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Abstract 

Understanding space environment induced degradation of spacecraft materials is essential when 
designing durable and stable spacecraft components. As a result of space radiation, debris impacts, atomic 
oxygen interaction, and thermal cycling, the outer surfaces of space materials degrade when exposed to 
low Earth orbit (LEO). The objective of this study was to measure the embrittlement of 37 thin film 
polymers after LEO space exposure. The polymers were flown aboard the International Space Station and 
exposed to the LEO space environment as part of the Materials International Space Station Experiment 5 
(MISSE 5). The samples were flown in a nadir-facing position for 13 months and were exposed to 
thermal cycling along with low doses of atomic oxygen, direct solar radiation and omni-directional 
charged particle radiation. The samples were analyzed for space-induced embrittlement using a bend-test 
procedure in which the strain necessary to induce surface cracking was determined. Bend-testing was 
conducted using successively smaller mandrels to apply a surface strain to samples placed on a semi-
suspended pliable platform. A pristine sample was also tested for each flight sample. Eighteen of the 
37 flight samples experienced some degree of surface cracking during bend-testing, while none of the 
pristine samples experienced any degree of cracking. The results indicate that 49 percent of the MISSE 5 
thin film polymers became embrittled in the space environment even though they were exposed to low 
doses (~2.75 krad (Si) dose through 127 m Kapton) of ionizing radiation. 

Introduction 

As a result of space radiation, debris impacts, atomic oxygen interaction, and thermal cycling, the 
outer surfaces of space materials degrade when exposed to low Earth orbit (LEO) (Ref. 1). As ionizing 
radiation is known to embrittle polymers and has severely embrittled the Teflon fluorinated ethylene 
propylene (FEP) outer layer of the multilayer insulation covering the Hubble Space Telescope (Ref. 2). A 
study was conducted to measure the embrittlement of 37 thin film polymers after LEO space exposure. 
The polymers were flown aboard the International Space Station and exposed to the LEO space 
environment for 13 months as part of the Materials International Space Station Experiment 5 (MISSE 5). 
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MISSE is a series of spaceflight experiments designed to test the performance and durability of 
materials and devices exposed to the low Earth orbit (LEO) space environment. MISSE consists of 11 
flight experiment trays (10 Passive Experiment Carriers (PECs) and one smaller tray being flown with 
MISSE 8) that are mounted to the exterior of the International Space Station (ISS). Each two-sided tray 
contains numerous individual flight experiments and are positioned in either a ram/wake orientation or a 
zenith/nadir orientation (Ref. 3). The MISSE 5 polymer samples were from the Polymer Erosion and 
Contamination Experiment (PEACE) and were flown in a nadir-facing position for 13 months, which 
resulted in exposure to omni-directional charged particle radiation, thermal cycling, and low doses of 
atomic oxygen and direct solar radiation (Ref. 3). The samples were analyzed for space-induced 
embrittlement using a bend-test procedure in which the strain necessary to induce surface cracking was 
determined. Details on the MISSE 5 experiment, polymer flight samples, test procedures, and bend-test 
results are provided. 

MISSE 5 Experiments and Exposure 

MISSE 5 contained two active and one passive experiments: The Forward Technology Solar Cell 
Experiment (FTSCE), an active experiment that tested the performance of 36 current and advanced 
generation solar cells for use on future spacecraft; the active Second Prototype Communication Satellite 
System (PCSat-2) that provided a communications system and tested the Amateur Satellite Service 
off-the-shelf solution for telemetry command and control; and the passive MISSE 5 Thermal Blanket 
Materials Experiment, which consisted of several individual experiments to measure the degradation of 
more than 200 materials in the space environment (Ref. 3). The 37 PEACE samples were flown as part of 
the MISSE 5 Thermal Blanket Materials Experiment. 

MISSE 5 was placed in a zenith/nadir position on the P6 Trunion Pin Handrail of the International 
Space Station (ISS) during the STS-114 mission on August 3, 2005. Figure 1 shows a pre-flight 
photograph of MISSE 5 and an on-orbit photo taken during the STS-114 mission. MISSE 5 was exposed 
to the LEO space environment for 13 months, and was retrieved on September 15, 2006 during the 
STS-115 mission.  

It is estimated that the polymers received an ionizing radiation (also called charged particle radiation) 
dose of ~2.75 krads(Si) through 127 m Kapton, 16525 direct Sun hours (~360 Earth reflected), an 
atomic oxygen fluence of ~1.80.1020 atoms/cm2, and 6400 thermal cycles (Ref. 4). Temperature range 
was estimated from the experiment deck temperature for the Forward Technology Solar Cell Experiment 
on the solar facing side of MISSE 5 (Ref. 5). 
 
 

    
        (a)                                                       (b) 

Figure 1.—MISSE 5: (a) Pre-flight, and (b) On-orbit photo taken during STS-114 of the zenith facing experiments. 
 

  

MISSE 5 
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Figure 2.—Pre-flight photograph of the MISSE 5 Thermal Blanket 
Experiment (before the stitching and additional tape was applied). 
The PEACE Polymer samples are outlined in white. 

MISSE 5 PEACE Polymers Experiment  

The MISSE 5 PEACE Polymers experiment consisted of 49 to 0.5 in. (1.27 cm)  1.5 in. (3.81 cm) 
rectangular polymer material samples with 53 polymer materials. The majority of samples were thin film 
flexible polymers. A few rigid samples were also flown sandwiched between two pieces of either 
Kapton H or Kapton HN with Y966 acrylic adhesive. The primary experiment objective was to determine 
the atomic oxygen erosion yield (Ey, cm3/atom) of polymers after space exposure in a nadir orientation. 
As the Thermal Blanket Materials Experiment needed to be thin and flexible, samples were taped and 
then sewn onto a Kapton blanket substrate therefore making determination of the Ey based on mass loss 
impossible. Therefore, all samples were dusted with fine salt-spray particles to provide isolated locations 
of protection from atomic oxygen erosion so that recession depth measurements could be made post-flight 
for Ey determination (Ref. 3). Figure 2 is a pre-flight photograph of the MISSE 5 Thermal Blanket 
Experiment with the PEACE Polymer experiment samples highlighted. 

Thirty-seven of the 49 PEACE polymer samples were in a configuration that could be evaluated for 
surface embrittlement through bend-testing. The other 12 samples were not in thin film form and hence 
were not tested. A list of the flight samples that were tested along with the MISSE 5 flight sample 
number, the polymer name, the polymer abbreviation, trade names and the film thickness, are provided in 
Table 1 in the Results and Discussion section. 

Experiment Procedures 

Sectioning Bend-Test Samples 

Because the MISSE 5 PEACE polymers were multi-purpose samples, only a portion of each sample 
was bend-tested for strain-induced surface cracking. A piece measuring 0.5 in. (1.27 cm)  0.2 in. 
(0.508 cm) of each sample was sectioned for bend testing. The small salt particles were removed from the 
samples prior to bend-testing by carefully brushing off the dust with a small horse-hair water color brush. 
The salt was washed off a few samples (M-2, M-18, M-24, T-1, T-6) by rinsing with water and then 
gently drying the sample with pressurized nitrogen.  

Bend-Test Procedures 

The samples were analyzed for space-induced embrittlement using a bend-test procedure in which a 
surface strain was applied to the sample without adding overall tensile load. The strain necessary to 
induce surface cracking was determined by bending the samples over mandrels. Bend-testing was 
conducted using an apparatus with a semi-suspended pliable platform, and a set of mandrels varying in 
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diameter. A total of 23 mandrels were used, ranging in diameter from 1.253 to 0.052 cm. The diameter of 
each mandrel was calculated by using the mean diameter obtained by averaging four measurements made 
using Fowler & NSK Max-Cal electronic digital calipers. Each sample was bend-tested using 
successively smaller mandrels, with the sample being inspected after being bent around each mandrel. 
This procedure was continued until cracks were visible or until the sample did not experience any 
cracking with the smallest mandrel, in which case the sample was recorded as having not cracked. 

During bend-testing, the sample was placed with its space-exposed face down onto the semi-guided 
apparatus. The mandrel was pushed down onto the sample, forcing the material to bend against a pliable 
surface that spanned two supports on the apparatus. The sample was bent in a U-shape, where the space-
exposed surface was in tension and the backside surface was under compression. As the diameter of the 
mandrels decreased, the tension on the space-exposed surface of the sample increased because the sample 
was forced to bend more tightly around the mandrel. 

Optical microscopy was used to document any surface features in the bend-test area prior to testing, 
and the same area was examined after bending around each mandrel to identify and document any 
induced surface cracks. The samples were examined at magnifications of approximately 10X to 13.8X 
with an Olympus SMZ stereo-zoom optical microscope outfitted with a Canon digital camera. An 
electronic coordinate system, the Boeckeler Microcode II Digital Readout, was used to find the same test 
location for microscopy examination before and after bend-testing at each mandrel, always centered at a 
dot that had been marked on the sample so that it would always be bent in the same location. Depending 
on the size of the sample, nine to fifteen optical microscopy pictures of each sample were taken before 
bending so that the entire bend-test sample was documented. When the sample was first observed to crack 
during the bend test process, the mandrel, and hence the strain, were recorded and the sample was not 
tested further. If no cracks could be detected under the optical microscope, the sample was bend-tested 
again with the next smaller mandrel, and the procedure was repeated. To verify the test results, several 
samples were bend-tested more than once. 

Strain Calculations 

Equation (1) allows the percent strain (E) to be calculated based on the thickness of the sample (t) and 
the diameter of the mandrel (d). This equation was derived from the bend-test configuration shown in 
Figure 3. 
 

 100










td

t
E  (1) 

 

The percent strain for each individual material, as stated before, was determined based on the mandrel 
at which it initially cracked and the thickness of the sample.  
 

 
Figure 3.—Illustration of the bend-test 

configuration showing a cradle platform 
used to bend the sample around the 
mandrel. 
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Results and Discussion 

Two of the PEACE Polymers samples were found to have cracked in half while on-orbit: Sample T-1 
polymethyl methacrylate (PMMA, 50.8 µm thick) and Sample X-2 polymethylpentent (PMP, 50.8 m 
thick). Close-up post-flight photos of Samples T-1 and X-2 are shown in Figures 4(a) and (b), respectively.  

The set of photos in Figure 5 is an example of the microscope images obtained before and after bend-
testing with each mandrel. The sample in Figure 5 is polyvinyl fluoride (PVF), also known as clear Tedlar 
(MISSE T-7). The box in each figure shows where cracks developed during bend-testing. This 25.4 m 
thick sample cracked under a surface strain of only 0.38 percent.  

While the PVF polymer shown in Figure 5 is representative of typical MISSE 5 PEACE polymer 
behavior, with the formulation of very small but visible vertical cracks, Figure 6 shows Sample X-2 
(PMP), which exhibited more extreme behavior. This is one of two samples that cracked on-orbit. It was 
found to be extremely embrittled and fractured into pieces during bend-testing. In Figure 6 similar 
features are circled to facilitate the comparison process. Space exposure embrittled this polymer to a 
degree where the sample fell apart upon bend-testing with the largest mandrel (1.25 cm dia.), which 
provided a surface strain of only 0.4 percent. Sample T-1, PMMA, also cracked with the largest mandrel 
and fractured into pieces. 
 
 
 

     
(a)                                       (b) 

Figure 4.—Post-flight photographs of cracked PEACE 
samples: (a) Sample T-1, PMMA (left sample) and 
(b) Sample X-2, PMP (right sample). 

 
 
 

    
                                                             (a)                                                                 (b) 

Figure 5.—Sample T-7, PVF: (a) before bend-testing and (b) after bend-testing. 
 

T1 X2 X2 

1.0 mm 1.0 mm 

T1 
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                                                      (a)                                                                 (b) 

Figure 6.—Sample X-2, PMP: (a) before bend-testing and (b) after bend-testing. 
 
 
 

    
                                                       (a)                                                                (b) 

Figure 7.—Sample T-5, PU: (a) before bend-testing and (b) after bend-testing. 
 
 
 

An example of a sample that did not crack during bend-testing, and hence remained ductile, is shown 
in Figure 7. This is Polyurethane (PU), MISSE 5 sample T-5. In summary, 17 of the 37 flight samples 
experienced some degree of surface cracking during bend-testing, while none of the pristine samples 
experienced any degree of surface cracking. 

A list of the tested MISSE 5 PEACE samples, and their bend-test results, are provided in Table 1. In 
Table 1, DNC means Did Not Crack. It should also be noted that bright white materials such as 
Sample V-2, expanded polytetrafluoroethylene (ePTFE), would be particularly hard to see very fine 
surface cracks. Also, sample M-11, fluorinated ethylene propylene, appeared to contain surface scratches 
or cracks prior to bend testing, which may have impacted the bend-test results. Because the bend-test 
procedure relies on optical microscopy for identification of very small surface cracks, it is desirable to 
verify these bend-test results by examining the bend-tested samples with scanning electron microscopy or 
another technique that can verify the development of surface cracks. 

The fact that surface strain induced cracking occurred in FEP (M-11), Kapton E (U-3), PTFE (V-3), 
and TOR (V-5), and that Upilex-S (M-14) did not crack, is consistent with results by Miller and Dever 
who characterized the tensile properties of these same polymers flown on the MISSE 5 Thermal Blanket 
Experiment as part of the Polymer Film Thermal Control Experiment (PFTC) (Ref. 4). 

 
  

1.0 mm 1.0 mm 
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TABLE 1.—MISSE 5 BEND-TESTING RESULTS 
MISSE 

ID 
Material Thickness, 

μm 
Percent 
strain 

M-02 Cellulose acetate (CA), Clarifoil 50.8 DNC 

M-03 Polybutylene terephthalate (PBT), GE Valox 357 76.2 DNC 

M-04 Chlorotrifluoroethylene (CTFE), Neoflon M-300 127 DNC 

M-05 
Crystalline polyvinylfluoride w/white pigment (PVF), 
White Tedlar TWH10BS3 

50.8 DNC 

M-07 Perfluoroalkoxy (PFA), Teflon PFA 500 LP 127 DNC 

M-08 Tetrafluoroethylene-ethylene (ETFE), Tefzel ZM 76.2 4.26 
aM-11 Fluorinated ethylene propylene (FEP), Teflon FEP 50.8 2.09 

M-13 Ethylene-chlorotrifluoroethylene (ECTFE), Halar 300 76.2 DNC 

M-14 Polyimide BPDA (Upilex-S) (PI), Upilex-S 25S 25.4 DNC 

M-16 Polyamide 6 (PA 6), Nylon 6 50.8 DNC 

M-17 Polyamide 66 (PA 66), Nylon 66 50.8 5.61 

M-18 Polyacrylonitrile (PAN), Barex 210 50.8 8.60 

M-19 Polybenzimidazole (PBI), Celazole PBI 22 50.8 DNC 

M-21 
Poly(p-phenylene-2 6-benzobisoxazole) (PBO), 
Balanced Biaxial film 

25.4 DNC 

M-23 Polyetheretherketone (PEEK), Victrex PEEK 450 76.2 9.92 

M-24 Polyethylene terephthalate (PET), Mylar A-200 50.8 0.76 

M-25 Polyimide (CP1) (PI), CP1 76.2 1.51 

Q-2 Tetrafluoroethylene-ethylene (ETFE), Tefzel 500 LZ 127 6.91 

T-1 Polymethyl methacrylate (PMMA), Plexiglas 50.8 0.40 

T-4 Polysulphone (PSU), Thermolux P1700 50.8 DNC 

T-5 Polyurethane (PU), Duraflex PS S010 50.8 DNC 

T-6 Polyvinylidene fluoride (PVDF), Kynar 740 76.2 2.16 

T-7 Polyvinyl fluoride (PVF), Tedlar TTR10SG3 (clear) 25.4 0.38 

U-1 Polyetherimide (PEI), Utem 1000 254 DNC 

U-2 Amorphous Fluoropolymer (AF), Teflon AF 1601 50.8 1.45 

U-3 Polyimide PMDA (PI), Kapton E 50.8 1.28 

U-5 Ultra High Molecular Weight Polyethylene (UHMWPE) 254 DNC 

U-7 Polyvinyl chloride (PVC), Clear-Lay Rigid PVC 127 DNC 

V-1 
Tetrafluoroethylene hexafluoro-propylene vinylidene 
fluoride (THV), Clariflex 

254 25.72 

bV-2 
Expanded polytetrafluoroethylene (ePTFE) 
(ISS cable material) 

228.6 DNC  

V-3 
Polytetrafluoroethylene (PTFE), PTFE T-100 Virgin 
Skived Sintered Film 

76.2 5.03 

V-4 Polyimide (PI), Kapton 100 CB 127 DNC 

V-5 Poly Arylene Benzimidazole (TOR) 38.1 0.46 

V-6 Poly Arylene Benzimidazole (COR) 38.1 0.70 

V-7 Polysulfone (PSO) 50.8 DNC 

X-1 Polyethersulfone (PES) 76.2 DNC 

X-2 Polymethylpentent (PMP) 50.8 0.40 
aFEP had cracks in the surface before bend-testing   
bePTFE is bright white and cracks may be hard to see 
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Summary and Conclusions 

A study was conducted to characterize the embrittlement of thin film polymers after exposure to the 
space environment. In these investigations a bend test procedure was used to characterize the 
embrittlement of 37 different polymers that were exposed to LEO aboard the ISS for 13 months in a 
nadir-facing orientation as part of the MISSE 5 PEACE polymers experiment. Using mandrels of 
different diameters combined with optical microscopy, the strain necessary to induce surface cracking 
was determined for flight samples and compared with that of pristine samples. While none of the pristine 
materials cracked at the highest strain available, 18 of the 37 flight samples (49 percent) experienced 
embrittlement, shown by surface-tensile-induced cracking, after just 13 months of exposure in LEO. Two 
of the polymers, PMMA and PMP, had cracked while on-orbit and were so brittle that they fractured 
when bend-tested with the largest mandrel. These results indicate that many thin film polymers are 
susceptible to embrittlement in the LEO space environment, even after low solar and particle radiation 
exposures. Therefore, even “minimal” amounts of radiation exposure must not be overlooked when 
designing spacecraft components based on expected mechanical properties. 
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