
Draft Motor Vehicle Emission Simulator
(MOVES) 2009

Software Design and Reference Manual

EPA-420-B-09-007
March 2009

Assessment and Standards Division
Office of Transportation and Air Quality
U.S. Environmental Protection Agency

Draft Motor Vehicle Emission Simulator
(MOVES) 2009

Software Design and Reference Manual

A Note about the Capitalization and Naming
Conventions Used in this Document

Because object orientation is central to the design of the MOVES software, this

document often refers to classes and objects. The class names used in MOVES are often

formed from several English words which are run together without spaces, e.g.

“EmissionCalculator”, “RunSpecEditor”, etc. MOVES follows the widely-used Java

naming convention of capitalizing each word in these run-together names, and this

convention is also used in this document.

Because databases are also central to MOVES, this document includes many

references to databases, tables, and fields. It is our intention that database and table

names follow the same naming convention as classes in MOVES. The names of fields

within these tables also use this scheme, except that they begin with a lower case letter

(unless they begin with an acronym). E.g. there is a “MOVESDefault” database which

contains an “EmissionRate” table and this table contains a field named “meanBaseRate”.

We’ve applied the same naming convention to file and directory names as well because

they are somewhat analogous to tables and databases.

Acronyms, such as “VMT” (from “vehicle miles traveled”) or “AC” (from “air

conditioning”) are capitalized in all contexts, even when they begin a field name, even

though this is not standard programming practice. Thus there is a field named

“ACPenetrationFraction”. A table of acronyms used in this document is contained in

Appendix A.

There are undoubtedly instances where this document fails to fully comply with

these conventions. In some contexts it seems natural to use ordinary English, e.g.

“emission rate”, interchangeably with a class name, e.g. “EmissionRate”, and we have

not attempted to be highly rigorous in this regard. The Windows operating system is not

case sensitive and MySQL is also rather forgiving in this respect. We hope our readers

will be as well.

 2

Table of Contents

A Note about the Capitalization and Naming Conventions Used in this Document2

1. Introduction..6

2. MOVES Software Components...10

3. Computer Hardware and System Software Requirements...12

3.1. Details on JAVA Platform Requirements.. 12

3.2. Details on MySQL Platform Requirements... 13

3.3. Details on Shared File Directory Platform Requirements 14

4. MOVES Computer Platform Configuration ..15

5. MOVES Software Licensing ...18

6. Installation Overview...19

7. Processing Overview ...22

8. Data and Control Flow...23

9. Functional Design Concepts ...28

9.1. Geographic Locations .. 28

9.2. Time Periods .. 30

9.3. Characterizing Emission Sources (Vehicle Classification) 31

9.4. Emission Pollutants.. 35

9.5. Emission Processes .. 35

9.6. Vehicle Fuel Classifications .. 36

9.7. Emission Source Activity .. 38

9.8. Modeling Vehicle Inspection/Maintenance Programs... 42

10. MOVES Functional Specifications..45

10.1. Graphical User Interface (GUI) / Run Specification Editor 46

10.2. Application Program Interface and Master Looping Mechanism 46

10.3. Input Data Manager ... 47

10.4. Database Pre-Aggregation ... 48

10.5. Mesoscale Lookup Table Link Producer (LTLP).. 60

10.6. Total Activity Generator (TAG) for Macroscale... 61

10.7. Total Activity Generator (TAG) for Mesoscale Lookup 72

 3

10.7A. Total Activity Generator (ProjectTAG) for Project Level Modeling 80

10.8. Running OperatingModeDistributionGenerator (OMDG) for Macroscale 90

10.9. Running OperatingModeDistributionGenerator (OMDG) for Mesoscale Lookup

.. 99

10.10. Source Bin Distribution Generator (SBDG).. 106

10.11. Meteorology Generator.. 111

10.12. Start OperatingModeDistributionGenerator (StartOMDG)............................. 113

10.13. Tank Temperature Generator (TTG) ... 115

10.14. Tank Fuel Generator (TFG)... 124

10.15. Evaporative OperatingModeDistributionGenerator (EvapOMDG) 129

10.16. Alternative Vehicle Fuels and Technologies (AVFT) Strategy....................... 131

10.17. Energy Consumption Calculator (ECC) .. 136

10.18. Distance Calculator.. 143

10.19. Methane (CH4) and Nitrous Oxide (N2O) Calculator..................................... 146

10.20. Atmospheric CO2 and CO2-Equivalent Calculator... 148

10.21. Criteria Pollutant Running EmissionCalculator (CREC) 150

10.22. Criteria Pollutant Start EmissionCalculator (CSEC) 162

10.23. Basic Running PM EmissionCalculator .. 172

10.24. Sulfate PM EmissionCalculator (SEC).. 179

10.25. Basic Start PM EmissionCalculator... 182

10.26. Basic Brake and Tire Wear Emission Calculators... 187

10.27. CriteriaAndPMExtendedIdleEmissionCalculator.. 188

10.28 Air Toxics Calculator.. 194

10.29. Permeation Calculator.. 197

10.30. Liquid Leaking (LL) Calculator .. 201

10.31. HC Speciation Calculator (HCSC) Calculator... 204

10.32. Tank Vapor Venting (TVV) Calculator... 206

10.33. Result Data Aggregation and Engineering Units Conversion 215

10.34. Post-Processor for Mesoscale Lookup... 219

10.35. Post-Processing Script Execution .. 220

10.36. Summary Reporter ... 222

 4

10.37. GREET Model Interface.. 226

10.38 Future Emission Rate Creator (FERC) ... 230

10.39 I/M Coverage Table Editor ... 234

10.40 Estimating the Uncertainty of MOVES Results ... 235

10.41. Retrofit Strategy... 239

11. DRAFT MOVES2009 Input and Default Databases ...241

11.1. Use of Data Types.. 242

11.2. Functional Types of Tables: .. 243

11.3. Database Tables and Their Use ... 244

11.4. Where to Find More Detailed MOVES Database Documentation.................... 252

12. DRAFT MOVES2009 Output Databases ..254

12.1. MOVESRun Table... 256

12.2. MOVESError Table... 256

12.3. The MOVESActivityOutput, MOVESOutput, MOVESMesoscalActivityOutput

and MOVESMesoscaleOutput Tables .. 257

Appendix A. Table of Acronyms..262

Appendix B. MOVES Error/Warning Messages ..264

 5

1. Introduction
The Draft 2009 Motor Vehicle Emission Simulator (DRAFT MOVES2009) is

released to the general public mainly for users’ review and comments. A follow-up final

version of MOVES, scheduled to be released in late 2009, will include modifications

based on users' feedback and EPA’s planned enhancement. DRAFT MOVES2009, which

is the third of the current series of the MOVES “implementations”, includes several new

features, e.g., user data importers and air toxic. Although this draft model contains more

realistic estimates of pollutant emissions than previous versions, it still holds some

placeholder data, for example the emission rates for motorcycles were set to 0 (zero),

which serve as placeholders to make users aware that the model includes motorcycles,

while numeric estimates are not currently available. In addition, the GREET model

interface that was incorporated in earlier versions has been disabled in this version

because it is no longer operational. EPA hopes to restore this GREET functionality in a

future version of MOVES.

A brief description of the two previous versions of MOVES before Draft

MOVES2009 is as follows.

• MOVES2004 (released in 2004): the first version of MOVES that can be used to

estimate and project national inventories at the county level for energy

consumption, N2O, and CH4 from highway vehicles.

• MOVES-HVI (released in 2007): a demonstration version of MOVES that is the

Highway Vehicle Implementation of EPA’s Motor Vehicle Emission Simulator.

The MOVES-HVI retains much of the functionality of MOVES2004 with a few

significant updates as it is only intended to demonstrate the significant features

added to MOVES to estimate criteria pollutant emissions (gaseous hydrocarbons,

carbon monoxide, oxides of nitrogen and particulate matter) from highway

vehicles. It is suitable only for demonstration purposes; none of its numerical

value results should be considered to be realistic.

 6

Future implementations of MOVES are planned to operate at smaller scales,

estimate non-highway mobile source emissions, and estimate pollutants from additional

mobile sources such as aircraft, locomotives, and commercial marine activity.

Two documents can be considered precursors to this one: The first is a report

published in October 2002 entitled Draft Design and Implementation Plan for MOVES.

This plan includes extensive background on the impetus for MOVES, an analysis of the

“use cases” MOVES is intended to address, and the conceptual design for the model.

The second was the MOVES2004 Software Design Reference Manual (SDRM) dated

November, 2004. Both documents are available on the MOVES website

(www.epa.gov/otaq/ngm.htm) and the reader is encouraged to consult them if additional

background is desired. The draft plan underwent formal peer review and public

stakeholder review; the comments resulting from this process were summarized in

Appendix I of the MOVES2004 SDRM. A preliminary version of the MOVES2004

SDRM was peer-reviewed, and the comments from this process were summarized in

Appendix II of the released draft version. Because this document has the same purpose,

structure, scope and formatting conventions relative to Draft MOVES2009 as the

previous MOVES 2004 SDRM had relative to MOVES2004, EPA does not plan for it to

undergo formal peer review. Comments from the public are welcome.

The overall purpose of this Software Design and Reference Manual, is, together

with the Draft MOVES2009 User Guide, to answer questions pertaining to the MOVES

software. The User Guide is tailored to the beginning user and to getting started quickly

using the model. It focuses on operation of the MOVES Graphical User Interface (GUI).

This Software Design and Reference Manual intended to answer more substantive

questions about the model software and document the calculations the model performs. It

also provides more detail on configuring, installing, and running the MOVES program

than the User Guide.

 Chapter 2 identifies the major software and database components which make up

DRAFT MOVES2009. At this general level the MOVE Software is considered to consist

of 8 components.

 7

http://www.epa.gov/otaq/ngm.htm

Chapter 3 covers the hardware and system software required to run each major

component.

Chapter 4 covers configuration of the MOVES software, which can be run on a

single computer or a network of computers.

Chapter 5 covers MOVES software licensing.

Chapter 6 discusses the MOVES installation process in somewhat greater detail

than the MOVES User Guide or the Readme file included in the installation package

itself.

Chapter 7 provides a “processing overview” of MOVES.

Chapter 8 diagrams and discusses the flow of data and control between more

detailed components of MOVES. At this level the DRAFT MOVES2009 software is

divided into about 25 components.

Chapter 9 discusses the functional design concepts of MOVES.

Chapter 10 documents the functionality of most of the individual components of

MOVES, their inputs, the calculations they perform, and the outputs they produce. This

single chapter composes nearly half of the entire document.

Chapter 11 provides some top level documentation of the tables in the MOVES

Input Database and contains more detailed documentation of the flow of data in MOVES

by indicating which MOVES components read and write these tables in the MOVES

Execution Database.

Chapter 12 documents the structure of the MOVES Output Database.

Other documents supplement the DRAFT MOVES2009 User Guide and the Draft

MOVES2009 Software Design and Reference Manual. Those most closely related to the

software are:

The MOVES Program Suite Distribution which includes a README file more
briefly explaining the process of installing all MOVES-related components,
and where to get assistance or report problems with the MOVES
installation process.

Detailed documentation on the MOVES input database is included in a
README directory within the database itself.

 8

Technical documentation explaining the data sources and methods used to
estimate the default fleet, activity, and emission data underlying DRAFT
MOVES2009 is contained in technical reports separately downloadable
from the EPA web site.

Documentation produced by Argonne Laboratories covering the GREET
model is contained in the GREET directory within the model itself.
Although the GREET interface has been disabled in MOVES, the
documentation for GREET is provided in this version because EPA hopes
to restore this functionality in a future version of MOVES.

 9

2. MOVES Software Components
MOVES is written in Java™ and the MySQL relational database management

system, a product of MySQL AB. Its principal user inputs and outputs, and several of its

internal working storage locations, are MySQL databases. A “default” input database,

covering 3222 counties of the United States and which supports model runs for calendar

years 1990 and 1999 - 2050 is included with the model.

MOVES has a “master – worker” program architecture which enables multiple

computers to work together on a single model run. A single computer can still be used to

execute MOVES runs by installing both the master and worker components on the same

computer.

Looking at this architecture in greater detail, the MOVES software application

consists of eight components, each described briefly here.

MOVES Graphical User Interface (GUI) and Master Program: This is a Java

program which manages the overall execution of a model run. Its MOVES GUI (also

sometimes referred to as the run specification editor) may be used to create, save, load,

and modify a run specification or RunSpec, and to initiate and monitor the status of a

model run. A basic command line interface may be employed (in lieu of the GUI) by

users (or by other computer programs) to execute the model without interacting with the

MOVES GUI. If MOVES is installed on a computer network several model runs may be

executed concurrently by different copies of the MOVES Master Program.

MOVES Worker Program: This is also a Java program. At least one executing

copy of this program is needed to complete a MOVES run. It may execute on the same

computer as the MOVES Master Program, or on other computer(s) having access to the

SharedWork file directory.

Default input database, normally named “MOVESDefault”: this MySQL

database must reside on the same computer as the MOVES Master Program. A version

of this database is included in the MOVES Installation Package. This “MOVESDefault”

may be replaced by a database specifically named as “MOVESDByyyymmdd” in the

 10

MOVES installation package, where yyyymmdd stands for a string of year, month and

day.

SharedWork: This is a file directory or “folder” which is accessible to all

executing copies of the MOVES Master program and the MOVES Worker program. It is

not a MySQL database but simply a file directory or “folder” provided by the file

services of a software operating system.

Optional user input databases: These MySQL databases are normally located

on the same computer as the MOVES Master Program. They may contain any of the

same tables that are in the default input database and are used to add or replace records as

desired by the user.

The MOVESExecution database: This MySQL database is created by the

MOVES Master Program. It is used for temporary working storage and does not interact

directly with the user. It must be on the same computer as the master program.

MOVES output databases: MySQL databases are named by the user and

produced by MOVES model program runs. While normally located on the same

computer as the MOVES Master program, they could be located on any MySQL server

accessible to it.

MOVESWorker database: This MySQL database is used as working storage by

the MOVES Worker Program. It does not interact directly with the user. It is on the same

computer as the MOVES Worker program.

 11

3. Computer Hardware and System Software
Requirements

The MOVES application software components require a computer hardware and

software “platform” upon which to operate. The hardware platform can consist of a

single computer system or a network of computers.

Computer(s) used to run either of the MOVES application programs should have

at least 512MB of RAM. (Having additional memory is highly recommended, and is

now relatively inexpensive). Execution run time performance is a constraint with

MOVES so high speed dual-core processor(s), at least 1-2 GHz and preferably faster, are

highly recommended. The MOVESDefault database distributed with MOVES requires

approximately 1.3 GB of disk storage. MOVES Worker and Output databases are also

often voluminous, so several gigabytes of disk space should be available on all machines

used to run either MOVES program. Extensive users of MOVES will want to use the

highest performance microcomputer systems that they can afford.

3.1. Details on JAVA Platform Requirements
The MOVES GUI/Master and the MOVES Worker are Java programs and for

operation require a Java RunTime Environment (also sometimes referred to as the “Java

Virtual Machine”). The Java Software Development Kit (SDK) includes the Run Time

Environment. This version of MOVE uses version 1.4.2 of the Java SDK, produced by

SUN Microsystems Inc. The MOVES Program Suite Distribution includes an installation

package for this Java version, suitable for installation on WINDOWS NT, WINDOWS

2000, WINDOWS XP, and 32-bit Vista systems. MOVES does not operate successfully

on 64-bit Vista or on versions of WINDOWS that predate WINDOWS 2000. Users

should not attempt to operate either MOVES program with other versions. While Java is

available for other software operating systems, such as LINUX, UNIX, etc. and porting

MOVES to such software operating systems should not be difficult, EPA has not tested

such configurations and is not prepared to support them. Sun’s main web site for

information related to Java is http://java.sun.com/ .

Several extensions to Java are also required by MOVES and are included in the

MOVES Installation Package. These include JUnit and JFCUnit, which facilitate

 12

http://java.sun.com/

software testing, and JavaHelp used to construct the on-line help facility in MOVES. The

ANT software build utility is also included.

3.2. Details on MySQL Platform Requirements

The MySQL database management software has a client-server architecture. The

MOVES GUI/Master, the MOVES Command Line interface/Master, and MOVES

Worker programs function as MySQL clients and require access to MySQL server(s).

Since both programs require a MySQL database to be located on the same computer

(MOVESExecution and MOVESWorker), all computers that run any of these MOVES

components must also operate a MySQL server. Additional computers operating MySQL

servers can also be utilized; e.g., for MOVES Output databases.

This version of MOVES uses MySQL version 5.0.27. The DRAFT MOVES2009

Program Suite Distribution includes an installation package for this MySQL version,

suitable for installation on WINDOWS NT, WINDOWS 2000, WINDOWS XP and 32-

bit Vista systems. The version of DRAFT MOVES2009 will not operate with MySQL

version 4.0.21 or earlier, neither will the future MOVES versions. Users are not

recommended to attempt to operate MOVES program with MySQL versions of 5.1 or

later since EPA has not tested MOVES on them. While MySQL is available for other

software operating systems, such as LINUX, UNIX, etc. and porting MOVES to such

software operating systems should not be difficult, EPA has not tested such

configurations and is not prepared to support them. DRAFT MOVES2009 does not

operate successfully with versions of WINDOWS which predate WINDOWS 2000.

The MySQL installation includes a command line MySQL client program. The

MOVES Program Suite Distribution also includes an installation package for the MySQL

Query Browser which is a GUI MySQL client program. Either of these MySQL client

programs can be used to help construct MOVES input databases or to analyze the

contents of MOVES output databases. Other data base management software, such as

Microsoft ACCESS can also be used via an ODBC driver. Appendix B of the DRAFT

MOVES2009 User Guide explains how this can be accomplished.

Additional information about MySQL is available at the MySQL web site

(http://www.mysql.com/) operated by MySQL AB/Sun Microsystems.

 13

http://www.mysql.com/

3.3. Details on Shared File Directory Platform Requirements
The SharedWork file directory may be located on a computer that runs the

MOVES Master Program or the MOVES Worker Program or on a separate “file server”

computer. All that is necessary is that the MOVES GUI and Master program and at least

one MOVES Worker program have access to this shared file directory with permission to

create, modify and delete files. In the simplest case, diagrammed early in the next

section, all MOVES Application Software components may reside on a single computer.

In this case the SharedWork directory is simply on this computer’s local hard drive. All

files created by MOVES in this directory are temporary, but because the files can be

numerous and large, at least 3 GB of disk space should be available.

 14

4. MOVES Computer Platform Configuration
All MOVES application components may be installed on a single computer

system as shown in the following Figure 4-1.

MOVES may also be configured so that several computers work together to

execute model simulation runs. This can significantly improve execution time

performance of large simulations. (Improvements diminish, however, as more worker

computers are added. The number of worker computers needed to approach the minimal

execution time for a model run depends on the specific nature of the run.)

For several computers to work together on a MOVES run, all that is necessary is

for the computers to have access to the SharedWork directory. For one computer this file

directory can be on its local hard drive; other computers must access the SharedWork

directory via a computer network. Of course, the platform requirements of each MOVES

 15

component must still be satisfied by the computer(s) on which it is installed. A variety of

network configurations are possible. The principal consideration is that each Master/GUI

Program must have the MOVESDefault database on its computer and that each Worker

Program must be able to create a MOVESWorker database on its computer.

Two text files, MOVESConfiguration.txt, and WorkerConfiguration.txt, versions

of which are built by the MOVES installation program, are used by the MOVES

Master/GUI program and the MOVES Worker program to locate their databases and the

SharedWork directory. The default configuration is:

Figure 4-2 shows a typical Multiple Computer configuration.

 16

 17

5. MOVES Software Licensing
EPA distributes a complete installation package for MOVES as open source

software. EPA asserts a copyright to the MOVES application but allows MOVES to be

used pursuant to the GNU General Public License (GPL), which is widely used for the

distribution of open source software.

Restrictions apply to use of MOVES pursuant to the GPL. For example, the

program may not be sold, even in modified form, for commercial profit without obtaining

a commercial license to MySQL from MySQL AB and, if redistributed in modified form,

must be identified accordingly and source code included. Distribution of modified

versions of the program also requires compliance with the GPL unless commercial

licenses are obtained. The terms of the GPL are explained in detail at

http://www.gnu.org/licenses/.

 18

6. Installation Overview
The DRAFT MOVES2009 Program Distribution Suite contains all software

components necessary to install and use DRAFT MOVES2009 on microcomputer

systems based on the WINDOWS NT, WINDOWS 2000, WINDOWS XP and 32-bit

Vista software operating systems. Installing MOVES on a 64-bit Vista machine is not

recommended at this time since MySQL on 64-bit Windows Vista machines is not yet

supported by MySQL AB. Users should be able to install and run MOVES and its

components/tools on a 32-bit Vista machine. Please be advised that currently EPA won’t

be unable to provide further support for Vista until Vista has become part of EPA IT OS

standards. The MOVES Program Suite Distribution is available for download from the

EPA web site. Because of its size (several hundred MBs) it is highly desirable to have a

high speed connection to the Internet to obtain this download.

The MOVES Program Suite Distribution includes a README file that

summarizes the information provided in the remainder of this section.

In order to install and run several of the MOVES-related software components

you must have administrative rights to the computer system(s) involved. Organizations

are increasingly restricting these rights to a limited number of individuals. If you do not

have these rights, you need to obtain them, or enlist the help of someone who does.

Assuming you have these rights and have obtained the MOVES Program Suite

Distribution the first actual installation step is to install Java version 1.4.2 that MOVES

requires or verify that it has already been installed. The MOVES Program Distribution

Suite includes a separate installation package for this version of Java. EPA intends this

Java installation package to be used only for computers that do not already have

Java installed. If you are running older versions of Java you will need to upgrade to this

version. This can be a complicated situation because this may affect preexisting Java

applications on your computer, and EPA cannot provide support for this. Conversely, if

you are already running a later version of Java, MOVES may not operate correctly with

it. In this kind of situation you may wish to install MOVES on a different computer. If it

is appropriate to run the Java version 1.4.2 installation package provided by EPA, just

 19

double-click on the installer installation program (j2sdk-1_4_2_03-windows-i586-p.exe

provided in the java 1.4.2 directory) and follow the installer’s instructions.

The second actual installation step is to install the MySQL database management

system software that MOVES requires or verify that it has already been installed. The

demonstration version of DRAFT MOVES2009 operates with MySQL version 5.0.27

and EPA’s Distribution includes a separate installation package for this. EPA intends

this MySQL installation package to be used only for computers that do not already

have MySQL installed. If you are running older versions of MySQL you will need to

upgrade to this version. This can be a complicated situation because this may affect

preexisting MySQL applications on your computer, and EPA cannot provide support for

this. Conversely, if you are already running a later version of MySQL, MOVES may not

operate correctly with it. In this kind of situation you may wish to install MOVES on a

different computer. If it is appropriate to run the MySQL installation provided by EPA

you can read and follow the instructions in InstallMySQL5.doc:

All other required DRAFT MOVES2009 components can be installed by running

the MOVESInstallationPackage.jar file included in the DRAFT MOVES2009 Program

Installation Suite. This graphical “wizard-style” program guides the user through the

process of installing the MOVES application. It was prepared with the IZPACK open

source installation packaging tool. You will need to know the location where MySQL

has been installed. Assuming you accepted the default location this is “c:\mysql”. This

installation creates three desktop icons. One executes the MOVES GUI and master

program, a second executes the MOVES Worker Program, and a third icon can be used to

“Uninstall” MOVES. The MOVES installation keeps track of components it installs and

this “Uninstall” feature can be used to remove all those components, including the Java

extensions needed for MOVES. It does not remove components which have been

modified or which have been installed in some other fashion.

Users who desire a graphical client program to use with MySQL should execute

the installation package for the MySQL Query Browser by following the steps in the

README file. The MySQL Query Browser is a product of MySQL AB and replaces the

earlier MySQL Control Center which EPA distributed with DRAFT MOVES2009.

 20

Users who desire to use Microsoft Access or another DBMS to prepare or query

MySQL tables via ODBC connections should execute the installation package for

MySQL Connection ODBC by following the steps in the README file.

 21

7. Processing Overview
The following diagram illustrates the overall flow of processing in MOVES in a

way which illustrates the division of work between the MOVES Master and Worker

programs.

MOVES Processing Overview Diagram

Worker

TotalActivityGenerator,
WellToPumpProcessor,
OperatingModeDistributionGenerator,
AVFTControlStrategy,
FuelEngineStartCalculator

.

.

.

MasterLoopables
TotalActivityGenerator,
WellToPumpProcessor,
OperatingModeDistributionGenerator,
AVFTControlStrategy,
FuelEngineStartCalculator

.

.

RunSpecMOVESWindow
Master

MOVESDefault

MOVESWorkerMOVESExecution

MOVESOutput

MYSQL

EmissionCalculatorOutboundBundler()

EmissionCalculatorInboundUnBundler()

MOVESInstantiator.performInstantiation

MasterLoopables MasterLoop

USERInput

Typical Processing Steps:

Before beginning a model run any desired User Input datatabases (shown near the

bottom left of the diagram) must be prepared. (The diagram does not attempt to show

this intial step, which is only required if the user wishes to deviate from the default

database inputs.) The components accessed via the “Pre-Processing Menu” in the

MOVES GUI can be used to produce User Input Databases for particular purposes. A

button in the MOVES graphical user interface, represented in the diagram by its

MOVESWindow, can also be used to create an empty User Input database to which users

can add the table records they need.

 22

A run specification, or RunSpec, is loaded or produced by using the MOVES

graphical user interface (MOVESWindow).

The user initiates execution of the actual model run via the “Action” menu item of

MOVESWindow.

The MasterLoop, within the MOVES Master program, then merges any User

Input databases identified in the RunSpec with the MOVESDefault database to produce

the MOVESExecution database. Most data not needed to fulfill the RunSpec is discarded

or “filtered” in this process.

The MasterLoop then uses the MOVESExecution database to produce files

containing work “bundles” in the SharedWork directory.

MOVES Worker program(s) perform these bundles of work, using their

MOVESWorker databases for temporary storage. They place files containing the

completed work back into the SharedWork directory.

The MasterLoop retrieves these completed work files and processes them into a

MOVES output database. The name of the output database is specified in the Run Spec.

The “Post Processing” menu in the MOVESWindow allows for additional,

optional processing steps to be performed on the output database.

8. Data and Control Flow
Figure 8-1 illustrates the logical flow of data and control within the MOVES

software. While generally more detailed than the diagram in the previous section, it does

not attempt to illustrate the division of work between the MOVES Master and Worker.

 23

Figure 8-1 MOVES Logical Level Data Flow Diagram

The graphical conventions used in this diagram are:

 24

Cylinders represent databases.
Boxes with curved ends (simplified cylinders) represent data files.
Rectangles open on the right hand side represent temporary data storage

elements.
Round-cornered rectangles represent processes that operate on and produce

data.
Square boxes represent interfaces external to the system.
Solid line arrows represent data flow.
Dashed line arrows represent control flow.
The “RTC” notation on an arrow indicates that the control flow “runs to

completion” before any of the data is processed by subsequent steps.

In order to illustrate the specifics of MOVES, several databases envisioned by the general

MOVES design have been combined into the MOVESDefault and MOVESExecution

databases illustrated here. Chapter 11 contains a more detailed discussion of these.

 The following text attempts to lead the reader through the diagram. The first

occurance of each diagram block is bolded.

The User normally executes the MOVES GUI program, which may access and

update files containing Saved Run Specifications and AVFT Strategy Definitions. A

simple MOVES Command Line Interface is available as an alternative to execute an

existing run specification or RunSpec.

The Command Line Interface passes a selected Run Spec directly to the MOVES

Application Program Interface (API), whereas the MOVES GUI Program allows the

user to select, edit, and save run specifications, and/or operate any Pre-Processor Menu

Items before passing control to the MOVES API. These pre-processors typically use the

MOVESDefault database and Text Files for Data Import to create User Input

Databases which can be included in the run specification.

Once control is passed to the MOVES API, it manages the actual model run.

Control is first passed to the Input Data Manager, which merges the MOVESDefault

database with any User Input Databases specified by the RunSpec, producing the

MOVESExecution database.

 25

A Database Pre-aggregation function was added to MOVES to reduce execution

time performance at the expense of some added approximation in the calculations. This

function is executed next if called for by the run specification.

If the run specification specifies that the run will be performed at the “Mesoscale

Table Lookup” scale the database is adapted for this at this stage by the Lookup Table

Link Producer.

The Master Loop then manages execution of the generators, internal control

strategies, and calculators. DRAFT MOVES2009 includes a Total Activity Generator

(TAG), several Operating Mode Distribution Generators (OMDGs), a

SourceBinDistributionGenerator (SBDG), a Meteorology Generator, a Tank Fuel

Generator, and a Tank Temperature Generator. It includes one internal control

strategy: the Alternative Vehicle Fuels and Technologies (AVFT) Strategy. All

generators and control strategies receive input from tables in the MOVESExecution

database and place their output there as well. Tables written by Generators are termed

“Core Model Input Tables” or “CMITs” and have an important role in the design of

MOVES. Additional detail as to which tables are used by each generator and control

strategy is contained in Chapters 10, 11, and 12.

Emission Calculators are the most central or “core” portion of MOVES model.

They consume much of its execution time and so the MOVES software design provides

for portions of them to be run by the MOVES Worker Program. They receive input from

the MOVESExecution database (some of which has been produced or altered by the

generators and the control strategies). The CMIT tables within the MOVESExecution

database provide their principal input data, but other tables may also be used by emission

calculators for specialized calculations. The emission calculators output their results to

databases on worker machines that are further processed to become the MOVESOutput

Database. DRAFT MOVES2009 includes approximately 20 EmissionCalculators which

calculate distance traveled and the emission results for various pollutants resulting from

various emission processes. These are documented further in Chapter 10.

After all Generators, Internal Control Strategies and Emission Calculators needed

to produce the results required by the run specification have executed, several more

 26

processing steps are required. Result Aggregation and Engineering Units Conversion

functions are performed on the MOVESOutput database. For mesoscale table lookup an

integrated Post-Processor for Mesoscale Lookup is then executed to produce an

additional emission rate table in the output database.

Following the model run, the MOVES GUI can be used to invoke additional

“post-processing” functions to operate on MOVESOutput databases. DRAFT

MOVES2009 includes two such post-processing functions. Post-Processing Script

Execution, runs a selected MySQL script against the MOVESOutput database specified

by the run specification. Several post processing scripts are provided with the model and

users may add to these if further customization of MOVES output is desired. A

Summary Reporter has been added to this version of MOVES which allows the user to

further aggregate the output results, produce summary on-screen or printed reports,

and/or tab-separated variable ASCII files of selected results. These are suitable for

importing into other software, such as spreadsheets, for further display and analysis.

 27

9. Functional Design Concepts
The functional scope of this MOVES version can be characterized as follows:

Geography: The entire U.S. (plus Puerto Rico and the U.S Virgin Islands) at
the county level. There are options to run at a more aggregate state or
national level. By modifying the database, counties can be divided into
zones.

Time Spans: Energy/emission output by hour of the day, and month for
calendar years 1990 and 1999 through 2050, with options to run at more
aggregate month or year levels.

Sources: All highway vehicle sources, divided into 13 “use types”
Outputs and Pollutant Emissions: Energy consumption (characterized as

total energy, petroleum-based energy and fossil fuel-based energy), N2O,
CH4, Atmospheric CO2, CO2 equivalent, total gaseous hydrocarbons, CO,
NOx, and several forms of particulate matter (PM).

Emission Processes: running, start, extended idle (e.g. heavy-duty truck
“hoteling”), well-to-pump, brakewear, tirewear, evaporative permeation,
evaporative fuel vapor venting, and evaporative fuel leaks.

Understanding how MOVES operates and why the input and output databases are

set up as they are requires an understanding of some basic functional design concepts.

Fundamental aspects of the MOVES design are geographic locations, time periods,

emission sources, emission pollutants, emission processes, vehicle fuels, and emission

source activity.

9.1. Geographic Locations
The default geographic modeling domain in DRAFT MOVES2009 is the entire

United States of America. This domain is divided first into “states.” In this context the

District of Columbia, Puerto Rico, and the U.S.Virgin Islands are considered to be

“states”, so the nation has 53 states in the default MOVES database.

“States” are divided into “counties.” In the default MOVES database these

correspond to the 3222 political subdivisions of the states in 1999. Counties must belong

to a single state. While the county-level subdivisions of some states have changed

slightly over time, the MOVES database is set up to store only a single set of counties.

The database could be adapted relatively easily to a different set of counties, but it would

be a significant structural change to MOVES to allow the set of counties to depend upon

the calendar year.

 28

In the general MOVES design framework, “counties” may be further divided into

“zones,” but in the default database each county is consists of a single zone. Zones are

intended to play a distinct role in future versions of MOVES that operate at smaller

scales.

 “Zones,” and thus “counties” in the default database, are further divided into

“links.” In this version of the MOVES default database each county is divided into five

links; four of these represent actual roadways and one represents locations not on the

county’s roadway network. This set of roadtypes has been reduced, relative to those in

the default database distribution with previous versions of MOVES which had a total of

13 roadtypes. The five roadtypes in this version of MOVES are:

1 Locations which are off of the highway network

2 Rural restricted access roadways (i.e. freeways and interstates)

3 Rural roads to which vehicle access is unrestricted

4 Urban restricted access roadways (i.e. freeways and interstates)

5 Urban roads to which vehicle access is unrestricted

Each of these roadtypes is a combination of one or more of the 13 roadtypes used in the

database distributed with previous versions of MOVES. The set of roadtypes used in

MOVES is driven by the database and changing this set does not require changes to the

MOVES program itself.

Running, tirewear, brakewear, and some evaporative process emissions are

considered to occur on the four “real roadway” roadtype locations, while its other

emission processes (i.e. start, extended idling, well-to-pump, and most evaporative

emissions) are associated with the “off network” link locations. (Emission processes are

discussed in a subsequent section.)

In this version of MOVES at macroscale, a link is a combination of a road type

and a county or zone. Road types, while not in themselves geographic locations, help to

define links at the macroscale. This version of moves can also be run in a “mesoscale

table lookup” mode in which a link represents all highway segments in the county or

zone which have the same roadtype and average speed. In future versions of MOVES,

 29

when modeling at smaller scales, links may represent segments of actual roadways and

road types will serve only to classify links.

Finally, the general MOVES geographic framework envisions that zone locations

may be overlaid by a set of “grids,” or grid cells. There may be multiple grid cells in a

zone and multiple zones in a grid cell, but grids and grid cells play no role in this version.

9.2. Time Periods
MOVES describes time in terms of calendar years, 12 months of the year,

portions of the seven-day week which are termed “Days” (but which may include more

than one 24 hour period), and 24 hours of the day. This arrangement appears simple but

there are several subtleties to keep in mind:

A “Day” in MOVES is really best thought of as a “portion of the week”. It does

not have to represent a single 24 hour period. It may represent several 24-hour periods,

or even the entire week. The default database for this version of DRAFT MOVES2009

divides the week into a 5-day “weekday” portion and a 2-day “weekend” portion. While

calendar years in MOVES are intended to represent actual historical years, the finer time

period classifications (months, portions of the week, and hours) are best thought of as

being “generic” time classifications. For example MOVES does not attempt to model

the fact that a holiday occurs on a weekend in one year but occurs on a weekday in

another.

Another reason why MOVES should not normally be considered to model

historical time periods smaller than a calendar year is the disconnection between “weeks”

and “months.” For example, there is no way to specify data for more than one week in a

single historical month, such as May 2004, in a single MOVES database. The database is

designed to store information about the year 2004 and about all weeks in May. Along the

same lines, MOVES does not attempt to model facts such as that a given month may

contain more weekend days in some years than others. MOVES does account for the

different number of days in each month, dividing this by 7 to determine the number of

weeks it is considered to contain, and MOVES does account for leap years.

In order to model an actual historical time period, data corresponding to the

unique time period could be supplied by the user, and the user could make this

 30

association outside the model. Depending on the accuracy and detail desired, multiple

model runs might be necessary.

In most portions of the model the month, portion of the week, and hour time

periods are simply categories, and do not even have an assumed sequence. Because

estimation of evaporative emissions is based on an hourly “diurnal” temperature cycle all

24 hourly categories of the day must be included in the run specification when estimating

evaporative emissions, and this area of the model does assume an hourly time sequence.

9.3. Characterizing Emission Sources (Vehicle Classification)
A long-standing challenge in the generation of on-road mobile source emission

inventories is the disconnect between how vehicle activity data sources characterize

vehicles and how emission and fuel economy regulations characterize vehicles. The crux

of this issue is that there is a fundamental difference between factors influencing how

vehicles are used, and their fuel consumption and emission performance. An example of

this is how vehicles are characterized by the Highway Performance Monitoring System

(HPMS) – by a combination of the number of tires and axles – and EPA’s weight-based

emission classifications such as LDV, LDT1, LDT2 etc.

This disconnect is fundamental to matching activity data and emissions data, and

generally requires some “mapping” of activity data to emission data. The MOBILE

series of models have traditionally grouped vehicles according to the EPA emission

classifications, and provided external guidance on mapping these categories to the

sources of activity data, such as HPMS. MOVES is designed to take these mappings into

account internally, such that the casual user of MOVES will not have to deal with

external mapping. Doing this, however, requires some complexity in the design.

Vehicles are characterized both according to activity patterns and energy/emission

performance, and are mapped internal to the model. Thus the model uses data for both

the activity and energy/emission methods of characterization. On the activity side,

vehicles are grouped into “Source Use Types,” or “Use Types”, which are expected to

have unique activity patterns. Because the HPMS is a fundamental source of activity

information, the MOVES use types are defined as subsets of the HPMS vehicle

classifications. These use types are shown in Table 9-1.

 31

Table 9-1. MOVES Source Use Type Definitions

HPMS Class MOVES use type Description

Passenger Cars 21. Passenger Car

31. Passenger Truck
Minivans, pickups, SUVs and other
2-axle / 4-tire trucks used primarily
for personal transportation

Other 2-axle / 4-tire
Vehicles

32. Light Commercial Truck

Minivans, pickups, SUVs and other
trucks 2-axle / 4-tire trucks used
primarily for commercial
applications. Expected to differ
from passenger trucks in terms of
annual mileage, operation by time
of day

51. Refuse Truck

Garbage and recycling trucks
Expected to differ from other single
unit trucks in terms of drive
schedule, roadway type
distributions, operation by time of
day

52. Single-Unit Short-Haul
Truck

Single-unit trucks with majority of
operation within 200 miles of home
base

53. Single-Unit Long-Haul
Truck

Single-unit trucks with majority of
operation outside of 200 miles of
home base

Single Unit Trucks

54. Motor Home

41. Intercity Bus

Buses which are not transit buses or
school buses, e.g. those used
primarily by commercial carriers for
city-to-city transport.

42. Transit Bus Buses used for public transit.

Buses

43. School Bus School and church buses.

61. Combination Short-Haul
Truck

Combination trucks with majority
of operation within 200 miles of
home base Combination Trucks

62. Combination Long-Haul
Truck

Combination trucks with majority
of operation outside of 200 miles of
home base

Motorcycles 11. Motorcycle

 32

Activity patterns which may differ between the use types are: annual mileage,

distribution of travel by time of day or day of week, driving schedule (i.e. real time

speed/accel profile), average speeds, and distribution of travel by roadway type. For

example, refuse trucks are separated out because their activity patterns are expected to

vary significantly from other single-unit trucks, and accurately accounting for these

vehicles requires accounting for their unique activity.

Source use types are the principal method of vehicle characterization seen by the

MOVES user. The user selects which use type and fuel combinations to model in the

user interface, and results are best reported by use type.1 However, emission rates

contained in the model are not broken down by use type, for two (related) reasons: first,

emission and fuel consumption data are not gathered according to use types or other

activity-based classifications (e.g. HPMS). Second, the factors that influence fuel

consumption and emission production are different from how vehicles are used. For

example, with regard to fuel consumption, loaded vehicle weight is a predominant

influence; a 2000 lb. compact car and 5000 lb. SUV will have very different fuel

consumption levels, although these vehicles may have similar use patterns. It is

necessary to account for these differences in fuel consumption and emission generation

separately from activity patterns. To do this, the MOVES design has implemented the

concept of “Source Bins.” Unique source bins are differentiated by characteristics that

significantly influence fuel (or energy) consumption and emissions – and because these

vary by pollutant, they are allowed to vary by pollutant in MOVES. Table 9-2 shows the

source bins fields used in MOVES, which vary by pollutant. Energy source bins are

defined by fuel type, engine type, model year group, loaded weight and engine size. For

most other polluants, source bins are defined by fuel type, engine type, model year group,

and regulatory class. The definition of model year group can vary by pollutant-process.

1 Because Source Classification Codes (SCCs) have been and are used extensively in emission inventories
DRAFT MOVES2009 also offers the option of reporting results by SCC. There are currently 144 SCCs
for mobile sources formed by the intersection of the 12 HPMS road types with the 12 vehicle
classifications used in PART5 and NMIM. This scheme is not native to MOVEs, however, and the
MOVEs modeling team discourages continued use of this classification scheme.

 33

Table 9-2a. MOVES Source Bin Definitions (other than ModelYearGroup)

Fuel Type
(All Pollutants)

Engine Technology
(All Pollutants)

Loaded
Weight
(Energy)

Engine
Size

(Energy)

Regulatory Class
(All pollutants except

energy and evap
permeation)

Gas
Diesel
CNG
LPG
Ethanol (E85)
Methanol (E85)
Gas H2
Liquid H2
Electric

Conventional IC (CIC)
Advanced IC (AIC)
Hybrid - CIC Moderate
Hybrid - CIC Full
Hybrid - AIC Moderate
Hybrid - AIC Full
Fuel Cell
Hybrid - Fuel Cell
Electric

Null
< 500 (for motorcycles)
500-700 (for motorcycles)
> 700 (for motorcycles)
<= 2000 lbs
2001-2500
2501-3000
3001-3500
3501-4000
4001-4500
4501-5000
5001-6000
6001-7000
7001-8000
8001-9000
9001-10,000
10,001-14,000
14,001-16,000
16,001-19,500
19,501-26,000
26,001-33,000
33,001-40,000
40,001-50,000
50,001-60,000
60,001-80,000
80,001-100,000
100,001-130,000
>=130,001

Null
< 2.0 liters
2.1-2.5 liters
2.6-3.0 liters
3.1-3.5 liters
3.6-4.0 liters
4.1-5.0 liters
> 5.0 liters

Null
Motorcycle
LDV
LDT
HD gasoline GVWR <= 14K lbs
HD gasoline GVWR > 14K llbs.
LHDD
MHDD
HHDD
Urban Bus

Table 9-2b. MOVES Source Bin Definitions (ModelYearGroup)

Model Year Group

Energy CH4, N2O

HC - Evap HC, CO,
NOx, PM
start, running

HC, CO,
NOx, PM
extended idle

Sulfate PM
(ratios to
energy)

1980 and earlier
1981-85
1986-90
1991-2000
2001-2010
2011-2020
2021 and later

1972 and earlier
1973
1974
1975
.
.
.
1999
2000
2001-2010
2011-2020
2021 and later

1970 and earlier
1971-1977
1978-1995
1996-2003
2004
2005
.
.
2019
2020
2021 and later

1980 and earlier
1981-1982
1983-1984
1985
1986-1987
1988-1989
1990
1991-1993
1994
1995
.
.
2019
2020
2021 and later

1980 and earlier
1981-85
1986-90
1991-2000
2001-2006
2007-2010
2011-2020
2021 and later

1980 and earlier
1981 and later

 34

Source bins are defined independently from use types, but are mapped to use

types internal to MOVES by the SourceBinDistributionGenerator.

9.4. Emission Pollutants
MOVES estimates two fundamentally different kinds of results: energy

consumption and mass emissions. For convenience, all these quantities are considered to

be “emissions.” “Energy emissions” estimated by DRAFT MOVES2009 are total energy

consumption, fossil fuel energy consumption, and petroleum fuel energy consumption.

The more familiar mass emissions estimated by DRAFT MOVES2009 are total gaseous

hydrocarbons (THC), carbon monoxide (CO), oxides of nitrogen (NOx), sulfate

particulate matter, tire wear particles under 2.5 microns, brake wear particles under 2.5

microns, methane (CH4), nitrous oxide (N2O), carbon dioxide (CO2) on an atmospheric

basis, and the “CO2-equivalent” of CO2 combined with N2O and CH4.

9.5. Emission Processes
On-road vehicles consume energy and produce mass emissions through several

mechanisms or pathways, which are known within MOVES as “emission processes,” or

just “processes,” and are accounted for and reported (if desired by the user) separately.

The MOVES mechanisms for “pump-to-wheel” energy consumption are limited to

operation of the engine and emissions from the tailpipe. The MOVES mechanisms for

gaseous emissions, however, include other processes such as fuel evaporation, tire wear

and brake wear, which merit treatment as separate emission processes. In addition to all

these “pump-to-wheel” energy and exhaust emission processes MOVES also includes a

“well-to-pump” emission process. The processes for DRAFT MOVES2009 are as

follows:

Running Exhaust, meaning the energy consumed or the tailpipe emissions
produced during vehicle operation over freeways and surface streets while
the engine is fully warmed up.

Start Exhaust, meaning the additional energy consumed or tailpipe emissions
produced during the period immediately following vehicle start-up. An
important note is that this quantifies the energy consumed or emissions
produced in addition to the “running” energy/emissions produced
immediately following start-up. Start emissions represent the incremental
emissions produced following vehicle start-up, after accounting for the
baseline running emissions.

 35

Extended Idle, meaning energy consumed or tailpipe emissions produced
during long periods of engine idling off of the roadway network. This
process applies only to combination long-haul trucks in the current version
of DRAFT MOVES2009, and is meant to account for the issue of overnight
“hoteling” at truck stops, although it could eventually be applied to idling
of passenger vehicles in drive-thru lanes, etc.

Evaporative Fuel Permeation, meaning the migration of hydrocarbons
through the various elastomers in a vehicle fuel system.

Evaporative Fuel Vapor Venting, meaning the expulsion into the atmosphere
of fuel vapor generated from evaporation of fuel in the tank. Also includes
evaporation into the atmosphere of fuel which has “seeped” to the surface
of vehicle parts.

Evaporative Fuel Leaking, meaning the “gross” leaking of fuel, in liquid
form, from the vehicle. This is assumed to subsequently evaporate, outside
the vehicle, into the atmosphere.

Brakewear, meaning the formation of particles of brake components which are
formed during operation of vehicle brakes.

Tirewear, meaning the formation of tire material particles during vehicle
operation

Well-To-Pump, meaning the energy and emissions produced from processing
and distributing vehicle fuel from raw feedstock to the fuel pump. These
energy use and emission rates are produced by a version of Argonne
National Laboratory’s GREET model. DRAFT MOVES2009 has not been
expanded in this area relative to MOVES-HVI or MOVES2004 and so only
reports the well-to-pump energy consumption and greenhouse gas
emissions. It should be noted that well-to-pump emissions have a different
relationship to locations than those of the other processes. MOVES
associates well-to-pump results with the locations (e.g. Counties and
RoadTypes) whose activity caused the emissions; the emissions are not
produced at these locations as they are for the other processes. It should
also be noted that GREET in DRAFT MOVES2009 has been disabled and
the emission rates of well-to-pump were set to 0 (zero).

An additional process, manufacture/disposal, would account for energy and

emissions from vehicle production and disposal. This is not yet included in MOVES.

9.6. Vehicle Fuel Classifications
The top level vehicle fuel classifications are listed in Table 9-2, above, in the

context of their role in vehicle source bin classification. Implicit in this source bin

classification scheme is that a particular vehicle is designed to operate on one kind of

 36

fuel. The MOVES term for this top-level classification of vehicle fuels is “fuel type”.

DRAFT MOVES2009 considers the following fuel types:

Gasoline

Diesel Fuel

Compressed Natural Gas (CNG)

Liquid Propane Gas (LPG)

Ethanol (E85)

Methanol (M85)

Gaseous Hydrogen

Liquid Hydrogen

Electricity

To facilitate modeling the effects of alternative fuels on greenhouse gas

emissions, MOVES further divides these top level fuel types into fuel subtypes. In the

default MOVES database, for example, the gasoline fuel type has three subtypes:

conventional, reformulated, and gasohol (E10). Diesel fuel has three subtypes:

conventional, biodiesel, and Fischer-Tropsch diesel. Fuel subtypes represent alternative

ways of meeting the demand for a general type of fuel. MOVES assumes that vehicles

designed to operate on a top level fuel type may be operated on any of its subtypes

depending upon the fuel supply at a particular time and geographic location.

This fuel classification scheme was expanded further in DRAFT MOVES2009 to

further divide fuel subtypes into more specific “fuel formulations” which may be thought

of as a batch of fuel having specific values of measurable properties such as RVP, sulfur

content, and oxygenate content. This additional breakdown is necessary because these

fuel characteristics affect the emissions of pollutants added in DRAFT MOVES2009 and

vary within a fuel subtype. MOVES assumes that vehicles designed to operate on a top

level fuel type may be operated on any formulation of any of its fuel subtypes depending

upon the fuel supply at a particular time and geographic location.

 37

9.7. Emission Source Activity
The cornerstone of estimating mobile source energy usage and emission

inventories is vehicle activity. Vehicle activity centers on two fundamental questions:

what is the total amount of vehicle activity, and how is this activity subdivided into

modes that are unique in regards to energy consumption and emissions. The first

question is quantified in MOVES by the metric Total Activity. Total Activity, as the

name implies, is the total amount of vehicle activity for source use types in the given

location and time which the user has selected in the run specification. The basis of total

activity depends on the emission process, as shown in Table 9-3. In DRAFT

MOVES2009 the Total Activity Generator (TAG) estimates Total Activity for all

emission processes except well-to-pump. A simplified version of the TAG is used for

runs involving mesoscale table lookup.

 38

Table 9-3. Total Activity Basis by Process

Emission Process Total Activity Basis Description

Running

Tire wear

Brake wear

Source Hours Operating (SHO) Total hours, of all sources within
a source type, spent operating on
the roadway network for the
given time and location of the
run spec. The same as number
of sources * per-source hours
operating

Evaporative Fuel
Permeation, Vapor Venting
and Leaking

Source Hours Total hours, of all sources within
a source type for the given time
and location of the run spec.
This is equivalent to the
population of the source type
times the number of hours in the
time period.

Start Number of Starts Total starts, of all sources within
a source type, for the given time
and location of the run spec.
The same as number of sources
* per-source starts

Extended Idle Extended Idle Hours Total hours, of all sources within
a source type, spent in extended
idle operation for the given time
and location of the run spec.

Well-To-Pump Pump-To-Wheel Energy
Consumed

Total energy consumed, of all
sources within a source type, for
the given time and location of
the run spec. The sum of
running, start and extended idle.

The second piece of activity characterization is to define how this total activity

may be subdivided into operating modes which produce unique energy consumption and

emission rates. The operating mode concept is central to MOVES multi-scale analysis

capability, and has been expanded in DRAFT MOVES2009. In the MOVES design these

operating modes are allowed to vary by emission process and pollutant, and for some

pollutant-processes Total Activity is not further divided into multiple operating modes.

For the running emission process for all pollutants except CH4 and N2O, the total

source hours operating (SHO) activity basis is broken down into operating modes

 39

representing ranges of vehicle speed and vehicle specific power (VSP). The operating

modes used for the running emission process are shown in Tables 9-4 and 9-5.

Table 9-4. Operating Mode Bin Definitions for Running Energy Consumption)

Braking (Bin 0)
Idle (Bin 1)

VSP \ Instantaneous Speed 0-25mph 25-50 >50
< 0 kW/tonne Bin 11 Bin 21 -

0 to 3 Bin 12 Bin 22 -
3 to 6 Bin 13 Bin 23 -
6 to 9 Bin 14 Bin 24 -
9 to 12 Bin 15 Bin 25 -

12 and greater Bin 16 Bin 26 Bin 36
6 to 12 - - Bin 35

< 6 - - Bin 33

Table 9-5. Operating Mode Bin Definitions for Running THC, CO, NOx

Braking (Bin 0)
Idle (Bin 1)

VSP \ Instantaneous Speed 0-25mph 25-50 >50
< 0 kW/tonne Bin 11 Bin 21

0 to 3 Bin 12 Bin 22
3 to 6 Bin 13 Bin 23
6 to 9 Bin 14 Bin 24
9 to 12 Bin 15 Bin 25

12 and greater Bin 16
12 to 18 Bin 27 Bin 37
18 to 24 Bin 28 Bin 38
24 to 30 Bin 29 Bin 39

30 and greater Bin 30 Bin 40
6 to 12 Bin 35

< 6 Bin 33

 40

The start exhaust process emissions of THC, CO, and NOx are distinguished into

operating modes which represent the length of time the engine was off prior to starting as

follows:

 Table 9-6. Operating Modes for Start Process – THC, CO, and NOx

opModeID minSoakBound
in minutes

maxSoakBound
in minutes

101 null 6
102 6 30
103 30 60
104 60 90
105 90 120
106 120 360
107 360 720
108 720 null

The evaporative processes (fuel tank vapor venting, fuel permeation and liquid

leaking) have three operating modes: “operating”, “hot soaking” and “cold soaking”

where “hot soaking” is considered to be time (Source Hours) when the engine is not

operating, but has not yet cooled to a point where it is near the temperature it would be if

it had not been operating.

The brake wear process divides its Source Hours Operating activity basis into

periods where the vehicle brakes are being applied and all other operating time, during

which no brake wear emissions are considered to occur.

Other pollutant-processes are modeled without breakdown of their activity basis

into more detailed operating modes.

 41

9.8. Modeling Vehicle Inspection/Maintenance Programs
The MOVES model contains two basic classes for estimating Inspection and

Maintenance program (I/M) benefits. One is the exhaust I/M calculation class and the

other is evaporative I/M calculation class. Both classes have a similar basic algorithm

where the I/M emission reduction fraction is the product of an I/M Coverage fraction and

an Emission Reduction fraction.

9.8.1. I/M Coverage
Information about which pollutant-processes are “covered” by I/M programs in

various counties and calendar years is contained in the MOVES database table

IMCoverage. This coverage information is allowed to vary by pollutant - process,

county, year, regulatory class, and fuel type. The principal piece of information

contained in the IMCoverage table is the compliance factor. It attempts to represent (in

practice) a particular I/M program’s ability to achieve theoretical design benefits for their

program. It may vary from 0 to 1.0 where zero would represent a totally failed program

and 1.0 a perfectly successful program. Factors which tend to reduce the compliance

factor are the systematic waiver of failed vehicles from program requirements, the

existence of large numbers of motorists who completely evade the program requirements,

technical losses from improperly functioning equipment or inadequately trained

technicians.

Other data in the IMCoverage table includes the concept of I/M program sub-

types (called IMProgramID). A particular county will likely have several IMProgramIDs

that reflect different test types, test standards or inspection frequencies being applied to

different regulatory classes, model year groups or pollutant- process combinations. For

example, County A in calendar year 2007 may have an IMProgramID=1 that annually

inspects pre-1981 model year cars using an Idle test, and an IMProgramID=2 that

biennially inspects 1996 and later model year light-trucks using an OBD-II test.

The IMCoverage table also shows other important I/M parameters for each

IMProgramID. These include the model year information as a model year range (i.e.,

 42

beginning and ending model year), the frequency of inspection (i.e., annual, biennial and

continuous (i.e., monthly)), and test type (Idle, IM240, ASM, OBD-II) and test standard.

9.8.2. I/M Effectiveness

Information about the theoretical effectiveness of an I/M program design is

contained in the MOVES database table IMFactor. The effectiveness information varies

by pollutant - process, inspection frequency, test type, test standards, regulatory class,

fuel type, model year group and age group. All MOVES I/M effectiveness values

(IMFactor variable) were empirically generated from MOBILE6.2 runs. The Arizona

I/M program as generally operated from 1995 through 2002 was used as the reference

case. It receives an IMFactor of unity. Arizona’s I/M program was picked as the

reference because the underlying emission factors in MOVES are based on Arizona I/M

testing. The principal piece of information contained in the IMCoverage table is the

IMFactor. It represents the comparative effectiveness of one particular I/M test to

identify and reduce emissions.

The IMFactor and IMCompliance rate are multiplied together to compute the

IMAdjustFract. It is used in MOVES in the following general equation, and is labeled as

variable ‘R’. This equation is used to weight the I/M and Non I/M emission rates

together in MOVE to compute a composite result.

Ep = Eim * R + Enoim*(1 – R)

Ep is the Target I/M program emission rate from MOBILE6.2

Eim is the Reference I/M program (Arizona) emission rate from MOBILE6.2

Enoim is the Reference NON I/M program emission rate from MOBILE6.2

R is the I/M adjustment factor

Rearranging and solving for R equals:

 43

R = (Ep – Enoim) / (Eim - Enoim)

or

R = Ep /(Eim – Enoim) - Enoim / (Eim – Enoim)

I/M-1 Merge IMCompliance and IMFactor

This section computes the product of IMCompliance and IMFactor

Input Variables:
PollutantProcessModelYear. polProcessID,

 PollutantProcessModelYear. modelYearID,
 IMFactor. fuelTypeID,

IMFactor. regClassID,
 IMFactor. IMFactor

IMCoverage. complianceFactor

Output Variable:
 IMAdjustFract

 weightFactor

Joining and Conditional Variables
polProcessID
countyID

 yearID
modelYearID

 inspectFreq
 testTypeID
 testStandardsID
 regClassID
 fuelTypeID
 begModelYearID
 endModelYearID

Calculation:
IMAdjustFract = (IMFactor*complianceFactor*.01)

complianceFactor as weightFactor

 44

I/M-2 Combine I/M and Non I/M Emission Rates

This section weights the I/M and Non I/M Emission Rates using the
IMAdjustFract

Input Variables:

IMAdjustmentWithSourceBin. zoneID,

IMAdjustmentWithSourceBin, yearID,

EmissionRateByAge. polProcessID,

IMAdjustmentWithSourceBin. modelYearID,

EmissionRateByAge. sourceBinID,

EmissionRateByAge. opModeID

IMAdjustmentWithSourceBin. IMAdjustFract

EmissionRateByAge. meanBaseRate

Output Variable:
 meanBaseRate

Joining and Conditional Variables
polProcessID

 sourceBinID,
 ageGroupID

Calculation:

meanBaseRate = (meanBaseRateIM * IMAdjustFract +
meanBaseRate * (1.0-IMAdjustFract)

10. MOVES Functional Specifications
This chapter explains the functions, including calculations, performed by each

portion of the MOVES software, as shown in figure 8-1, or indicates where such

information can be found.

 45

10.1. Graphical User Interface (GUI) / Run Specification Editor
The MOVES Graphical User Interface (GUI) is used to produce and modify

MOVES run specifications. Its functionality is described in detail in the DRAFT

MOVES2009 User Guide. Components whose principal functionality is evident from the

GUI, such as the I/M Coverage Table Editor, are also documented in the User Guide.

10.2. Application Program Interface and Master Looping Mechanism
This basic component manages the overall execution of a MOVES model run. It

includes an application program interface (API) callable by either the command line

interface, or the MOVES GUI. This component invokes, directly or indirectly, the Input

Data Manager, any required Database Preaggregation, and, when performing a mesoscale

table lookup run, the Lookup Table Link Producer. These components execute before the

master looping mechanism is invoked.

Once these components have run to completion, a master looping mechanism is

executed. InternalControlStrategy, Generator, and EmissionCalculator objects have

“signed up” with this MasterLoop to execute over portions of the modeling domain. (The

modeling domain is defined by a RunSpec in terms of the emission processes, geographic

locations and time periods being modeled.)

If uncertainty estimation is being performed in the run, which involves running

multiple iterations, the looping process manages these iterations.

The MasterLooping mechanism uses a pool of control “threads” to bundle

Emisson Calculator input data (and SQL scripts to be run on the data) for portions of the

modeling domain and place them in the SharedWork directory. Another thread of control

is established to unbundle the results placed in the SharedWork directory by MOVES

Worker program(s). This thread also leads to the performance of the final result

aggregation and units conversion functions. If a mesoscale table lookup run is being

performed, an integrated post-processor is also invoked to create an additional table of

emission rates in the output database.

 46

This software component is obviously rather complicated and consists of a

number of Java classes. Programmer level documentation is required to understand this

component in greater detail.

10.3. Input Data Manager
The InputDataManager generates the MOVESExecution database from the

MOVESDefault database, removing (or “filtering”) records where possible based on the

needs of the run specification (RunSpec). The InputDataManager runs to completion

before any InternalControlStrategy objects, Generators or Calculators begin the MOVES

model calculations. The MOVES GUI and RunSpecs specify a list of “user input

databases” to be used in addition to the default database to construct the

MOVESExecution database.

The InputDataManager filters input records based on the following RunSpec

criteria: year, month, link, zone, county, state, pollutant, emission process, day, hour, day

and hour combination, roadtype, pollutant-process combination, sourceusetype, fueltype,

fuelsubtype, and monthgroup. This filtering is specified in a table-specific manner and

need not be applied to every table having these key fields. Filtering is not performed on

particular table columns where doing so would interfere with correct result calculation.

(The exact table columns to filter are specified in the Java code for the InputDataManager

class in the “tablesAndFilterColumns” array.) The reasons for not filtering a particular

table by all possible criteria are documented with program source code comments.

Input databases have the same table contents and structure as the MOVESDefault

database, but need not contain all tables. If a table is present, however, it must contain all

the table columns. Records from user input databases add to or replace records in the

MOVESDefault database. If the same record (i.e. a record having the same values of all

primary key fields but generally different non-key field values) is present in more than

one input database, the record from the user input database listed last is the one which

ends up in MOVESExecution.

The InputDataManager addes a field to core model input tables in the

MOVESExecution Database to indicate that the records came from a user input database

so that Generators may avoid deleting such records.

 47

MOVES verifies that all input tables present in user input databases contain the

required columns. The MOVES GUI also checks that the same database is not specified

for both input (either as the default input database or an additional input database) and for

output, and ensures that MOVESExecution is not used as either an input or an output

database. Otherwise, however, it remains the responsibility of the user to ensure that the

ordered application of any additional input databases called for in the run specification to

the MOVESDefault database results in a MOVESExecution database that is accurate,

complete and consistent.

10.4. Database Pre-Aggregation
To improve execution run time performance, when geographic selections are

made at the state or national level, MOVES “preaggregates” the MOVESExecution

database so that each state selected, or the entire nation, appears in the database as if it

were a single county. These geographic performance shortcuts are specified by the

“STATE” and “NATION“ GeographicSelectionType values produced by the

“Macroscale Geographic Selection” GUI screen and stored in MOVES run specifications.

No database preaggregation is performed when geographic selections are made at the

County level. County selections may still be used to produce results for broad

geographic areas if the user can endure their execution time performance. Geographic

preaggregation is not allowed for Mesoscale Lookup calculations.

Options are also available to improve execution run time performance by

“preaggregating” time periods in the MOVESExecution database. These options are

specified by the “Time Aggregation Level” item in the MOVES GUI and MOVES

RunSpec. This can assume the following values:

HOUR - no time period aggregations are performed. This is required for

evaporative emission calculations.

DAY - combine all hours of the day

MONTH - combine all portions of the week (though the default MOVES database

may not divide the week into smaller portions).

YEAR - combine months of the year

 48

All of these computational shortcuts (except COUNTY and HOUR) involve

compromises to the accuracy of the results.

The MOVES GUI adjusts the levels of geographic and time period detail

specified for the output if necessary so that levels of output detail which can no longer be

produced due to data preaggregation are not requested by the RunSpec.

10.4.1. Sequence of the Database Pre-Aggregation Operations:
After creation of the MOVESExecution database by the input data manager the

geographic and time period preaggregation operations are performed as follows:

a. If the GeographicSeletionType = NATION, the model creates an average county

which represents the entire nation. To do this the MOVESExecution database is

aggregated to a level where the nation consists of a single representative state and this

“state” consists of a single “county”, and a single “zone”. For macroscale there is a

single “link” for each road type in the RunSpec.

b. If the GeographicSeletionType = STATE, then the MOVESExecutionDatabase is

aggregated to a level where each state selection in the RunSpec consists of a single

“county” and a single “zone”. For macroscale there is a single “link” in each such

state for each road type in the RunSpec.

c. if the Time Aggregation Level value is DAY, MONTH, or YEAR, all data pertaining

to the 24 separate hours of the day in the MOVESExecution database is aggregated

into a single “pseudo-hour” representing the entire day. Time period preaggregation

is not allowed if evaporative emissions are being estimated.

d. if the Time Aggregation Level value is MONTH, or YEAR, all data pertaining to any

day-based portions of the week in the MOVESExecution database is further

aggregated into a single “pseudo-day” representing the entire week. If the Default

MOVES Database divides the week into a 5 weekday portion and a 2 weekend day

portion, MONTH or YEAR data preaggregation would remove this distinction.

e. if the Time Aggregation Level value is YEAR, all data pertaining to the 12 separate

months of the year in the MOVESExecution database are further aggregated into a

single “pseudo-month” representing the entire year.

 49

f. Following any of the pre-aggregation operations performed in steps a. thru e., the set

of ExecutionLocations used by the MasterLoop is recalculated based on the

aggregated database.

g. If the DAY, MONTH, or YEAR aggregations have been performed all information

derived from the run specification used throughout the remainder of the run is made

consistent with the aggregated time periods.

These operations run to completion before any MOVES MasterLoopable objects

(ControlStategy objects, Generators, and EmissionCalculators), are invoked.

10.4.2. How the Pre-aggregated Results are Reported
If either of the geographic computational shortcuts is taken, the output database

produced does not contain any “real” county (or perhaps even “real” state) level detail,

even though such detail is generally present in the MOVESDefault and user input

databases. Instead, additional “pseudo” values of stateID, countyID, etc. appear in the

output records when a geographic computational shortcut is taken.

If any one of the time period calculation shortcuts is taken, there may be only

single representative “hour”, “day” or “month” time periods for the MasterLoop to loop

over, (though no MasterLoopable objects currently sign up below the Month level), and

the output database produced may not contain any “real” hour, day, or month level detail,

even though such detail will generally be present in the MOVESDefault and user input

databases. Instead “pseudo” time period-identifying values will now be present in the

MOVEExecution and MOVESOutput databases.

10.4.3. Algorithms Used to Perform the NATION and STATE Pre-Aggregations
Table 10-1 describes the database aggregation algorithms used on a table-by-table

basis for the NATION and STATE cases. Tables not listed contain no geographic

identifiers and are therefore not affected by these aggregations. While some of these

table aggregations are simple summations, others are “activity-weighted”. For these

activity-weighted summations to be performed entirely correctly, something approaching

the full execution of the control strategies and generators would have to be performed

which would defeat the purpose of the pre-aggregation. So, instead, these “activity-

weighted” aggregations involve compromise and simplification. Specifically, the activity

 50

weighting is based entirely upon “startAllocFactor” values in the Zone table. The

variable startAllocFactor is the factor used within MOVES to allocate the total number of

starts from the national to the county / zone level. In the default MOVES database for

DRAFT MOVES2009 this allocation is based on vehicle miles traveled (VMT), hence

the use of startAllocFactor for the pre-aggregation weightings is in essence a VMT

weighting. More details on startAllocFactor and its derivation can be found in the report

“MOVES2004 Highway Vehicle Population and Activity Data”.

Table 10-1. Database Aggregation Algorithms

MOVES
Database Table

GeographicSelectionType
= NATION

GeographicSelectionType
= STATE

State Single Record, stateID=0,
stateName=Nation,
stateAbbr=US

No action required. Already filtered by
stateID

County Single Record, countyID = 0.
stateID=0, countyName=Nation,
altitude=L
barometric pressure and GPAFract
are activity-weighted.

Single record per stateID,
countyID=stateID*1000,
countyName = stateName,
altitude = L
barometric pressure and GPAFract are
activity-weighted.

Zone Single Record,
zoneID=0, countyID=0.,
startAllocFactor = 1.0
idleAllocFactor = 1.0
SHPAllocFactor = 1.0

Single record per stateID,
zoneID=stateID*10000,
countyID= stateID*1000
startAllocFactor = sum of old factors for
state.
Same for idleAllocFactor and
SHPAllocFactor

Link Single record for each roadTypeID
in RunSpec.
linkID=roadTypeID,
countyID = 0.
zoneID = 0.
linkLength = NULL
linkVolume = NULL
grade = weighted national average

Single record for each stateID - roadTypeID
in RunSpec.
linkID= stateID * 100000 + roadTypeID,
countyID = stateID*1000,
zoneID = stateID*10000
linkLength = NULL
linkVolume = NULL
grade = weighted state average

CountyYear Single record for each yearID,
countyID = 0

Single record per stateID - yearID
combination. countyID = stateID*1000.

 51

ZoneMonthHour Single record for each monthID-
hourID combination in old table.
(These have been filtered.)
Calculate activity-weighted national
average temperature and relative
humidity.
heatIndex and specific humidity are
recalculated by Met generator.

Single record for each combination of new
zoneID, month and hour. (These have been
filtered.)
Calculate activity-weighted state average
temperature and relative humidity.
heatIndex and specific humidity are
recalculated by Met generator.

OpMode
Distribution

(contents would be from user input.)
Aggregate to national level roadType
linkIDs, weighting by activity.

(contents would be from user input.)
Aggregate to state level roadType linkIDs,
weighting by activity.

ZoneRoadtype Single record for each roadTypeID.
SHOAllocFactor = sum of old
SHOAllocFactors

Single record for each new zoneID,
roadTypeID combination. SHOAllocFactor
= sum of old SHOAllocFactors

FuelSupply
(Default values
are considered.)

Activity-weighted aggregation of all
old counties to single new county.
Since the fuel supply is in terms of
fuel formulations, there may be
many fuel formulations in the
aggregate.

Activity-weighted aggregation of all old
counties in state to single new county.
Since the fuel supply is in terms of fuel
formulations, there may be many fuel
formulations in the aggregate.

IMCoverage The NATION is considered to have
IMCoverage with unknown (NULL)
inspection frequencies, activity-
weighted average IMAdjustFract
values, and model year ranges which
range from the earliest to the latest
present at any location, for a given
year, polProcess,fueltype and
regclass. This is obviously an
approximation.

Each STATE is considered to have
IMCoverage with unknown (NULL)
inspection frequencies, activity-weighted
average IMAdjustFract values, and model
year ranges which range from the earliest to
the latest present at any location in the state,
for a given year, polProcess,fueltype and
regclass. This is obviously an
approximation.

SHO (contents would be from user input.)
Combine all links having same
roadtype. SHO and distance are
simple summations.

(contents would be from user input.)
Combine all links within state having same
roadtype. SHO and distance are simple
summations.

SourceHours (contents would be from user input.)
Combine all zones. starts field is a
simple summation.

(contents would be from user input.)
Combine all zones within state. starts field
is a simple summation.

Starts (contents would be from user input.)
Combine all zones. starts field is a
simple summation.

(contents would be from user input.)
Combine all zones within state. starts field
is a simple summation.

Extended
IdleHours

(contents would be from user input.)
Combine all zones.
extendedIdleHours field is a simple
summation.

(contents would be from user input.)
Combine all zones within state.
extendedIdleHours field is a simple
summation.

 52

SCCRoadType
Distribution

Combine all zones,
SCCRoadTypeFractions are activity-
weighted.

Combine all zones in state,
SCCRoadTypeFractions are activity-
weighted.

AverageTank
Temperature

(contents would be from user input.)
Combine all zones,
averageTankTemperature values are
activity-weighted.

(contents would be from user input.)
Combine all zones in state,
averageTankTemperature values are
activity-weighted.

SoakActivity
Fraction

(contents would be from user input.)
Combine all zones,
soakActivityFraction values are
activity-weighted.

(contents would be from user input.)
Combine all zones in state,
soakActivityFraction values are activity-
weighted.

ColdSoakTank
Temperature

(contents would be from user input.)
Combine all zones,
coldSoakTankTemperature values
are activity-weighted.

(contents would be from user input.)
Combine all zones in state,
coldSoakTankTemperature values are
activity-weighted.

ColdSoakInitial
HourFraction

(contents would be from user input.)
Combine all zones,
coldSoakInitialHourFraction values
are activity-weighted.

(contents would be from user input.)
Combine all zones in state,
coldSoakInitialHourFraction values are
activity-weighted.

AverageTank
Gasoline

(contents would be from user input.)
Combine all zones, ETOHVolume
and RVP values are activity-
weighted.

(contents would be from user input.)
Combine all zones in state, ETOHVolume
and RVP values are activity-weighted.

10.4.4. Algorithms Used to Perform the Time Period Pre-Aggregations
Table 10-2 describes the database aggregation algorithms used on a table-by-table

basis for the DAY (Portion of the Week), MONTH, and YEAR time period pre-

aggregations. These must operate correctly whether or not one of the STATE or

NATION aggregations has been performed. The MONTH-level preaggregation assumes

that the DAY level has been performed and the YEAR-level assumes that the MONTH

level has been performed. Tables not listed contain no time period identifiers and are

therefore not affected by these aggregations.

While some of these table aggregations are simple summations, others are

“activity-weighted”. All activity-based weighting is in essence based on VMT, using

allocations of VMT at the level necessary for the desired aggregation. For these activity-

weighted summations to be performed entirely correctly, something approaching the full

execution of the control strategies and generators would have to be performed which

 53

would defeat the purpose of the pre-aggregation. So instead these “activity-weighted”

aggregations involve some compromise and simplification. Specifically, the activity

weighting used for the DAY aggregation is based upon the values in the

HourVMTFraction table; the weighting used for the MONTH aggregation is based upon

the values in the DayVMTFraction table; and the activity weighting used for the YEAR

aggregation is based upon the values in the MonthVMTFraction table. Because these

activity fractions themselves depend upon other dimensions of the model, which do not

always appear in the tables being aggregated, several variations of each aggregation are

utilized, some of which are approximations:

For aggregating hours into Days, three activity-weighting variations are used.

(The third and fourth are approximations.)

HourWeighting1: is based directly on the HourVMTFraction table itself, which is

used to aggregate tables sharing its sourceTypeID, roadTypeID, and dayID primary

keys.

HourWeighting2: uses RoadTypeDistribution to aggregate HourVMTFraction over

Roadtype. This is used to aggregate tables having sourceTypeID and dayID, but not

roadTypeID.

HourWeighting3: is a simple weighting by hourID used to aggregate tables sharing no

keys with HourVMTFraction except hourID. It is produced from HourWeighting2 by

using the data for the passenger car source type, and giving equal weight to all

portions of the week.

HourWeighting4: is produced from HourWeighting2 by using the data for the

passenger car source type. This is used to aggregate tables sharing no keys with

HourVMTFraction except dayID and hourID.

For aggregating days (periods of the week) into Months, three activity-weighting

variations are needed. The third is an approximation.

 54

DayWeighting1: is based on the DAYVMTFraction table, with MonthID removed by

using weights from MonthVMTFraction. Its key fields are sourceTypeID,

roadTypeID, and dayID.

DayWeighting2: is based on DayWeighting1, with roadTypeID removed by using

information from RoadTypeDistribution. Its key fields are sourceTypeID and dayID.

DayWeighting3: is based on DayWeighting2, and uses the distribution for

sourceTypeID = 21 for all sourceTypes.

For aggregating months into years, only one activity-weighting is needed, and it is an

approximation:

MonthWeighting: based on MonthVMTFraction information for passenger cars only.

The analogous technique is used to aggregate month groups into years. (Monthgroups

are used in some MOVES Database tables and were intended to represent seasons of the

year. As the MOVES default database is currently populated, however, monthgroups

correspond exactly to months.

 55

Table 10-2. Description of Time Period Aggregations to Be Performed

MOVES Database
Table

Aggregation of Hours to
DAY (Portion of the
week)

Aggregation of Days
(Portions of the week) to
MONTH
(assumes DAY
aggregation.)

Aggregation of Months
to YEAR
(assumes MONTH
aggregation.)

HourOfAnyDay Single Record, hourID=0,
hourName = “Entire day”.

DayOfAnyWeek Single record.
dayID=0.
dayName = “Whole
Week”; noOfRealDays=7

HourDay Record for each dayID,
hourDayID = dayID;
hourID=0

Single record. dayID=0.
hourID=0.

MonthOfAny
Year

 Single record.
MonthID = 0
noOfDays = 365
monthGroupID=0

MonthGroup
OfAnyYear

 Single record.
MonthGroupID=0
monthGroupName =
“Entire Year”.

HourVMT
Fraction

Record for each
SourceType- RoadType-
Day combination.
HourVMTFraction = 1.0

Record for each
SourceType- RoadType
combination.
HourVMTFraction = 1.0

DayVMT
Fraction

 Record for each
SourceType-Month-
RoadType combination.
DayVMTFraction = 1.0

Record for each
SourceType-RoadType
combination.
DayVMTFraction = 1.0

MonthVMT
Fraction

 monthVMTFraction = 1.0

AvgSpeed
Distribution

Activity-weighted average
avgSpeedFraction using
HourWeighting1

Activity-weighted
average
avgSpeedFraction using
DayWeighting1

 56

OpMode
Distribution
(contents would be
from user input.)

Activity-weighted average
opModeFraction using
HourWeighting1

Activity-weighted
average opModeFraction
using DayWeighting1

SourceType
Hour

Hour-level
idleSHOFactors are
summed

Activity-weighted
average idleSHOFactor
using DayWeighting2

SHO
(contents would be
from user input.)

Simple summation of SHO
and distance

Simple summation of
SHO and distance

Simple summation of
SHO and distance

SourceHours Simple summation of
sourceHours

Simple summation of
sourceHours

Simple summation of
sourceHours

Starts
(contents would be
from user input.)

Simple summation of
starts

Simple summation of
starts

Simple summation of
starts

Extended
IdleHours
(contents would be
from user input.)

Simple summation of
extendedIdleHours

Simple summation of
extendedIdleHours

Simple summation of
extendedIdleHours

ZoneMonthHour Activity-weighted average
temperature and
relHumidity using
HourWeighting3.
MetGenerator will
recalculate heatIndex and
specific humidity.

 Activity-weighted
average temperature and
relHumidity using
MonthWeighting.
MetGenerator will
recalculate heatIndex and
specific humidity.

MonthGroup
Hour

Activity-weighted
ACActivity terms using
HourWeighting3.

 Activity-weighted
ACActivity terms using
MonthGroupWeighting.

SampleVehicleTrip Set hourID = 0 for all trips Set dayID = 0 for all
trips. Assumes vehIDs
are unique across dayIDs.

SampleVehicleDay Set dayID = 0 for all
vehicle days. Assumes
vehIDs are unique across
dayIDs.

StartsPerVehicle

(contents would be
from user input.)

hourDayID = dayID

Simple summation of
startsPerVehicle

hourDayID = 0.

Simple summation of
startsPerVehicle

 57

FuelSupply Activity-weighted
marketshare using
MonthGroupWeighting.
(Note: default values
produced by
DefaultDataMaker, must
be considered.)

AverageTank
Temperature

(contents would be
from user input.)

Activity weighted
averageTankTemperature
using HourWeighting4.

Activity weighted
averageTankTemperature
using DayWeighting3.

Activity weighted
averageTankTemperature
using MonthWeighting

SoakActivity
Fraction

(contents would be
from user input.)

Activity-weighted
soakActivityFraction using
HourWeighting2

Activity weighted
average
soakActivityFraction
using DayWeighting2.

Activity weighted
average
soakActivityFraction
using MonthWeighting

10.4.5. Calculation Inaccuracies Introduced by the Database Pre-Aggregations:

The simplified activity-weighted aggregations introduce the following

approximations relative to having MOVES perform its calculations individually for each

real county-location and for each hour of the day:

- Start-based activity, while appropriate for the start process, represents an

approximation for other processes whose activity basis (SHO, etc.) may not exactly

correspond to start activity.

- Direct user input to the CMIT tables may override the Zone.startAllocFactor values.

Any effect on activity of direct user input to the CMIT tables is not taken into

account.

- Control strategies may eventually be added to MOVES which adjust activity levels.

Any such effects are not included.

- The potentially significant non-linear relationships of the emissions calculations to

temperature and humidity are ignored. This may be especially serious at the national

level.

- Activity weighted hourly averages are used when combining hourly temperature,

humidity, AC activity information, and any user supplied average tank temperature

values for the hours of the day, but differences in hourly activity levels between the

 58

passenger car source use type and other source use types are ignored in this

calculation, as are differences in hourly activity levels by day of the week.

- The distribution of passenger car VMT to the periods of the week is used for all

source types when aggregating any user-supplied average tank temperature data to the

month level.

- Differences in monthly activity patterns between passenger cars and other source

use types are ignored when calculating weighted average annual temperature,

humidity, ACActivity, fuelSubtype marketshares, average fuel tank temperatures and

soakactivityfractions.

- When calculating annual data from monthly data, all years are considered to be non-

leap years.

An initial analysis of the sensitivity of MOVES results to levels of pre-aggregation was

presented in the report “MOVES2004 Validation Results”. While DRAFT MOVES2009

did produce different results depending on the level of aggregation selected by the user,

the magnitude of difference for energy consumption did not appear to be very large. For

example, the difference in total energy results between a run where state / month pre-

aggregation was selected was about 2 percent higher than the same run where nation /

year pre-aggregation was selected.

 59

10.5. Mesoscale Lookup Table Link Producer (LTLP)

 This component is invoked when executing runs which specify the “Mesoscale

Lookup” Scale. It reconstructs the contents of the Link table and populates the

LinkAverageSpeed table based on the contents of the AverageSpeedBin and Zone tables.

It is invoked early during the run execution after the InputDataManager has constructed

the MOVESExecution database. It simplifies this situation that geographic

preaggregation is not allowed in conjunction with Mesoscale Lookup. Within the

MOVES program code it is implemented within a component called the

GeographicExecutionLocationProducer which produces the list of locations looped over

by the Master Looping mechanism.

 The current default “Link” table has a record for each combination of county and

road type. The LTLP populates the Link table with unique links for every combination

of averageSpeedBinID value in the AverageSpeedBin table, each zoneID in the RunSpec,

and each roadTypeID in the RunSpec.

a. The linkID is generated to be a unique value. (Current macroscale linkID * 100 +

averageSpeedBinID.)

b. The zoneID and roadTypeID fields are populated appropriately.

c. The countyID field is populated based on the zoneID.

d. The linkLength, linkVolume and grade fields are not used and are set to Null.

 The LTLP also populates the LinkAverageSpeed table with a single record for

each of the new linkIDs. The average speed value used is the avgBinSpeed value from

the AverageSpeedBin table for the AvgSpeedBin represented by the Link.

 60

10.6. Total Activity Generator (TAG) for Macroscale
This generator calculates total activity pursuant to the run specification for each

source use type in DRAFT MOVES2009 using the MOVESExecution database. This

activity includes Start activity (number of starts), Extended Idle Hours, and Source Hours

in addition to source hours operating (SHO). This activity information is categorized by

time span, geographic location, source type and age. The product of the TAG is four core

model input tables produced in MOVESExecution containing these results: SHO, Starts,

ExtendedIdleHours, and SourceHours. The TAG also calculates an intermediate form of

distance traveled information which is stored in the SHO table. This version of the TAG

is not used for the Mesoscale Lookup scale.

The algorithm used to calculate total activity for a given time and location by

source type and age is divided into ten steps (numbered 0 thru 9) referred to as TAGs

(total activity generator steps) in this document. Each TAG step references the

MOVESExecution database and implements a simple mathematical formula. The primary

function of the TotalActivityGenerator is to convert commonly-available activity data

such as vehicle miles traveled (VMT), age distribution, vehicle populations, sales and

VMT growth rates, etc. to the MOVES activity parameters of source hours, source hours

operating, starts, and extended idle hours. Externally-provided VMT is thus the primary

driver of total activity. Steps 1-3 calculate allocations of total VMT by vehicle age and

source type. Step 4 grows VMT. Steps 5 and 6 allocate VMT by time, space, vehicle age

and source type. Step 7 converts the allocated VMT to the MOVES activity parameters

of source hours operating (SHO), number of starts, and extended idle hours. Step 8

allocates activity to zones (e.g. counties for the default case), and Step 9 re-calculates

distance for output reporting purposes. A brief description of each of the TAGs is shown

in table 10-3. The HPMS acronym used in the table refers to the Highway Performance

Management System.

Table 10-3. Overview of TAG Calculations

Step Description
TAG-0 Determine the base year Determine the appropriate base year to use in

 61

growth calculations

TAG-1 Calculate Base Year Vehicle
Population

Establish base-year vehicle population in
modeling domain by use type, age

TAG-2 Grow Vehicle Population to Analysis
Year

If analysis year is in future, establish analysis
year population through growth and scrappage

2a Age 0

2b Age 1 through 29

2c Age 30 and higher

TAG-3 Calculate Analysis Year Travel
Fraction

Calculation travel fraction across domain as
function of age mix and annual miles traveled,
by use type and age

3a Calculate total population within
HPMS vehicle class

3b Calculate fraction within HPMS
vehicle class

3c Compute travel fraction

TAG-4 Calculate Analysis Year VMT If analysis year is in future, establish analysis
year aggregate VMT across domain from base
year VMT and growth

TAG-5 Allocate Analysis Year VMT By
Roadway Type, Use Type, Age

Allocate aggregate VMT to roadway type, use
type and age

TAG-6 Allocate Annual VMT to Hour by
Roadway Type, Use Type, Age

Allocate annual VMT to hourly VMT

TAG-7 Convert to Total Activity Basis By
Process

Convert to total activity basis at domain level:
SHO, Starts, Extended Idle Hours, Source
Hours Parked (a portion of Source Hours)

7a Calculate average speed

7b Convert to SHO

7c Calculate Starts

7d Convert SHO to Exetended Idle Hours

7e Calculate Source Hours Parked (SHP)

TAG-8 Allocate Total Activity to Location Allocate total activity to locations using
geographic allocation factors

8a Allocate SHO to Links

8b Allocate Starts to Zones

8c Allocate Extended Idle Hours to Zones

8d Allocate SHP to Zones

8e Calculate Source Hours by Zone and
Roadway

TAG-9 Calculate Distance Traveled Calculate SHO.distance from SHO and
average speeds

 62

Some overall considerations when performing these calculations are:

1. The TotalActivityGenerator signs up for the Master Loop at the Year level which

means the calculations are performed individually for each year at each location (i.e. link)

for each emission process requiring SHO, start, extended idle hour, or source hour

activity information.

2. The MOVES design allows the user to provide some or all of the values in core model

input tables such as SHO, Starts, ExtendedIdleHours and SourceHours. The

InputDataManager places any such user-supplied values in the MOVESExecution

database before the TotalActivityGenerator is activated. The TotalActivityGenerator

does not replace such user-supplied values.

3. When the Total Activity Generator encounters a missing value when performing a

calculation, the result of the calculation is considered as missing. Records for which the

results are missing are not represented by a value of zero but are left out of the database.

Detailed descriptions of the calculations in each TAG step follow. Each of the

variables used in the TAG calculations either exists in the MOVESExecution database or

is calculated by a previous TAG step. All of the database variables are described in the

database documentation included in the database. The table in which each variable can

be found is indicated in parentheses in the “Input Variables”portion of each TAG step

description.

10.6.1. TAG-0: Determine the Base Year
Before any calculations can be done, the appropriate base year must be

determined using the year of analysis and the isBaseYear information in the Year table.

Input Variables:
isBaseYear (Year)
calendar year (from RunSpec)

Output Variable:
baseYear

Calculation:
yearID = calendar year

IF isBaseYear(yearID) = "Y", then baseYear=yearID.

ELSE

 63

baseYear = maximum value of yearID which is less than the calendar year and

for which isBase(Year)= "Y”

10.6.2. TAG-1: Calculate Base Year Vehicle Population By Age.
Input Variables:

sourceTypePopulation (SourceTypeYear)
ageFraction (SourceTypeAgeDistribution)
baseYear (from previous step)

Output Variable:
sourceTypeAgePopulation, (in new SourceTypeAgePopulation table)

Calculation:
yearID=baseYear
sourceTypeAgePopulation (yearID, sourceTypeID, ageID) =
sourceTypePopulation (yearID, sourceTypeID) *
ageFraction (yearID, sourceTypeID, ageID)

10.6.3. TAG-2: Grow Vehicle Population from Base Year to Analysis Year
NOTE: This step is only required if the analysis year is in the future relative to the base

year. For future projection, these TAG-2 steps are repeated in every year until the

analysis year is reached.

TAG-2a: Age Zero (New Vehicles)
This calculation applies only to ageID=0.

Input Variables:
sourceTypeAgePopulation, from previous step,
 for ageID=0 and yearID=yearID-1
salesGrowthFactor (SourceTypeYear)
migrationRate (for yearID and yearID-1) (SourceTypeYear)

Output Variable:
sourceTypeAgePopulation (for ageID=0 in current yearID)

Calculation:
sourceTypeAgePopulation (yearID, sourceTypeID, ageID=0) =
[sourceTypeAgePopulation (yearID-1, sourceTypeID, ageID=0) /
migrationRate (yearID-1, sourceTypeID)] *
salesGrowthFactor (yearID, sourceTypeID) *
migrationRate (yearID, sourceTypeID)

Note: the full equation would divide through by age=0 survival rate to derive new
sales in previous years prior to scrappage, and multiply by the same term to account
for scrappage in the first year. Since scrappage is the same in all years, they cancel
each other out, and these terms are excluded from the equation.

TAG-2b: Ages 1 through 29
This calculation loops through AgeID=x, where x is 1 through 29.

 64

Input Variables:
sourceTypeAgePopulation (for ageID=x and yearID=yearID-1)
survivalRate (for AgeID=x) (SourceTypeAge)
migrationRate (SourceTypeYear)

Output Variable:
sourceTypeAgePopulation (for ageID=1 through 29 in current yearID)

Calculation:
sourceTypeAgePopulation (yearID, sourceTypeID, ageID=x) =
sourceTypeAgePopulation (yearID-1, sourceTypeID, ageID=x-1) *
survivalRate (sourceTypeID, ageID=x-1) *
migrationRate (yearID, sourceTypeID)

TAG-2c: Age 30
This calculation is for Age 30, which includes years 30 and higher.

Input Variables:
sourceTypeAgePopulation (for ageID=29 & 30 and yearID=yearID-1)
survivalRate (for ageID=29 & 30) (SourceTypeAge)
migrationRate (SourceTypeYear)

Output Variable:
sourceTypeAgePopulation (for ageID=30 in current yearID)

Calculation:
sourceTypeAgePopulation (yearID, sourceTypeID, ageID=30) =
sourceTypeAgePopulation (yearID-1, sourceTypeID, ageID=29) *
survivalRate (sourceTypeID, ageID=29) *
migrationRate (yearID, sourceTypeID) +
sourceTypeAgePopulation (yearID-1, sourceTypeID, ageID=30) *
survivalRate (sourceTypeID, ageID=30) *
migrationRate (yearID, sourceTypeID)

10.6.4. TAG-3: Calculate Analysis Year Travel Fraction

TAG-3a: Calculate total population within Highway Performance Management System
(HPMS) vehicle class.

Input Variables:
sourceTypePopulation (for each sourceTypeID within HPMSVtypeID)
 (SourceTypeYear)
HPMSVtypeID (HPMSVtype)

Output Variable:
HPMSVtypePopulation

Calculation:
HPMSVTypePopulation (yearID, HPMSVtypeID) =
Sum of [SourceTypeAgePopulation (yearID, sourceTypeID, ageID)]
over all ageID,
for all sourceTypeID within each HPMSVtypeID.

TAG-3b: Calculate fraction within HPMS vehicle class
Input Variables:

 65

sourceTypeAgePopulation (from step 2)
HPMSVtypePopulation (from previous step)

Output Variable:
fractionwithinHPMSVtype

Calculation:
fractionwithinHPMSVtype (yearID, sourceTypeID, ageID) =
sourceTypeAgePopulation (yearID, sourceTypeID, ageID) /

HPMSVTypePopulation (yearID, HPMSVtypeID, sourceTypeID)

TAG-3c: Compute travel fraction
Input Variables:

fractionwithinHPMSVtype (from previous step)
relativeMAR (SourceTypeAge)

Output Variable:
travelFraction

Calculation:
travelFraction (yearID, sourceTypeID, ageID) =
(fractionwithinHPMSVtype (yearID, sourceTypeID, ageID=x) *
relativeMAR (sourceTypeID, ageID=x)) /
Sum of [fractionwithinHPMSVtype (yearID, sourceTypeID, ageID=x) *
relativeMAR (sourceTypeID, ageID=x)] over all ageID and for all

sourceTypeID within each HPMSVtype.

10.6.5. TAG-4: Calculate Analysis Year VMT
Determine the total VMT within each HPMS vehicle type, accounting for VMT

growth. This calculation is repeated in every yearID until the analysis year is reached.

TAG-4a: Base year.
In the base year, the analysisYearVMT is the same as the HPMSBaseYearVMT.

Input Variables:
HPMSBaseYearVMT (yearID=BaseYear) (HPMSVtypeYear)

Output Variable:
analysisYearVMT

Calculation:
analysisYearVMT (yearID, HPMSVTypeID) =
HPMSBaseYearVMT (yearID, HPMSVTypeID)

TAG-4b: All years following the base year.
In the any years following the base year, the analysisYearVMT is calculated from the
previous year's value for analysisYearVMT.

Input Variables:
analysisYearVMT (yearID-1)
VMTGrowthFactor (HPMSVtypeYear)

Output Variable:

 66

analysisYearVMT
Calculation:

analysisYearVMT (yearID, HPMSVTypeID) =
analysisYearVMT (yearID-1, HPMSVTypeID) *
VMTGrowthFactor (yearID, HPMSVTypeID)

10.6.6. TAG-5: Allocate Analysis Year VMT by Roadway Type, Use Type, Age
Input Variables:

analysisYearVMT (from previous step)
roadTypeVMTFraction (RoadTypeDistribution)
travelFraction (from step 3)

Output Variable:
annualVMTbyAgeRoadway

Calculation:
annualVMTbyAgeRoadway (yearID, roadTypeID, sourceTypeID, ageID) =
analysisYearVMT (yearID, HPMSVTypeID) *
roadTypeVMTFraction (roadTypeID, sourceTypeID) *
travelFraction (yearID, sourceTypeID, ageID)

10.6.7. TAG-6: Allocate Annual VMT to Hour
Input Variables:

annualVMTbyAgeRoadway (from previous step)
monthVMTFraction (MonthVMTFraction)
dayVMTFraction (DayVMTFraction)
hourVMTFraction (HourVMTFraction)
noOfDays (MonthOfAnyYear)

Output Variable:
VMTbyAgeRoadwayHour

Calculation:
VMTbyAgeRoadwayHour (yearID, roadTypeID, sourceTypeID, ageID,

monthID, dayID, hourID) =
annualVMTbyAgeRoadway (yearID, roadTypeID, sourceTypeID, ageID) *
monthVMTFraction (sourceTypeID, isLeapYear, monthID) *
dayVMTFraction (roadTypeID, sourceTypeID, monthID, dayID) *
hourVMTFraction (roadTypeID, sourceTypeID, dayID, hourID)
/ (noOfDays/7)

10.6.8. TAG-7: Convert to Total Activity Basis
Tag-7a: Compute average speed by roadway type

Input Variables:
avgBinSpeed (AvgSpeedBin)
averageSpeedFraction (AverageSpeedDistribution)

Output Variable:
averageSpeed

Calculation:
averageSpeed (roadTypeID, sourceTypeID, dayID, hourID) =

 67

 Sum of [avgBinSpeed(avgSpeedBin) *
averageSpeedFraction(roadTypeID, sourceTypeID, dayID, hourID,

avgSpeedBin)] over all avgSpeedBin

Tag-7b: Convert VMT to SHO
Input Variables:

VMTbyAgeRoadwayHour (from step 6)
averageSpeed (from previous step)

Output Variable:
SHObyAgeRoadwayHour

Calculation:
SHObyAgeRoadwayHour (yearID, roadTypeID, sourceTypeID, ageID,
monthID, dayID, hourID) =
VMTbyAgeRoadwayHour(yearID, roadTypeID, sourceTypeID, ageID,
monthID, dayID, hourID) /
averageSpeed (roadTypeID, sourceTypeID, dayID, hourID)

Tag-7c: Calculate Starts

Preliminary Calculation
For each combination of sourceTypeID, hourID, and dayID

startsPerVehicle = (number of records in INNER JOIN of SampleVehicleDay
and SampleVehicleTrip with non null keyOnTimes)
/
(number of records in SampleVehicleDay)

This calculation excludes “Marker Trips”.

Input Variables:
startsPerVehicle (sourceTypeID, hourID, dayID)
sourceTypeAgePopulation (yearID, sourceTypeID, ageID) (from step 2)

Output Variable:
startsByAgeHour

Calculation:
startsByAgeHour (yearID, sourceTypeID, ageID, dayID, hourID) =

sourceTypeAgePopulation (yearID, sourceTypeID, ageID) *
startsPerVehicle (sourceTypeID, hourID, dayID)

 68

Tag-7d: Convert SHO to Extended Idle Hours
Input Variables:

SHObyAgeRoadwayHour (from step 7b)
idleSHOFactor (SourceTypeHour)

Output Variable:
idleHoursbyAgeHour

Calculation:
idleHoursbyAgeHour (yearID, sourceTypeID, ageID, monthID, dayID, HourID)

=
(Sum over 24 hours and over all Roadtypes (SHObyAgeRoadwayHour(yearID,

roadTypeID, sourceTypeID, ageID, monthID, dayID, hourID))) *
idleSHOFactor(sourceType, dayID, hourID)

Tag-7e: Calculate Source Hours Parked (SHP)
Input Variables:

SHObyAgeRoadwayHour (yearID, roadTypeID, sourceTypeID, ageID,
monthID, dayID, hourID) (from step 7b)
sourceTypeAgePopulation (yearID, sourceTypeID, ageID) (from step 2)
noOfRealDays (DayOfAnyWeek)

Output Variable:
SHPbyAgeHour (yearID, sourceTypeID, ageID, monthID, dayID, hourID)

Calculation:
SHPbyAgeHour = sourceTypeAgePopulation * noOfRealDays-
Sum over roadtypes(SHObyAgeRoadwayHour)

10.6.9. TAG-8: Allocate Total Activity to Location
Tag-8a: Allocate SHO to Links

Input Variables:
SHOByAgeRoadwayHour (from step 7b)
SHOAllocationFactor (ZoneRoadwayType)

Output Variable:
SHO (SHO)
This result populates the SHO field in SHO table.

Calculation:
SHO(yearID, zoneID, roadTypeID, sourceTypeID, ageID, monthID, dayID,

hourID) =
SHOByAgeRoadwayHour(yearID, roadTypeID, sourceTypeID, ageID,

monthID, dayID, hourID) *
SHOAllocationFactor(zoneID, roadTypeID)

Tag-8b: Allocate Starts to Zones
Input Variables:

startsByAgeHour (from step 7c)

 69

startAllocFactor (Zone)
Output Variable:

Starts (Starts)
Result of TAG-8b populates “starts” field of Starts Table

Calculation:
starts(yearID, zoneID, sourceTypeID, ageID, monthID, dayID, hourID) =
startsByAgeHour(yearID, sourceTypeID, ageID, dayID, hourID) *

startAllocFactor(zoneID))

Tag-8c: Allocate Extended Idle Hours to Zones
Input Variables:

idleHoursByAgeHour (from step 7d)
idleAllocFactor (Zone)

Output Variable:
extendedIdleHours(ExtendedIdleHours)
Result of TAG-8c populates “extendedIdleHours” field of ExtendedIdleHours

Table
Calculation:

extendedIdleHours(yearID, zoneID, sourceTypeID, ageID, monthID, dayID,
hourID) =

idleHoursByAgeHour(yearID, sourceTypeID, ageID, monthID, dayID, hourID)
* idleAllocFactor(zoneID)

Tag-8d: Allocate SHP to Zones

Input Variables:

SHPByAgeHour (from step 7e)
SHPAllocFactor (Zone)

Output Variable:
SHP (in an intermediate table)

Calculation:
SHP(yearID, zoneID, sourceTypeID, ageID, monthID, dayID, hourID) =
SHPByAgeHour(yearID, sourceTypeID, ageID, monthID, dayID, hourID) *

SHPAllocFactor(yearID, zoneID)

Tag-8e: Calculate Source Hours by Zone and Roadway

Input Variables:
SHP (from step 8d)
SHO (from step 8a)

Output Variable:
sourceHours(SourceHours) result of this step populates sourceHours field in

SourceHours table
Calculation:

sourceHours(yearID, zoneID, roadTypeID <> OffNetwork, sourceTypeID,
ageID, monthID, dayID, hourID) = SHO(yearID, zoneID, roadTypeID,
sourceTypeID, ageID, monthID, dayID, hourID)

 70

sourceHours(yearID, zoneID, roadTypeID = OffNetwork, sourceTypeID, ageID,
monthID, dayID, hourID) = SHP(yearID, zoneID, sourceTypeID, ageID,
monthID, dayID, hourID)

10.6.10. TAG-9: Calculate Distance Traveled Corresponding to Source Hours
Operating

If the “Distance Traveled” output is requested by the RunSpec, (which also

implies that some pollutant has been selected for the Running process), the distance field

in the SHO table is calculated. Otherwise this distance field is output by this generator as

NULL. The method used to produce this distance information involves multiplying the

number of source hours operating (SHO) by the average vehicle speed associated with

them. These average speeds have been calculated in Step 7a.

Input Variables:
SHO from step 8a
averageSpeed from step 7a

Output Variable:
distance (in SHO table)

Calculation:
distance (yearID, monthID, linkID (zoneID with roadTypeID), hourID, dayID,

ageID, aourceTypeID) =
SHO((yearID, monthID, linkID (zoneID with roadTypeID), hourID, dayID,

ageID, sourceTypeID) * averageSpeed(roadTypeID, sourceTypeID, dayID,
hourID)

 71

10.7. Total Activity Generator (TAG) for Mesoscale Lookup

This version of the TAG is used for the Mesoscale Lookup scale and is a

simplified version of the “Macroscale” TAG described in the preceding section. The

TAG can be simplified for Mesoscale lookup calculations because only running activity

is needed and because artificial VMT values can be used. Because emissions are

reported in grams/mile or other “per distance” units, the absolute values of VMT and

SHO don’t matter for this use case, but their proportional allocations among sourcetypes,

ages, and time periods must be maintained.

This generator calculates total activity pursuant to the run specification for each

source use type in DRAFT MOVES2009 using the MOVESExecution database. This

activity includes Source Hours in addition to source hours operating (SHO). This activity

information is categorized by time span, geographic location, source type and age. This

TAG produces two core model input tables in MOVESExecution containing these

results: SHO, and SourceHours. The TAG also calculates an intermediate form of

distance traveled information which is stored in the SHO table.

Some overall considerations when performing these calculations are:

1. The TotalActivityGenerator signs up for the Master Loop at the Year level which

means the calculations are performed individually for each year at each location (i.e. link)

for each emission process requiring SHO or source hour activity information.

2. The MOVES design allows the user to provide some or all of the values in core model

input tables such as SHO, and SourceHours. The InputDataManager places any such

user-supplied values in the MOVESExecution database before the

TotalActivityGenerator is activated. The TotalActivityGenerator does not replace such

user-supplied values.

3. When the Total Activity Generator encounters a missing value when performing a

calculation, the result of the calculation is considered as missing. Records for which the

results are missing are left out of the database.

 72

The steps for the Mesoscale Lookup TAG are summarized here and described in more

detail below.

1) Travel fractions by Age & SourceType are determined using population growth

and relative mileage accumulations.

2) Travel fractions are treated as VMT and allocated to specific months, days &

hours using factors that vary by roadType & sourceType.

3) SHO is set to equal the hourly VMT. The same SHO is used for each link of a

roadtype.

4) Source Hours are set equal to SHO.

5) Distance is calculated from the SHO and the link speed.

By way of general background information, a number of database fields that are

important for the Macroscale TAG are not used in Mesoscale Lookup:

HPMSBaseYearVMT

VMTGrowthFactor

roadTypeVMTFraction

averageSpeedFraction

idleSHOFactor

SHOAllocationFactor

startAllocFactor

idleAllocFactor

Detailed descriptions of the calculations in each TAG step follow. Each of the

variables used in the TAG calculations either exists in the MOVESExecution database or

is calculated by a previous TAG step. All of the database variables are described in the

database documentation included in the database. The table in which each variable can

be found is indicated in parentheses in the “Input Variables” portion of each TAG step

description.

 73

10.7.1. TAG-0: Determine the Base Year
Before any calculations can be done, the appropriate base year must be

determined using the year of analysis and the isBaseYear information in the Year table.

Input Variables:
isBaseYear (Year)
calendar year (from RunSpec)

Output Variable:
baseYear

Calculation:
yearID = calendar year

IF isBaseYear(yearID) = "Y", then baseYear=yearID.

ELSE

baseYear = maximum value of yearID which is less than the calendar year for

which isBase(Year)= "Y”

10.7.2. TAG-1: Calculate Base Year Vehicle Population By Age.
Input Variables:

sourceTypePopulation (SourceTypeYear)
ageFraction (SourceTypeAgeDistribution)
baseYear (from previous step)

Output Variable:
sourceTypeAgePopulation, (in new SourceTypeAgePopulation table)

Calculation:
yearID=baseYear
sourceTypeAgePopulation (yearID, sourceTypeID, ageID) =
sourceTypePopulation (yearID, sourceTypeID) *
ageFraction (yearID, sourceTypeID, ageID)

10.7.3. TAG-2: Grow Vehicle Population from Base Year to Analysis Year
NOTE: This step is only required if the analysis year is in the future relative to the base

year. For future projection, these TAG-2 steps are repeated in every year until the

analysis year is reached.

TAG-2a: Age Zero (New Vehicles)
This calculation applies only to ageID=0.

Input Variables:
sourceTypeAgePopulation, from previous step,
 for ageID=0 and yearID=yearID-1
salesGrowthFactor (SourceTypeYear)
migrationRate (for yearID and yearID-1) (SourceTypeYear)

 74

Output Variable:
sourceTypeAgePopulation (for ageID=0 in current yearID)

Calculation:
sourceTypeAgePopulation (yearID, sourceTypeID, ageID=0) =
[sourceTypeAgePopulation (yearID-1, sourceTypeID, ageID=0) /
migrationRate (yearID-1, sourceTypeID)] *
salesGrowthFactor (yearID, sourceTypeID) *
migrationRate (yearID, sourceTypeID)

Note: the full equation would divide through by age=0 survival rate to derive new
sales in previous years prior to scrappage, and multiply by the same term to account
for scrappage in the first year. Since scrappage is the same in all years, they cancel
each other out, and these terms are excluded from the equation.

TAG-2b: Ages 1 through 29
This calculation loops through AgeID=x, where x is 1 through 29.

Input Variables:
sourceTypeAgePopulation (for ageID=x and yearID=yearID-1)
survivalRate (for AgeID=x) (SourceTypeAge)
migrationRate (SourceTypeYear)

Output Variable:
sourceTypeAgePopulation (for ageID=1 through 29 in current yearID)

Calculation:
sourceTypeAgePopulation (yearID, sourceTypeID, ageID=x) =
sourceTypeAgePopulation (yearID-1, sourceTypeID, ageID=x-1) *
survivalRate (sourceTypeID, ageID=x-1) *
migrationRate (yearID, sourceTypeID)

TAG-2c: Age 30
This calculation is for Age 30, which includes years 30 and higher.

Input Variables:
sourceTypeAgePopulation (for ageID=29 & 30 and yearID=yearID-1)
survivalRate (for ageID=29 & 30) (SourceTypeAge)
migrationRate (SourceTypeYear)

Output Variable:
sourceTypeAgePopulation (for ageID=30 in current yearID)

Calculation:
sourceTypeAgePopulation (yearID, sourceTypeID, ageID=30) =
sourceTypeAgePopulation (yearID-1, sourceTypeID, ageID=29) *
survivalRate (sourceTypeID, ageID=29) *
migrationRate (yearID, sourceTypeID) +
sourceTypeAgePopulation (yearID-1, sourceTypeID, ageID=30) *
survivalRate (sourceTypeID, ageID=30) *
migrationRate (yearID, sourceTypeID)

10.7.4. TAG-3: Calculate Analysis Year Travel Fraction

 75

TAG-3a: Calculate total population within Highway Performance Management System
(HPMS) vehicle class.

Input Variables:
sourceTypePopulation (for each sourceTypeID within HPMSVtypeID)
 (SourceTypeYear)
HPMSVtypeID (HPMSVtype)

Output Variable:
HPMSVtypePopulation

Calculation:
HPMSVTypePopulation (yearID, HPMSVtypeID) =
Sum of [SourceTypeAgePopulation (yearID, sourceTypeID, ageID)]
over all ageID,
for all sourceTypeID within each HPMSVtypeID.

TAG-3b: Calculate fraction within HPMS vehicle class
Input Variables:

sourceTypeAgePopulation (from step 2)
HPMSVtypePopulation (from previous step)

Output Variable:
fractionwithinHPMSVtype

Calculation:
fractionwithinHPMSVtype (yearID, sourceTypeID, ageID) =
sourceTypeAgePopulation (yearID, sourceTypeID, ageID) /

HPMSVTypePopulation (yearID, HPMSVtypeID, sourceTypeID)

TAG-3c: Compute travel fraction
Input Variables:

fractionwithinHPMSVtype (from previous step)
relativeMAR (SourceTypeAge)

Output Variable:
travelFraction

Calculation:
travelFraction (yearID, sourceTypeID, ageID) =
(fractionwithinHPMSVtype (yearID, sourceTypeID, ageID=x) *
relativeMAR (sourceTypeID, ageID=x)) /
Sum of [fractionwithinHPMSVtype (yearID, sourceTypeID, ageID=x) *
relativeMAR (sourceTypeID, ageID=x)] over all ageID and for all

sourceTypeID within each HPMSVtype.

10.7.5. TAG-4: (reserved)

10.7.6. TAG-5: Allocate Analysis Year VMT by Roadway Type, Use Type, Age
Because VMT is divided out at the end, real VMT is not needed and is removed from this
calculation. However, the model does need the distribution of VMT among sourcetypes
& ages. RoadType distinctions are needed for the next step.

 76

Input Variables: TravelFraction(yearID, sourceTypeID, ageID)

Output Variable: AnnualVMTbyAgeRoadway

Calculation:
AnnualVMTby AgeRoadway(YearID, roadTypeID, sourceTypeID, AgeID) =

TravelFraction(YearID, sourceTypeID, AgeID)

10.7.7. TAG-6: Temporally Allocate Annual VMT to Hour
Input Variables:

annualVMTbyAgeRoadway (from previous step)
monthVMTFraction (MonthVMTFraction)
dayVMTFraction (DayVMTFraction)
hourVMTFraction (HourVMTFraction)
noOfDays (MonthOfAnyYear)

Output Variable:
VMTbyAgeRoadwayHour

Calculation:
VMTbyAgeRoadwayHour (yearID, roadTypeID, sourceTypeID, ageID,

monthID, dayID, hourID) =
annualVMTbyAgeRoadway (yearID, roadTypeID, sourceTypeID, ageID) *
monthVMTFraction (sourceTypeID, isLeapYear, monthID) *
dayVMTFraction (roadTypeID, sourceTypeID, monthID, dayID) *
hourVMTFraction (roadTypeID, sourceTypeID, dayID, hourID)
/ (noOfDays/7)

10.7.8. TAG-7: Convert to Total Activity Basis

Tag-7: Convert VMT to SHO
Because “Distance” is calculated from SHO and is divided out in the end, the actual SHO
doesn’t matter. But the proportional distribution of SHO among ages, sourcetypes and
times must be preserved. This step sets SHO = VMT.

Input Variables:

VMTbyAgeRoadwayHour (from step 6)
Output Variable:

SHObyAgeRoadwayHour
Calculation:

SHObyAgeRoadwayHour (yearID, roadTypeID, sourceTypeID, ageID,
monthID, dayID, hourID) =
VMTbyAgeRoadwayHour(yearID, roadTypeID, sourceTypeID, ageID,
monthID, dayID, hourID)

 77

10.7.9. TAG-8: Allocate Total Activity to Location
Tag-8a: Allocate SHO to Links

This step assigns SHO to multiple links of the same zone/roadtype. Because

geographic aggregation is forbidden for Lookup Output, allocation to Zones can be

uniform. Similarly, allocation to links is not important as long as the distribution among

ages, sourcetypes & times is preserved. So we set SHO(link) = SHO(roadType).

Input Variables:
SHOByAgeRoadwayHour (from step 7)
Link(linkID, countyID, zoneID, roadTypeID) (Created by the LTLP)

Output Variable:
SHO (SHO)
This result populates the SHO field in SHO CMIT table.

Calculation:
SHO(yearID, linkID, sourceTypeID, ageID, monthID, dayID, hourID) =
SHOByAgeRoadwayHour(yearID, roadTypeID, sourceTypeID, ageID,

monthID, dayID, hourID)

Tag-8b: Calculate Source Hours by Zone and Roadway
Input Variables:

SHO (from step 8a)
LinkAverageSpeed(linkID)

Output Variable:
sourceHours(SourceHours) result of this step populates sourceHours field in

SourceHours table
Calculation:

sourceHours(yearID, linkID, sourceTypeID, ageID, monthID, dayID, hourID) =
SHO(yearID, linkID, sourceTypeID, ageID, monthID, dayID, hourID)

10.7.10. TAG-9: Calculate Distance Traveled Corresponding to Source Hours
Operating

The method used to produce this distance information involves multiplying the

number of source hours operating (SHO) by the average vehicle speed associated with

the Link.

Input Variables:
SHO from step 8a
averageSpeed from step 7a

Output Variable:

 78

distance (in SHO table)
Calculation:

distance (yearID, monthID, linkID (zoneID with roadTypeID), hourID, dayID,
ageID, aourceTypeID) =

SHO((yearID, monthID, linkID (zoneID with roadTypeID), hourID, dayID,
ageID, sourceTypeID) * averageSpeed(linkID)

 79

10.7A. Total Activity Generator (ProjectTAG) for Project Level
Modeling

This version of the ProjectTAG is used for the Project Level Domain Scale and is

analogous, but also substantially different from the “Macroscale” and “Mesoscale” TAG

described in the preceding sections. A MOVES project-level analysis is the modeling of

one or more individual roadway links which are spatially connected to each other. It also

extends the definition of project to off-network common areas within the project

boundaries where vehicle starts, extended idling and evaporative emissions are allocated.

This generator calculates and allocates total activity basis, starts, source-hours parked

(SHP) and source hours pursuant to the run specification for each user specified link /

roadway type and source type. The ProjectTAG produces core model input tables in

MOVESExecution containing these results: SHO, SHP and SourceHours. The TAG does

not calculate distance traveled information because it is a user input for each link.

Some overall considerations when performing these calculations are:

1. The ProjectTAG signs up for the Master Loop at the Year level which means the

calculations are performed individually for the specified year, location, hour for each

emission process requiring SHO, SHP or source hour activity information.

2. The MOVES design requires the user to provide all of the values basic inputs for the

calculator

3. When the Total Activity Generator encounters a missing value when performing a

calculation, the result of the calculation is considered as missing. Records for which the

results are missing are left out of the database.

Detailed descriptions of the calculations in each TAG step follow. Each of the

principal variables used in the TAG calculations are entered by the user into a special

Project database or are calculated by a previous TAG step. The table in which each

variable can be found is indicated in parentheses in the “Input Variables” portion of each

 80

ProjectTAG step description. The ProjectTAG implementation can be found in the Java

method “ProjectTAG.allocateTotalActivityBasis”.

10.7A.1 Determine Project Context

 The MOVES Runspec and the Project Data Manager input must have the same

context in terms of MOVES countyID, zoneID, yearID, and hourID. Only one value of

each may be specified in a Project Level Runspec. Both DayIDs, any and all

sourcetypeIDs, pollutantID and processID may be chosen in the Runspec, but these must

be consistent between the Runspec and the Project Data Manager.

 The ProjectTAG allocates activity according the Runspec and Project Data

Manager inputs. The allocations are according to:

Age SourceTypeAgeDistribution as a function{year} – either a
user input or calculated by ProjectTAG.

 SHO source hours operating

 SHP source hours parked

 Starts vehicle starts / soak times

 ExtIdle extended idle operation

 SH source hours

The possible process allocations for ProjectTAG include:

 evapPermeationProcess

 evapFuelVaporVentingProcess

 evapFuelLeaksProcess

 evapNonFuelVaporProcess

 runningExhaustProcess

 extendedIdleProcess

 exhaustStartProcess

 brakeWearProcess

ProjectTAG-2a Total Population Calculation

 81

Calculate the total population for ages 1 through 30 for the given year and
sourcetypes

Input Variables:
sourceTypeAgePopulation.population,

where yearid = year

sourcetypeID = sourcetype

Output Variable:
 sourceTypeAgePopulationSummary. totalPopulation

Calculation:
Sum [sourceTypeAgePopulation.population[ageID]] AgeID=x,

where x is 1 through 29

ProjectTAG-2b Age Fraction Calculation

Calculate the age fraction for the given year, age and sourcetype

Input Variables:
sourceTypeAgePopulation.population,

sourceTypeAgePopulationSummary. totalPopulation

where yearid = year

sourcetypeID = sourcetype

Output Variable:
 sourceTypeAgeDistribution. ageFraction

Calculation:
p.population / s.totalPopulation) as ageFraction"

Where

 sourceTypeAgePopulationSummary as s"

sourceTypeAgePopulation as p "

 82

ProjectTAG-3 Calculation Source Hours Operating (SHO)

This section calculates the sourcehours operating if a roadway link is selected by the
user. Context variables are from the Runspec.

Input Variables:
runSpecSourceType. Context.sourceTypeID

runSpecDay. Context (dayID)

 runSpecMonth. Context (monthID)

hourDay. Context (hourDayID)

 dayOfAnyWeek. noOfRealDays

 link. linkAvgSpeed

 link. linkVolume

 link. linkLength

 linkSourceTypeHour. sourceTypeHourFraction

 sourceTypeAgeDistribution. ageFraction

Output Variable:
 SHO, distance

Calculation:
SHO = (linkVolume * sourceTypeHourFraction * noOfRealDays

* ageFraction) * linkLength / linkAvgSpeed

distance = linkVolume * sourceTypeHourFraction *

noOfRealDays * ageFraction * linkLength

ProjectTAG-4 Calculation Source Hours Parked (SHP)

This section calculates the sourcehours parked if an off-network link is selected by
the user. Context variables are from the Runspec.

Input Variables:
runSpecSourceType. Context.sourceTypeID

runSpecDay. Context (dayID)

 runSpecMonth. Context (monthID)

 83

hourDay. Context (hourDayID)

 offNetworkLink. vehiclePopulation

 offNetworkLink. parkedVehicleFraction

 dayOfAnyWeek. noOfRealDays

 sourceTypeAgeDistribution. ageFraction

Output Variable:
 SHP

Calculation:
SHP = (vehiclePopulation * parkedVehicleFraction * ageFraction)

ProjectTAG-5 Calculation Starts (STARTS)

This section calculates the number of starts if an off-network link is selected by the
user. Context variables are from the Runspec.

Input Variables:
runSpecSourceType. Context.sourceTypeID

runSpecDay. Context (dayID)

 runSpecMonth. Context (monthID)

hourDay. Context (hourDayID)

 offNetworkLink. vehiclePopulation

 offNetworkLink. startFraction

 sourceTypeAgeDistribution. ageFraction

Output Variable:
 STARTS

Calculation:
STARTS = (vehiclePopulation * startFraction * ageFraction)

 84

ProjectTAG-6 Calculation Extended Idle (ExtIdle)

This section calculates the fraction of extended idle operation if an off-network link is
selected by the user. Context variables are from the Runspec.

Input Variables:

runSpecSourceType. Context.sourceTypeID

runSpecDay. Context (dayID)

 runSpecMonth. Context (monthID)

hourDay. Context (hourDayID)

 offNetworkLink. vehiclePopulation

 offNetworkLink. extendedIdleFraction

 sourceTypeAgeDistribution. ageFraction

Output Variable:
 extendedIdleFraction

Calculation:
extendedIdleFraction = (vehiclePopulation * extendedIdleFraction

* ageFraction)

ProjectTAG-7a Calculation Source Hours (SH)

This section calculates the source hours if an off-network link is selected by the user.
Context variables are from the Runspec. This variable is used in the calculation of
evaporative processes.

Input Variables:
runSpecSourceType. Context.sourceTypeID

runSpecDay. Context (dayID)

 runSpecMonth. Context (monthID)

hourDay. Context (hourDayID)

 offNetworkLink. vehiclePopulation

 offNetworkLink. parkedVehicleFraction

 dayOfAnyWeek. noOfRealDays

 sourceTypeAgeDistribution. ageFraction

 85

Output Variable:
 SH

Calculation:
SH = (vehiclePopulation * parkedVehicleFraction * ageFraction)

ProjectTAG-7b Calculation Source Hours (SH)

This section calculates the source hours if a roadway link is selected by the user.
Context variables are from the Runspec. This variable is used in the calculation of
evaporative processes.

Input Variables:
runSpecSourceType. Context.sourceTypeID

runSpecDay. Context (dayID)

 runSpecMonth. Context (monthID)

hourDay. Context (hourDayID)

 dayOfAnyWeek. noOfRealDays

 link. linkAvgSpeed

 link. linkVolume

 link. linkLength

 linkSourceTypeHour. sourceTypeHourFraction

 sourceTypeAgeDistribution. ageFraction

Output Variable:
 SH

Calculation:
SH = (linkVolume * sourceTypeHourFraction * noOfRealDays *

ageFraction) * linkLength / linkAvgSpeed

 86

10.7B. Link Operating Mode Distribution Generator (ProjectTAG) for

Project Level Modeling

 The Link Operating Mode Distribution Generator is used in the calculation of

project domain emission inventories, and is closely associated with the ProjectTAG

generator. This class called “LinkOperatingModeDistributionGenerator.java” builds an

operating mode distribution for a particular project domain link from a speed-time

driving cycle when it is supplied by the user. The generator is not utilized in cases where

the user chooses to enter the operating mode distribution for the particular link directly as

a distribution.

10.7B.1 Calculate VSP Second by Second

This section calculates the vehicle specific power (VSP) in units of kW/tonne

using first principals of vehicle dynamics. The code recursively joins ‘itself’ (i.e.,

driveScheduleSecondLink) to create acceleration and previous second acceleration

values for the special case of the ‘braking’ opmode (opmodeID = 0).

Input Variables:
 sourceUseType. sourcetypeID

driveScheduleSecondLink. linkID

driveScheduleSecondLink. secondID

driveScheduleSecondLink. speed

driveScheduleSecondLink. grade

 sourceUseType. sourceMass

sourceUseType. rollingTermA

sourceUseType. rotatingTermB

sourceUseType. dragTermC

constantTerm1 0.44704 – conversion miles/hour to
meters/second

constantTerm2 9.81 – gravitational constant meters/sec2

 87

Output Variable:
VSP

Calculation:
VSP = [((speed*0.44704)*(rollingTermA+

(speed*0.44704)*(rotatingTermB+

dragTermC*(speed*0.44704)))/sourceMass] +

(speed*0.44704)*(a.speed-b.speed)*0.44704 +

(9.81*sin(atan(grade/100.0))*(speed*0.44704)))

10.7B.2 Count the Total Seconds in the Link

This section counts the total seconds in the link. It is grouped by source type and
link.

Input Variables:
 tempDriveScheduleSecondLink. sourceTypeID

 tempDriveScheduleSecondLink. linkID

Output Variable:
 tempDriveScheduleSecondLinkTotal. secondTotal

Calculation:
 Count(*) group by sourceTypeID and linkID

10.7B.3 Count the Seconds per Individual opModeID

This section counts the total seconds in the link and opmodeID combination. It is
grouped by source type, opmodeID and link.

Input Variables:
 tempDriveScheduleSecondLink. sourceTypeID

 tempDriveScheduleSecondLink. linkID

tempDriveScheduleSecondLink. opModeID

 88

Output Variable:
 tempDriveScheduleSecondLinkCount. secondCount

Calculation:
 Count(*) group by sourceTypeID, linkID and opModeID

10.7B.4 Calculate the opMode Fraction for each opMode

This section calculates the operating mode fraction by source type, operating
mode and link.

Input Variables:
 tempDriveScheduleSecondLinkCount. sourceTypeID

 tempDriveScheduleSecondLinkCount. linkID

tempDriveScheduleSecondLinkCount. opModeID

Output Variable:
 tempDriveScheduleSecondLinkFraction. opModeFraction

Calculation:
 opModeFraction = (secondCount*1.0/secondTotal)

10.7B.5 Calculate the opMode Distribution Linking hourdayID and polprocessID

This section calculates the operating mode distribution and creates the opmode
distribution table. It is grouped by sourceTypeID, hourDayID, linkID, and
polProcessID.

Input Variables:

tempDriveScheduleSecondLinkFraction. sourceTypeID

tempDriveScheduleSecondLinkFraction. linkID

tempDriveScheduleSecondLinkFraction. opModeID

tempDriveScheduleSecondLinkFraction. opModeFraction

opModePolProcAssoc. polProcessID

RunSpecHourDay. hourDayID

Output Variable:

 89

 opModeDistribution. opModeFraction

Calculation:
 opModeFraction

10.8. Running OperatingModeDistributionGenerator (OMDG) for
Macroscale

The OperatingModeDistributionGenerator is used for the running and brakewear

emission processes and is only relevant for pollutant-processes which have multiple

operating modes. For these pollutant-processes the OMDG calculates the distribution of

operating modes for each source type on each roadway type modeled using data from the

MOVESExecution database. The resulting distributions are added to the

OperatingModeDistribution core model input table. This version of the OMDG is used at

Macroscale.

The method used to generate these operating mode distributions in MOVES is a

refinement of the method described in section 7.1.3 of the Draft Design and

Implementation Plan for MOVES. The task of the OMDG is to produce operating mode

distributions, in terms of a set of VSP-and-speed-range-based operating modes, for each

combination of source type, road type, hour of the day, and day of the week using as

input average speed distribution information for each such combination. Driving

schedules representing typical operation at different average speeds for each source type

operating on each road type play an intermediate role in translating average speed

information into VSP distributions. Each average speed bin used in the input average

speed distributions is represented by a pair of “bracketing” driving schedules one of

which has a slightly higher average speed and one of which has a slightly lower average

speed. VSP is calculated on a second by second basis for the source use type operating

over these two schedules and the results are weighted appropriately to represent the

average speed distribution. A full discussion of the operating mode definitions and the

use of vehicle specific power (VSP) and driving schedules in MOVES is contained in a

separate report, MOVES2004 Energy and Emissions Inputs, downloadable from the

MOVES web site.

 90

This algorithm is divided into seven steps referred to as OMDGs (operating mode

distribution generator steps) in this document. Most OMDGs reference the

MOVESExecution database and all implement a simple mathematical formula. Steps 1-3

take on-road driving schedules stored in the MOVESExecution database and determine

the mix of these schedules to use based on the mix of average speeds and roadway types.

These driving schedules may each consist of multiple “snippets” or sections of driving

which are disconnected in time. Step 4 calculates VSP; Step 5 determines the operating

mode bin (based on speed and VSP); and Steps 6 and 7 determine the overall mix of

operating mode bins based on the mix of roadway types and average speed.

A brief description of each of the eight OMDGs is shown in table 10-4:

Table 10-4. Overview of Calculation Steps
Step Description
OMDG-1 Determine bracketing drive schedules
OMDG-2 Determine proportions for bracketing drive schedules
OMDG-3 Determine distribution of drive schedules, including a sub-step to reflect

separation of ramp and non-ramp freeway driving
OMDG-4 Calculate second-by-second vehicle specific power (VSP)
OMDG-5 Determine operating mode bin for each second
OMDG-6 Calculate operating mode fractions for each drive schedule
OMDG-7 Calculate overall operating mode fractions

The Operating Mode Distribution Generator signs up for the Master Loop at the

Year level which means that it executes for each year in the run specification for each

Link location for the running emission process.

The MOVES design allows the user to directly provide some or all of the

operating mode distribution values in core model input tables such as

OpModeDistribution. The InputDataManager places these user-supplied values in the

MOVESExecution database OpModeDistribution table before the Operating Mode

Distribution Generator is activated. The Operating Mode Distribution Generator does not

replace any such user supplied values.

 When the Operating Mode Distribution Generator encounters a missing value

when performing a calculation, the result of the calculation is considered as missing.

 91

Records for which the results are missing are not represented by a value of zero but are

left out of the database.

The detailed descriptions of the calculations in each OMDG step are as follows:

Each of the variables used in the OMDG calculations either exists in the

MOVESExecution database or is calculated by a previous OMDG step. All of the

MOVESExecution variables are described in the database documentation.

10.8.1. OMDG-1: Determine bracketing drive schedules
Each average speed bin lies between (is bracketed) by the average speeds of two

drive schedules. This step determines which two drive schedules bracket the average

speed bin and stores the identity and average speeds of the two bins. This is done for

each source type, and roadway type for each average speed bin. However, it is not done

for ramp drive schedules. A separate algorithm that does not include bracketing is used

for ramps.

Input Variables:
AvgBinSpeed (avgSpeedBinID) from the AvgSpeedBin table.
AverageSpeed(driveScheduleID) from the DriveSchedule table.

Output Variables:
BracketScheduleLo (sourceTypeID, roadTypeID, avgSpeedBinID)
LoScheduleSpeed (sourceTypeID, roadTypeID, avgSpeedBinID)
BracketScheduleHi (sourceTypeID, roadTypeID, avgSpeedBinID)
HiScheduleSpeed (sourceTypeID, roadTypeID, avgSpeedBinID)

Calculation:
For each sourceTypeID, roadTypeID, and avgSpeedBinID:

The output variables are determined using table DriveSchedule, where for each

combination of sourceTypeID, roadTypeID, avgSpeedBinID,
bracketScheduleLo and bracketScheduleHi are determined as the drive
schedules associated with the source type and road type with the next
lowest and next highest average speeds compared to the value of
avgBinSpeed. loScheduleSpeed and hiScheduleSpeed are the values of
averageSpeed for the bracket schedules. The DriveScheduleAssoc table
contains the information as to which driveScheduleID's are associated with
which sourceTypeID's and which roadTypeID's.

10.8.2. OMDG-2: Determine proportions for bracketing drive schedules

This step determines the proportion of each of the bracketing drive schedules such

that the combination of the average speeds of drive schedules equals the nominal average

speed of each average speed bin. The results are then weighted by the fraction of all

 92

operating time that are represented by the time spent in that average speed bin. This is

done for each source type, roadway type, day of week and hour of day.

Input Variables:
AvgBinSpeed (avgSpeedBinID) from the AvgSpeedBin table.
AvgSpeedFraction (sourceTypeID, roadTypeID, hourDayID, avgSpeedBinID)

from the AvgSpeedDistribution table.
with

BracketScheduleLo (sourceTypeID, roadTypeID, avgSpeedBinID)
loScheduleSpeed (sourceTypeID, roadTypeID, avgSpeedBinID)
bracketScheduleHi (sourceTypeID, roadTypeID, avgSpeedBinID)
hiScheduleSpeed (sourceTypeID, roadTypeID, avgSpeedBinID)

Output Variable:
loScheduleFraction (sourceTypeID, roadTypeID, hourDayID, avgSpeedBinID)
hiScheduleFraction (sourceTypeID, roadTypeID, hourDayID, avgSpeedBinID)

Calculation:
For each sourceTypeID, roadTypeID, hourDayID and avgSpeedBinID:
loScheduleFraction =
(hiScheduleSpeed – avgBinSpeed) /
(hiScheduleSpeed – loScheduleSpeed)
If bracketScheduleHi=bracketScheduleLo (meaning the average speeds of the

“Lo and “Hi” schedule is the same):
loScheduleFraction = 1
hiScheduleFraction = (1 – loScheduleFraction)

Weight the results by the fraction of all speeds that are represented by that
average speed bin.

loScheduleFraction = loScheduleFraction * avgSpeedFraction
hiScheduleFraction = hiScheduleFraction * avgSpeedFraction

10.8.3. OMDG-3: Determine distribution of drive schedules

This step includes a preliminary sub-step which accounts for the effect of ramp

driving. The rampFraction field in the RoadType table indicates the fraction of time on

each roadway type which is spent on ramps. The “isRamp” field in the

DriveScheduleAssoc table determines whether a schedule is to be associated with ramp

driving or with driving on roadways exclusive of ramps. Currently, the MOVESDefault

contains ramp activity with a constant ramp fraction of 8 percent for the two roadtypes

with “isRamp = ‘Y’.

User attempting to modify the database in this area should keep in mind several

data constraints: There must always be at least one driving schedule not indicated as a

ramp which is associated with each combination of source type and roadway type in the

DriveScheduleAssoc table

 93

OMDG-3a: Determine distribution of ramp schedules
This step accounts for ramps, based on the input fields RampFraction and

opModeFraction contained in table RoadType and RoadOpmodeDistribution tables,

respectively. For any driving schedule which is associated with the source type and

roadway type which has an IsRamp value of "Y", the following methodology is used to

calculate the ramp contribution.

The calculation starts, by obtaining from the RoadOpmodeDistribution table, the

operating mode distribution for each sourcetype, average speed bin and roadtype (only

those which contain ramp driving are selected). Next, the algorithm determines the road

type’s average speed for each sourcetype and hour. The avgSpeedFraction is taken from

the avgSpeedDistribution table and the avgBinSpeed is from the avgSpeedBin table.

Input Variables:
avgSpeedFraction(sourceTypeID, roadTypeID, hourDayID,

avgSpeedBinID
avgBinSpeed(avgSpeedBinID)

roadTypeSourceTypeAvgSpeedBinID(sourceTypeID, roadTypeID, hourDayID)

Output Variable:
 avgSpeed(sourceTypeID, roadTypeID, hourDayID)

Calculation:
 avgSpeed = sum(avgSpeedFraction * avgBinSpeed)

Once the average speed is determined using the table
roadTypeSourceTypeAvgSpeedBinID, its bin must be assigned by taking minimum
avgSpeedBinID from avgSpeedBin table such that avgBinSpeed >= avgSpeed.

 Ramps are not considered separate roadtypes in MOVES, but their contribution is
weighted into the two restricted entry roadtypes (i.e., rural and urban freeways, non-
freeway types contain no ramp fractions) using the weighed ramp opmode fraction and
the rampfraction (i.e, 8% for all ramps). A separate ramp cycle is now available for each
avgSpeedBin in MOVES. A total of 16 ramp cycles are present and differentiated by
average speeds which range from 2.5 to 75 mph. Each ramp cycle contains a different

 94

opmode fraction distribution due the different speeds, acceleration and VSP values of
each cycle. The opModeFraction is obtained from the RoadOpmodeDistribution table
using avgSpeedBinID entries that match roadTypeSourceTypeAvgSpeedBinID for each
hour and day. The opmode fraction from the table weightedRampOpmodeFraction is
used in subsequent calculations for roadtypes which contain on and off ramps.

Input Variables:
 rampFraction(roadTypeID)

opModeFraction(sourceTypeID, roadTypeID, opModeID, avgSpeedBinID)

Output Variable:
weightedRampOpModeFraction(sourceTypeID, roadTypeID, hourDayID,

opModeID)

Calculation:
 weightedRampOpModeFraction = rampFraction* opModeFraction

OMDG-3b: Determine distribution of non-ramp schedules

This calculation adjusts for the RampFraction on the given roadway. This step

determines the distribution of drive schedules which represents the sum of all of the

average speed bins. This is done for each source type, roadway type, day of week and

hour of day for all driving schedules which are associated with the source type and

roadway type which have an IsRamp value of "N".

Input Variables:
loScheduleFraction (sourceTypeID, roadTypeID, hourDayID, avgSpeedBinID)
HiScheduleFraction (sourceTypeID, roadTypeID, hourDayID, AvgSpeedBinID)
RampFraction(roadTypeID)
driveScheduleID (sourceTypeID, roadTypeID, isRamp=N)

Output Variable:
DriveScheduleFraction (sourceTypeID, roadTypeID, hourDayID,)

Calculation:
For each sourceTypeID, roadTypeID, hourDayID and driveScheduleID:
driveScheduleFraction =
[(Sum Of loScheduleFraction over all cases where bracketScheduleLo =

driveScheduleID) + (Sum Of hiScheduleFraction over all cases where
BracketScheduleHi =
driveScheduleID)] * (1-rampFraction)

 95

10.8.4. OMDG-4: Calculate second-by-second vehicle specific power (VSP)
This step calculates the vehicle specific power (VSP) for each drive schedule for

each source type. This is done for each source type, drive schedule and second.

Input Variables:
Speed (driveScheduleID, second) from the DriveScheduleSecond table.
rollingTermA (sourceTypeID) from the SourceUseType table.
rotatingTermB (sourceTypeID) from the SourceUseType table.
dragTermC (sourceTypeID) from the SourceUseType table.
sourceMass (sourceTypeID) from the SourceUseType table.

Output Variable:
VSP (sourceTypeID, driveScheduleID, second)
Accel (sourceTypeID, driveScheduleID, second)

Calculation:
For each sourceTypeID, driveScheduleID and second:
Preliminary Calculations:
speed (meters/second) = speed (mph) * 0.447 m/s per mph.
accel (meters/second2)= speed (t) – speed (t-1), with speed in meters/second.
VSP =
[rollingTermA*speed
+ rotatingTermB * speed2
+ dragTermC * speed3
+ sourceMass * speed * accel]
/ sourceMass
(speed in meters/second, accel in meters/second2)

10.8.5. OMDG-5: Determine operating mode bin for each second
This step accounts for VSP, speed and accel. The VSP value for each second is

compared to the upper and lower bounds for the operating mode bins and a bin ID is

assigned to each second. This is done for each source type, drive schedule and second.

Input Variables:
VSPLower(opModeID) from the OperatingMode table.
VSPUpper(opModeID) from the OperatingMode table.
SpeedLower(opModeID) from the OperatingMode table.
SpeedUpper(opModeID) from the OperatingMode table.
BrakeRate1Sec(opModeID) from the OperatingMode table.
BrakeRate3Sec(opModeID) from the OperatingMode table.
Speed (sourceTypeID, driveScheduleID, second) from DriveScheduleSecond

with
VSP (sourceTypeID, driveScheduleID, second) from OMDG-4
accel (sourceTypeID, driveScheduleID, second) from OMDG-4

Output Variable:
opModeIDbySecond (sourceTypeID, driveScheduleID, second)

Calculation:
For each sourceTypeID, driveScheduleID and second:

 96

An opModeID is assigned for each second in each drive schedule based on
where the VSP, speed and accel values in that second falls. VSP and speed
are compared against the VSP and speed bounds to determine to appropriate
bins. Then the braking (ID=0) and idle bins (ID=1) should be assigned
based on accel and speed, respectively. This sequence is important since
there is overlap in the definitions between the non-braking/idle bins and the
braking/idle bins.

10.8.6. OMDG-6: Calculate operating mode fractions for each drive schedule

Once all the seconds in each operating mode bin are known, the distribution of the

bins is determined. The sum of the operating mode fractions sums to one for each source

type and drive schedule combination. This is done for each source type and schedule.

Input Variables:
opModeIDbySecond (sourceTypeID, driveScheduleID, second)

Output Variable:
OpModeFractionbySchedule (sourceTypeID, driveScheduleID, opModeID)

Calculation:
For each sourceTypeID, driveScheduleID and opModeID:

OpModeFractionbySchedule =
(Number of Seconds in opModeID during DriveSchedule) /
(Total number of seconds in DriveSchedule)

10.8.7. OMDG-7: Calculate overall operating mode fractions
This step calculates the overall operating mode fractions by weighting the

operating mode fractions of each drive schedule by the drive schedule fractions. This is

done for each source type, road type, day of the week, hour, and operating mode.

Input Variables:
OpModeFractionbySchedule (sourceTypeID, driveScheduleID, opModeID)
DriveScheduleFraction (sourceTypeID, roadTypeID, hourDayID,

driveScheduleID)
Output Variable:

OpModeFraction (sourceTypeID, roadTypeID, hourDayID, polProcessID,
opModeID)

Calculation:
For each sourceTypeID, roadTypeID, hourDayID and opModeID:
OpModeFraction =
Sum of OpModeFractionbySchedule*DriveScheduleFraction over all

DriveSchedules

The Results of OMDG-7 populate the OpModeDistribution table of the Execution Location
Database.

The opModeFraction in the OpModeDistribution table is:

 97

opModeFraction (sourceTypeID, linkID, hourDayID, polProcessID,
opModeID)

The value of linkID needed for this table is determined from roadTypeID and
zoneID.

 98

10.9. Running OperatingModeDistributionGenerator (OMDG) for
Mesoscale Lookup

The OperatingModeDistributionGenerator is used for the running, and brakewear

emission processes and is only relevant for pollutant-processes which have multiple

operating modes. For these pollutant-processes the OMDG calculates the distribution of

operating modes for each source type on each roadway type modeled using data from the

MOVESExecution database. The resulting distributions are added to the

OperatingModeDistribution core model input table. This version of the OMDG is used

for Mesoscale Lookup and takes advantage of the duplication of LinkAverageSpeeds

produced by the LookupTableLinkProducer. Some calculations that are done at the

roadtype level for Macroscale must be done at the link level for Mesoscale Lookup.

The method used to generate these operating mode distributions in MOVES is a

refinement of the method described in section 7.1.3 of the Draft Design and

Implementation Plan for MOVES. The task of the OMDG is to produce operating mode

distributions, in terms of a set of VSP-and-speed-range-based operating modes, for each

combination of source type, link, hour of the day, and period of the week using as input

average speed information for each link. Driving schedules representing typical

operation at different average speeds for each source type operating on each road type

play an intermediate role in translating average speed information into VSP distributions.

Each average speed bin used as a link average speed is represented by a pair of

“bracketing” driving schedules one of which has a slightly higher average speed and one

of which has a slightly lower average speed. VSP is calculated on a second by second

basis for the source use type operating over these two schedules and the results are

weighted appropriately to represent the link average speed. A full discussion of the

operating mode definitions and the use of vehicle specific power (VSP) and driving

schedules in MOVES is contained in a separate report, MOVES2004 Energy and

Emissions Inputs, downloadable from the MOVES web site.

This algorithm is divided into seven steps referred to as OMDGs (operating mode

distribution generator steps) in this document. Most OMDGs reference the

MOVESExecution database and all implement a simple mathematical formula. Steps 1-3

 99

take snippets of actual on-road driving schedules stored in the MOVESExecution

database, and determine the mix of these schedules to use based on the mix of average

speeds and roadway types; Step 4 calculates VSP, Step 5 determines the operating mode

bin (based on speed and VSP), and Steps 6 and 7 determine the overall mix of operating

mode bins based on the mix of roadway types and average speed. Each OMDG

calculation step is also described table 10-4 in the immediately prior chapter.

The Operating Mode Distribution Generator signs up for the Master Loop at the

Year level which means that it executes for each year in the run specification for each

Link location for the running emission process.

The MOVES design allows the user to directly provide some or all of the

operating mode distribution values in core model input tables such as

OpModeDistribution. The InputDataManager places these user-supplied values in the

MOVESExecution database OpModeDistribution table before the Operating Mode

Distribution Generator is activated. The Operating Mode Distribution Generator does not

replace any such user supplied values.

 When the Operating Mode Distribution Generator encounters a missing value

when performing a calculation, the result of the calculation is considered as missing.

Records for which the results are missing are not represented by a value of zero but are

left out of the database.

The detailed descriptions of the calculations in each OMDG step are as follows:

Each of the variables used in the OMDG calculations either exists in the

MOVESExecution database or is calculated by a previous OMDG step. The

MOVESExecution variables are described in the database documentation.

10.9.1. OMDG-1: Determine bracketing drive schedules
Each average speed bin lies between (is bracketed) by the average speeds of two

drive schedules. This step determines which two drive schedules bracket the average

speed bin and stores the identity and average speeds of the two bins. This is done for

each source type, and roadway type for each average speed bin.

Input Variables:
AvgBinSpeed (AvgSpeedBinID) from the AvgSpeedBin table.

 100

AverageSpeed(driveScheduleID) from the DriveSchedule table.
Output Variables:

BracketScheduleLo (sourceTypeID, roadTypeID, AvgSpeedBinID)
LoScheduleSpeed (sourceTypeID, roadTypeID, AvgSpeedBinID)
BracketScheduleHi (sourceTypeID, roadTypeID, AvgSpeedBinID)
HiScheduleSpeed (sourceTypeID, roadTypeID, AvgSpeedBinID)

Calculation:
For each sourceTypeID, roadTypeID, and AvgSpeedBinID:

The output variables are determined using table DriveSchedule, where for each

combination of sourceTypeID, roadTypeID, AvgSpeedBinID,
BracketScheduleLo and BracketScheduleHi are determined as the drive
schedules associated with the source type and road type with the next
lowest and next highest average speeds compared to the value of
AvgBinSpeed. LoScheduleSpeed and HiScheduleSpeed are the values of
AverageSpeed for the bracket schedules. The DriveScheduleAssoc table
contains the information as to which driveScheduleID's are associated with
which sourceTypeID's and which roadTypeID's.

10.9.2. OMDG-2: Determine proportions for bracketing drive schedules

This step determines the proportion of each of the bracketing drive schedules such

that the combination of the average speeds of drive schedules equals the average speed of

the average speed bin. This calculation also takes advantage of the fact that the LTLP

only uses the speeds in the AvgSpeedBin table.

Input Variables:
AvgBinSpeed (avgSpeedBinID) from the AvgSpeedBin table.

with
BracketScheduleLo (sourceTypeID, roadTypeID, avgSpeedBinID)
LoScheduleSpeed (sourceTypeID, roadTypeID, avgSpeedBinID)
BracketScheduleHi (sourceTypeID, roadTypeID, avgSpeedBinID)
HiScheduleSpeed (sourceTypeID, roadTypeID, avgSpeedBinID)

Output Variable:
LoScheduleFraction (sourceTypeID, roadTypeID, avgSpeedBinID)
HiScheduleFraction (sourceTypeID, roadTypeID, avgSpeedBinID)

Calculation:
For each sourceTypeID, hourDayID and avgSpeedBinID:
IF (BracketScheduleLo=BracketScheduleHi)
 loScheduleFraction=1.0
ELSE

loScheduleFraction =
(hiScheduleSpeed – avgBinSpeed) /
(hiScheduleSpeed – loScheduleSpeed)

hiScheduleFraction = (1 – loScheduleFraction)

 101

10.9.3. OMDG-3: Determine distribution of drive schedules
This step includes a preliminary sub-step which accounts for the effect of ramp

driving. The rampFraction field in the RoadType table indicates the fraction of time on

each roadway type which is spent on ramps. The “isRamp” field in the

DriveScheduleAssoc table determines whether a schedule is to be associated with ramp

driving or with driving on roadways exclusive of ramps. The MOVESDefault database

provided with the Demonstration version of DRAFT MOVES2009 has no ramp activity

(rampFraction = 0.0).

Users attempting to modify the database in this area should keep in mind several

data constraints: There must always be at least one driving schedule not indicated as a

ramp which is associated with each combination of source type and roadway type in the

DriveScheduleAssoc table. Additionally, for every ramp fraction which is greater than

zero in the RoadType table, there must be exactly one driving cycle which is indicated as

a ramp for each source type using that roadtype. (Conversely Ramp fractions can be zero

even if there is an associated ramp driving schedule; in this case the ramp schedule is

simply not used.)

At Macroscale, the distribution of ramp and non-ramp schedules is determined for

each roadtype; at Mesoscale Lookup, although the ramp fraction is assigned to all links of

a given roadtype, the calculation must be done for each link.

OMDG-3a: Determine distribution of ramp schedules
This step is accounts for freeway and interstate ramps, based on the input field

RampFraction, contained in table RoadType.

Input Variables:
RampFraction(roadTypeID)
driveScheduleID (sourceTypeID, roadTypeID, isRamp=Y)

Output Variable:
DriveScheduleFraction (sourceTypeID, hourDayID, driveScheduleID)

Calculation:
driveScheduleFraction = rampFraction(roadTypeID)

OMDG-3b: Determine distribution of non-ramp schedules
This calculation adjusts for the RampFraction on the given roadway. This step

determines the distribution of drive schedules which represents the average speed bin for

 102

the links. Since the LTLP assigns only the averageSpeeds in the AvgSpeedBin table, this

is simpler than for Macroscale.

Input Variables:
LoScheduleFraction (sourceTypeID, roadTypeID, hourDayID, avgSpeedBinID)
HiScheduleFraction (sourceTypeID, roadTypeID, hourDayID, avgSpeedBinID)
RampFraction(roadTypeID)
driveScheduleID (sourceTypeID, roadTypeID, isRamp=N)

Output Variable:
DriveScheduleFraction (sourceTypeID, avgSpeedBinID, driveScheduleID)

Calculation:
For each sourceTypeID, avgSpeedBinID, and driveScheduleID:
driveScheduleFraction =

[loScheduleFraction (if bracketScheduleLo = driveScheduleID) +
hiScheduleFraction (if bracketScheduleHi = driveScheduleID)] * (1-
RampFraction)

10.9.4. OMDG-4: Calculate second-by-second vehicle specific power (VSP)
This step calculates the vehicle specific power (VSP) for each drive schedule for

each source type. This is done for each source type, drive schedule and second.

Input Variables:
speed (driveScheduleID, second) from the DriveScheduleSecond table.
rollingTermA (sourceTypeID) from the SourceUseType table.
rotatingTermB (sourceTypeID) from the SourceUseType table.
dragTermC (sourceTypeID) from the SourceUseType table.
sourceMass (sourceTypeID) from the SourceUseType table.

Output Variable:
VSP (sourceTypeID, driveScheduleID, second)
accel (sourceTypeID, driveScheduleID, second)

Calculation:
For each sourceTypeID, driveScheduleID and second:
Preliminary Calculations:
speed (meters/second) = speed (mph) * 0.447 m/s per mph.
accel (meters/second2)= speed (t) – speed (t-1), with speed in meters/second.
VSP =
[rollingTermA*speed
+ rotatingTermB * speed2
+ dragTermC * speed3
+ sourceMass * speed * accel]
/ sourceMass
(speed in meters/second, accel in meters/second2)

 103

10.9.5. OMDG-5: Determine operating mode bin for each second
This step accounts for VSP, speed and accel. The VSP value for each second is

compared to the upper and lower bounds for the operating mode bins and a bin ID is

assigned to each second. This is done for each source type, drive schedule and second.

Input Variables:
VSPLower(opModeID) from the OperatingMode table.
VSPUpper(opModeID) from the OperatingMode table.
speedLower(opModeID) from the OperatingMode table.
speedUpper(opModeID) from the OperatingMode table.
brakeRate1Sec(opModeID) from the OperatingMode table.
brakeRate3Sec(opModeID) from the OperatingMode table.
speed (sourceTypeID, driveScheduleID, second) from DriveScheduleSecond

with
VSP (sourceTypeID, driveScheduleID, Second) from OMDG-4
accel (sourceTypeID, driveScheduleID, Second) from OMDG-4

Output Variable:
opModeIDbySecond (sourceTypeID, driveScheduleID, second)

Calculation:
For each sourceTypeID, driveScheduleID and second:
An opModeID is assigned for each second in each drive schedule based on

where the VSP, speed and accel values in that second falls. VSP and speed
are compared against the VSP and speed bounds to determine to appropriate
bins. Then the braking (ID=0) and idle bins (ID=1) should be assigned
based on accel and speed, respectively. This sequence is important since
there is overlap in the definitions between the non-braking/idle bins and the
braking/idle bins.

10.9.6. OMDG-6: Calculate operating mode fractions for each drive schedule

Once all the seconds in each operating mode bin are known, the distribution of the

bins can be determined. The sum of the operating mode fractions sums to one for each

source type and drive schedule combination. This is done for each source type and drive

schedule.

Input Variables:
opModeIDbySecond (sourceTypeID, driveScheduleID, second)

Output Variable:
OpModeFractionbySchedule (sourceTypeID, driveScheduleID, opModeID)

Calculation:
For each sourceTypeID, driveScheduleID and opModeID:

opModeFractionbySchedule =
(Number of seconds in opModeID during driveSchedule) /
(Total number of seconds in driveSchedule)

 104

10.9.7. OMDG-7: Calculate overall operating mode fractions
This step calculates the overall operating mode fractions by weighting the

operating mode fractions of each drive schedule by the drive schedule fractions. This is

done for each source type, link, day of the week, hour of the day and operating mode.

The opmodeFractions created should vary only by sourceType, roadType, and link speed.

They should be the same for each zone, day, and hour.

Input Variables:
OpModeFractionbySchedule (sourceTypeID, driveScheduleID, opModeID)
DriveScheduleFraction (sourceTypeID, roadTypeID, avgtSpeedBinID,

driveScheduleID)
Link(linkID, countyID, zoneID, roadTypeID)
LinkAverageSpeed(linkID, hourDayID, sourceTypeID)

Output Variable:
OpModeFraction (sourceTypeID, linkID, hourDayID, polProcessID,

opModeID)
Calculation:

For each sourceTypeID, linkID, hourDayID and opModeID:
opModeFraction =
Sum of OpModeFractionbySchedule*DriveScheduleFraction over all

DriveSchedules where the roadTypeID of the Link equals the roadTypeID
of the driveScheduleFraction and the averageSpeed of the Link equals the
averageSpeed of the avgSpeedBinID.

The Results of OMDG-7 populate the OpModeDistribution table of the Execution Location
Database.

The OpModeFraction in the OpModeDistribution table is:

OpModeFraction (sourceTypeID, linkID, hourDayID, polProcessID,
opModeID)

 105

10.10. Source Bin Distribution Generator (SBDG)
The Source Bin Distribution Generator produces the distribution of source bins by

source type and model year. This information provides the mapping between the activity

elements of MOVES (total activity and operating modes), which are based on source use

type, and the emission rates, which are based on source bin. The SBDG takes as input

fleet distributions of source bin categories (e.g. weight class, engine size, fuel type etc.)

by model year.

Data about the characteristics of the existing and projected vehicle fleet are stored

in several of the tables within the MOVESExecution database as shown in table 10-5.

The Source Bin Distribution Generator uses information in the first seven of these tables

to populate the last two: SourceBin and SourceBinDistribution which are core model

input tables.

Table 10-5. Tables used by SourceBinGenerator

Table Name Key Fields Additional Fields Notes

SourceTypePolProcess

sourceTypeID
polProcessID

isSizeWeightReqd
isRegClassReqd
isMYGroupReqd

Indicates which
pollutant-processes the
source bin distributions
may be applied to and
indicates which
discriminators are
relevant for each
sourceType and
polProcess

FuelEngFraction sourceTypeModelYearID
fuelTypeID
engTechID

fuelEngFraction

Joint distribution of
vehicles with a given
fuel type and engine
technology. Sums to
one for each sourceType
& modelYear

SizeWeightFraction sourceTypeModelYearID
fuelTypeID
engTechID
weightClassID
engSizeID

sizeWeightFraction

Joint distribution of
engine size and weight.
Sums to one for each
sourceType, modelYear
and fuel/engtech
combination.

 106

RegClassFraction sourceTypeModelYearID
fuelTypeID
engTechID
regClassID

regClassFraction

Fraction of vehicles in a
regulatory class. Sums
to one for each
sourceType, modelYear
and fuel/engtech
combination.

PollutantProcessModel
Year

polProcessID

modelYearID

modelYearGroupID

Defines model year
groups.

ModelYearGroup modelYearGroupID shortModYrGroupID
modelYearGroupName

Defines short model
year group Ids.

SourceTypeModelYear sourceTypeModelYearID modelYearGroupID
modelYearID
sourceTypeID

Decodes ID field into
modelYearID and
sourceTypeID

SourceBin SourceBinID engSizeID
fuelTypeID
engTechID
regClassID
modelYearGroupID
weightClassID

List of sourceBins

SourceBinDistribution SourceTypeModelYearID
polProcessID
sourceBinID

sourceBinActivityFract
ion

Stores source bin
distributions.

The SourceBinGenerator uses information from the run specification to determine

which sourcetypes, modelyears, fuel-types, pollutants and processes are relevant, and

limits the Generator action to the relevant sources.

 “Source bin discriminators” refer to characteristics that are used to distinguish the

source bins. The MOVES source bin discriminators are:

fuelType*
modelYearGroup
engTech*
regClass
engSize*
weight Class*
 (* fuelType and engTech are distinct but highly correlated, and, thus, handled

together; similarly engSize and weightClass are handled together)

a. Because it would be awkward to have all these separate fields in each database table

related to source bins, this information is combined into a single unique BIGINT

 107

identifier 1ffttrryysssswwww00, where the digits represent the bin discriminators as

follows:

Leading 1 (1)
Fuel (ff)
EngineTech (tt)
Regulatory Class (rr)
Model Year Group (yy)
Engine Size (ssss)
Engine Weight (wwww)
Extra zeros (00)
With the exception of the ModelYear group, each bin discriminator is coded as

for the discriminator ID (see the database attribute table), with leading zeros
added as needed. ModelYear group is coded using the
shortModYrGroupID as defined in the database table ModelYearGroup.

 The ordering of the subfields within this identifier is essentially arbitrary. The

SourceBin table contains both the individual fields and the combined source bin identifier

and can be used to “decode” the combined identier values.

b. The SourceTypePolProcess table identifies which discriminators are relevant for each

source type and pollutant/emission process (polProcess). If a discriminator is not

relevant for a given source type & polProcess, the discriminator ID is set to 0 (which

means that the discriminator value doesn’t matter) and the fraction of vehicles to

which this value of this discriminator applies is set to 1 for all model years.

c. The SourceBinGenerator “signs up” with the MOVES MasterLoop at the PolProcess

level which means it executes only once for each relevant process (running exhaust,

start exhaust, and extended idle exhaust).

d. For each RunSpec-required source type, polProcess, fuel type and model year (as

implied by the selected year and the largest valid ageID), and for each

relevant/existing combination of sourcebin discriminators (as determined by the input

tables), the sourceBinActivityFraction is calculated as follows:

sourceBinActivityFraction = fuelEngFraction *regClassFraction
*sizeWeightFraction

e. The SourceBinDistribution table lists the sourceBinActivityFractions for each

sourceBin, sourceType, modelYear and polProcess. The set of such records for a

 108

given sourceType, modelyear, and polProcess constitute a source bin distribution

which sums to unity.

f. The SourceBin table provides a list of unique source bins that have a

SourceBinActivityFraction > 0 in at least one source bin distribution. The SBDG adds

sourceBinID records to this table if necessary, but does not duplicate records already

present.

g. If data is not available for all the model years implied by the calendar year in the run

specification, source bin distributions for the missing years prior to the first populated

for the same sourceType and polProcess are generated which are equal to the

distribution from that first populated model year. Source bin distributions are also

generated for missing model years after the last populated for the same sourceType

and polProcess which are equal to the distribution from that last populated model

year. Years extrapolated are only those earlier than the earliest model year for which

data is provided or later than the latest model year for which data is provided.

h. If any data is already present in the CMIT SourceBinDistribution table for a

combination of sourceType and polProcess, which would mean that the user had

entered this information directly, this Generator does not produce

SourceBinDistribution output for that combination.

The approach to performing the calculation steps implied by these specifications

is shown in table 10-6:

 109

Table 10-6. SourceBin Generator Calculation Steps
Step/Query Description
1 populate sb_fractions Select data from the SourcBinGenerator tables to fill a temporary table

with identifying and distribution records for each relevant combination
of sourceType, pollutant-process and bin identifier.

2_1 sb_fractions update
regulatory class.

For each record, for pollutant-processes that do not require regulatory
class information, set regClassID to 0 and regClass Fraction to 1.

2_2 sb_fractions update MY
GroupID

For each record, for pollutant-processes that do not require model year
group information, set MYGroupID to 0.

2_3 sb_fractions update size
and weight

For each record, for pollutant-processes that do not require size and
weight information, set engSizeID and weightClassID to 0 and
sizeWeightFraction to 1.

2_5 calculate sb_fractions For each record, calculate sb_fractions as the product of
fuelEngFraction, emisTechFraction, and sizeWeightFraction.

2_7 populate sb_fractions no
dups

Remove duplicate records from sb_fractions; save as a second
temporary table, “sb_fractions no dups”.

4 populate SourceBin Select unique sourceBinIDs with fractions >0 to fill SourceBin table.
4_5 generate bin IDs Generate sourceBinIDs from bin discriminators.
5 append source bin
distributions

Use SourceBin table and “sb_fractions no dups” to fill
SourceBinDistribution table.

 110

10.11. Meteorology Generator
Basic meteorological parameters such as temperature, humidity and heat index are

stored in the MOVESExecution database table ZoneMonthHour. This generator uses the

temperature and relative humidity information in the ZoneMonthHour Table and

performs the necessary calculations to populate the heatIndex and specific humidity (or

humidity ratio) fields in this table.

This generator subscribes to the MOVES master loop mechanism at the process

level for the running and extended idling emission processes.

The Meteorological Generator uses the temperature and relative humidity data in

the ZoneMonthHour table to populate the Heat Index column.

 For each RunSpec-required zone, month and hour, the Heat Index is calculated by

following the algorithm:

HI = -42.379 + 2.04901523*T + 10.14333127*RH + -0.22475541*T*RH +
-6.83783 *0.001*T*T + -5.481717 * 0.01 * RH*RH +
1.22874*0.001*T*T*RH + 8.5282*0.0001*T*RH*RH +
-1.99*.000001*T*T*RH*RH

where HI is the heat index, T is temperature in degrees F, and RH is the relative
humidity in percent. This formula is a recent heat index algorithm used by the
National Weather Service.

 The MetGenerator has been expanded in DRAFT MOVES2009 to also calculate

the specific humidity field of the ZoneMonthHour table. The equations used to convert

from relative humidity in percent to specific humidity (or humidity ratio) in units of

grains of water per pound of dry air were taken from CFR section 86.344-79.

 111

Inputs:

TF is the temperature in degrees F. (from temperature field in ZoneMonthHour)
 Pb is the barometric pressure. (from barometricPressure field in County)
 Hrel is the relative humidity (from relHumidity field in ZoneMonthHour)

()[]

() ()

() ()
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

+
++

−

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

+
++

−

=

=

⎟
⎠
⎞⎜

⎝
⎛=

−=

−=

+−=

0

3
00

0

0

3
00

0

00219.01
0000000117.000588.02437.3/

00219.01
0000000117.000588.02437.3/

0

10*557.6527

10*167.218*92.29

100

)/(*8.4347

27.647

273329
5

T
TTTT

T
TTTT

db

db
rel

V

VbVhumidityspecificorratio

K

FK

K

K

P

PHP

PPPH

TT

TT

 112

10.12. Start OperatingModeDistributionGenerator (StartOMDG)
The StartOMDG signs up with the master loop mechanism at the Zone level. Its

substantive calculations are independent of geographic location and depend in time only

upon hour and day.

The operating modes used for the start process of the criteria pollutants represent ranges

of the amount of time vehicles have been parked before being started and are listed near

the end of section 9.7.

The steps of this calculation can be logically specified as follows:

1. Compute the soak length of each trip in the SampleVehicleTrip table. This

equals the keyOnTime of the trip minus the keyOffTime of the previous trip.

Trips having no prior trip (priorTripID = NULL) are disregarded in the

calculation.

2. Assign a start opModeID to the trip by comparing its soak length with the

minSoakBound and maxSoakBound values in the OperatingMode table.

3. Then for each sourceTypeID and hourDayID, the opModeFraction of each

opModeID equals:

the count of records having the opModeID

divided by

the number of keyOnTime records.

Trips having no prior trip are excluded from both the numerator and the

denominator of this ratio.

Steps 1 through 3 are performed at most once for each model run.

 113

4. During each Zone level iteration of the StartOMDG masterloopable, the

operating mode distribution (which is by sourceTypeID, hourDayID and

opModeID) resulting from steps 1-3 is stored into the OpModeDistribution CMIT

for the off-highway-network link location in the zone for each pollutant whose

start process emissions are required by the run specification and whose

calculation requires an operating mode distribution. (Estimating the start process

emissions of the “greenhouse gas” pollutants in DRAFT MOVES2009 does not

require an operating mode distribution, whereas estimating the start process

emission of the “criteria” pollutants added in DRAFT MOVES2009 does involve

using an operating mode distribution.)

Records already existing in the CMIT are not overwritten.

 114

10.13. Tank Temperature Generator (TTG)
10.13.1. Functional Characteristics

The TTG signs up at the ZONE master looping level. It must execute before the Evap

Operating Mode Distribution Generator.

The TTG uses the Sample Vehicle and SampleVehicleTrip tables, in conjunction with

ambient temperature information in the ZoneMonthHour table, and temperature effect

information from the TankTemperatureRise table to calculate the contents of the

AverageTankTemperature, SoakActivityFraction tables, ColdSoakTankTemperature and

ColdSoakInitialHourFraction tables which are CMITs.

No records are added to the AverageTankTemperature table for a combination of

tankTemperatureGroupID, zoneID, and monthID if any record pertaining to this

combination is already present. No records are added to the SoakActivityFraction table

for a combination of sourceTypeID, zoneID, and monthID if any records are already

present for it. No records are added to the ColdSoakInitialHourFraction table for a

combination of sourceTypeID, zoneID, and monthID if any records are already present

for it.

Because Mesoscale Lookup does not compute the emissions of parked cars, some TTG

steps are skipped to reduce computing time when Mesoscale Lookup is selected.

10.13.2. Detailed Calculation Steps
TTG-1 Calculate ColdSoakTankTemperature

 Inputs:

- Temperature (zoneMonthHour)

 Output:

- coldSoakTankTemperature (zoneID, monthID, hourID). This is saved in
the ColdSoakTankTemperature CMIT.

Preliminary Calculation: 15minuteTemperature - Create intermediate table of
temperatures in 15 minute time steps, with key fields hourID, timeStep (1 through
4 with 1 representing the top of the hourID). Within each hourly temperature, set

 115

time step 1 to the corresponding value from zoneMonthHour. Then perform
linear interpolation with hourID+1 timeStep 1 to fill in hourID TimeStep 2-4 .
For the “highest” hour ID interpolate (default = 24) with the “lowest” hour ID
(default = 1).

Preliminary Calculation: 15minuteTankTemperature - Performed on the 15
minutes temperature table produced in the preliminary calculation.
15minuteTankTemperate and tempDelta need to be calculated at each time step
before performing calculations on the next time step.

- for hourID =1, timeStep=1

15minuteTankTemperature
= 15minuteTemperature (hourID=1, timeStep=1)

tempDelta

= 15minuteTemperature – 15minuteTankTemperature

- for all other hourID, timeSteps:
 15minuteTankTemperature

= 1.4*SUM(tempDelta hourID=1, timeStep=1 through
most recent hourID, timeStep)+ 15minuteTankTemperature
(hourID 1, timeStep 1)

tempDelta

= 15minuteTemperature - 15minuteTankTemperature

Calculation: coldSoakTankTemperature (hourID) = 15minuteTankTemperature
(hourID, timeStep=1)

TTG-2 Create sampleVehicleTripByHour

Trips in the sampleVehicleTrip table may span the top of the next hourDayID. This step

is needed to parse the trips into segments for which the start and finish are within the

same hourID. “Marker Trips”, which have a keyOffTime, but null value of keyOnTime

are ignored in this calculation.

 Inputs:

- SampleVehicleTrip

Outputs:

 116

- Intermediate table SampleVehicleTripByHour (vehicleID, tripID,
hourDayID, endOfHour, keyOnTime, KeyOffTime, startOfTrip,
endOfTrip)

Preliminary calculation: calculate “endOfHour” for each record not representing
a “Marker Trip” = next highest multiple of 60

Calculation: Create a new “trip” record when keyOffTime for a trip >
endOfHour. The tripID will remain the same, but the hourID will increment
accordingly. The fields “startOfTrip” or “endOfTrip” will be added to table to
identify whether the trip record is an actual trip start or trip end. The specific
steps are as follows:

- Set startOfTrip=1 for each existing trip in SampleVehicleTrip
- Records need to be split when keyOffTime > endOfHour

o New keyOffTime for existing record = endOfHour
o Create new record for tripID, with hourID = hourID+1 and

endOfHour = endOfHour + 60
o keyOnTime for new record = endOfHour (hourID-1) + 1
o keyOffTime is the same as original record, unless it is >

endOfHour – in which case repeat these steps until a record is
created where keyOffTime < endOfHour

- “endOfTrip” = 1 for record where keyOffTime<endOfHour (i.e. last
split).

TTG-3 Create hotSoakEventByHour

 Inputs:

- SampleVehicleTripByHour (vehicleID, tripID, hourDayID,
endOfHour, keyOnTime, KeyOffTime, startOfTrip, endOfTrip)

Output:

- Intermediate table hotSoakEventByHour (vehicleID, tripID,
hourDayID, endOfHour, hotSoakBegin, hotSoakEnd, startOfSoak,
endOfSoak)

 Calculation:
- Select records from sampleVehicleTripByHour where endOfTrip=1
- hotSoakBegin = keyOffTime of TripID; startOfSoak=1
- if keyOnTime of “next trip” (define by priorTripID=TripID and

startOfTrip=1) < endOfHour for TripID, then hotSoakEnd =
keyOnTime of next trip; endOfSoak=1

- Otherwise, if there is a next trip
o hotSoakEnd = endOfHour for TripID; endOfSoak=0
o Create new record for tripID, with hourID = hourID+1 and

endOfHour = endOfHour + 60

 117

o hotSoakBegin for new record = endOfHour (hourID-1) + 1
o hotSoakEnd is the same as original record, unless it is >

endOfHour – in which case repeat these steps until a record is
created where keyOffTime < endOfHour; at which point set
endOfSoak=1

- Otherwise, if there is no next trip
o hotSoakEnd = endOfHour for TripID; endOfSoak=0
o Repeat these steps until hourID=24 is reached

 Create new record for tripID, with hourID = hourID+1
and endOfHour = endOfHour + 60

 hotSoakBegin for new record = endOfHour (hourID-1)
+ 1

 hotSoakEnd = endOfHour for TripID; endOfSoak=0

TTG-4 Calculate Hot Soak and Operating Tank Temperature by Parsed Trip

This step computes operating tank temperatures for the beginning and end times of the

parsed trips in sampleVehicleTripByHour, and for each minute for hot soaks (necessary

because hot soak is modeled as a decay function). The calculations must be performed in

tandem since the initial temperature for each trip is a function of the final temperature

from the preceding hot soak, and vice versa.

 Inputs:
- sampleVehicleTripbyHour (TTG-2)
- hotSoakEventByHour (TTG-3)
- hourlyColdSoakTankTemperature (TTG-1)
- temperature (ZoneMonthHour)
- tankTemperatureRiseTermA (TankTemperatureRise)
- tankTemperatureRiseTermB (TankTemperatureRise)

Outputs:
- intermediate table operatingTemperature, which adds the fields

keyOnTemp and keyOffTemp to sampleVehicleTripByHour; and adds
key field tankTemperatureGroup

- intermediate table hotSoakTemperature, which stores the tank
temperatures for each hot soak event minute-by-minute; and adds key
field tankTemperatureGroup

Calculation: operatingTemperature

For each vehicle:

 118

for first (non-marker) trip in sampleVehicleTripByHour:

- keyOnTemp = hourlyColdSoakTemperature for that hour (linking of

hourDayID in sampleVehicleTripByHour and hourID in
hourlyColdSoakTemperature required)

- keyOffTemp = keyOnTemp + [(tankTemperatureRiseTermA +
tankTemperatureRiseTermB * (95-
hourlyColdSoakTemperature))/(1.2)]*((keyOffTime –
keyOnTime)/60)

for subsequent trips:

if startOfTrip=0 (i.e. continuation of a TripID in a new hour):
- keyOnTemp = keyOffTemp from previous segment (defined as the

same TripID in the previous hour)
- keyOffTemp calculated as above

 if startOfTrip=1 (i.e. new trip)

- keyOnTemp = final soakTankTemperature from hotSoakTemperature
where TripID of hotSoakTemperatures = priorTripID of
operatingTemperature (i.e. the record in which hotSoakTime =
keyOnTime for Trip ID)

- keyOffTemp calculated as above

Repeat with each new vehicle

Calculation: SoakTemperature this intermediate table expands
hourlySoakEventByHour to store the hot soak tank temperature for each hot soak
event minute-by-minute. Construct hotSoakTemperature as follows:

- key fields vehicleID, tripID, hourDayID from

hourlySoakEventByHour
- using values of hotSoakBegin and hotSoakEnd for a given tripID,

expand records to minute-by-minute with key field hotSoakTime (i.e.
initial hotSoakTime = hotSoakBegin, final hotSoakTime =
hotSoakEnd)

- coldSoakTemperature = hourlyColdSoakTemperature for the hour
- initialTankTemperature = keyOffTemp for Trip ID where

endOfTrip=1, from operatingTemperature table
- For initial record in each hot soak event (defined by tripID):

o soakTankTemperature = initialTankTemperature
o tempDelta = temperature (this is ambient temperature from

zoneMonthHour for that hour) – soakTankTemperature
o opModeID = 150 if soakTankTemperature >

coldSoakTemperature + 3, otherwise end

 119

- For subsequent records in the same event:
o soakTankTemperature = 1.4*SUM(tempDelta from initial

record through most recent record)/60+
initialTankTemperature

o tempDelta = temperature (this is ambient temperature from
zoneMonthHour for that hour) – soakTankTemperature

o opModeID = 150 if soakTankTemperature >
coldSoakTemperature + 3, otherwise end

TTG-5 Calculate averageTankTemperature CMIT

This step is not required for mesoscale lookup.

Inputs:
- operatingTemperatures
- hotSoakTemperatures
- hourlyColdSoakTankTemperature

Output:

- averageTankTemperature CMIT (zoneID, monthID, hourDayID,
tankTemperatureGroupID, opModeID, averageTankTemperature)

Calculation:

- averageTankTemperature, for a given hourDayID:
o for opModeID=151 (cold soak) = hourlyColdSoakTankTemp

for that hour
o for each zoneID, monthID, hourDayID, and

tankTemperatureGroupID averageTankTemperature can be
calculated from the OperatingTemperature table as:

averageTankTemperature =

SUM((keyOffTime-keyOnTime) * (keyOnTemp +
keyOffTemp)/2.0)
/
 SUM(keyOffTime-keyOnTime)

o for opModeID=150 (hot soak) = average of all
soakTankTemperatures for trips with the same hourDayID

TTG-6 Calculate soakActivityFraction CMIT

Inputs:
- intermediate table HotSoakTemperature
- SampleVehicleDay table

 120

Outputs:
- SoakActivityFraction CMIT

Calculation:

Fraction of cold soaking = cMinutes / (cMinutes + hMinutes)
 Fraction of hot soaking = hMinutes/ (cMinutes + hMinutes)

 Where:

cMinutes, on a dayID = total minutes of cold soaking for all vehicles in
SampleVehicleDay = (60 * number of sample vehicles existing on the
dayID) – oMinutes – hMinutes

oMinutes, on a dayID = total minutes of vehicle operation in the
hourDayID = sum (keyOffTime-keyOnTime) for all trips in the
hourDayID from VehicleTripByHour

hMinutes, on a dayID = total minutes of vehicle hot soaking in the
hourDayID = count of records in HotSoakTemperature in the hour

 TTG-7: Calculate Cold Soak Initial Hour Fractions

This step is not required for mesoscale lookup

Inputs:
o SampleVehicleTrip table
o SampleVehicleDay table
o VehicleTripByHour(TTG-2)
o HotSoakTemperature(TTG-4)

Outputs:

o ColdSoakInitialHourFraction CMIT table
Calculations:

First, make an intermediate table, ColdSoakInitialHourMinutes:

 Key fields:

 zoneID
 monthID
 tankTemperatureGroupID
 vehID
 dayID
 hourID
 initialHourID

 Data field:
 coldSoakInitialHourMinutes

 121

The produce ColdSoakInitialHourMinutes as follows:

For each tankTemperatureGroupID
 For each vehID and dayID in SampleVehicle
 Initial Hour = 1
 For Each Hour

Write two records into coldSoakInitialHourMinutes, one for
minutes of cold soaking which began in the initial hour, which we
will denote as X , and one for minutes of cold soaking which began
in the current hour, which we will denote as Y. The idea here is
that all minutes of cold soaking in the current hour must either be
an extension of cold soak periods which began at some single prior
hourID, or must have begun in this hour. This single prior hourID
is what has been denoted above as Initial Hour.

Find the earliest record pertaining to the vehicle, day, and hour in
either VehicleTripByHour (TTG-2), based on keyOnTime, or in
HotSoakTemperature (TTG-4) based on hotSoakTime. There are
three possibilities:

1. There is no first record because there are no records.

X = 60.
Y = 0.

2. The first record is a VehicleTrip. (This may be the only record

in the hour or there may be any number of subsequent hot
soaks, and trips, the last of which may or may not run to the
end of the hour.)

X = keyOnTime of this first record – endOfHour + 60
Y = 60-X-(number of HotSoakTemperature records) –
sum(keyOffTime-keyOnTime) for all trips in the hour.
Reset Initial Hour for subsequent calculations to be the current
hour.

3. The first record is a hot soak minute (This may be the only

record, or there may be any number of subsequent trips and hot
soak minutes, the last of which may or may not run to the end
of the hour.)

X = 0
Y = 60-(number of HotSoakTemperature records) –
sum(keyOffTime-keyOnTime) for all trips in the hour.
Reset InitialHour for subsequent calculations to be the current
hour.

 Next Hour

 122

Next Vehicle - Day

Next TankTemperatureGroup

TTG-7 can now produce the ColdSoakInitialHourFraction table by summing the
ColdSoakInitialHourMinutes table across tankTemperatureGroups and sampleVehicles
within SourceType, and normalizing to distributions which sum to unity.

The format of the ColdSoakInitialHourFraction table remains:

 Key Fields:

 sourceTypeID
 zoneID
 monthID
 hourDayID
 initialhourDayID

 Data Field:

 coldSoakInitialHourFraction

ignoring the detail that hourIDs and dayIDs are combined into hourDayIDs

coldSoakInitialHourFraction =
(sum of all minutes for vehIDs belonging to sourceTypeID in the zoneID,
monthID, and dayID having the hourID and initialHourID) /
(sum of all minutes for vehIDs belonging to sourceTypeID in the zoneID,
monthID and dayID having the hourID)

The calculation deliberately ignores the tankTemperatureGroup distinction, giving
them all equal weight.

This key assumption behind this approach is that vehicles are soaking at all times when
they are not hot soaking or operating. The predominant model of time embodied in the
previous calculations, which this approach seeks to make rigorous, is that the world
begins on the first hour of the day, and ends at the end of the day. E.g. there is no effort
in the cold soak tank temperature calculations to “wrap-around” from the last hour of the
day to the first hour of the day, and doing so now would result in a temperature
discontinuity. (The single exception to this is that the TAG does consider some history
from previous “real-world sampling days”, by allowing soak times for the first trip to be
longer than if they had begun at midnight. This exception is quite limited and
corresponds exactly to the use of the “marker trips” which are used for this single
purpose.)

 123

10.14. Tank Fuel Generator (TFG)
10.14.1. Functional Characteristics

 This component executes at the County master looping level.

 This component uses the fuel supply information from the MOVES database

(which pertains to Fuel Formulations dispensed to sourceUseTypes in proportion to their

FuelSupply marketShares) to produce the AverageTankGasoline table. It accounts for

the effects of “comingling” ethanol with non-ethanol gasoline and for the “weathering”

effect on RVP for in-use fuel.

 The AverageTankGasoline table produced by this component is a CMIT. Any

records already present in the MOVESExecution database, are not overwritten. This is

done on an individual record basis.

10.14.2. Detailed Calculation Steps

TFG-1a: Calculate Average Pump Gasoline and Ethanol Blend Type

Inputs:
marketShare from FuelSupply (county, fuelYear, monthGroup,

fuelFormulation)
ETOHvolume from FuelFormulation (fuelFormulation)
RVP from FuelFormulation (fuelFormulation)
fuelSubTypeID from FuelFormulation
fuelTypeID from FuelSubType

Outputs:

averageRVP (county, fuelYear, monthGroup)
tankAverageETOHVolume (county, fuelYear, monthGroup) This is stored as

the ETOHVolume field of AverageTankGasoline.

Calculations:

averageRVP = For all FuelFormulations in county, fuel year & monthGroup
where fuelType = “gasoline” (ie fuelTypeID = 1))

(Sum (RVP*marketshare)) / (Sum (marketshare))

tankAverageETOHVolume = For all Fuel Formulations in county, fuel year &

monthgroup where fuelType = “gasoline” (ie fuelTypeID = 1))
(Sum (ETOH Volume*marketshare)) / (Sum (marketshare))

 124

TFG-1b: Calculate Ethanol Market Share and Ethanol BlendType

Inputs:

marketShare from FuelSupply (county, fuelYear, monthGroup,
fuelFormulation)
fuelSubTypeID from FuelFormulation
fuelTypeID from FuelSubType

Outputs:

gasoholMarketShare (countyID, fuelYearID, monthGroupID)
ethanolBlendType (county, fuelYear, monthGroup)

Calculation:

gasoholMarketShare: For all FuelFormulations in county, fuelyear &
monthgroup where ETOHVolume >= 4

gasoholMarketShare =Sum (marketShare)

lowETOHRVP: For all FuelFormulations in county, fuel year & monthgroup
WHERE fuelType = “gasoline” (ie fuelTypeID = 1) and ETOHVolume <4

IF (sum (marketshare) = 0,

lowETOHRVP=AverageRVP

ELSE
lowETOHRVP=(Sum (RVP*marketshare)) / (Sum

(marketshare))

highETOHRVP: For all FuelFormulations in county, fuel year &

monthgroup WHERE fuelType = “gasoline” (ie fuelTypeID = 1)) and
ETOHVolume >= 4

IF gasoholMarketShare = 0,

highETOHRVP = AverageRVP

ELSE
highETOHRVP =(Sum (RVP*marketshare)) /

gasoholMarketShare

ethanolBlendType:

IF absolute value (highETOHRVP –lowETOHRVP) <= 0.2,
ethanolBlendType =“Match”

ELSE ethanolBlendType = “Splash”

 125

TFG-1c: Calculate Commingled Tank Fuel RVP
Inputs:

gasoholMarketShare (countyID, fuelYearID, monthGroupID) from TFG-1b
averageRVP (countyID, fuelYearID, monthGroupID) from TFG-1a

Commingling Lookup (stored in program)

LookupMarketShare
Commingling
RVP Factor

0.0 1.000
0.1 1.016
0.2 1.028
0.3 1.035
0.4 1.039
0.5 1.040
0.6 1.038
0.7 1.034
0.8 1.027
0.9 1.018
1.0 1.000

Outputs:
commingledRVP (countyID, fuelYearID, monthGroupID)

Calculation:
comminglingFactor (countyID, fuelyearID, monthgroupID) = lookup from

table using smallest value of “LookupMarketShare” that is greater than or
equal to the gasoholMarketShare.

commingledRVP = averageRVP * comminglingFactor

TFG-2: Weathered RVP

TFG-2a: Calculate “EvapTemp” by zoneID, MonthGroupID

Inputs:
temperature (zoneID, hourID monthgroupID)
zoneID from masterloopcontext

Outputs:

zoneEvapTemp (zoneID, monthgroupID)

Calculation :

 126

zoneMin(zoneID, monthgroupID) = MIN (temperature(zoneID,

monthgroupID, hourID))

zoneMax (zoneID, monthgroupID) = MAX(temperature(zoneID,

monthgroupID, hourID)

zoneEvapTemp =

IF zoneMax <40 or zoneMax-zoneMin <=0, (zoneMin+zoneMax)/2
ELSE zoneEvapTemp(zoneID, monthGroupID) =
 -1.7474+1.029*zoneMin+ 0.99202* (zoneMax-zoneMin)-

0.0025173*zoneMin* (zoneMax-zoneMin)

TFG-2b: Calculate ratio of weathering loss for gasoline by Zone, Year & Month at
actual ambient temperatures relative to a diurnal swing of 72-96 F

Inputs:

zoneEvapTemp (zoneID, monthgroupID) from previous step
commingledRVP (countyID, fuelYearID, monthgroupID) from TFG-1c
zone(countyID, zoneID)

Outputs:

ratioGasolineRVPLoss(zoneID, fuelYearID, monthgroupID)

Calculation :

ratioGasolineRVPLoss =MAX (0, [-2.4908 + 0.026196 * zoneEvapTemp +
0.00076898 * zoneEvapTemp * commingledRVP]/[-0.0860 + 0.070592 *
commingledRVP])

TFG-2c: Calculate weathering loss for average fuel for standard temperatures

Inputs:
ethanolBlendType (county, fuelYear, monthGroup) from TFG-1a
gasoholMarketShare (countyID, fuelYearID, monthGroupID) from TFG-1b

Outputs:

avgWeatheringConstant (countyID, fuelYearID, monthGroupID)

Calculations:
IF ethanolBlendType = “Match”, avgWeatheringConstant = 0.049 – 0.0034 *

gasoholMarketShare
ELSE avgWeatheringConstant = 0.049 – 0.0116 * gasoholMarketShare

 127

TFG-2d: Calculate weathered RVP for county-average fuel adjusted for zone
temperatures

Inputs:

ratioGasolineRVPLoss (zoneID, fuelYearID, monthgroupID) from TFG-2b
avgWeatheringConstant (countyID, fuelYearID, monthGroupID)

from previous step
commingledRVP (countyID, fuelYearID, monthGroupID) from TFG-1c
zone(countyID, zoneID)

Outputs:

tankAverageGasolineRVP(zoneID, fuelYearID, monthgroupID)

Calculation :

tankAverageGasolineRVP (zoneID) = commingledRVP(countyID) * (1 –
ratioGasolineRVPLoss (zoneID) * avgWeatheringConstant (countyID))

This is stored as the RVP field of AverageTankGasoline

 128

10.15. Evaporative OperatingModeDistributionGenerator
(EvapOMDG)
The evaporative operating mode distribution generator populates the core model

OpModeDistribution table for the evaporative processes (Tank Vapor Venting, Fuel

Liquid Leaking and Fuel Permeation) While the Permeation process does not

distinguish emission rates by these operating modes it applies the temperature adjustment

separately by operating mode and therefore needs this operating mode distribution to

weight values together.

Inputs to this calculation are the SHO and SourceHours tables and the

SoakActivityFraction table produced by the TTG. Its only output is the

OpModeDistribution table.

Since the operating mode distributions for the principal evaporative processes depend

upon ambient temperature and therefore upon monthID, but the

OperatingModeDistribution table does not include monthID as a key field, it is logically

necessary, apart from any performance considerations, for this MasterLoopable

component to execute at or below the MONTH level, and as implemented it does sign up

at the MONTH level. This means, as regards locations, that it executes for each Link.

The algorithm used is intended to operate correctly if some vehicle operation is allocated

to the off-network roadtype.

For links which represent actual highways the operating mode distribution is always

“100% operating”. If running for mesoscale lookup this is all that needs to be done.

When links which represent off highway locations are included in the run specification,

this OMDG determines fractions for “operating”, and for the other evaporative process

operating modes, which in the current database are “hot soaking” and “cold soaking”,

which sum to unity as follows:

 129

1. Determine the fraction of operating as a ratio of SHO in the SHO table to sourceHours

in the SourceHours table. Since these tables have the same structure, and since this

component is executing for a single linkID and monthID, this calculation is

straightforward. The ageID, which is present in the SHO and SourceHours tables but not

in OperatingModeDistribution, just needs to be summed out. If the source hours

denominator is missing or zero, then no output distribution is produced.

2. Convert the soakActivityFractions for the operating modes other than “operating”

(currently “hot soaking” and “cold soaking”) to opModeFractions which take into

account the fraction of operating.

opModeFractionopModeID = soakActivityFractionopModeID

* (1.0-fraction of operating)

The special treatment of the “operating” mode is “hard-coded” into this generator. The

other modes, however, are treated in a general fashion, e.g.. the TTG does not assume

that there are only two other modes, or that these modes have certain names.

 130

10.16. Alternative Vehicle Fuels and Technologies (AVFT) Strategy
The Alternative Vehicle Fuels & Technologies Strategy is the first

implementation of an internal control strategy. This control strategy allows the user to

input penetration rates (i.e. sales fractions) by model for a broad range of advanced

technologies, through model year 2050. It is thus a key element in the ability of MOVES

to perform “what-if” analysis.

The AVFT has two components. One component is incorporated into the

MOVES GUI and allows the user to create specifications for replacement inputs for the

FuelEngFraction table and, indirectly, the SizeWeightFraction and RegClassFraction

tables. A second portion, the actual InternalControlStrategy MasterLoopable object,

uses these specifications to produce these replacement tables prior to the running of the

SourceBinGenerator. This causes changes to the SourceBinDistributions and the

eventual MOVES output.

The user has the option to save the specifications (AVFTspecs) for the

replacement input tables. Most of the content of these specifications is the data to fill a

large FuelEngFraction table in the MOVES database. The user is able to save the

AVFTSpecs and to load and modify a saved AVFTSpec. A RunSpec may have an

associated AVFTSpec; but AVFTspecs may also exist independently of RunSpecs.

10.16.1. Functional Characteristics of the AVFT GUI Component:
a. “Strategies” appears on the RunSpec Navigation List immediately after “Manage

Input Data Sets”. “Alternative Vehicle Fuels & Technologies” is a sub-section.

Control Strategies are not required, thus the initial status icon for Strategies (and its

sub-sections) is the green check or the yellow squiggles depending on whether the

Run Spec currently includes a control strategy that modifies the default data.

b. An AVFT file management panel appears when the user selects “Alternative Vehicle

Fuels & Technologies” from the navigation list. The panel includes:

The name of the associated AVFTSpec (if one exists), or an indicator that no

AVFTSpec exists and that default Fuel/Technology fractions are being used. The

 131

name displayed changes in response to the buttons below. No more than one

AVFTSpec may be associated with a given RunSpec.

A “New” button to create a new AVFTSpec. (This has the same effect as returning to

default and editing.)

An “Edit” button to view & modify the associated AVFTSpec.

An “Import” button to load/associate an existing AVFTSpec. This allows the user to

browse for exported AVFTSpecs and to select one.

An “Export” button allows the user to save a AVFTSpec independent of the RunSpec.

(Note: Saving the RunSpec itself includes saving the associated AVFTSpec.

Executing the RunSpec after editing an AVFTSpec but without saving includes

execution of the new AVFTSpec.)

A “Delete” button to remove an associated AVFTSpec and revert to MOVES

defaults.

A “Cancel” button to close the panel without changes.

c. An AVFT Edit panel appears next to the AVFT file management panel when the user

selects “Edit” or “New” in that panel. The Edit panel contains a description button

and a details subpanel.

Description Button: The user may (optionally) enter a short text description of the

spec.

Details Panel:

1. The user may select a SourceType from a drop down list of all SourceTypes. The

panel then displays a table of the Fuel/Engine Technology fractions from the

associated AVFTSpec (or MOVES default DB FuelEngFraction table) for that

SourceType for model years 2001-and-later. (The default FuelEngFraction table

need not include all model years and the AVFTSpec may include similarly limited

model years. The panel shows the model years provided and allows users to add

additional years if desired (see below). In any case, the MOVES

 132

SourceBinGenerator extrapolates needed future years by repeating values for the

last year provided.)

2. Fuel/EngineTechnologies are listed as columns. Model years are listed as rows.

The first value in each row is the model year. Fractions are sorted into categories

as listed in the in the FuelEngTechAssoc table for that SourceType. The

categories are displayed in the order indicated by the CategoryDisplayOrder field

of the FuelEngTechAssoc table. Within a category, fractions are listed in

ascending order by FuelTypeID*100 +EngTechID. The final value in each row is

the sum of all FuelEngFractions for that source/type model year (so the user can

see if the values sum to 1 as desired.) This panel normally fills the entire screen,

with scroll bars to display any portions that don’t fit.

3. The initial view displays fractions aggregated in the categories listed in the

FuelEngTechAssoc table for that SourceType. The user can display or hide

detailed views that display the fractions for individual Fuel/EngineTechnology

combinations. Categories with only one member are not considered “aggregate”

(ie, they may be modified in all views and there is no “detailed view” to display

or hide). Columns of aggregate fractions should be labelled with the category

name. Columns of non-aggregrate fractions should be labeled with the name of

the FuelType and the Engine Technology.

4. The user may select an “Add Model Years” button that adds one or more model

year rows at the bottom. The user has an option to specify how many rows to add

with this feature but the sytem currently will not add model years beyond 2050.

In each new row, the model year field is the next consecutive model year. The

initial values for the FuelEngFractions in the new row equal those of the previous

model year.

5. The user may replace any (non-aggregate) fraction in the table. Category

aggregate fractions are grayed-out to indicate that they must be modified in a

detail view. Fractions must be between 0 and 1, inclusive. The GUI does not

allow the user to enter values <0 or >1.

 133

6. The user may manually assure that the fractions sum to 1 for a sourcetype/model

year or may choose a “Normalize” button that will keep the proportions of the

input fractions but adjust so they sum to 1. The AVFTSpec does not “Export”

and the RunSpec does not “Save” or “Execute” until all sourcetypes/model years

sum to 1. Error messages are provided to the user as needed.

7. If the FuelEngTechAssoc table lists only one FuelType/EngineTechnology

combination for the SourceType (currently true for motorcycles), there is no

action for the user to take. The GUI displays the appropriate detail screen (which

should have only one Fuel/EngineTechnology column), and displays a message:

“Only one FuelType/EngineTechnology combination is supported for

(SourceType Name). No alternate values allowed.”

10.16.2. Functional Characteristics of the AVFT MasterLoopable
a. The AVFT processor is MasterLoopable; executing after the InputDataManager and

before the Generators. It is instantiated under the same conditions as the

SourceBinGenerator and executes at the emission process master loop level.

b. The AVFT FuelEngFractions are processed to replace the default fractions in

FuelEngFractions in the Execution Location Database. In particular, if the

specification provides inputs for a given SourceType/ModelYear, those inputs replace

all values for that SourceType/ModelYear. Empty records in both the original and

replacement tables (ie, records for which the implied fuelEngFraction =0) are taken

into account.

c. The default RegClassFractions and SizeWeightFractions are modified such that the

aggregate (across FuelType/EngineTechnology) RegClassFractions for the

SourceType/ModelYear remain the same after application of the AVFT. The new

RegClassFractions and SizeWeightFractions conserve the original fractions for

vehicles with unchanged FuelEng characteristics and proportionally distribute the

remaining fractions among the “changed vehicles”.

This calculation is specified in detail below for RegClassFraction. The algorithm for

SizeWeightFractions is analogous, except the individual Regulatory Classes are

replaced by combinations of EngSizeID and WeightClassID.

 134

Compute New Reg Class Fractions

For each source type and model year, and for each supported FuelEngTech
combination (i), either there exists an original FuelEngFraction(i) and a
NewFuelEngFraction(i), or it is implied that the FuelEngFraction(i) or
NewFuelEngFraction(i) =0.

Compute DeltaFuelEngFraction(i) as NewFuelEngFraction(i)-
FuelEngFraction(i).

Compute ProportionOfNew(i) as

IF DeltaFuelEngFraction(i)>=0
Proportion =0

ELSE
ProportionOfNew =

DeltaFuelEngFraction(i) /
Sum (over all i where DeltaFuelEngFraction <0)
(DeltaFuelEngFraction(i)).

Compute PortionOld(i) as

IF NewFuelEngFraction(i)=0,
PortionOld(i) =0

ELSE PortionOld = Min (1,
FuelEngFraction(i)/NewFuelEngFraction(i))

For each SourceType & Model Year there is a set of original
RegClassFractions(i,j), where Ai@ indicates the associated FuelEng combination
and Aj@ indicates the RegClass. These are used with the results of the above
calculations to create NewRegClassFractions(i,j,).

For each j

For each i
Compute NewRegClassFraction(i,j) as:

IF NewFuelEngFraction(i)= 0,

NewRegClassFraction(i,j) =0
(Doesn=t need to be in database)

ELSE
NewRegClassFraction(i,j) =

PortionOld(i) * RegClassFraction (i,j) +
[1-PortionOld(i)) *
(Sum(over all i) (ProportionOfNew(i)
*RegClassFraction(i,j))]

 135

10.17. Energy Consumption Calculator (ECC)
The energy consumption calculator calculates energy consumption (total,

petroleum-based and fossil-based) for four processes: running, start, extended idle and

well-to-pump, for each source type on each roadway type in DRAFT MOVES2009. It

uses input from CMITs produced by the total activity, operating mode distribution,

source bin, and meteorology generators, and calculates the quantities of energy consumed

in the form of the MOVES output database.

Note: This functional calculator is actually implemented as two MOVES

EmissionCalculator classes: an “EnergyConsumptionCalculator” for the running, start,

and extended idle processes, and a “WellToPumpProcessor” which “chains” onto the

EnergyConsumptionCalculator if theWellToPump process is required.

10.17.1. Overview of Calculation Steps

Table 10-7. Overview of Emission Consumption
Calculator
Step
ECCP-1 Preliminary calculations

ECCP-1a Calculate petroleum and fossil energy fractions
ECCP-1b Convert age to model year for analysis year

ECCP-2 Calculate adjustments

ECCP-2a Calculate air conditioning adjustment

ECCP-2b Calculate temperature adjustment

ECCP-2c Calculate fuel adjustment

ECCP-3 Calculate running energy consumption

ECCP-4 Calculate start energy consumption

ECCP-5 Calculate extended idle energy consumption

ECCP-6 Calculate well-to-pump energy consumption

ECCP-6a Calculate pump-to-wheel energy consumption

ECCP-6b Interpolate well-to-pump factor by
FuelSubType in analysis year

ECCP-6c Calculate well-to-pump factor by FuelType in
analysis year

ECCP-6d Calculate well-to-pump energy consumption

 136

The level of aggregation for each calculation is dictated by the key fields of the

input and output variables. The result of energy quantities in steps 2, 3, 4 and 5 are at the

level dictated by the DRAFT MOVES2009 output database design: calendar year, month,

day, hour, county, zone, link, pollutant, process, source type, fuel type, model year, and

road type.

If the EnergyConsumptionCalculator encounters a missing value when

performing a calculation, the result of the calculation is considered as missing. Records

for which the results are missing are not represented by a value of zero but are left out of

the database.

The EnergyConsumptionCalculator signs up for the Master Loop at the year level

which means that it executes for each location (link) for each calendar year. It signs up

for the running, start and extended idle processes to the extent they are called for by the

run specification.

10.17.2. Detailed Steps
ECCP-1: Preliminary Calculations

Step 1a: Calculate petroleum and fossil energy fractions by fuel type

Since petroleum and fossil energy fractions vary by fuel subtype, this step is required
to aggregate these fractions up to the fuel type level.

Input Variables:
MarketShare (County, Year, MonthGroup, FuelSubType,)

From FuelSupply table
Note: If record not found in database, default value of 1.0 is used if

fuelSubtypeID ends with 0, otherwise default value of 0.0 is used.
FuelSubtypePetroleumFraction (FuelSubType)

From FuelSubtype table
FuelSubtypeFossilFraction (FuelSubType)

From FuelSubtype table
Output Variable:

PetroleumFraction (County, Year, Month, FuelType)
FossilFraction (County, Year, Month, FuelType)

Calculation:
PetroleumFraction=

∑
=

FuelTypeypeswithinofFuelSubTno

n

.

1

FractionePetroleumFuelSubtyp * eMarketShar

FossilFraction =

 137

∑
=

FuelTypeypeswithinofFuelSubTno

n

.

1
ction eFossilFraFuelSubtyp * eMarketShar

Step 1b: Convert Age to Model Year For Analysis Year
Input Variables:

YearID
AgeID

Output Variable:
ModelYearID

Calculation:
ModelYearID = YearID - AgeID

ECCP-2: Calculate adjustments

Step 2a: Calculate air conditioning adjustment
Preliminary calculation (1): ACOnFraction

This step calculates the fraction of time the AC compressor is engaged, as a

function of Heat Index

 Input Variables:
HeatIndex (Zone, Month, Hour)

From ZoneMonthHour table
ACActivityTermA (MonthGroup, Hour)

From MonthGroupHour table
ACActivityTermB (MonthGroup, Hour)

From MonthGroupHour table
ACActivityTermC (MonthGroup, Hour)

From MonthGroupHour table
 Calculation:

ACOnFraction (Zone, Month, Hour) =
(ACActivityTermA+ACActivityTermB*HeatIndex
+ACActivityTermC*HeatIndex2)

If ACOnFraction<0, set to 0
If ACOnFraction>1, set to 1

Preliminary calculation (2): ACActivityFraction

This step calculates the overall A/C activity fraction, which accounts for the A/C

on fraction, the penetration of A/C in the fleet and the fraction of those A/C systems that

are functioning.

Input Variable
ACOnFraction (Zone, Month, Hour) from previous calculation

 138

ACPenetrationFraction (SourceType, ModelYear)
From SourcetypeModelYear table

FunctioningACFraction (SourceType, Age)
From SourceTypeAge table

Calculation
ACActivityFraction (Zone, Month, Hour, SourceType, ModelYear) =

ACOnFraction
* ACPenetrationFraction
*FunctioningACFraction

Calculate AC Adjustment

Input Variables:
ACActivityFraction (Zone, Month, Hour, SourceType, ModelYear)

From previous calculation
FullACAdjustment (PolProcess, SourceType, OpMode)

From FullACAdjustment table
Calculation:

ACAdjustment (Zone, Month, Hour, SourceType, ModelYear, PolProcess,
OpMode) = 1 + ((FullACAdjustment –1)*ACActivityAdjustment)

Step-2b: Calculate temperature adjustment
Input Variables:

Temperature (Zone, Month, Hour)
From ZoneMonthHour table

TempAdjustTermA (PolProcess, SourceType, FuelType)
From TemperatureAdjustment table

TempAdjustTermB (PolProcess, SourceType, FuelType)
From TemperatureAdjustment table

TempAdjustTermC (PolProcess, SourceType, FuelType)
From TemperatureAdjustment table

Note: If temp adjustment terms are not found in database, default values of 0.0
are used.

Output Variables:
TempAdjustment (PolProcess, Zone, Month, Hour, SourceType, FuelType)

Calculation:
TempAdjustment =

1 + TempAdjustTermA * (Temperature-75)
+ TempAdjustTermB * (Temperature-75)2

Step 2c: Calculate fuel adjustment

Input Variables:

FuelAdjustment (SourceType, PolProcess, FuelSubType)
MarketShare (County, Year, MonthGroup, FuelSubType)

Output Variable:
FuelAdjustmentbyType (County, Year, MonthGroup,SourceType, PolProcess,

FuelType)

 139

Calculation:
FuelAdjustmentbyType =

∑
=

FuelTypeypeswithinofFuelSubTno

n

.

1
mentFuelAdjust * eMarketShar

ECCP-3: Calculate running energy consumption

Step 3a: Aggregate Base Emission Rates to SourceType/ Fuel Type/Model Year/
Operating Mode level
Input Variables:

MeanBaseRate (SourceBin, PolProcess, OpMode)
From EmissionRate table

SourceBinActivityFraction (SourceType, ModelYear, SourceBin, PolProcess)
 From SourceBinDistribution Table

Calculation:
MeanBaseRatebyType (SourceType, FuelType, ModelYear, PolProcess,

OpMode) =

∑
=

ModelYearTypewithinFuelSourceBinsNo

SourceBin
teMeanBaseRactionctivityFraSourceBinA

,.

1
*

Step 3b: Aggregate emission rates to SourceType level, Apply A/C Adjustment

Input Variables:

MeanBaseRatebyType (SourceType, FuelType, ModelYear, PolProcess,
OpMode) From previous calculation

OpModeFraction (SourceType, Link, HourDay, PolProcess, OpMode) From
OPModeDistribution table

ACAdjustment (Zone, Month, Hour, SourceType, ModelYear PolProcess,
OpMode) From ECCP- 2a

Calculation:
Total Energy:

SourceTypeEnergy (Zone, Month, HourDay, SourceType, FuelType,
ModelYear, Link, PolProcess) =

∑
=

OpModeBinsNo

OpModeBin
ntACAdjustmetebyTypeMeanBaseRationOpModeFrac

.

1
**

Step 3c: Calculate Total Energy

Input Variables:

 140

SourceTypeEnergy (Zone, Month, HourDay, SourceType, FuelType,
ModelYear, Link, PolProcess) from previous calculation

SCCVtypeFraction(SourceType, ModelYear, FuelType, SCCVtype)
From SCCVtypeDistribution table

SHO (SourceType, Age, Link, Hour, Day, Month, Year)
From SHO Table

IMOBDAdjustment (SourceType, County, Year, Age, FuelType)
From IMOBDAdjustment table.

Note: If IMOBD adjustment value not found in database, a default value of 1.0
is used.

TempAdjustment (ECCP-2b, existing code)
FuelAdjustment (ECCP-2c, existing code)
PetroleumFraction (ECCP-1a, existing code)
FossilFraction (ECCP-1a, existing code)

Calculation:
Total Energy

EmissionQuant = SCCVtypeFraction *

∑
=

sSourceTypeNo

SourceBin
tmentIMOBDAdjusmentTempAdjustmentFuelAdjustEnergySourceTypeSHO

.

1

Petroleum Energy:
EmissionQuant =

EmissionQuant (Running, Total Energy)
* PetroleumFraction

Fossil Energy:
EmissionQuant =

EmissionQuant (Running, Total Energy)
* FossilFraction

ECCP-4 & 5: Calculate start and extended idle energy consumption

The equations are exactly the same as is done for ECCP-3 above. The only

difference is that, under Step c, “SHO” is replaced by “Starts” for Start and

“ExtendedIdleHours” for Extended Idle.

ECCP-6: Calculate total, petroleum, and fossil energy consumption for well-to-pump (WTP)
For all pollutants, well-to-pump energy and emissions are calculated as a function of
pump-to-wheel total energy consumption (i.e. the sum of running, start and extended
idle energy)

Step-6a: Calculate total pump-to-wheel(PTW) energy consumption
Inputs:

EmissionQuant(…FuelType, PolProcess = TotalEnergy; Running, Start,
Extended Idle)

Outputs:

 141

PTWEmissionQuant (FuelType, Total Energy)
Calculation:

PTWEmissionQuant =
EmissionQuant (Running, Total Energy)
+ EmissionQuant (Start, Total Energy)
+ EmissionQuant (Extended Idle, Total Energy)

Step-6b: Interpolate well-to-pump factorby FuelSubType in analysis year
Inputs:

WTPFactor (Pollutant, FuelSubType for next highest and next lowest in WTP
factor database, relative to YearID)

 (Note : WTPFactor represents the field EmissionRate located in the
GreetWellToPump table of the MOVES database.)

Outputs:
WTPFactor (Pollutant, FuelSubType, YearID)

Calculation:
Linear interpolation using “bracketing” years in WTP database:
 WTPFactor = WTPFactor (LoYearID) +
(WTPFactor (HiYearID) – WTPFactor (LoYearID)) *
((YearID – LoYearID) / (HiYearID – LoYearID))

Step-6c: Calculate well-to-pump factor by FuelType in analysis year
Inputs Variables:

WTPFactor (Step 6a)
MarketShare (County, Year, MonthGroup, FuelSubType,)

Output Variables:
WTPFactorbyFuelType(Pollutant, FuelType, YearID)

Calculation:
WTPFactorbyFuelType =

∑
=

FuelTypeypeswithinofFuelSubTno

n

.

1
 WTPFactor* eMarketShar

Step-6d: Calculate well-to-pump energy consumption
Inputs:

PTWEmissionQuant (Step 6a)
WTPFactorbyFuelType (Step 6c)

Outputs:
EmissionQuant (PolProcess = Well-To-Pump; Total Energy, Petroleum Energy,

Fossil Energy)
Calculation:

EmissionQuant =
PTWEmissionQuant * WTPFactorbyFuelType

 142

10.18. Distance Calculator
The TotalActivityGenerator produces distance information in the SHO table. The

DistanceCalculator reports vehicle travel distance information based on these SHO table

values, if requested by the RunSpec, in the MOVESActivityOutput table of the MOVES

output database. Note that MOVES stores distance within the

MOVESMesoscaleActivityOutput table for runs using the Mesoscale Lookup scale

10.18.1. Algorithm Overview
The “total” distance in the SHO table must be disaggregated to the often more

detailed level of the MOVES output. This is a “calculator-like” function and so is

performed by an EmissionCalculator class despite the fact that “distance” is not a

“pollutant”.

This calculator is instantiated whenever distance output is requested by the

RunSpec, which implies that some pollutant-process involving the running process has

been selected, and signs up for the “Running Exhaust” emission process at the “Year”

level of the MasterLoop, the same level at which the TAG operates.

 10.18.2. Distance calculation
If the “Distance Traveled” output is requested by the RunSpec, (which also

implies that some pollutant has been selected for the Running process), the distance field

in the SHO table is calculated by the TotalActivityGenerator (TAG). Otherwise distance

is output by that generator as NULL.

Within the distance calculator itself, there is a single calculation step:

DC-1 : Allocate Distance to Finest MOVES Output Level

Input Variables:
SCCVtypeID(SCC) from SCC table
SCCVtypeFraction(sourceTypeModelYearID, fuelTypeID, SCCVtypeID)

From SCCVtypeDistribution table
sourceBinActivityFraction (sourceTypeModelYearID, polProcessID,
sourceBinID) from SourceBinDistribution table
distance(sourceTypeID, linkID, ageID, yearID, monthID, hourDayID)
from SHO table

Output Variable:

 143

MOVESActivityOutput.distance(runID, yearID, monthID, dayID, hourID,
stateID, countyID, zoneID, linkID, sourceTypeID, fuelTypeID,
modelYearID, roadTypeID, SCC)

Conceptual Calculation:
MOVESActivityOutput.distance =

 SCCVtypeFraction* distance *
[sum over all sourceBins in fuelTypeID (sourceBinActivityFraction)]

Several detailed considerations must be kept in mind as these calculations are

performed.

One consideration is just that model years are converted to ageID values by the

relationship: modelYearID = yearID - ageID.

Another consideration is that SHO table values are reduced by the

SCCVtypeFraction, because the raw MOVESOutput data is for SCC-SourceUseType

intersections. This factor is looked up in the SCCVtypeDistributionTable based on

sourceTypeID, modelYearID, and fuelTypeID. In general this yields multiple values of

SCCVtype and SCCVtypeFraction. These values of SCCVtype are used in combination

with RoadType to determine SCC values from the SCC table.

The most significant complexity is that SHO table distance values are reduced by

a fraction representing the portion of this “total” activity occurring for the specific

fuelTypeID. This is accomplished by determining the portion of the

SourceBinDistribution which involves the given fuelTypeID.

The table 10-8 illustrates the structural differences between the input to this

calculation and the output it must produce:

 144

Table 10-8. Structural Differences between DistanceCalculator Input/Output

Key Field SHO.distance Most detailed

MOVESOutput

MOVESOutputRowID Yes, autoincremented
runID Yes, but constant for a run
yearID Yes Yes
monthID Yes Yes
dayID Yes Yes
hourID Yes Yes
stateID Yes, but redundant with county
countyID Yes, but redundant with zone
zoneID Yes Yes
roadTypeID Yes Yes
pollutantID Yes, but constant for this calculation
processID Yes, but constant for this calculation
sourceTypeID Yes Yes
fuelTypeID No Yes
modelYearID as ageID Yes
SCC No Yes

 145

10.19. Methane (CH4) and Nitrous Oxide (N2O) Calculator
MOVES includes two EmissionCalculator classes,

CH4N2OrunningStartCalculator and CH4N2OWTPCalculator, which calculate Methane

(CH4) and Nitrous Oxide (N2O) emissions for three processes (running, start, and well-to-

pump) for each source type on each roadway type modeled. These calculators use input

from CMITs produced by the total activity and source bin distribution generators, and

calculate the quantities of these emissions in the form required by the MOVESOutput

database.

These calculators subscribe to the MasterLoop at the year level, which means they

are executed once for each location (linked) for each year.

When these EmissionCalculators encounter a missing input value in the MOVES

database, the result of the calculation are considered as missing. Such results are left out

of the database and are not represented in the MOVES output by a value of zero or some

other numeric value or character.

The calculation steps are described below. These steps are the same for CH4 and

N2O.

10.19.1. Step 1: Calculate Running Emissions
Input:

SHO (SourceType, Age, Link, Hour, Day, Month, Year)
SourceBinActivityFraction (SourceType, ModelYear, PolProcess , SourceBin)
MeanBaseRate (PolProcess, SourceBin, OpMode)

Output:
EmissionQuant (SourceType, Pollutant, Process, FuelType….see MOVES

output database design)
Calculation:

EmissionQuant = SHO * SourceBinActivityFraction * MeanBaseRate

10.19.2.Step 2: Calculate Start Emissions
Input:

Starts (SourceType, Age, Zone, Hour, Day, Month, Year)
SourceBinActivityFraction (SourceType, ModelYear, PolProcess , SourceBin)
MeanBaseRate (PolProcess, SourceBin, OpMode)

Output:

 146

EmissionQuant (SourceType, Pollutant, Process, FuelType….see MOVES
output database design)

Calculation:
EmissionQuant = Starts * SourceBinActivityFraction * MeanBaseRate

10.19.3. Step 3: Calculate Well-To-Pump Emissions
Step 3a: Calculate well-to-pump factor by FuelType in analysis year
Inputs Variables:

 EmissionRate from GREETWellToPump (Year, Pollutant,
FuelSubType)

 MarketShare (County, Year, MonthGroup, FuelSubType,)
Output Variables:

WTPFactorbyFuelType(Year, Pollutant, FuelType)
Calculation:

WTPFactorbyFuelType =

∑
=

FuelTypeypeswithinofFuelSubTno

n

.

1
 WTPFactor* eMarketShar

Step 3b: Calculate Well-To-Pump Emissions
Input:

PTWEmissionQuant for total energy (Step 6a of Total Energy Calculator)
WTPFactorbyFuelType for CH4/N2O (Step 3a above)

Output:
EmissionQuant (SourceType, Pollutant, Process, FuelType….see MOVES

output database design)
Calculation:

EmissionQuant = PTWEmissionQuant * WTPFactorbyFuelType

 147

10.20. Atmospheric CO2 and CO2-Equivalent Calculator

10.20.1. General Description

This task involves performs the calculation of two pollutants: Atmospheric CO2 and CO2

Equivalent for all of the exhaust emission processes: Start, Running and Extended Idling.

The calculations depend on the previous calculation of Total Energy, CH4 and N2O in

their respective calculators. So this calculator is “chained” to those.

10.20.2. Detailed Calculation Steps
Step 1: Calculate CO2 and CO2-Equivalent from Total Energy

Preliminary Calculation: Compute Carbon Content and Oxidation Fraction by
FuelType

Inputs:

 CarbonContent (grams per KJ) by fuel subtype
 OxidationFraction by fuel subtype
 MarketShare (County, Year, MonthGroup, FuelSubType) From FuelSupply table

Outputs:
 CarbonContent by FuelType
 OxidationFraction by FuelType

Calculations:

CarbonContent by FuelType

)(entCarbonCont * eMarketShar
.

1
eFuelSubtyp

FuelTypeypeswithinofFuelSubTno

n
∑
=

 148

OxidationFraction by FuelType =

∑
=

FuelTypeypeswithinofFuelSubTno

n

.

1
elSubtype)raction(FuOxidationF * eMarketShar

Calculate Atmospheric CO2 from Total Energy

Inputs:

 Total Energy (KJ)
 CarbonContent by FuelType (previous calculation)
 Oxidation Fraction by FuelType (previous calculation)

Output:

 Atmospheric CO2 (grams)

Calculation:

Atmospheric CO2 = Total Energy * Oxidation Fraction * Carbon Content * (44/12)

Step 2: Calculate CO2 Equivalent

Inputs:

 Atmospheric CO2, CH4, N2O (grams)
 100 year Global Warming Potentials by pollutant (GWP)

Output:

 CO2 Equivalent (grams)

Calculation:

CO2 Equivalent = CO2 * GWPCO2 + CH4 * GWPCH4 + N2O * GWPN2O

 149

10.21. Criteria Pollutant Running EmissionCalculator (CREC)
10.21.1. General Description
This EmissionCalculator signs up with the MOVES master looping mechanism at the

Year level for the running process, which means that a single execution produces results

for one Link and one Year.

The logical steps of the calculation can be described as follows:

CREC-1 Calculate emission rates which account for I/M programs

 This step has two substeps:

The first substep calculates an intermediate IMAdjustment table from the contents
of the IMCoverage table for a particular zone and year. It puts the information
into a usable form. The form of the IMCoverage table, in particular the use of
model year ranges as non-key fields and the presence of information only where
I/M programs exist, was highly constrained by overall table size considerations.
To be used in subsequent steps the information needs to be into a more usable
form, which this substep accomplishes.

The second sub-step combines information from the EmissionRateByAge table
and the IMAdjustment table produced in the first substep to produce an
intermediate EmissionRateWithIM table. The function here is to weight the
meanBaseRate and meanBaseRateIM fields together using the IM fractions
calculated in the previous substep.

CREC-2 Calculate fuel-supply-weighted fuel adjustment factors

 This step has two substeps:

The first substep uses the FuelAdjustment and County tables to produce an
intermediate CountyFuelAdjustment table specific to the county containing the
link being executed. It resolves the GPA and non-GPA fuel adjustment factors
into a single factor based on the GPAFract value in the County table. It is still at
the fuelFormulation level.

The second substep uses CountyFuelAdjustment and the FuelSupply table to
produce an intermediate FuelSupplyAdjustment table of fuel adjustment factors at
the fuelTypeID level.

CREC-3 Calculate temperature adjustment factors

This step uses the TemperatureAdjustment table along with temperature
information from the ZoneMonthHour table to produce an intermediate
METAdjustment table.

 150

CREC-4 Calculate air conditioning (AC) adjustment factors

This step involves four substeps.

The first substep uses the ACActivity terms from the MonthGroupHour table and
the heat index information from the ZoneMonthHour table to calculate the
fraction of time the AC compressor is engaged.

The second substep calculates the AC activity fraction, which accounts for the AC
on fraction from the first substep, the penetration of AC in the fleet (from the
SourceTypeModelYear table) and the fraction of those AC systems that are
functional (from the SourceTypeAge table.)

The third substep calculates operating-mode-weighted FullACAdjustment factors
from the contents of the FullACAdjustment table and the
OperatingModeDistribution table.

The fourth substep uses the results of the second and third substeps to calculate
the AC adjustment factors used in subsequent calculations.

CREC-5 Weight emission rates by source bin

This step applies the source bin distributions to the EmissionRateWithIM table
produced in step 1, storing the results in a SBWeightedEmissionRate table.
FuelType distinctions from the source bin classification are preserved but other
source bin discriminators are aggregated out. The modelYearID distinction
contained in the EmissionRateWithIM table is preserved in
SBWeightedEmissionRate, effectively subsuming the role of modelYearGroupID
as a source bin discriminator.

CREC-6 Weight emission rates by operating mode

This step applies the operating mode distributions to the
SBWeightedEmissionRate table calculated in the previous step, to produce an
intermediate FullyWeightedEmissionRate table.

CREC-7 Apply fuel, temperature, and opmode-weighted-AC adjustment factors to
weighted emission rates

This step applies the fuel supply adjustment factors from step 2, the temperature
adjustment factors from step 3, and the ACAdjustment factors from step 4 to the
results of step 6.

CREC-8 Calculate and Apply Humidity Correction Factor to NOx running
emissions

 This step calculates a multiplicative correction factor based on the specific
humidity value in ZoneMonthHour and a fuel type-dependent coefficient and applies it to
any NOx emission results from step 7.

 151

CREC-9 Multiply fully weighted and adjusted emission rates by source hours
operating (SHO) activity

This step multiplies the result of step 8 by the activity from the SHO table. Since
SHO is stored by Link, the results of this step are specific to a Link and a
Roadtype and are essentially now at the level of the MOVESOutput when
reported by sourceTypeID.

CREC-10 Convert results by source type into results by SCC

This step is performed only when the run specification requests output by SCC
code.

The SCCVTypeDistributions and the SCCRoadType distributions are applied to
the results of step 9 in a single processing step.

10.21.2. Detailed Calculation Steps
CREC-1: Calculate emission rates which account for I/M programs
CREC 1-a: Complete I/M adjustment fraction information

Input Variables:
begModelYearID, endModelYearID, IMAdjustFract (IMCoverage table)
countyID, zoneID, yearID (from Master Loop Context).
ageID (AgeCategory table)
regClassID (RegulatoryClass table)

Output Variable:
IMAdjustFract (in intermediate IMAdjustment table)

Calculation:
For zoneID, yearID in Master Loop Context,
for running process (which is also the Master Loop Context process)

 of all pollutants in runSpec which this calculator calculates
for all ageID in AgeCategory table,
for all regClassID values in RegulatoryClass except regClassID=0

modelYearID = yearID-ageID
IMAdjustFract (zoneID, yearID, polProcessID, modelYearID, ageID,

fuelTypeID, regClassID)
= IMAdjustFract if IMCoverage record exists

with begModelYearID <= modelYearID <= endModelYearID
= 0.0 otherwise

CREC 1-b: Combine I/M and non I/M rates

Input Variables:
meanBaseRate and meanBaseRateIM (EmissionRateByAge table)
fuelTypeID, regClassID (from SourceBin table)
modelYearGroupID (from PollutantProcessModelYear table)
IMAdjustFract (from step 1-a)

 152

Output Variable:
meanBaseRate (in new intermediate table EmissionRateWithIM)

Calculation:

For all records in join of IMAdjustment Table to EmissionRateByAge table
WHERE

IMAdjustment.polProcessID=EmissionRateByAge.polProcessID

IMAdjustment.fuelTypeID = SourceBin.fuelTypeID AND
IMAdjustment.regClassID = SourceBin.regClassID AND
IMAdjustment.modelYearID= PollutantProcessModelYear.modelYearID AND
IMAdjustment.polProcessID = PollutantProcessModelYear.polProcessID AND
PollutantProcessModelYear.modelYearGroupID =
 SourceBin.modelYearGroupID AND
EmissionRateByAge.sourceBinID=SourceBin.sourceBinID AND
EmissionRateByAge.ageGroupID=AgeCategory.ageGroupID AND
IMAdjustment.ageID=AgeCategory.ageID

meanBaseRate (zoneID, yearID, polProcessID, modelYearID, sourceBinID,

opModeID) = meanBaseRate + (IMAdjustFract * (meanBaseRateIM-
meanBaseRate))

if meanBaseRate < 0.0 then set meanBaseRate = 0.0 (since IMAdjustFract might

be greater than 1.0.)

CREC-2: Calculate fuel-supply-weighted Fuel Adjustment Factors
CREC 2-a: Combine GPA and non GPA fuel adjustment factors

Input Variables:
fuelAdjustment and fuelAdjustmentGPA (from FuelAdjustment table)
GPAFract (from County table)
countyID (from MasterLoop Context)

Output Variable:
fuelAdjustment (in intermediate CountyFuelAdjustment table)

Calculation:
For countyID from Master Loop Context,
For all records in FuelAdjustment
for running process (which is also the Master Loop Context process)

 of all pollutants in runSpec which this calculator calculates

fuelAdjustment (countyID, polProcessID, fuelMYGroupID, sourceTypeID,
fuelFormulationID)

= fuelAdjustment + GPAFract*(fuelAdjustmentGPA-fuelAdjustment)

NOTE: An internal MOVES model component, the DefaultDataMaker, has set fuelAdjustment=1
for cases which are not populated in fuelAdjustment.

 153

CREC 2-b: Aggregate county fuel adjustments to fuel type
Input Variables:

fuelAdjustment (from CountyFuelAdjustment table from step 2-a)
marketShare (from FuelSupply table)
fuelSubTypeID (from FuelFormulation table)
fuelTypeID (from FuelSubtype table)
monthID (from MonthOfAnyYear table)
yearID (from MasterLoopContext)
fuelYearID (from Year table)
modelYearID (from PollutantProcessModelYear table)

Output Variable:
fuelAdjustment (in intermediate FuelSupplyAdjustment table)

Calculation:

For all records in join of CountyFuelAdjustment and FuelSupply where

CountyFuelAdjustment.countyID=FuelSupplycountyID and
Year.yearID = yearID from MasterLoopContext and
Year.fuelYearID = FuelSupply.fuelYearID and
FuelSupply.monthGroupID = MonthOfAnyYear.monthGroupID and
CountyFuelAdjustment.monthGroupID=FuelSupply.monthGroupID and
CountyFuelAdjustment.fuelFormulationID=FuelFormulation.fuelFormulationID and
FuelFormulation.fuelSubtypeID=FuelSubType.fuelSubtypeID and

 PollutantProcessModelYear.polProcessID=
CountyFuelAdjustment.polProcessID and

PollutantProcessModelYear.fuelMYGroupID=
CountyFuelAdjustment.fuelMYGroupID

fuelAdjustment (countyID, yearID, monthID, polProcessID, modelYearID,

 sourceTypeID, fuelTypeID)

= sum (fuelAdjustment * marketShare) over all fuel formulations in each fuel
type.

CREC-3: Calculate temperature adjustment factors

Input Variables:
tempAdjustTermA, tempAdjustTermB (from TemperatureAdjustment table)
temperature (from ZoneMonthHour table)
zoneID (from MasterLoop context)

Output Variable:
temperatureAdjustment (in intermediate METAdjustment table)

Calculation:
For zoneID in Master Loop Context,
For running process (which is also the Master Loop Context process)

 of all pollutants in runSpec which this calculator calculates
For all records in cross join of ZoneMonthHour and TemperatureAdjustment

temperatureAdjustment(zoneID, monthID, hourID, polProcessID, fuelTypeID)
= 1.0 + tempAdjustTermA * (temperature-75) + tempAdjustTermB

(temperature-75)2

 154

CREC-4: Calculate Air Conditioning (AC) Adjustment Factors
CREC 4-a: Calculate AC On Fraction

Input Variables:
heatIndex (zoneID, monthID, hourID)
From ZoneMonthHour table
ACActivityTermA (monthGroupID, hourID)
From MonthGroupHour table
ACActivityTermB (monthGroupID, hourID)
From MonthGroupHour table
ACActivityTermC (monthGroupID, hourID)
From MonthGroupHour table

Output Variable:

ACOnFraction (in intermediate ACOnFraction table)

Calculation:

From join of ZoneMonthHour and MonthGroupHour tables where
MonthGroupHour.monthGroupID = MonthOfAnyYear.monthGroupID and
MonthOfAnyYear.monthID = ZoneMonthHour.monthID and
MonthGroupHour.hourID = ZoneMonthHour.hourID

ACOnFraction (zoneID, monthID, hourID) =
(ACActivityTermA+ACActivityTermB*heatIndex

+ACActivityTermC*heatIndex2)

If ACOnFraction<0, set to 0
If ACOnFraction>1, set to 1

CREC 4-b: Calculate AC Activity Fraction
Input Variables:

ACOnFraction (zoneID, monthID, hourID) from previous calculation
ACPenetrationFraction (sourceTypeID, modelYearID) from

SourceTypeModelYear table
functioningACFraction (sourceTypeID, ageID) from SourceTypeAge table

Output Variable:
ACActivityFraction (in intermediate ACActivityFraction table)

Calculation:
From join of ACOnFraction, SourceTypeModelYear and SourceTypeAge tables

where
yearID = yearID value from master loop context
SourceTypeModelYear.sourceTypeID = SourceTypeAge.sourceTypeID and
SourceTypeModelYear.modelYearID = yearID - SourceTypeAge.ageID

ACActivityFraction (zoneID, monthID, hourID, sourceTypeID, modelYearID)
 = ACOnFraction * ACPenetrationFraction * functioningACFraction

 155

CREC 4-c: Weight FullACAdjustment Factors by Operating Mode

Input Variables:
FullACAdjustment (polProcessID, sourceTypeID, opModeID) from

FullACAdjustment table
opModeFraction (sourceTypeID, hourDayID, linkID, polProcessID, opModeID)
 from OpModeDistribution Table
linkID from master loop context

Output Variable:
weightedFullACAdjustment (in intermediate WeightedFullACAdjustment table)

Calculation:

For all records in join of FullACAdjustment and OpModeDistribution
using polProcessID, sourceTypeID, and opModeID
where linkID = value from master loop context and hourDayID is in the run

specification

weightedFullACAdjustment (sourceTypeID, polProcessID, linkID, hourDayID)
 = sum (fullACAdjustment * opModeFraction)

CREC 4-d: Calculate AC Adjustment Factor
Input Variables:

ACActivityFraction (zoneID, monthID, hourID, sourceTypeID, modelYearID)
From step 4-b
weightedFullACAdjustment (sourceTypeID, polProcessID, linkID, hourDayID)
From WeightedFullACAdjustment table

Output Variable:
ACAdjustment (in intermediate ACAdjustment table)

Calculation:

For all records in join of ACActivityFraction and WeightedFullACAdjustment
where

 WeightedFullACAdjustment.linkID=Link.linkID and
 Link.zoneID=ACActivityFractioin.zoneID and
 WeightedFullACAdjustment.hourDayID=HourDay.hourDayID and
 HourDay.hourID=ACActivityFraction.hourID and
 WeightedFullACAdjustment.sourceTypeID=ACActivityFraction.sourceTyp

eID

ACAdjustment (zoneID, monthID, hourID, dayID, sourceTypeID,

modelYearID, polProcessID)
 = 1 + ((weightedFullACAdjustment –1)*ACActivityFraction)

CREC-5: Weight emission rates by source bin

Input Variables:

 156

meanBaseRate (from EmissionRateWithIM table from step 1-b)
sourceBinActivityFraction (from SourceBinDistribution table)

Output Variable:
meanBaseRate (in a new intermediate SBWeightedEmissionRate table)

Calculation:
For all records in join of EmissionRateWithIM, SourceBin,

SourceBinDistribution, and
SourceTypeModelYear where:

SourceBinDistribution.sourceBinID = SourceBin.sourceBinID and
SourceBinDistribution.sourceTypeModelYearID
 = SourceTypeModelYear.sourceTypeModelYearID and
EmissionRateWithIM.polProcessID=SourceBinDistribution.polPro

cessID and
EmissionRateWithIM.sourceBinID=SourceBinDistribution.source

BinID and
EmissionRateWithIM.modelYearID=SourceTypeModelYear.mode

lYearID

meanBaseRate(zoneID, yearID, polProcessID, sourceTypeID, modelYearID,
fuelTypeID, opModeID)

= sum (sourceBinActivityFraction * meanBaseRate)

Note that sourceBinID is not included in the summation grouping; all of its

attributes except fuelTypeID are included instead, also note that there
should be only one modelYearGroupID present in the source bin
distributions for a modelYearID and polProcessID without having to
specify this.

CREC-6: Weight emission rates by operating mode

Input Variables:
meanBaseRate (from SBWeightedEmissionRate table from step 5)
opModeFraction (from OpModeDistribution table)

Output Variable:
meanBaseRate (in a intermediate FullyWeightedEmissionRate table)

Calculation:
For all records in join of SBWeightedEmissionRate and OpModeDistribution

where
 SBWeightedEmissionRate.polProcessid=OpModeDistribution.polProcessI

D and
 SBWeightedEmissionRate.opModeID=OpModeDistribution.opModeID and
 SBWeightedEmissionRate.sourceTypeID=OpModeDistribution.sourceType

ID
 OpModeDistribution.linkID=Link.linkID and
 Link.zoneID= SBWeightedEmissionRate.zoneID
meanBaseRate(linkID, yearID, polProcessID, sourceTypeID, modelYearID,

fuelTypeID, hourDayID)
= sum (opModeFraction * meanBaseRate)

 157

CREC-7: Apply fuel, temperature, and AC adjustment factors to weighted emission
rates

CREC 7-a: Combine Temperature and AC Adjustment Factors

Input Variables:
temperatureAdjustment (from METAdjustment table from step 3)
ACAdjustment (from ACAdjustment table from step 4)

Output Variable:
tempAndACAdjusment (in intermediate TempAndACAdjustment table)

Calculation:
For all records in join of METAdjustment and ACAdjustment
 Using zoneID, polProcessID, MonthID, and hourID

tempAndACAdjustment (zoneID, polProcessID, sourceTypeID, modelYearID,

fuelTypeID, monthID, hourID, dayID) =
temperatureAdjustment*ACAdjustment

CREC 7-b: Apply fuel adjustment to fully weighted emission rates

Input Variables:

meanBaseRate (from FullyWeightedEmissionRate table from step 6)
fuelAdjustment (from FuelSupplyAdjustment table from step 2)

Output Variable:
fuelAdjustedRate (in intermediate FuelAdjustedRate table)

Calculation:

For linkID in master loop context
From join of FullyAdjustedEmissionRate and FuelSupplyAdjustment where

FullyAdjustedEmissionRate.linkID = Link.linkID and
Link.countyID=FuelSupplyAdjustment.countyID and
FullyAdjustedEmissionRate.yearID=FuelSupplyAdjustment.yearID and
FullyAdjustedEmissionRate.polProcessID

=FuelSupplyAdjustment.polProcessID and
FullyAdjustedEmissionRate.sourceTypeID=

FuelSupplyAdjustment.sourceTypeID and
FullyAdjustedEmissionRate.modelYearID=

FuelSupplyAdjustment.modelYearID and
FullyAdjustedEmissionRate.fuelTypeID=FuelSupplyAdjustment.fuelTypeID

fuelAdjustedRate (linkID, yearID, polProcessID, sourceTypeID, modelYearID,

fuelTypeID, monthID, hourDayID) = meanBaseRate * fuelAdjustment

CREC 7-c: Apply temperature –and-AC adjustment to fuel-adjusted emission rate

 158

Input Variables:
tempAndACAdjustment (from TempAndACAdjustment table from step 7-a)
fuelAdjustedRate (from FuelAdjustedRate table from step 7-b)

Output Variable:

meanBaseRate (in intermediate WeightedAndAdjustedEmissionRate table

Calculation:

From join of TempAndACAdjustment and FuelAdjustedRate tables where

FuelAdjustedRate.linkID = Link.linkID and
Link.zoneID= TempAndACAdjustment.zoneID and
TempAndACAdjustment.hourID=HourDay.hourID and
TempAndACAdjustment.dayID=HourDay.dayID and
HourDay.hourDayID= FuelAdjustedRate.hourDayID and
TempAndACAdjustment.polProcessID= FuelAdjustedRate.polProcessID and
TempAndACAdjustment.sourceTypeID= FuelAdjustedRate.sourceTypeID and
TempAndACAdjustment.modelYearID= FuelAdjustedRate.modelYearID and
TempAndACAdjustment.monthID= FuelAdjustedRate.monthID and
TempAndACAdjustment.fuelTypeID= FuelAdjustedRate.fuelTypeID

meanBaseRate (linkID, yearID, polProcessID, sourceTypeID, modelYearID,

fuelTypeID, hourID, dayID, monthID) = fuelAdjustedRate *
tempAndACAdjustment

CREC-8: Calculate and Apply Humidity Correction Factor to NOx Emissions

Input Variables:
meanBaseRate (from WeightedAndAdjustedEmissionRate table from step 7)
humidityCorrectionCoeff (from FuelType table)
specificHumidity (from ZoneMonthHour table)

Output Variable:
meanBaseRate (in WeightedAndAdjustedEmissionRate table)

Calculation:

Using join of ZoneMonthHour, FuelType, and

WeightedAndAdjustedEmissionRate where:

WeightedAndAdjustedEmissionRate.fuelTypeID = FuelType.fuelTypeID and
WeightedAndAdjustedEmissionRate.linkID=Link.linkID and
Link.zoneID=ZoneMonthHour.zoneID and
WeightedAndAdjustedEmissionRate.monthID = ZoneMonthHour.monthID and
WeightedAndAdjustedEmissionRate.hourID=ZoneMonthHour.hourID and
pollutantProcessID = 301

boundedSpecificHumidity = GREATEST(21.0,

LEAST(specificHumidity,124.0))

 159

K = 1.0 – ((boundedSpecificHumidity – 75.0) * humidityCorrectionCoeff)
meanBaseRate = meanBaseRate * K

CREC-9: Multiply fully weighted and adjusted emission rates by source hour
operating (SHO) activity to generate inventory

Input Variables:
meanBaseRate (from WeightedAndAdjustedEmissionRate table from step 8)
SHO (from SHO table)
yearID, stateID, countyID, zoneID, linkID from MasterLoop context
pollutantID, processID from PollutantProcessAssoc table
roadTypeID from Link table

Output Variable:
emissionQuant (in MOVESWorkerOutput table)

Calculation:

For all records in join of SHO, WeightedAndAdjustedEmissionRate,
HourDay, Link, and PollutantProcessAssoc tables where:
 SHO.linkID = linkID value from MasterLoopContext and
 WeightedAndAdjustedEmissionRate.linkID = SHO.linkID and
 SHO.yearID = WeightedAndAdjustedEmissionRate.yearID and
 yearID – SHO.ageID

 = WeightedAndAdjustedEmissionRate.modelYearID and
 SHO.monthID = WeightedAndAdjustedEmissionRate.monthID and
 SHO.sourceTypeID = WeightedAndAdjustedEmissionRate.sourceTypeID

and
 SHO.hourDayID = HourDay.hourDayID and
 HourDay.hourID = WeightedAndAdjustedEmissionRate.hourID and
 HourDay.dayID = WeightedAndAdjustedEmissionRate.dayID and
 WeightedAndAdjustedEmissionRate.polProcessID

=PollutantProcessAssoc.polProcessID

roadTypeID = Link.roadTypeID
SCC = null
emissionQuant(stateID, countyID, zoneID, linkID, roadTypeID, yearID,

monthID, dayID, hourID, pollutantID, processID, sourceTypeID,
modelYearID, fuelTypeID, SCC)

= meanBaseRate * SHO

CREC-10: Conditionally convert results by sourceTypeID to results by SCC
This step is only performed when the run specification requires output by SCC

Input Variables:
SCCVTypeFraction (from SCCVTypeDistribution table)
SCCRoadTypeFraction(from SCCRoadTypeDistribution table)
SCC from SCC table
emissionQuant from MOVESWorkerOutput table from step 9)
sourceTypeID, modelYearID from SourceTypeModelYear

Output Variable:

 160

emissionQuant (in MOVESWorkerOutput table)

Calculation:
From join of SCCVtypeDistribution, SCC, SourceTypeModelYear, and

SCCRoadTypeDistribution where:
 zoneID = zoneID from master loop context

SourceTypeModelYear.sourceTypeModelYearID =
 SCCVtypeDistribution.sourceTypeModelYearID and
SCC.SCCVtypeID = SCCVtypeDistribution.SCCVtypeID and
SCC.SCCroadTypeID=SCCRoadTypeDistribution.roadTypeID and
MOVESWorkerOutput.sourceTypeID = sourceTypeModelYear.sourceTypeID and

SCC.SCCroadTypeID=SCCRoadTypeDistribution.roadTypeID and
MOVESWorkerOutput.modelYearID = sourceTypeModelYear.modelYearID and
MOVESWorkerOutput.fuelTypeID = SCCVtypeDistribution.fuelTypeID and
MOVESWorkerOutput.roadTypeID = SCCRoadTypeDistribution.roadTypeID

SCC= SCC.SCC
emissionQuant = sum of emissionQuant * SCCVtypeFraction *

SCCRoadTypeFraction over sourceTypeID and roadTypeID

sourceTypeID = null
roadTypeID = null
linkID = null

 161

10.22. Criteria Pollutant Start EmissionCalculator (CSEC)
10.22.1. General Description
This EmissionCalculator signs up with the MOVES master looping mechanism at the

Year level which, for the start process, means that a single execution need deals with one

Zone and one Year.

The major steps of the calculation are as follows:

Preliminary Steps:

CSEC-1 Calculate emission rates which account for I/M programs

 This step has two substeps:

The first substep calculates an intermediate IMAdjustment table from the contents

of the IMCoverage table for a particular zone and year. It puts the information

into a usable form. The form of the IMCoverage table, in particular the use of

model year ranges as non-key fields and the presence of information only where

I/M programs exist, was constrained by overall table size considerations. To be

used in subsequent steps the information needs to be into a more usable form,

which this substep accomplishes.

The second sub-step combines information from the EmissionRateByAge table

and the IMAdjustment table produced in the first substep to produce an

intermediate EmissionRatesWithIM table. The function here is to weight the

meanBaseRate and meanBaseRateIM fields together using the IM fractions

calculated in the previous substep. (This makes the “blended” rates dependent

upon yearID and countyID, but we are executing for a single Year and County)

CSEC-2 Calculate fuel-supply-weighted fuel adjustment factors

 This step has two substeps:

 162

The first substep uses the FuelAdjustment and County tables to produce an

intermediate CountyFuelAdjustment table specific to the county containing the

zone being executed. It resolves the GPA and non-GPA fuel adjustment factors

into a single factor based on the GPAFract value in the County table. It is still at

the fuelFormulation level. (This step is repeated unnecessarily for each zone and

year in the county, but is a minor one.)

The second substep uses CountyFuelAdjustment and the FuelSupply table to

produce an intermediate FuelSupplyAdjustment table of fuel adjustment factors at

the fuelTypeID level.

CSEC-3 Calculate temperature adjustment factors

This step uses the StartTempAdjustment table along with temperature information

from the ZoneMonthHour table to produce an intermediate METStartAdjustment

table. This step is repeated unnecessarily for the zone for each year.

The central core model calculations

CSEC-4 Apply Start Temperature Adjustment to Emission Rates.

This step adds the start temperature adjustment factors determined CSEC-3 to the

EmissionRatesWithIM table to produce an intermediate

EmissionRatesWithIMAndTemp table.

CSEC-5 Weight EmissionRates by Source Bin

This step applies the source bin distributions to the

EmissionRatesWithIMAndTemp table from the previous step to produce an

 163

intermediate METSourceBinEmissionRates table. FuelType distinctions from

the source bin classification are preserved but other source bin discriminators

used in the start process (currently engine technology and regulatory class) are

aggregated out. The modelYearID distinction is present in the

EmissionRatesWithIMAndTemp table and is preserved, effectively subsuming the

role of modelYearGroupID as a source bin discriminator.

CSEC-6 Weight temperature-adjusted emission rates by operating mode

This step applies the operating mode distributions to the results of step 5 to

produce an intermediate ActivityWeightedEmissionRate table. This can be done

since no further information is operating mode dependent. The

ActivityWeightedEmissionRate table is at the level of the MOVESWorkerOutput

by SourceType.

CSEC-7 Apply fuel adjustment factors

This step applies the fuel supply adjustment factors from step 2, stored in the

FuelSupplyAdjustment table, to the results of step 6.

CSEC-8 Multiply by start activity

This step multiplies the result of step 7 by the activity from the Starts table.

CSEC-9 Convert results by source type into results by SCC

This step is performed only when the run specification requests output by SCC

code and has two substeps.

The first substep produces an SCCDistribution table from the

SCCSourceTypeDistribution and SCCRoadTypeDistribution tables. This is

 164

simplified by the fact that start emissions are associated only with the off network

roadtype, so that only 12 of the 144 SCC codes are involved.

The second substep applies the SCCDistribution table to the results of step 9 to

convert the output from being by sourceTypeID to being by SCC.

Implicit in these calculations is that the additional fields of stateID, countyID, and

roadTypeID are added to the product table as needed by the MOVESOutput table format.

The roadTypeID for start emissions is always 1.

10.22.2. Detailed Calculation Steps
CSEC-1: Calculate emission rates which account for I/M programs
CSEC 1-a: Complete I/M adjustment fraction information

Input Variables:
begModelYearID, endModelYearID, IMAdjustFract (IMCoverage table)
countyID, zoneID, yearID (from Master Loop Context).
ageID (AgeCategory table)
regClassID (RegulatoryClass table)

Output Variable:
IMAdjustFract (in intermediate IMAdjustment table)

Calculation:
For zoneID, yearID in Master Loop Context,
for start process (which is also the Master Loop Context process)

 of all pollutants in runSpec which this calculator calculates
for all ageID in AgeCategory table,
for all fuelTypeID in IMCoverage,
for all regClassID values in RegulatoryClass except regClassID=0

modelYearID = yearID-ageID
IMAdjustFract (zoneID, yearID, polProcessID, modelYearID, fuelTypeID,

regClassID) =
= IMAdjustFract if IMCoverage record exists

with begModelYearID <= modelYearID <= endModelYearID
= 0.0 otherwise

CSEC 1-b: Combine I/M and non I/M rates

CSEC 1-b-1
Input Variables:

ageID (AgeCategory table)
polProcessID (from SourceBin table)

 165

modelYearGroupID (from tables of PollutantProcessModelYear and
IMAdjustment)

fuelTypeID & regClassID (from IMAdjustment in step 1-a and SourceBin table)
modelYearID (from IMAdjustment in step 1-a and PollutantProcessModelYear

table)
Output Variable:

zoneID, yearID, ageGroupID, polProcessID, modelYearID,
sourceBinID, IMAdjustFract (in intermediate table

IMAdjustmentWithSourceBin)
Calculation:

INSERT INTO IMAdjustmentWithSourceBin

SELECT zoneID, yearID, ageGroupID, ima.polProcessID, ima.modelYearID,

sourceBinID, IMAdjustFract

FROM IMAdjustment ima

INNER JOIN AgeCategory ac ON (ac.ageID = yearID-ima.modelYearID)

INNER JOIN PollutantProcessModelYear ppmy ON (

ppmy.polProcessID=ima.polProcessID AND

ppmy.modelYearID=ima.modelYearID)

INNER JOIN SourceBin sb ON (

sb.fuelTypeID = ima.fuelTypeID AND

sb.regClassID = ima.regClassID AND

sb.modelYearGroupID = ppmy.modelYearGroupID);

CSEC 1-b-2
Input Variables:

meanBaseRate and meanBaseRateIM (EmissionRate ByAge table)
sourceBinID, polProcessID and ageGroupID (from tables of

EmissionRateByAge and step 1-b-1 IMAdjustmentWithSourceBin)
modelYearGroupID (from PollutantProcessModelYear table)
IMAdjustFract (from step 1-b-1 IMAdjustmentWithSourceBin table)

Output Variable:
meanBaseRate (in intermediate table EmissionRateWithIM)

Calculation:
For all records in join of IMAdjustmentWithSourceBin Table to

EmissionRateByAge table WHERE

IMAdjustmentWithSourceBin.polProcessID=EmissionRateByAge.polProcessID

IMAdjustmentWithSourceBin.ageGroupID = EmissionRateByAge.AgeGroupID

AND
IMAdjustmentWithSourceBin.polProcessID = EmissionRateByAge.polProcessID

AND
IMAdjustmentWithSourceBin.sourceBinID= EmissionRateByAge.sourceBinID

meanBaseRate (zoneID, yearID, polProcessID, modelYearID,

 166

sourceBinID, opModeID) = GREATEST(meanBaseRateIM*IMAdjustFract +
meanBaseRate*(1.0-IMAdjustFract),0.0)

Note that IMAdjustFract might be greater than 1.0.

CSEC-2: Calculate fuel-supply-weighted Fuel Adjustment Factors
CSEC 2-a: Combine GPA and non GPA fuel adjustment factors

Input Variables:
fuelAdjustment and fuelAdjustmentGPA (from FuelAdjustment table)
GPAFract (from County table)
countyID (from MasterLoop Context)

Output Variable:
fuelAdjustment (in intermediate CountyFuelAdjustment table)

Calculation:
For countyID from Master Loop Context,
For all records in FuelAdjustment
for start process (which is also the Master Loop Context process)

 of all pollutants in runSpec which this calculator calculates

fuelAdjustment (countyID, polProcessID, fuelMYGroupID, sourceTypeID,
fuelFormulationID)

= fuelAdjustment + GPAFract*(fuelAdjustmentGPA-fuelAdjustment)

NOTE: An internal MOVES model component, the DefaultDataMaker, has set fuelAdjustment=1
for cases which are not populated in fuelAdjustment.

CSEC 2-b: Aggregate county fuel adjustments to fuel type

Input Variables:
fuelAdjustment (from CountyFuelAdjustment table from step 2-a)
marketShare (from FuelSupply table)
fuelSubTypeID (from FuelFormulation table)
fuelTypeID (from FuelSubtype table)
monthID (from MonthOfAnyYear table)
yearID (from MasterLoopContext)
fuelYearID (from Year table)
modelYearID (from PollutantProcessModelYear table)

Output Variable:
fuelAdjustment (in intermediate FuelSupplyAdjustment table)

Calculation:

For all records in join of CountyFuelAdjustment and FuelSupply where

CountyFuelAdjustment.countyID=FuelSupply.countyID and
Year.yearID = yearID from MasterLoopContext and
Year.fuelYearID = FuelSupply.yearID and
FuelSupply.monthGroupID = MonthOfAnyYear.monthGroupID and
CountyFuelAdjustment.monthGroupID=FuelSupply.monthGroupID and
CountyFuelAdjustment.fuelFormulationID=FuelFormulation.fuelFormulationID and
FuelFormulation.fuelSubtypeID=FuelSubType.fuelSubtypeID and

 PollutantProcessModelYear.polProcessID=

 167

CountyFuelAdjustment.polProcessID and
PollutantProcessModelYear.fuelMYGroupID=

CountyFuelAdjustment.fuelMYGroupID

fuelAdjustment (countyID, yearID, monthID, polProcessID, modelYearID,

 sourceTypeID, fuelTypeID)

= sum (fuelAdjustment * marketShare) over all fuel formulations in each fuel
type.

CSEC-3: Calculate temperature adjustment factors

Input Variables:
tempAdjustTermA, tempAdjustTermB (from StartTempAdjustment table)
temperature (from ZoneMonthHour table)
zoneID (from MasterLoop context)
modelYearID (from PollutantProcessModelYear table)

Output Variable:
temperatureAdjustment (in intermediate METStartAdjustment table)

Calculation:
For zoneID in Master Loop Context,
For start process (which is also the Master Loop Context process)

 of all pollutants in runSpec which this calculator calculates
For all records in join of ZoneMonthHour , StartTemperatureAdjustment and
PollutantProcessModelYear where:

PollutantProcessModelYear.polProcessID =
 StartTempAdjustment.polProcessID and
PollutantProcessModelYear.modelYearGroupID=

StartTempAdjustment.modelYearGroupID

temperatureAdjustment(zoneID, monthID, hourID, polProcessID, modelYearID,

fuelTypeID, opModeID)
= tempAdjustTermA * (temperature-75) + tempAdjustTermB (temperature-75)2

+ tempAdjustTermC * (temperature-75)3

CSEC-4: Apply temperature adjustment factors

Input Variables:
meanBaseRate (from EmissionRateWithIM table from step 1-b)
temperatureAdjustment (from METStartAdjustment table from step 3)

Output Variable:
meanBaseRate (in a new intermediate EmissionRateWithIMAndTemp table)

Calculation:
For all records in join of METStartAdjustment and EmissionRateWithIM,
(Using SourceBin table to relate METSTartAdjustment.fuelTypeID to

EmissionRateWithIM.sourceBinID)

EmissionRateWithIMAndTemp.meanBaseRate (zoneID, monthID, hourID,

yearID, polProcessID, modelYearID, sourceBinID, opModeID) =
EmissonRateWithIM.meanBaseRate + temperatureAdjustment

 168

CSEC-5: Weight emission rates by source bin
Input Variables:

meanBaseRate (from EmissionRateWithIMAndTemp table from step 4)
sourceBinActivityFraction (from SourceBinDistribution table)

Output Variable:
meanBaseRate (in an intermediate METSourceBinEmissionRate table)

Calculation:
For all records in join of EmissionRateWithIMAndTemp, SourceBin,

SourceBinDistribution, and
SourceTypeModelYear where:

SourceBinDistribution.sourceBinID = SourceBin.sourceBinID and
SourceBinDistribution.sourceTypeModelYearID
 = SourceTypeModelYear.sourceTypeModelYearID
EmissionRateWithIMAndTemp.polProcessID=
SourceBinDistribution.polProcessID and
EmissionRateWithIMAndTemp.sourceBinID=
SourceBinDistribution.sourceBinID and

SourceTypeModelYear.modelYearID =
EmissionRateWithIMAndTemp.modelYearID

Note: This calculation can take advantage of the fact that there is only one

modelYearGroupID present for a modelYearID.

meanBaseRate(zoneID, monthID, hourID, yearID, polProcessID, sourceTypeID,
modelYearID, fuelTypeID, opModeID)

= sum over engTechID and regClassID (sourceBinActivityFraction *
meanBaseRate)

CSEC-6: Weight temperature-adjusted emission rates by operating mode

Input Variables:
meanBaseRate (from METSourceBinEmissionRate table from step 5)
opModeFraction (from OperatingModeDistribution table)
linkID (from MasterLoopContext)

 (Note: calculations only performed for off-network links)

Output Variable:
meanBaseRate (in an intermediate ActivityWeightedEmissionRate table)

Calculation:
For linkID from MasterLoop context.
For all records in join of METSourceBinEmissionRate, HourDay, and

OperatingModeDistribution where:
OpModeDistribution.hourDayID = HourDay.hourDayID and
HourDay.hourID=METSourceBinEmissionRate.hourID and
OpModeDistribution.polProcessID =

METSourceBinEmissionRate.polProcessID and
OpModeDistribution.sourceTypeID =

METSourceBinEmissionRate.sourceTypeID and

 169

OpModeDistribution.opModeID = METSourceBinEmissionRate.opModeID

meanBaseRate(zoneID, yearID, monthID, dayID, hourID, polProcessID,

sourceTypeID, modelYearID, fuelTypeID)
= sum over opModeID (meanBaseRate * opModeFraction)

CSEC-7: Apply fuel adjustment factor
Input Variables:

meanBaseRate (from ActivityWeightedEmissionRate table from step 6)
fuelAdjustment (from FuelSupplyAdjustment table from step 2)

Output Variable:
meanBaseRate (in intermediate ActivityWeightedEmissionRate table)

Calculation:
For all records in join of ActivityWeightedEmissionRate and

FuelSupplyAdjustment using: yearID, monthID, polProcessID,
sourceTypeID, modelYearID, and fuelTypeID

meanBaseRate(zoneID, yearID, monthID, dayID, hourID, polProcessID,

sourceTypeID, modelYearID, fuelTypeID)
= meanBaseRate * fuelAdjustment

CSEC-8: Multiply emission rates by start activity to generate inventory
Input Variables:

meanBaseRate (from ActivityWeightedEmissionRate table from step 7)
starts (from Starts table)
yearID, stateID, countyID, zoneID, linkID from MasterLoop context
pollutantID, processID from PollutantProcessAssoc table

Output Variable:
emissionQuant (in MOVESWorkerOutput table)

Calculation:

For all records in join of Starts, ActivityWeightedEmissionRate, HourDay, and

PollutantProcessAssoc tables where:
 Starts.zoneID = zoneID value from MasterLoopContext
 Starts.yearID = yearID value from MasterLoopContext
 yearID – Starts.ageID

 = ActivityWeightedEmissionRate.modelYearID and
 Starts.monthID = ActivityWeightedEmissionRate.monthID and
 Starts.sourceTypeID = ActivityWeightedEmissionRate.sourceTypeID and
 Starts.hourDayID = HourDay.hourDayID and
 HourDay.hourID = ActivityWeightedEmissionRate.hourID and
 HourDay.dayID = ActivityWeightedemissionRate.dayID and
 ActivityWeightedEmissionRate.polProcessID

=PollutantProcessAssoc.polProcessID

roadTypeID = 1
SCC = null

 170

emissionQuant(stateID, countyID, zoneID, linkID, roadTypeID, yearID,
monthID, dayID, hourID, pollutantID, processID, sourceTypeID,
modelYearID, fuelTypeID, SCC)

= meanBaseRate * starts

CSEC-9: Conditionally convert results by sourceTypeID to results by SCC
This step is only performed when the run specification requires output by SCC

CSEC 9-a: Calculate combined SCC Distribution (by both SCCVtype and SCCRoadtype)

Input Variables:
SCCVtypeFraction (from SCCVtypeDistribution table)
SCC from SCC table

Output Variable:
SCCFraction (in intermediate SCCDistribution table)

Calculation:
From join of SCCVtypeDistribution, SCC, and SourceTypeModelYear where:

SourceTypeModelYear.sourceTypeModelYearID =
 SCCVtypeDistribution.sourceTypeModelYearID and
SCC.SCCVtypeID = SCCVtypeDistribution.SCCVtypeID and
SCC.SCCroadTypeID=1

SCCFraction(zoneID, sourceTypeID, modelYearID, fuelTypeID, SCC) =

SCCVtypeFraction

CSEC 9-b: Apply SCCDistribution

Input Variables:
emissionQuant (from MOVESWorkerOutput table from step 8)
SCCFraction (from SCCDistribution from step 9-a)

Output Variable:
emissionQuant (in MOVESWorkerOutput table)

Calculation:
sourceTypeID=null
from join of MOVESWorkerOutput and SCCDistribution using:
 sourceTypeID, modelYearID, fuelTypeID
emissionQuant(stateID, countyID, zoneID, linkID, roadTypeID, yearID,

monthID, dayID, hourID, pollutantID, processID, sourceTypeID,
modelYearID, fuelTypeID, SCC)

= sum over sourceTypeID (emissionQuant*SCCFraction)

 171

10.23. Basic Running PM EmissionCalculator
10.23.1. General Description
This calculator computes the emissions of OCarbon and ECarbon PM2.5 from the

running exhaust process (polProcessIDs 11101 and 11201). It signs up with the

MOVES master looping mechanism at the YEAR level. It retrieves its emission rates

from EmissionRateByAge, and only considers the meanBaseRate, ignoring

meanBaseRateIM. The only calculation it performs, beyond the core model

considerations of retrieving total activity from SHO, applying source bin distributions

and operating mode distributions, is to apply a multiplicative temperature adjustment

factor retrieved from the TemperatureAdjustment table.

10.23.2. Detailed Calculation Steps

Step BRPMC-1: Weight Emission Rates by Operating Mode

Structurally this combines the OpModeDistribution and EmissionRateByAge tables.
Relative to EmissionRateByAge this step removes opModeID but adds hourDayID and
sourceTypeID. If the calculator executed above the LINK level, linkID would also have
to be added.

Input Variables:
 polProcessID, linkID from Master Loop Context
 EmissionRateByAge table from MOVESExecution database
 OpModeDistribution table from MOVESExecution database

Output Variables:

 Intermediate OpModeWeightedEmissionRate table

 Key fields: hourDayID, sourceTypeID, sourceBinID, ageGroupID
 Data field: opModeWeightedMeanBaseRate
Calculation:

 For polProcessID, linkID from Master Loop Context
 For all hourDayID, sourceTypeID in Run Specification

 opModeWeightedMeanBaseRate = SUM(opModeFraction * meanBaseRate)

Step BRPMC-2: Weight Emission Rates by Source Bin

 172

This combines the results of the previous step with the SourceBinDistribution Table. In
terms of table structure relative to the results of the previous step, this removes the
engTechID and regClassID components of sourceBinID and fully expands ageGroupID
and the modelYearGroupID component of sourceBinID into individual modelYearIDs.
Because SourceBinDistributions are by individual model year, and the results of the
previous step are by ageGroupID, yearID is added.

Input Variables:
 OpModeWeightedEmissionRate table from previous step
 SourceBinDistribution table from MOVESExecution database
 SourceTypeModelYear table from MOVESExecution database
 PollutantProcessModelYear table from MOVESExecution database
 SourceBin table from MOVESExecution database
 AgeCategory table from MOVESExecution database
 yearID value from the master loop context

Output Variables:

 Intermediate FullyWeightedEmissionRate table

 Key fields: yearID, hourDayID, sourceTypeID, fuelTypeID, modelYearID
 Data field: fullyWeightedMeanBaseRate

Calculation:

 For yearID in the master loop context

 modelYearID = yearID – ageID

 fullyWeightedMeanBaseRate =

SUM(sourceBinActivityFraction * opModeWeightedMeanBaseRate)

Step BRPMC-3: Multiply Emission Rates by Activity

This combines the results of the previous step with the SHO table. In terms of table
structure relative to the results of the previous step, this adds monthID.

Input Variables:
 FullyWeightedEmissionRate table from previous step
 SHO table from MOVESExecution database
 monthID values from the run specification

Output Variables:

 Intermediate UnadjustedEmissionResults table

 173

Key fields: yearID, monthID, hourDayID, sourceTypeID, fuelTypeID,
modelYearID

 Data field: unadjustedEmissionQuant

Calculation:
 modelYearID = calendar year - ageID
 For all monthID values in the run specification

unadjustedEmissionQuant = fullyWeightedMeanBaseRate * SHO

Step BRPMC-4: Apply Fuel Adjustment by weighing emission rates by fuel
adjustment

Step BRPMC-4-a: Combine GPA and non GPA fuel adjustment factors

Input Variables:

countyID from the MasterLoopContext
 FuelAdjustment table from MOVESExecution database

Output Variables:

 Intermediate CountyFuelAdjustment table

Key fields: countyID, polProcessID, fuelMYGroupID, sourceTypeID,
fuelFormulationID

 Data field: fuelAdjustment

Calculation:

 For the countyID in the Master Loop Context

New fuelAdjustment = fuelAdjustment+GPAFract*(fuelAdjustmentGPA-
fuelAdjustment)

Step BRPMC-4-b: Aggregate county fuel adjustments to fuel type

Input Variables:

countyID and yearID from the MasterLoopContext
fuelFormulationID & marketShare from FuelSupply table from from
MOVESExecution database

 fuelTypeID from FuelSubType table from MOVESExecution database

 174

 monthID from MonthOfAnyYear table from MOVESExecution database
CountyFuelAdjustment table in previous step
modelYearID from PollutantProcessModelYear table from from
MOVESExecution database

Output Variables:

 Intermediate FuelSupplyWithFuelType table

Key fields: countyID, yearID, monthID, fuelFormulationID, fuelTypeID
 Data field: marketShare

 Execution Code :

INSERT INTO FuelSupplyWithFuelType
SELECT countyID, yearID, may.monthID, fs.fuelFormulationID, fst.fuelTypeID,
fs.marketShare
FROM FuelSupply fs
INNER JOIN FuelFormulation ff ON ff.fuelFormulationID = fs.fuelFormulationID
INNER JOIN FuelSubType fst ON fst.fuelSubTypeID = ff.fuelSubTypeID
INNER JOIN MonthOfAnyYear may ON fs.monthGroupID = may.monthGroupID
INNER JOIN Year y ON y.fuelYearID = fs.fuelYearID
WHERE y.yearID = ##context.year##;

 Intermediate FuelSupplyAdjustment table

Key fields: countyID, yearID, monthID, polProcessID, modelYearID,
sourceTypeID, fuelTypeID

 Data field: fuelAdjustment

Calculation:

 For the countyID (in the Master Loop Context), yearID (in the Master Loop
Context), monthID, polProcessID, modelYearID, sourceTypeID, fuelTypeID

New fuelAdjustment = SUM(fuelAdjustment*marketShare)

Step BRPMC-4-c: Apply fuel adjustment to weighted emission rates

Input Variables:

UnadjustedEmissionResults table from previous step
FuelSupplyAdjustment table from from previous step

Output Variables:

 Intermediate FuelAdjustedEmissionRate table

 175

Key fields: yearID, monthID, hourDayID, sourceTypeID, fuelTypeID,
modelYearID, polProcessID

 Data field: unadjustedEmissionQuant

Calculation:

 For the yearID (in the Master Loop Context), monthID, hourDayID,
sourceTypeID, fuelTypeID, modelYearID, polProcessID

New unadjustedEmissionQuant = unadjustedEmissionQuant * fuelAdjustment

Step BRPMC-5: Apply Temperature Adjustment

This applies the temperature adjustment to the results of the previous step. The table
resulting from this step could have the same structure as that produced by the previous
step, but it seems desirable to decompose hourDayID into hourID and dayID since this is
needed to join to the ZoneMonthHour table and is the form eventually needed for
MOVEWorkerOutput.

Input Variables:

zoneID and polProcessID from the MasterLoopContext
UnadjustedEmissionResults table from previous step

 ZoneMonthHour table from MOVESExecution database
 TemperatureAdjustment table from MOVESExecution database
 HourDay table from MOVESExecution database

Output Variables:

 Intermediate AdjustedEmissionResults table

Key fields: yearID, monthID, dayID, hourID, sourceTypeID, fuelTypeID,
modelYearID

 Data field: emissionQuant

Calculation:

 For the polProcessID and zoneID in the Master Loop Context

emissionQuant = unadjustedEmissionQuant * exp(tempAdjustTermA * (72-
temperature))

 176

Step BRPMC-6: Convert Results to Structure of MOVESWorkerOutput by
sourceTypeID

Structurally we need to add stateID, countyID, zoneID, linkID, roadTypeID, SCC (as null
value) and decompose polProcessID into pollutantID and processID.

Input Variables:

 stateID, linkID from MasterLoop Context
 Link table from MOVESExecution
 PollutantProcessAssoc table from MOVESExecution
 AdjustedEmissionResults table from previous step

Output Variables:

 MOVESWorkerOutput Table

Key fields: yearID, monthID, dayID, hourID, stateID, countyID, zoneID,
linkID, pollutantID, processID, ,sourceTypeID, fuelTypeID,
modelYearID, roadTypeID, SCC

 Data field: emissionQuant

Calculation:

MOVESWorkerOutput.emissionQuant =AdjustedEmissionResults.emissionQuant
 countyID = Link.countyID
 zoneID = Link.zoneID
 roadTypeID = Link.roadTypeID
 pollutantID = PollutantProcessAssoc.pollutantID
 processID = PollutantProcessAssoc.processID
 SCC = null

Step BRPMC-7: Conditionally Convert Results to Structure of
MOVESWorkerOutput by SCC

This step is only performed when the run specification requires output by SCC. It is
performed in several other emission calculators, e.g. step 10 of the CREC, and is repeated
here:

Input Variables:
SCCVTypeFraction (from SCCVTypeDistribution table)
SCCRoadTypeFraction(from SCCRoadTypeDistribution table)
SCC from SCC table
emissionQuant from MOVESWorkerOutput table from previous step
sourceTypeID, modelYearID from SourceTypeModelYear

 177

Output Variable:

emissionQuant (in restructured MOVESWorkerOutput table)

Calculation:
From join of SCCVtypeDistribution, SCC, SourceTypeModelYear, and

SCCRoadTypeDistribution where:
 zoneID = zoneID from master loop context

SourceTypeModelYear.sourceTypeModelYearID =
 SCCVtypeDistribution.sourceTypeModelYearID and
SCC.SCCVtypeID = SCCVtypeDistribution.SCCVtypeID and
SCC.SCCroadTypeID=SCCRoadTypeDistribution.roadTypeID and
MOVESWorkerOutput.sourceTypeID =

sourceTypeModelYear.sourceTypeID and
MOVESWorkerOutput.modelYearID = sourceTypeModelYear.modelYearID

and
MOVESWorkerOutput.fuelTypeID = SCCVtypeDistribution.fuelTypeID and
MOVESWorkerOutput.roadTypeID =

SCCRoadTypeDistribution.roadTypeID

SCC= SCC.SCC
emissionQuant = sum of emissionQuant * SCCVtypeFraction *

SCCRoadTypeFraction over sourceTypeID and roadTypeID

sourceTypeID = null
roadTypeID = null
linkID = null

 178

10.24. Sulfate PM EmissionCalculator (SEC)
10.24.1. General Description

This calculator will gives the model the capability to compute sulfate PM 2.5

emissions. The basic design of the calculator is to compute sulfate emissions as the

product of a sulfate emission factor and total energy consumption of the corresponding

MOVES emission process. The MOVES SulfatePMEmissionsCalculator is ‘chained to’

the Total Energy Consumption Calculator.

The pollutant-processes for which emission calculations are performed by this

calculator are:

SulfatePM2.5 – running exhaust polProcessID = 11501
SulfatePM2.5 – start exhaust polProcessID = 11502
SulfatePM2.5 – extended idle exhaust polProcessID = 11590

Inputs to the calculator are:

 MOVESWorkerOutput.emissionQuant for total energy consumption of the

corresponding emissions process (running exhaust, start exhaust, or extended idle

exhaust).

 FuelFormulation.sulfurLevel. (Market-weighted average per

FuelSupply.marketShare)

 FuelType.energyContent

 SulfateEmissionRate.meanBaseRate.

The meanBaseRate sulfate emission factors for gasoline vehicles are unitless and

scaled to yield grams of SO4 particulate when multiplied by the product of the grams of

gasoline fuel consumed * ppm sulfur of the fuel.

Because the calculations are based on the emission results for total energy consumption

this calculator is ‘chained’ to the TotalEnergyConsumptionCalculator which executes at

the YEAR level. Like all emission calculators its output is

MOVESWorkerOutput.emissionQuant.

 179

10.24.2 Detailed Calculation Steps

The calculation will be performed in two basic steps:

Step SEC-1

The first step calculates the marketshare-weighted-average sulfur level of the fuel supply

at the place (county) and times (year-months) for which the master loop is executing.

Step SEC-2

The second step completes the calculation, the basic equation for which is simply:

emissionQuant(SulfatePM) = SulfateEmissionRate.meanBaseRate * averageSulfurLevel

(from first step) * emissionQuant(EnergyConsumption) /

 FuelType.energyContent

A sample of this calculation, showing the engineering units involved, is:

(1.4807e-08 gSO4 / g fuel – ppm S) * (30 ppm gasoline S) * 1000 KJ/hr / 10 KJ / gram fuel
= 4.442e-05 g/SO4 / hr

10.24.3 PM 10 Emission Calculator
10.24.3.1 General Description

This calculator will gives the model the capability to compute PM 10 sulfate,

elemental carbon, and organic carbon emissions. The basic design of the calculator is to

compute PM 10 emissions as the product of a PM 2.5/sourcetype/fueltype-specific

emission factor and the amount of PM 2.5 of the corresponding MOVES emission

process. The MOVES PM10EmissionCalculator is ‘chained to’ any PM 2.5 calculator.

The pollutant-processes for which emission calculations are performed by this

calculator are:

SulfatePM10 – running exhaust polProcessID = 10501
SulfatePM10 – start exhaust polProcessID = 10502
SulfatePM10 – extended idle exhaust polProcessID = 10590

 180

Organic Carbon PM10 – running exhaust polProcessID = 10101

Organic Carbon PM10 – start exhaust polProcessID = 10102

Organic Carbon PM10 – extended idle exhaust polProcessID = 10190

Organic Carbon PM10 – crankcase running exhaust polProcessID = 10115

Organic Carbon PM10 – crankcase start exhaust polProcessID = 10116

Organic Carbon PM10 – crankcase extended idle exhaust polProcessID = 10117

Elemental Carbon PM10 – running exhaust polProcessID = 10201

Elemental Carbon PM10 – start exhaust polProcessID = 10202

Elemental Carbon PM10 – extended idle exhaust polProcessID = 10290

Elemental Carbon PM10 – crankcase running exhaust polProcessID = 10215

Elemental Carbon PM10 – crankcase start exhaust polProcessID = 10216

Elemental Carbon PM10 – crankcase extended idle exhaust polProcessID =

10217

Inputs to the calculator are:

 MOVESWorkerOutput.emissionQuant for PM 2.5 of the corresponding emissions

process (running exhaust, start exhaust, extended idle exhaust, or other).

 PM10EmissionRatio – a unitless factor for the amount of PM 10 created per unit

of PM 2.5. This factor varies by the output pollutant, the source type, and the fuel

type.

Like all emission calculators its output is MOVESWorkerOutput.emissionQuant.

10.24.3.2 Detailed Calculation Step

The calculation will be performed in one basic step:

emissionQuant(PM 10) = emissionQuant(PM 2.5) * PM10EmissionRatio(PM 10
pollutant and process, source type, fuel type)

Note that the emissionQuant values vary by all dimensions of the MOVESWorkerOutput

table, including process, source type, and fuel type.

 181

10.25. Basic Start PM EmissionCalculator
10.25.1. General Description
This calculator computes the emissions of OCarbon and ECarbon PM2.5 from the start
exhaust process (polProcessIDs 11102 and 11202). It signs up with the MOVES master
looping mechanism at the YEAR level. It retrieves its emission rates from
EmissionRateByAge table, and only considers the meanBaseRate, ignoring
meanBaseRateIM. The only calculation it performs, beyond the core model
considerations of retrieving total activity from Starts, applying source bin distributions
and operating mode distributions, is to apply a multiplicative temperature adjustment
factor retrieved from the StartTempAdjustment table. This allows the temperature
adjustment to vary by operating mode and model year group, which is needed in order to
apply the effects of the Mobile Source Air Toxics (MSAT) rule effects on engine start
emissions.

10.25.2. Detailed Calculation Steps
This calculator is very similar to the Basic Running PM Emission Calculator. However,
the operating mode is carried forward until the temperature adjustments (which depend
on operating mode) can be applied.

Step BSPMC-1: Weight Emission Rates by Operating Mode

Structurally this combines the OpModeDistribution and EmissionRateByAge tables.
Relative to EmissionRateByAge adds hourDayID and sourceTypeID. If the calculator
executed above the LINK level, linkID would also have to be added. The meanBaseRate
is adjusted by the opModeFraction, but the operating modes are not yet summed, since
the temperature adjustment (in BSPMC-4) has not yet been applied.

Input Variables:
 polProcessID, linkID from Master Loop Context
 EmissionRateByAge table from MOVESExecution database
 OpModeDistribution table from MOVESExecution database

Output Variables:

 Intermediate OpModeWeightedEmissionRate table

 Key fields: hourDayID, sourceTypeID, sourceBinID, ageGroupID,
opModeID
 Data field: opModeWeightedMeanBaseRate
Calculation:

 For polProcessID, linkID from Master Loop Context
 For all hourDayID, sourceTypeID in Run Specification

 182

 opModeWeightedMeanBaseRate = (opModeFraction * meanBaseRate)

Step BSPMC-2: Weight Emission Rates by Source Bin

This combines the results of the previous step with the SourceBinDistribution Table. In
terms of table structure relative to the results of the previous step, this removes the
engTechID and regClassID components of sourceBinID and fully expands ageGroupID
and the modelYearGroupID component of sourceBinID into individual modelYearIDs.
Because SourceBinDistributions are by individual model year, and the results of the
previous step are by ageGroupID, yearID is added.

Input Variables:
 OpModeWeightedEmissionRate table from previous step
 SourceBinDistribution table from MOVESExecution database
 SourceTypeModelYear table from MOVESExecution database
 PollutantProcessModelYear table from MOVESExecution database
 SourceBin table from MOVESExecution database
 AgeCategory table from MOVESExecution database
 yearID value from the master loop context

Output Variables:

 Intermediate FullyWeightedEmissionRate table

 Key fields: yearID, hourDayID, sourceTypeID, fuelTypeID,

modelYearID, opModeID

 Data field: fullyWeightedMeanBaseRate

Calculation:

 For yearID in the master loop context

 modelYearID = yearID – ageID

 fullyWeightedMeanBaseRate =

SUM(sourceBinActivityFraction * opModeWeightedMeanBaseRate)

Step BSPMC-3: Multiply Emission Rates by Activity

This combines the results of the previous step with the SHO table. In terms of table
structure relative to the results of the previous step, this adds monthID.

Input Variables:

 183

 FullyWeightedEmissionRate table from previous step
 SHO table from MOVESExecution database
 monthID values from the run specification

Output Variables:

 Intermediate UnadjustedEmissionResults table

Key fields: yearID, monthID, hourDayID, sourceTypeID, fuelTypeID,
modelYearID, opModeID

 Data field: unadjustedEmissionQuant

Calculation:
 modelYearID = calendar year - ageID
 For all monthID values in the run specification

unadjustedEmissionQuant = fullyWeightedMeanBaseRate * SHO

Step BSPMC-4: Apply Temperature Adjustment

This applies the temperature adjustment to the results of the previous step. The table
resulting from this step could have the same structure as that produced by the previous
step, but it seems desirable to decompose hourDayID into hourID and dayID since this is
needed to join to the ZoneMonthHour table and is the form eventually needed for
MOVEWorkerOutput. The unadjustedEmissionQuant values are summed across
operating modes, since this key is no longer needed after the temperature adjustments
have been applied.

Input Variables:

zoneID and polProcessID from the MasterLoopContext
UnadjustedEmissionResults table from previous step

 ZoneMonthHour table from MOVESExecution database
 StartTempAdjustment table from MOVESExecution database
 HourDay table from MOVESExecution database

Output Variables:

 Intermediate AdjustedEmissionResults table

Key fields: yearID, monthID, dayID, hourID, sourceTypeID, fuelTypeID,
modelYearID

 Data field: emissionQuant

 184

Calculation:

 For the polProcessID and zoneID in the Master Loop Context

emissionQuant = sum(unadjustedEmissionQuant *
tempAdustTermB*exp(tempAdjustTermA * (72-least(temperature,72))) +
tempAdustTermC

Step BSPMC-5: Convert Results to Structure of MOVESWorkerOutput by
sourceTypeID

Structurally we need to add stateID, countyID, zoneID, linkID, roadTypeID, SCC (as null
value) and decompose polProcessID into pollutantID and processID.

Input Variables:

 stateID, linkID from MasterLoop Context
 Link table from MOVESExecution
 PollutantProcessAssoc table from MOVESExecution
 AdjustedEmissionResults table from previous step

Output Variables:

 MOVESWorkerOutput Table

Key fields: yearID, monthID, dayID, hourID, stateID, countyID, zoneID,
linkID, pollutantID, processID, ,sourceTypeID, fuelTypeID,
modelYearID, roadTypeID, SCC

 Data field: emissionQuant

Calculation:

MOVESWorkerOutput.emissionQuant =AdjustedEmissionResults.emissionQuant
 countyID = Link.countyID
 zoneID = Link.zoneID
 roadTypeID = Link.roadTypeID
 pollutantID = PollutantProcessAssoc.pollutantID
 processID = PollutantProcessAssoc.processID
 SCC = null

Step BSPMC-6: Conditionally Convert Results to Structure of
MOVESWorkerOutput by SCC

 185

This step is only performed when the run specification requires output by SCC. It is
performed in several other emission calculators, e.g. step 10 of the CREC, and is repeated
here:

Input Variables:
SCCVTypeFraction (from SCCVTypeDistribution table)
SCCRoadTypeFraction(from SCCRoadTypeDistribution table)
SCC from SCC table
emissionQuant from MOVESWorkerOutput table from previous step
sourceTypeID, modelYearID from SourceTypeModelYear

Output Variable:

emissionQuant (in restructured MOVESWorkerOutput table)

Calculation:
From join of SCCVtypeDistribution, SCC, SourceTypeModelYear, and

SCCRoadTypeDistribution where:
 zoneID = zoneID from master loop context

SourceTypeModelYear.sourceTypeModelYearID =
 SCCVtypeDistribution.sourceTypeModelYearID and
SCC.SCCVtypeID = SCCVtypeDistribution.SCCVtypeID and
SCC.SCCroadTypeID=SCCRoadTypeDistribution.roadTypeID and
MOVESWorkerOutput.sourceTypeID =

sourceTypeModelYear.sourceTypeID and
MOVESWorkerOutput.modelYearID = sourceTypeModelYear.modelYearID

and
MOVESWorkerOutput.fuelTypeID = SCCVtypeDistribution.fuelTypeID and
MOVESWorkerOutput.roadTypeID =

SCCRoadTypeDistribution.roadTypeID

SCC= SCC.SCC
emissionQuant = sum of emissionQuant * SCCVtypeFraction *

SCCRoadTypeFraction over sourceTypeID and roadTypeID

sourceTypeID = null
roadTypeID = null
linkID = null

 186

10.26. Basic Brake and Tire Wear Emission Calculators
10.26.1. General Description

These two almost identical calculators compute the tirewear and brakewear process

emissions of OCarbon and ECarbon PM2.5 (polProcessIDs 11609 and 11710). They

sign up with the MOVES master looping mechanism at theYEAR level. They retrieve

their emission rates from EmissionRate, and only consider the meanBaseRate, ignoring

meanBaseRateIM. The only operations they perform are the core model calculations of

retrieving total activity from SHO, applying source bin distributions and (possibly)

operating mode distributions. The brake wear calculation does apply an operating mode

distribution; the tire wear calculation does not.

10.26.2. Detailed Calculation Steps

Because this calculator is very much like Basic Running PM Emission Calculator, and is

actually a bit simpler because its emission rates do not vary by age and it does not apply

at temperature adjustment the details of that calculation are not repeated here.

 187

10.27. CriteriaAndPMExtendedIdleEmissionCalculator

10.27.1. General Description

This component calculates the the extended idle process emissions of 5 criteria

and PM pollutants, specifically those of:

Total Hydrocarbons (polProcessID = 190)
Carbon Monoxide (polProcessID = 290)
Oxides of Nitrogen (polProcessID = 390)
OCarbon PM Size 2.5 (polProcessID = 11190)
ECarbon PM Size 2.5 (polProcessID = 11290)

 It signs up with the MOVES master looping mechanism at theYEAR level.

 Extended idle emissions are associated with the single link in each zone

representing off highway network locations.

 This calculator retrieves its emission rates from EmissionRate, and only considers

the meanBaseRate field, ignoring meanBaseRateIM. It applies a multiplicative

temperature adjustment factor retrieved from the TemperatureAdjustment table, an

ACAdjustment factor as done in several other EmissionCalculators, and a humidity

correction factor to NOx emissions as done by the CriteriaRunningEmissionCalculator.

It does not apply an operating mode distribution.

10.27.2. Detailed Calculation Steps
Step CEIC-1: Calculate Temperature and NOx Humidity Adjustments

Input Variables:

tempAdjustTermA and tempAdjustTermB

from the TemperatureAdjustment Table
 temperature and specificHumidity from the ZoneMonthHour Table
 humidityCorrectionCoeff from the FuelType Table

Output Variables:

 An intermediate METAdjustment table:

 Key fields: zoneID, monthID, hourID, polProcessID, fuelTypeID
 Data fields: temperatureAdjustment, K (the NOx correction factor)

 188

Calculations:

temperatureAdjustment = 1.0 + (tempAdjustTermA * (temperature-75.0)) +
(tempAdjustTermB * (temperature-75) * (temperature-75))

 K= 1.0 – ((boundedSpecificHumidity – 75.0) * humidityCorrectionCoeff)
 Where
 boundedSpecificHumidity = GREATEST(21.0,LEAST(specificHumidity,124.0))

Step CEIC-2: Calculate AC Adjustment Factor

This step has 3 substeps:

Step CEIC-2a: Calculate AC On Fraction

Input Variables:

 heatIndex from ZoneMonthHour table
 ACActivityTermA, B, and C from the MonthGroupHour Table
 MonthOfAnyYear table used to associate month groups and months

Output Variables:

 An intermediate ACOnFraction table:

 Key Fields: zoneID, monthID, hourID
 Date Field: ACOnFraction

Calculation:

ACOnFraction = ACActivityTermA + ACActivityTermB * heatIndex +
ACActivityTermC * heatIndex * heatIndex

If ACOnFraction < 0.0 Then ACOnFraction = 0.0
If ACOnFraction > 1.0 Then ACOnFraction = 1.0

Step CEIC-2b: Calculate AC Activity Fraction

Input Variables:

 ACOnFraction from previous sub-step
 ACPenetrationFraction from SourceTypeModelYearTable
 functioningACFraction from SourceTypeAge Table

 189

Output Variables:

 An intermediate ACActivityFraction table:

 Key Fields: zoneID, monthID, hourID, sourceTypeID, modelYearID
 Date Field: ACActivityFraction

Calculation:

 ageID = calendar year – modelYearID

(needed to join to the SourceTypeAge table)

ACActivityFraction = ACOnFraction * ACPenetrationFraction *
functioningACFraction

Step CEIC-2c: Calculate ACAdjustmentFraction

Input Variables:

 ACActivityFraction from previous sub-step
 fullACAdjustment from FullACAdjustment table

Output Variables:

 An intermediate ACAdjustment table:

Key Fields: zoneID, monthID, hourID, sourceTypeID, modelYearID,
 polProcessID

 Date Field: ACAdjustment

Calculation:

Assume FullACAdjustment populated only for a single opModeID

ACAdjustment = 1.0 + ((fullACAdjustment-1.0) * ACActivityFraction)

Step CEIC-3: Calculate SourceBin-Weighted Emission Rates

This step weights emission rates, which vary by source bin, by the source bin
distribution, retaining, however, the fuel type distinction because it is needed by
subsequent steps and in the eventual output. The model year group distinction within
source bin is subsumed by the broader model year distinction required in the output.

Input Variables:

 190

 meanBaseRate from the EmissionRate table
 sourceBinActivityFraction from the SourceBinDistribution table

The SourceBin table is needed to decompose sourceBinID values into their
constituent components.
The SourceTypeModelYear table is needed to decompose
sourceTypeModelYearID values into their constituent sourceTypeID and
modelYearID values.

Output Variables:

 An intermediate SBWeightedEmissionRate Table

 Key fields: polProcessID, sourceTypeID, modelYearID, fuelTypeID
 Data field: meanBaseRate

Calculation:

In joining these tables it can be assumed that only one modelYearGroupID will be
present in the source bin distributions for a polProcessID and modelYearID.

SBWeightedEmissionRate.meanBaseRate =
sum(sourceBinActivityFraction * EmissionRate.meanBaseRate)

Step CEIC-4: Apply Adjustment Factors to Emission Rates

Input Variables:

 meanBaseRate from the SBWeightedEmissionRate table from the previous step
 temperatureAdjustment and K from the METAdjustment table produced by step 1
 ACAdjustment from the ACAdjustment table produced by step 2-c.

Output Variables:

 An intermediate WeightedAndAdjustedEmissionRate table

Key fields: polProcessID, sourceTypeID, modelYearID, fuelTypeID, zoneID,
monthID, hourID

 Data field: meanBaseRate

Calculation:

 K_ToUse = K if pollutantID=3 otherwise K_ToUse = 1.0

 191

 WeightedAndAdjustedEmissionRate.meanBaseRate =

SBWeightedEmissionRate.meanBaseRate * temperatureAdjustment *
ACAdjustment * K_ToUse

Step CEIC-5: Multiply Emission Rates by Activity

Input Variables:

 meanBaseRate from WeightedAndAdjustedEmissionRate table from step 4.
 extendedIdleHours from ExtendedIdleHours table.

HourDay table needed to decompose hourDayID values in extendedIdleHours
into dayID and hourID values.

Output Variables:

 emissionQuant in an intermediate AdjustedEmissionResults table

Key Fields: polProcessID, sourceTypeID, modelYearID, fuelTypeID, zoneID,
monthID, hourID, dayID, yearID

 Data Field: emissionQuant

Calculations:

 ageID = calendar year – modelYearID

(needed to join to the extendedIdleHours table)

emissionQuant = meanBaseRate * extendedIdleHours

Step CEIC-6: Convert Results to Structure of MOVESWorkerOutput by
sourceTypeID

Structurally we need to add stateID, countyID, linkID, roadTypeID , SCC (as null value)
and decompose polProcessID into pollutantID and processID.

Input Variables:

 stateID, countyID from MasterLoop Context
 linkID from Link table
 PollutantProcessAssoc table
 AdjustedEmissionResults table from previous step

Output Variables:

 192

 MOVESWorkerOutput Table

Key fields: yearID, monthID, dayID, hourID, stateID, countyID, zoneID,
linkID, pollutantID, processID ,sourceTypeID, fuelTypeID, modelYearID,
roadTypeID, SCC

 Data field: emissionQuant

Calculations:

MOVESWorkerOutput.emissionQuant =AdjustedEmissionResults.emissionQuant
stateID = stateID from MasterLoop context

 countyID = countyID from MasterLoop context
 roadTypeID = 1
 linkID = value from Link table for zoneID where roadTypeID = 1
 pollutantID = PollutantProcessAssoc.pollutantID
 processID = PollutantProcessAssoc.processID
 SCC = null

Step CEIC-7: Conditionally Convert Results to Structure of MOVESWorkerOutput
by SCC

This step is only performed when the run specification requires output by SCC. It is
performed in several other emission calculators; this description has been elaborated to
explicitly consider SCCProcID.

Input Variables:
SCCVTypeFraction (from SCCVTypeDistribution table)
SCCRoadTypeFraction(from SCCRoadTypeDistribution table)
SCCProcID from EmissionProcess table
SCC from SCC table
emissionQuant from MOVESWorkerOutput table from previous step
sourceTypeID, modelYearID from SourceTypeModelYear

Output Variable:
emissionQuant (in restructured MOVESWorkerOutput table)

Calculation:
From join of SCCVtypeDistribution, SCC, EmissionProcess,

SourceTypeModelYear, and SCCRoadTypeDistribution where:
 zoneID = zoneID from master loop context

SourceTypeModelYear.sourceTypeModelYearID =
 SCCVtypeDistribution.sourceTypeModelYearID and
SCC.SCCVtypeID = SCCVtypeDistribution.SCCVtypeID and
SCC.SCCroadTypeID=SCCRoadTypeDistribution.roadTypeID and
SCC.SCCProcID = EmissionProcess.SCCProcID and
EmissionProcess.processID = processID from masterloop context

 193

MOVESWorkerOutput.sourceTypeID = sourceTypeModelYear.sourceTypeID and
MOVESWorkerOutput.modelYearID = sourceTypeModelYear.modelYearID and
MOVESWorkerOutput.fuelTypeID = SCCVtypeDistribution.fuelTypeID and
MOVESWorkerOutput.roadTypeID = SCCRoadTypeDistribution.roadTypeID

SCC= SCC.SCC
emissionQuant = sum of emissionQuant * SCCVtypeFraction *

SCCRoadTypeFraction over sourceTypeID and roadTypeID

sourceTypeID = null
roadTypeID = null
linkID = null

10.28 Air Toxics Calculator

The MOVES model calculates emission rates and inventories for several air toxic

pollutants and processes. The algorithm for the air toxics calculator can be found in the

MOVES file AirToxicsCalculator.sql. The term air toxics and the particular compounds

listed in MOVES are generally defined in the EPA Mobile Source Air Toxics (MSAT)

rulemaking as ‘air toxics’. The MOVES list is not an exhaustive one of all vehicle

related air toxic pollutants. Exclusion from the list does not imply that a particular

compound (i.e., carbon monoxide) is non-toxic. The list of MOVES air toxics pollutants

includes:

Benzene

Ethanol

MTBE

Naphthalene

1,3-Butadiene

Formaldehyde

Acetaldehyde

Acrolein

 194

All of the air toxic pollutants have exhaust processes. However, only benzene,

ethanol, MTBE and Naphthalene have evaporative processes. Ethanol and MTBE are not

products of combustion so they may have zero emission rates if the fuel(s) used in the

MOVES simulation are non-ethanol or non-MTBE fuels.

10.28.1. Air Toxics Calculator Overview

The MOVES model does not contain direct emission rates for any of the air toxic

pollutants. All of them are computed in MOVES from ‘chained’ calculators using simple

ratios. All pollutants, with the exception of Naphthalene, are ratios (and chained) to

volatile hydrocarbon (VOC) emissions. Naphthalene is a ratio of Total PM10 emissions

(PM10 is in turn chained to PM2.5 emissions which is in turn chained to total energy

emissions).

The basic conceptual air toxics equations in MOVES are:

Air Toxic Emissions = Air Toxic Ratio * VOC Emissions Eq 10.28.1

Air Toxic Emissions = Air Toxic Ratio * PM10 Emissions Eq 10.28.2

All correction factors such as I/M, fuel effects, temperature, etc. are performed on

the underlying VOC or Total PM10 emissions. Thus, the air toxic’s calculator does not

apply any additional correct factor modules after Eq 10.28.1 or 10.28.2 is performed.

10.28.2. Air Toxics calculation
Because of size considerations, the air toxic ratios (see Eq 10.28.1) are stored in

three separate MOVE database tables. These tables are ATRatioGas1, ATRatioGas2 and

ATRatioNonGas. Tables ATRatioGas1 and ATRatioGas2 contain air toxic ratios for

gasoline powered vehicles only. More specifically, MOVES table ATRatioGas1 contains

 195

air toxic ratios for pollutants Benzene, MTBE, 1,3-Butadiene, Formaldehyde and

Acetaldehyde for the Running, Start and Extended Idle processes, and air toxics ratios for

Benzene and MTBE for all of the evaporative processes. Table ATRatioGas2 contains

air toxic ratios for pollutants Ethanol and Naphthalene for all exhaust and evaporative

processes, and Acrolein air toxic ratios for all exhaust processes. Table ATRatioNonGas

contains air toxic ratios for diesel and ethanol (E-85) powered vehicles for all pollutant /

process combinations.

Input Variables:

From table MOVESWorkerOutput the following variables:

yearID, monthID, dayID, hourID, stateID, countyID, zoneID, linkID,
sourceTypeID, .fuelTypeID, modelYearID, roadTypeID, SCC and emissionQuant

Because air toxics are chained pollutants, emissionQuant contains the VOC or Total
PM10 emission quantity as it enters the air toxics calculator. The variable
emissionQuant contains the air toxic pollutant quantity as it departs the air toxics
calculator.

Other inputs are:

fuelsupply. marketShare

ATRatioGas1. ATRatio

ATRatioGas2. ATRatio

ATRatioNonGas. ATRatio

The value and table source for the variable ATRatio depends on which air toxic
pollutant / process / fueltype is being calculated.

Output Variable:

MOVESWorkerOutput. emissionQuant

 196

Calculation:

emissionQuant(air toxic compound) = AirToxicGas1.ATRatio

fuelSupply.marketShare * MOVESWorkerOutput. emissionQuant(VOC)

emissionQuant(air toxic compound) = AirToxicGas2.ATRatio *
fuelSupply.marketShare * MOVESWorkerOutput. emissionQuant(VOC)

emissionQuant(air toxic compound) = AirToxicNonGas.ATRatio *
fuelSupply.marketShare * MOVESWorkerOutput. emissionQuant(VOC)

for Naphthalene

emissionQuant(air toxic compound) = AirToxicGas2.ATRatio *
fuelSupply.marketShare * MOVESWorkerOutput. emissionQuant(PM10)

emissionQuant(air toxic compound) = AirToxicNonGas.ATRatio *
fuelSupply.marketShare * MOVESWorkerOutput. emissionQuant(PM10)

10.29. Permeation Calculator
10.29.1. General Description

This component signs up with the MOVES master looping mechanism at the MONTH
level.

Its inputs include:

Source Bin Distributions
Operating Mode Distributions
The EmissionRateByAge table
The AverageTankTemperature table
The TemperatureAdjustment Table
The FuelAdjustment Table (and associated tables used to determine fuel market
shares)

Its results are placed in the same MOVESOutput table format as other
EmissionCalculators.

 197

10.29.2. Detailed Calculation Steps
PC-1: Weight emission rates by source bin

Input Variables:
- meanBaseRate (from EmissionRateByAge table)
- sourceBinActivityFraction (from SourceBinDistribution table)

Output Variables:

- meanBaseRate (intermediate table SBWeightedPermeationRate)

 Calculation:

meanBaseRate(zoneID, yearID, polProcessID, sourceTypeID,
modelYearID, fuelTypeID)

= sum (sourceBinActivityFraction * meanBaseRate)

PC-2: Calculate weighted temperature adjustment

Inputs:
- averageTankTemperature (from averageTankTemperature)
- opModeFraction (from operatingModeDistribution)
- tempAdjustTermA (from temperatureAdjust)
- tempAdjustTermB (from temperatureAdjust)

Outputs:

- weightedTemperatureAdjust (sourceTypeID, monthID, hourDayID,
linkID, tankTemperatureGroupID)

Preliminary Calculation: temperatureAdjustByOpmode (zoneID, monthID,

hourDayID, hourDayID, tankTemperatureGroupID, opModeID)
= tempAdjustTermA * etempAdjustTermB * averageTankTemperature (opModeID)

 Calculation: weightedTemperatureAdjust
 = SUM(temperatureAdjustByOpMode*opModeFraction) over all modes

PC-3: Calculate weighted fuel adjustment

Input Variables:
- fuelAdjustment (from fuelAdjustment table)
- marketShare (from fuelSupply table)

Output Variables:

- weightedFuelAdjust(polProcessID, modelYearGroupID,
sourceTypeID, fueltypeid)

 198

Calculation: weightedFuelAdjust

 = SUM(fuelAdjustment * marketShare) over all fuel formulations for the
county, fuelyear, month and fueltypeid.

NOTE: An internal MOVES model component, the DefaultDataMaker, has set
fuelAdjustment=1 for cases which are not populated in fuelAdjustment.

PC-4: Calculate fuel adjusted meanBaseRate

 Input Variables:

- meanBaseRate (SBWeightedEmissionRate from PC-1)
- weightedFuelAdjust (PC-3)

 Output Variables:

- FuelAdjustedMeanBaseRate (zoneID, yearID, polProcessID,
sourceTypeID, modelYearID, fuelTypeID)

Calculation: FuelAdjustedMeanBaseRate
 = meanBaseRate * weightedFuelAdjustment

PC-5: Calculate fuel adjusted emissionQuant

 Input Variables:

- fuelAdjustedMeanBaseRate (PC-4)
- SourceHours (CMIT from TAG)

 Output Variables:

- fuelAdjustedEmissionQuant (linkID, hourDayID, monthID, yearID,
modelYearID, sourceTypeID, fueltypeID)

 Calculation:

- fuelAdjustedEmissionQuant
= fuelAdjustedMeanBaseRate * sourceHours

PC-6: Calculate emissionQuant with temperature adjustment

 Input Variables:

- fuelAdjustedEmissionQuant (PC-5)
- weightedTemperatureAdjustment (PC-2)

Output Variables:

- emissionQuant (MOVES output table fields)

Calculation:

 199

- emissionQuant = fuelAdjustedEmissionQuant *
weightedTemperatureAdjustment

PC-7 Convert to SCC

This step is only performed when the run specification requires output by SCC

Input Variables:
SCCVTypeFraction (from SCCVTypeDistribution table)
SCCRoadTypeFraction(from SCCRoadTypeDistribution table)
SCC from SCC table
emissionQuant from MOVESWorkerOutput table from step 6)
sourceTypeID, modelYearID from SourceTypeModelYear

Output Variable:
emissionQuant (in MOVESWorkerOutput table)

Calculation:
From join of SCCVtypeDistribution, SCC, SourceTypeModelYear, and

SCCRoadTypeDistribution where:
 zoneID = zoneID from master loop context

SourceTypeModelYear.sourceTypeModelYearID =
 SCCVtypeDistribution.sourceTypeModelYearID and
SCC.SCCVtypeID = SCCVtypeDistribution.SCCVtypeID and
SCC.SCCroadTypeID=SCCRoadTypeDistribution.roadTypeID and
MOVESWorkerOutput.sourceTypeID = sourceTypeModelYear.sourceTypeID and

SCC.SCCroadTypeID=SCCRoadTypeDistribution.roadTypeID and
MOVESWorkerOutput.modelYearID = sourceTypeModelYear.modelYearID and
MOVESWorkerOutput.fuelTypeID = SCCVtypeDistribution.fuelTypeID and
MOVESWorkerOutput.roadTypeID = SCCRoadTypeDistribution.roadTypeID

SCC= SCC.SCC
emissionQuant = sum of emissionQuant * SCCVtypeFraction *

SCCRoadTypeFraction over sourceTypeID and roadTypeID

sourceTypeID = null
roadTypeID = null

 linkID = null

 200

10.30. Liquid Leaking (LL) Calculator
10.30.1. General Information

This calculator executes at the MONTH master looping level.

Input Tables

• OpModeDistribution
• SourceHours
• EmissionRateByAge
• SourceBinDistribution
• IMCoverage
• Miscellaneous MOVES Database category and association tables

Output Table: MOVESWorkerOutput (has structure of MOVESOutput Table)

10.29.2. Detailed Calculation Steps

LL – 1 Compute I/M Adjustment Fraction Information
 (same as CREC 1-a except for different value(s) of pollutant-process)

Input Variables:
IMCoverage table

 zoneID, yearID, polProcessID from masterloop context
 AgeCategory table
 RegulatoryClass Table
 FuelType table

Input Variable:

IMAdjustment Table
 Keys: zoneID, yearID, polProcessID, modelYearID, fuelTypeID, regClassID
 Data: IMAdjustFract

Calculation:

 For zoneID, yearID in masterloop context
 For Vapor Venting and Liquid Leaking processes of all pollutants in runspec which

this calculator calculates
 For all ageID in AgeCategory
 For all regClassID in RegulatoryClass except regClassID=0
For FueltypeID = 1 & 5 (right?)

 201

 modelYearID = yearID – ageID
 IMAdjustFract.IMAdjustFract = IMCoverage.IMAdjustFract if record exists
 With begModelYearID <= modelYearID <= endModelYearID
 = 0.0 otherwise

LL-2: Calculate I/M-Adjusted MeanBaseRates

Input Variables:

- EmissionRateByAge table
- SourceBinDistribution table
- SourceBinTable
- IMAdjustment table (from step LL-1)
- AgeCategory
- PollutantProcessModelYear

Output Variables:

An intermediate WeightedMeanBaseRate table
o Keys: yearID, polProcessID, sourceTypeID, fuelTypeID,

zoneID, monthID, hourDayID, modelYearID, opModeID
o Data: weightedMeanBaseRate

Calculation:

modelYearID = yearID – ageID
fuelTypeID = 1 (gasoline) or 5 (E85)

weightedMeanBaseRate = (meanBaseRateIM * sourceBinActivityFraction
* IMAdjustFract) + (meanBaseRate * sourceBinActivityFraction * (1-
IMAdjustFract))

summed over portions of sourceBinID not needed in the output, namely
regClassID and engTechID.

LL-3: Calculate MOVESWorkerOutput by Source Type and FuelType

Input Variables:
 - WeightedMeanBaseRate table from previous step

- SourceHours table
- OpModeDistribution table
- HourDay table
- County table
- Zone table
- PollutantProcessAssoc table
- Link table

Output Variables:

 202

 - MOVESWorkerOutput table, which has structure of MOVESOutput

Calculation:
 emissionQuant

= weightedMeanBaseRate * sourceHours * opModeFraction
 hourID = hourDay.hourID
 dayID = hourDay.dayID
 stateID = county.stateID
 countyID = zone.countyID
 pollutantID = PollutantProcessAssoc.pollutantID
 processID = PollutantProcessAssoc.processID
 roadTypeID = Link.roadTypeID
 SCC = null

LL- 4 Conditionally Convert SourceType Output to SCC

This step is performed only when output by SCC is requested by the run specification
and, if performed, is the same as that performed in several other EmissionCalculators,
e.g. CREC step 10.

 203

10.31. HC Speciation Calculator (HCSC) Calculator
10.31.1. General Information

This calculator gives the model the ability to calculate NMHC (Non-Methane

Hydrocarbons, pollutant 79), NMOG (Non-Methane Organic Gases, pollutant 80), TOG

(Total Organic Gases, pollutant 86), and VOC (Volatile Organic Compounds, pollutant

87). The basic design of the calculator is to compute the results as linear functions of

chained pollutants and fuel-formulation-specific constants. The input pollutants vary

according to the output and the type of fuel. Also, being dependent upon fuel

formulations not just fuel types, market shares are factored into the results.

10.30.2. Detailed Calculation Steps
The HCSpeciation table provides formula parameters, with most formulas being of the

form:

outputQuant = sum of (inputQuant * fuel formulation market share * (speciationConstant

+ oxySpeciation*volToWtPercentOxy* sum of oxygenates in the fuel formulation))

across all fuel formulations in a county

There is an added condition on the above: if a fuel has no oxygenates, it has no HC

speciation output. This is not a mere algebraic outcome of the above equation which

would still yield a non-zero number given the speciationConstant term even with zero

oxygenates. All HC speciation equations that require oxygenates are subject to this

conditional logic.

All HC speciation calculations have common table connectivity, differing only in their

formula for calculating new emission quantities and criteria for input pollutants and fuels.

To perform HC speciation, connect the following tables and columns:

• MOVESWorkerOutput.fuelTypeID with FuelSupply.fuelTypeID

• MOVESWorkerOutput.countyID with FuelSupply.countyID

• MOVESWorkerOutput.yearID with FuelSupply.yearID

 204

• MOVESWorkerOutput.monthID with FuelSupply.monthID

• MOVESWorkerOutput.modelYearID with

PollutantProcessModelYear.modelYearID

• MOVESWorkerOutput.processID with PollutantProcessAssoc.processID

• FuelSupply.fuelFormulationID with FuelFormulation.fuelFormulationID and with

HCSpeciation.fuelFormulationID

• HCSpeciation.fuelMYGroupID with

PollutantProcessModelYear.fuelMYGroupID

• HCSpeciation.polProcessID with PollutantProcessModelYear.polProcessID and

PollutantProcessAssoc.polProcessID

The output of the calculations has the same dimensional values as each input

MOVESWorkerOutput table row except that the output pollutantID should be taken from

PollutantProcessAssoc.pollutantID. All outputs are summed across the contributing fuel

formulations and weighted according to market share.

For non-E85, non-E70 fuels:

NMHC = (THC – Methane) * marketShare
Thus, for an input record of THC, an equal amount of NMHC should be generated. For
Methane input, the output is NMHC = –Methane. Worker-side and master-side
aggregation logic will sum the values completing the formula.

For E85 or E70 fuels:

NMHC=THC * (speciationConstant + oxySpeciation * volToWtPercentOxy *
ETOHVolume) * marketShare

For non-E85, non-E70 fuels:

NMOG = NMHC * (speciationConstant + oxySpeciation * volToWtPercentOxy *
(MTBEVolume + ETBEVolume + TAMEVolume + ETOHVolume)) *
marketShare

For E85 or E70 fuels:

NMOG=THC * (speciationConstant + oxySpeciation * volToWtPercentOxy *
ETOHVolume) * marketShare

For non-E85, non-E70 fuels:

VOC = NMHC * (speciationConstant + oxySpeciation * volToWtPercentOxy *
(MTBEVolume + ETBEVolume + TAMEVolume + ETOHVolume)) *
marketShare

 205

For E85 or E70 fuels:

VOC=THC * (speciationConstant + oxySpeciation * volToWtPercentOxy *
ETOHVolume) * marketShare

For non-E85, non-E70 fuels:

TOG = (NMOG + Methane) * marketShare
Thus, for an input record of NMOG, an equal amount of TOG should be generated. For
Methane input, an equal amount of TOG should be generated. Worker-side and master-
side aggregation logic will sum the values completing the formula.

For E85 or E70 fuels:

TOG=THC * (speciationConstant + oxySpeciation * volToWtPercentOxy *
ETOHVolume) * marketShare

10.32. Tank Vapor Venting (TVV) Calculator
10.32.1. General Information

This calculator executes at the MONTH master looping level.

Input Tables

• TankVaporGenCoeffs
o Keys: ethanolLevelID (0 or 10), altitude (“H” or “L”)
o Data: tvgTermA, tvgTermB, tvgTermC

• CumTVVCoeffs (Analogous to EmissionRateByAge, knowing that there is only
one opModeID and that the particular sourceBinID components needed are
regClassID and modelYearGroupID)

o Keys: polProcessID, regClassID, modelYearGroupID, ageGroupID
o Data: tvvTermA, tvvTermB,tvvTermC

tvvTermACV,tvvTermBCV, tvvTermCCV
tvvTermAIM,tvvTermBIM,tvvTermCIM
tvvTermAIMCV,tvvTermBIMCV,tvvTermCIMCV

• ResidualVaporRatio (a hard-coded Java array rather than an actual table)
o Key: “hours past hour of max cold soak tank temperature”
o Data: residualVaporRatio

• AverageTankGasoline (Produced by Tank Fuel Generator)
o Keys: zoneID, fuelYearID, monthGroupID, fuelTypeID
o Data: ETOHVolume, RVP

• ColdSoakTankTemperature (from TTG-1)
o Keys: zoneID, monthID, hourID
o Data: coldSoakTankTemperature

• ColdSoakInitialHourFraction (from TTG-7)
o Keys: sourceTypeID, zoneID, monthID, hourDayID, initialhourDayID
o Data: coldSoakInitialHourFraction

 206

• OpModeDistribution
• SourceHours
• EmissionRateByAge
• SourceBinDistribution
• IMCoverage
• Miscellaneous MOVES Database category and association tables

Output Table: MOVESWorkerOutput (has structure of MOVESOutput Table)

Calculation Overview:

The complete calculation at Macroscale requires up to ten steps. Steps 2 thru 7 apply
only to the cold soaking operating mode and are not required for Mesoscale Lookup
calculations.

TVV-1 is a preliminary step. It calculates the I/M adjustment factors which are used later
in the calculation.

TVV-2 is also a preliminary step. It calculates the hour of the day when the peak cold
soak tank temperature value occurs.

TVV-3 calculates the amount of tank vapor generated, which depends upon gasoline and
E85 ethanol contents.

TVV-4 calculates an ethanol-weighted values of the tank vapors generated from the
values in step 3.

TVV-5 calculates the tank vapor vented using the values in step 4. The values calculated
here are cumulative for the day and are distinguished by the hour that the cold soaking
began, as well as the hour of the day when they occur.

TVV-6 calculates the total cumulative tank vapor vented for each hour of the day from
the values in step 5, so that they are no longer distinguished by the hour of the day when
the cold soaking began.

TVV-7 calculates hourly (not cumulative) tank vapor vented.

TVV-8 Involves all three operating modes and applies the I/M adjustment factors
calculated in preliminary step 1.

TVV-9 multiplies by activity and applies the operating mode distribution.

TVV-10 converts results to SCC if required.

 207

10.32.2. Detailed Calculation Steps
Note: Steps TVV-2 through TVV-7 need not be performed for mesoscale lookup
runs.

TVV – 1 Compute I/M Adjustment Fraction Information
 (same as CREC 1-a except for different value(s) of pollutant-process)

Input Variables:
IMCoverage table

 zoneID, yearID, polProcessID from masterloop context
 AgeCategory table
 RegulatoryClass Table
 FuelType table

Output Variable:

IMAdjustment Table
 Keys: zoneID, yearID, polProcessID, modelYearID, fuelTypeID, regClassID
 Data: IMAdjustFract

Calculation:
 For zoneID, yearID in masterloop context
 For Vapor Venting and Liquid Leaking processes of all pollutants in runspec

which this calculator calculates
 For all ageID in AgeCategory
 For all regClassID in RegulatoryClass except regClassID=0

 modelYearID = yearID – ageID
 IMAdjustFract.IMAdjustFract = IMCoverage.IMAdjustFract if record exists
 With begModelYearID <= modelYearID <= endModelYearID
 = 0.0 otherwise

TVV – 2 Determine Hour of Peak Cold Soak Tank Temperature

 Input Variable:
 ColdSoakTankTemperature table

 Output Variables:
 intermediate PeakHourOfColdSoak table
 Keys: zoneID, monthID
 Data: peakHourID

 Calculation:

 208

peakHourID is the first (smallest) hourID having the highest
coldSoakTankTemperature for the zoneID and monthID

TVV – 3 Calculate TankVaporGenerated (TVG) by Ethanol Level

Input Variables:
- ColdSoakInitialHourFraction table
- PeakHourOfColdSoak table from previous step
- ColdSoakTankTemperature table
- TankVaporGenerationCoeffs table
- AverageTankGasoline table
- HourDay table
- County table

Output Variables:

An intermediate TankVaporGenerated table
Keys: hourDayID, initialhourDayID, ethanolLevelID, monthID, zoneID,

sourceTypeID, fuelYearID, fueltypeID
Data: tankVaporGenerated

Calculation:

Calculation is limited to:

 monthID, zoneID, sourceTypeIDs and fueltypeids in the masterloopcontext and the run
specification
 combinations of hourDayID and initialhourDayID present in
 ColdSoakInitialHourFraction for which initialhourDayID <> hourDayID
 hourDayID values having an hourID value <= PeakHourOfColdSoak.peakHourID

tankVaporGenerated = 0.0 if t1>=t2
 otherwise
tankVaporGenerated = (a eb (RVP) (ect2 – ect1)) * k

 Where:

t2 = ColdSoakTankTemperature of hourID associated with hourDayID
t1 = ColdSoakTankTemperature of hourID associated with initialhourDayID
k = 50% fill adjustment constant to be determined
a, b, and c are terms from TankVaporGenCoeffs table
RVP is from AverageTankGasoline table by fuelTypeID

The altitude of the County to which the zoneID belongs should be used
when selecting the a,b, and c coefficients from the TankVaporGenCoeffs
table.

TVV-4 Calculate ethanol-weighted TVG

Input Variables:

 209

- TankVaporGenerated table from previous step
- EtOH Volume value from AverageTankGasoline table

Output Variables:
- An intermediate EthanolWeightedTVG table

o Key fields: hourDayID, initialhourDayID, monthID, zoneID,
sourceTypeID, fuelYearID, fueltypeID

o Data: ethanolWeightedTVG
Calculation:

ethanolWeightedTVG
= tankVaporGeneratedE10 (ETOHVolume / 10) +
tankVaporGeneratedE0 (1 – (ETOHVolume/ 10))

TVV-5: Calculate Cumulative Tank Vapor Vented (TVV)

Input Variables:
- EthanolWeightedTVG table from previous step
- CumTVVCoeffs table
- PollutantProcessModelYear
- AgeCategory

Output Variables:

An intermediate CumulativeTVV table:

Key fields: regClassID, ageID, polProcessID, hourDayID,
initialhourDayID, monthID, zoneID, sourceTypeID, fuelTypeID

Data fields: tankVaporVented, tankVaporVentedIM

Calculation:

For all ageID:

tankVaporVented = tvvTermA + tvvTermB*ethanolWeightedTVG +
tvvTermC*ethanolWeightedTVG2

tankVaporVentedIM = tvvTermAIM + tvvTermBIM*ethanolWeightedTVG +
tvvTermCIM*ethanolWeightedTVG2

 The structure of the output table specified here implies that fuelYearID,
ageGroupID, and modelYearGroupID be converted to the common basis of individual
ageID to facilitate proper table joining and minimize the size of the resulting table (which
nevertheless may be performance-constraining). The PollutantProcessModelYear, and

 210

AgeCategory tables can be used to accomplish this, along with the relationship ageID =
yearID – modelYearID.

TVV-6: Calculate Weighted CumulativeTVV Across Initial/Current pair

Input Variables:

- CumulativeTVV Table from previous step
- ColdSoakInitialHourFraction table

Output Variables:
- An intermediate WeightedCumulativeTVV Table

Key fields: regClassID, ageID, polProcessID, hourDayID, monthID,
zoneID, sourceTypeID, fuelTypeID

Data fields: weightedTVV, weightedTVVIM

Calculation:
 For each combination of regClassID, ageID, polProcessID, hourDayID,

monthID, zoneID, and sourceTypeID, fuelTypeID

weightedTVV = [tankVaporVented * coldSoakInitialHourFraction]
summed over all initialHourIDs

weightedTVVIM = [tankVaporVentedIM * coldSoakInitialHourFraction]
summed over all initialHourIDs

TVV-7: Calculate HourlyTVV Emissions by RegulatoryClass and Vehicle Age

Input Variables:
- WeightedCumulativeTVV Table (from previous step)

o LEFT JOINED to itself associating each hourID with otherwise
same record for hourID-1, if present.

- ResidualVaporRatio array; Values are:
o 0.02 for 1 hour past max cold soak temperature
o 0.01 for 2 hours past max cold soak temperature
o 0.004 for 3 hours past max cold soak temperature
o 0.0005 for 4 hours past max cold soak temperature
o 0.0 for 5 or more hours past max cold soak temperature

- PeakHourOfColdSoak table from step TVV-2
- HourOfAnyDay

Output Variable:

 an intermediate HourlyTVV table

 211

o key fields: regClassID, ageID, polProcessID, hourDayID,
monthID, zoneID, sourceTypeID, fuelTypeID

o data fields: hourlyTVV, hourlyTVVIM

Calculation:
For records in WeightedCumulativeTVVTable (which have hourIDs prior or
equal to the hour of the peak cold soak tank temperature because of the limited
domain of the calculation in step 3)

hourlyTVV = weightedTVV for the current hourID – weightedTVV for
the previous hourID, (if no record is present for the previous hourID then
the weighted TVV for the previous hourID is 0.0)

hourlyTVVIM = weightedTVVIM for the current hourID –
weightedTVVIM for the previous hourID, (if no record is present for the
previous hourID then the weighted TVVIM for the previous hourID is 0.0)

For all hourDayIDs in HourDay which have hourDayIDs greater than
PeakHourOfColdSoak.peakHourID:

hourlyTVV for each such hourID = weightedTVV for peakHourID * the
residualVaporRatio for the number of hours the hourID is past the
peakHourID (hourID-peakHourID).

hourlyTVVIM for each such hourID = weightedTVVIM for peakHourID
* the residualVaporRatio for the number of hours the hourID is past the
peakHourID (hourID-peakHourID).

TVV-8: Calculate I/M-Adjusted MeanBaseRates

Previous steps have been done only for the cold soaking operating mode. This step
begins calculating for the other two operating modes,”operating” and “hot soaking”, for
which only the basic core model calculations are needed, applies the source bin
distributions, and accounts for the effect of IM.

Input Variables:

:
- HourlyTVV table (from previous step), used for cold soak
- EmissionRateByAge table, used for hot soak and operating
- SourceBinDistribution table
- SourceBinTable
- IMAdjustment table (from step TVV-1)
- AgeCategory
- PollutantProcessModelYear

Output Variables:

 212

:
An intermediate WeightedMeanBaseRate table

o Keys: yearID, polProcessID, sourceTypeID, fuelTypeID,
zoneID, monthID, hourDayID, modelYearID, opModeID

o Data: weightedMeanBaseRate
Calculation:

modelYearID = yearID – ageID
fuelTypeID = 1 (gasoline) or 5 (E85)

For cold soak mode (opModeID=151):

weightedMeanBaseRate = (hourlyTVVIM * sourceBinActivityFraction *
IMAdjustFract) + (hourlyTVV * sourceBinActivityFraction * (1-
IMAdjustFract))

summed over portions of sourceBinID not needed in the output, namely
regClassID and engTechID

For operating and hot soaking modes (opModeIDs 300 and 150):

weightedMeanBaseRate = (meanBaseRateIM * sourceBinActivityFraction
* IMAdjustFract) + (meanBaseRate * sourceBinActivityFraction * (1-
IMAdjustFract))

summed over portions of sourceBinID not needed in the output, namely
regClassID and engTechID.

TVV-9: Calculate MOVESWorkerOutput by Source Type

Input Variables:
 - WeightedMeanBaseRate table from previous step

- SourceHours table
- OpModeDistribution table
- HourDay table
- County table
- Zone table
- PollutantProcessAssoc table
- Link table

Output Variables:
 - MOVESWorkerOutput table, which has structure of MOVESOutput

Calculation:

 emissionQuant

 213

= weightedMeanBaseRate * sourceHours * opModeFraction
 hourID = hourDay.hourID
 dayID = hourDay.dayID
 stateID = county.stateID
 countyID = zone.countyID
 pollutantID = PollutantProcessAssoc.pollutantID
 processID = PollutantProcessAssoc.processID
 roadTypeID = Link.roadTypeID
 SCC = null

TVV-10 Conditionally Convert SourceType Output to SCC

This step is performed only when output by SCC is requested by the run specification
and, if performed, is the same as that performed in several other EmissionCalculators,
e.g. CREC step 10.

 214

10.33. Result Data Aggregation and Engineering Units Conversion
This function aggregates the results produced by MOVES EmissionCalculators to

the level of detail called for in the run specification and converts these results to the

engineering units it specifies. Aggregation is performed to the extent possible by the

MOVES Worker program and completed by the MOVES Master program. Conversion

to engineering units is the final operation performed and is done by the MOVES Master

program.

10.33.1. How Aggregation Levels are Specified
The level of aggregation is specified on the MOVES GUI Output EmissionsDetail

Screen. These specifications are made in terms of what distinctions are desired in the

output. Output rows are always distinguished by time periods. The level of this

distinction may be hour, single day, period of week, month or year. (Choices may be

more limited, however, if time period “preaggregation” of the database was performed.)

Output rows are always distinguished by location. The level of this distinction may be

Nation, State, County, Roadtype or Link. (Choices may be more limited, however, if

geographic “preaggregation” of the database was performed. Link is not available at

Macroscale and is required for Mesoscale Lookup calculations.) Output is always

distinguished by pollutant.

When reporting for entire months or years, DRAFT MOVES2009 scales the

results up by the number of weeks in each month, i.e. by the number of days in the month

divided by seven. The reader may wish to refer to section 9.2 of this document where

MOVES time periods are discussed.

Output may be distinguished by SourceUseType (the recommended option),

Source Code Category (SCC) or neither. (But not both since the two highway vehicle

classification schemes are exclusive.)

Output may optionally be distinguished by:

Model Year

Fuel Type

 215

Emission Process

Roadtype

In general, any combination of these distinctions may be specified. Output by

SCC implies that roadtype and fueltype will be distinguished and the MOVES GUI

enforces this. If “Roadtype” is selected as the Location level then “Roadtype” is

automatically distinguished in the output (but the reverse is not necessarily true).

10.33.2.Aggregation Algorithm - Logical Level Specification
The raw output of MOVES is distinguished by year, month, day, hour, state,

county, zone, link, road type, pollutant, process, source use type, fuel type, model year,

and SCC. Taken together these fields may be considered an alternate key for the

MOVESOutput table, except that, once aggregations are performed, they may assume the

null value.

At macroscale, zones are redundant with counties, so whenever a countyID is

present, its corresponding zoneID is also present, and when counties are aggregated out,

then so are zones. Also at macroscale, links represent a combination of a county and a

roadtype, so when county and roadtype are both known, so is link. Otherwise linkID is

null whenever either county or roadtype is null.

The following aggregations may be carried out as implied by the RunSpec.

Unless stated otherwise, any combination of these aggregations may be called for. This

description is at a logical level; physical implementation differs. For example

aggregation to the state level is not actually performed by aggregating roadtypes to

counties and then aggregating counties to states.

a. Output may be aggregated to be by source type only, by SCC only or neither. The

GUI does not allow output to be requested by both SCC and source type.

b. Hours are combined if the output time period is 24-hour day, portion of week, month

or year. A warning message is generated if this aggregation is performed and all

hours are not selected in the RunSpec.

c. Days are converted to months if the output time period is month or year. The number

of days in each month is obtained from the MonthOfAnyYear table, adding 1 day to

February for leap years. 1/7 of these days are considered to be Mondays, 1/7

 216

Tuesdays, etc. without regard to calendar year . A warning is generated if this

aggregation is performed and all days are not selected in the RunSpec. The user may

choose to proceed but should be aware in this case that results produced for the

“month” or “year” will only include emission results for the kinds of days contained

in the run specification.

d. Months are totaled to years if the output time period is year. A warning is generated

if this aggregation is performed and all months are not selected. The user may choose

to proceed but should be aware in this case that results produced for the “year” will

not represent a 12 month period and will only include emissions for the months

contained in the run specification.

e. Road types are combined into county totals whenever “roadtype” has not been

selected in the Output Emissions detail screen. Note that selection of the SCC level

of detail forces road type to be selected and this aggregation not to be performed, as

does selection of the roadtype level of geographic output detail. A warning message

is generated if this aggregation is performed and all road types are not included in the

runspec.

f. State totals are combined into a single national (or total user modeling domain) result

if the national level of geographic detail is selected. This aggregation is performed

even if the road type level of detail has been selected on the “Output Emission Detail”

panel. It is the user’s responsibility to insure that all desired states are included in

domain totals.

g. Fuel types are combined within source use types if this level of detail is not selected

in the Output Emission Detail panel. It is the user’s responsibility to insure that all

desired fuel types are included.

h. Emission processes are combined if this level of detail is not selected in the Output

Emission Detail panel. It is the user’s responsibility to insure that all desired

processes are included.

 217

10.33.3. Engineering Unit Conversion
Engineering units are indicated in the run specification for mass, energy, time and

distance. In the MOVES GUI these are specified on the “Outputs” panel within the

“General Output Screen”. Supported are:

time units (seconds, hours, days, weeks, months and years)

mass units (kilograms, grams, pounds, and U.S. tons)

energy units (Joules, kiloJoules, and million BTU)

distance units (miles and kilometers)

The engineering units used are reported in the MOVESRun table.

Distance units are only required if the run specification calls for travel distance to

be reported.

MOVES always reports mass pollutant emission results in terms of mass per time

unit and always reports energy consumptions results in terms of energy per time unit. If

the time unit equals the output time period specified on the “Output Emissions Detail”

screen, then the quantities reported amount to an inventory for that time period.

 218

10.34. Post-Processor for Mesoscale Lookup
An “integrated post-processor” runs automatically when Mesoscale Lookup is selected,

after aggregation to the reporting level and conversion to engineering units have been

completed. This post-processor uses the regular MOVES output tables to produce an

additional “MOVESLookupOutput” database table with the following fields:

a. MOVESLookupOutputRowID

b. MOVESRunID

c. iterationID

d. yearID

e. monthID (May be aggregated out)

f. dayID (May be aggregated out)

g. hourID (May be aggregated out)

h. stateID

i. countyID

j. zoneID

k. sourceTypeID (May be aggregated out)

l. fuelTypeID (May be aggregated out)

m. modelYearID (May be aggregated out)

n. roadTypeID

o. pollutantID

p. processID (May be aggregated out)

q. averageSpeedBinID (as determined through joins with the LinkAverageSpeed

Table)

r. temperature (as determined through joins with the ZoneMonthHour table)

s. humidity (as determined through joins with the ZoneMonthHour table)

t. emissionRate (MOVESMesoscaleOutput.emissionQuant divided by

MOVESMesoscalActivityOutput.activity (for all activityTypeID=1 records).

“Zero” miles for any link leads to divide-by-zero errors. In such cases there

are no emissions reported.

 219

10.35. Post-Processing Script Execution
The “Post Processing” menu in the MOVES GUI includes a selection to “Run

MySQL Script on Output Database”. When this item is selected MOVES searches the

“OutputProcessingScripts”subdirectory in its “...database” directory, and presents a list of

file names found there which have a file name extension of “.sql”. Users may wish to

add scripts to those distributed with the model.

When one of these files is selected, MOVES displays to the user any leading

block of comment lines it may contain in a popup window. If the user wants to proceed,

MOVES executes the file as a MySQL script on the MOVES output database specified

by the currently active run specification (or gives an appropriate error message if no

output database is specified). Scripts in the OutputProcessingScripts folder should

operate only on the currently active MySQL database, should not include the MySQL

USE command, should use as input only the tables contained in the MOVES Output

database schema, (along possibly with MOVESDefault) and should store any files and

tables they produce in this same database. The MOVES program, however, does not

enforce these conventions.

Scripts distributed with the model are:

Script Function

DecodeMovesOutput.sql Decodes (i.e. adds textual descriptions of) most of the

key fields in MOVESOutput and MOVESActivityOutput

tables. The SummaryReporter, described in the next

section, does this in a more general fashion and so this is

now best viewed as an example of how these scripts can

be written.

TabbedOutput.sql Produces tab-delimitted output file versions of the

MOVESRun, MOVESActivityOutput, and

 220

MOVESOutput tables. These are suitable for importing

into EXCEL or other software. The same thing can no be

accomplished by using the SummaryReporter, described

in the next section.

 221

10.36. Summary Reporter
Background:

The output directly available from the MOVES core model is in the form of a MySQL

database as documented in Chapter 12. The Summary Reporter provides a “post-

processing” function which makes it easy to produce various reports summarizing this

information. Several of the organizations which commented formally on DRAFT

MOVES2009 indicated that a more convenient reporting capability was needed.

Functional Specification:

Inspired by the NONROAD Model’s reporting utility, the Summary Reporter produces

reports consisting of:

 1. Header information such as:

 Report Title

 Date and time the report produced.

 MOVES Output Database Name

 MOVES Output Run Number

 MOVES Output Run Date and Time

 RunSpec used

 Date and time of the runspec file used.

 “Description” field from the Runspec used

 Engineering units used for Mass, Energy, Time, and Distance

 Emission Process (either a particular emission process or “all”)

 2. A tabular report body where the data columns correspond to pollutants and

activity basis results (currently “distance”) and the rows correspond to an ordered set of

MOVES output classifications selected from the following options:

 Year

 Month

 222

 Day

 Hour

 State

 County

 Zone

 Source Type (mutually exclusive with SCC)

 SCC (mutually exclusive with Source Type)

 Fuel Type

 Model Year

 Road Type (not allowed if SCC selected)

 MOVESRunID

 Assuming the report is printed in landscape, there is sufficient space to report four

or five pollutants and activities, e.g. HC, CO, NOx and distance, classified by three

categories. Classification values are reported in their integer form. Specification of more

columns than will fit on a single page is allowed. The supporting GUI includes an option

to estimate how wide the report will be. Wide reports are fine as a table or .csv file, but

wrap when displayed on the screen or printed. The fixed-column style report tables

produced by this utility could be further processed with a reporting utility to deal more

gracefully with wide reports, but MOVES does not currently provide this feature.

 3. The current version of Summary Reporter reports numeric category codes in

the table constituting the report body, and includes an appended lookup table which can

be used to decode them.

The Summary Reporter includes a simple Graphical User Interface which works roughly

as follows:

1. The user loads the run specification which produced the output. This serves to point

to the output database and helps the GUI insure that the specified report is consistent with

the run.

 223

2. The user selects from a popup list the run, or set of runs to be reported. Only the most

recent runs are available.

3. The Summary Reporter, based on the run specification and the output run data,

constructs a dialog window (JDialog) to get user selections for:

 a. The report title. This defaults to “Summary Report”.

 b. A base name for the report files. This defaults to “SummaryReport”. (Report

header, body, and decoding tables are produced in separate files, plus several

forms of output (table, .prn, and tab-separated .txt) can be produced) .

 c. The emission process to be reported or “all”.

 d. A list of pollutants and activity bases (currently “distance”) from which the

user selects the report data columns desired.

 e. Selections from the list of output classifications listed above. Only options

consistent with the run specification are offered.

 f. The forms of output desired.

4. Several forms of output may be selected:

a. MySQL table output is always produced.

b. Option for screen display (Screen reports can be printed after being displayed

on the screen; they are then closed.)

c. Option for tab-separated text form.

Report output is produced in the directory containing the output database.

Additional Information:

 224

The Summary Reporter is covered from a GUI perspective in the DRAFT MOVES2009

User Guide.

 225

10.37. GREET Model Interface

The GREET Model Interface is not operational in the version of DRAFT

MOVES2009. We are working with the authors of GREET to restore this function in

future versions of MOVES. This section describes how the interace functions in DRAFT

MOVES2009.

MOVES is designed to interface with GREET, as detailed in the following

section. Further detail on the GREET interface itself is contained in a separate document

entitled “User Manual and Technical Issues of GREET for MOVES Integration”,

prepared by Argonne National Laboratory.

10.37.1 DRAFT MOVES2009 GREET Interface Functionality:
1. If requested in the RunSpec, DRAFT MOVES2009 calculates well-to-pump

inventories for total energy consumption, petroleum-based energy consumption, fossil

fuel-based energy consumption, N2O, and CH4, using the emission factors in the

GREETWellToPump table.

2. DRAFT MOVES2009 offers a “preprocessing” menu option to “Update Well-To-

Pump” factors. When this menu option is selected DRAFT MOVES2009 produces,

in XML format, a table of information needed by GREET. This contains a list of

calendar years, and a list of MOVES fuel sub-types implied by the RunSpec.

3. DRAFT MOVES2009 then executes the GREET GUI described below.

4. When control is returned, DRAFT MOVES2009 receives a tab-separated variable,

well-to-pump emission factor result table from the GREET GUI and incorporates

these factors into the GREETWellToPump table in a database suitable for use as in

input database by subsequent DRAFT MOVES2009 model runs.

5. DRAFT MOVES2009 interacts with the GREET GUI, which in turn invokes the

GREET spreadsheet model. DRAFT MOVES2009 does not interact directly with the

GREET spreadsheet model, only with the GREET GUI.

10.37.2. GREET and GREET GUI Functionality
The design of the interface between DRAFT MOVES2009 and GREET is based upon the

following functional characteristics of GREET.

 226

1. GREET estimates Well-to-Pump and Vehicle Manufacture/Disposal emissions of

Total Energy Consumption, Petroleum-based Energy Consumption, Fossil Fuel-based

Energy Consumption, N2O, and CH4 appropriate to calendar years 1990 thru 2050.

(Internally to GREET, estimates are actually produced by interpolating between

estimates applicable to five year periods and estimates beyond 2020 are based on

many of the same parameter values as those for 2020.)

2. When the two models are used together, the United States (or the user modeling

domain) is modeled as a single geographic region.

3. Where GREET has multiple Pathway Options for a fuel, it is generally possible for

the user to supply input parameters for each pathway (with associated percentages

which sum to unity), and these Pathway Options and percentages may vary by

calendar year.

4. Only GREET parameters accessible from a version of the GREET GUI may be

altered. To alter more deeply embedded GREET parameters the user would have to

manually modify the underlying GREET spreadsheet before running MOVES.

5. GREET estimates well-to-pump emissions relative to consumption of the following

fuels (in DRAFT MOVES2009 these are referred to as fuel subtypes):

Conventional Gasoline

Reformulated Gasoline

Gasohol (E10)

Conventional Highway Diesel Fuel

(GREET has the logic built in to use its high sulfur version of this fuel prior to 2006,
its low sulfur version after 2006 and a blend for 2006).

Biodiesel

FT Diesel

CNG

LPG

Ethanol

Methanol

Gaseous H2

Liquid H2

 227

Electricity

6. The GREET GUI, while not itself written in Java, can be run from a Java program, i.e.

DRAFT MOVES2009. It accepts command line parameters which specify:

- an XML input file name

- an output file name (for well-to-pump factors and vehicle manufacture/disposal
factors)

- an error file name (used to return any GREET error messages to MOVES).

7. Execution of the GREET GUI normally results in execution of the version of the

GREET spreadsheet, but may return to MOVES without executing it if the user

desires. Upon return to DRAFT MOVES2009, status information is available as to

whether the GREET spreadsheet was run or not and whether execution was

successful or an error occurred. Error messages are returned to MOVES in a separate

file.

8. The GREET GUI accepts an XML-formatted list of DRAFT MOVES2009 Calendar

YearIDs, determines what five-year GREET periods are needed to estimate emissions

for all years listed, and executes the GREET spreadsheet for each such period, and

interpolates between these results as needed to produce results for the calendar years

listed. GREET also accepts an XML-formatted list of fuel types (MOVES

fuelSubtypes). GREET results are limited to these fuels.

9. The GREET GUI consolidates the results of these GREET spreadsheet runs into a

single tab-delimited table of well-to-pump emission factors and (eventually) a single

tab-delimited table of vehicle manufacture/disposal emission factors for use by

DRAFT MOVES2009. The table of well-to-pump emission factors is described in

the next section.

10.37.3. GREET Well-to-Pump Emission Factor Result Table:
This table is a tab-separated variable ASCII text file and contains the following

fields:

a. pollutantID (an Integer from the set of values used in DRAFT MOVES2009)

b. fuelSubtypeID (an Integer from the set of values used in DRAFT

MOVES2009)

 228

c. yearID (an Integer identifying the calendar year to which the factor applies)

d. emission rate (a floating point number, expressed in the appropriate units)

Fields a, b, and c, together form the primary key of this table. Field d is its only

non-key field. The fields pollutantID, fuelSubtypeID and yearID are as defined in the

MOVESDefault database schema.

 229

10.38 Future Emission Rate Creator (FERC)
 The Future Emission Rate Creator (FERC) allows MOVES users to alter the

energy and emission rates for advanced technology vehicles for model years 2001 and

later, and for all energy and emission rates (conventional and advanced technology) for

2011 and later. The FERC works with user-supplied ratios which express the relative

benefit of advanced technologies versus conventional technology, by operating mode, to

generate advanced technology rates. The FERC is an “external control strategy”,

meaning it requires work outside of MOVES with MySQL databases and is executed

from the “Pre-Processing” menu of the MOVES GUI, rather than being executed as part

of the model run itself.

Input data: The FERC requires two input tables, one to create “short term” future rates

and another to create “long term” future rates. These are stored in ASCII text, comma

separated variable (CSV) format. To generate an alternative set of future emission rates

the user must alter these tables directly (outside of MOVES) before running the FERC.

The user names these tables as desired and selects them from the MOVES GUI. One set

of example input tables is supplied with the demonstration version of DRAFT

MOVES2009 .

The two tables contain identical fields, except that the opModeID field is present only in

the “short term” table. The first record in each file contains column names to facilitate

human readability and is ignored by the calculations. The FERC input table fields are

shown in Table 10-9.

Table 10-9: FERC Input Table Fields

Field Description
polProcessID Pollutant / Process ID

501 = CH4 running
502 = CH4 start
601 = N2O running
602 = N2O start
9101 = total energy running
9102 = total energy start
9190 = total energy start

opModeID (present in short Operating Mode ID

 230

term table only) 0-36 = running VSP/speed modes (total energy only)
200 = start mode
300 = running mode (CH4 and N2O)

targetFuelTypeID Type of fuel:
1 = Gasoline
2 = Diesel
3 = CNG
4 = LPG
5 = E85
6 = M85
7 = Gaseous Hydrogen
8 = Liquid Hydrogen
9 = Electricity

targetEngTechID Engine Technology ID
1 = Conventional Internal Combustion (CIC)
2 = Advanced Internal Combustion (AIC)
11 = Moderate Hybrid CIC
12 = Full Hybrid CIC
20 = Hybrid AIC (used only for Hydrogen IC hybrid)
21 = Moderate Hybrid AIC
22 = Full Hybrid AIC
30 = Electric
40 = Fuel Cell
50 = Hybrid Fuel Cell

targetModelYearGroupID Model Year Group ID
20012010 = 2001 thru 2010
20112020 = 2011 thru 2020
20212050 = 2021 thru 2050

fuelTypeID Base fuel type ID (same as targetFuelTypeID)

engTechID Base engine technology ID (same as targetEngTech ID)
modelYearGroupID Base model year group ID (same as targetModelYearGroupID)
fuelEngAdjust Fuel / Engine Adjustment, i.e. the relative benefit of the target fuel /

engine technology versus the base fuel/engine technology. A value of
1 = no benefit, a value of 0.5 = 50% improvement

dataSourceID 5001 thru 5004 = FERC short term 6000 = FERC long term

These fields fall into three functional groups:

1. fields describing the emission rates produced by the adjustment

a. polProcessID

b. opModeID

c. targetFuelTypeID

d. targetEngTechID

e. targetModelYearGroupID

f. dataSourceID

 231

2. fields describing the base technology emission rates to which the adjustment

is applied

a. polProcessID

b. opModeID

c. fuelTypeID

d. engTechID

e. modelYearGroupID

3. the adjustment itself

a. fuelEngAdjust

Of these fields, the user would generally only need to alter values of fuelEngAdjust,

which are the ratios which define the benefit of the target technology relative to the base

technology. Note that the values of polProcessID and opModeID contained in the base

records are carried into the future emission rates produced, as are the values of

regClassID, engSizeID and weightClassID implicit in the base record sourceBinIDs.

The short term table contains the information necessary to produce alternative

fuel and advanced vehicle technology rates for model years 2001 through 2010 (which

are treated as one model year group). The long term table contains the information

necessary to produce conventional and advanced vehicle technology rates for model year

groups 2011 and later, split into two model year groups: 2011 - 2020 and 2021 - 2050.

The main difference between the tables is that the short term table uses as base rates the

gasoline and diesel rates for conventional technology in the 2001 through 2010 model

year group, while the long term table uses the 2001 – 2010 rates as a base the 2001-2010

rates for each technology (i.e. those generated by the short term table). The long term

table enables the user to model technology evolution over time, within each technology.

 232

Output produced:

The FERC produces a MySQL database suitable for use as a MOVES user input

database. This database contains two tables: EmissionRate and SourceBin. The name of

this database is specified by the user.

Calculations performed:

Short term future emission rates are created by applying fuelEngAdjust as a

multiplicative adjustment factor to the meanBaseRate of all non-motorcycle

EmissionRate table records in the MOVESDefault database with dataSourceIDs less than

5000. For each such record with matching values of polProcessID, opModeID,

fuelTypeID, engTechID, and modelYearGroupID a short term future emission rate record

is generated having the targetFuelTypeID, targetEngTechID, targetModelYearGroupID

and new dataSourceID (while retaining the prior values of polProcessID, opModeID,

regClassID, engSizeID, and weightClassID).

Long term future emission rates are created by applying fuelEngAdjust as a

multiplicative adjustment factor to the meanBaseRate of all EmissionRate table records

in the MOVESDefault database with dataSourceIDs less than 5000 (including those for

Motorcycles), along with the short term future emission rates produced by the first step.

For each such record with matching values of polProcessID, fuelTypeID, engTechID, and

modelYearGroupID a long term future emission rate record is created having the

targetFuelTypeID, targetEngTechID, targetModelYearGroupID, and new dataSourceID

(while retaining the prior values of polprocessID, opmodeID, regClassID, engSizeID, and

weightClassID).

 For this calculation to operate correctly the MOVESDefault.SourceBin table must

contain a record for each sourceBinID present in the EmissionRate table having a

dataSourceID less than 5000. The MOVESDefault database distributed with DRAFT

MOVES2009 satisfies this condition.

 233

10.39 I/M Coverage Table Editor

The IMCoverage Table editor provides a Graphical User Interface (GUI) to easily

display, edit, and print reports of the IMCoverage table contents. It uses the loaded run

specification to determine which records are of interest. As regards its input, it constructs

and works to the extent possible only with the IMCoverage Table contents that would be

used if that run specification were executed. As regards its output, rather than actually

changing the IMCoverage table in MOVESDefault, it produces an IMCoverage table in a

User Input Database. Because it operates as a user graphical user interface, further

documentation can be found in the DRAFT MOVES2009 User Guide.

 234

10.40 Estimating the Uncertainty of MOVES Results
Uncertainty in the model results is introduced by the model theory, the

mathematical formulation of the model, and the data used to calibrate the model. The

first two sources of uncertainty are not amenable to quantification, so the uncertainty

estimates in MOVES focus on the data used to calibrate the model. However, even with

this narrower focus, the challenges are significant. MOVES uses data for dozens of

variables covering most aspects of mobile source emission generation: the vehicle fleet,

vehicle activity patterns, emission rates, fuel properties, geographic location, fuel

properties, meteorology, and the presence or absence of vehicle emission control

programs. The uncertainty of emission rates is relatively easy to quantify, using standard

data analysis techniques, but much of the fleet, activity, fuel, and meteorology data

sources have limited information regarding their degree of uncertainty. The primary

challenge in including uncertainty estimation in MOVES is therefore to quantify

uncertainties for all of the input data used in the model.

 DRAFT MOVES2009 includes a basic mechanism which can be used to estimate

a portion of the uncertainty of its calculated emissions results, which results from the

uncertainty in some particular model inputs, using a Monte Carlo method. A level was

added to the model’s master looping framework to execute multiple “iterations” of the

same run specification on versions of the MOVESExecution database where these input

values have been “pseudo-randomly” sampled (as independent samples) from their

assumed probability distributions. As currently implemented these probability

distributions are assumed to have the form of the normal or Gaussian distribution. Only

certain inputs are considered by the program to be random variants, namely those which

function as emission rates and emission rate adjustment factors. Specifically these are:

The meanBaseRate field in the EmissionRate, EmissionRateByAge, and

SulfateEmissionRate tables.

The tank vapor venting (TVV) terms in the CumTVVCoeffs Table.

 235

The temperature adjustment terms in the TemperatureAdjustment and

StartTempAdjustment tables.

The “full AC adjustment factor” in the FullACAdjustment table.

The fuel adjustment factor in the FuelAdjustment table.

 Because all records in the MOVESExecution database containing these values are

sampled before every iteration and all components of the model obtain their input data

from this database, every parameter has a single value for a given iteration that is

identical everywhere it is used.

Calculation and Storage of the Input Data Random Samples:

 When the Monte Carlo uncertainty estimation feature is invoked the user

specifies: 1) the number of iterations to be run (which must be at least two), 2) whether

the results of each individual iteration are to be reported or only the last one, 3) whether

the input data samples used for each iteration are to be preserved for later reference in the

output. Uncertainty estimation may not be invoked in conjunction with either geographic

or time period data preaggregation.

When uncertainty estimation is being performed, prior to every iteration each data

value in the MOVESExecution database which is considered to be uncertain is replaced

with an independent “pseudo-random” sample from the normal or Gaussian distribution

whose mean value is the original database point value and whose standard deviation is

calculated from this mean value and an associated CV field value. (The coefficient of

variation, or CV, is the standard deviation divided by mean.) The MOVESDefault

database includes a Coefficient of Variation (CV) field for the fields listed above which

the model uses at the start of each iteration to generate a sample value for the field. (The

database also includes additional CV fields which are not currently used.)

If the CV field contains a zero or NULL value then the standard deviation is

considered to be 0.0.

 236

Specifically, if Z is a pseudo-random sample from the normal distribution with

mean 0.0 and unit standard deviation, then:

sampledMeanValue[i] =

originalMeanValue * (1.0 + CV * Z[i])

In the unlikely, but not impossible, event that the sampledMeanValue[i]<0,

MOVES sets the sampledMeanValue[i]=0. (In future this may not be done for every

value subject to uncertainty.)

MOVES uses the java.util.Random class to generate the Z values.

 None of the “random variates” currently implemented involves components of a

distribution which sum to unity, but when this mechanism is expanded to include such

elements, each term of the distribution will first be generated individually. Then the

resulting set of variates will be normalized so that the total sums to one. This procedure

will result in the terms of the distribution being negatively correlated, as they should be:

if one term is especially large, others must be correspondingly small, and vice versa.

 After versions of these tables to be used for a particular iteration have been

produced, and if requested by the run specification, their records are copied into

corresponding tables in the MOVES output database. These tables added to the output

database have the same structure as the original MOVESExecution database tables (e.g.

EmissionRate, EmissionRateByAge, etc.) with the addition of fields identifying model

run and iteration (MOVESRunID and iterationID).

Calculation and Output of Uncertainty Statistics:

 If uncertainty results are being calculated, and if the run specification calls for the

results of each iteration to be reported, then two statistics are calculated and reported in

each MOVESOutput and MOVESActivityOutput table record.

 237

The mean values of emissionQuant and (if produced) distance, based on the

iterations performed so far are reported in the emissionQuantMean and

distanceMean fields.

The standard deviations of emissionQuant and (if produced) distance, based on

the iterations performed so far are reported in the emissionQuantSigma and

distanceSigma fields.

 In order to calculate these statistics, the count (which equals the iterationNo),

sum, and sum of the squares of emissionQuant and distance are accumulated in a running

sum and saved between runs. The full results of each iteration do not need to be saved to

calculate these statistics (although the user has the option to save the results for

diagnostic and further analytical purposes). These statistics are calculated and saved at

the level of detail, and in the engineering units, of the output table. Listed below are the

formulas for emissionQuantMean and emissionQuantSigma. Similar formulas would

apply to any other variable. In these formulas, the xis are the results of each iteration, and

n is the number of iterations.

n

x
antMeanemissionQu

n

i
i∑

== 1

()

1

* 2

1

2

−

−
=
∑
=

n

antMeanemissionQunx
Var

n

i
i

VarSigma = (the positive square root)

 238

 If uncertainty results are being calculated, and if the run specification does not

call for the results of each iteration to be reported, then only the records for the last

iteration are reported.

 Confidence intervals and other statistics can be generated, outside the model,

from these results. Dynamic sensitivity can also be calculated from this model output by

regressing model inputs against model outputs. Inputs with the highest (in absolute

value) regression coefficients will be those for which the greatest improvement will result

from decreasing their uncertainty.

10.41. Retrofit Strategy

 The MOVES Retrofit Strategy implements a control strategy for on-road vehicle

retrofit modeling. It allows the user to select a portion of the overall fleet, and reduce its

emission rates by a selected percentage. This section of the SDRM contains a definition

sub-section that describes the major retrofit variables, and discusses the retrofit

conditional rules. A subsequent section describes the retrofit algorithm.

10.41.1 Definition of Variables

Initial Calendar Year of Retrofit Implementation - The Initial Calendar Year of the

Retrofit Implementation is the first calendar year that a retrofit program is administered.

A valid Initial Calendar Year input must be equal to or less than the Final Calendar Year

of Retrofit Implementation. Initial Retrofit Calendar Year entries that are greater than the

MOVES evaluation calendar year are to be ignored. All months within a calendar year

are affected equally by the retrofit.

Final Calendar Year of Retrofit Implementation - The Final Calendar Year of the

Retrofit Implementation is the last calendar year that a retrofit program is administered.

Final Calendar Year input must be equal to or greater than Initial Calendar Year of

Retrofit Implementation.

 239

Initial Model Year that will be Retrofit - The Initial Model Year that will be retrofit is

the first model year of coverage for a particular vehicle class / pollutant combination.

Valid entries for initial model year must meet the following requirement:

 Initial Model Year >= Initial Calendar Year - 30

 Also, the Initial Model Year cannot be greater than the Final Model Year that will

be Retrofit.

Final Model Year that will be Retrofit - The Final Model Year that will be retrofit is the

last model year of coverage for a particular vehicle class / pollutant combination. No

retrofit shall be performed on Final Model Year inputs which are greater than the

Evaluation Calendar Year. Also, the Final Model Year input cannot be less than the

Initial Model Year that will be Retrofit.

Percentage of the Fleet Retrofit per Year - The Percentage of the Fleet Retrofit per Year

represents the percentage of VMT of a particular fleet of a particular vehicle class,

retrofit calendar year group, model year group and pollutant combination that is to be

rebuilt in a given calendar year. Only values greater than zero and less than or equal to

100.0% are valid. MOVES also checks to insure that the product of the number of

calendar years of retrofit coverage (Final Calendar Year of Retrofit Implementation -

Initial Calendar Year of Retrofit Implementation) times the Percentage of the Fleet

Retrofit per Year does not exceed 100%. For example, a retrofit simulation is flagged as

invalid if it had a retrofit program start in calendar year 2005, a program end in calendar

year 2008, and a yearly Fleet Retrofit Percentage of 50 percent (3 times 50% > 100%).

Percentage Effectiveness of the Retrofit - The Percentage Effectiveness of the Retrofit is

the percent emission reduction achieved by a retrofit. It is computed from a non retrofit

 240

emission baseline. The file input structure allows the user to enter a retrofit effectiveness

value for a particular vehicle class, retrofit calendar year group, model year group and

pollutant combination. All values up to 100% are valid. A negative value is permitted

because it implies an emission increase as a result of retrofit which sometimes occurs. A

value greater than 100% is not permitted because it implies negative emissions will be

generated.

10.41.2 Retrofit Algorithm

The general form of the retrofit algorithm is shown below. Retrofit Emis is the emission
rate after a retrofit. Base Emis is the emission rate without retrofit.

Retrofit Emis = [(%Retrofit1*(1-Retrofit Effectiveness1)) +

 (%Retrofit2*(1-Retrofit Effectiveness2)) … + … (%Retrofit (i) *(1-Retrofit
Effectiveness(i))) + (1- %Retrofit1 -%Retrofit2 … - … %Retrofit (i))] * Base Emis

Where
 %Retrofit1 + %Retrofit2 … + %Retrofit(i) <= 100%
 i < 29 in %Retrofit(i)

11. DRAFT MOVES2009 Input and Default Databases
The principal input data for a MOVES model run is normally obtained from the

MySQL database named MOVESDefault. A version of this database is included in each

distribution of MOVES. The user may change this database if desired. This is not

normally done directly, however, unless records need to be deleted, or a fundamental

change to the scope of the model is involved, because MOVES has a more convenient

mechanism for the user to supply additional or alternative input data. The MOVES GUI

program and MOVES run specifications allow the user to specify one or more MySQL

databases whose table records are to be added to or to replace data table records in

MOVESDefault during model execution. The simplicity and generality of this scheme is

that these MOVES input databases have exactly the same table structure as

MOVESDefault (or any portion of it), and may be used to replace all input data items. A

 241

limitation of this scheme, however, is that the user is responsible for the accuracy,

completeness and consistency of the database that results from this process. This is not

always a simple endeavor. EPA envisions that “data importer” programs will be written

to help prepare MOVES input databases and support the principal specialized input use

cases as they arise. It is also envisioned that organizations outside EPA will produce data

importers for MOVES. DRAFT MOVES2009 does not include any data importers,

strictly speaking, but its future emission rate creator (FERC) is like a data importer in

that it creates EmissionRate table records from externally supplied information. The I/M

Table Coverage Editor in DRAFT MOVES2009 is also somewhat like a data importer in

that it can be used to create IMCoverage table records, in this case the records are

produced from user input to a GUI.

Since the MOVESDefault database and MOVES user input databases have the

same table structure, this structure will be referred to in the remainder of this section as

simply the “MOVES Database.” The MOVES Database is a relational database which

means, among other things, that it is made up entirely of tables, and that every record

within a given table has the same set of data items or “fields.” The MOVES database has

a naming convention that table names begin with a capital letter and field names begin

with a small letter (unless their name starts with an acronym).

The MOVES database structure is highly “normalized” which means that data is

contained in many separate tables, several of which usually need to be joined together to

satisfy an information requirement.

11.1. Use of Data Types
The overall approach to the use of MySQL column types in the MOVES database

is to use integer type columns (2-byte integers where possible, 4-byte integers otherwise)

for all key identifying fields (stateID, countyID, hourID, sourceTypeID, etc), and to use

normal-precision floating point columns for numeric information. Since MySQL has no

boolean (logical true/false) column type, the MOVES database uses columns of character

type with length 1 for data items that have a yes/no or true/false nature. Such columns

are populated with “Y” to represent “yes” or “true,” and “N” to represent “no” or “false.”

 242

11.2. Functional Types of Tables:
While the MOVES Database consists entirely of tables, these tables serve several

different purposes. Some tables function merely to establish value lists for some of the

fundamental entities in the database. Examples of such “category value list” tables

include State, Year, and DayOfAnyWeek.

A few tables represent “Associations” between database entities. These usually

have “Assoc” as the last part of their name. An example of an association type table is

PollutantProcessAssoc, which contains information as to which pollutants are emitted by

which emission processes. Since this is a many-to-many relationship (i.e. several

pollutants are generally produced by each emission process and a pollutant can be

produced by several emission processes), an “Association type” table is used to store the

valid combinations.

The most common kind of tables in the MOVES database store the substantive

subject matter information, and in this document are termed “information” tables. The

EmissionRate table, for example, stores emission rates for some of the emission

processes in MOVES.

Some “information” tables store data “distributions,” i.e. sets of fractions which

add to unity. The MOVES database has a naming convention that such tables have the

word “Fraction” or “Distribution” as the last part of their name, and the field containing

such fractions has the word “Fraction” as the latter part of its name. An example of this

is the “HourVMTFraction” table whose “hourVMTFraction” field stores information as

to what fraction of certain VMT occurs during each of the hours of the day. Another

example is the “RoadTypeDistribution” table whose “roadTypeVMTFraction” field

stores information as to what fraction of certain VMT occurs on each RoadType.

A kind of “information” table which merits special consideration consists of those

which are written by MOVES Generators and which MOVES EmissionCalculators,

(which can be considered to implement the MOVES Core Model), use as their principal

inputs. These are called “core model input tables” or CMITs. The reason CMITs are

important to the MOVES user is that they are alternative points for data entry to the

model. Generally, the user has a choice as to whether to supply input data to a Generator

 243

and have the Generator populate its CMIT tables during model execution, or to place

input data directly into the CMIT, (in which case the Generators are programmed not to

modify it). A combination of the two approaches may also be used. Most CMITs are

information type tables, but there is one notable exception to this, namely the SourceBin

table, which can be considered a category or an association type table.

These various kinds of tables are not always completely distinct. The

SourceUseType table for example functions as a “category” type table in that it defines

the set of sourceTypeIDs available for use in the database, but it also functions as an

“information” table, since it contains several subject matter information fields, e.g.

sourceMass.

11.3. Database Tables and Their Use
This section briefly describes the purpose of each MOVES database table, and

classifies each table in terms of the categories discussed in the previous section. For

“Information Tables” it also lists any application-level components of the model which

write the table’s records, and which use the table’s data elements. This section can

therefore be used to trace the flow of data in the central portion of the model at the table

level. The discussion of tables in this document is relatively brief, and is only intended to

give a general idea of how each table is used and its most significant characteristics.

 The following abbreviations are used in the table to identify the kinds of tables:

CVL (Category Value List)

ASSOC (Association Table)

CMIT (Core Model Input Table)

DIST (Distribution Table)

INF (Information Table which is not also a CMIT or a Distribution Table)

The following abbreviations are used to identify the components of MOVES which read

and write the tables: (All tables are written into the MOVESExecution database by the

InputDataManager, which along with data preaggregation, is not shown here. Usage by

the GUI or other framework components is likewise not shown.)

 LTLP (Lookup Table Link Producer)

 TAG (Total Activity Generator, includes version for Mesoscale Lookup)

 244

 OMDG (Operating Mode Distribution Generator, for running and braking,
includes version for Mesoscale Lookup)

 SBDG (Source Bin Distribution Generator)

 METG (Meterology Generator)

 StartOMDG (Start process operating mode distribution generator)

 TTG (Tank Temperature Generator)

 EvapOMDG (Operating mode distribution generator for the evaporative emission
processes)

 TFG (Tank Fuel Generator)

 AVFT (Alternative Vehicle Fuels and Technologies Strategy)

 EC (EmissionCalculators for the Exhaust, TireWear and Brake Wear emission
processes which are not “chained” to other calculators, includes Distance
Calculator.)

 ChainEC (Emission calculator which are “chained” to other calculators)

 EvapEC (EmissionCalculators for the Evaporative emission processes)

Table 11.1 MOVES Input Database Tables – Use by Software Components

Table Name Type Function /Description Writers Readers

(as DIST,
CMIT or
INF)

AgeCategory CVL Defines the valid age categories
of SourceUseTypes. ageID=0
represents new vehicles;
ageID=30 represents vehicles
30 years old or older.

modelyearID=calendarYearID-
ageID

AgeGroup CVL Defines the valid age groups, a
single set of which is used for
all pollutant-processes.

AverageTankGasoline CMIT The gasoline in the fuel tanks of
gasoline-fueled vehicles.
Allows modeling of mixtures of
fuel formulations from the fuel
supply.

TFG EvapEC

AverageTankTemperature CMIT Temperature of the fuel in the
tanks of vehicles.

TTG EvapEC

AvgSpeedBin CVL
INF

Defines the average speed bins. LTLP
TAG
OMDG

AvgSpeedDistribution DIST Distribution of time spent in TAG

 245

average speed bins, by source
type, roadtype, hour and day.

OMDG

ColdSoakInitialHourFraction CMIT
DIST

The fraction of cold soaking in
each hour-day that began in
each hour, by source type, zone
and month.

TTG EvapEC

ColdSoakTankTemperature CMIT Temperature of the fuel in tanks
of cold-soaking vehicles, by
zone, month, and hour

TTG TTG
EvapEC

County CVL
INF

Establishes the set of counties.
Counties belong to states, but
their IDs, based on FIPS state
and county codes, are globally
unique.

 METG
EC
EvapEC

CountyYear ASSOC Associates years with counties
CumTVVCoeffs INF Terms used to calculate tank

vapor vented from tank vapor
generated. Somewhat
analogous to emission rates by
age for TVV process. Stored
by regClass, modelYearGroup,
and ageGroup.

 EvapEC

DataSource INF Metadata for emission rate
records.

DayOfAnyWeek CVL Establishes set of dayIDs which
identify a kind of day of the
week.

DayVMTFraction DIST Distributes VMT for a source
type in a month on a roadtype
to the kinds of days of the
week.

 TAG

DriveSchedule CVL
INF

Defines the set of driving
schedules or patterns. Each
schedule has an average speed
information item.

 OMDG

DriveScheduleAssoc ASSOC
INF

Associates a driving schedule
with a combination of source
type and road type. Also
indicates whether schedule is a
ramp schedule.

 OMDG

DriveScheduleSecond INF Records contain the speed for
one second of a driving
schedule. Schedules start at
second = 0. Time gaps are
allowed. Such gaps divide
schedule into “snippets”.

 OMDG

EmissionProcess CVL Establish the set of emission
processes.

EmissionRate INF Contains emission rates for
most pollutant-processes which
do not depend upon vehicle age
and which are not calculated
from other pollutant-processes.
Rates depend upon
polprocessID, opModeID, and

 EC

 246

sourceBinID
EmissionRateByAge INF Contains emission rates for

most pollutant-processes which
depend upon vehicle age and
which are not calculated from
other pollutant-processes.
Rates depend upon
polprocessID, opModeID,
sourceBinID, and ageID

 EC
EvapEC

EngineSize CVL Establishes the set of engSizeID
values.

EngineTech CVL Establishes the set of
engTechID values.

ExtendedIdleHours CMIT Stores total activity for
extended idling process.
Geographic unit is the zone.

TAG EC

FuelAdjustment INF Stores multiplicative emission
result adjustment factors to
account for fuel effects by
polProcessID, sourceTypeID,
fuel model year groups, and
fuel formulation.

 EC
EvapEC

FuelEngFraction DIST Distributes sourceType -
modelYear combinations to
fuelType - engine technology
combinations.

AVFT AVFT
SBDG

FuelEngTechAssoc ASSOC Established the combinations of
fuelType and engTech that are
valid for each sourceType.

 AVFT (GUI
portion)

FuelFormulation CVL
INF

Establishes the set of fuel
formulations. Stores their fuel
characteristics.

 TFG
EC
ChainEC

FuelModelYearGroup CVL Establishes the model year
groupings relevant to vehicle
fuel effects upon emissions

FuelSubType CVL
INF

Establishes the set of fuel
subtypes. Stores information
about them.

 EC
ChainEC

FuelSupply DIST Contains the marketshare of
fuel formulations for each
county for each month group
and fuel year. When present,
marketshares sum to unity for
each fuel type. When data not
present model assumes 100%
marketshare of the fuel type’s
default formulation.

 TFG
EC
ChainEC
EvapEC

FuelSupplyYear CVL List of valid fuel supply years.
FuelType CVL

INF
List of valid fuel types. EC

ChainEC
EvapEC

FullACAdjustment INF Stores “fullACAdjustment”
factors by source type,
pollutant-process, and operating
mode. Missing values mean no

 EC

 247

adjustment.
GREETManfAndDisposal INF Placeholder table for emission

processes not yet implemented.
 (not used)

GREETWellToPump INF Contains emission rates for the
Well-to-Pump process by year,
pollutant, and fuel subtype.

(May be
written by
GREET
Interface)

ChainEC

Grid CVL Placeholder table to reprent grid
cells.

 (not used)

GridZoneAssoc ASSOC Placeholder table to associate
grid cells with zones.

 (not used)

HourDay CVL
ASSOC

Exists only because of database
design considerations.
Associates all hours of the day
with all kinds of days of the
week.

HourOfAnyDay CVL Lists valid hourIDs. hourID=1
represents the hour beginning at
midnight.

HourVMTFraction DIST Allocates the VMT for a
sourceTypeID-roadTypeID-
dayID combination to the hours
of the day

 TAG

HPMSVtype CVL

List of valid vehicle types as
classified by the Highway
Performance Management
System

HPMSVtypeYear INF Stores VMT data for base years
and VMT growth factors for all
years

 TAG

IMCoverage INF Information about the existence
and effectiveness of vehicle I/M
programs. Stored by county,
year, pollutant-process, fuel
type, regulatory class, and
range of modelyears. Missing
data means no I/M.

(may be
modified by
IMCoverage
table editor)

EC
EvapEC

Link CVL Establishes the linkID values
and relates Links to Counties,
Zones, and Roadtypes. Its
informational data items are not
currently used.

LTLP

LinkAverageSpeed INF Stores average speed
information for a Link. Used
for Mesoscale Lookup

LTLP TAG
(Mesoscale
lookup)
OMDG
(Mesoscale
lookup)

LinkHourVMTFraction INF Not yet used, a placeholder
table, intended for smaller scale
modeling

 (not used)

ModelYear CVL Simply lists the valid
modelYearIDs

ModelYearGroup CVL Lists the modelYearGroupIds.
Establishes a short form for

 248

embedding these in
sourceBinIDs

MonthGroupHour INF Stores terms used to calculate
AC activity

 EC

MonthGroupOfAnyYear CVL Establishes month groups,
which currently are individual
months. Would allow fuel-
related info to be stored more
coarsely.

MonthOfAnyYear CVL Establishes the set of monthID
values. Relates months to
month groups.

MonthVMTFraction INF Allocates annual VMT to
months. Allocation is by
sourceTypeID.

 TAG

OperatingMode CVL
INF

Establishes the opModeIDs. OMDG
StartOMDG

OpModeDistribution CMIT
DIST

Stores operating mode
distributions for several
operating mode distribution
generators

OMDG
StartOMDG
EvapOMDG

EC
EvapEC

OpModePolProcAssoc ASSOC Associates operating modes
with pollutant-processes.

Pollutant CVL
INF

Lists the pollutants calculated
by the model, along with
information item(s) pertaining
to them.

 ChainedEC

PollutantDisplayGroup CVL
INF

Used by the MOVES GUI in
constructing the pollutant-
processes screen.

PollutantProcessAssoc ASSOC Establishes the combinations of
pollutant and process which the
model calculates

PollutantProcessModelYear ASSOC Associates pollutant-processes
with modelYearGroupIDs and
fuelMYGroupIDs by listing
what model year group and fuel
model year group each
pollutant-process-model year
belongs to.

RegClassFraction DIST Distributes elements of
FuelEngFraction distributions
by Regulatory Class

AVFT SBDG

RegulatoryClass CVL Establishes the set of
RegClassIDs.

RoadType CVL
INF

Establishes the set of
roadTypeIDs. Indicates
fraction of SHO on each driven
on ramps.

 OMDG

RoadTypeDistribution DIST Distributes VMT, by
sourceType, to roadTypes

 TAG

SampleVehicleDay CVL
INF

Establishes the set of vehicles
sampled for each kind of day.
Indicates the source type of
each sample vehicle.

 TAG
TTG

 249

SampleVehicleTrip INF Contains data about each trip
made by the sample vehicles.

 TAG
TTG
StartOMDG

SCC CVL List of valid highway SCCs.
Decomposes this composite
code into its component parts.

SCCProcess CVL List of process codes embedded
in SCCs

SCCRoadtype CVL List of road classifications
embedded in SCCs

SCCRoadTypeDistribution DIST Distributes activity on each
roadtype in a zone to the
SCCRoadtypes

 EC
EvapEC

SCCVtype CVL List of vehicle classifications
embedded in SCCs

SCCVtypeDistribution DIST Distribution activity within a
sourceTypeID, modelYearID,
and fuelTypeID to
SCCVtypeIDs

 EC
EvapEC

SHO CMIT Stores source hours operating
total activity and distance
traveled. Geographically these
are stored by Link.

 TAG

SHP CMIT Stores source hours parked. TAG ????
SizeWeightFraction DIST Distributions elements of

FuelEngFraction distributions
by engine size and vehicle
weight.

AVFT SBDG

SoakActivityFraction CMIT
DIST

Distributes hours of parking
into hot soaking and cold
soaking

TTG EvapOMDG

SourceBin CMIT
CVL

Lists the sourceBins that used
in SourceBinDistributions.
Forms an association among the
six source bin discriminating
fields, indicating which
combinations are used. The
fact that source bins can be
created dynamically is one of
the most complicated aspects of
the model.

SBDG EC
EvapEC

SourceBinDistribution CMIT
DIST

Stores source bin distributions,
which allocate total activity to
source bins.

SBDG EC
EvapEC

SourceHours CMIT Store source hours (all hours in
which the source type exists,
equal to SHO plus SHP) total
activity. Geographicly these
are stored by Link.

TAG EvapOMDG
EvapEC

SourceTypeAge INF Stores information items which
depend only upon
sourceTypeID and ageID

 TAG
EC

SourceTypeAgeDistribution DIST Allocates source type
population in each year to
vehicle ageIDs

 TAG

 250

SourceTypeHour INF Stores activity information
pertinent to a sourceTypeID
during each hourDayID,
currently idleSHOFactor.

 TAG

SourceTypeModelYear CVL
INF

Establishes combined IDs for
combinations of sourceTypeID
and modelYearID. Stores
information that depends only
on these two factors, currently
ACPenetrationFraction.

 EC

SourceTypeModelYearGroup INF
ASSOC

Associates
TankTemperatureGroups with
combinations of sourceTypeID
and modelYearGroupID

 TTG
EvapEC

SourceTypePolProcess ASSOC
INF

Establishes which combinations
of sourceTypeID and
polProcessID require source bin
distributions. For such
combinatations indicates which
source bin discriminators are to
be considered in the source bin
distributions.

 SBDG

SourceTypeYear INF Store vehicle population for
base year, sales growth and
migration rate information for
other years

 TAG

SourceUseType CVL
INF

Establishes the set of
sourceTypeID values. Relates
sourceTypeIDs to HPMS
vehicle types. Stores items
depending only on
sourceTypeID

 OMDG

Starts CMIT Stores total number of starts
activity. Geographically this is
stored by Zone.

TAG EC

StartsPerVehicle CMIT Stores number of starts per
vehicle for each sourceType
and hour on each kind of day

TAG TAG

StartTempAdjustment INF Stores factors used to calculate
temperature adjustments for
certain pollutant-processes

 EC

State CVL Defines the set of stateID
values used in the database

SulfateEmissionRate INF Stores “rates” used to calculate
sulfate particulate emissions
based on energy consumption

 ChainedEC

TankTemperatureGroup CVL Defines the set of tank
temperature groups

TankTemperatureRise INF Stores coefficients for the
equation used to calculate tank
temperature rise.

 TTG

TankVaporGenCoeffs INF Store coefficients for the
equation used to calculate fuel
tank vapor generation

 EvapEC

TemperatureAdjustment INF Stores factors used to calculate EC

 251

temperature adjustments for
certain pollutant-processes

EvapEC

WeightClass CVL Establishes the set of weightID
values.

Year CVL
INF

Establishes the set of calendar
years for which emissions may
be estimated. Indicates which
are base years. Maps years to a
smaller set of “fuel years”.

 TAG
EC
ChainedEC
EvapEC

Zone CVL
DIST

Establishes the set of zoneIDs.
Relates zones to counties.
Stores information depending
only on zoneID, currently
several activity allocation
factors.

 TAG

ZoneMonthHour INF Stores information depending
only upon zoneID, monthID,
and hourID, currently
meteorogy-related items.

METG METG
TTG
TFG
EC

ZoneRoadType DIST Stores information depending
only upon zoneID and
roadTypeID, currently SHO
allocation factors

 TAG

11.4. Where to Find More Detailed MOVES Database Documentation
More detailed documentation of the MOVES database is contained in a readme

directory within the actual database directory. Assuming that MySQL is installed at the

standard location on your hard drive and that MOVES has been installed with the

MOVES installation package, this would be

C:\mysql\data\MOVESDByyyymmdd\readme where “yyyymmdd is the version date.

Within this directory a Microsoft WORD document named “MOVESDB.doc” contains

definitions for the tables and fields in the database for which the tablename is not fully

explanatory. Also located in this directory are a set of Entity-Relationship diagrams

illustrating the database. These take the form of “.pdf” files. The graphical conventions

which apply to these diagrams, one of which also appears in chapter 12 of this document,

include:

Each rectangle represents a table.
The primary key fields of the table are shown above the line horizontal line

inside these rectangles.
Fields designated “FK” are foreign key fields; i.e., they help identify related

records in other tables.

 252

Lines connecting the rectangles represent relationships between records in the
tables.

A short perpendicular line at the end of relationship indicates that it is possible
that one record from that table participates in the relationship.

A small “o” at the end of a relationship line indicates that it is possible that no
records from that table participate in the relationship.

A small “v” (sometimes refered to as “crow’s feet”) at the end of a relationship
line indicates that it is possible that many records from that table participate
in the relationship.

 253

12. DRAFT MOVES2009 Output Databases
The MOVES GUI/Master program reports the results of each simulation run in

the MySQL database named in its run specification. The MOVES GUI may also be used

to create an “empty” MOVES Output Database.

There are several software options for working with these databases once they

have been created:

In many situations the most convenient option is to use the “Summary

Reporter” component described in Chapter 10 Section 34 of this document and in

greater detail in the DRAFT MOVES2009 User Guide. This component,

accessible via the “Post-Processing Menu in the MOVES GUI, can be used to

aggregate the output various ways, producing screen displays (which can be

printed) and tab-separated variable ASCII files which can be imported into other

software.

For operations that cannot be done with the Summary Reporter, the most

natural method is to use MySQL itself, either via its command line client, which

is installed as part of the MySQL installation, or via the MySQL Query Browser

which is a graphical client program for MySQL. The command line client is

invoked from a DOS window by entering the “mysql” command. The MySQL

Query Browser is included in the DRAFT MOVES2009 Program Suite

Distribution and requires a separate installation. A set of MySQL commands,

produced by either client program, can be stored and executed again as a MySQL

“script”. Several MySQL scripts are distributed with DRAFT MOVES2009 and

are accessible via the “Post-Processor Script Execution” feature documented in

Chapter 10.33. Users may add their own scripts to this menu in the MOVES GUI.

MySQL output databases can also be used via Microsoft FoxPro or

MicroSoft ACCESS via an ODBC connection. Even Microsoft EXCEL can be

used in this fashion if the database is small enough. Instructions as to how to

establish these ODBC connections can be found in Appendix B of the DRAFT

MOVES2009 User Guide.

 254

The results of multiple runs may be stored in the same database and are identified

by MOVESRunID. This database consists of six tables as shown in Figure 12-1.

Figure 12-1. Tables in Output Database

 255

12.1. MOVESRun Table
The MOVESRun Table contains information that pertains to the model run as a

whole.

The MOVESRunID field contains a number identifying the model run. A single
record is written into this table for each run. The first run whose results are stored in
this database is assigned run number 1, and the number is incremented for any
subsequent runs.
The outputTimePeriod field indicates the time period (Hour, Single Day, Portion of
the Week, Month, or Year) for this run. This is a MOVES GUI selection.
The four Units fields indicate the engineering units used to express time, distance,
mass, and energy results for this run. The GUI determines the time units
automatically based on other selections. The last three are GUI selections.
The runSpecFileName field contains the file name (not including path) of the
RunSpecification upon which this run was based. Of course the contents of the
runspec may have been changed since the run was performed.
The runSpecDescription field contains the description portion of the run
specification.
The runspecFileDateTime field indicates the time and date stamp the run
specification file had when the run was executed. If this date-time differs between
two runs using the same run specification file name, this may be an indication that
some change was made to the run specification between the two runs.
The runDateTime field contains the date and time the run began.
The scale field indicates the modeling scale applicable to the run.
The minutesDuration field indicates the time required to complete the run, expressed
in minutes.
The defaultDatabaseUsed field indicates the name of the default database used for
the run.
The masterVersionDate field contains the version date of the master program used
for the run. This is the same date as appears in a popup window when the program is
started or the “Help-About MOVES” menu item is selected.
The masterComputerID field contains the contents of a field in the MOVES
Configuration file which is intended to indicate the computer used for the run. When
MOVES is first installed this field is not meaningful. To change it a text editor can
be used to edit this item in the MOVESConfiguration.txt file.

12.2. MOVESError Table
This table contains a record for each error message generated during runs for

which this is the output database. Internally MOVES has several levels of error

 256

messages. Currently “warning-level” and “error level” messages are written to this file,

and “informational level” messages are not.

The MOVESErrorID field identifies the error message record. It serves as a key
field for this table, but its value is not meaningful to the user.
As in the other MOVES Output Database tables, the MOVESRunID field identifies
the model run during which the error occurred.
The errorMessage field contains the text of the error or warning level message.
The other fields in this table were intended to identify the portion of the model run
that experienced the error, but are not used in DRAFT MOVES2009.

12.3. The MOVESActivityOutput, MOVESOutput,
MOVESMesoscalActivityOutput and MOVESMesoscaleOutput Tables

These four tables contain the substantive results of each model run. All four

tables are described in this section since they have many fields in common. The

MOVESActivityOutput table is used to report activity-related information which is not

specific to an emission process or pollutant . The MOVESOutputTable is used to report

the pollutant emission results, including energy consumption. The

MOVESMesoscaleActivityOutput and MOVESMesoscaleOutput tables match the

structure of the MOVESActivityOutput and MOVESOutput tables respectively but are

only populated for runs using the Mesoscale Lookup scale. Such runs require special

indexing that would be a burden on normal MOVES runs and are separated for

performance purposes. The fields of these four tables function as follows:

The MOVESRunID field identifies the model run that produced each output record.
The iterationID field supports estimation of the uncertainty of model results via
Monte Carlo statistical approach described in Chapter 10. If uncertainty estimation
is not being performed it has a value of 1. If uncertainty estimation is being
performed it identifies the model iteration.
The yearID field identifies the calendar year to which the output record pertains.
The Year table in the MOVESDefault database defines its legal values. The
distributed version of MOVESDefault is intended to support calendar year 1990 and
years 1999 thru 2050.
The monthID field identifies the month of the year (if any) to which the output
record pertains. Its legal values are defined by the MonthOfAnyYear table in the
MOVESDefault database and are 1 thru 12 in the distributed version. A null or zero
value indicates that the record pertains to all months of the year that were included in
the run specification.

 257

The dayID field identifies the day or portion of the week to which the output record
pertains. Its legal values are defined by the DayOfAnyWeek table in the
MOVESDefault database. A null or zero value indicates that the record pertains to
all portions of the week that were included in the run specification.
The hourID field identifies the hour of the day to which the output record pertains.
Its legal values are defined by the HourOfAnyDay table in the MOVESDefault
database and are 1 thru 24 in the distributed version (where hour number 1 begins at
midnight). A null or zero value indicates that the record pertains to all hours of the
day that were included in the run specification.
The stateID field identifies the state to which the output record pertains. Its legal
values are defined by the State table in the MOVESDefault database and are based
on the FIPS state codes in the distributed version. A null or zero value indicates that
the record pertains to all states in the modeling domain (normally the nation) that
were included in the run specification.
The countyID field identifies the county to which the output record pertains. Its
legal values are defined by the County table in the MOVESDefault database and are
based on the FIPS state and FIPS county codes in the distributed version. Note that
these county identifications are unique across the entire database since they include
the state identification. A null or zero value indicates that the record pertains to all
counties in the state, (or, if stateID is also zero or null, the entire modeling domain)
that were included in the run specification. When the state level data preaggregation
computational shortcuts is taken, as described in Chapter 10.4, values of countyID
based only on the FIPS states codes are used to represent entire states.
The zoneID field is based on the countyID in the default database distributed with
DRAFT MOVES2009 and provides no additional information in this case.
Databases can be constructed, however, wherein each county may have multiple
zones.
The linkID field identifies the link (if any) to which the output record pertains. Its
legal values are defined by the Link table in the MOVESDefault database and are
based on the FIPS state and FIPS county codes and road type classifications in the
distributed version. A null or zero value indicates that the record pertains to all links
in the county or zone, that were included in the run specification. (In the default
database distributed with DRAFT MOVES2009 this corresponds to all road types in
the county that were included in the run specification.) This field has a special
meaning in Mesoscale Lookup runs as describe in section 10.5.
The sourceTypeID field numerically identifies the source use type (if any) to which
the output record pertains. Its legal values are defined by the SourceUseType table
in the MOVESDefault database. In the distributed default version these are:

 11 Motorcycle
 21 Passenger Car
 31 Passenger Truck
 32 Light Commercial Truck
 41 Intercity Bus
 42 Transit Bus

 258

 43 School Bus
 51 Refuse Truck
 52 Single Unit Short-haul Truck
 53 Single Unit Long-haul Truck
 54 Motor Home
 61 Combination Short-haul Truck
 62 Combination Long-haul Truck

A null value indicates that the output record does not pertain to a particular
SourceUseType. (Either the user has selected to report by Source Classification
Code (SCC) instead, or not to distinguish the results by any vehicle classification.)

The SCC field identifies the Source Classification Code (if any) to which the output
record pertains. Its legal values are defined by the SCC table in the MOVESDefault
database. A null value indicates that the output record does not pertain to a particular
SCC. (Either the user has selected to report by Source Use type instead, which is
recommended, or not to distinguish the results by any vehicle classification.)
The fuelTypeID field numerically identifies the top-level fuel type (if any) to which
the output record pertains. A null value indicates that the record pertains to all fuel
types. Whether results are to be distinguished by fuel type is a GUI selection and is
included in the run specification. The legal values of fuelTypeID are defined by the
FuelType table in the MOVESDefault database. In the distributed default version
these are:

 1 Gasoline
 2 Diesel Fuel
 3 Compressed Natural Gas (CNG)
 4 Liquid Propane Gas (LPG)
 5 Ethanol (E85 or E95)
 6 Methanol (M85 or M95)
 7 Gaseous Hydrogen
 8 Liquid Hydrogen
 9 Electricity

The modelYearID field identifies the model year (if any) to which the output record
pertains. A null value indicates that the record pertains to all model years. Whether
results are to be distinguished by model year is a GUI selection and is included in the
run specification.
The roadTypeID field identifies the road type (if any) to which the output record
pertains. The legal values of this field are defined by the RoadType table in the
MOVESDefault database. In the distributed version of DRAFT MOVES2009 there
are 4 roadtypes intended to classify actual highways, plus a fifth RoadType
representing locations in the zone which are not on the highway network.

 1 Off-Network

 259

 2 Rural Roadways with Restricted Vehicle Access
 3 Rural Roadways with Unrestricted Vehicle Access
 4 Urban Roadways with Restricted Vehicle Access
 5 Urban Roadways with Unrestricted Vehicle Access

MOVES associates start, extended idle, and well-to-pump emissions with RoadType
1 and running emissions with the four actual roadway classifications. A null value of
roadTypeID indicates that the results pertain to all roadway types. Whether to
distinguish results by roadTypeID is a GUI selection that is included in the run
specification. Producing results by SCC implies that roadtypes are not distinguished
which is a change in DRAFT MOVES2009. EPA considers roadtypes 2 thru 5 listed
above to represent a set of HPMS roadway classifications, but MOVES itself does
not make this assumption.

The pollutantID field numerically identifies the pollutant to which the output record
pertains. It is present only in the MOVESOutput table. Results are always
distinguished by pollutant. The Pollutant table in the MOVESDefault database
defines the legal values of pollutantID. In the distributed default DRAFT
MOVES2009 database for the demonstration version they are as follows:

 1 Total Gaseous Hydrocarbons
 2 Carbon Monoxide (CO)
 3 Oxides of Nitrogen (NOx)
 5 Methane (CH4)
 6 Nitrous Oxide (N20)
 90 Atmospheric Carbon Dioxide (CO2)
 91 Total Energy Consumption
 92 Petroleum Energy Consumption
 93 Fossil Energy Consumption
 98 CO2 Equivalent
 105 Primary PM10 – Sulfate Particulate Matter
 111 Primary PM2.5 – Organic Carbon Particulate Matter
 112 Primary PM2.5 – Elemental Carbon Particulate Matter
 115 Primary PM2.5 - Sulfate Particulate Matter
 116 Primary PM2.5 – Brake Wear Particulate Matter
 117 Primary PM2.5 – Tire Wear Particulate Matter

The processID field numerically identifies the emission process (if any) to which the
output record pertains. It is present only in the MOVESOutputTable. The
EmissionProcess table in the MOVESDefault database defines the legal values for
processID. In the distributed version these are:

 1 Running Exhaust
 2 Start Exhaust
 90 Extended Idle Exhaust

99 Well-to-Pump

 260

A null value in this field indicates that the result record pertains to all emission
processes. Whether to distinguish results by emission process is a GUI selection that
is contained in the run specification.
The emissionQuant field is present only in the MOVESOutput and MOVES
MESOscaleOutput tables contains the quantity of emissions of the given pollutant as
qualified by all the other identifying fields. Engineering units for mass type
pollutants may be in terms of kilograms, grams, pounds, or U.S. tons as selected in
the GUI, contained in the run specification and output in the MOVESRun table.
Engineering units for energy consumption results may be in terms of Joules or
millions of BTU’s as selected in the GUI, contained in the run specification, and
output in the MOVERun table.
The emissionQuantMean field is present only in the MOVESOutput and
MOVESMesoscaleOutput tables. It is only used if the uncertainty estimation feature
is invoked in the run specification. In “normal” runs it contains a zero value. When
uncertainty estimation is being performed it contains the mean value of
emissionQuant in iterations up to and including the one represented by this record.
The emissionQuantSigma field is present only in the MOVESOutput and
MOVESMesoscaleOutput tables. It is only used if the uncertainty estimation feature
is invoked in the run specification. In “normal” runs it contains a zero value. When
uncertainty estimation is being performed it contains the variance of the
emissionQuant in iterations up to and including the one represented by this record.
The activity field is present only in the MOVESActivityOutput and
MOVESMesoscaleActivityOutput tables and contains the distance traveled as
qualified by all the other identifying fields. Its engineering units may be miles or
kilometers as selected in the GUI, contained in the run specification,and output in the
MOVESRun table.
The activityTypeID field is present only in the MOVESActivityOutput and
MOVESMesoscaleActivityOutput tables. It references the ActivityType table which
defines activityTypeID=1 as distance.
The activityMean field is present only in the MOVESActivityOutput and
MOVESMesoscaleActivityOutput tables. It is not used in the demonstration version
of Draft MOVES2009.
The activitySigma field is present only in the MOVESActivityOutput and
MOVESMesoscaleActivityOutput tables. It is not used in the demonstration version
of Draft MOVES2009.

 261

Appendix A. Table of Acronyms

AB aktiebolog (Swedish)
AC air conditioning
API application program interface
AVFT alternative vehicle fuels and technologies
ASCII American Standard Code for Information Interchange
BTU British thermal unit
CH4 methane
CD compact disc
CMIT core model input table
CNG compressed natural gas
CSEC criteria start emission calculator
CSV comma-separated variable
DOT Department of Transportation
ECC energy consumption calculator
EPA Environmental Protection Agency
F Fahrenheit
FERC future emission rate calculator
FK foreign key
FIPS federal information processing standard
GB gigabyte
GPL general public license
GHz gigahertz
GUI graphical user interface
GNU GNU’s not UNIX (recursive)
GREET Greenhouse gases, Regulated Emissions, and Energy uses in

Transportation
H2 hydrogen
HC hydrocarbons
HDT heavy duty truck
HPMS Highway Performance Management System
IC internal combustion
ID identification
IM inspection/maintenance
kW kiloWatt
LDT light duty truck
LDV light duty vehicle
LPG liquified propane gas
LTLP lookup table link producer
MAR mileage accumulation rate
MB megabyte
MOVES MOtor Vehicle Emissions Simulator
DRAFT MOVES2009 The Highway Vehicle Implementation of MOVES
N2O nitrous oxide
NMIM National Mobile Inventory Model

 262

OBD on board diagnostics
ODBC open database connectivity
OMDG operating mode distribution generator
OTAQ Office of Transportation and Air Quality
PTW pump-to-wheel
RAM random access memory
RTC runs to completion
SBDG source bin distribution generator
SCC source classification code
SDK software development kit
SDRM Software Design and Reference Manual
SHO source hours operating
SHP source hours parked
SQL structured query language
SUV sport utility vehicle
TAG total activity generator
US United States
VMT vehicle miles traveled
VOC volatile organic hydrocarbon
VSP vehicle specific power
WTP well-to-pump
XML extended markup language

 263

Appendix B. MOVES Error/Warning Messages

Messages

Adding execution locations for county, [*], failed.

An error occurred while working with a database. The database could
have become unavailable or could have been modified externally from
MOVES.

Adding execution locations for link, [*], failed.

An error occurred while working with a database. The database could
have become unavailable or could have been modified externally from
MOVES.

Adding execution locations for state, [*], failed.

An error occurred while working with a database. The database could
have become unavailable or could have been modified externally from
MOVES.

Adding execution locations for the nation failed.

An error occurred while working with a database. The database could
have become unavailable or could have been modified externally from
MOVES.

Adding execution locations for zone, [*], failed.

An error occurred while working with a database. The database could
have become unavailable or could have been modified externally from
MOVES.

All data is not yet ready to be exported. [*]

The selected internal control strategy is not ready to export its data. Check
the strategy's GUI to resolve any errors before exporting.

An EmissionCalculator encountered an SQL exception while
exporting data using:

An error occurred while working with a database. The database could
have become unavailable or could have been modified externally from
MOVES.

An SQL exception occurred while adding execution locations.

An error occurred while working with a database. The database could
have become unavailable or could have been modified externally from
MOVES.

An SQL exception occurred while building execution indexes.

 264

An error occurred while working with a database. The database could
have become unavailable or could have been modified externally from
MOVES.

An SQL exception occurred while building mesoscale lookup links.

An error occurred while working with a database. The database could
have become unavailable or could have been modified externally from
MOVES.

An SQL exception occurred while building the runspec filter sets.

An error occurred while working with a database. The database could
have become unavailable or could have been modified externally from
MOVES.

An SQL exception occurred while building the runspec filter tables.

An error occurred while working with a database. The database could
have become unavailable or could have been modified externally from
MOVES.

Copy table, [*], from source database failed.

An error occurred while working with a database. The database could
have become unavailable or could have been modified externally from
MOVES.

Could not build TTGeMinutes table.

An error occurred while working with a database. The database could
have become unavailable or could have been modified externally from
MOVES.

Could not calculate average speeds

An error occurred while working with a database. The database could
have become unavailable or could have been modified externally from
MOVES.

Could not calculate Engine Power Distribution.

An error occurred while working with a database. The database could
have become unavailable or could have been modified externally from
MOVES.

Could not calculate operating mode distributions

An error occurred while working with a database. The database could
have become unavailable or could have been modified externally from
MOVES.

Could not check driveScheduleSecondLink

An error occurred while working with a database. The database could
have become unavailable or could have been modified externally from

 265

MOVES.

Could not create hot soak and operating temperature tables.

An error occurred while working with a database. The database could
have become unavailable or could have been modified externally from
MOVES.

Could not create unique vehicle IDs.

An error occurred while working with a database. The database could
have become unavailable or could have been modified externally from
MOVES.

Could not delete Project Total Activity data.

An error occurred while working with a database. The database could
have become unavailable or could have been modified externally from
MOVES.

Could not delete Total Activity data from previous run.

An error occurred while working with a database. The database could
have become unavailable or could have been modified externally from
MOVES.

Could not determine average tank temperature.

An error occurred while working with a database. The database could
have become unavailable or could have been modified externally from
MOVES.

Could not determine brackets for Average Speed Bins.

An error occurred while working with a database. The database could
have become unavailable or could have been modified externally from
MOVES.

Could not determine cold soak fractions.

An error occurred while working with a database. The database could
have become unavailable or could have been modified externally from
MOVES.

Could not determine cold soak tank temperature.

An error occurred while working with a database. The database could
have become unavailable or could have been modified externally from
MOVES.

Could not determine Evaporative Emissions Operating Mode
Distribution.

An error occurred while working with a database. The database could
have become unavailable or could have been modified externally from
MOVES.

 266

Could not determine final Operating Mode Distribution.

An error occurred while working with a database. The database could
have become unavailable or could have been modified externally from
MOVES.

Could not determine fraction of drive schedules in each speed bin.

An error occurred while working with a database. The database could
have become unavailable or could have been modified externally from
MOVES.

Could not determine fractions of Operating Modes per Drive
Schedule

An error occurred while working with a database. The database could
have become unavailable or could have been modified externally from
MOVES.

Could not determine hot soak temperatures.

An error occurred while working with a database. The database could
have become unavailable or could have been modified externally from
MOVES.

Could not determine operating mode for sample vehicle trips.

An error occurred while working with a database. The database could
have become unavailable or could have been modified externally from
MOVES.

Could not determine operating mode fraction.

An error occurred while working with a database. The database could
have become unavailable or could have been modified externally from
MOVES.

Could not determine Operating Mode ID distribution.

An error occurred while working with a database. The database could
have become unavailable or could have been modified externally from
MOVES.

Could not determine soak activity fraction.

An error occurred while working with a database. The database could
have become unavailable or could have been modified externally from
MOVES.

Could not determine soak times for sample vehicle trips.

An error occurred while working with a database. The database could
have become unavailable or could have been modified externally from
MOVES.

 267

Could not determine the distribution of drive schedules for non ramp
drive cycle.

An error occurred while working with a database. The database could
have become unavailable or could have been modified externally from
MOVES.

Could not determine the distribution of drive schedules for ramp
drive cycle.

An error occurred while working with a database. The database could
have become unavailable or could have been modified externally from
MOVES.

Could not do link operating mode setup

An error occurred while working with a database. The database could
have become unavailable or could have been modified externally from
MOVES.

Could not do TFG sql.

An error occurred while working with a database. The database could
have become unavailable or could have been modified externally from
MOVES.

Could not flag marker trips

An error occurred while working with a database. The database could
have become unavailable or could have been modified externally from
MOVES.

Could not load InternalControlStrategy text

The RunSpec file is corrupt, likely due to a typo.

Could not load InternalControlStrategy XML.

The RunSpec file is corrupt, likely due to a typo.

Could not load runspec XML.

The RunSpec file is corrupt, likely due to a typo.

Could not remove Source Bin Distribution data from previous run.

An error occurred while working with a database. The database could
have become unavailable or could have been modified externally from
MOVES.

DROP TABLE failed

An error occurred while working with a database. The database could
have become unavailable or could have been modified externally from
MOVES.

Error removing generated data from the execution database.

 268

An error occurred while working with a database. The database could
have become unavailable or could have been modified externally from
MOVES.

Exception occurred on 'randomizeTableData' [*] using

An error occurred while working with a database. The database could
have become unavailable or could have been modified externally from
MOVES.

Failed to get monthID from MonthOfAnyYear with:

An error occurred while working with a database. The database could
have become unavailable or could have been modified externally from
MOVES.

Failed to update MOVESRun.minutesDuration

An error occurred while working with a database. The database could
have become unavailable or could have been modified externally from
MOVES.

Get list of years failed

An error occurred while working with a database. The database could
have become unavailable or could have been modified externally from
MOVES.

IMGUI countyName==null, countyID=

The I/M display could not find required human-readable details for an
I/M program in the database.

IMGUI fuelName==null, fuelTypeID=

The I/M display could not find required human-readable details for an
I/M program in the database.

IMGUI inspectFreqName==null, inspectFreq=

The I/M display could not find required human-readable details for an
I/M program in the database.

IMGUI null text for display line

The I/M display could not find required human-readable details for an
I/M program in the database.

IMGUI pollutantName==null, polProcessID=

The I/M display could not find required human-readable details for an
I/M program in the database.

IMGUI processName==null, polProcessID=

The I/M display could not find required human-readable details for an
I/M program in the database.

 269

IMGUI regClassName==null, regClassID=

The I/M display could not find required human-readable details for an
I/M program in the database.

IMGUI testStandardsName==null, testStandardsID=

The I/M display could not find required human-readable details for an
I/M program in the database.

IMGUI testTypeName==null, testTypeID=

The I/M display could not find required human-readable details for an
I/M program in the database.

InternalControlStrategy failed to load

The RunSpec file is corrupt, likely due to a typo.

Invalid class name entry

The RunSpec file is corrupt, likely due to a typo.

Invalid DatabaseSelection

The RunSpec file is corrupt, likely due to a typo.

Invalid Generic County.

The RunSpec file is corrupt, likely due to a typo.

Invalid GeographicOutputDetail

The RunSpec file is corrupt, likely due to a typo.

Invalid GeographicSelection.

The RunSpec file is corrupt, likely due to a typo.

Invalid HydrocarbonUnitSystem

The RunSpec file is corrupt, likely due to a typo.

Invalid InputDatabase

The RunSpec file is corrupt, likely due to a typo.

Invalid InternalControlStrategy

The RunSpec file is corrupt, likely due to a typo.

Invalid InternalControlStrategy XML file.

The RunSpec file is corrupt, likely due to a typo.

Invalid ModelDomain

The RunSpec file is corrupt, likely due to a typo.

Invalid ModelScale

 270

The RunSpec file is corrupt, likely due to a typo.

Invalid OffRoadVehicleSCC

The RunSpec file is corrupt, likely due to a typo.

Invalid OffRoadVehicleSelection

The RunSpec file is corrupt, likely due to a typo.

Invalid OnRoadVehicleSelection

The RunSpec file is corrupt, likely due to a typo.

Invalid OutputDatabase

The RunSpec file is corrupt, likely due to a typo.

Invalid OutputEmissionsBreakdownSelection

The RunSpec file is corrupt, likely due to a typo.

Invalid OutputFactors

The RunSpec file is corrupt, likely due to a typo.

Invalid OutputTimeStep

The RunSpec file is corrupt, likely due to a typo.

Invalid PMSize

The RunSpec file is corrupt, likely due to a typo.

Invalid PollutantProcessAssociation

The RunSpec file is corrupt, likely due to a typo.

Invalid RoadType

The RunSpec file is corrupt, likely due to a typo.

Invalid RunSpec XML file.

The RunSpec file is corrupt, likely due to a typo.

Invalid ScaleInputDatabase

The RunSpec file is corrupt, likely due to a typo.

Invalid timing on request for instantiated object [name]

This internal error can occur if user-modified Java code calls
MOVESInstantiator.didInstantiate() out of the proper sequence.

Invalid UncertaintyParameter

The RunSpec file is corrupt, likely due to a typo.

Loading a list of runs for the MOVES Error Log failed.

An error occurred while working with a database. The database could

 271

have become unavailable or could have been modified externally from
MOVES.

loading counties failed

An error occurred while working with a database. The database could
have become unavailable or could have been modified externally from
MOVES.

loading lookup table failed

An error occurred while working with a database. The database could
have become unavailable or could have been modified externally from
MOVES.

loading pollutantProcessMap failed

An error occurred while working with a database. The database could
have become unavailable or could have been modified externally from
MOVES.

loading reverse lookup table failed

An error occurred while working with a database. The database could
have become unavailable or could have been modified externally from
MOVES.

Missing parameter i=

The RunSpec file is corrupt, likely due to a typo.

Only one object per RunSpec is allowed for this type

For some internal control strategies, the AVFT for instance, it only makes
sense to have at most one of them per RunSpec.

Replace into table, [*], from source database failed.

An error occurred while working with a database. The database could
have become unavailable or could have been modified externally from
MOVES.

Road type ID, [*], with name, '[*]', was not found in the default
database.

The RunSpec file is corrupt, likely due to a typo.

Run specification must contain pollutant-process, county, year, and
vehicle-fuel type selections for an IMCoverage report to be produced.

MOVES could not generate the list of I/M coverage records that apply to
the current RunSpec because the RunSpec lacks selections on one or more
required screens.

Since only one object per RunSpec is allowed for this type, importing
a new one will overwrite this object. Do you really want to do this?

 272

For some internal control strategies, the AVFT for instance, it only makes
sense to have at most one of them per RunSpec.

SQL error in FER Adjustment File Loading

An error occurred while working with a database. The database could
have become unavailable or could have been modified externally from
MOVES.

SQL error in heat index.calculation

An error occurred while working with a database. The database could
have become unavailable or could have been modified externally from
MOVES.

Table model unable to select

An error occurred while working with a database. The database could
have become unavailable or could have been modified externally from
MOVES.

Table name is NULL for the query :

An error occurred while working with a database. The database could
have become unavailable or could have been modified externally from
MOVES.

The selected file does not contain this type of object, it has not been
loaded.

MOVES could not find the requested internal control strategy object
within the file you selected.

TTG could not access SoakActivityFractions

An error occurred while working with a database. The database could
have become unavailable or could have been modified externally from
MOVES.

Unable to apply new FuelEngFraction

An error occurred while working with a database. The database could
have become unavailable or could have been modified externally from
MOVES.

Unable to calculate FuelEngFraction

An error occurred while working with a database. The database could
have become unavailable or could have been modified externally from
MOVES.

Unable to calculate model year range needed

An error occurred while working with a database. The database could
have become unavailable or could have been modified externally from
MOVES.

 273

Unable to calculate RegClassFraction

An error occurred while working with a database. The database could
have become unavailable or could have been modified externally from
MOVES.

Unable to calculate SCCVTypeDistribution

An error occurred while working with a database. The database could
have become unavailable or could have been modified externally from
MOVES.

Unable to calculate SizeWeightFraction

An error occurred while working with a database. The database could
have become unavailable or could have been modified externally from
MOVES.

Unable to check for county domain data

An error occurred while working with a database. The database could
have become unavailable or could have been modified externally from
MOVES.

Unable to check missing emission rates:

An error occurred while working with a database. The database could
have become unavailable or could have been modified externally from
MOVES.

Unable to count operating modes for polProcessID = [*].

An error occurred while working with a database. The database could
have become unavailable or could have been modified externally from
MOVES.

Unable to create InternalControlStrategy

While setting up a requested internal control strategy, an error occurred.
This is likely a case of a RunSpec that requests an internal control strategy
that is not compiled into this machine's MOVES.

Unable to create MOVESLookupOutput table

An error occurred while working with a database. The database could
have become unavailable or could have been modified externally from
MOVES.

Unable to create temporary summary tables

An error occurred while working with a database. The database could
have become unavailable or could have been modified externally from
MOVES.

Unable to delete EE Operating Mode Distribution data

 274

An error occurred while working with a database. The database could
have become unavailable or could have been modified externally from
MOVES.

Unable to delete from database

An error occurred while working with a database. The database could
have become unavailable or could have been modified externally from
MOVES.

Unable to delete Operating Mode Distribution data from a previous
run

An error occurred while working with a database. The database could
have become unavailable or could have been modified externally from
MOVES.

Unable to delete Start Operating Mode Distribution data from a
previous run

An error occurred while working with a database. The database could
have become unavailable or could have been modified externally from
MOVES.

Unable to delete tank fuel data from a previous run

An error occurred while working with a database. The database could
have become unavailable or could have been modified externally from
MOVES.

Unable to delete tank temperature data from a previous run

An error occurred while working with a database. The database could
have become unavailable or could have been modified externally from
MOVES.

Unable to do AVFT diagnostics

An error occurred while working with a database. The database could
have become unavailable or could have been modified externally from
MOVES.

Unable to fill lookup array

An error occurred while working with a database. The database could
have become unavailable or could have been modified externally from
MOVES.

Unable to fill lookup arrays

An error occurred while working with a database. The database could
have become unavailable or could have been modified externally from
MOVES.

Unable to finalize MOVESEventLog

 275

An error occurred while working with a database. The database could
have become unavailable or could have been modified externally from
MOVES.

Unable to find user inputs for ColdSoakInitialHourFraction

An error occurred while working with a database. The database could
have become unavailable or could have been modified externally from
MOVES.

Unable to get database info for Pollutant Process Association where
polProcessID =

An error occurred while working with a database. The database could
have become unavailable or could have been modified externally from
MOVES.

Unable to get database key for Pollutant Process Association where
Process ID = [*] and Pollutant ID = [*].

An error occurred while working with a database. The database could
have become unavailable or could have been modified externally from
MOVES.

Unable to get SHO count in ECC

An error occurred while working with a database. The database could
have become unavailable or could have been modified externally from
MOVES.

Unable to get single opModeID for polProcessID = [*].

An error occurred while working with a database. The database could
have become unavailable or could have been modified externally from
MOVES.

Unable to learn Create Table statements

An error occurred while working with a database. The database could
have become unavailable or could have been modified externally from
MOVES.

Unable to load ATRatio entries

An error occurred while working with a database. The database could
have become unavailable or could have been modified externally from
MOVES.

Unable to load columns in StateCountyMapGUI using

An error occurred while working with a database. The database could
have become unavailable or could have been modified externally from
MOVES.

Unable to load HC entries

 276

An error occurred while working with a database. The database could
have become unavailable or could have been modified externally from
MOVES.

Unable to load tables in StateCountyMapGUI using

An error occurred while working with a database. The database could
have become unavailable or could have been modified externally from
MOVES.

Unable to lookup retrofit abbreviation

An error occurred while working with a database. The database could
have become unavailable or could have been modified externally from
MOVES.

Unable to open hot soak cursor

An error occurred while working with a database. The database could
have become unavailable or could have been modified externally from
MOVES.

Unable to open SVTH cursor

An error occurred while working with a database. The database could
have become unavailable or could have been modified externally from
MOVES.

Unable to perform Source Bin Distribution for pollutant/process,[*]/

An error occurred while working with a database. The database could
have become unavailable or could have been modified externally from
MOVES.

Unable to process exported file contents

An error occurred while working with a database. The database could
have become unavailable or could have been modified externally from
MOVES.

Unable to process work file contents

An error occurred while working with a database. The database could
have become unavailable or could have been modified externally from
MOVES.

Unable to query PollutantProcessAssoc

An error occurred while working with a database. The database could
have become unavailable or could have been modified externally from
MOVES.

Unable to save CMITs

An error occurred while working with a database. The database could
have become unavailable or could have been modified externally from

 277

 278

MOVES.

Unable to save XML for InternalControlStrategy

The RunSpec file is corrupt, likely due to a typo.

Unable to save XML.

The RunSpec could not be saved. This often happens if the file is already
open in a text editor.

Unable to store table tracking details

An error occurred while working with a database. The database could
have become unavailable or could have been modified externally from
MOVES.

Unable to update database

An error occurred while working with a database. The database could
have become unavailable or could have been modified externally from
MOVES.

Unable to update MOVESWorkersUsed

An error occurred while working with a database. The database could
have become unavailable or could have been modified externally from
MOVES.

Unable to write error message to output database.

An error occurred while working with a database. The database could
have become unavailable or could have been modified externally from
MOVES.

Unable to write start time to MOVESEventLog

An error occurred while working with a database. The database could
have become unavailable or could have been modified externally from
MOVES.

Unable to write stop time to MOVESEventLog

An error occurred while working with a database. The database could
have become unavailable or could have been modified externally from
MOVES.

Warning: [SAX XML parser exception]

The RunSpec file is corrupt, likely due to a typo.

	Title Page
	A Note about the Capitalization and Naming Conventions Used in this Document
	Table of Contents
	1. Introduction
	2. MOVES Software Components
	3. Computer Hardware and System Software Requirements
	3.1. Details on JAVA Platform Requirements
	3.2. Details on MySQL Platform Requirements
	3.3. Details on Shared File Directory Platform Requirements

	4. MOVES Computer Platform Configuration
	5. MOVES Software Licensing
	6. Installation Overview
	7. Processing Overview
	8. Data and Control Flow
	9. Functional Design Concepts
	9.1. Geographic Locations
	9.2. Time Periods
	9.3. Characterizing Emission Sources (Vehicle Classification)
	9.4. Emission Pollutants
	9.5. Emission Processes
	9.6. Vehicle Fuel Classifications
	9.7. Emission Source Activity
	9.8. Modeling Vehicle Inspection/Maintenance Programs

	10. MOVES Functional Specifications
	11. DRAFT MOVES2009 Input and Default Databases
	11.1 Use of Data Types
	11.2 Functional Types of Tables

	11.3 Database Tables and Their Use

	11.4 Where to Find More Detailed MOVES Database Documentation

	12. DRAFT MOVES2009 Output Databases
	12.1 MOVESRun Table

	MOVESError Table

	The MOVESActivity Output, MOVESOutput, MOVESMesoscalActivityOutput and MOVESMesoscaleOutput Tables

	Appendix A - Table of Acronyms

	Appendix B - MOVES Error/Warning Messages

