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Abs t rac t  

The fully nonlinear development of small wavelength Giirtler vortices in a growing 
boundary layer is investigated using a combination of asymptotic and numerical methods. 
The starting point for the analysis is the weakly nonlinear theory of Hall (1982b) who 
discussed the initial development of small amplitude vortices in a neighbourhood of the 
location where they first become linearly unstable. That development is unusual in the 
context of nonlinear stability theory in that it is not described by the Stuart-Watson 
approach. In fact the development is governed by a pair of coupled nonlinear partial 
differential evolution equations for the vortex flow and the mean flow correction. Here the 
further development of this interaction is considered for vortices so large that the mean flow 
correction driven by them is as large as the basic state. Surprisingly it is found that such 
a nonlinear interaction can still be described by asymptotic means. It is shown that the 
vortices spread out across the boundary layer and effectively drive the boundary layer. In 
fact the system obtained by writing down the equations for the fundamental component of 
the vortex generate a differential equation for the basic state. Thus the mean flow adjusts 
so as to make these large amplitude vortices locally neutral. Moreover in the region where 
the vortices exist the mean flow has a ‘square-root’ profile and the vortex velocity field 
can be written down in closed form. The upper and lower boundaries of the region of 
vortex activity are determined by a free-boundary problem involving the boundary layer 
equations. In general it is found that this region untimately includes almost all of the 
original boundary layer and much of the free-stream. In this situation the mean flow has 
essentially no relationship to the flow which exists in the absence of the vortices. 
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Introduction 

Our concern is with large amplitude Giirtler vortices in viscous incompressible flows 
over walls of variable curvature. Much of the recent interest in the Gortler instability 
has been motivated by practical problems such as Laminar Flow Control or the flow over 
turbine blades. A particular cause for concern in Laminar Flow Control is the question 
of whether Gortler vortices are likely to induce premature transition because of their 
effect on the receptivity of the original boundary layer to Tollmien-Schlichting waves or 
crossflow vortices. As yet little progress has been made with the latter problem but 
the corresponding internal fully developed flow problem has been discussed by Hall and 
Bennett (1986), Bennett and Hall, (1987) and Hall and Smith (1987). Thus, for example, 
Bennett and Hall (1987) showed that fully,,nonlinear Taylor vortices in a curved channel 
can have a massive influence on the growth of lower branch Tollmien-Schlichting waves. 
The absence of a fully nonlinear description of Gijrtler vortices in external flows means that 
a similar interaction problem cannot yet be attempted for these flows. Here we shall show 
how the required large amplitude vortex flows can be described asymptotically. However 
it is perhaps useful if we first describe earlier work on the Gortler problem. 

The original work of Gortler (1940) and the later work of, for example, Hammerlin 
(1955, 1956), Smith (1955) and Floryan and Saric (1979) did not take care of boundary 
layer growth in a selfconsistent manner. Unlike the corresponding Tollmien-Schlichting 
instability problem, where the fact that instability occurs at  relatively high Reynolds 
numbers renders parallel flow calculations reasonably accurate, the neglect of non-parallel 
effects in the Gortler problem leads to inconsistent and, in some cases, physically absurd 
results. Thus as extreme examples some of the results predicted by these calculations 
showed instability a t  zero Gortler number or zero wavenumber. 

In fact at high wavenumbers the above theories gave consistent results and Hall (1982a) 
showed that in this regime an asymptotic solution of the non-parallel problem is possible. 
The vortices are found to become linearly unstable a t  a particular downstream location and 
to concentrate themselves a t  some depth in the boundary layer. This depth corresponds to 
the position where Rayleigh’s inviscid instability criterion for the boundary layer is most 
violated. At O( 1) wavenumbers no asymptotic or self-consistent parallel flow calculation is 
possible and the linear instability partial differential equations must be solved numerically 
as was done by Hall (1983). These equations are parabolic in the downstream variable 
and so can be solved by a marching procedure and the neutral location for a disturbance 
inserted at  a given position can be calculated. Hall (1983) showed that the neutral curve 
produced by such a calculation depends on the nature of the initial disturbance. However 
each such neutral curve has none of the obvious anomalies of the parallel flow neutral 
curves and at high wavenumbers the different neutral curves merge into the asymptotic 
result . 

The initial nonlinear development of Gijrtler vortices of small waveiength was discussed 
by Hall (1982b). It was found that the nonlinear interaction is dominated by a ‘mean-field’ 
type theory in which the fundamental mode and mean flow correction reinforce each other. 
The higher harmonics play no role in this interaction so the Stuart-Watson approach is 



2 

not applicable. In order to motivate the asymptotics to  be used for much larger vortices 
it is instructive to summarize the essential details of the calculation of Hall (1982b) 

Suppose then that a vortex of nondimensional wavenumber E-' is locally neutrally 
stable at the downstream location x = z of a two-dimensional boundary layer flow (ti, D). 
If the most unstable part of the boundary layer is at  a depth y = g it is necessary to define 
variables X and by 

9 (l.lu, b) X =  e = -  (x - 2) Y - Q  
E ET 

and the total downstream velocity component expands in the neighbourhood of (2, Q) as 

For a boundary layer which has a local Gortler number increasing faster than the fourth 
power of the local wavenumber the evolution equation for uM, the mean flow correction, 
and the fundamental U1 take the form 

aUM -e + x u1 = 2u1---. 1 ac { a i . - m - 4  
a2 2 a  1 ,  

(1.3u, b) 

The linearized form of (1.3) shows that U1 can be expressed in terms of parabolic cylinder 
functions. Otherwise (1.3) must be solved numerically by a marching procedure. However 
a t  large values of X it was shown by Hall (1982b) that U M  and U1 develop a surprisingly 
simple asymptotic structure. In fact U M  and U1 can be written down explicitly in terms of 
X and a similarly variable € in a finite interval €1 < 6 < €2. Near €1, €2 the fundamental 
satisfies a nonlinear Airy equation and is reduced to zero exponentially whilst U M  persists 
above €2 and below El. Of crucial importance is the fact that when this structure develops 
UM - X 3 / 2 ,  U1 - X1/, so that the total mean flow correction c 3 j 2 u ~  is comparable with 
the basic state for X - I/E. Thus if x - z is O(1) the vortices will drive a mean flow 
correction as big as the original mean state. 

The remarkable feature of the latter regime is that the nonlinear Gortler equations can 
still be solved asymptotically in this region. Thus we are able to describe asymptotically 
a large amplitude disturbance capable of altering at  zeroth order the basic state. The 
structure of the large X solution of Hall (1982b) continues to describe the flow but with 
the major change that the depth of the fluid where vortex activity persists is now O(1). In 
this layer the mean flow is driven by the vortices and indeed is determined as a solvability 
condition on the equations for the fundamental there. The downstream mean velocity 
component in this layer then has a simple square root profile and the mean equations 
drive a finite amplitude vortex. Thus there is an exact reversal of the usual roles of 
the equations for the mean and fundamental obtained by Fourier- analysing the spanwise 
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c2pendence o the disturbance. The situation is not unlike the scenario postulated some 
years ago for turbulent flows by Malkus (1956). We recall that Malkus argued that the 
‘mean’ part of a turbulent flow would organize itself so that any ‘modes’ were marginally 
stable. We shall refer to the layer where the vortex activity is concentrated as I. This layer 
is bounded by ‘transition’ layers of depth c2/3 where the vortices are again reduced to zero 
as solutions of a nonlinear Airy equation. We refer to these layers as I I a , b  respectively 
and the remainder of the flow is denoted by regions IIIa, b as shown in Figure 1. 

In regions IIIa, b there is no spanwise dependence for the flow and the velocity field 
satisfies the boundary layer equations. The solutions of these equations must be matched 
with those emanating from IIa, b whose po2itions are unknown functions of the downstream 
variables. Thus a complete description of the flow requires the numerical solution of a free- 
boundary partial differential system. 

The region I of vortex activity in general grows as the flow moves downstream until 
it eventually occupies almost all of the extent of the boundary layer which would exist in 
the absence of the vortices. In fact the only part free of vortices is a thin layer at  the 
wall and the vortices even take over part of the free stream. At this stage the flow has 
effectively no relationship with the flow which would exist in the absence of the vortices. 
The procedure adopted in the rest of this paper is as follows: in $2 the nonlinear Gijrtler 
vortex equations are derived. In $3 an asymptotic solution of these equations for large 
amplitude small wavelength vortices is given. In $4 an asymptotic solution of the initial 
and ultimate downstream stages of the free-boundary problem obtained in $3 is discussed. 
In $5 a numerical scheme which we have used to solve this free boundary problem is 
described. Finally in 56 we discuss our results and draw some conclusions. 

2. Formulation of the nonlinear Gortler equations. 

We consider the flow of a viscous fluid of kinematic viscosity v, density p,  over a wall 
of variable concave curvature a-’x(X/L). Here X denotes distance along the wall, a is a 
typical radius of curvature and L is a typical length scale along the wall. If UO is a typical 
flow velocity we define a Reynolds number RE by 

UOL RE = -, 
U 

and a curvature parameter 6 by 
L 
a 

6 = -. 
We confine our attention to the limit RE + 00 with the Giirtler number G defined by 

held fixed. We take ( X ,  Y, 2) to be co-ordinates along the wall, normal to the wall and in 
the spanwise direction respectively. If (U, V,  W) denotes the corresponding velocity vector 
we define dimensionless co-ordinates (z, y, z )  and velocity (u, v ,  w )  by 

1 

(5, y, z )  = L - ’ ( X , Y R i ,  Z R j )  
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and 
(U,V,W,) = Uo(u,vR;1/2,WR;1/2). 

We restrict our analysis to flows with u 3 1, y --+ 00 so that the pressure P can be written 
in the form 

uo2 P = p - p  
RE (2.4) 

The Navier-Stokes equations for the flow can be written in the form 

du av  aw 
- + - + - = 0, 
ax dy  a z  

du d u  au 
v u = u - + v -  +w-, 

ax dy az 

1 2 dp dv dv dV 
2 dy ax a y  a z  

VU - -GXU - - = U- + V -  + W-, 

d p  dw a w  a W  v w  - - = u-+v-+  w-, 
dz ax d y  az 

(2.5a, b, c ,  d )  

d2 d2 - 1/2 where V = - + - and terms of relative order RE have been neglected. We further 
du2 dz2 

note that wehave assumed that the flow is steady. 

In the absence of any Gortler vortex we can write (u, v,  w) = (a, 8 , O )  in which case 
a,V satisfy 

a = jj = 0, y = 0, 5 + 1, v + 00, 5 = 1 , s  = 0 , y  > 0. 

Thus (ti 0 0) is just a Blasius boundary layer until a Gijrtler vortex begins to grow at some 
downstream location 

Finally in this section we note that our analysis can easily be modified to take care of 
pressure gradient driven flows. In that case P in (2.4) must be altered so as to contain an x 
dependent component of size pU: and the boundary conditions in (2.6) must be modified. 

We shall obtain a solution of (2.5) which satisfies 

(2.7a, b)  

In fact we shall see that when y + 00,v + v(x) ,w --+ 0; in general v(x) is not the 
y velocity component at  infinity of a Blasius boundary layer so the higher order outer 
‘inviscid’ problem associated with (2.5) is modified by the instability. 
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3. The evolution equations for large amplitude Gortler vortices 

We now develop an asymptotic solution of (2 .5 )  valid in the limit of small vortex 
wavelength. We suppose that the boundary layer (a(x, y) ,  ~ ( x ,  y)) becomes linearly un- 
stable to Gortler vortices at x = x*. Furthermore we assume that the curvature function 
x ( x )  is such that the flow becomes more unstable with increasing x. Thus if the boundary 
layer is a Blasius boundary layer we require that x increases more rapidly than xh. This 
restriction is discussed by Hall (1983) and is a direct consequence of the scaling of the right 
hand branch of the neutral curve for Giirtler vortices. 

The discussion of $2 suggests that beyond x = x* the flow will support fully nonlinear 
Gortler vortices. The flowfield is therefdre split up as shown in Figure 1. The vortex 
activity is therefore confined between yl(&) and y2(x). The layers denoted by regions 
I Ia ,  b are required in order to smooth out the algebraically decaying vortices in region I .  
Later we will see that these layers must be of thickness in the limit E --+ 0. We expand 
the Gortler number G in the form 

whilst in region I the appropriate expansions of u,v,w and p are 

u = a, + E l i 1  + * * + {€E(u ;  + EU; + * * -) + €2E2(UZ + EU? + * - .) * - - + C.C.} 
21 = Bo + €81 + * * - + {e'E(V,1 + €v; + - .) + E E (V,2 + EV? + * * .) * * * + C.C.} 

w = E(Wt + EWf + - - .) + EE2(W$ + EW,2 + * - .) * - - + C.C. 

p = Po + €PI + * * - + {s'E(P,' + EPf + * - .) + E E (V,2 + EV,Z + - - .) * * * + C.C.} 

0 2  

0 2  

(3 .2a ,  b,  c ,  d )  
Here 'C.C.' denotes 'complex conjugate' whilst E = exp(iz/E). In the absence of a vortex 
the flow reduces to the basic state w = p = 0,u = a,v = 8. We note that the only z 
dependence in (3.2) is through E so that ~ O , B O ,  etc. are functions of x and y only. 

The expansions (3.1), (3 .2)  are then substituted into (2 .5 )  and like powers of E for 
each Fourier component are equated. The mean flow (a0,80) is determined from the 
zeroth order continuity and x momentum equations. The pressure field PO is then found 
from the normal momentum equation. The equations to  determine t i0  and 80 are 

aa0 ago -+ -=o ,  a x  ay 
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Thus the boundary layer equations are now driven by the nonlinear interaction of the 
Gortler vortex with itself. The zeroth order equations for the fundamental terms in the 
core are 

Vi + GoxUiiio = 0, 

-;Po’ = w;. 
The consistency of equations (3.4b,c) requires that throughout the core 

and (3.3) then becomes 
aiio au0 

ax a y  0, -+-= 

(3.4a, b, c ,  d)  

(3.6a, b)  

Thus (3.5) determines the mean flow streamwise velocity component in the core whilst 
(3.6b) then determines 1 V; 1’. It follows that in the core the boundary layer flow is now 
being forced by the vortex which from (3.6b) is itself driven by the boundary layer. This 
is, of course, the exact reverse of the roles played by these equations in the linear or weakly 
nonlinear descriptions of this problem. In fact the interaction described by (3.5) and (3.6) 
is not unlike that postulated some years ago by Malkus (1956) for turbulent flows. In the 
latter theory it was argued that the ’mean flow’ for a turbulent flow organizes itself so as 
to make any possible instability marginally stable. In the large amplitude Gortler problem 
this mean flow adjustment is achieved by centrifugal effects and is described by (3.5). We 
can integrate (3.5), (3.6) to give 

(3 .7~’  b) 

I 
I 

I ‘ where a ( x )  and b ( x )  are arbitrary functions of x and a dash denotes a derivative with 
respect to 2. The function 1 V: 1’ is found by integrating (3.6) to  give 

I 
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where B(x)  is another function of z to be determined. The function 
negative so y1 and y2 which determine the edges of I satisfy (3.8) with 
then eliminated we obtain 

V ,  l 2  cannot be 
= 0. If B(z )  is 

The above equation is not of course sufficient to determine a, b, y1 and y2 so we are not yet 
able to determine the location of the lay& IIa,b. The thickness of these layers is deter- 
mined by a balance between diffusion across the layers and convection in the streamwise 
direction. This balance shows that the layers are of thickness so that in I I a  we write 

respectively. We can 
l a  a ” a and -- a a 

€213  at  Hence in I I a  we replace - and - by - - -- 
d X  a y  ax €2/3 a t  

see from (3.8) that I Vd 1 2 -  y2 - y when y --f yz- in which case the fundamental velocity 
components and pressure in (3.2) decrease by O(dj3) where y - y2 = O(e2j3). The 
appropriate expansions in I I a  therefore take the form 

The coefficient in the above expansions are functions of x and t. 
It has been anticipated above that the first harmonic functions also decrease in size 

in I Iu ;  this decrease is forced by the form of the equations for U:, V: in the core. The 
appropriate equations are 

4U: + V 2 b  = F1, (3.11a, b) 
&io 

Y 
2-  - F  4vo” + GOXU0 uo - 2, 

where F1 and F2 are quadratic in Ut, V , .  The forcing terms are therefore O ( E ~ / ~ )  in I I a  
and so U:, V:, W:, Po2 must be rescaled in that layer as indicated in (3.10). We note that 
(3.11) can always be solved in the core since ti0 satisfies (3.5). A similar analysis applies 
to the higher harmonics so we conclude that the fundamental effectively drives the mean 
flow and all the higher harmonics. The situation is quite different from the usual type 
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of weakly nonlinear based on the Stuart-Watson method where the mean flow remains 
essentially identical to that present before any instability occurs. 

We now return to the solution of (2.3) in the transition layer I Ia .  The first two terms 
in the expansion of the mean flow in this layer satisfy 

and the solutions of these equations which match with the solution in the core are 

( 3 . 1 2 ~ ’  b)  

The function Z2 is forced by the fundamental terms in (3.10) so that we cannot proceed 
further without solving for the latter terms. The equations to determine (U01,Vol) and 
(U11,Vll) are found to be 

= 0, +VOl 
Goxd--%z uo 1 

(3.13~’ b,  c ,  d )  

The equations (3.13a,b) are of course always consistent but (3.13c,d) are only consistent 
if an orthogonality condition holds. To obtain this condition we must proceed to higher 
order in the mean flow expansion. 

The first order solution for 50 is found to be 

whilst E2 satisfies 

which can be integrated once to give 

-- az2 b 2 I VOl l 2  + f. (3.14) at - -I 3X2Go 2y21 + 4G4-1 - Gw 
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Here f(x) is another function which can only be determined a t  higher order; for our 

purposes here it is not required here. Having determined - we can now write down the 

appropriate solvability condition for (3.13b): 

aE2 

a€ 

where 

(3.15) 

+ bdGTdZ3Gl. 1 x’(a + 2Y2I2 
’, 3% 

S(x) = - [  a + 2Y2 
This equation is a particular form of the second Painleve transcendent and has been shown 
by Hastings and Mcleod (1978) to have a solution such that 

It follows that in I I a  the fundamental terms decay to zero so that the finite amplitude 
Gijrtler vortex is trapped below region I I Ia .  We note that a similar analysis for the higher 
harmonics shows that these functions also decay exponentially to  zero in I I a .  However 
the mean flow is virtually unaltered by the presence of I I a ,  thus the first two terms in the 
expansion of the mean flow in I I a  are simply obtained by expanding the mean flow in I 
in terms of €. This means that the mean flow in I I I a  must to zeroth order have ii,tiy and 
8 defined by the coreflow solution evaluated with y = y2. 

An identical analysis to  that above shows that the z-dependent part of the flow is 
reduced to  zero exponentially in IIb .  Hence in I I I b  there is only a mean velocity field. 
Thus in I I I a ,  b we write 

= a + o ( € ~ / ~ ) ,  = D + o ( € ~ / ~ ) ,  = = 0, (3.16) 

so that (a, a) defined in (0, y1) and (y2,oo) satisfies 

da aa a2a a - + g - = -  
a x  ay ay2’ 

aa ao - + - = o .  
ax ay 

These equations must be solved subject to 

(3.17) 

(3.18) 

(3.19) 

(3.20) 
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The equations (3.17) - (3.21) together with (3.9) specify a free boundary problem for y1,y2 
and the functions a ( x ) , b ( x ) .  Clearly no analytical solution to this problem is available. In 
fact it is also necessary to specify something about the ‘upstream’ nature of the instability. 
This amounts to finding an asymptotic form for the solution of this system close to the 
value of x where the original boundary layer becomes linearly unstable. This will also be 
discussed in $5 where a large x solution of the system will also be developed. In 95 a scheme 
which we have used to solve the system numerically will be described. However there is a 
special case where a similarity solution of the system can be generated. This corresponds 
to the case when the undisturbed boundary layer is Blasius flow and x is proportional to 

Though this particular case is perhaps not of much practical importance its solution 
is instructive in that it suggests how to solve the full free-boundary partial differential 
system numerically. For that reason we now indicate how the similarity solution can be 
calculated. 

Consider then the curvature distribution x(x) defined by 

x(x) = 6. 
I 

(3.22) 

If the undisturbed flow is a Blasius boundary layer the local Gartler varies with x2 
as does the fourth power of the local spanwise wavenumber. This is consistent with the 
scaling of the right hand branch of the neutral curve discussed by Hall (1982a). Hence on 
the basis of linear theory the flow is either stable or unstable for all values of x. We define 
the similarity variable q by 

Y q = -  6’ 
and seek a solution of (3.17) by writing I 

(3.23) 

1 
zi = -{qf’- f}. 6 fi = f‘(t7)’ 

The functions a and b then take the form 
- 

(3.24) 

(3.25) 

We can then show that the free boundary problem specified by (3.9)’ (3.17) and (3.21) is 
equivalent to 

f ”’ + f f ”  = 0, (3.26) 

on 

subject to 
(3.27) 



11 

and 
f'(m) = 1, 

together with the matching conditions 

(3.28) 

'c 

and the scaled form of (3.9): 

Yi Here we have replaced - by q j  for j = 1,2. Thus in the special case x = 6 we have 

a free boundary ordinary differential system to solve. The unknowns are ii, ?; and ql,q2, 
the boundaries of the region where a finite amplitude vortex exists. These constants and 
the function f were obtained by following the procedure shown below. 

(i) Integrate (3.26) forward from q = 0 with f(0) = f'(0) = 0 and an initial guess for 
f"(0). This integration is stopped at q = ql where f'(ql)f"(ql) = G. 

(ii) Using f(q1), f'(q1) calculate 6,6 from (3.29a,b) with j = 1. 

(iii) Now calculate q 2  from (3.30). 

(iv) Finally integrate (3.26) from q = q2 to some suitably large value of q with 

6 

f (q2), f'(q2) defined by (3.29a,b) with j = 2 and using 

(v) If f'(m) # 1 we return to step (i) and alter the initial value of f" a t  the wall in 

The above procedure was found to converge when used with Newton's method to 
update the value of f" at the wall. We found that, as expected, a solution exists only for 
Go > 4.2 the neutral value of Go. Beyond Go = 4.2 the values of q1 and q2 respectively 
decrease and increase from their limiting value ql = q2 = 1.56 when Go = 4.2. At larger 
values of Go,q2 varies linearly with Go whilst q l  goes to zero like GL3. These scalings 
can be recovered by an asymptotic investigation of (3.26) - (3.30) in the limit Go 4 00. 

some suitable manner. 
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Such a calculation shows that for Go >> 1, 71 = .l2GC3 and the value of 
7,9 predicted in this limit is shown in Figure 2 where we have shown the result of a full 
numerical solution of (3.26) - (3.30). 

Thus for the particular case x = the partial differential system governing the 
development of the mean flow can be reduced to an ordinary differential one. Moreover the 
results shown in Figure 2 suggest the type of behaviour for y1, y2 which we should expect 
for the general problem when x increases beyond its neutral value. At large values of x 
we shall see that a,structure essentially identical to that shown in Figure 2 for Go >> 1 
is set up. Finally we note that for other similarity boundary layers we can always choose 
a particular curvature distribution x (5) which leads to  an ordinary differential system for 
the mean flow. 

4. The initial and ultimate downstream developments of the instability. 

We first describe the development of the instability close to the downstream location 
where the boundary layer ( U , g , O )  becomes linearly unstable. The description of the flow 
in this region is similar to that given by Hall (1982b) in the weakly nonlinear regions so 
we shall not give all the details here. Suppose then that vortex with wavenumber 
is linearly unstable for x > x* and the instability originates in a layer of thickness 
centred on y = y*. The weakly nonlinear theory of Hall (1982b) suggests that the finite 
amplitude vortex occupies a region of depth O(x - x*)1/2 for I x - x* (<< 1. We therefore 
expand y1 and y2 in the form 

72 N +Go, 

Y1 = Y *  - (z - x*) 3 g + O(x - x*),  

y2 = y * + ( z - x * ) h g + O ( x - x * ) ,  

It is convenient for us to now define a similarly variable t by 

(4.1~2, b)  

( 4 4  

so that a a € 3  a l a  - --+--A- - j-- 
ax ax 2xac' ay X1/2d(' 

In region I we express (uo,g0) which satisfies (3.5) in the form 

is0 = B + Xu&) + - - - * (4.3~2, b)  

Here (a, a, 0) is again the boundary layer flow which exists in the absence of the instability. 
In the neighbourhood of (x*, y') ii, is, and the curvature x expand as 
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x = x o  + xx1+  x2x2 + - * - . (4.4a, b,  c )  

If we substitute (ao ,Vo)  from (4.3) into (3.5) and use (4.4) then, equating like powers of 
Xo, X f ,  X we obtain 

GoXO~OOulo = 1, 

u:o + 2UOOU20 = 0, 

(4.5~4 b,  c )  

Equation (4.5a) is satisfied if x* is the neutral location whilst (4.5b) holds because y* in 
the linear theory is chosen so that 

d da -@-) = 0, 
dY dY y = y*. 

Equation (4.5~) can be integrated once to give 

where 

and 

X l U l O  ~ O l U l O  

x o  uoo 
A. = --Ull - - - - 

A 1  = - UlOU20 

2100 
(4.7i.2, b) .  

We have anticipated in (4.7) that UM is an odd function of t;  this would otherwise have 
been determined at  a later stage. 

The Gortler vortex function Vo]. in region I expands as 

and F ( 6 )  can then be found from the zeroth order approximation to (3.6b). This equation 
can be integrated once and F ( 6 )  is found to vanish at = & where 

Here C is an unknown constant of integration to be determined later. It follows from (4.1) 
and (4.8) that 

In region IIa the forcing of the mean flow ceases and I IT: I is rediiced to  zero exponentially 
in the manner described in $3. It remains for us to  determine the constant C appearing 
in (4.8). We can write down the mean flow in regions IIIa, b in the form 

c$- = -g, t+ = g. 
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It is easy to show that U M ( ( )  and V M ( ( )  are odd and even functions of ( respectively so 
it is enough for us to consider IIIu where ( 2 (+. The functions UM and V M  satisfy the 
equations 

(4.9~2, b) 

and in order to match with the core solution (4.6) UM must satisfy 

Since UM must also tend to zero when 
value problem for (+. After some manipulation we find that 

+ 00 (4.9a), (4.10) constitute a nonlinear eigen- 

(4.11~2, b) 

where U ( u , z )  is a parabolic cylinder function. The eigenrelation for (+ is then found to 
be 

(4.12) 

and C is then given by (4.8). Moreover y1 and y2 are then known correct to order ( x - x * ) l / '  

The functions u ( x )  and b ( x )  are found by comparing (3.7) and (4.3) with ti, 8,  x given 
by (4.4). Thus, for example, we find that u ( x )  is given by 

(4.13) 

for X << 1. Thus we can construct an asymptotic solution of the free boundary partial 
differential system of $3. This asymptotic solution can of course be used to start off a 
numerical solution of this system by a marching procedure. 

Next we suppose that the curvature distribution function becomes large when x + 00. 

More precisely we suppose ~ ( x ) / x h  + 00, x + 00 so that the flow is unstable on the basis of 
linear theory when x + 00. In this limit it is convenient to perform an asymptotic analysis 
directly on the solutions obtained in $3. For definiteness we assume that x = x M ,  M > 3 
when x + 00. 
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The scaling for x -+ 00 is suggested by the large Go solution discussed in $3 and can 
be inferred from (3.7). It is easy to  show that a solution of the ‘upper problem’ in IIIa 
requires that y2 >> xfr and that iio = 0(1) when y = y2. Thus I must be of depth O ( x ) ;  
the core solution for y = O ( x )  can then be written 

(4.14) 

and if we take 
GOXM y 2 =  -+... 

2 

50 + 1 + when y + y2-. We then find that 

+... G ~ M ~ ~ - ~  
80 --+ 

6 

when y -+ y2-.Thus a solution of (3.17) for (i i ,8) in the upper layer IIIa takes the form 

(4.15a, b) 

the resulting upper layer problem for (Z,? does not have a solution. The depth of the 
region I I I b  can now be inferred from equation (3.9). The dominant term on the right 
hand side of this equation is O(xMw1) so a balance with a comparable term on the left 
hand side can only be achieved if a +y1 - X2-3M. Thus y1 and a must be O ( Z ~ - ~ ~ )  and 
we therefore write 

2-3M + . . . Y l  = YlOX 

a = aox 2-3M + . . . (4.16a, b) 

The solution for ( i i , 8 )  in I I I b  can then be developed in the form 

2 
8 = -(M - 1 ) ~ ~ - ~  + . . . , (4.17a, b) 

Here N is an unknown constant to be determined. Finally the continuity of the normal 
velocity component at y1 requires that we expand b in the form 

2 

h = h&5M + . . . . (4.1 74 
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The conditions ( 3 . 2 0 ) ,  (3 .21)  for j = 1 then require that 

1 
- = N2Y1o, 
GO 

and 

(4.18a, b, c )  

It follows from (4.18a,b) that a0 = -ylo so it remains for us to  determine ylo. The required 
equation follows from the zeroth order approximation to (3.9) which yields 

 GO 
Y l O  = - M2 

and then N and bo follow from (4.17a,c) respectively Thus in the limit x + 00 with 
x - xM, M > 1 / 2  the locations y1 and y2 have the asymptotic forms 

+ ... G ~ M X ~  
2 Y2 = (4.19a, b )  

and between these positions the mean velocity component in the x direction is given by 
the square root form (4.14). Thus for a curvature distribution x = x M  the initial and far 
downstream regions where a finite amplitude vortex exists are as indicated in Figure 3 for 
A4 > 1 / 2 .  The intermediate region can only be completed by a numerical procedure of the 
type we discuss in the next section. 

5. A numerical scheme for the determination of the free boundaries y1,yZ 

We shall now outline a scheme which we have used to solve the problem specified 
by (3.17) - ( 3 . 2 0 ) .  For convenience we drop the ‘-’ notation for a,v and assume that a 
solution of the problem is known for x 5 5. The scheme which we have used can be used 
to advance this solution downstream to 5 + ;E for sufficiently small values of Z. In general 
the state for x 5 k must be calculated using the approach of $4 in a neighbourhood of 
where the vortices first become unstable. 

The first step in our calculation is to define a variable by 
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so that (3.17) is now to be solved on ( 0 , ~ )  in terms of 
and 00 together with ‘jump’ conditions at s = 1. Thus (3.17) is now written in the form 

with boundary conditions at  0, 

where j = 1 for < 1 and j = 2 for 5 > 1. The required boundary conditions are 

u = v = o ,  (=O, u + l ,  S + W  

and the ‘discontinuous’ conditions at 5 = 1 may be written 

(5.la,  b) 

(5.3a, b, c )  

Here the f signs correspond to the limits c + 1+, 
associated with the + sign and j = 1 with the negative sign. 
completed by the jump condition (3.9). 

scheme I 

c -+ 1- and the index j = 2 is 
Finally the system is 

We first advance the solution of (5.la) for s in the range [0,1]. This is done using the 

where h is the vertical grid spacing and a tilde denotes a quantity evaluated at  the position 
5 + E”. The index n refers to a quantity at  the grid point 5 = nh. In order to solve the 
tridiagonal system (5.4) we must make a guess for cj and set y; = (cj - yj)/Z. When 
solving (5.4) we satisfy the required condition on u at < = 0 and (5.3b) with j = 1. The 
continuity equation (5.lb) is then discretized as 

so that 5 can be determined at  2 + Z for 0 5 s 1. However the equation for 5 is only 
of first order in s so only the boundary condition at  5 = 0 can be satisfied during this 
procedure. Thus the solution of (5.1) for 0 5 5 1 has been calculated at  k + i? but, as 
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yet, (5.3a,c) with j = 1 have not been satisfied. However these conditions are now used to 
obtain an improved value of &I and a value for 6 by writing these conditions in the form 

- ( 6 -  a) flm + {ti+ 2 ~ 1 } 9 x '  C - + b =  ~ 

2 m  6-X 

and iterating until ii and 61 converge. Here ?, is the current guess for b at x+ E". The scheme 
used to  find u,  at x + Z for 0 5 c 5 1 can be applied in a similar manner to  the region 
c 2 1. The u equation is solved subject to u 4 1 , c  4 00 and (5.3b) with j = 2, whilst the 
21 equation is solved subject to (5.2~) with j = 2. Finally (3.9), (5 .3~)  are written in the 

The second of these ... equations determines a new value for 5 2  and the first one then deter- 
mines a value for b. Thus we now have values for u, 21, a, b, y l ,  y2 a t  x + E". We then repeat 
the whole procedure using the new values of Z,?,, el, 62 obtained in the first iteration until 
converged values of these quantities are obtained. 

The above numerical scheme was found to converge for sufficiently small values of Z 
the step length in the x direction. It was found that h = .l, E" = .005 gave a stable scheme 
for the cases investigated and produced values for y1,y2 and the other flow quantities 
correct to two decimal places. The first flow considered had Go = 5 . , x  = 6 and the 
free boundary value problem of $3 was integrated for x > .5. At x = .5 the initial values 
of y1, y2 etc. were calculated from the similarity solution of $3. In Figure 4 we have shown 
the values of y1, y2 calculated using the scheme outlined in this section. In the same Figure 
we have indicated the values of y1,yz predicted by the similarity solution of $3. We see 
that there is excellent agreement between the results from the different solution methods. 

As an example of a non 'self-similar' Gbrtler vortex we considered the case x = 
2x,G0 = 4.176. This curvature distribution has a basic state which is linearly unstable 
beyong x* = .5. The small (x - x*) asymptotic solution of $4 was used to generate initial 
values of y1, y2, a, b and the velocity profiles at x = .51. The numerical scheme described 
in this section was then used to advance the solution beyond x = .51. The results obtained 
for y1 and y2 are shown in Figure 5 for .51 e x < 1.8. In this Figure we have also shown 
the corresponding results predicted by the small x - x* and large x asymptotic solutions of 
$4. We see that, apart from an apparently constant horizontal translation, the numerical 
scheme predicts values of y1 and y2 which rapidly approach their large x amplitude values. 
This translation is not unexpected since the large x solution of $4, to the order given, has 
an arbitrary origin for x. 
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In Figure 6 we have shown the streamwise velocity component produced by our scheme 
for the numerical solution of the free boundary problem in $3. The Blasius flow appropriate 
to this position and the large x asymptotic solution for u are also shown. It can be seen 
that at  x = 1.8 the asymptotic and numerical solutions are virtually identical. Thus at  
larger values of x we can approximate u by the asymptotic solution of $4. In Figure 6d 
we have shown the result of making this assumption to calculate u a t  x = 7.5'15. We see 
that by this step the boundary layer has been substantially thickened by the effect of the 
vortices. This is because the asymptotic solution has y2 - x - x whilst the undisturbed 
boundary layer grows like 24. 

In Figures 7 and 8 we have shown the eigenfunctions V: and Ut a t  the downstream 
locations x = .6,1.0,1.4,1.8. The corresponding large x asymptotic solutions for V: and 
Ut can be derived using the analysis of $4. For x = 1.8 such a calculation produces 
results virtually identical to the ones shown. In Figure 8 we see that when x increases the 
streamwise velocity component of theG6rtler vortex develops a shear layer near the lower 
boundary. The development of the shear layer is caused by the fact that the transition v' increases rapidly from layer I I b  approaches the wall when x --f 00. Thus V i  - 
zero to an 0(1) value in the neighbourhood of yl. 

The implication of the above calculations is that we can reasonably expect that the 
large x solution of$4 will give accurate predictions for the vortex induced flow quantities at  
relatively small values of x. Thus in practical situations we might expect to obtain sensible 
results by using that approach rather than the numerical scheme for the free boundary 
problem. Moreover such an approach produces velocity profiles whose lower stability to 
Tollmien-Schlichting waves can be readily investigated. 

6. Conclusions 

4- 

It is perhaps useful at  this stage to remind the reader that the small wavelength ap- 
proximation wehave used does not make our calculation physically unrealistic. This is 
because it is known experimentally that when Gortler vortices develop their wavelength 
is conserved as they move downstream. Thus for a growing boundary layer the effective 
wavenumber increases in the downstream direction so that a small wavelength approx- 
imation eventually becomes justifiable. We have no reason to suppose that in the non 
linear case the downstream position where the small wavelength results approach the 0(1) 
wavelength results will differ significantly from that for the linear case. 

The discussion in $3-5 has been concerned with flows for which x increases at least 
as quickly as x$ when x increases. Otherwise the basic state will become linearly stable 
at a finite value of x and the structure we have found will terminate at  some value of x. 
The termination of the finite interval of vortex activity is simply the 'mirror-image' of the 
small (x - m) solution of $4. This result can be confirmed from the weakly nonlinear 
theory of Hall (1982b) so that at  some value 2, say x+, y1 and y2 will have the asymptotic 
form y+ f y++(x+ - 5)  k where y+, y++ are constants. In Figure 9 we have shown the 
development of y1,yZ for Go = 4.176 with x = 22, x 2 1. We 
see that the region of vortex activity which begins at  linear neutral position x = .5 stops 

x 5 1, x = 4x2 - 3x3, 
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at x = 1.5. In the absence of a finite amplitude vortex beyond z = .5 this flow is linearly 
stable for x > 1.854. Thus the presence of the vortices in the range .5 < x < 1.5 produces 
a boundary layer which is stable in a regime where it would have been unstable if the 
vortices had not developed. 

However the effect of the vortices on the boundary layer does not end when the layer 
of vortex activity terminates. This is because the initial velocity distribution a t  x = x+ 
for the subsequent boundary layer will in general be quite different from that appropriate 
to the undisturbed flow. Furthermore there is no reason to suppose that y+ should equal 
y* the location of the vortices according to linear theory applied to the undisturbed state. 
Thus the decay of the vortices at  x = zf does not in any sense allow the boundary layer 
to return to its undisturbed state. It follows that Gortler vortices might have a significant 
effect on separation subsequent to a region of concave curvature. Indeed it is known from 
the work of Hall and Bennett (1986) that triple-deck flows can support Taylor-Gortler 
vortices so the properties of these flows might also be significantly altered in the presence 
of vortices. 

In some flows it is possible that there will be several intervals in z where vortices can 
develop. We might expect that the steady boundary layer over a wavy wall might support 
vortices at  regular intervals along the wall. In the intervals where vortices do not develop 
the basic state will in general be altered from its undisturbed state by the vortex activity 
in the previous undisturbed interval. 

The most surprizing feature of our calculation is that the fully nonlinear state driven 
by large amplitude Gortler vortices can be described in a relatively simple manner. The 
major effect of the vortices is to gradually expand into the boundary layer to give the 
mean flow there a simple square root profile. If the location increases faster than xi this 
layer thickens until it occupies the whole of the boundary layer apart from a thin layer at 
the wall. In addition the layer of vortex activity expands into the free stream and thus 
thickens the undisturbed boundary layer. 
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