Software Interface module of each Test Controller described in sections 11.7 and 12.6.  Compared 
to hardware processes, the software processes have a much more coarse timing.  The Software Interface 
translates the format and timing of control, status, and data signals between the software and the RCtlr, 
RTmr, FIC, FTmr, SFT, FMon, and SMon of the PTC and STC hardware.  Each Test Controller (PTC 
and STC) contains its own software program running on separate CPUs as shown in Figure 13.1.  These 
two Test Execution Software programs have separate but closely related functional processes because of 
the different roles the PTC and STC have in the system.   
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Figure 13.1: Separation of the Test Execution and Data Management Software 

The Test Specification file (see Appendix A) contains a setup and an execution section.  The setup 
section consists of system configuration parameters for the SUT and the faults to be injected, whereas the 
execution section consists of the list of fault vectors to be injected on the control cycles.  Since the PTC 
hardware forwards setup messages to the STC via the CCL, only the PTC Test Execution Software has 
the Configuration Management process to decipher the Test Specification file setup section and pass the 
configuration setup to the hardware.  During the test, the fault vectors in the execution section of the Test 
Specification file are supplied by the software to the hardware.  Only the PTC Test Execution Software 
needs to read and send the fault vectors because of the automatic forwarding built into the PTC hardware.  
Therefore, only the PTC is required to have any interaction with the Test Specification file.  However, 
both the PTC and STC Test Execution Software programs have the responsibility of collecting execution 
data for post-test analysis, providing real-time monitoring for the test operators, and starting and stopping 
a round as determined by the test operator. 

13.1.   Test Execution and Data Management 

The amount of I/O data is directly proportional to the number of control cycles, i.e., duration of a 
round.  Data management is needed to handle the considerable amount of I/O data for typical test 
durations.  Pre-test data is generated before the round execution, while observation data is generated 
during the round execution.  The Test Specification file contains all of the pre-test data including data to 
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establish the setup configuration of the system and one 16-bit fault vector for each control cycle of the 
round.  The observation data includes all of the data described in Appendix B.  The condition of the 
system that caused the round to stop and error reports for the round are recorded in the test log.  The 
RTmrs, FTmr, FMons and SMons report their respective observations to the software.  In order for the 
observation data to be available post-test, it is written to files for permanent storage and future analysis. 

Since the PTC and STC Test Execution Software programs are located on nodes with a PC/104 stack 
described in Section 4.2, the RAM and flash memory of the node are not adequate for storage of the data.  
The nodes do not have enough room to store multiple test rounds of output files in their flash memory.  
Periodically, the output files would have to be transferred to a permanent storage device to allow space in 
the flash for new rounds.  The constant rewriting to the same location in flash memory on the nodes could 
potentially damage the memory device.  To prevent rewriting to a file on the nodes, the data is stored in 
RAM on the nodes during the test and then transferred to the permanent storage device after the execution 
phase of the round.  The storage device requires a Data Management Software to read and write the Test 
Specification file and observation files, respectively.  Data is passed between the Data Management 
Software and the Test Execution Software, as illustrated in Figure 13.1, using Ethernet sockets for the 
communication channels.  Sections 13.2 and 13.3 describe the high level Data Management and Test 
Execution Software, respectively, while the detailed pseudo-code of all of the software is found in 
Appendix C. 

During the test, pre-test data is read from the input Test Specification file and observation data is 
written to an output file for post-test analysis.  File I/O is known to take a significant amount of time.  To 
avoid time-critical operations being delayed because of file I/O, the Test Control Software does not 
perform any file interaction during the execution of a round.  The software reads the entire Test 
Specification file prior to starting a round and stores the contents in volatile memory (RAM).  During the 
round, the software stores the data it gathers from the hardware in RAM.  A key benefit of using the 
software for the data management is that it typically has access to a larger amount of RAM.  At the end of 
the test execution, the software transfers the observation data from RAM to files on storage devices. 

The modules in Figure 13.1 are built on a variety of devices.  As described in Section 4.3, each 
functional PE-BIU and RMU node in the SPIDER module of the diagram run on separate RSPP physical 
nodes.  The functionality of the SPIDER nodes is located on the FPGA board of the PC/104 stack (see 
Section 4.2.2).  The PTC and STC are located on separate RSPP physical nodes with both hardware-
implemented functions on the FPGA and the Test Execution Software on the processor.  Since the RSPP 
nodes have a White Dwarf Linux operating system, the Test Execution Software is compiled with a Linux 
gcc compiler.  The PTC and STC nodes are connected to a separate desktop PC (Personal Computer) used 
for data management.  The Data Management Software is compiled on the PC with a Windows operating 
system using a gcc compiler on the Cygwin Linux-like environment.  The shared PC runs the PTC and 
STC Data Management Software processes during a test.  The hard drive of the data management PC acts 
as the storage device during a test.  The operator copies the files periodically to an external hard drive 
connected to the PC that is used as a backup storage device. 

The data format for socket communication and permanent storage influences the speed of transmission 
and size of the data on the storage device, respectively.  All observation data, with the exception of the 
test log, is stored in RAM as 16-bit unsigned short integers.  If the observation data was converted to text 
format and then sent to the Data Management software, each character would take 8 bits, which would be 
a total of 136 bits for the 16-bit word and a newline character.  Therefore, the bulk of the observation data 
is sent using the unsigned short integer format, which only requires 16 bits for each data entry.  This is 
about 8.5 times faster than transferring in text format.  Initially, the entries of the observation data were 
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stored to text files in 16-bit binary format.  However, the amount of space required on the hard drive for a 
binary file format using unsigned short integers is much less than using the text file version.  Similar to 
the transmission, the observation data storage of the Data Management software uses binary file types 
rather than text for the hardware observation files.  Since less space is required for the binary format, the 
files are more compact.  A complication with the binary format for the files is that it is not readable; 
however, the binary files containing the observation data can be post-processed in various formats to 
make the analysis simple. 

The PTC and STC software processes provide the high level test execution and data management of 
the CFIMS.  Figure 13.2 depicts the sequence of data transferred between the software processes in 
relation to the execution of a round.  The repository containing the storage device with all the I/O data 
uses a Windows XP operating system.  The PTC and STC Data Management Software programs are a 
part of the data repository and are located on the same machine as the storage device.  The PTC program 
deciphers the Test Specification file and sends the runtime parameters and fault vectors via Ethernet to the 
Test Execution Software located in the PTC node.  The PTC Test Execution Software configures the 
hardware.  The Test Execution Software associated with both test controllers receives the observation 
data from the hardware and stores it in RAM until the end of the round.  Then the corresponding Data 
Management Software writes the received observation to the storage device. 
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Figure 13.2: Test Execution and Data Management Software Data Transfer 

Each block of Figure 13.2 represents the data transmission protocol described in Figure 13.3.  Each 
horizontal arrow in Figure 13.2 represents the transmission of data from the transmit side to the receive 
side of Figure 13.3.  The data transmission protocol was developed to ensure no data is lost during the 
socket transfer.  Socket transfer has built-in CRCs for error detection in transmission.  Therefore, the 
protocol only needs to check for the omission of data being transferred, or when data is dropped during 
the transmission.  During the exchange of setup information at the beginning of a round, the roles of the 
Transmitter and Receiver are associated with the Data Management and Test Execution, respectively.  
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Once the round of execution is over, the roles are reversed to transfer the results.  Before sending the data, 
the Transmitter counts how many data words will be sent and transmits this count, called the Tx Count, to 
the Receiver.  Then the Transmitter sends each data entry and waits to receive a count response from the 
Receiver.  The Receiver counts the data entries as they arrive in a Rx Count variable.  Once the Rx Count 
at the Receiver matches the Tx Count, the Receiver sends the Rx Count to the Transmitter.  The 
transmitter then compares the Tx Count and the Rx Count.  If they are equal, the data transfer is 
considered a success.  Otherwise, the Transmitter will consider the transfer a failure.  If a failure occurs in 
the transfer of Test Specification file data, the round will not execute and an error is reported.  If a failure 
occurs in the transfer of observation data, the data on the transmit side is stored in a file to be transferred 
post-test.  Each transmission has a timeout associated with it at the receiving end of the arrow.  If the data 
does not arrive within the allotted time-window, the transfer is considered a failure and is treated the same 
way as the Tx Count not equaling the Rx Count above.  The duration of the timeouts of each data word 
are one second because the data should be transmitted back-to-back.  The timeout duration for the Rx 
Count is also relatively short because the Receiver will send it immediately after receiving the last data 
word.  However, the duration of the Tx Count timeout will vary depending on what data is to be 
transferred.  For example, the PTC Data Management Software will wait indefinitely for the test log 
character Tx Count because the duration of the round may vary. 
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Figure 13.3: Test Execution and Data Management Software Data Transmission Protocol 

13.2.   Data Management Software 

The Data Management Software transmits the configuration and test flow control input data and stores 
the observation data results for analysis.  The PTC and STC follow the same high level program flow of 
the Data Management Software as shown in Figure 13.4.  At the start of the program, the system is 
initialized by setting up the communication socket with the Test Execution Software located on the 
physical PTC and STC nodes.  The initialization phase on the PTC Data Management Software also 
includes reading the Test Specification file and sending the contents to the PTC Test Execution Software.  
Then the PTC and STC Data Management Software monitor the socket waiting for data from the Test 
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Execution Software.  Since the entire round duration must be completed before the Test Execution 
Software sends any observation data over the socket, the Data Management Software does not have a 
timeout for the first piece of observation data.  When data is received at the Data Management Software, 
it is written to the appropriate observation file (see Appendix B for the observation data).  Figure 13.2 
shows that the transmission of the PTC observation data always starts with the Test Log data followed by 
the FMon, FTmr, RTmr, and SMon data.  The STC observation data follows the same order as the PTC 
without the FMon and FTmr data.  If there is another block of observation data to be received, the 
program returns to monitoring the socket for that data.  Once all of the observation data has been received 
and written to file, the Data Management Software closes all of the files and the socket before ending the 
program. 
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Figure 13.4: PTC and STC Data Management Software High Level Program Flow 

13.3.   Test Execution Software 

The Test Execution Software interacts with the Data Management Software for data storage and with 
the hardware of the CFIMS to control the test execution.  The PTC and STC follow the same high level 
program flow of the Test Execution Software as shown in Figure 13.5.  At the beginning of the program, 
the system is initialized.  The FPGA is configured to use the appropriate hardware file for either the PTC 
or the STC.  The system is reset to clear out any uninitialized data before the start of the test.  The socket 
to the Data Management Software is configured.  The PTC Test Execution Software also receives the 
setup and execution sections of the Test Specification file to configure the system from the socket to the 
Data Management Software.  The monitor of both the PTC and STC Test Execution Software programs is 
set up with the initial values to give the operator insight into the test.  After the hardware system is reset, 
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it remains idle until the Round_Begin signal is sent from the Test Execution Software.  The software 
waits for the operator to press a key on both controllers signaling the start of a round.  Once a key is 
pressed, the software sends the Round_Begin signal to the hardware, which gives the hardware control of 
the round while the software mainly tracks the progress of the hardware round.  The Test Execution 
software enters the main loop where it follows the hardware execution waiting for the declaration that the 
round is finished.  Throughout the round, when the Data Collection processes of the Test Execution 
Software see there is available observation data from the hardware, the software gathers the observations 
about the operation of the SUT and the CFIMS and stores the data in RAM until the end of the round.  At 
the end of the round, all of the observation data stored in RAM is then transferred to the Data 
Management Software, where the data is written to file for post-test analysis. 

If there is no available observation data during iterations of the Test Execution Software main loop, 
then it checks a half-second timer.  Every half second, the software alternates between checking the 
keyboard for a manual stop by the operator and updating the status information on the screen of the 
monitor.  Thus, each task is done once per second during a round.  If there is no data available and it is 
not time for the screen or keyboard to be updated, the software will execute the CCP State Machine, 
which coordinates the interaction of the hardware and software during the setup and execution of a round.  
The CCP State Machine for the PTC is more complex than that of the STC since the STC has a much 
more passive role in round execution. 
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Figure 13.5: PTC and STC Test Execution Software High Level Program Flow 
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Figure 13.6 illustrates the CCP State Machine for the PTC.  The execution of the state machine 
follows closely the event sequences of Section 5.1.  All of the states except the final 
FINISH_UP_ROUND state check for a stop condition (see Figure 13.7) before they execute.  If the 
hardware is stopped in any CCP state, the state machine transitions to the FINISH_UP_ROUND state 
where the final observations are recorded and the round ends.  If there was an overflow in the observation 
data being received from the hardware or the operator presses a key, a signal is sent to the hardware 
signifying the end of the round and the state machine transitions to the WAIT_HW_ROUND_STOP state. 
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Figure 13.6: PTC Test Execution Software CCP State Machine 
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Figure 13.7: PTC and STC Test Execution Software Check for Stop Subset of CCP State Machine 

Continuing in Figure 13.6, when none of the above stop conditions have occurred, the CCP state 
machine will continue normal operation of the states beginning with the WAIT_ROUND_ENABLE 
state.  The software waits for the round to be enabled by the hardware in this state and then waits for the 
round controller to signal that SPIDER has completed initialization and is ready for operation in the 
WAIT_SPIDER_READY state.  Then the software enters the WAIT_FI_SETUP_END state and the 
hardware is now in the fault injection setup mode.  In this state, the Test Execution Software looks at the 
Test Specification data that was sent from the Data Management Software.  The Test Specification file 
(see Appendix A) contains a number of setup lines.  Each line can be one of the fault injection setup 
subsection.  If there are no fault injections for the round, the No_FI line is found, the FI_Setup_End signal 
in the hardware is set, and there are no other fault injection setup subsection lines.  Otherwise, the other 
fault injection setup subsection lines can be in any order with the FI_Setup_Done line at the end.  If a 
fault or activation line is found in the Test Specification data, the number of data words to define the line 
may vary depending on the fault type.  The state machine goes through a sequence of send states to 
transfer all of the necessary data to the hardware.  When the FI_Setup_Done line is found, the 
FI_Setup_End signal is set in the hardware, allowing the state machine to begin waiting for the Function 
Setup round control mode. 

When the hardware signals that it has entered the Function Setup mode by setting the 
Function_Setup_Begin signal during the WAIT_FN_SETUP_BEGIN state, the software CCP State 
Machine moves to a series of load states.  In these states, the software interprets the Test Specification 
data and sends it to the hardware.  The function setup data includes the Application_Assignment for the 
PEs, the number of ROBUS cycles per control cycle (RC_Per_CC), the number of control cycles per 
round (CC_Per_Round), and the PE communication schedule during a control cycle.  The final two 
function setup load states send the sensor and command data to the hardware for the FMons to send 
during the round of execution.  Also, while in the Function Setup mode, several fault vectors (see Section 
4.3.2.2) are preloaded into the hardware when the round has fault injections.  The CCP State Machine 
enters the PRELOAD_FAULT_VECTORS state, which will send the first part of the FI_FIRE TCM (see 
Section 7.3) as long as there is a fault vector that has not been sent in the Test Specification data and the 
total preloaded fault vectors to this point do not exceed a predetermined number.  Then the CCP State 
Machine proceeds to a series of states that build and send the rest of the TCM to the hardware.  Once the 
TCM is sent, the state machine returns to the PRELOAD_FAULT_VECTORS state.  This cycle 
continues until either there are no more fault vectors in the round or the predetermined number of 
preloaded fault vectors is reached.  In both cases, the Function_Setup_End flag is set signaling the 
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hardware to start the Function Execution mode.   

If the preloading ended because there were no more fault vectors and the end of file was reached, then the state 
machine transitions to the WAIT_HW_ROUND_STOP state.  However, if there are more fault vectors, the state 
machine transitions to the SEND_FAULTLOAD state, where it sends the first part of the FI_FIRE TCM and then 
proceeds to the series of states that build and send the rest of the TCM to the hardware according to the format in 
Section 7.3.  After the TCM is complete, the state machine transitions back to the SEND_FAULTLOAD state.  As 
long as there are more fault vectors, the cycle from SEND_FAULTLOAD through the series of FI_FIRE TCM 
states continues.  When there are no more fault vectors, which means the end of file was reached, then the CCP State 
Machine transitions to the WAIT_HW_ROUND_STOP state.  At this point, the software is not required to do 
anything other than wait for the round to be completed by monitoring the Round_Stop signal from the hardware.  
The next state is FINISH_UP_ROUND, where the final stop condition is written to the Test Log data and the 
CCP_Round_Finished signal is set.  The CCP State machine ends with this state.  The CCP_Round_Finished 
triggers the exit of the main loop in the high level program of Figure 13.5 and sends the observation data to the Data 
Management Software before exiting the program. 
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Figure 13.8: STC Test Execution Software CCP State Machine 

The STC CCP State Machine tracks the hardware execution of a round closely but is not required to 
transfer as much data to the hardware as the PTC CCP State Machine.  The STC CCP State Machine has 
a basic structure without loops or branching as shown in Figure 13.8.  Similar to that of the PTC, the STC 
CCP State Machine checks for a stop condition in all states other than the FINISH_UP_ROUND state 
before executing the state.  When there is no stop condition, the CCP State Machine continues execution.  
The first state is the WAIT_ROUND_ENABLE state.  When the hardware signals that the round is 
enabled, the software gets the Round Index and the Enabled Nodes vector from the hardware that were 
specified by the PTC Test Execution Software in the initialization phase.  Then the STC CCP State 
Machine transitions to the WAIT_SPIDER_READY state.  Once the hardware round controller signals 
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that SPIDER has completed initialization and is ready for operation, the state becomes the 
WAIT_FI_SETUP_END state.  In the WAIT_FI_SETUP_END, WAIT_FN_ENABLE, and 
WAIT_HW_ROUND_STOP states, the CCP State Machine waits for the corresponding hardware signal 
to be set before continuing to the next state.  The final state is the FINISH_UP_ROUND state which 
behaves the same as in the PTC CCP State Machine. 
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14.   Final Remarks  

The Configurable Fault-Injection and Monitoring System (CFIMS) is a flexible system that enables 
physical and simulated fault injection experiments for the systematic exploration of effects caused by 
adverse conditions on a distributed computation system running flight control applications.  The CFIMS 
has a distributed architecture with capabilities for configurability and SUT functional stimulus generation, 
fault injection and state monitoring.  This report has presented the CFIMS design concept and provided a 
comprehensive description of the first implementation. 

The CFIMS has already been used in simulated fault injection experiments for an initial assessment of 
analytical performance models for a B747 flight control system under harsh conditions.  The CFIMS was 
also used successfully in extensive physical fault injection experiments in a HIRF environment [Yates10].  
Additional simulated fault injection experiments may be performed to study the behavior of the SUT 
under carefully controlled conditions in order to gain additional insight into the observed system response 
during the HIRF experiments and refine the analytical system models. 

The CFIMS is currently being considered for fault injection experiments to support validation and 
verification activities for advanced distributed systems, such as an implementation of the self-stabilizing 
fault-tolerant clock synchronization protocol described in [Malekpour09] and a revised version of the 
ROBUS communication system with a robust self-stabilization capability. 
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Appendix A.   Test Specification File 

The Test Specification File contains the set of runtime parameters necessary for the CFIMS to perform 
a round of operation.  The file is divided into the setup section and the execution section as shown in 
Figure A.1.  The setup section of the file has all of the parameters needed before the start of the round.  
Each setup specification has one line and contains a text description, or label, stating the purpose of the 
line followed by zero or more values as shown in Figure A.2.  The execution section of the file is located 
at the bottom and has one fault vector for each control cycle in a round.  The fault vector lines do not have 
a text description at the beginning of each line. 
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Figure A.1: Test Specification File Format 
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Figure A.2: Test Specification File Setup Line Format 
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Table A.1 gives a summary of all the types of lines in the setup section of the Test Specification file.  
The Num_BIU and Num_RMU lines in the setup section gives the software the SUT configuration used 
to generate the parameters for the hardware at synthesis.  The Enabled_Nodes specification is a subset of 
the SUT configuration and indicates which PE-BIUs and RMUs will be active for the test.  The 
Enabled_Nodes can handle up to twelve PE-BIUs and four RMUs (see Section 4.3 for the maximum 
configuration size) and contains one bit for each SPIDER node in the format given in Figure A.3.  The 
fault injection setup subsection is located after the Enabled_Nodes line in the Test Specification file.  This 
subsection is general because it defines the types of faults for the test.  Fault and activation type lines that 
specify the behavior of the fault are within the fault injection setup section.  Each specification has a 16-
bit data word corresponding to each TCM Payload Word given in the FI_FAULT and FI_ACTIVATION 
TCMs (see Section 7.3).  Since the fault injection capability is designed to be easily extended, the number 
of fault injection lines within the file varies, creating the need to denote the end of the fault injection setup 
section.  The end of the section of the Test Specification file is indicated by the FI_Setup_Done line.  
When a test requires no fault injection to be done, a line with a text descriptor of NO_FI exists in place of 
the entire fault injection setup section of the file including the end of fault injection setup section line. 

Table A.1: Test Specification File Setup Section Labels 
 

Label Description 

Num_BIU Number of BIUs in SUT configuration at synthesis 
Num_RMU Number of RMUs in SUT configuration at synthesis 
Enabled_Nodes Active PE-BIU and RMU nodes 
No_FI No fault injection during this test 
RCI_Test_Vector RCI within control cycle to activate the fault vectors 
RCI_All_Disable RCI within control cycle to deactivate the fault vectors 
FI_Fault TCM for fault type (see Section 4.3.2) 
FI_Activation TCM for activation pattern (see Section 4.3.2) 
FI_Setup_Done End of fault injection setup section 
App_Assignments PE application; Either IO communication or computing control commands 
RC_per_CC Number of ROBUS cycles per control cycle 
CC_per_Round Number of control cycles per round 
Schedule Number of data word transmission from each PE in configuration for the given RCI 
Sensors Sensor data words transmitted by the IO communication PEs 
Commands Command data words transmitted by the computing control commands PEs 

 
 

PE-BIU0 PE-BIU1 PE-BIU11. . . RMU4 RMU2 RMU1. . .
 

 
Figure A.3: Enabled_Nodes Format 

The fault injection setup section of the Test Specification file either describes the fault injection to be 
completed or states that no fault injection is to be performed for the test.  In the no fault injection case, the 
only line in the fault injection setup section is the line to specify that there is no fault injection.  No extra 
data words or parameters are required in the no fault injection line.  The line used to signal the end of the 
fault injection setup section is not needed when there is no fault injection because the section contains 
exactly one line.  In Figure A.4, the TCM tag value for a fault type line is 1010 in binary, and the value 
for an activation type line is 1011 in binary.  Figure A.4 has two fault and activation types (see Section 
4.3.2) sent to specific Local Fault Injectors to show the generality of adding more types of faults in 
various locations within the SPIDER nodes.  The first Fault Type 1 and Activation Type 2 are sent to the 
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Local Fault Injector with an ID of 1 inside PE-BIU 1.  The second Fault Type 1 and Activation Type 3 are 
sent to the Local Fault Injector with an ID of 2 inside RMU 1.  Note that the four lines that make up the 
two file descriptions can be in any order as long as they appear before the line designating the end of fault 
injection setup section. 

 

FI_Fault

FI_Activation

FI_Setup_Done

1010 0000 1000 0110 0000 0000 0000 0001

1011 0000 1000 0110 0000 0000 0000 0011

FI_Fault

FI_Activation

1010 0000 0100 0100 0000 0000 0000 0001

1011 0000 0100 0100 0000 0000 0000 0010

 
 

Figure A.4: Example of Fault Injection Section of Test Specification file with multiple fault types 

Directly after the fault injection setup subsection is the App_Assignments where the applications are 
given to the PEs.  The App_Assignments have the same format as the fault vectors except that the 
positions pertain to the enabled PEs.  Each bit indicates if the application of the PE is an IO 
communication PE (0) or a PE computing the control commands (1).  The RC_per_CC specification 
denotes the number of ROBUS cycles in one control cycle.  The CC_per_Round line gives the number of 
control cycles to be executed during the round.  Rather than setting the maximum number of control 
cycles, the CC_per_Round might be set to 0 to indicate the round will not end based on the number of 
control cycles.  With the setting of 0, the test has to wait for another stop condition (see Section 5.2), such 
as executing all the given fault vectors, to end the round.  The Schedule specification defines how many 
ROBUS messages (see Section 3.5) each PE in the configuration will send during the given ROBUS 
cycle.  The first number of the Schedule specification is the RCI of each control cycle that has PEs 
transmitting with that schedule.  Each subsequent number in the line is the number of messages each PE 
is scheduled to transmit for the RCI.  Since a Schedule line only describes the PE transmissions for a 
single ROBUS cycle, multiple Schedule lines are required when PEs transmit on more than one ROBUS 
cycle per control cycle.  The Sensors and Commands lines specify the data each PE transmits.  Each 
number following the text description of these two lines is one data word.  IO PEs send the sensor data, 
whereas Control PEs send the command data (see Section 4.1).  The last section of the Test Specification 
file contains one fault vector (see Section 4.3.2) for each control cycle within the round.  The format of 
the fault vector is the same as the format of the Enabled_Nodes given in Figure A.3. 

Figure A.5 is an example Test Specification file with the appropriate line formats for the current 
version of the CFIMS.  The system is configured to have 4 PE-BIUs and 3 RMUs.  The Enabled_Nodes 
line specifies that PE 0, PE 1, PE 2, RMU 1, and RMU 2 are the only active nodes for this round.  The 
fault injection setup section of this Test Specification file includes the RCI within the control cycle to 
begin and end the fault.  The Fault Injection Controller activates the fault in RCI 0 and deactivates it in 
RCI 1.  The fault and activation type lines are broadcast to all Local Fault Injectors.  The only fault 
injectors in this version are located on the Reset signal of each node.  Fault type 1 and activation type 2 
are used in this setup to direct the Local Fault Injectors.  Similar to the Figure A.4, the first four lines of 
the fault injection setup section can be in any order as long as they are before the end of fault injection 
setup line.  The App_Assignments line makes PE 0 an IO PE and PEs 1 and 2 Control PEs.  The example 
calls for 10 ROBUS cycles in each control cycle and does not set a maximum number of control cycles 
for the round.  Each of the three active PEs is scheduled to transmit 50 words in RCI 1 as provided in the 
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Schedule line.  The Sensors and Commands lines each give the 50 data word values that are transmitted 
by the PEs.  The execution section contains a total of six fault vectors, which implies a total of six control 
cycles for the round.  Most of the fault vectors are all zeros, indicating no fault injection for that control 
cycle.  However, control cycles 3 and 5 have a fault in PE-BIU 2 and RMU 2, respectively. 

 
 
Num_BIU 

 
4 

Num_RMU 3 
Enabled_Nodes 1110000000000011 
RCI_Test_Vector 0000000000000000 
RCI_All_Disable 0000000000000001 
FI_Fault 1010000000000001 0000000000000001 
FI_Activation 1011000000000001 0000000000000010 
FI_Setup_Done       
App_Assignments 0110000000000000 
RC_per_CC 10 
CC_per_Round 0 
Schedule 1 50 50 50 0 
Sensors 7 100 87 98 7 53 17 37 62 52 … 
Commands 65 82 77 58 36 80 2 62 48 77 … 
0000000000000000  
0000000000000000  
0010000000000000  
0000000000000000  
0000000000000010  
0000000000000000  
  

 
Figure A.5: Test Specification File Example 



 

 
 

129 
 

 

Appendix B.   Data Collected During Round Execution 

This section describes the data collected by the CFIMS software processes during the execution of a 
round, at the end of which the data is organized into output files and sent to the repository for post-test 
analysis.  The data collected at the PTC and STC covers every major system function, including round 
control, round time, function time, function monitoring, and state monitoring.  As stated earlier in this 
report, the CFIMS can be viewed abstractly as providing a user service that reads a Test Specification and 
outputs a number of files containing the corresponding experimental data.  From that perspective, this 
section is intended to provide a detailed description of the collected data at the CFIMS output service 
interface.  

B.1.   Round Control 

The collected PTC and STC round control data are stored in corresponding separate log files with the 
following content. 

1. A list of all Software Interface buffers that overflowed during the round, if any.  Buffer overflows are 
an indication of an execution timing error and are generally accompanied by the loss of data.  As 
such, they trigger an end to the execution of the round.  At the PTC, the list of existing Software 
Interface buffers includes RTmr, FTmr, FMons, and SMons.  At the STTC, the list includes RTmr 
and SMons. 
 

2. A 16-bit status word as generated by the hardware Round Controller at the end of the round.  The 
format is described in Table B.1.  The bits are numbered 15 down to 0, with the leftmost bit 
numbered bit 15.  See Section 5 for a description of the Controller Coordination Protocol (CCP) 
executed by the PTC and STC Round Controllers. 
 

3. The round-stop condition is also saved as a separate item in decimal format. 
 

Table B.1: Round Controller Status Word 
 

Bit or Bit 

Slice 
Variable Description 

15 Round_Enable Set to 1 when the CCP Round Enable mode is complete.  
Otherwise, set to 0. 

14 SPIDER_Ready Set to 1 when the CCP SPIDER Initialization mode is 
complete.  Otherwise, set to 0. 

13 Function_Enable Set to 1 when the CCP Function Execution mode begins.  
Otherwise, set to 0. 

12 Execution_Stop Set to 1 when the CCP System Stop mode begins.  
Otherwise, set to 0. 

11 Round_Stop Set to 1 when all hardware operation for the round stops.  
Otherwise, set to 0. 

10 Stop_Echo_Timeout Set to 1 by the CCP Stop Initiator when it does not 
receive an echo RC_STOP TCM.  Otherwise, set to 0. 

9-4 Stop_Condition Condition that triggered the round stop.  See Table B.2 
for a full list of currently defined conditions. 

3-0 --- Unused 
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Table B.2: Round Stop Conditions 
 

Stop 

Condition 

Number 

Label Description 

0 PTC_TCL_FAULT 

An unexpected communication error was detected on a TCL 
link directly connected to the PTC (i.e., the CCL or a PTL).  
The error was detected by a PMCU receiver.  Currently, this 
error reporting and round-stop triggering feature is not 
implemented. 

1 PTC_RC_RCV_BUF_OVERFLOW Buffer overflow on the CCL receive module of the PTC‟s 

Round Controller. 

2 PTC_ENABLE_SEQ_ERROR The PTC Round Controller received an unexpected 
RC_ENABLE TCM. 

3 PTC_READY_SEQ_ERROR The PTC Round Controller received an unexpected 
RC_READY TCM. 

4 PTC_START_SEQ_ERROR The PTC Round Controller received an unexpected 
RC_START TCM. 

5 PTC_SPIDER_FAILURE SPIDER failure detected by the SPIDER Health Monitor at 
the PTC. 

6 PTC_SOFTWARE_STOP Round stop triggered by the software processes at the PTC. 

7 PTC_FI_STOP Round stop triggered by the Fault Injection Controller at the 
PTC. 

8 PTC_FUNCTION_STOP Round stop triggered by the SPIDER Function Tester at the 
PTC. 

9 PTC_STATE_MON_STOP Round stop triggered by the PE-BIU State Monitor at the 
PTC. 

10 PTC_ROUND_ENABLE_T_O Timeout on the completion of the CCP Round Enable mode. 

11 PTC_SPIDER_INIT_T_O Timeout on the completion of the CCP SPIDER 
Initialization mode. 

12 PTC_FI_SETUP_T_O Timeout on the completion of the CCP Fault Injection Setup 
mode. 

13 PTC_FUNCTION_SETUP_T_O Timeout on the completion of the CCP Function Setup 
mode. 

14 PTC_FUNCTION_DONE Function execution completed at the PTC. 
15 PTC_FI_DONE Fault injection completed at the PTC. 

16 STC_TCL_FAULT 

An unexpected communication error was detected on a TCL 
link directly connected to the STC (i.e., the CCL or an STL).  
The error was detected by a PMCU receiver.  Currently, this 
error reporting and round-stop triggering feature is not 
implemented. 

17 STC_RC_RCV_BUF_OVERFLOW Buffer overflow on the CCL receive module of the STC‟s 

Round Controller. 

18 STC_ENABLE_SEQ_ERROR The STC Round Controller received an unexpected 
RC_ENABLE TCM. 

19 STC_READY_SEQ_ERROR The STC Round Controller received an unexpected 
RC_READY TCM. 

20 STC_START_SEQ_ERROR The STC Round Controller received an unexpected 
RC_START TCM. 

21 STC_SPIDER_FAILURE SPIDER failure detected by the SPIDER Health Monitor at 
the STC. 

22 STC_SOFTWARE_STOP Round stop triggered by the software processes at the STC. 

23 STC_FI_STOP Round stop triggered by the Fault Injection Controller at the 
STC. 
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Stop 

Condition 

Number 

Label Description 

24 STC_STATE_MON_STOP Round stop triggered by the RMU State Monitor at the STC. 
25 STC_ROUND_ENABLE_T_O Timeout on the completion of the CCP Round Enable mode. 

26 STC_SPIDER_INIT_T_O Timeout on the completion of the CCP SPIDER 
Initialization mode. 

27 STC_FI_SETUP_T_O Timeout on the completion of the CCP Fault Injection Setup 
mode. 

28 STC_FUNCTION_SETUP_T_O Timeout on the completion of the CCP Function Setup 
mode. 

29 STC_FI_DONE Fault injection completed at the STC. 
 

B.2.   Round Timer  

The PTC and STC Round Timers (RTmrs) serve as event timers for all the data records generated by 
the CFIMS.  The RTmrs are frequently resynchronized to each other during the setup and execution 
phases of the round to enable the construction of a global timeline of events during the round.  A new 
RTmr record is generated at the end of each RTmr interval, just before the Interval Time (IT) component 
is reset and the Interval Count (IC) is incremented by one.  A record consists of (1 + 
SWXF_Num_RTmr_IC_DW) 16-bit data words.  SWXF_Num_RTmr_IC_DW is a system configuration 
parameter currently set to 2.  The first word is the value of the IT.  The remaining words are 16-bit slices 
of the IC, with the most significant slice listed first.   

B.3.   Function Timer 

An FTmr record is created when the FTime reaches the end of a ROBUS cycle or when the 
operational mode of the FTmr transitions from Preservation to Initialization.  A record consists of (5 + (1 
+ SWXF_Num_RTmr_IC_DW)) 16-bit data words, with the first five words containing information 
about the FTmr state at the time the record was generated, and the remaining words are the record time 
tag with the format described for the RTmr in Section B.2.  The format of the FTmr data is described in 
Table B.3. 

Table B.3: Collected Function Timer Data 
 

Word 

Number 
Bit Slice 

Bit Description 

Note: Xd denotes decimal value X. 

1 Leftmost N bits 

Accusations against PE(1..N).  N is the total number of PEs.  The leftmost bit 
corresponds to PE(1).  The bit corresponding to PE(i) is set to 1 if the FTmr 
accused PE(i) in the time interval covered by the current record.  Otherwise, 
the bit is set to 0.   

Rightmost 2 bits FTmr mode: 0d = Initialization, 1d = Preservation.   

2 Leftmost N bits 
Conviction against PE(1..N).  The leftmost bit corresponds to PE(1).  The bit 
corresponding to PE(i) is set to 1 if the FTmr convicted PE(i) in the time 
interval covered by the current record.  Otherwise, the bit is set to 0.   

3 All 16 bits ROBUS Time (RT) 
4 All 16 bits ROBUS Cycle Index (RCI) 
5 All 16 bits Control Cycle Index (CCI) 

 



 

 
 

132 
 

B.4.   Function Monitors 

The data records from all the Function Monitors (FMons) are saved to the same file.  An FMon record 
consists of 1 + (SWXF_Num_CC_Obs_DW + (1 + SWXF_Num_RTmr_IC_DW)) data items, with the 
first item being a decimal-valued FMon identifier with a unique value assignment for each of the N 
FMons.   

The next SWXF_Num_CC_Obs_DW (currently set to 2) 16-bit words contain the observations made 
by the FMon based on the received transmissions over the PTL from its corresponding PE during the 
control cycle.  An FMon outputs N observations, one per PE with each PE viewed as a source of 
messages on ROBUS, independent of the actual communication schedule.  The observations are packaged 
into a long bit string formed of consecutive end-to-end bit slices starting with the observations for PE 1 at 
the leftmost position.  Each observation bit-slice has a width of CC_Obs_Width bits (currently set to 4) 
and is binary encoded as shown in Table B.4 (using decimal format).  (A full description of the FMon 
observations can be found in Section 4.3.1.2.)  The full observation bit string is divided into 
SWXF_Num_CC_Obs_DW 16-bit slices when the record is created.   

The remaining words in an FMon record are the time tag with the format described for the RTmr in 
Section B.2. 

Table B.4: Observation codes for a Function Monitor 
 

Observation Code 

(in decimal format) Observation by FMonj 

0 Omitted Sender Id 
1 Invalid Sender Id 
2 Repeated Sender Id 
3 Bad Payload Length 
4 Detected Reception Error at Receiver PE 
5 Detected Reception Error at Sender PE 
6 Bad Message Content 
7 Good Message 

 

B.5.   PE-BIU State Monitors 

The data records from all the lane State Monitors (SMons) are saved to the same file.  An SMon 
record consists of 1 + (PE_BIU_State_Msg_Length + 1 + (1 + SWXF_Num_RTmr_IC_DW)) data items, 
with the first item being a decimal-valued SMon lane identifier with a unique value assignment for each 
of the N lanes.  Note that the number of PEs (denoted Num_PE) is equal to the number of BIUs (denoted 
Num_BIU).  Both of these quantities are also denoted N. 

The content of the next PE_BIU_State_Msg_Length + 1 (currently, a total of 9) 16-bit words is 
described in Table B.5.  The words in the state message are updated during normal operation as indicated 
in the Table, or immediately at the time of an unscheduled-message triggering event (i.e., an RPP failure 
or a PE failure). 

The remaining words in an SMon lane record are the time tag with the format described for the RTmr 
in Section B.2. 
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Table B.5: Main state record content for a PE-BIU State Monitor Lane 
 

Word 

Number 
Word Update Condition Bit or Bit Slice Bit Description 

1 This word is updated every time a 
new message is generated. 

Leftmost TCM_Tag_Width (currently 4) 
bits 

Binary encoded value of the TCM tag as set by the 
Embedded Node Monitor at the PE-BIU node.  This 
corresponds to tag SM_PE_BIU. 

Rightmost State_Msg_Seq_Num_Width 
(currently 8) bits 

State message sequence number. The sequence number 
is incremented by one every time a new state message is 
generated, and it rolls over after reaching the maximum 
binary value. 

2 This word is updated every time a 
new message is generated. 

Leftmost 
Node_Monitor_RTS_Trigger_Width 

(currently 4) bits 

Binary encoded value of the condition that triggered the 
state message. The currently defined values are as 
follows. 
0 = RPP_FAILURE 
1 = PE_FAILURE 
2 = STM_BEGIN 
3 = CDM_BEGIN 
4 = CIM_BEGIN 
5 = CJM_SCHED_UP 
6 = CPM_SCHED_UP 
7 = TCL_ERROR (currently not used) 

Rightmost Num_RMU bits 

Status of the BIU's word-mode communication units 
since the last data record was generated. The rightmost 
bit is the status for the first communication unit (i.e., the 
one receiving from RMU 1); the second rightmost bit is 
the status for the second communication unit; etc.  A 
communication unit‟s status bit is set to 0 if the unit 
reported an invalid input waveform at any time since 
the last state message was triggered.  A value of 1 
indicates that the corresponding communication unit 
consistently detected a valid Manchester-encoded input 
signal since the last state message was triggered. 

3 

This word is updated whenever 
the RPP/BIU Mode Control Unit 
(MCU) issues a command  
satisfying one of the following 

Bit 15 (Leftmost bit) 

RPP Input Unit‟s (IU) Zero_Schedule flag;  
0 = non-empty schedule  
1 = new schedule is 0 (i.e., empty; no scheduled PE 
messages in the current ROBUS cycle)  
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Word 

Number 
Word Update Condition Bit or Bit Slice Bit Description 

conditions: the first command in 
Self-Test mode, the first in Clique 
Detection Mode, the first in 
Clique Initialization mode, a 
Schedule Update command in 
Clique Join mode, or a Schedule 
Update command in Clique 
Preservation mode. 
   

14 
RPP Input Unit‟s (IU) Invalid_Schedule flag;  
0 = new schedule is valid 
1 = new schedule is invalid 

13 Node kind: 0 = PE_BIU, 1 = RMU 
12-9  

(Next RPP_Node_Id_Vect_Width 
(currently 4) bits) 

RPP Node Id with valid binary value  range 1 to 
max(Num_RMU, Num_BIU). 

 8-6 
(Next RPP_Major_Mode_Vect_Width 

(currently 3) bits) 

Binary encoded value of the RPP major mode; 
0 = Self Test 
1 = Clique Detection 
2 = Clique Join 
3 = Clique Initialization 
4 = Clique Preservation 

5 

Current diagnostic cycle when the current major mode 
is Clique Join mode; 
0 = diagnostic cycle 0 
1 = diagnostic cycle 1 

4-2 
(Next RPP_Minor_Mode_Vect_Width 

(currently 3) bits) 

Binary encoded value of the RPP minor mode; 
0 = Reset 
1 = Self Test 
2 = Preliminary Diagnosis and Synchronization Capture 
3 = Initial Diagnosis and Initial Synchronization 
4 = Collective Diagnosis 
5 = Schedule Update 
6 = PE Communication 
7 = Synchronization Preservation 

1-0 
(Next RPP_Sched_Status_Vect_Width 

(currently 2) bits) 

Binary encoded value of the schedule status reported by 
the MCU; 
0 = Valid 
1 = Zero 
2 = Invalid 

4 
This word is updated whenever 
the RPP/BIU enters the Collective 
Diagnosis minor mode. 

Leftmost Num_RMU bits 

Accusations against RMUs generated by the local 
RPP/BIU.  The leftmost bit corresponds to RMU 1.  
0 = not accused  
1 = accused 
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Word 

Number 
Word Update Condition Bit or Bit Slice Bit Description 

Rightmost Num_BIU bits 

Accusations against BIUs in reversed order.  The 
rightmost bit corresponds to BIU 1. 
0 = not accused  
1 = accused 

5 

This word is updated when the 
RPP/BIU enters the Schedule 
Update minor mode in the Clique 
Join or Clique Preservation major 
mode. 
 

Leftmost Num_RMU bits 

Convictions against RMUs generated by the local 
RPP/BIU.  The leftmost bit corresponds to RMU 1.  
0 = not convicted  
1 = convicted 

Rightmost Num_BIU bits 

Convictions against BIUs in reversed order.  The 
rightmost bit corresponds to BIU 1. 
0 = not convicted  
1 = convicted 

6 This word is updated when there 
is an RPP detected failure. 

Bit 15 (leftmost bit) 

SMU_Failure flag generated by the RPP Status 
Monitoring Unit (SMU);   
0 = no detected failure  
1 = detected failure 

14 
RPP‟s SMU_No_Clique flag; 
0 = no-clique condition not detected  
1 = no-clique condition detected 

13 
RPP‟s SMU_Accusation_Against_Self flag;   
0 = RPP has not accused itself 
1 = RPP has accused itself 

12 

RPP‟s SMU_OK_Distrusted flag; 
0 = RPP trusts at least one node of the opposite kind 
(i.e., RMUs) (i.e., RMUs) 
1 = RPP distrusts (i.e., has accused or convicted) every 
node of the opposite kind 

11 

RPP‟s SMU_SK_Distrusted flag; 
0 = RPP trusts at least one node of the same kind (i.e., 
BIUs) 
1 = RPP distrusts (i.e., has accused or convicted) every 
node of the same kind 
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Word 

Number 
Word Update Condition Bit or Bit Slice Bit Description 

10 

RPP‟s SMU_Timeout flag; 
0 = no timeout detected 
1 = SMU detected a timeout condition for 
Synchronization Capture in the Clique Detection mode,  
Initial Synchronization in the Clique Initialization 
mode, or for a ROBUS cycle in the Clique Join or 
Clique Preservation modes. 

9 
RPP‟s SMU_Protocol_Error flag; 
0 = no protocol error detected 
1 = protocol error detected 

8-4 
(Next 

RPP_SMU_Protocol_Error_Code_Width 
(currently 5) bits) 

Binary encoded value of RPP‟s 

MU_Protocol_Error_Code signal.  See Appendix B in 
[Torres08B] for a full list of error codes. 

7 

This word is updated when there 
is a detected PE failure or the RPP 
issues a Schedule Update 
command in the Clique 
Preservation mode. 
 

Bits 15-14 
(Leftmost PE_OCL_Width (currently 2) 

bits) 

Binary encoded value of the PE major mode (OCL = 
Operation Coordination Level); 
0 = OCL0 
1 = OCL1 
2 = OCL2  
3 = OCL3 

13 
PE_Failure flag; 
0 = PE did not detect a failure condition 
1 = PE detected a failure condition 

12-8 
(Next PE_Failure_Code_Width 

(currently 5) bits) 

Binary encoded value of the failure code reported by the 
PE.  See the VHDL description of the PE Master 
Controller‟s finite state machine for the conditions 

corresponding to the reported failure codes. 

8 

This word is updated when there 
is a detected PE failure or the RPP 
issues a Schedule Update 
command in the Clique 
Preservation mode. 

All 16 bits ROBUS Cycle Index (RCI) as reported by the PE. 
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Word 

Number 
Word Update Condition Bit or Bit Slice Bit Description 

9 This word is generated at the PTC. 
Bits 15-14 

(Leftmost Node_Condition_Width 
(currently 2) bits) 

Binary encoded value of the node condition as reported 
by the Health Monitor at the lane State Monitor for the 
corresponding PE-BIU node. 
0 = Disabled 
1 = Recovering 
2 = Restored 
3 = unused code 
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B.6.   RMU State Monitors 

The data records generated by the RMU State Monitor have essentially the same format at the PE-BIU 
records.  The main difference is due to the absence of PEs at the RMU nodes. 

The data records from all the lane State Monitors (SMons) are saved to the same file.  An SMon 
record consists of 1 + (RMU_State_Msg_Length + 1 + (1 + SWXF_Num_RTmr_IC_DW)) data items, 
with the first item being a decimal-valued SMon lane identifier with a unique value assignment for each 
of the SMon lanes monitoring the RMUs.  The number of RMUs is denoted Num_RMU.   

Note that the number of PEs (denoted Num_PE) is equal to the number of BIUs (denoted Num_BIU).  
Both of these quantities are also denoted N. 

The content of the next RMU_State_Msg_Length + 1 (currently, a total of 7) 16-bit words is described 
in Table B.6.  The words in the state message are updated during normal operation as indicated in the 
Table, or immediately at the time of an unscheduled-message triggering event (i.e., an RPP failure). 

The remaining words in an SMon lane record are the time tag with the format described for the RTmr 
in Section B.2. 
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Table B.6: Main state record content for an RMU State Monitor Lane 
 

Word 

Number 
Word Update Condition Bit or Bit Slice Bit Description 

1 This word is updated every time a 
new message is generated. 

Leftmost TCM_Tag_Width (currently 4) 
bits 

Binary encoded value of the TCM tag as set by the 
Embedded Node Monitor at the RMU node.  This 
should correspond to tag SM_RMU. 

Rightmost State_Msg_Seq_Num_Width 
(currently 8) bits 

State message sequence number. The sequence number 
is incremented by one every time a new state message is 
generated, and it rolls over after reaching the maximum 
binary value. 

2 This word is updated every time a 
new message is generated. 

Leftmost 
Node_Monitor_RTS_Trigger_Width 

(currently 4) bits 

Binary encoded value of the condition that triggered the 
state message. The currently defined values are as 
follows. 
0 = RPP_FAILURE 
1 = PE_FAILURE (not applicable to RMU nodes) 
2 = STM_BEGIN 
3 = CDM_BEGIN 
4 = CIM_BEGIN 
5 = CJM_SCHED_UP 
6 = CPM_SCHED_UP 
7 = TCL_ERROR (not currently used) 

Rightmost Num_BIU bits 

Status of the RMU's word-mode communication units 
since the last data record was generated. The rightmost 
bit is the status for the first communication unit (i.e., the 
one receiving from BIU 1); the second rightmost bit is 
the status for the second communication unit; etc.  A 
communication unit bit is set to 0 if the unit reported an 
invalid input waveform at any time since the last state 
message was triggered.  A value of 1 indicates that the 
corresponding communication unit consistently 
detected a valid Manchester-encoded input signal since 
the last state message was triggered. 

3 

This word is updated whenever 
the RPP/RMU Mode Control Unit 
(MCU) issues a command  
satisfying the following 

Bit 15 (Leftmost bit) 

RPP Input Unit‟s (IU) Zero_Schedule flag;  
0 = non-empty schedule  
1 = new schedule is 0 (i.e., empty; no scheduled PE 
messages during the current ROBUS cycle)  
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Word 

Number 
Word Update Condition Bit or Bit Slice Bit Description 

conditions: the first command in 
Self-Test mode, the first in Clique 
Detection Mode, the first in 
Clique Initialization mode, a 
Schedule Update command in 
Clique Join mode, or a Schedule 
Update command in Clique 
Preservation mode. 
   

14 
RPP Input Unit‟s (IU) Invalid_Schedule flag;  
0 = new schedule is valid 
1 = new schedule is invalid 

13 Node kind: 0 = PE_BIU, 1 = RMU 
12-9  

(Next RPP_Node_Id_Vect_Width 
(currently 4) bits) 

RPP Node Id with binary value  range 1 to 
Max_Value(Num_RMU, Num_BIU) 

8-6 
(Next RPP_Major_Mode_Vect_Width 

(currently 3) bits) 

Binary encoded value of the RPP major mode; 
0 = Self Test 
1 = Clique Detection 
2 = Clique Join 
3 = Clique Initialization 
4 = Preservation 

5 

Current diagnostic cycle when the current major mode 
is Clique Join mode; 
0 = diagnostic cycle 0 
1 = diagnostic cycle 1 

4-2 
(Next RPP_Minor_Mode_Vect_Width 

(currently 3) bits) 

Binary encoded value of the RPP minor mode; 
0 = Reset 
1 = Self Test 
2 = Preliminary Diagnosis and Synchronization Capture 
3 = Initial Diagnosis and Initial Synchronization 
4 = Collective Diagnosis 
5 = Schedule Update 
6 = PE Communication 
7 = Synchronization Preservation 

1-0 
(Next RPP_Sched_Status_Vect_Width 

(currently 2) bits) 

Binary encoded value of the schedule status reported by 
the MCU; 
0 = Valid 
1 = Zero 
2 = Invalid 

4 
This word is updated whenever 
the RPP/RMU enters the 
Collective Diagnosis minor mode. 

Leftmost Num_BIU bits 

Accusations against BIUs generated by the local 
RPP/RMU.  The leftmost bit corresponds to BIU 1. 
0 = not accused  
1 = accused 
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Word 

Number 
Word Update Condition Bit or Bit Slice Bit Description 

Rightmost Num_RMU bits 

Accusations against RMUs in reversed order.  
Rightmost bit corresponds to RMU 1. 
0 = not accused  
1 = accused 

5 

This word is updated when the 
RPP/RMU enters the Schedule 
Update minor mode in the Clique 
Join or Clique Preservation major 
modes. 
 

Leftmost Num_BIU bits 

Convictions against BIUs generated by the local 
RPP/RMU.  The leftmost bit corresponds to BIU 1.  
0 = not convicted  
1 = convicted 

Rightmost Num_RMU bits 

Convictions against RMUs in reversed order.  
Rightmost bit corresponds to RMU 1. 
0 = not convicted  
1 = convicted 

6 This word is updated when there 
is an RPP detected failure. 

Bit 15 (leftmost bit) 

Value of the SMU_Failure flag generated by the RPP 
Status Monitoring Unit (SMU);   
0 = no detected failure  
1 = detected failure 

14 
RPP‟s SMU_No_Clique flag; 
0 = no-clique condition not detected 
1 = no-clique condition detected 

13 
RPP‟s SMU_Accusation_Against_Self flag;   
0 = RPP has not accused itself 
1 = RPP has accused itself 

12 

RPP‟s SMU_OK_Distrusted flag; 
0 = RPP trusts at least one node of the opposite kind 
(i.e., BIUs) 
1 = RPP distrusts (i.e., has accused or convicted) every 
node of the opposite kind  

11 

RPP‟s SMU_SK_Distrusted flag; 
0 = RPP trusts at least one node of the same kind (i.e., 
RMUs) 
1 = RPP distrusts (i.e., has accused or convicted) every 
node of the same kind  
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Word 

Number 
Word Update Condition Bit or Bit Slice Bit Description 

10 

RPP‟s SMU_Timeout flag; 
 0 = no timeout detected 
1 = SMU detected a timeout condition for 
Synchronization Capture in the Clique Detection mode,  
Initial Synchronization in the Clique Initialization 
mode, or for a ROBUS cycle in the Clique Join or 
Clique Preservation modes. 

9 
RPP‟s SMU_Protocol_Error flag; 
0 = no protocol error detected 
1 = protocol error detected 

8-4 
(Next 

RPP_SMU_Protocol_Error_Code_Width 
(currently 5) bits) 

Binary encoded value of RPP‟s 

SMU_Protocol_Error_Code signal.  See Appendix B in 
[Torres08B] for a full list of error codes. 

7 This word is generated at the STC. 
Bits 15-4 

(Leftmost Node_Condition_Width 
(currently 2) bits) 

Binary encoded value of the node condition as reported 
by the Health Monitor at the lane State Monitor for the 
corresponding RMU node. 
0 = Disabled 
1 = Recovering 
2 = Restored 
3 = unused code 
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Appendix C.   Test Control Software Pseudo-Code 

The Test Control Software of the CFIMS is composed of Data Management and Test Execution 
Software for each Test Controller (PTC and STC) as described in Section 13.  The following sections 
give the detailed pseudo-code of these software programs.   

C.1.   PTC Data Management Software 

Open Test_Spec file 
Count number of characters in specification part of Test_Spec and save the characters and count in RAM 
Count fault vectors from Test_Spec and save the fault vectors and count in RAM 
Close Test_Spec file 
Create a socket 
Get Host Name IP address 
Bind the socket to the IP address or Name 
 
Listen for connection request 
Enable standard I/O on socket 
 
///////////////////////////////////////////////////////////////////////////////////// 

//Send Test spec character section 

Make all of the following writes blocking 
Status = Send_UInt_To_Socket(TS_char_count) 
If errno != 0 
{ 

Display on screen “Error in sending Test Spec count: (errno)” 
Exit Program 

} 
Else If status != 4 
{ 

Display on screen “Write returned status of (status) on Test Spec count” 
Exit Program 

} 
 
For each character in specification 

Send_Char_To_Socket(TS_char) 
 
//Check that the correct number of Test spec characters was received at client 
Make all of the following reads non-blocking 
Start timer 1 – Client Test Spec character count 
Initialize status = -1 
While status = -1 
{ 

Status = Read_UInt_From_Socket(Cli_TS_char_count) 
If (status == -1) and (timer >= TIMEOUT_CLI_TS_CHAR_CNT) 
{ 

Display on screen “Timeout occurred while waiting for Test Spec character count” 
 Exit Program 
} 

} 
If status = 0 
{ 

Display on screen “Socket was closed prematurely when trying to read Test Spec character count” 
Exit Program 
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} 
Else If status < sizeof(Cli_TS_char_count) 
{ 

Display on screen “Partial Test Spec character count received: (status) bytes” 
Exit Program 

} 
Else If Cli_TS_char_count != TS_char_count //check that client got all 
{ 

Display on screen “Client received (Cli_TS_char_count) Test Spec characters when (TS_char_count) were 
sent” 

 Exit Program 
} 
//Else it was successful 
 
///////////////////////////////////////////////////////////////////////////////////// 

//Send fault vectors 

Make all of the following writes blocking 
Status = Send_UInt_To_Socket(FV_count) 
If errno != 0 
{ 

Display on screen “Error in sending fault vector count: (errno)” 
Exit Program 

} 
Else If status != 4 
{ 

Display on screen “Write returned status of (status) on fault vector count” 
Exit Program 

} 
 
For each fault vector //if there are none, it will go on 
{ 

Send_USInt_To_Socket(fault_vector[]) 
If errno != 0 
{ 

Display on screen “Error in sending fault vector data: (errno)” 
Write_All_Output_To_File() 
Exit Program 

} 
Else If status != 2 
{ 

Display on screen “Write returned status of (status) on fault vector data” 
Write_All_Output_To_File() 
Exit Program 

} 
} 
 
//Check that the correct number of fault vectors was received at client 
Make all of the following reads non-blocking 
Start timer 2 – Client fault vectors count 
Initialize status = -1 
While status = -1 
{ 

Status = Read_UInt_From_Socket(Cli_FV_count) 
If (status == -1) and (timer >= TIMEOUT_CLI_FV_CNT) 
{ 
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Display on screen “Timeout occurred while waiting for fault vector count” 
 Exit Program 
} 

} 
If status = 0 
{ 

Display on screen “Socket was closed prematurely when trying to read fault vector count” 
Exit Program 

} 
Else If status < sizeof(Cli_FV_count) 
{ 

Display on screen “Partial fault vector count received: (status) bytes” 
Exit Program 

} 
Else If Cli_FV_count!= FV_count //check that client got all 
{ 

Display on screen “Client received (Cli_FV_count) fault vector entries when (FV_count) were sent” 
 Exit Program 
} 
//Else it was successful 
 
///////////////////////////////////////////////////////////////////////////////////// 

//Open files 

Open 5 output files – 4 binary (FMon, FTmr, RTmr, SMon) and 1 text (Test_Log) 
 
///////////////////////////////////////////////////////////////////////////////////// 

//Receive Test_Log data and write to file 

//Not have it timeout #3 
Initialize status = -1 
While status = -1 
{ 

Status = Read_UInt_From_Socket(Cli_TL_count) //This one will wait until there is data 
If (status == -1) and (Key_Pressed) 
{ 

Display on screen “Operator pressed a key while waiting for Test Log character count to end the program” 
 Exit Program 
} 

} 
If status = 0 
{ 

Display on screen “Socket was closed prematurely when trying to read Test Log character count” 
Exit Program 

} 
Else If status < sizeof(Cli_TL_count) 
{ 

Display on screen “Partial Test Log character count received: (status) bytes” 
Exit Program 

} 
 
Start timer 4 – Test Log characters 
TL_count = 0 
While (TL_count < Cli_TL_count) 
{ 

Initialize status = -1 
While status = -1 
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{ 
Status = Read_Char_From_Socket(TL_char) 
If (status == -1) and (timer >= TIMEOUT_DATA_WORD) 
{ 

Display on screen “Timeout occurred while waiting for Test Log characters” 
 Exit Program 
} 

} 
If status = 0 
{ 

Display on screen “Socket was closed prematurely when trying to read Test Log characters” 
Exit Program 

} 
Else If status < sizeof(TL_char) 
{ 

Display on screen “Partial Test Log characters received: (status) bytes” 
Exit Program 

} 
//Else it was successful 
TL_count++ 
Write_char(Test_Log_File, TL_char) 
Reset timer 

} 
 
//Send count of characters received for check 
Make all of the following writes blocking 
Status = Send_UInt_To_Socket(TL _count) 
If errno != 0 
{ 

Display on screen “Error in sending test log count: (errno)” 
Exit Program 

} 
Else If status != 4 
{ 

Display on screen “Write returned status of (status) on test log count” 
Exit Program 

} 
 
///////////////////////////////////////////////////////////////////////////////////// 

//Receive FMon data and write to file 

Make all of the following reads non-blocking 
Start timer 5 – FMon count 
Initialize status = -1 
While status = -1 
{ 

Status = Read_UInt_From_Socket(Cli_FMon_count) 
If (status == -1) and (timer >= TIMEOUT_FMON_CNT) 
{ 
 Display on screen “Timeout occurred while waiting for FMon count” 
 Exit Program 
} 

} 
If status = 0 
{ 

Display on screen “Socket was closed prematurely when trying to read FMon count” 
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Exit Program 
} 
Else If status < sizeof(Cli_FMon_count) 
{ 

Display on screen “Partial FMon count received: (status) bytes” 
Exit Program 

} 
 
Start timer 6 – FMon 
FMon_count = 0 
While (FMon_count < Cli_FMon_count) 
{ 

Initialize status = -1 
While status = -1 
{ 

Status = Read_USInt_From_Socket(FMon_val) 
If (status == -1) and (timer >= TIMEOUT_DATA_WORD) 
{ 

Display on screen “Timeout occurred while waiting for FMon [FMon_count]” 
 Exit Program 
} 

} 
If status = 0 
{ 

Display on screen “Socket was closed prematurely when trying to read FMon [FMon_count]” 
Exit Program 

} 
Else If status < sizeof(FMon_val) 
{ 

Display on screen “Partial FMon received: (status) bytes” 
Exit Program 

} 
//Else it was successful 
FMon[FMon_count] = FMon_val 
FMon_count++ 
Reset timer 

} 
 
Write each FMon[] value to binary FMon_File 
 
//Send count of entries received for check 
Make all of the following writes blocking 
Status = Send_UInt_To_Socket(FMon_count) 
If errno != 0 
{ 

Display on screen “Error in sending FMon count: (errno)” 
Write_All_Output_To_File() 
Exit Program 

} 
Else If status != 4 
{ 

Display on screen “Write returned status of (status) on FMon count” 
Write_All_Output_To_File() 
Exit Program 

} 
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///////////////////////////////////////////////////////////////////////////////////// 

//Receive FTmr data and write to file 

Make all of the following reads non-blocking 
Start timer 7 – FTmr count 
Initialize status = -1 
While status = -1 
{ 

Status = Read_UInt_From_Socket(Cli_ FTmr _count) 
If (status == -1) and (timer >= TIMEOUT_FTMR_CNT) 
{ 
 Display on screen “Timeout occurred while waiting for FTmr count” 
 Exit Program 
} 

} 
If status = 0 
{ 

Display on screen “Socket was closed prematurely when trying to read FTmr count” 
Exit Program 

} 
Else If status < sizeof(Cli_FTmr_count) 
{ 

Display on screen “Partial FTmr count received: (status) bytes” 
Exit Program 

} 
 
Start timer 8 – FTmr 
FTmr_count = 0 
While (FTmr_count < Cli_FTmr_count) 
{ 

Initialize status = -1 
While status = -1 
{ 

Status = Read_USInt_From_Socket(FTmr_val) 
If (status == -1) and (timer >= TIMEOUT_DATA_WORD) 
{ 

Display on screen “Timeout occurred while waiting for FTmr [FTmr_count]” 
 Exit Program 
} 

} 
If status = 0 
{ 

Display on screen “Socket was closed prematurely when trying to read FTmr [FTmr_count]” 
Exit Program 

} 
Else If status < sizeof(FTmr_val) 
{ 

Display on screen “Partial FTmr received: (status) bytes” 
Exit Program 

} 
//Else it was successful 
FTmr_count++ 
Write FTmr_val to binary file FTmr_File 
Reset timer 

} 
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//Send count of entries received for check 
Make all of the following writes blocking 
Status = Send_UInt_To_Socket(FTmr_count) 
If errno != 0 
{ 

Display on screen “Error in sending FTmr count: (errno)” 
Write_All_Output_To_File() 
Exit Program 

} 
Else If status != 4 
{ 

Display on screen “Write returned status of (status) on FTmr count” 
Write_All_Output_To_File() 
Exit Program 

} 
 
///////////////////////////////////////////////////////////////////////////////////// 

//Receive RTmr data and write to file 

Make all of the following reads non-blocking 
Start timer 9 – RTmr count 
Initialize status = -1 
While status = -1 
{ 

Status = Read_UInt_From_Socket(Cli_ RTmr _count) 
If (status == -1) and (timer >= TIMEOUT_RTMR_CNT) 
{ 
 Display on screen “Timeout occurred while waiting for RTmr count” 
 Exit Program 
} 

} 
If status = 0 
{ 

Display on screen “Socket was closed prematurely when trying to read RTmr count” 
Exit Program 

} 
Else If status < sizeof(Cli_ RTmr _count) 
{ 

Display on screen “Partial RTmr count received: (status) bytes” 
Exit Program 

} 
 
Start timer 10 – RTmr 
RTmr_count = 0 
While (RTmr_count < Cli_RTmr_count) 
{ 

Initialize status = -1 
While status = -1 
{ 

Status = Read_USInt_From_Socket(RTmr_val) 
If (status == -1) and (timer >= TIMEOUT_DATA_WORD) 
{ 

Display on screen “Timeout occurred while waiting for RTmr [RTmr_count]” 
 Exit Program 
} 
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} 
If status = 0 
{ 

Display on screen “Socket was closed prematurely when trying to read RTmr [RTmr_count]” 
Exit Program 

} 
Else If status < sizeof(RTmr_val) 
{ 

Display on screen “Partial RTmr received: (status) bytes” 
Exit Program 

} 
//Else it was successful 
RTmr_count++ 
Write RTmr_val to binary file RTmr_File 
Reset timer 

} 
 
//Send count of entries received for check 
Make all of the following writes blocking 
Status = Send_UInt_To_Socket(RTmr_count) 
If errno != 0 
{ 

Display on screen “Error in sending RTmr count: (errno)” 
Write_All_Output_To_File() 
Exit Program 

} 
Else If status != 4 
{ 

Display on screen “Write returned status of (status) on RTmr count” 
Write_All_Output_To_File() 
Exit Program 

} 
 
///////////////////////////////////////////////////////////////////////////////////// 

//Receive SMon data and write to file 

Make all of the following reads non-blocking 
Start timer 11 – SMon count 
Initialize status = -1 
While status = -1 
{ 

Status = Read_UInt_From_Socket(Cli_SMon_count) 
If (status == -1) and (timer >= TIMEOUT_SMON_CNT) 
{ 
 Display on screen “Timeout occurred while waiting for SMon count” 
 Exit Program 
} 

} 
If status = 0 
{ 

Display on screen “Socket was closed prematurely when trying to read SMon count” 
Exit Program 

} 
Else If status < sizeof(Cli_SMon_count) 
{ 

Display on screen “Partial SMon count received: (status) bytes” 
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Exit Program 
} 
 
Start timer 10 – SMon 
SMon_count = 0 
While (SMon_count < Cli_SMon_count) 
{ 

Initialize status = -1 
While status = -1 
{ 

Status = Read_USInt_From_Socket(SMon_val) 
If (status == -1) and (timer >= TIMEOUT_DATA_WORD) 
{ 

Display on screen “Timeout occurred while waiting for SMon [SMon_count]” 
 Exit Program 
} 

} 
If status = 0 
{ 

Display on screen “Socket was closed prematurely when trying to read SMon [SMon_count]” 
Exit Program 

} 
Else If status < sizeof(SMon_val) 
{ 

Display on screen “Partial SMon received: (status) bytes” 
Exit Program 

} 
//Else it was successful 
SMon_count++ 
Write SMon_val to binary file SMon_File 
Reset timer 

} 
 
//Send count of entries received for check 
Make all of the following writes blocking 
Status = Send_UInt_To_Socket(SMon_count) 
If errno != 0 
{ 

Display on screen “Error in sending SMon count: (errno)” 
Write_All_Output_To_File() 
Exit Program 

} 
Else If status != 4 
{ 

Display on screen “Write returned status of (status) on SMon count” 
Write_All_Output_To_File() 
Exit Program 

} 
 
Close files and socket 
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C.2.   STC Data Management Software 

Create a socket 
Get Host Name IP address 
Bind the socket to the IP address or Name 
 
Listen for connection request 
Create child process to service the client 
Enable standard I/O on socket 
Make all of the following reads non-blocking 
 
Open 3 output files – 2 binary (RTmr, SMon) and 1 text (Test_Log) 
 
///////////////////////////////////////////////////////////////////////////////////// 

//Receive Test_Log data and write to file 

//Not have it timeout #1 
Initialize status = -1 
While status = -1 
{ 

Status = Read_UInt_From_Socket(Cli_TL_count) //This one will wait until there is data 
If (status == -1) and (Key_Pressed) 
{ 

Display on screen “Operator pressed a key while waiting for Test Log character count to end the program” 
 Exit Program 
} 

} 
If status = 0 
{ 

Display on screen “Socket was closed prematurely when trying to read Test Log character count” 
Exit Program 

} 
Else If status < sizeof(Cli_TL_count) 
{ 

Display on screen “Partial Test Log character count received: (status) bytes” 
Exit Program 

} 
 
Start timer 2 – Test Log characters 
TL_count = 0 
While (TL_count < Cli_TL_count) 
{ 

Initialize status = -1 
While status = -1 
{ 

Status = Read_Char_From_Socket(TL_char) 
If (status == -1) and (timer >= TIMEOUT_DATA_WORD) 
{ 

Display on screen “Timeout occurred while waiting for Test Log characters” 
 Exit Program 
} 

} 
If status = 0 
{ 

Display on screen “Socket was closed prematurely when trying to read Test Log characters” 
Exit Program 
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} 
Else If status < sizeof(TL_char) 
{ 

Display on screen “Partial Test Log characters received: (status) bytes” 
Exit Program 

} 
//Else it was successful 
TL_count++ 
Write_char(Test_Log_File, TL_char) 
Reset timer 

} 
 
//Send count of characters received for check 
Make all of the following writes blocking 
Status = Send_UInt_To_Socket(TL _count) 
If errno != 0 
{ 

Display on screen “Error in sending test log count: (errno)” 
Exit Program 

} 
Else If status != 4 
{ 

Display on screen “Write returned status of (status) on test log count” 
Exit Program 

} 
 
///////////////////////////////////////////////////////////////////////////////////// 

//Receive RTmr data and write to file 

Make all of the following reads non-blocking 
Start timer 3 – RTmr count 
Initialize status = -1 
While status = -1 
{ 

Status = Read_UInt_From_Socket(Cli_ RTmr _count) 
If (status == -1) and (timer >= TIMEOUT_RTMR_CNT) 
{ 
 Display on screen “Timeout occurred while waiting for RTmr count” 
 Exit Program 
} 

} 
If status = 0 
{ 

Display on screen “Socket was closed prematurely when trying to read RTmr count” 
Exit Program 

} 
Else If status < sizeof(Cli_ RTmr _count) 
{ 

Display on screen “Partial RTmr count received: (status) bytes” 
Exit Program 

} 
 
Start timer 4 – RTmr 
RTmr_count = 0 
While (RTmr_count < Cli_RTmr_count) 
{ 
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Initialize status = -1 
While status = -1 
{ 

Status = Read_USInt_From_Socket(RTmr_val) 
If (status == -1) and (timer >= TIMEOUT_DATA_WORD) 
{ 

Display on screen “Timeout occurred while waiting for RTmr [RTmr_count]” 
 Exit Program 
} 

} 
If status = 0 
{ 

Display on screen “Socket was closed prematurely when trying to read RTmr [RTmr_count]” 
Exit Program 

} 
Else If status < sizeof(RTmr_val) 
{ 

Display on screen “Partial RTmr received: (status) bytes” 
Exit Program 

} 
//Else it was successful 
RTmr_count++ 
Write RTmr_val to binary file RTmr_File 
Reset timer 

} 
 
//Send count of entries received for check 
Make all of the following writes blocking 
Status = Send_UInt_To_Socket(RTmr_count) 
If errno != 0 
{ 

Display on screen “Error in sending RTmr count: (errno)” 
Write_All_Output_To_File() 
Exit Program 

} 
Else If status != 4 
{ 

Display on screen “Write returned status of (status) on RTmr count” 
Write_All_Output_To_File() 
Exit Program 

} 
 
///////////////////////////////////////////////////////////////////////////////////// 

//Receive SMon data and write to file 

Make all of the following reads non-blocking 
Start timer 5 – SMon count 
Initialize status = -1 
While status = -1 
{ 

Status = Read_UInt_From_Socket(Cli_SMon_count) 
If (status == -1) and (timer >= TIMEOUT_SMON_CNT) 
{ 
 Display on screen “Timeout occurred while waiting for SMon count” 
 Exit Program 
} 
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} 
If status = 0 
{ 

Display on screen “Socket was closed prematurely when trying to read SMon count” 
Exit Program 

} 
Else If status < sizeof(Cli_SMon_count) 
{ 

Display on screen “Partial SMon count received: (status) bytes” 
Exit Program 

} 
 
Start timer 6 – SMon 
SMon_count = 0 
While (SMon_count < Cli_SMon_count) 
{ 

Initialize status = -1 
While status = -1 
{ 

Status = Read_USInt_From_Socket(SMon_val) 
If (status == -1) and (timer >= TIMEOUT_DATA_WORD) 
{ 

Display on screen “Timeout occurred while waiting for SMon [SMon_count]” 
 Exit Program 
} 

} 
If status = 0 
{ 

Display on screen “Socket was closed prematurely when trying to read SMon [SMon_count]” 
Exit Program 

} 
Else If status < sizeof(SMon_val) 
{ 

Display on screen “Partial SMon received: (status) bytes” 
Exit Program 

} 
//Else it was successful 
SMon_count++ 
Write SMon_val to binary file SMon_File 
Reset timer 

} 
 
//Send count of entries received for check 
Make all of the following writes blocking 
Status = Send_UInt_To_Socket(SMon_count) 
If errno != 0 
{ 

Display on screen “Error in sending SMon count: (errno)” 
Write_All_Output_To_File() 
Exit Program 

} 
Else If status != 4 
{ 

Display on screen “Write returned status of (status) on SMon count” 
Write_All_Output_To_File() 
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Exit Program 
} 
 
Close files and socket 
 
 

C.3.   PTC Test Execution Software 

Create a socket 
Resolve server address  
Connect to server 
Enable standard I/O on socket 
Make all of the following reads non-blocking 
 
///////////////////////////////////////////////////////////////////////////////////// 

//Receive Test Spec data 

Start Timeout1(TIMEOUT_TS_CHAR_CNT) 
Initialize status = -1 
While (status = -1) 
{ 

Status = Read_UInt_From_Socket(Srv_TS_char_count) 
If ((status = -1) AND (Timeout1)) 
{ 
 Display on screen “Timeout occurred while waiting for Test Spec character count” 
 Exit Program 
} 

} 
If (status = 0) 
{ 

Display on screen “Socket was closed prematurely when trying to read Test Spec character count” 
Exit Program 

} 
Else If (status < sizeof(Srv_TS_char_count)) 
{ 

Display on screen “Partial Test Spec character count received: (status) bytes” 
Exit Program 

}  
Else If (Srv_TS_char_count > MAX_TS_CHARS) 
{ 

Display on screen “Received Test Spec character count of (Srv_TS_char_count) exceeds maximum” 
Exit Program 

} 
 
Start Timeout2(TIMEOUT_DATA_WORD) 
TS_char_count = 0 
While (TS_char_count < Srv_TS_char_count) 
{ 

Initialize status = -1 
While (status = -1) 
{ 

Status = Read_Char_From_Socket(spec_setup_lines[TS_char_count]) 
If ((status = -1) AND (Timeout2)) 
{ 

Display on screen “Timeout occurred while waiting for Test Spec data character [TS_char_count]” 
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Exit Program 
} 

} 
If (status = 0) 
{ 

Display on screen “Socket was closed prematurely when trying to read Test Spec character” 
Exit Program 

} 
Else If (status < sizeof(spec_setup_lines[TS_char_count])) 
{ 

Display on screen “Partial Test Spec data character [TS_char_count] received: (status) bytes” 
Exit Program 

} 
//Else it was successful 
TS_char_count++ 
Reset Timeout2 

} 
//Send count of characters received for check 
Make all of the following writes blocking 
Status = Send_UInt_To_Socket(TS_char_count) 
If (errno != 0) 
{ 

Display on screen “Error in sending Test Spec count: (errno)” 
Exit Program 

} 
Else If (status != 4) 
{ 

Display on screen “Write returned status of (status) on Test Spec count” 
Exit Program 

} 
 
///////////////////////////////////////////////////////////////////////////////////// 

//Receive fault vector data 

Make all of the following reads non-blocking 
Start Timeout3(TIMEOUT_FV_CNT) 
Initialize status = -1 
While (status = -1) 
{ 

Status = Read_UInt_From_Socket(Srv_FV_count) 
If ((status = -1) AND (Timeout3)) 
{ 
 Display on screen “Timeout occurred while waiting for fault vector count” 
 Exit Program 
} 

} 
If (status = 0) 
{ 

Display on screen “Socket was closed prematurely when trying to read fault vector count” 
Exit Program 

} 
Else If (status < sizeof(Srv_FV_count)) 
{ 

Display on screen “Partial fault vector count received: (status) bytes” 
Exit Program 

} 
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Else If (Srv_FV_count > MAX_FVS) 
{ 

Display on screen “Received fault vector count of (Srv_FV_count) exceeds maximum” 
Exit Program 

} 
 
Start Timeout4(TIMEOUT_DATA_WORD) 
FV_count = 0 
While (FV_count < Srv_FV_count) 
{ 

Initialize status = -1 
While (status = -1) 
{ 

Status = Read_USInt_From_Socket(fault_vector[FV_count]) 
If ((status = -1) AND (Timeout4)) 
{ 

Display on screen “Timeout occurred while waiting for fault vectors” 
 Exit Program 
} 

} 
If (status = 0) 
{ 

Display on screen “Socket was closed prematurely when trying to read fault vectors” 
Exit Program 

} 
Else If (status < sizeof(fault_vector[FV_count])) 
{ 

Display on screen “Partial fault vector [FV_count] received: (status) bytes” 
Exit Program 

} 
//Else it was successful 
FV_count++ 
Reset Timeout4 

} 
 
//Send count of fault vector received for check 
Make all of the following writes blocking 
Status = Send_UInt_To_Socket(FV_count) 
If (errno != 0) 
{ 

Display on screen “Error in sending fault vector count: (errno)” 
Exit Program 

} 
Else If (status != 4) 
{ 

Display on screen “Write returned status of (status) on fault vector count” 
Exit Program 

} 
 
 
///////////////////////////////////////////////////////////////////////////////////// 

// Execute Test 

Initialize FPGA (load bit file) 
Functional HW Reset 
Initialize screen 
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While NOT (Keyboard_Input = „y‟) 
{ 

Key_Pressed = Check_Keyboard() 
If (Key_Pressed) 
{ 

Keyboard_Input = Get_Char() 
If (Keyboard_Input = „n‟) 

Exit Program 
} 

} 
Key_Pressed = 0 
 
Clear CCL Buffers 
Send Round_Begin to HW 
Start Timer for half second intervals 
 
While NOT CCP_Round_Finished 
{ 

Get RTmr_Word, FTmr_Word, SMon_Word, FMon_Word from HW 
SMon_Avail = SMon_Word and SMON_BUFF_REC_AVAIL_ALL_MASK 
FMon_Avail = FMon_Word and CC_OBS_BUFF_REC_AVAIL_ALL_MASK 
 
// Select buffers to service 
If (SERVICE_RTMR_BUFFER = 0)   

RTmr_ Word = 0 
If (SERVICE_FTMR_BUFFER = 0)   

FTmr_Word = 0 
If (SERVICE_SMON_BUFFER = 0)   

SMon_Word = 0 
If (SERVICE_FMON_BUFFER = 0)   

FMon_Word = 0 
 
//Is there any data in the serviced buffers? 
If ((RTmr _Word(RTMR_BUFF_REC_AVAIL_MASK) != 0) OR 
     (FTmr_Word(FTMR_BUFF_REC_AVAIL_MASK) != 0) OR (SMon_Word != 0) OR 
     (FMon_Word != 0))  

Buffers_Empty = FALSE 
Else 

Buffers_Empty = TRUE 
 
If ((Buffers_Empty = FALSE) AND (Buffer_Overflow_Stop = FALSE)) 
{ 

//FMon 
If (FMon_Word(CC_OBS_BUFF_OVERFLOW_MASK) = 1) 
{ 

FMon_Overflow = TRUE 
Write “FMon buffer Overflow” to Test_Log_File_Data 

} 
Else 

FMon_Overflow = FALSE 
 
All_Lanes_Data = TRUE 
For each I = 0 to Enabled_PEs – 1 
{ 
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BIU_Avail = CC_OBS_BUFF_REC_AVAIL_PE_MASK[I] and FMon_Word 
If (BIU_Avail <= 0) 

All_Lanes_Data = FALSE 
} 
 
If (All_Lanes_Data) 
{ 

Increment Count_FV_Results 
For each I = 0 to Num_BIU 
{ 

Choose PE FMon lane 
Write I to FMon_File_Data 
For J = 1 to (SWXF_Num_CC_Obs_DW + SWXF_Num_RTmr_IC_DW + 1) 
{ 

Get FMon_Data from HW 
Write FMon_Data to FMon_File_Data 

} 
 
Partial_pop = FMon_Word and CC_OBS_BUFF_PARTIAL_POP_MASK 
 
If (Partial_pop != 0) 
{ 

FMon_Partial_Pop = TRUE 
SW_End_Error_Flag = TRUE 
Write “FMon partial pop” to Test_Log_File_Data 
Write “SW End Round Error Detected” to SW_Error 

} 
} 

} 
 
//FTmr 
If (FTmr_Word(FTMR_BUFF_REC_AVAIL_MASK) = 1) 
{ 

If (FTmr_Word(FTMR_BUFF_OVERFLOW_MASK) = 1) 
{ 

FTmr_Overflow = TRUE 
Write “FTmr buffer Overflow” to Test_Log_File_Data 

} 
Else 

FTmr_Overflow = FALSE 
 
Choose FTmr in Data Port Select 
 
For I = 1 to (6 + SWXF_Num_RTmr_IC_DW) 
{ 

Get FTmr_Data from HW 
Write FTmr_Data to FTmr_File_Data 

} 
 
Partial_pop = FTmr_Word and FTMR_BUFF_PARTIAL_POP_MASK 
 
If (Partial_pop != 0) 
{ 

FTmr_Partial_Pop = TRUE 
SW_End_Error_Flag = TRUE 
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Write “FTmr partial pop” to Test_Log_File_Data 
Write “SW End Round Error Detected” to SW_Error  

} 
} 
 
//RTmr 
If (RTmr_Word(RTMR_BUFF_REC_AVAIL_MASK) = 1) 
{ 

If (RTmr_Word(RTMR_BUFF_OVERFLOW_MASK) = 1) 
{ 

RTmr_Overflow = TRUE 
Write “RTmr buffer Overflow” to Test_Log_File_Data 

} 
Else 

FTmr_Overflow = FALSE 
 
Choose RTmr in Data Port Select 
 
For I = 1 to (1 + SWXF_Num_RTmr_IC_DW) 
{ 

Get RTmr_Data from HW 
Write RTmr_Data to RTmr_File_Data 

} 
 
Partial_pop = RTmr_Word and RTMR_BUFF_PARTIAL_POP_MASK 
 
If (Partial_pop != 0) 
{ 

RTmr_Partial_Pop = TRUE 
SW_End_Error_Flag = TRUE 
Write “RTmr partial pop” to Test_Log_File_Data 
Write “SW End Round Error Detected” to SW_Error 

} 
} 
 
//SMon 
If (SMon_Word(SMON_BUFF_OVERFLOW_MASK) = 1) 
{ 

SMon_Overflow = TRUE 
Write “SMon buffer Overflow” to Test_Log_File_Data 

} 
Else 

SMon_Overflow = FALSE 
 
For each I = 0 to Num_BIU 
{ 

BIU_Avail = SMON_BUFF_REC_AVAIL_PE_MASK[I] AND SMon_Word2 
 
If (BIU_Avail > 0) 
{ 

Get Output_Enable = Data_Word and OUTPUT_ENA_ALL_MASK 
Data_Word = Output_Enable or SET_SMON_BUFF_SELECT_PE[I] 
Choose PE SMon lane 
Write I to SMon_File_Data 
For J = 1 to (PE_BIU_State_Msg_Length + SWXF_Num_RTmr_IC_DW + 2) 
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{ 
Get SMon_Data from HW 
Write SMon_Data to SMon_File_Data 

} 
 
Partial_pop = SMon_Word and SMON_BUFF_PARTIAL_POP_MASK 
 
If (Partial_pop != 0) 
{ 

SMon_Partial_Pop = TRUE 
SW_End_Error_Flag = TRUE 
Write “SMon partial pop” to Test_Log_File_Data 
Write “SW End Round Error Detected” to SW_Error 

} 
} 

} 
 
//Set overflow stop condition 
If ((FMon_Overflow) OR (FTmr_Overflow) OR (RTmr_Overflow) OR (SMon_Overflow)) 

Buffer_Overflow_Stop = 1 
Else 

Buffer_Overflow_Stop = 0 
} 

 
Else If (time_elapsed >= 0.5 seconds) 
{ 

If (Next_Timed_Task = SCREEN_UPDATE) 
{ 

update_screen() 
Next_Timed_Task = KEYBOARD_CHECK  

} 
Else //Next_Timed_Task = KEYBOARD_CHECK 
{ 

Key_Pressed = Check_Keyboard() 
Next_Timed_Task = SCREEN_UPDATE  

} 
Reset time_elapsed 

} 
 

Else //CCP_State 
{ 

Set RC_Status, FIC_Status, and SFT_Status from HW 
 

If (CCP_State = FINISH_UP_ROUND) 
{ 

Write RC_Status to Test_Log_File_Data 
Stop_Condition = RC_Status and STOP_CONDITION_MASK 
Write Integer version of Stop_Condition to Test_Log_File_Data 
update_screen() 
Set CCP_Round_Finished to exit loop 

} 
 
Else 
{ 

If (RC_Status(RND_STOP_MASK))  
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CCP_State = FINISH_UP_ROUND 
 
Else If ((Buffer_Overflow_Stop) OR (Key_Pressed) OR (SW_End_Error_Flag)) 
{ 

Set Round Stop in HW 
CCP_State = WAIT_HW_ROUND_STOP 

} 
 
Else If (CCP_State = WAIT_HW_ROUND_STOP) 
{ 

If (RC_Status(RND_STOP_MASK)) 
CCP_State = FINISH_UP_ROUND 

} 
 
Else If (CCP_State = WAIT_ROUND_ENABLE) 
{ 

If (RC_Status(RND_ENA_MASK))  
CCP_State = WAIT_SPIDER_READY 

} 
 
Else If (CCP_State = WAIT_SPIDER_READY) 
{ 

If (RC_Status(SPIDER_RDY_MASK)) 
CCP_State = WAIT_FI_SETUP_END 

} 
 
Else If (CCP_State = WAIT_FI_SETUP_END) 
{ 

If (FIC_Status(FI_SETUP_END_MASK)) 
CCP_State = WAIT_FN_SETUP_BEGIN 

Else 
{ 

Get Spec_Token from Test_Spec Data 
If (Spec_Token = “No_FI”) 

Set No_FI_flag and FI_Setup_End in HW 
Else If (Spec_Token = “FI_Setup_Done”) 

Set FI_Setup_End in HW 
Else If (Spec_Token = “RCI_Test_Vector”) 

Write RCI_Test_Vec from Test_Spec data to HW 
Else If (Spec_Token = “RCI_All_Disable”) 

Write RCI_All_Dis from Test_Spec data to HW 
Else If ((Spec_Token = “FI_Fault”) OR (Spec_Token = “FI_Activation”)) 
{ 

Fault_Act_Field_Count = 0 
CCP_State = SEND_DATA_FI_SETUP 

} 
Else 
{ 

Write “Wrong Test_Spec format - Expecting FI_Setup Line.” to Test_Log_File_Data 
Write “SW End Round Error Detected” to SW_Error 
Set Round Stop in HW 
CCP_State = WAIT_HW_ROUND_STOP 

} 
} 

} 
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Else If (CCP_State = SEND_DATA_FI_SETUP) 
{ 

If (NOT (FIC_Status(FI_DATA_BUFF_FULL_MASK))) 
{ 

If (NOT the End_of_Line(Test_Spec)) 
{ 

Get the next Data_Word from Test_Spec and send to HW 
Increment Fault_Act_Field_Count 

} 
Else //it is the end of the line 

CCP_State = SEND_SUMMARY_FI_SETUP 
} 

} 
 
Else If (CCP_State = SEND_SUMMARY_FI_SETUP) 
{ 

If (NOT (FIC_Status(FI_SUMMARY_BUFF_FULL_MASK))) 
{ 

Convert Fault_Act_Field_Count to binary  
Data_Word = Shift binary value to FI_MSG_LENGTH_MASK position 
Write Data_Word to Summary Buffer of HW 
CCP_State = WAIT_FI_SETUP_END 

} 
} 
 
Else If (CCP_State = WAIT_FN_SETUP_BEGIN) 
{ 

If (SFT_Status(FUNC_SETUP_BEGIN_MASK)) 
CCP_State = LOAD_FN_SETUP_APP_ASSIG 

} 
 
Else If (CCP_State = LOAD_FN_SETUP_APP_ASSIG) 
{ 

Get Spec_Token from Test_Spec Data 
If (Spec_Token = “App_Assignments”) 
{ 

Get App_Assig value from Test_Spec Data 
App_Assig_Read = TRUE 
Choose Application Assignment in Data Port Select of HW 
Write App_Assig to HW 
CCP_State = LOAD_FN_SETUP_RC_PER_CC 

} 
Else 
{ 

Write “Wrong Test_Spec format - Expecting App_Assignments Line.” To 

Test_Log_File_Data 
Write “SW End Round Error Detected” to SW_Error 
Set Round Stop in HW 
CCP_State = WAIT_HW_ROUND_STOP 

} 
} 
 
Else If (CCP_State = LOAD_FN_SETUP_RC_PER_CC) 
{ 
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Get Spec_Token from Test_Spec Data 
If (Spec_Token = “RC_per_CC”) 
{ 

Get RC_per_CC value from Test_Spec Data 
Choose RC_per_CC in Data Port Select of HW 
Write RC_per_CC to HW 
CCP_State = LOAD_FN_SETUP_CC_PER_RND 

} 
Else 
{ 

Write “Wrong Test_Spec format - Expecting RC per CC Line.” To Test_Log_File_Data 
Write “SW End Round Error Detected” to SW_Error 
Set Round Stop in HW 
CCP_State = WAIT_HW_ROUND_STOP 

} 
} 
 
Else If (CCP_State = LOAD_FN_SETUP_CC_PER_RND) 
{ 

Get Spec_Token from Test_Spec Data 
If (Spec_Token = “CC_per_Round”) 
{ 

Get CC_per_Rnd value from Test_Spec Data 
Choose CC_per_Rnd in Data Port Select of HW 
Write CC_per_Rnd to HW 
CCP_State = LOAD_FN_SETUP_ SCHEDULES 

} 
Else 
{ 

Write “Wrong Test_Spec format - Expecting CC per Round Line.” To Test_Log_File_Data 
Write “SW End Round Error Detected” to SW_Error 
Set Round Stop in HW 
CCP_State = WAIT_HW_ROUND_STOP 

} 
} 
 
Else If (CCP_State = LOAD_FN_SETUP_SCHEDULES) 
{ 

// choose schedule in data port select and clear buffers 
Data_Word = SET_DATA_PORT_SELECT_SCHED OR CLR_SCHED_BUFF_MASK OR 

CLR_SENSOR_BUFF_MASK OR CLR_COMMAND_BUFF_MASK 
Write Data_Word to HW 
Get Spec_Token from Test_Spec Data 
If (Spec_Token = “Schedule”) 
{ 

While (Spec_Token = “Schedule”) 
{ 

For each Num_BIU+1 
{ 

Get Schedule_Field from Test_Spec Data 
Write Schedule_Field to HW 

} 
Get Spec_Token from Test_Spec Data 

} 
CCP_State = LOAD_FN_SETUP_SENSORS 



 

 
 

166 
 

} 
Else 
{ 

Write “Wrong Test_Spec format - Expecting Schedule Line.” To Test_Log_File_Data 
Write “SW End Round Error Detected” to SW_Error 
Set Round Stop in HW 
CCP_State = WAIT_HW_ROUND_STOP 

} 
} 
 
Else If (CCP_State = LOAD_FN_SETUP_SENSORS) 
{ 

If (Spec_Token = “Sensors”) 
{ 

While not End_of_Line(Test_Spec) 
{ 

Get Sensors_Field from Test_Spec Data 
Write Sensors_Field to HW 

} 
CCP_State = LOAD_FN_SETUP_COMMANDS 

} 
Else 
{ 

Write “Wrong Test_Spec format - Expecting Sensors Line.” To Test_Log_File_Data 
Write “SW End Round Error Detected” to SW_Error 
Set Round Stop in HW 
CCP_State = WAIT_HW_ROUND_STOP 

} 
} 
 
Else If (CCP_State = LOAD_FN_SETUP_COMMANDS) 
{ 

Get Spec_Token from Test_Spec Data 
If (Spec_Token = “Commands”) 
{ 

While not End_of_Line(Test_Spec) 
{ 

Get Commands_Field from Test_Spec Data 
Write Commands_Field to HW 

} 
Preload_Count = 0 
Set Function_Setup_End in HW 
CCP_State = PRELOAD_FAULT_VECTORS 

} 
Else 
{ 

Write “Wrong Test_Spec format - Expecting Commands Line.” To Test_Log_File_Data 
Write “SW End Round Error Detected” to SW_Error 
Set Round Stop in HW 
CCP_State = WAIT_HW_ROUND_STOP 

} 
} 
 
Else If (CCP_State = PRELOAD_FAULT_VECTORS) 
{ 
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If ((Preload_Count != PRELOAD_FAULT_TOTAL) AND  
     (NOT Preload_End_of_File_Flag)) 
{ 

If (FV_Index < FV_count) 
{ 

Increment FV_Index, SW_CCI, and Preload_Count 
Data_Word = FI_FIRE_TAG OR BROADCAST //header 
Send Data_Word to HW 
CCP_State = SEND_FIRE_ID 

} 
Else //end of file 

Preload_End_of_File_Flag = 1 
} 
Else //once the fault vectors have been preloaded 
{ 

Preload_Flag = 0 
Set Function_Setup_End in HW to exit func setup phase (start func exec) 
CCP_State = WAIT_FN_ENABLE 

} 
} 
 
Else If (CCP_State = WAIT_FN_ENABLE) 
{ 

If (RC_Status(FUNC_ENA_MASK) = 1) 
{ 

If (Preload_End_of_File_Flag = 0) 
CCP_State = SEND_FAULTLOAD 

Else 
{ 

Set Control_Data_End in HW 
CCP_State = WAIT_HW_ROUND_STOP 

} 
} 

} 
 
Else If (CCP_State = SEND_FAULTLOAD) 
{ 

If (FIC_Status(FI_DATA_BUFF_FULL_MASK) = 0) // not full 
{ 

If (FV_Index < FV_count) 
{ 

Get Fault_Vector from Test_Spec Data 
Increment FV_Index and SW_CCI 
Data_Word = FI_FIRE_TAG OR Broadcast 
Send Data_Word to HW 
CCP_State = SEND_FIRE_ID 

} 
Else //end of file 
{ 

Set Control_Data_End in HW 
CCP_State = WAIT_HW_ROUND_STOP 

} 
} 

} 
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Else If (CCP_State = SEND_FIRE_ID) 
{ 

If (FIC_Status(FI_DATA_BUFF_FULL_MASK) = 0) // not full 
{ 

Write FIRE_ID to HW 
CCP_State = SEND_DATA_FAULTLOAD 

} 
} 
 
Else If (CCP_State = SEND_DATA_FAULTLOAD) 
{ 

If (FIC_Status(FI_DATA_BUFF_FULL_MASK) = 0) // not full 
{ 

Write Fault_Vector to HW 
CCP_State = SEND_SUMMARY_FAULTLOAD 

} 
} 
 
Else If (CCP_State = SEND_SUMMARY_FAULTLOAD) 
{ 

If (FIC_Status(FI_SUMMARY_BUFF_FULL_MASK) = 0) // not full 
{ 

Data_Word = FI_EXEC_FLAG_MASK OR Shift binary value of 3 to 
FI_MSG_LENGTH_MASK position 

Write Data_Word to HW 
If (Preload_Flag = 1) 

CCP_State = PRELOAD_FAULT_VECTORS 
Else 

CCP_State = SEND _FAULTLOAD 
} 

} 
} 

} 
} 
 
///////////////////////////////////////////////////////////////////////////////////// 

//Send Test_Log_File_Data 

Status = Send_UInt_To_Socket(TL_char_count) 
If (errno != 0) 
{ 

Display on screen “Error in sending test log count: (errno)” 
Write_All_Output_To_File() 
Exit Program 

} 
Else If (status != 4) 
{ 

Display on screen “Write returned status of (status) on test log count” 
Write_All_Output_To_File() 
Exit Program 

} 
 
For each character in Test Log //if there are none, it will go on 

Send_Char_To_Socket(TL_char[]) 
 
//Check that the correct number of Test Log characters was received at server 
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Make all of the following reads non-blocking 
Start Timeout5(TIMEOUT_SRV_TL _CNT)  
Initialize status = -1 
While (status = -1) 
{ 

Status = Read_UInt_From_Socket(Srv_TL_char_count) 
If ((status = -1) AND (Timeout5)) 
{ 

Display on screen “Timeout occurred while waiting for Test Log character count” 
Write_All_Output_To_File() 

 Exit Program 
} 

} 
If (status = 0) 
{ 

Display on screen “Socket was closed prematurely when trying to read Test Log character count” 
Write_All_Output_To_File() 
Exit Program 

} 
Else If (status < sizeof(Srv_TL_char_count)) 
{ 

Display on screen “Partial Test Log character count received: (status) bytes” 
Write_All_Output_To_File() 
Exit Program 

} 
Else If (Srv_TL_char_count != TL_char_count) //check that server got all 
{ 

Display on screen “Server received (Srv_TL_char_count) Test Spec characters when (TL_char_count) were 
sent” 

Write_All_Output_To_File() 
 Exit Program 
} 
//Else it was successful 
 
///////////////////////////////////////////////////////////////////////////////////// 

//Send FMon File Data 

Make all of the following writes blocking 
Status = Send_UInt_To_Socket(FMon_count) 
If (errno != 0) 
{ 

Display on screen “Error in sending FMon count: (errno)” 
Write_All_Output_To_File() 
Exit Program 

} 
Else If (status != 4) 
{ 

Display on screen “Write returned status of (status) on FMon count” 
Write_All_Output_To_File() 
Exit Program 

} 
 
For each entry in FMon //if there are none, it will go on 
{ 

Send_USInt_To_Socket(FMon_val[]) 
If (errno != 0) 
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{ 
Display on screen “Error in sending FMon data: (errno)” 
Write_All_Output_To_File() 
Exit Program 

} 
Else If (status != 2) 
{ 

Display on screen “Write returned status of (status) on FMon data” 
Write_All_Output_To_File() 
Exit Program 

} 
} 
 
//Check that the correct number of FMon was received at server 
Make all of the following reads non-blocking 
Start Timeout6 (TIMEOUT_SRV_FMON _CNT) 
Initialize status = -1 
While status = -1 
{ 

Status = Read_UInt_From_Socket(Srv_FMon_count) 
If ((status = -1) AND (Timeout6)) 
{ 

Display on screen “Timeout occurred while waiting for FMon count” 
Write_All_Output_To_File() 
Exit Program 

} 
} 
If (status = 0) 
{ 

Display on screen “Socket was closed prematurely when trying to read FMon count” 
Write_All_Output_To_File() 
Exit Program 

} 
Else If (status < sizeof(Srv_FMon_count)) 
{ 

Display on screen “Partial FMon count received: (status) bytes” 
Write_All_Output_To_File() 
Exit Program 

} 
Else If (Srv_FMon_count != FMon_count) //check that server got all 
{ 

Display on screen “Server received (Srv_ FMon _count) FMon entries when (FMon _count) were sent” 
Write_All_Output_To_File() 
Exit Program 

} 
//Else it was successful 
 
///////////////////////////////////////////////////////////////////////////////////// 

//Send FTmr File Data 

Make all of the following writes blocking 
Status = Send_UInt_To_Socket(FTmr_count) 
If (errno != 0) 
{ 

Display on screen “Error in sending FTmr count: (errno)” 
Write_All_Output_To_File() 
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Exit Program 
} 
Else If (status != 4) 
{ 

Display on screen “Write returned status of (status) on FTmr count” 
Write_All_Output_To_File() 
Exit Program 

} 
 
For each entry in FTmr //if there are none, it will go on 
{ 

Send_USInt_To_Socket(FTmr_val[]) 
If (errno != 0) 
{ 

Display on screen “Error in sending FTmr data: (errno)” 
Write_All_Output_To_File() 
Exit Program 

} 
Else If (status != 2) 
{ 

Display on screen “Write returned status of (status) on FTmr data” 
Write_All_Output_To_File() 
Exit Program 

} 
} 
 
//Check that the correct number of FTmr was received at server 
Make all of the following reads non-blocking 
Start Timeout7 (TIMEOUT_SRV_FTMR _CNT) 
Initialize status = -1 
While status = -1 
{ 

Status = Read_UInt_From_Socket(Srv_FTmr_count) 
If ((status = -1) AND (Timeout7)) 
{ 

Display on screen “Timeout occurred while waiting for FTmr count” 
Write_All_Output_To_File() 
Exit Program 

} 
} 
If (status = 0) 
{ 

Display on screen “Socket was closed prematurely when trying to read FTmr count” 
Write_All_Output_To_File() 
Exit Program 

} 
Else If (status < sizeof(Srv_FTmr_count)) 
{ 

Display on screen “Partial FTmr count received: (status) bytes” 
Write_All_Output_To_File() 
Exit Program 

} 
Else If (Srv_FTmr_count != FTmr_count) //check that server got all 
{ 

Display on screen “Server received (Srv_FTmr_count) FTmr entries when (FTmr_count) were sent” 



 

 
 

172 
 

Write_All_Output_To_File() 
Exit Program 

} 
//Else it was successful 
 
///////////////////////////////////////////////////////////////////////////////////// 

//Send RTmr File Data 

Make all of the following writes blocking 
Status = Send_UInt_To_Socket(RTmr_count) 
If (errno != 0) 
{ 

Display on screen “Error in sending RTmr count: (errno)” 
Write_All_Output_To_File() 
Exit Program 

} 
Else If (status != 4) 
{ 

Display on screen “Write returned status of (status) on RTmr count” 
Write_All_Output_To_File() 
Exit Program 

} 
 
For each entry in RTmr //if there are none, it will go on 
{ 

Send_USInt_To_Socket(RTmr_val[]) 
If (errno != 0) 
{ 

Display on screen “Error in sending RTmr data: (errno)” 
Write_All_Output_To_File() 
Exit Program 

} 
Else If (status != 2) 
{ 

Display on screen “Write returned status of (status) on RTmr data” 
Write_All_Output_To_File() 
Exit Program 

} 
} 
 
//Check that the correct number of RTmr was received at server 
Make all of the following reads non-blocking 
Start Timeout8 (TIMEOUT_SRV_RTMR _CNT) 
Initialize status = -1 
While status = -1 
{ 

Status = Read_UInt_From_Socket(Srv_RTmr_count) 
If ((status = -1) AND (Timeout8)) 
{ 

Display on screen “Timeout occurred while waiting for RTmr count” 
Write_All_Output_To_File() 
Exit Program 

} 
} 
If (status = 0) 
{ 
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Display on screen “Socket was closed prematurely when trying to read RTmr count” 
Write_All_Output_To_File() 
Exit Program 

} 
Else If (status < sizeof(Srv_RTmr_count)) 
{ 

Display on screen “Partial RTmr count received: (status) bytes” 
Write_All_Output_To_File() 
Exit Program 

} 
Else If (Srv_RTmr_count != RTmr_count) //check that server got all 
{ 

Display on screen “Server received (Srv_RTmr_count) RTmr entries when (RTmr_count) were sent” 
Write_All_Output_To_File() 
Exit Program 

} 
//Else it was successful 
 
///////////////////////////////////////////////////////////////////////////////////// 

//Send SMon File Data 

Make all of the following writes blocking 
Status = Send_UInt_To_Socket(SMon_count) 
If (errno != 0) 
{ 

Display on screen “Error in sending SMon count: (errno)” 
Write_All_Output_To_File() 
Exit Program 

} 
Else If (status != 4) 
{ 

Display on screen “Write returned status of (status) on SMon count” 
Write_All_Output_To_File() 
Exit Program 

} 
 
For each entry in SMon //if there are none, it will go on 
{ 

Send_USInt_To_Socket(SMon_val[]) 
If (errno != 0) 
{ 

Display on screen “Error in sending SMon data: (errno)” 
Write_All_Output_To_File() 
Exit Program 

} 
Else If (status != 2) 
{ 

Display on screen “Write returned status of (status) on SMon data” 
Write_All_Output_To_File() 
Exit Program 

} 
} 
 
//Check that the correct number of SMon was received at server 
Make all of the following reads non-blocking 
Start Timeout9 (TIMEOUT_SRV_SMON _CNT) 
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Initialize status = -1 
While status = -1 
{ 

Status = Read_UInt_From_Socket(Srv_SMon_count) 
If ((status = -1) AND (Timeout9)) 
{ 

Display on screen “Timeout occurred while waiting for SMon count” 
Write_All_Output_To_File() 
Exit Program 

} 
} 
If (status = 0) 
{ 

Display on screen “Socket was closed prematurely when trying to read SMon count” 
Write_All_Output_To_File() 
Exit Program 

} 
Else If (status < sizeof(Srv_SMon_count)) 
{ 

Display on screen “Partial SMon count received: (status) bytes” 
Write_All_Output_To_File() 
Exit Program 

} 
Else If (Srv_SMon_count != SMon_count) //check that server got all 
{ 

Display on screen “Server received (Srv_SMon_count) SMon entries when (SMon_count) were sent” 
Write_All_Output_To_File() 
Exit Program 

} 
//Else it was successful 
 
Close socket 
 
///////////////////////////////////////////////////////////////////////////////////////////////////////////////// 

//Write_All_Output_To_File() 

//Test_Log_File 
Open Test Log File 
Write_string(Test_Log_File_Data, TL_char) 
 
//FMon_File 
Open FMon File 
Index = 0 
For index < FMon_count 
{ 

Write_binary(FMon_File, FMon_val[index]) 
Index++ 

} 
 
//FTmr_File 
Open FTmr File 
Index = 0 
For index < FTmr_count 
{ 

Write_binary(FTmr_File, FTmr_val[index]) 
Index++ 
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} 
 
//RTmr_File 
Open RTmr File 
Index = 0 
For index < RTmr_count 
{ 

Write_binary(RTmr_File, RTmr_val[index]) 
Index++ 

} 
 
//SMon_File 
Open SMon File 
Index = 0 
For index < SMon_count 
{ 

Write_binary(SMon_File, SMon_val[index]) 
Index++ 

} 
Close files (Test_Log_File, FMon_File, FTmr_File, RTmr_File, SMon_File) 
 
 

C.4.   STC Test Execution Software 

Create a socket 
Resolve server address  
Connect to server 
Enable standard I/O on socket 
 
Initialize FPGA (load bit file) 
Functional HW Reset 
Initialize screen 
 
While NOT (Keyboard_Input = „y‟) 
{ 

Key_Pressed = Check_Keyboard() 
If (Key_Pressed) 
{ 

Keyboard_Input = Get_Char() 
If (Keyboard_Input = „n‟) 

Exit Program 
} 

} 
Key_Pressed = 0 
 
Clear CCL Buffers 
Send Round_Begin to HW 
Start Timer for half second intervals 
 
While NOT CCP_Round_Finished 
{ 

Get RTmr_Word and SMon_Word from HW 
SMon_Avail = SMon_Word and SMON_BUFF_REC_AVAIL_ALL_MASK 
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// Select buffers to service 
If (SERVICE_RTMR_BUFFER = 0)   

RTmr_ Word = 0 
If (SERVICE_SMON_BUFFER = 0)   

SMon_Word = 0 
 
//Is there any data in the serviced buffers? 
If ((RTmr_Word(RTMR_BUFF_REC_AVAIL_MASK) != 0) OR (SMon_Word != 0)) 

Buffers_Empty = FALSE 
Else 

Buffers_Empty = TRUE 
 
If (Buffers_Empty = FALSE) 
{ 

//RTmr 
If (RTmr_Word(RTMR_BUFF_REC_AVAIL_MASK) = 1) 
{ 

If (RTmr_Word(RTMR_BUFF_OVERFLOW_MASK) = 1) 
{ 

RTmr_Overflow = TRUE 
Write “RTmr buffer Overflow” to Test_Log_File_Data 

} 
Else 

FTmr_Overflow = FALSE 
 
Choose RTmr in Data Port Select 
 
For I = 1 to (1 + SWXF_Num_RTmr_IC_DW) 
{ 

Get RTmr_Data from HW 
Write RTmr_Data to RTmr_File_Data 

} 
 
Partial_pop = RTmr_Word and RTMR_BUFF_PARTIAL_POP_MASK 
 
If (Partial_pop != 0) 
{ 

RTmr_Partial_Pop = TRUE 
SW_End_Error_Flag = TRUE 
Write “RTmr partial pop” to Test_Log_File_Data 
Write “SW End Round Error Detected” to SW_Error 

} 
} 
 
//SMon 
If (SMon_Word(SMON_BUFF_OVERFLOW_MASK) = 1) 
{ 

SMon_Overflow = TRUE 
Write “SMon buffer Overflow” to Test_Log_File_Data 

} 
Else 

SMon_Overflow = FALSE 
 
For each I = 0 to Num_BIU 
{ 
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BIU_Avail = SMON_BUFF_REC_AVAIL_PE_MASK[I] AND SMon_Word2 
 
If (BIU_Avail > 0) 
{ 

Get Output_Enable = Data_Word and OUTPUT_ENA_ALL_MASK 
Data_Word = Output_Enable or SET_SMON_BUFF_SELECT_PE[I] 
Choose PE SMon lane 
Write I to SMon_File_Data 
For J = 1 to (PE_BIU_State_Msg_Length + SWXF_Num_RTmr_IC_DW + 2) 
{ 

Get SMon_Data from HW 
Write SMon_Data to SMon_File_Data 

} 
 
Partial_pop = SMon_Word and SMON_BUFF_PARTIAL_POP_MASK 
 
If (Partial_pop != 0) 
{ 

SMon_Partial_Pop = TRUE 
SW_End_Error_Flag = TRUE 
Write “SMon partial pop” to Test_Log_File_Data 
Write “SW End Round Error Detected” to SW_Error 

} 
} 

} 
 
//Set overflow stop condition 
If ((RTmr_Overflow) OR (SMon_Overflow)) 

Buffer_Overflow_Stop = 1 
Else 

Buffer_Overflow_Stop = 0 
} 
 
Else If (time_elapsed >= 0.5 seconds) 
{ 

If (Next_Timed_Task = SCREEN_UPDATE) 
{ 

update_screen() 
Next_Timed_Task = KEYBOARD_CHECK  

} 
Else //Next_Timed_Task = KEYBOARD_CHECK 
{ 

Key_Pressed = Check_Keyboard() 
Next_Timed_Task = SCREEN_UPDATE  

} 
Reset time_elapsed 

} 
 
Else //CCP_State 
{ 

Set RC_Status and FIC_Status from HW 
 

If (CCP_State = FINISH_UP_ROUND) 
{ 

Write RC_Status to Test_Log_File_Data 
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Stop_Condition = RC_Status and STOP_CONDITION_MASK 
Write Integer version of Stop_Condition to Test_Log_File_Data 
update_screen() 
Set CCP_Round_Finished to exit loop 

} 
 
Else 
{ 

If (RC_Status(RND_STOP_MASK))  
CCP_State = FINISH_UP_ROUND 

 
Else If ((Buffer_Overflow_Stop) OR (Key_Pressed) OR (SW_End_Error_Flag)) 
{ 

Set Round Stop in HW 
CCP_State = WAIT_HW_ROUND_STOP 

} 
Else If (CCP_State = WAIT_HW_ROUND_STOP) 
{ 

If (RC_Status(RND_STOP_MASK)) 
CCP_State = FINISH_UP_ROUND 

} 
Else If (CCP_State = WAIT_ROUND_ENABLE) 
{ 

If (RC_Status(RND_ENA_MASK))  
{ 

Choose Round Index in Data Port Select in HW 
Get Round_Index from HW 
Choose Enabled Nodes in Data Port Select in HW 
Get Enabled_Nodes from HW 
Set Num_RMU based on Enabled_Nodes 
Enable SMon Output lanes based on Enabled_Nodes 
CCP_State = WAIT_SPIDER_READY 

} 
} 
Else If (CCP_State = WAIT_SPIDER_READY) 
{ 

If (RC_Status(SPIDER_RDY_MASK)) 
CCP_State = WAIT_FI_SETUP_END 

} 
Else If (CCP_State = WAIT_FI_SETUP_END) 
{ 

If (FIC_Status(FI_SETUP_END_MASK)) 
CCP_State = WAIT_FN_ENABLE 

Else 
Set FI_Setup_End in HW 

} 
Else If (CCP_State = WAIT_FN_ENABLE) 
{ 

If (RC_Status(FUNC_ENA_MASK) = 1) 
CCP_State = WAIT_HW_ROUND_STOP 

} 
} 

} 
} 
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///////////////////////////////////////////////////////////////////////////////////// 

//Send Test_Log_File_Data 

Status = Send_UInt_To_Socket(TL_char_count) 
If (errno != 0) 
{ 

Display on screen “Error in sending test log count: (errno)” 
Write_All_Output_To_File() 
Exit Program 

} 
Else If (status != 4) 
{ 

Display on screen “Write returned status of (status) on test log count” 
Write_All_Output_To_File() 
Exit Program 

} 
 
For each character in Test Log //if there are none, it will go on 

Send_Char_To_Socket(TL_char[]) 
 
//Check that the correct number of Test Log characters was received at server 
Make all of the following reads non-blocking 
Start Timetou1 (TIMEOUT_SRV_TL _CNT) 
Initialize status = -1 
While status = -1 
{ 

Status = Read_UInt_From_Socket(Srv_TL_char_count) 
If ((status = -1) and (Timeout1)) 
{ 

Display on screen “Timeout occurred while waiting for Test Log character count” 
Write_All_Output_To_File() 

 Exit Program 
} 

} 
If (status = 0) 
{ 

Display on screen “Socket was closed prematurely when trying to read Test Log character count” 
Write_All_Output_To_File() 
Exit Program 

} 
Else If (status < sizeof(Srv_TL_char_count)) 
{ 

Display on screen “Partial Test Log character count received: (status) bytes” 
Write_All_Output_To_File() 
Exit Program 

} 
Else If (Srv_TL_char_count != TL_char_count) //check that server got all 
{ 

Display on screen “Server received (Srv_TL_char_count) Test Spec characters when (TL_char_count) were 
sent” 

Write_All_Output_To_File() 
 Exit Program 
} 
//Else it was successful 
 
///////////////////////////////////////////////////////////////////////////////////// 



 

 
 

180 
 

//Send RTmr File Data 

Make all of the following writes blocking 
Status = Send_UInt_To_Socket(RTmr_count) 
If (errno != 0) 
{ 

Display on screen “Error in sending RTmr count: (errno)” 
Write_All_Output_To_File() 
Exit Program 

} 
Else If (status != 4) 
{ 

Display on screen “Write returned status of (status) on RTmr count” 
Write_All_Output_To_File() 
Exit Program 

} 
 
For each entry in RTmr //if there are none, it will go on 
{ 

Send_USInt_To_Socket(RTmr_val[]) 
If (errno != 0) 
{ 

Display on screen “Error in sending RTmr data: (errno)” 
Write_All_Output_To_File() 
Exit Program 

} 
Else If (status != 2) 
{ 

Display on screen “Write returned status of (status) on RTmr data” 
Write_All_Output_To_File() 
Exit Program 

} 
} 
 
//Check that the correct number of RTmr was received at server 
Make all of the following reads non-blocking 
Start Timeout2 (TIMEOUT_SRV_RTMR _CNT) 
Initialize status = -1 
While status = -1 
{ 

Status = Read_UInt_From_Socket(Srv_RTmr_count) 
If ((status = -1) and (Timeout2)) 
{ 

Display on screen “Timeout occurred while waiting for RTmr count” 
Write_All_Output_To_File() 
Exit Program 

} 
} 
If (status = 0) 
{ 

Display on screen “Socket was closed prematurely when trying to read RTmr count” 
Write_All_Output_To_File() 
Exit Program 

} 
Else If (status < sizeof(Srv_RTmr_count)) 
{ 
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Display on screen “Partial RTmr count received: (status) bytes” 
Write_All_Output_To_File() 
Exit Program 

} 
Else If (Srv_RTmr_count != RTmr_count) //check that server got all 
{ 

Display on screen “Server received (Srv_RTmr_count) RTmr entries when (RTmr_count) were sent” 
Write_All_Output_To_File() 
Exit Program 

} 
//Else it was successful 
 
///////////////////////////////////////////////////////////////////////////////////// 

//Send SMon File Data 

Make all of the following writes blocking 
Status = Send_UInt_To_Socket(SMon_count) 
If (errno != 0) 
{ 

Display on screen “Error in sending SMon count: (errno)” 
Write_All_Output_To_File() 
Exit Program 

} 
Else If (status != 4) 
{ 

Display on screen “Write returned status of (status) on SMon count” 
Write_All_Output_To_File() 
Exit Program 

} 
 
For each entry in SMon //if there are none, it will go on 
{ 

Send_USInt_To_Socket(SMon_val[]) 
If (errno != 0) 
{ 

Display on screen “Error in sending SMon data: (errno)” 
Write_All_Output_To_File() 
Exit Program 

} 
Else If (status != 2) 
{ 

Display on screen “Write returned status of (status) on SMon data” 
Write_All_Output_To_File() 
Exit Program 

} 
} 
 
//Check that the correct number of SMon was received at server 
Make all of the following reads non-blocking 
Start Timeout3 (TIMEOUT_SRV_SMON _CNT) 
Initialize status = -1 
While status = -1 
{ 

Status = Read_UInt_From_Socket(Srv_SMon_count) 
If ((status = -1) and (Timeout3)) 
{ 
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Display on screen “Timeout occurred while waiting for SMon count” 
Write_All_Output_To_File() 
Exit Program 

} 
} 
If (status = 0) 
{ 

Display on screen “Socket was closed prematurely when trying to read SMon count” 
Write_All_Output_To_File() 
Exit Program 

} 
Else If (status < sizeof(Srv_SMon_count)) 
{ 

Display on screen “Partial SMon count received: (status) bytes” 
Write_All_Output_To_File() 
Exit Program 

} 
Else If (Srv_SMon_count != SMon_count) //check that server got all 
{ 

Display on screen “Server received (Srv_SMon_count) SMon entries when (SMon_count) were sent” 
Write_All_Output_To_File() 
Exit Program 

} 
//Else it was successful 
 
Close socket 
 
///////////////////////////////////////////////////////////////////////////////////////////////////////////////// 

//Write_All_Output_To_File() 

//Test_Log_File 
Open Test Log File 
Write_string(Test_Log_File, TL_char) 
 
//RTmr_File 
Open RTmr File 
Index = 0 
For index < RTmr_count 
{ 

Write_binary(RTmr_File, RTmr_val[index]) 
Index++ 

} 
 
//SMon_File 
Open SMon File 
Index = 0 
For index < SMon_count 
{ 

Write_binary(SMon_File, SMon_val[index]) 
Index++ 

} 
Close files (Test_Log_File, RTmr_File, SMon_File) 
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Acronyms and Abbreviations  

ASAP As Soon As Possible 
ASCII American Standard Code for Information Interchange 
BER Bit Error Rate 
BIU Bus Interface Unit 
CC     Control Cycle 
CCI Control Cycle Index 
CCL    Controller Coordination Link 
CCP Controller Coordination Protocol 
CDM Clique Detection Mode 
CDU Correct, Detected, Undetected 
CFIMS Configurable Fault Injection and Monitoring System 
CIM Clique Initialization Mode 
CJM Clique Join Mode 
COTS Commercial Off-The-Shelf 
CPLD Complex Programmable Logic Device 
CPM Clique Preservation Mode 
CRC Cyclic Redundancy Code 
CTS Clear To Send 
DCP Detectability, Consistency and Persistence 
DII Data Introduction Interval 
DL Data Link 
ECR Error Containment Region 
EMI Electromagnetic Interference 
ENM    Embedded Node Monitor 
FCR Fault Containment Region 
FCS Frame Check Sequence 
FI     Fault Injection; Fault Injectors 
FIC Fault Injection Controller 
FIFO First-In, First-Out 
FMon   Function Monitor 
FPGA Field-Programmable Gate Array 
FTmr   Function Timer 
GOT Good, Omissive, Transmissive 
HFCS   Header Frame Check Sequence 
HIRF High Intensity Radiated Field 
HMon   Health Monitor 
IC Interval Count 
IEV Input Eligible Voters 
IIEV Initial Input Eligible Voters 
IMA Integrate Modular Avionics 
IO Input-Output 
IORU Input-Output Receive Unit 
IOSU Input-Output Send Unit 
IT Interval Time 
IU Input Unit 
IVHM Integrated Vehicle Health Management 
LaRC Langley Research Center 
LSM Lane State Monitor 
LVDS Low-Voltage Differential Signaling 
M Number of BIUs (equal in value to Num_RMU) 
MBS Manchester Bit Stream 
MC Manchester Code; Master Controller 
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MCU Mode Control Unit 
N Number of BIUs (equal in value to Num_BIU and Num_PE) 
NASA National Aeronautics and Space Administration 
NCM Node Condition Monitor 
NRZ Non-Return-To-Zero 
Num_BIU Number of BIUs 
Num_PE Number of PEs 
Num_RMU Number of RMUs 
OCL    Operation Coordination Level 
ODU Old Dominion University 
OK Opposite Kind 
OTH Omissive-Transmissive Hybrid 
PE Processing Element 
PESU PE Setup Unit 
PFCS Packet Frame Check Sequence 
PFD Packet Frame Decoder 
PFE Packet Frame Encoder 
PISO Parallel-In Serial-Out 
PMCU   Packet-Mode Communication Unit 
PTC    Primary Test Controller 
PTL    Primary Test Link 
RC     Round Control; ROBUS Cycle 
RCI Round Cycle Index 
RCtlr Round Controller 
RL     ROBUS Link 
RM     ROBUS Message 
RMU Redundancy Management Unit 
ROBUS Reliable Optical Bus (obsolete as an acronym; now ROBUS is the name given to the 

communication system concept); Robust Bus 
RPP ROBUS Protocol Processor 
RRU ROBUS Receive Unit 
RSPP   Reconfigurable SPIDER Prototyping Platform 
RSU ROBUS Send Unit 
RT Round Time 
RTmr   Round Timer 
RTS Request To Send 
Rx Receiver 
SCP Self-Checking Pair 
SD Signal Detect 
SFT    SPIDER Function Tester 
SK Same Kind 
SMon    State Monitor 
SMR State Message Receiver 
SMU State Monitoring Unit 
SPIDER Scalable Processor-Independent Design for Extended Reliability 
SRAM Static Random Access Memory 
STC    Secondary Test Controller 
STL    Secondary Test Link 
STM Self-Test Mode 
STMon Stop Trigger Monitor 
SUT System Under Test 
SW Software 
SWXF   Software Interface 
Sync Synchronization 
TCL    Test Control Link 
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TCM    Test Control Message 
TDMA Time-Division Multiple Access 
Tx Transmitter 
VHDL VHSIC (Very-High-Speed Integrated Circuit) Hardware Description Language 
WFD Word Frame Decoder 
WFE Word Frame Encoder 
WMCU   Word-Mode Communication Unit 
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