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Use of Continuous Monitors and Autosamplers to  
Predict Unmeasured Water-Quality Constituents in 
Tributaries of the Tualatin River, Oregon

By Chauncey W. Anderson and Stewart A. Rounds

Abstract
Management of water quality in streams of the United 

States is becoming increasingly complex as regulators seek 
to control aquatic pollution and ecological problems through 
Total Maximum Daily Load programs that target reductions 
in the concentrations of certain constituents. Sediment, 
nutrients, and bacteria, for example, are constituents that 
regulators target for reduction nationally and in the Tualatin 
River basin, Oregon. These constituents require laboratory 
analysis of discrete samples for definitive determinations of 
concentrations in streams. Recent technological advances in 
the nearly continuous, in situ monitoring of related water-
quality parameters has fostered the use of these parameters 
as surrogates for the labor intensive, laboratory-analyzed 
constituents. Although these correlative techniques have been 
successful in large rivers, it was unclear whether they could 
be applied successfully in tributaries of the Tualatin River, 
primarily because these streams tend to be small, have rapid 
hydrologic response to rainfall and high streamflow variability, 
and may contain unique sources of sediment, nutrients, and 
bacteria. 

This report evaluates the feasibility of developing 
correlative regression models for predicting dependent 
variables (concentrations of total suspended solids, total 
phosphorus, and Escherichia coli bacteria) in two Tualatin 
River basin streams: one draining highly urbanized land 
(Fanno Creek near Durham, Oregon) and one draining rural 
agricultural land (Dairy Creek at Highway 8 near Hillsboro, 
Oregon), during 2002–04. An important difference between 
these two streams is their response to storm runoff; Fanno 
Creek has a relatively rapid response due to extensive 
upstream impervious areas and Dairy Creek has a relatively 
slow response because of the large amount of undeveloped 
upstream land. Four other stream sites also were evaluated, 
but in less detail. Potential explanatory variables included 

continuously monitored streamflow (discharge), stream 
stage, specific conductance, turbidity, and time (to account 
for seasonal processes). Preliminary multiple-regression 
models were identified using stepwise regression and 
Mallow’s Cp, which maximizes regression correlation 
coefficients and accounts for the loss of additional degrees of 
freedom when extra explanatory variables are used. Several 
data scenarios were created and evaluated for each site to 
assess the representativeness of existing monitoring data 
and autosampler-derived data, and to assess the utility of 
the available data to develop robust predictive models. The 
goodness‑of‑fit of candidate predictive models was assessed 
with diagnostic statistics from validation exercises that 
compared predictions against a subset of the available data.

The regression modeling met with mixed success. 
Functional model forms that have a high likelihood of success 
were identified for most (but not all) dependent variables at 
each site, but there were limitations in the available datasets, 
notably the lack of samples from high‑flows. These limitations 
increase the uncertainty in the predictions of the models and 
suggest that the models are not yet ready for use in assessing 
these streams, particularly under high‑flow conditions, 
without additional data collection and recalibration of model 
coefficients. Nonetheless, the results reveal opportunities to 
use existing resources more efficiently. Baseline conditions are 
well represented in the available data, and, for the most part, 
the models reproduced these conditions well. Future sampling 
might therefore focus on high flow conditions, without much 
loss of ability to characterize the baseline. Seasonal cycles, 
as represented by trigonometric functions of time, were not 
significant in the evaluated models, perhaps because the 
baseline conditions are well characterized in the datasets or 
because the other explanatory variables indirectly incorporate 
seasonal aspects. Multicollinearity among independent 
variables was minimal and had little effect on model selection 
or the value of model coefficients. 
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Automated unattended samplers were used to supplement 
the monitoring data used in this study, and a detailed quality 
assurance program was used to assess the accuracy and 
representativeness of samples collected using autosamplers. 
Care must be taken to avoid serial correlation among samples 
when autosamplers are used to collect multiple samples 
within individual storms. However, the results showed that 
autosamplers can provide high-quality data from small 
streams during storm-runoff conditions, thereby offering a 
cost-effective and convenient means of augmenting manually 
collected samples and collecting samples at high flows that 
otherwise might be missed by existing monitoring programs. 

Introduction
Since the early 1990s, the quality of water and ecological 

health of tributaries to the Tualatin River in northwestern 
Oregon (fig. 1) have been the subject of heightened concern 
from resource managers, regulators, and citizen groups. The 
small urban and agricultural streams on the eastern side of 
the basin are known to have water-quality problems, but the 
magnitude, duration, seasonality, and short- and long-term 
trends for those concerns have not been well characterized. 
Aspects of those problems have been studied, including 
low‑flow phosphorus and bacteria levels (McCarthy, 2000), 
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storm-related variations in nutrient and bacteria concentrations 
(Anderson and Rounds, 2003), and the levels of trace metals 
and organochlorine pesticides in fish tissue and sediment 
(Bonn, 1999). Issues of high water temperature, excessive 
bacteria levels, high phosphorus concentrations, and low 
dissolved oxygen concentrations were cited as particular 
problems requiring attention in Tualatin River tributaries 
in the 2001 revision of the Total Maximum Daily Load 
(TMDL) regulations for the basin (Oregon Department of 
Environmental Quality, 2001). Increased monitoring and 
additional studies have helped to fill gaps in our understanding 
of the dynamics of water quality in these streams. The 
characterization of the short-term dynamics, long-term trends, 
and spatial variations of water quality in these systems, 
however, probably will require the use of new approaches.

The use of submersible instruments that simultaneously 
measure and log multiple water-quality parameters in situ 
is growing rapidly in the Pacific Northwest and nationally. 
Such instruments can collect data at regular intervals and for 
long periods without human intervention, thereby providing 
opportunities for increased data collection at reduced costs. 
These instruments often are referred to as continuous 
monitors because they can be operated continuously for long 
periods. Data from continuous monitors can be used for 
many purposes, including (1) documentation of routine or 
event-based environmental conditions in a drainage basin, 
(2) detection of daily and seasonal variations and long-term 
trends in water quality, (3) calibration and validation of 
numerical models, (4) feedback for regulatory and resource 
management systems, and (5) surrogate measurements for 
the calculation of concentrations or loads of suspended 
sediment (Gray and Glysson, 2003; Uhrich and Bragg, 
2003) or other constituents (Christensen and others, 2000). 
Monitored parameters typically include water temperature, 
specific conductance, pH, and, increasingly, dissolved oxygen, 
turbidity, and chlorophyll. Many other types of sensors are 
under development. 

Despite the advantages of these continuous monitors, 
many constituents of interest to regulators and resource 
managers still cannot be directly measured by such 
technology. For example, streams in the Pacific Northwest 
often are managed for their concentrations of suspended 
sediment (or total suspended solids), various nutrients 
(nitrogen and phosphorus species), or bacterial pathogens 
(such as Escherichia coli [E. coli] as an indicator of bacterial 
pathogens). No routine and direct in situ measurements can 
be done for these constituents at environmentally relevant 
concentrations by currently available commercial instruments. 
Such analyses, therefore, must be made in a laboratory using 
discreet samples collected from the stream. 

Data from continuous monitors, however, sometimes can 
provide an indication of the concentrations of unmeasured 
constituents. For example, turbidity in water often is directly 
dependent on suspended sediment concentration (Lewis, 1996; 

Anderson and Rounds, 2003; Gray and Glysson, 2003; Uhrich 
and Bragg, 2003); therefore, turbidity data from continuous 
monitors can be used to estimate a time series of suspended 
sediment concentration. Christensen and others (2000) used 
data from continuous monitors in Kansas streams to calculate 
instantaneous concentrations and loads of alkalinity, dissolved 
solids, total suspended solids (TSS), chloride, sulfate, atrazine, 
and fecal coliform bacteria. Site‑specific regressions between 
monitored parameters and the results of discrete water samples 
were derived for these constituents, and the regressions 
were then applied to long-term monitor records at the study 
sites to estimate a time series of constituent concentrations. 
By combining these concentration estimates with discharge 
information, constituent loads also can be estimated. For 
example, Uhrich and Bragg (2003), Anderson (2007), and 
Bragg and others (2007) performed similar calculations using 
continuous records of turbidity and discharge to estimate 
suspended sediment concentrations and loads in the North 
Santiam and McKenzie Rivers, respectively, in western 
Oregon. 

To use continuous monitors to develop robust statistical 
models for sampled water-quality constituents, independent 
samples representing a broad range of conditions (high- and 
low‑flow and seasonal warm/cold or spring/summer/autumn/
winter) are needed at each site. Clean Water Services, the 
primary wastewater and stormwater management utility in 
the urban areas of Washington County, Oregon, has been 
collecting routine water-quality samples at many sites in the 
Tualatin River basin for more than 20 years. Most samples 
collected, however, represented low‑ or base‑flow conditions, 
and were not targeted for storms. The U.S. Geological Survey 
(USGS) has collected data for many years and for various 
purposes at Fanno Creek near Durham, including during a 
few storms, but these data also are of limited scope. Data 
from these two sources were used to evaluate the potential 
regression models for this study. 

Like continuous monitors, automatic samplers (referred 
to as autosamplers in this report) can collect water samples at 
night, during storms, or at specific intervals without the need 
for human operators. An autosampler can collect multiple 
samples (typically as many as 24) before it must be restocked 
with empty bottles. The autosampler also can be refrigerated 
or stocked with ice to minimize sample degradation. After 
collection, samples from the autosamplers (or autosamples) 
are retrieved and analyzed at a laboratory for the water-quality 
constituents of interest. Autosamplers can be programmed 
to collect samples at prescribed intervals of time or flow, 
and can be triggered by specific conditions. Used together, 
a continuous monitor can trigger an autosampler during an 
event (for example, when conditions exceed some threshold 
measured by the monitor) and can thereby document 
water-quality conditions in the stream at the time of sample 
collection.
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Continuous monitors and autosamplers offer many 
advantages over manual sampling, including the potential to 
collect many samples and large amounts of data during a short 
time, when the number of sites is large, if the sites are remote, 
or if the sites are difficult or inconvenient to access (such as 
at night, on weekends, or under hazardous conditions). These 
advantages are particularly useful when trying to characterize 
short-term variations in stream conditions during storms at 
multiple sites. Collecting an adequate number of samples at 
multiple sites during a storm with a crew of technicians can be 
inefficient and expensive compared to the use of remote and 
automated instruments, if they can accomplish the same tasks. 

Despite these advantages, continuous monitors and 
autosamplers are subject to mechanical malfunction, sampling 
bias, or both, and require a certain degree of quality control to 
assure that the resulting data are accurate and representative 
of stream conditions. The quality control issues include the 
degree to which measurements or samples collected at one 
location in the stream by the autosampler represent conditions 
throughout the stream cross section, measurement bias 
because of fouling or sensor drift of deployed monitors, the 
possibility of carryover contamination because autosampler 
tubing was not completely cleaned, and the potential for 
exceeding prescribed sample holding times or temperatures in 
autosamplers. These issues must be addressed to ensure proper 
use of this technology.

This report uses correlative techniques that have been 
shown to work with relative success in various geologic 
regions (Christensen and others, 2000; Lietz and Debiak, 
2005; Rasmussen and others, 2008), although the rivers 
studied typically have been larger than the Tualatin River 
tributaries. Application of these techniques was attempted in 
small Pacific Northwest streams that have large changes in 
characteristics between low and high flow, and in agricultural 
and urban areas. As part of a long‑term scientific collaboration 
between the USGS and Clean Water Services, this study 
evaluated the quantity and attributes of data that are necessary 
to build useful predictive models for such streams. 

Purpose and Scope

The purpose of this report is to evaluate the use of 
continuous monitors and autosamplers to collect representative 
and accurate water samples over a range of stream conditions, 

and to construct and demonstrate the use of preliminary 
predictive statistical models of unmeasured water-quality 
constituents in selected tributaries to the Tualatin River. 
Specifically, the objectives were to 
1. Evaluate the use of autosamplers for unattended sampling 

in conjunction with continuous monitors and evaluate the 
quality of autosamples;

2. Develop preliminary regression models to predict the 
concentrations of selected water-quality constituents using 
concurrent data from continuous monitors, and evaluate 
the robustness and accuracy of those models;

3. Evaluate the adequacy of available laboratory data 
to augment autosampler-derived data for developing 
regression models that estimate constituent concentrations 
and loads;

4. Use the regression models to predict and evaluate time 
series concentrations and to develop uncertainty estimates 
for modeled constituent concentrations from historical 
continuous monitor data at the same sites; and 

5. Identify potential changes to sampling strategies that 
would allow future monitoring efforts to improve the 
regression models developed.
Sites on six selected tributaries in the Tualatin River 

basin were studied from June 2002 through December 2003. 
The sites represented a range of upstream land uses, from 
intense urban development to rural agricultural and forested 
areas. Continuous, in situ monitors recorded stage, streamflow, 
water temperature, specific conductance, dissolved oxygen, 
pH, and turbidity. Autosamples were analyzed for a suite of 
nutrients (nitrogen and phosphorus species), total suspended 
solids, chloride, and bacteria (E. coli) over a range of 
stream conditions. Approximately 48 discrete autosamples 
were collected at each site over the course of two or three 
storm events. The model-building process was augmented 
by additional data from USGS and Clean Water Services 
databases, covering the study period 2002–07.

Full development of example models was limited to 
two target sites—Fanno Creek near Durham Road, and Dairy 
Creek at Highway 8 near Hillsboro. Data from USGS and 
Clean Water Services databases were used to augment the 
autosampler data. The additional USGS and Clean Water 
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Services data were concurrent with the dates of monitor 
deployment and, together with the continuous monitor data, 
were used to evaluate calibration and validation scenarios for 
these sites. For the remaining four non-target sites, preliminary 
model forms were identified but no additional data exploration 
was performed. Data were compiled for all samples collected 
using continuous monitors and autosamplers, but model 
development was limited to three whole-water constituents 
of primary interest to Clean Water Services and other local 
regulatory and resource‑management agencies, specifically 
total suspended solids (TSS), total phosphorus (TP), and 
E. coli bacteria.

Study Area Description

The Tualatin River is a major tributary to the Willamette 
River near Portland in northwestern Oregon (fig. 1). The 
characteristics of the Tualatin River basin have been described 
in several reports, including those by Kelly and others (1999) 
and Rounds and Wood (2001). The basin has undergone 
rapid urbanization since the late 1980s and is now home to 
about half a million people, mainly in the central and eastern 
part of the basin and within the urban growth boundary of 
the Portland metropolitan area. Beyond the urban growth 
boundary, the fertile soil of the valley floor supports a wide 
variety of agricultural activities. The Coast Range Mountains 
to the west are densely forested and are a source for water 
supply and lumber production.

In an attempt to improve water quality in the Tualatin 
River and address specific issues related to algal growth 
and periodic high pH and low dissolved oxygen conditions, 
TMDLs for ammonia and phosphorus were set for the Tualatin 
River and its major tributaries in 1988 (Oregon Department 
of Environmental Quality, 1997), but primarily focused on 
the main stem Tualatin River. After the establishment of the 
TMDLs, studies of water quality in the main stem of the 
Tualatin River have highlighted the role of its tributaries 
as sources of TMDL constituents and oxygen-depleting 
substances to the main stem (Kelly, 1997). Results from the 
previous studies indicated that more information is needed on 
these constituents in the tributaries, and updated methods are 
needed to document their concentrations and delivery to the 
main stem during storm runoff periods.

 When the Tualatin River TMDLs were revised in 2001, 
the tributaries received greater attention. New TMDLs for 
water temperature, bacteria, and oxygen-depleting substances 
were created, and modified limits on ammonia and phosphorus 
were retained (Oregon Department of Environmental Quality, 
2001). Although the tributaries certainly affect the quality of 
water in the Tualatin River to some degree, the 2001 TMDLs 
demonstrated that the water quality and ecological health of 
the tributaries also was important.

Some river and tributary issues, such as high water 
temperature, algal growth, high pH, and low dissolved oxygen 
occur mainly during summer and autumn low‑flow conditions, 
although high bacteria levels tend to be most problematic 
during storm events. An adequate characterization of the 
water-quality and ecological issues in the tributaries must 
include a good understanding of system behavior under a 
wide variety of conditions and time scales, and should address 
issues related to nutrients, bacteria, suspended solids, and 
other TMDL-related parameters. This study was designed to 
use continuous monitors to estimate some of these quantities, 
such as TP, TSS, and E. coli bacteria, and thereby aid in 
developing a better understanding of the dynamics of these 
parameters and how they affect stream quality.

Sites representing the broad range of land uses and 
hydrology in the basin were selected for development of 
regression models. The largest tributaries of the Tualatin 
River include Gales Creek (mainly forested), Dairy Creek 
(largely agricultural), Rock Creek (mixed urban), and Fanno 
Creek (urban). These creeks account for a large fraction of 
the drainage in the Tualatin River basin. A site on Beaverton 
Creek, a tributary to Rock Creek, has a large amount of 
upstream commercial and urban land use. Chicken Creek, a 
small tributary to the Tualatin River, was included because it 
drains a rapidly expanding urban and rural-residential area in 
the southern part of the basin. The locations and characteristics 
of these sites are shown in figure 2 and table 1. These creeks 
have water‑quality problems that would benefit from further 
characterization.
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Methods

Data Sources

Data used for the regression models were obtained from 
four primary sources. Continuous streamflow data were 
obtained from stream-gaging stations (table 1) operated by 
USGS or the Oregon Water Resources Department (OWRD). 
Continuous data for field parameters (specific conductance 
and turbidity) were obtained from monitors operated by USGS 
at each site (table 1) for the study period or longer, although 
the monitors were removed at some sites during high flow 
in winter. Water-quality data for sampled constituents such 
as TSS, nutrients, and E. coli bacteria were obtained from 
autosamplers deployed during the study period (appendix A)
and from historical datasets maintained by USGS (2001–07) 
and Clean Water Services (2001–04). 

USGS data primarily were available for the Fanno Creek 
at Durham Road site and were collected for various purposes; 
most high‑flow water‑quality data available for the Fanno 

Creek site were from the USGS historical database. Analyses 
included nutrients, suspended sediment, trace and major 
elements, and dissolved pesticides; however, only suspended 
sediment and TP were used for this report. Microbiological 
sampling, including E. coli bacteria, generally was not done by 
USGS during this period. Clean Water Services collects water-
quality samples at least monthly at each of the study sites, and 
sometimes weekly, as part of its ambient monitoring program; 
however, high‑flow periods are not specifically targeted and 
typically are under-represented in the Clean Water Services 
database. Clean Water Services sample analyses routinely 
include TSS, nutrients, and E. coli bacteria, among others. 

For the Dairy Creek site, Clean Water Services ambient 
monitoring data are the only available historical data, and are 
primarily from monthly samples. In addition, the available 
explanatory data are limited at this site because the continuous 
monitor was not deployed during winter until 2004–05. 
Finally, under certain conditions, streamflow at Dairy Creek 
can be affected by backwater from the Tualatin River, a 
situation that might invalidate any correlations established for 
unhindered flow conditions. 

Table 1. Sampling sites and characteristics in tributaries of the Tualatin River basin, Oregon, 2002–04.

[Target sites are those where data analysis included data from autosampler deployment plus historical data from U.S. Geological Survey and Clean Water 
Services databases, and model development included more extensive calibration and validation processes. Non‑target sites were sites included in this study 
but where data analysis was limited to preliminary identification of model forms based on analysis of autosampler data alone. The site at Fanno Creek was 
moved from Durham City Park to Durham Road in 2003. Latitude and Longitude, in degrees, minutes, seconds, are based on North American Datum of 1927 
(NAD 27). Streamflow data source: Stream‑flow data were obtained from U.S. Geological Survey (USGS) or Oregon Water Resources Department (OWRD) 
gaging stations. Data from on-site gaging stations were used directly; data from upstream gaging stations were routed and travel times estimated as described in 
text. Drainage areas are from StreamStats (http://water.usgs.gov/osw/streamstats/index.html). Abbreviations: mi, mile; mi2, square mile]

Station name Map  
No.

Station 
identification  

No.
Latitude Longitude Streamflow  

data source

Drainage 
area 
(mi2)

Primary 
upstream  
land use

Monitor deployment dates

Target sites

Fanno Creek at Durham 
City Park

1a 452348122454701 45°23′49″ 122°45′43″ USGS (0.25 mi
upstream)

31.7 Urban Spring–autumn, 2001–02

Fanno Creek at Durham 
Road

1b 14206950 45°24’13” 122°45’13” USGS 31.5 Urban Continuous, September 2002–
current

Dairy Creek at Highway 8 2 453113123003501 45°31′13″ 123°00′35″ OWRD 229 Agricultural Spring-autumn, 2001–03; 
Continuous, 2004–current

Non-target sites

Beaverton Creek at SW 
170th Avenue

3 453004122510301 45°30′04″ 122°51′03″  Routed from
upstream OWRD
gaging stations

22.8 Urban Spring–autumn, 2001–03; 
Continuous, 2004–current

Chicken Creek at Scholls-
Sherwood Highway

4 452230122512201 45°22′30″ 122°51′22″ OWRD 15.3 Urban and
agricultural

Spring–autumn, 2001–current

Rock Creek at Woll Pond 
Way near Hillsboro

5 453104122551201 45°31′04″ 122°55′12″  Routed from
upstream OWRD
gaging stations

65 Urban Spring–autumn, 2001–03

Gales Creek at Old 
Highway 47

6 453040123065201 45°30′40″ 123°06′52″ OWRD 74.7 Forested Spring–autumn, 2001–06; 
Continuous, 2007–current

http://water.usgs.gov/osw/streamstats/index.html
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Monitors
Continuous water-quality monitors were operated 

according to standard USGS protocols (Wagner and others, 
2006). All monitors were the same, a YSI Environmental 
model 6920 multiparameter sonde equipped with probes to 
measure water temperature, specific conductance, turbidity, 
pH, and dissolved oxygen. Turbidity probes were YSI 
model 6026 probes, with the data reported in Formazin 
Nephelometric Units, or FNU (Anderson, 2004). Deployed 
monitors were cleaned and calibrated regularly, typically 
at 2-week intervals, and corrections due to cleaning and 
calibration were recorded. Data from the monitors were loaded 
into the USGS database and corrected to account for the 
effects of biofouling and sensor calibration drift according to 
procedures outlined by Wagner and others (2006). 

Each monitor was deployed in a 6-in. diameter PVC pipe 
mounted vertically on a steel post midstream at a height of 
approximately 6 in. to 1 ft above the streambed, with a locking 
cap for protection. The PVC pipe was perforated generously 
at the bottom to allow free circulation of stream water around 
the probes. Data were collected hourly. Periodically, and 
at a range of streamflows, the cross‑sectional variation of 
monitor parameters was examined by making instantaneous 
measurements in a transect with a calibrated multiparameter 
instrument, and comparing the results to those logged by 
the monitor. The observed cross-sectional variability never 
exceeded the allowed calibration tolerances of the instruments; 
therefore, it was not necessary to adjust the monitor data to 
account for observed cross-sectional variations.

Values for field parameters used in the regressions 
(specific conductance and turbidity) were obtained from 
the USGS continuous monitors rather than the Clean Water 
Services database when possible, for two reasons. Primarily, 
for making predictions of water-quality constituents during 
unsampled periods, the monitor data (and stream gages) are 
the only available source of independent variables. Therefore, 
the data used for constructing regressions should be collected 
in the same manner and be as internally consistent as the data 
used for making predictions. Secondly, turbidity data are 
known to be highly dependent on the optical configuration 
of the probe and potentially even the instrument model used 
(Anderson, 2004); therefore, consistency in long-term data 
collection methods is a critical factor when using turbidity as 
a surrogate for other parameters. For these reasons, the USGS 
has used the same models of turbidity probes throughout 
the monitoring network in the Tualatin River basin since 
their installation. Clean Water Services field data are from 
similar instruments, but calibration techniques and data 

management (especially policies on shifting data according 
to calibration errors) are different from those used by USGS. 
Furthermore, the Clean Water Services laboratory uses a bench 
top meter to measure turbidity, which is likely to produce 
different results than the USGS monitors because of critical 
methodological differences (Anderson, 2004). Nonetheless, 
for some periods, particularly at the Dairy Creek site where 
the USGS monitor was removed each winter during 2002–04, 
data from the continuous monitors were unavailable and Clean 
Water Services data were occasionally used to calibrate the 
regression models. 

For purposes unrelated to this study, the monitoring 
site in Fanno Creek was moved in 2003 from Durham City 
Park (fig. 2, site 1a) about 0.25 mi upstream to Durham Road 
(fig. 2; site 1b). Monitor and autosampler data were from 
the Durham City Park site until January 10, 2003, and from 
the Durham Road site thereafter. The potential influence of 
moving this station on development and interpretation of the 
regression models is discussed in the “Relations Between 
Continuous Monitor Data and Selected Water-Quality 
Constituents” section.

Streamflow was continuously recorded at some sites 
(see table 1), either by USGS (Rantz and others, 1982) or by 
OWRD, according to standard USGS methods. The Dairy 
Creek site at Highway 8, which is about 2 mi from its junction 
with the Tualatin River, is susceptible to backwater from the 
Tualatin River during high flows in winter. Oregon Water 
Resources Department (ORWD) considers the stage-discharge 
rating at this site to be unreliable at a stage greater than about 
10 ft (D. Hedin, Oregon Water Resources Department, written 
commun., July 2008), although the rating may be reliable at 
stages as high as 15–16 ft when flows in the Tualatin River 
are not high. OWRD does not provide streamflow records 
for stages greater than 10 ft at this site. At the non-target 
sites Rock Creek and Beaverton Creek, which were ungaged, 
streamflow records at the monitor site were reconstructed 
by simple summation and routing of upstream, recorded 
discharges. Travel times from upstream sites were estimated 
by examining streamflow data at upstream sites combined with 
monitor data (especially turbidity and specific conductance) 
during storms to determine the timing of discharge peaks. The 
difference in timing of the peaks was used to linearly adjust 
upstream discharges to represent flow at the downstream sites. 
Attempting to simulate the discharge record during storms 
at the Beaverton and Rock Creek sites in this manner (that 
is, without a more extensive hydrologic modeling approach) 
exposed difficulties in the use of discharge as an independent 
variable for developing predictive regression models at 
ungaged sites, contributing to these sites’ consideration as 
non-target rather than target sites. 
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Autosamplers
Autosamplers were operated as temporary installations 

for the duration of each storm or sampling event. 
Autosamplers used were ISCO, Inc., Model 6712 portable 
samplers, equipped with level sensors. Samplers were placed 
in a secure, level position on the streambank adjacent to the 
continuous monitors. Where possible, the samplers were 
housed in portable, locking fiberglass enclosures. Each 
sampler included a peristaltic pump to draw water from the 
stream through 3/8-in. inner-diameter vinyl tubing. Together 
with a communications cable from the water-quality monitor, 
this tubing was anchored to concrete blocks along the 
streambed. The intake tubing was positioned following USGS 
guidelines as summarized by G.D. Glysson, U.S. Geological 
Survey, written commun., 2009, and shown in table 2, 
except for items 3–5, which could not be determined with 
available resources for the study sites. The mouth of the vinyl 
tubing was secured to the perforated section of the monitor 

casing, oriented along the direction of flow and pointing 
downstream, an orientation that has been shown to minimize 
adverse sampling effects for pumping samplers (Winterstein, 
1986). Because of pumping constraints, efforts were made 
to minimize the length of tubing between the monitor and 
the autosampler, typically 12 to 25 ft, with resultant vertical 
heads between 2 and 10 ft. Complete elimination of dips in 
the tubing that might trap heavy sediment particles was not 
possible; however, an effort was made to minimize the dips in 
the tubing.

Each autosampler was configured with a carousel 
holding twenty-four 1-L polyethylene bottles. Prior to each 
deployment, the vinyl tubing and polyethylene bottles were 
cleaned with hot tap water and phosphorus-free detergent and 
thoroughly rinsed with deionized water. Upon deployment, the 
middle of the carousel in the autosampler was loaded with ice. 
Once deployed, samplers were visited at least once daily to 
check on the operation of the monitor and the sampler, and to 
change sample bottles, batteries, or ice, as necessary. 

Table 2. U.S. Geological Survey guidelines for placement of autosampler intake.

[From G.D. Glysson, U.S. Geological Survey, written commun., 2009. Abbreviations: mm, millimeter]

1. Select a stable cross section of reasonably uniform depth and width to maximize the stability of the relation between concentration at a 
point and the mean concentration in the cross section. This guideline is of primary importance in the decision to use an automatic sampler 
in a given situation; if a reasonably stable relation between the sample-point concentration and mean cross-section concentration cannot 
be attained by the following outlined steps, the sampler should not be installed and an alternate location should be considered. If banks are 
unstable and the sampler has to be installed in that location, install the intake on the cutting side of the channel so that the intake will not be 
buried.

2. Consider only the part of the vertical that could be sampled using a standard U.S Geological Survey depth- or point-integrating sampler, 
excluding the unsampled zone, because data collected with a depth- or point-integrating sampler will be used to calibrate the pumping 
sampler. (See Edwards and Glysson, 1999, fig. 1.)

3. Determine, if possible, the depth of the point of mean concentration in each vertical for each size class of particles finer than 0.250 mm, 
from a series of carefully collected point-integrated samples.

4. Determine, if possible, the mean depth of occurrence of the mean concentration in each vertical for all particles finer than 0.250 mm.

5. Use the mean depth of occurrence of the mean concentration in the cross section as a reference depth for placement of the intake.

6. Adjust the depth location of the intake to avoid interference by dune migration or contamination by bed material.

7. Adjust the depth location of the intake to ensure submergence at all times.

8. Locate the intake laterally in the streamflow at a distance far enough from the bank to eliminate any possible bank effects.

9. Place the intake in a zone of high velocity and turbulence to improve distribution by mixing, reduce possible deposition on or near the 
intake, and provide for rapid removal of any particles disturbed during the purge cycle. Avoid placing the intake in an eddy, as it will 
probably not be representative of the water in the cross section.

10. Consideration must be given to placing the intake and tubing in a place so that they will be protected during high streamflows.
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The water-quality monitor and a separate water-level 
sensor were interfaced with the autosampler’s programmable 
computer. The ISCO water‑level sensor used a pressure gage 
to sense the back pressure on air bubbled slowly through a 
small diameter tubing, the mouth of which was anchored to a 
fixed position in the stream. The water‑level sensors proved 
to be unreliable and ultimately were used only for qualitative 
purposes to verify the timing of the streamflow peak rather 
than as a trigger for sampling or for depth data that could 
be used for correlations. Therefore, the autosamplers were 
programmed to use only turbidity data from the continuous 
monitor and were interrogated at 5-minute intervals, to 
trigger the sampling. Turbidity was considered the most 
reliable indicator that the stream was responding to a storm; 
an increase in turbidity of 10–15 FNU typically was used as 
the threshold for beginning sampling. Once triggered, the 
samplers were programmed to collect samples hourly, with 
a maximum of 24 bottles, and to record the monitor data and 
the time when each sample was collected. Prior to collecting 
each sample, the autosampler purged the vinyl sample tubing 
with air to remove any residual water and sediment, then 
performed three complete stream-water rinses of the line 
between the stream-end of the tubing and the liquid detector at 
the peristaltic pump head. Upon successful sample collection, 
the numbered bottles were retrieved and transported on ice 
to the Clean Water Services water-quality laboratory. The 
position of each bottle in the carousel was recorded, and 
the sampling data (timing of sample collection, water level, 
and water-quality data from the continuous monitor) were 
downloaded from the autosampler. Autosampler data from this 
study are reported in appendix A.

Autosampler Quality Assurance
Several issues potentially affecting the quality of data 

from autosampler‑collected samples were identified and 
investigated at the beginning of the study. These included 
possible cross-contamination of samples from the vinyl 
autosampler tubing, which could not be washed between 
individual samples, and the degree to which samples collected 
by the autosampler at a point in the stream were comparable 
to those collected by standard USGS depth- and width-
integrating and ultra-clean sampling protocols (Horowitz and 
others, 1994; Edwards and Glysson, 1999; G.D. Glysson, U.S. 
Geological Survey, written commun., 2009) .

Cross-contamination initially was assessed in the 
laboratory by manually directing the sampler to collect 
a sequence of samples (three replicates each) from vats 
containing the following materials:
1. Clean distilled and deionized water,
2. Mixture of tap water and suspended soil,
3. Clean deionized water,
4. Deionized water with a high-nutrient synthetic standard, 

prepared by the USGS Oregon Water Science Center 
(previously described by Anderson and Rounds [2003, 
appendix A]), and

5. Deionized water with a low-nutrient synthetic standard.
The resuspended mixture of tap water and soil (step 2 above)
could not be uniformly mixed; therefore, results were not 
expected to be precise for analyses affected by particulates 
in water, such as TP. The point of using the soil mixture 
was to evaluate the extent of carryover of particulates to the 
subsequent deionized water samples. Samples from this series 
of tests were analyzed for nutrients (whole and filtered water) 
and chloride (filtered). For the synthetic standard samples, 
these tests also functioned as an evaluation of accuracy and 
precision in the sampling-analysis process. 

The results of this series of tests generally were good 
and indicated that carryover of contamination from sample 
to sample using autosamplers with appropriately cleaned 
and maintained equipment was minimal, and could not be 
distinguished from background laboratory contamination 
levels (table 3). A low level of contamination of blank water 
by soluble reactive phosphorus was detected in laboratory 
blank samples shown in table 3 (test 1, 0.009 mg/L as P) and 
in two of three initial blank tests through the autosamplers 
(test 4, 0.007 mg/L as P). Only one sample indicated a 
small carryover of suspended material, as measured by 
total Kjeldahl nitrogen (TKN), a low concentration (test 6, 
0.055 mg/L as N) just above the detection limit, in the first 
blank deionized water replicate following the soil mixtures. 
Considering that environmental concentrations of nutrients 
in storm runoff in the study streams were expected to be 
approximately 5–10 times higher than any contamination 
level detected in these tests, it was determined that neither 
contamination nor carryover was a major problem from the 
autosampler configuration.
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For the most part, results from the synthetic standard 
samples were within expected ranges. However, TKN 
concentrations in the low- and high-level synthetic standard 
samples (tests 2 and 3) seemed to be biased low by about 
25 to 50 percent and the TP concentration in the high-level 
synthetic standard (Test 3) was almost 20 percent lower than 
expected. The synthetic standard tests were not repeated 
for this study, but they are repeated monthly as part of an 
ongoing quality-assurance program between the USGS 
and Clean Water Services. For 2002–03, TKN analysis of 
synthetic standard and spiked river water samples by Clean 
Water Services consistently had recoveries of 90–100 percent 
compared to expected values, indicating that the low 
recoveries for TKN shown in table 3 were anomalous. For 
TP, recoveries from the USGS-Clean Water Services Quality 
Assurance program during 2002–03 tended to be lower 
than for TKN, about 80–90 percent, but also were relatively 
consistent. 

For field deployments of autosamplers, the determination 
of cross‑section coefficients (also known as a box coefficient) 
is used to evaluate how point concentrations derived from an 
autosampler compare to depth- and width-integrated samples 
from across the range of streamflow conditions at the site 
(G.D. Glysson, U.S. Geological Survey, written commun., 
2009). The coefficients also can be used to make corrections 
to autosampler data, if necessary. The box coefficient is 
calculated as the Ci/Cp, where Ci is a concentration derived 
from depth- and width-integrated sampling techniques, and 
Cp is the concentration from a pumping sampler. If the cross‑
section coefficient is near 1 for a given hydrologic condition, 
then no adjustment in concentrations is advised. 

Box coefficients and carryover through autosampling 
were assessed at base flow in Fanno Creek through a 
comparison of replicate stream-water samples collected using 
the autosampler, with samples collected using depth- and 
width-integrating techniques according to USGS protocols 
(table 4). An additional comparison was completed at Dairy 
Creek during mid-winter storm sampling. 

Some minor variations were observed in the 
determinations of autosampler box coefficients, but these were 
within analytical uncertainty. For example, the calculated 
box coefficient for TSS at Fanno Creek is 0.75; however, 
upon closer examination this primarily may be a result of 
laboratory variability. The triplicate cross-sectional samples 
(taken as aliquots from a churn splitter from a single depth- 
and width-integrated sampling) had moderate variation in the 
reported laboratory TSS concentrations (standard deviation 
2.5), resulting in a median total TSS of 3 mg/L, whereas 
the replicate autosampler values were identical at a similar 
concentration (4 mg/L). E. coli bacteria counts showed the 
largest variability and the lowest box coefficient; however, 
bacteria counts also are known for their variability using 
current techniques and the differences shown here are not 
of concern at the low levels observed. Similarly, results of 
autosampler and equal width increment samples at Dairy 
Creek during a storm sampling in November 2003 were within 
8 percent for all constituents and are indistinguishable from 
analytical variability. Adjustment of autosampler data by 
the box coefficient is not warranted by data in table 4 or by 
comparison with laboratory analytical uncertainty. However, 
additional comparisons at higher discharge (and higher 
suspended sediment concentrations) still are warranted to 
verify these findings under varying conditions and at different 
sampling sites. 

To further evaluate carryover, the streambed was stirred 
to suspend sediments upstream of the autosampler intake, 
and samples were collected from within that plume and after 
the plume had passed or settled (approximately 15 minutes), 
as turbidity at the monitor returned to its baseline value. As 
expected, samples from the period when the streambed was 
being disturbed (sequence numbers 8–10, table 4) showed 
a high degree of variability, which is not a concern because 
the disturbance was essentially random. More importantly, 
after settling samples for all constituents (sequence numbers 
11–13, table 4) were not much different from those prior to the 
disturbance of the streambed. 
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Clean Water Services Laboratory
Autosampler-derived water samples were analyzed 

by Clean Water Services at their water-quality laboratory 
in Hillsboro, Oregon. Samples were delivered immediately 
after retrieval from the autosamplers and subsampled for the 
indicated constituents (table 5). The analyzed constituents 
consisted of nutrients, suspended solids, bacteria, and 
chloride, several of which are regulated by the TMDL (Oregon 
Department of Environmental Quality, 2001). E. coli bacteria 
were analyzed immediately upon sample delivery to the Clean 
Water Services laboratory. Analyses for total and dissolved 
nutrients and TSS were started within 1–3 days of sample 
delivery, well within allowable holding times. Analytical 
methods and reporting limits are indicated in table 5.

Laboratory Quality Assurance
The Clean Water Services water-quality laboratory has a 

rigorous internal quality-assurance program. The laboratory 
also participates in the USGS national Standard Reference 
Sample (SRS) program, a national interlaboratory comparison 
study (see http://bqs.usgs.gov/srs/). Results from many 
years of participation in the SRS program have shown that 
the Clean Water Services laboratory consistently produces 
results that are sufficiently accurate for the parameters in 
this and other studies (bacteria are not included in the SRS). 
During 2002–05, Clean Water Services laboratory results for 
TP samples across a broad range of nominal concentrations 
(0.085–1.35 mg/L) were biased low by about -2 to -8 percent 
in 13 of 17 samples, and biased high by about 0 to 5 percent 
in 4 samples. Likewise, results from the TKN samples were 
biased low by about -1.5 to -16 percent in 8 of 10 samples, and 

Table 5. Constituents analyzed from water samples collected during stormflows,Tualatin River tributaries, 
Oregon, May 2002 to September 2004.

[Method number: EPA, U.S. Environmental Protection Agency (1993); SM, Standard Methods (American Public Health 
Association, 1992). Abbreviations: STORET, U.S. Environmental Protection Agency’s data Storage and Retrieval system; 
E. coli, Escherichia coli; mg/L, milligram per liter; mL, milliliter]

Parameter  
(abbreviation)

STORET  
code

Units
Method 
number

Reporting 
level

Analyzing laboratory

Total suspended solids (TSS) 530 mg/L EPA 160.2 0.2 Clean Water Services
Ammonia nitrogen (NH3‑N) 608 mg/L EPA 350.1 0.01 Clean Water Services
Total Kjeldahl nitrogen (TKN) 625 mg/L EPA 351.2 0.1 Clean Water Services
Nitrate plus nitrite nitrogen (NO3‑N) 631 mg/L EPA 353.1 0.01 Clean Water Services
Total phosphorus (TP) 665 mg/L EPA 365.4 0.025 Clean Water Services
Soluble reactive phosphorus (SRP) 671 mg/L EPA 365.1 0.005 Clean Water Services
Chloride (Cl-) 941 mg/L EPA 300.3 A 0.1 Clean Water Services
E. coli bacteria 31648 (100 mL)-1 SM 9213 D 1 Clean Water Services

biased slightly high (as much as 2.5 percent) in the remainder. 
Furthermore, the Clean Water Services laboratory methods 
and protocols have been reviewed by the USGS Branch of 
Quality Systems and were determined to be suitable. The 
Clean Water Services laboratory also participates in an annual 
Tualatin River basin Interlaboratory Comparison Study, which 
includes all laboratories that routinely analyze water samples 
for government agencies in the Tualatin River basin. 

On the basis of standard samples from both the Oregon 
Water Science Center (ORWSC) and national programs, TP 
data from Clean Water Services used in this study most likely 
were biased slightly low, but generally were consistent. The 
data, therefore, were unadjusted and considered adequate for 
the purposes of the study. When data from USGS and Clean 
Water Services laboratories are used together, any potential 
differences are reflected in the statistical uncertainty for the 
individual correlations. Ultimately, TKN was not included in 
the regression analysis, and any potential bias therefore was 
not relevant to the results of the study.

Field methods in use by Clean Water Services are 
similar to those used by USGS, including the collection of 
samples using depth- and width-integrating techniques and 
the use of churn splitters for subsampling; therefore, the 
respective laboratory methods are the most likely sources of 
any differences between the two datasets. Previous studies 
(Horowitz and others, 1994; Gray and others, 2000) have 
demonstrated that analysis of total suspended solids (TSS), 
the analytical technique used by Clean Water Services and 
many other agencies, is often biased low compared to the 
analysis for suspended sediment concentration (SSC), as 
practiced by USGS. The difference in results between the 
methods is primarily attributed to subsampling; specifically, 

http://bqs.usgs.gov/srs/
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the SSC method includes measurement of sediment in the 
entire sample, but the TSS method measures sediment 
amounts in a subsample removed from the original sample 
bottle. The subsampling process can underestimate sediment 
concentrations, especially if sand concentrations are high or 
flocculation occurs, because these particles settle quickly in 
a sample bottle, and obtaining a representative subsample is 
difficult (Gray and others, 2000). No data are available for 
direct comparison of SSC and TSS in the USGS and Clean 
Water Services databases, respectively. For this report, the 
TSS and SSC data were combined without adjustment, and 
the variability introduced by the two methods is therefore 
incorporated into the regression results. 

Data Aggregation

The intent of this report is to use the available datasets  
for model development and calibration, and to compare the 
most promising model forms and their resulting coefficients, 
to determine the likelihood that suitable predictive models  
can be used to understand transport and loading of the 
indicated constituents (TSS, TP, E. coli bacteria) at the 
Fanno and Dairy Creek sites. The data were aggregated into 
data scenarios, to evaluate (1) model calibration using the 
autosampler-only dataset, and model validation using available 
Clean Water Services data; (2) model calibration with the 
autosampler data plus the available historical USGS data, and 
model validation with Clean Water Services data; and (3) a 
combined dataset using data from all sources for calibration, 
while retaining independent data for model validation. 
Details of these scenarios for Fanno Creek at Durham are 
shown in table 6 and figure 3. During the model construction 
process, if the input variables identified as contributing the 
most information remained similar regardless of the scenario 
used, and likewise if the regression coefficient values 
remained moderately consistent for a given predicted variable 
regardless of scenario, then it could be concluded that the 
models were relatively robust and could be used reliably until 
additional data are collected that can be used to refine those 
models. On the other hand, if the use of different datasets 
resulted in widely varying model forms and coefficients, or 
goodness‑of‑fit diagnostic statistics that differ greatly, then 
additional and targeted data most likely are needed prior to 
development of useful models. All independent variables 
(specific conductance and turbidity data plus streamflow or 
stage) were consistently taken from the same data sources for 
all scenarios and model runs. Data from continuous monitors 
came from USGS, and streamflow or stage data came from 
USGS for Fanno Creek and from OWRD for Dairy Creek at 
Highway 8.

Duration curves are commonly used in hydrologic 
studies to document the range of conditions measured at 
a site during an indicated period, including the frequency 

and magnitude of certain conditions. These curves depict 
cumulative distributions of all measurements during the 
study period, and show the percentage of time during the 
study period that specific values for the constituent were 
equaled or exceeded. Although typically used for discharge 
records, duration curves have increasingly been constructed 
for water quality constituents for which high density data can 
be collected, including continuous monitoring data such as 
those collected in this study (Rasmussen and others, 2008). 
Duration curves (fig. 3) for selected continuous parameters 
used in the regressions provide information about the 
relative magnitude of the parameter values during sampling, 
compared to the full range measured at the site during the 
study period. For example, if a given turbidity associated with 
a particular sample was exceeded only 5 percent of the time 
during the study period, then that measurement represents 
a relatively high turbidity; however, if the turbidity of a 
sample was exceeded 50 percent of the time or more often, 
then that sample represents average or low‑flow conditions, 
respectively. 

During the early phases of model development, it was 
determined that exclusive use of the autosampler-derived 
data (Scenario 1) to construct predictive statistical models 
was flawed because of correlation issues. The regression 
process assumes that input data points are truly independent; 
however, data collected over a single hydrograph are not 
completely independent of one another. For example, as 
streamflow increases during a storm, samples collected 
sequentially are more likely to be similar to each other than 
samples collected during different storms or under completely 
different sampling conditions. This serial correlation is a 
problem when using the Scenario 1 (autosampler-only) 
dataset for model building purposes. Methods to account for 
serial correlation are available, such as introducing a lag in 
the data to reduce the interdependence of individual samples 
(Helsel and Hirsch, 1992); however, these methods were not 
used in this study because it was recognized that, whether 
or not a lag was introduced to account for serial correlation, 
the Scenario 1 datasets would be insufficient for regression 
modeling because the range of stream conditions encompassed 
by the autosampler deployments was limited (fig. 3A). As an 
example, the peak discharge sampled by the autosamplers at 
Fanno Creek was about 134 ft3/s (table 6); although discharges 
during the study period were as much as 780 ft3/s (fig. 3) 
and historical high flows occasionally have been greater than 
1,000 ft3/s. For the purposes of simplicity and to focus on 
the larger study objectives, serial correlation was therefore 
ignored in the analysis of Scenario 1 and 2; instead, the 
Scenario 3 dataset was created to avoid serial correlation (see 
below). When appropriate, the potential influence of serial 
correlation on model development based on Scenario 1 and 
Scenario 2 is discussed. 
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Figure 3. Flow duration curves with samples collected from each data source for (A) Scenario 1, (B) 
Scenario 2, and (C) Scenario 3, for Fanno Creek near Durham, Oregon, water years 2001–07. Samples used 
for model calibration are in orange, and samples used for model validation are in black. See table 6 for a 
description of the data aggregation into Scenarios 1, 2, and 3.
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In Scenario 2, Fanno Creek autosampler data are 
augmented with additional data collected by the USGS  
for water years 2001-07 (table 6 and fig. 3B); validation 
is done with Clean Water Services data as in Scenario 1. 
Scenario 2 provides an example of one relatively simple 
method to aggregate data when multiple sources are  
available. Serial correlation between autosampler-derived  
data remains an issue in Scenario 2, although the influence  
of serial correlation on the outcome is reduced by the 
additional data. USGS data were collected for various 
purposes, including routine monitoring (USGS National 
Water-Quality Assessment Program, http://water.usgs.gov/
nawqa/) and other, more targeted studies (McCarthy, 2000; 
Anderson and Rounds, 2003), and are stored in the USGS 
National Water Information System (NWIS) database (http://
nwis.waterdata.usgs.gov/or/nwis/qwdata). The USGS and 
Clean Water Services routine monitoring designs do not  
target specific flow conditions, and the resulting dataset is 
primarily composed of base‑flow (non‑storm) samples  
during all months; high‑flow samples are present only when 
storm events coincided with scheduled sampling events.  
At least one USGS study (Anderson and Rounds, 2003) did 
focus on high‑flow and runoff conditions, thus providing 
several samples at discharges greater than those sampled by 
the deployed autosamplers. Additionally, occasional USGS 
and Clean Water Services samples were collected prior to 
2002 at higher discharges, but continuous monitors were not 
deployed at the time so the results could not be used for this 
study.

Scenario 3 was created specifically to minimize the stated 
problems in the Scenario 1 and 2 datasets. To avoid the serial 
correlation bias, Scenario 3 used only the autosampler data 
collected during peak flow in each individual storm sampled 
(that is, one sample per storm); to minimize base‑flow bias, a 
subset of the routine Clean Water Services ambient monitoring 
data was used with selected high‑flow data from the USGS 
and Clean Water Services historical datasets. From the routine 
Clean Water Services data, only the first data point in each 
month was included, which reduced the number of base‑flow 
samples but still represented seasonal patterns; sometimes 
these samples represented moderate storm runoff, although 
most samples were collected at relatively low flows. For high 
flow, any samples that were potentially representative of 
storm response were desired; thus, high flow was determined 
as any data point with an associated discharge greater than 
the 25th percentile value for that month, as defined from 
monthly flow‑duration statistics computed from the NWIS 
database for the period of record at Fanno Creek near Durham 
(USGS stream-gaging station 14206950), October 2000–
September 2007. This strategy allowed Scenario 3 to capture 
summer and spring storm responses while minimizing 
samples corresponding to low flows. Because of the 

paucity of high‑flow samples, most available samples were 
used for calibration; however, a few were retained for 
validation (fig. 3C).

For Scenario 1, the highest discharges sampled for model 
calibration were exceeded about 10 percent of the time from 
water year 2001 to 2007 (fig. 3). The Scenario 1 validation 
dataset (in black) has three samples at slightly higher 
discharges (exceeded about 7–9 percent of the time). By far 
the bulk of the samples were at discharges exceeded about 
10–70 percent of the time, during base‑flow to moderate storm 
runoff. The addition of data from USGS in Scenario 2, and 
re-aggregation to use a broad range of the samples from Clean 
Water Services’ database in Scenario 3, added successively 
greater numbers of samples from higher discharges, or those 
exceeded less than 1 to about 10 percent of the time. However, 
even in Scenario 3 only a few of these higher flow samples 
were available, and some were needed for model validation, 
whereas in each scenario large numbers of samples were 
collected during relatively low‑flow conditions, when the 
respective discharges were frequently exceeded. 

Any potential contamination detected during the 
autosampler quality-assurance tests (table 3) was well 
below most of the sample concentrations included in the 
aggregated datasets. For example, although soluble reactive 
phosphorus was detected in blank water at 0.007–0.009 mg/L, 
the minimum TP concentrations in Scenarios 1, 2, and 3 
were 0.08 mg/L, and the medians ranged from 0.13 to 0.15 
mg/L (table 6). Maximum ambient concentrations for model 
calibration were as much as 0.47 mg/L. Even if contamination 
at less than 0.01 mg/L is pervasive, its effect on the model 
formulation is likely small. 

For the site at Dairy Creek near Highway 8, data were 
similarly aggregated into scenarios; however, no historical, 
independent data from USGS were available, so only two 
scenarios were evaluated. These and other differences in 
the input data are described in the section on Dairy Creek 
model results. Duration curves for samples used in the Dairy 
Creek analysis are not shown because the Dairy Creek data 
aggregation process was less complex than for Fanno Creek, 
and potential problems with backwater effects on discharge 
would complicate the construction of duration curves. 

Dairy Creek at Highway 8 is sampled routinely by Clean 
Water Services but not by USGS, with the exception of the 
autosampler deployments in autumn 2003. For that reason, 
the available data for calibration and validation of regression 
models from 2002 to 2004 are more limited than at Fanno 
Creek (table 7). Scenario 1 was derived in the same way as 
for Fanno Creek, using the autosampler data for calibration 
and Clean Water Services data for validation. However, 
for calibration, Scenario 2 used the Clean Water Services 
samples at high stage, the first routine Clean Water Services 
samples from each month, and the peak discharge samples 
collected from the two autosamplers during autumn storms. 

http://water.usgs.gov/nawqa/
http://water.usgs.gov/nawqa/
http://nwis.waterdata.usgs.gov/or/nwis/qwdata
http://nwis.waterdata.usgs.gov/or/nwis/qwdata
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Validation data for Scenario 2 used the remaining Clean Water 
Services monitoring data combined with the autosampler data 
from times other than peak discharge. This formulation of 
Scenario 2 datasets differs from Scenario 2 used for Fanno 
Creek (table 6), where USGS data along with the autosampler 
data were used for calibration in Scenario 2. Furthermore, no 
Scenario 3 dataset was warranted for Dairy Creek.

Having minimized the potential serial correlation and 
base‑flow bias problems, the Scenario 3 dataset from Fanno 
Creek is presumed the most likely to produce robust regression 
models. This dataset includes high‑flow data from USGS, 
monthly and high‑flow data from Clean Water Services, and 
the peak discharge samples collected by the autosamplers. 
Two major limitations in the compilation of data, however, 
result from using historical data rather than data collected 
specifically for this study. First, few samples were collected 
during storm and high‑flow conditions, which not only 
reduces the size and range of the available dataset for model 
calibration but also the available data for model validation. 
Second, for the purposes of this exercise, laboratory data from 
all sources were compiled together.

Regression Models

Several methods were used to evaluate potential 
regression models, with the intent that any models described 
herein are examples of the types of models that could be 
useful for predictive purposes, even if they currently lack 
sufficient data for either calibration or validation purposes. 
The functional form of the models is 

1 2

1 2

( , ,.. ) ,

where
is the dependent variable,

, ,.. are explanatory variables, and
the notation

() indicates that  is a function of the 
indicated explanatory variables.

n

n

y f x x x

y
x x x

f y

=  (1)

If initial correlation attempts look promising, then the results 
are given in tables for a specified parameter that show model 
coefficients and regression statistics for regression equations 
of the form:

1 2 n

1 2

... ,

where
, ,... are regression coefficients, 

 is an error term,or intercept, and 
, , ,... are as already described.n

y ax bx mx

a b m

y x x x

= + + + ε

ε

 (2)

The dependent variables (y) are the predicted concentrations 
of water-quality constituents from laboratory analysis, 
such as TSS, TP, or E. coli bacteria, and the independent or 
explanatory variables are the continuously measured data 
such as streamflow, stage, specific conductance, or turbidity. 
Residual plots were generated during the regression process 
(SAS Institute, 1989) to help determine the degree of 
homoscedasticity (homogeneity in the variance) and identify 
outliers in the datasets.

Log transformation, which sometimes allows more robust 
regression predictions, was performed on independent and 
dependent variables and these transformed variables were 
evaluated for utility in making predictions. Log transformation 
can provide better homoscedasticity and result in more 
symmetric datasets with normal residuals (Gray and others, 
2000). When regression models are developed with data that 
violate assumptions of normality and homoscedasticity, the 
models are less likely to apply over the range of expected 
conditions for the site, and large prediction errors may occur. 
Rasmussen and others (2009) recommend log transformations 
for development of estimated suspended sediment 
concentrations and loads as a function of continuous turbidity 
and (or) discharge data, and this approach has been used with 
success for suspended sediment and other selected variables 
in streams in Kansas (Rasmussen and others, 2008), Oregon 
(Uhrich and Bragg, 2003; Anderson, 2007), and Florida (Lietz 
and Debiak, 2005). 

Some constituents may be affected by seasonal 
considerations that explicitly need to be included in the 
regression modeling. For example, nutrient concentrations 
in surface waters might be partially dependent on water 
temperature and its effects on biological processes, riparian 
plant growth and its ability to reduce erosion, or even the 
amount of daylight hours and its effects on algal production. 
Similarly, bacterial growth in streams (E. coli bacteria, in 
this study) is generally considered tightly coupled with 
water temperature, among other factors. Even TSS could 
have a seasonal component if factors such as the effect of 
riparian vegetation on erosion or seasonal rainfall patterns are 
important. Although the continuously measured parameters 
used in this study (discharge, turbidity, specific conductance) 
inherently incorporate these seasonal fluctuations, seasonality 
was also explored in the regression modeling with sine and 
cosine transformations of the sample date. The following two 
terms were evaluated as additional explanatory variables:

*sin( *2*pi / 365.25), and
*cos( *2*pi / 365.25) ,

where
and are regression coefficients similar to , ,

and  in equation 2, and
is in decimal days of the year, with 365.25

representing the averag

c date
d date

c d a b
m

date
e number of days

in a year.
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These two terms must be used together to capture and express 
an annual periodic cycle with an unknown phase offset. Using 
only the sine or cosine term without the offset is less likely to 
capture a periodic signal in the data. However, the sine and 
cosine terms also could cause an interaction with the other 
independent variables; therefore, the model building is done 
with and without the sine and cosine terms, and the presence 
of such interactions is then detected using an F-test (Helsel 
and Hirsch, 1992; R. Hirsch, U.S. Geological Survey, written 
commun., December 2008). Sine and cosine terms were tested 
in regression models for TSS, TP, and E. coli bacteria for 
the data scenarios that are presumed the most robust input 
calibration data at the respective sites; that is, Scenario 3 for 
Fanno Creek and Scenario 2 for Dairy Creek. 

Data used in this study were initially examined 
graphically for patterns between potential explanatory 
variables and the dependent variables. Some patterns that 
were observed included the presence of bimodal distributions 
or possible outliers that might affect regressions among the 
constituents, and correlations (either positive or negative) that 
might be indicative of predictive signals. Because of their 
potentially large effect on the regression statistics, outliers 
were defined as any data points lying more than three times 
the interquartile range beyond the 25th and 75th percentile 
values for a particular constituent (Lewis, 1996; Uhrich and 
Bragg, 2003; Lietz and Debiak, 2005; Rasmussen and others, 
2008), and investigated for possible data coding problems, 
field or laboratory irregularities, or other documented issues 
that might explain their abnormality. If documented problems 
could not be corrected, the data were excluded from regression 
calculations, whereas the data were retained if all available 
information confirmed the sample integrity.

Model building was initially performed with backward, 
stepwise, linear regressions (Helsel and Hirsch, 1992; SAS 
Institute, 1989), with an alpha value of 0.05, using either 
the original or log-transformed data, whichever provided 
the best fit. When stepwise‑regression selected independent 
variables that were surrogates for each other (for example, 
untransformed and log-transformed versions of the same 
variable, or stage and streamflow), one variable was removed 
and the stepwise process was repeated. However, stepwise 
regression algorithms tend to continue adding explanatory 
variables until the coefficient of determination (R2) is 
maximized, whether or not the added variables actually 
provide useful information, and can create models that are 
overfitted (Burnham and Anderson, 2002). Therefore, the 
initial stepwise regressions were used only as a starting point 
to evaluate additional model forms using reduced sets of 
explanatory variables. Subsequent iterations were performed 
to minimize Mallow’s Cp (SAS Institute, 1989; Draper and 

Smith, 1998), and used the adjusted-R2, which penalizes 
additional variables, as a model selection scheme. This process 
was similar to a “Best‑Subsets” regression (Draper and Smith, 
1998), although less formal. 

One challenge when using stepwise regression or other 
algorithms to select the best correlation was exploring the 
use of variables in their native units and log transformed 
forms. Although one might want to evaluate native and 
transformed variables, inclusion of the forms together 
introduces opportunities for significant cross correlation 
or multicollinearity; software programs that automatically 
perform such algorithms are usually incapable of 
distinguishing between variables that are truly independent 
and those that are transformed versions of another variable. 
The process of model selection by necessity, therefore, was 
iterative and ultimately was reduced to using log-transformed 
dependent variables to minimize the possibility that the 
resulting predicted values would be negative, while evaluating 
native and transformed versions of the independent variables 
using the methods discussed previously. 

Interactions between independent variables, such as 
occurs if one variable is dependent on another, can reduce 
the reliability of correlation coefficients (Draper and Smith, 
1998), and can contribute to overfitting of regression models 
(SAS Institute, 1989). The net result tends to be an increase 
in the standard errors of the independent variables, an effect 
that is minimized with increased observations. One measure of 
multicollinearity is the Variance Inflation Factor (VIF), which 
measures the degree to which the variance of the coefficient 
of determination for a particular variable is increased because 
of interdependence between that variable and others in a 
particular model. The VIF is calculated as

2
1

2
1

1/(1- ) ,

where
is the coefficient of determination for the

regression of the th independent variable
on all other independent variables
(Draper and Smith, 1998).

R

R
i

 (3)

The value of the VIFs are dependent solely on the interactions 
of the independent variables with each other. Thus, VIFs for 
a set of independent variables can vary according to datasets 
used, or in this study, according to scenarios. Likewise, 
the same dataset may be used in regressions for different 
dependent variables, and the VIFs would be identical for each 
identical grouping of independent variables; regressions with 
only one variable have no interactions and, therefore, no VIF 
is applicable. 



22  Continuous Monitors and Autosamplers Used to Predict Water-Quality Constituents, Tributaries of Tualatin River, Oregon

The acceptable magnitude of a VIF is dependent on the 
objectives of a specific study. Several rules‑of‑thumb for VIFs 
are sometimes given, and tend to range from greater than 
0.2 to less than 10 (Helsel and Hirsch; SAS Institute), but 
variables with VIFs exceeding these levels may still be useful 
in a model if they have a low p value. Alternately, a critical 
value for a maximum acceptable VIF (referred to hereafter as 
VIFcrit) for an equation can be calculated by substituting the 
overall coefficient of determination of the model (R2, or in this 
study, adjusted-R2) for 2

iR  in equation 3 (SAS Institute, 1989). 
If the result is smaller than any of the VIFs of any variable 
in the equation, then multicollinearity may have contributed 
to the inclusion of that variable in the model, although 
consideration of the significance of that variable (p value) 
in the model remains important. A low adjusted-R2, as in 
equation 3, will result in a low VIFcrit and reduce the apparent 
level of interaction that is allowed among model variables. In 
this study, VIFs were obtained as output from the statistical 
software (SAS Institute, 1989). 

When log-transformed dependent variables are included 
in regression models, a transformation bias can be introduced 
when the results are converted back to native units for making 
predictions. In these cases, a bias correction factor, or BCF 
(Helsel and Hirsch, 1992) is necessary; the BCF is multiplied 
by the value of the predicted dependent variable after the BCF 
is transformed back into native units by taking the antilog. 
That is, 

´ *10 ,

where
´ is the final, predicted value, untransformed into

native units, and 
y  is the value of the log-transformed dependent 

variable as calculated in equation 2.

yy BCF

y

=  (4)

Duan’s BCF is the average of the residuals of the dependent 
variable in the regression dataset; when the dependent variable 
was log transformed, the antilog of the residual was taken 
before averaging to determine the BCF. Likewise, when log‑
transformation was used for prediction, the lower and upper 
95 percent prediction interval values (SAS Institute, 1989; 
Helsel and Hirsch, 1992) also were converted to native units 
with the antilog, and these were corrected using the same BCF 
as the predicted dependent variables. 

For the Fanno Creek and Dairy Creek sites, predicted 
hourly concentrations and their 95 percent prediction intervals 
were computed for selected water-quality constituents using 

regression models, and using the indicated hourly monitor and 
streamflow records as independent variables. Predictions were 
evaluated against the available validation data (tables 6 and 
7) by interpolating the hourly predictions to the time of the 
validation samples, and then comparing the resulting values 
to the validation samples using a series of goodness‑of‑fit 
statistics (table 8). This validation exercise for the regression 
models provides an independent measure of the quality of 
the predictions for the dependent variables and could assist 
in the decision about which model is the most robust. Not all 
goodness‑of‑fit metrics in table 8 are shown in subsequent 
tables of model results, due to space constraints, but all were 
used in evaluation of model performance. The available input 
datasets and resulting regression models were not adequate for 
making predictions for the non-target sites (table 1), and only 
the preferred model forms, without the supporting regression 
coefficients, are presented to provide an indication of the most 
important independent variables to consider for monitoring.

Where regression results seem to provide a reasonable 
starting point for future modeling, several model forms are 
shown along with their respective coefficients, diagnostic 
statistics, and selected goodness‑of‑fit statistics. Diagnostic 
statistics include the adjusted-R2 and the root mean square 
error (RMSE) of the regression. The RMSE assesses the 
typical error between predicted and observed values. As the 
root mean square is equal to the square of the mean plus the 
square of the standard deviation, then if the mean error is zero 
(no bias), the RMSE is equal to the standard deviation of the 
errors. The Nash‑Sutcliffe Coefficient (Nash and Sutcliffe, 
1970), otherwise known as the Coefficient of Model‑Fit 
Efficiency, is one of the goodness‑of‑fit statistics computed 
for these models and commonly is used for assessing the 
accuracy of hydrologic models. Imbalance in the model 
residuals is assessed by examining the number of negative and 
positive differences between a model’s predicted results and 
the comparable laboratory values; a sign test can be used to 
estimate the likelihood that the residuals were random in the 
positive or negative directions. 

Results using several models illustrate the potential 
explanatory variables and transformations of variables that 
could be used and the effects of using different input datasets. 
More detailed regression, neural network, or autoregressive 
models could be built and would be useful for comparison. 
This study, however, is meant to be a proof of concept rather 
than a definitive model building exercise. Simple multiple 
linear regressions should be sufficient to determine whether 
adequate information is present in the monitor data to predict 
TP, TSS, and E. coli bacteria in Fanno and Dairy Creeks.



Methods  23
Ta

bl
e 

8.
 

Go
od

ne
ss

-o
f-fi

t s
ta

tis
tic

s 
us

ed
 fo

r e
va

lu
at

io
n 

of
 re

gr
es

si
on

 m
od

el
 p

re
di

ct
io

ns
.

[A
bb

re
vi

at
io

ns
: N

A
, n

ot
 a

pp
lic

ab
le

; n
, n

um
be

r o
f s

am
pl

es
]

D
es

cr
ip

tio
n 

of
 te

st
A

cc
ep

ta
bl

e 
ra

ng
e

Ex
pl

an
at

io
n

N
um

be
r o

f p
oi

nt
s c

om
pa

re
d

N
A

; m
or

e 
po

in
ts

N
um

be
r o

f v
al

id
at

io
n 

da
ta

 p
oi

nt
s w

ith
 c

om
pa

ra
bl

e 
pr

ed
ic

te
d 

va
lu

es
 fr

om
 th

e 
re

gr
es

si
on

. 
A

na
lo

go
us

 to
 ‘n

’ i
n 

re
gr

es
si

on
 m

od
el

, d
et

er
m

in
es

 d
eg

re
es

 o
f f

re
ed

om
.

M
ea

n 
er

ro
r (

M
E)

N
ea

r z
er

o—
ex

ac
t r

an
ge

 d
ep

en
ds

 o
n 

co
ns

tit
ue

nt
Av

er
ag

e 
er

ro
r b

et
w

ee
n 

pr
ed

ic
te

d 
va

lu
es

 a
nd

 la
bo

ra
to

ry
 v

al
ue

s i
n 

va
lid

at
io

n 
da

ta
 se

t—
a 

go
od

 m
ea

su
re

 o
f b

ia
s.

M
ea

n 
ab

so
lu

te
 re

la
tiv

e 
er

ro
r 

(p
er

ce
nt

)
0–

50
 

Av
er

ag
e 

ab
so

lu
te

 d
iff

er
en

ce
 b

et
w

ee
n 

pr
ed

ic
te

d 
an

d 
la

bo
ra

to
ry

 v
al

ue
 a

s n
or

m
al

iz
ed

 to
 

la
bo

ra
to

ry
 v

al
ue

s.

R
oo

t m
ea

n 
sq

ua
re

 e
rr

or
 (R

M
SE

)
D

ep
en

ds
 o

n 
co

ns
tit

ue
nt

; a
 n

um
be

r c
lo

se
r t

o 
ze

ro
 is

 
be

tte
r

A
 m

ea
su

re
 o

f t
he

 sq
ua

re
 o

f t
he

 m
ea

n 
pl

us
 th

e 
sq

ua
re

 o
f t

he
 st

an
da

rd
 d

ev
ia

tio
n.

 If
 th

e 
m

ea
n 

er
ro

r i
s z

er
o,

 th
en

 th
e 

R
M

SE
 is

 e
qu

al
 to

 th
e 

st
an

da
rd

 d
ev

ia
tio

n 
of

 th
e 

er
ro

rs
—

a 
go

od
 m

ea
su

re
 o

f t
he

 m
ag

ni
tu

de
 o

f t
he

 ty
pi

ca
l e

rr
or

 o
f t

he
 p

re
di

ct
io

n.
 A

 h
ig

h 
R2  w

ith
 a

 
po

or
 fi

t b
as

ed
 o

n 
th

e 
R

M
SE

 is
 p

os
si

bl
e 

if 
th

e 
ra

ng
e 

of
 th

e 
da

ta
 is

 la
rg

e.
  

C
oe

ffi
ci

en
t o

f d
et

er
m

in
at

io
n 

(R
2 )

A
pp

ro
xi

m
at

el
y 

0.
6–

1.
0,

 a
lth

ou
gh

 u
se

r d
efi

ne
d.

A
na

lo
go

us
 to

 c
oe

ffi
ci

en
t o

f d
et

er
m

in
at

io
n 

fo
r r

eg
re

ss
io

n,
 b

as
ed

 o
n 

di
ffe

re
nc

es
 o

f 
pr

ed
ic

te
d 

an
d 

kn
ow

n 
va

lu
es

 o
f i

nd
ep

en
de

nt
 v

ar
ia

bl
es

.

N
as

h‑
Su

tc
lif

fe
 c

oe
ffi

ci
en

t
A

pp
ro

xi
m

at
el

y 
0.

6–
1.

0,
 a

lth
ou

gh
 u

se
r d

efi
ne

d.
A

ls
o 

ca
lle

d 
th

e 
C

oe
ffi

ci
en

t o
f M

od
el

 F
it 

Ef
fic

ie
nc

y—
it 

is
 th

e 
pr

op
or

tio
n 

of
 v

ar
ia

nc
e 

in
 

th
e 

m
ea

su
re

d 
va

lu
es

 th
at

 is
 e

xp
la

in
ed

 b
y 

th
e 

pr
ed

ic
te

d 
va

lu
es

, a
nd

 is
 a

 m
or

e 
rig

or
ou

s fi
t 

st
at

is
tic

 th
an

 th
e 

co
ef

fic
ie

nt
 o

f d
et

er
m

in
at

io
n.

 A
 v

al
ue

 o
f 1

.0
 is

 a
 p

er
fe

ct
 fi

t. 
 A

 v
al

ue
 o

f 
0 

in
di

ca
te

s t
ha

t t
he

 m
od

el
 p

re
di

ct
io

ns
 a

re
 o

nl
y 

as
 a

cc
ur

at
e 

as
 th

e 
m

ea
n 

of
 th

e 
ob

se
rv

ed
 

da
ta

. A
ny

th
in

g 
le

ss
 th

an
 z

er
o 

m
ea

ns
 th

at
 th

e 
ob

se
rv

ed
 m

ea
n 

is
 a

 b
et

te
r p

re
di

ct
or

 th
an

 
th

e 
m

od
el

. H
ow

ev
er

, n
ot

e 
th

at
 th

e 
va

lu
e 

of
 th

is
 c

oe
ffi

ci
en

t i
s h

ig
hl

y 
de

pe
nd

en
t o

n 
th

e 
av

ai
la

bl
e 

va
lid

at
io

n 
da

ta
. I

f v
al

id
at

io
n 

da
ta

 a
re

 in
su

ffi
ci

en
t t

o 
ch

ar
ac

te
riz

e 
th

e 
re

sp
on

se
 

va
ria

bl
e,

 th
is

 c
oe

ffi
ci

en
t m

ay
 u

nd
er

‑r
ep

re
se

nt
 th

e 
tru

e 
fit

 o
f t

he
 m

od
el

.

N
um

be
r o

f n
eg

at
iv

e 
di

ffe
re

nc
es

Si
m

ila
r t

o 
nu

m
be

r o
f p

os
iti

ve
 d

iff
er

en
ce

s
N

um
be

r o
f p

re
di

ct
ed

 v
al

ue
s t

ha
t a

re
 le

ss
 th

an
 th

e 
re

le
va

nt
 la

bo
ra

to
ry

 v
al

ue
.

N
um

be
r o

f p
os

iti
ve

 d
iff

er
en

ce
s

Si
m

ila
r t

o 
nu

m
be

r o
f n

eg
at

iv
e 

di
ffe

re
nc

es
N

um
be

r o
f p

re
di

ct
ed

 v
al

ue
s t

ha
t a

re
 g

re
at

er
 th

an
 th

e 
re

le
va

nt
 la

bo
ra

to
ry

 v
al

ue
.

Pr
ob

ab
ili

ty
 fr

om
 si

gn
 te

st
> 

Ty
pi

ca
lly

 g
re

at
er

 th
an

 0
.0

5
U

si
ng

 th
e 

si
gn

 te
st

 o
n 

th
e 

re
si

du
al

s, 
th

is
 is

 th
e 

st
at

is
tic

al
 p

ro
ba

bi
lit

y 
th

at
 th

e 
nu

m
be

r o
f 

po
si

tiv
e 

an
d 

ne
ga

tiv
e 

di
ffe

re
nc

es
 c

ou
ld

 h
av

e 
re

su
lte

d 
if 

th
e 

er
ro

rs
 w

er
e 

tru
ly

 ra
nd

om
 in

 
di

re
ct

io
n.

z-
st

at
is

tic
 fr

om
 si

gn
 te

st
< 

Ty
pi

ca
lly

 le
ss

 th
an

 1
.9

6
U

si
ng

 th
e 

si
gn

 te
st

 o
n 

th
e 

re
si

du
al

s, 
th

e 
z-

st
at

is
tic

 p
ro

vi
de

s a
 st

at
is

tic
al

 m
ea

su
re

 th
at

 
de

te
rm

in
es

 w
he

th
er

 th
e 

nu
m

be
r o

f p
os

iti
ve

 a
nd

 n
eg

at
iv

e 
di

ffe
re

nc
es

 c
ou

ld
 h

av
e 

re
su

lte
d 

if 
th

e 
er

ro
rs

 w
er

e 
ra

nd
om

 in
 d

ire
ct

io
n.



24  Continuous Monitors and Autosamplers Used to Predict Water-Quality Constituents, Tributaries of Tualatin River, Oregon

Relations Between Continuous  
Monitor Data and Selected  
Water-Quality Constituents

Autosampler Deployment Dates and Conditions 

Streams were sampled with autosamplers during storms 
from spring 2002 through autumn 2003 (table 9). Because 
of differences in hydrologic characteristics and responses 
among sites, inconsistent spatial extent of storms, and resource 
availability, only a few streams were sampled during any 
individual storm. To obtain the desired number of samples 
(approximately 48–50) covering reasonably broad ranges of 
field parameters and to develop robust regression models, 
some streams were sampled during more storms than others. 
For example, Rock, Chicken, and Fanno Creeks were sampled 
during three storms each, whereas Gales Creek was only 
sampled during one storm. 

In some cases, the storms sampled by autosamplers at 
individual sites represented different seasonal conditions. 
For example, Beaverton and Rock Creeks were both sampled 
in summer (June) and autumn (December). This difference 
in season helped increase the range of field and laboratory 
constituent values obtained, which ordinarily would be useful 
for deriving strong correlations. For some field values at some 
sites, however, the same temporal differences also resulted 
in bimodal distributions that likely reduced the quality of the 
autosampler‑derived regression models. For example, specific 
conductance at some sites was less variable during individual 
storms than between seasons, which abnormally skewed 
regressions that relied on specific conductance at those sites. 
For this reason, where bimodal distributions were observed in 
the initial graphical analysis, those parameters were removed 
from consideration for regressions at the respective locations. 
For the most part, bimodal distributions occurred primarily 
at the non-target sites, whereas the autosampler deployments 
at Fanno Creek were primarily during late spring in 2002 and 
2003, and the deployments at Dairy Creek occurred in autumn 
2003 (table 9) possibly serving to narrow the resulting range 
of constituent values. 

In the following sections, figures are provided to show 
the percentage of time during the study period that the field 
values measured during the autosampler deployments were 
exceeded. Monitors were installed primarily during the late 
spring, summer, and early autumn because of reduced access 
when winter flows were high. Therefore, the data used to 
determine the percentage of time a given value was exceeded 
do not include the typically higher-discharge in winter, when 
it could be expected that, on average, specific conductance 
generally would be lower but also highly variable, and 
turbidities would be higher than during the months of monitor 
deployment. 

Table 9. Dates of autosampling and peak storm discharges at 
Tualatin River tributary sites, Oregon, spring 2002 to autumn 2003.

[Abbreviations: ft3/s, cubic feet per second]

Stream Sampling dates
Peak storm 
discharge  

(ft3/s)

Beaverton Creek June 28–30, 2002 207
December 10–12, 2002 207

Chicken Creek June 17, 2003 12.2
May 8, 2003 22
May 17–18, 2003 27

Dairy Creek October 9, 2003 42
November 19–20, 2003 158

Fanno Creek June 17–18, 2002 94
May 4–5, 2003 134
May 8–9, 2003 118

Gales Creek November 17–20, 2003 245

Rock Creek June 28–30, 2002 180
December 10–12, 2002 372
September 5–9, 2003 70

The Fanno and Dairy Creek sites were sampled during 
relatively moderate storms during the study period (fig. 3), 
resulting in a smaller but sometimes bimodal range for specific 
conductance and turbidity. Overall, the range of physical 
conditions encountered while sampling was somewhat 
narrow. Discharges increased moderately during storms but 
mostly did not represent the highest peaks that commonly 
occur during some years; likewise, turbidity and other field 
parameters showed only moderate ranges during the sampled 
storms. Caution must be exercised when using regression 
equations from this analysis if conditions are outside the range 
documented during this study (tables 6 and 7). Extrapolation 
of regression equations beyond the bounds of the data used 
to formulate them is considered a potentially large source 
of error and is not recommended (Helsel and Hirsch, 1992). 
To a certain extent, the validation datasets in this study 
allow evaluation of the error introduced when the regression 
models are applied to conditions beyond the range of the 
input datasets. However, the validation datasets are limited 
in the range of conditions encompassed and therefore do not 
provide much additional information about the adequacy of 
the regression models to address many of the higher flow 
conditions. 
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Figure 4. Probability that (A) specific conductances and (B) turbidities during autosampling were exceeded 
at Fanno Creek at Durham, Oregon, May 2002 to September 2004. 
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Fanno Creek at Durham Road

Autosampler Data
The storms were sampled by autosamplers at Fanno 

Creek in late spring or early summer. The sampled peak 
discharges (94–134 ft3/s, table 9) covered a narrow range of 
potential discharges for this site (fig. 3); although storms of 
this size are fairly representative for May–June in most years, 
peak discharges exceeded these amounts at least 15 times on 
other dates during the study period (http://waterdata.usgs.
gov/or/nwis/, accessed November 17, 2005). Fanno Creek is 
in a highly urbanized basin and responds quickly to rainfall 

making it a challenge to anticipate and react to storms to 
collect high‑flow samples. This situation is indicative of the 
need for automatic sampling and increases the likelihood that 
extreme events will not be adequately sampled. 

Several critical constituents exhibited less variability 
during individual autosampler storm events than between 
sampling events. This resulted in bimodal data distributions of 
the autosampler data, as illustrated for specific conductance, 
in figure 4. Data points tended to be clustered into small 
groups, and generally represented average conditions rather 
than the rarely occurring extremes usually indicative of storm 
conditions. 

http://waterdata.usgs.gov/or/nwis/
http://waterdata.usgs.gov/or/nwis/
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Specific conductance measured during sample collection, 
for example, was exceeded from about 25 to more than 
95 percent of the time during the study period. The duration 
curves for specific conductance are different than for turbidity 
because the sources and mechanisms affecting the two are 
different. During base flow, specific conductance at Fanno 
Creek is relatively high (>200 µS/cm) but rainfall is dilute 
(about 0–20 µS/cm) so dilution by rain can cause a large range 
in responses. Turbidity caused by suspended particles may 
come from upland sources transporting particles to the stream, 
or from within the stream from erosion or resuspension. 
Turbidity values measured during autosampler deployment 
were more indicative of the higher and more continuous range 
during the study than were specific conductances, and were 
exceeded only about 2 to 34 percent of the time during the 
entire study period. Model results from conditions of specific 
conductances, and turbidities beyond those actually measured 
during the samplings in the Scenario 1–3 datasets (table 6) 
cannot be verified. 

The relations between Fanno Creek field parameters and 
laboratory sample results from the autosampler deployments 
and the Scenario 3 dataset show some useful patterns (fig. 5). 
In figure 5A, the symbols for a given storm and constituent 
combination sometimes show different patterns indicating 
the differences between storms. Possible linear relations for 
the autosampler dataset are indicated for combinations of 
turbidity or discharge with TSS, TP, and E. coli bacteria. In the 
larger dataset represented by Scenario 3, linear relations are 
indicated between turbidity and TSS, TP, and E. coli bacteria. 
Several other potential relations are indicated, particularly for 
discharge and TSS or TP; however, considerable scatter is also 
apparent. 

The occasional bimodal data distributions among 
storms and the narrow range of peak flows sampled (figs. 3, 
4, and 5) indicate that the autosampler-derived data may be 
inadequate to develop robust regression models between 
field parameters and laboratory sample results for Fanno 
Creek near Durham. Patterns in the autosampler-derived 
data, however, also support the possibility that such models 
might be constructed with a more comprehensive dataset. The 
main limitations of the autosampler data, beyond any serial 
correlation issues, are that they do not represent all seasons 
or the high flow conditions, and that some constituent data 
are bimodal. The incorporation of USGS‑NWIS and Clean 
Water Services ambient monitoring datasets into Scenario 2 
and 3 datasets for Fanno Creek, in addition to the autosampler 
data, was an attempt to overcome these limitations (table 6). 
Outliers observed in the scatter plots were removed to prevent 
unacceptable leverage on the regression computations. 

Total Suspended Solids
Several regression models for TSS at Fanno Creek 

near Durham are listed and characterized in table 10. The 
preferred models produced with each scenario included 
turbidity and specific conductance as explanatory variables. 
Discharge (or stage, as a surrogate for discharge) was included 
as an explanatory variable for Scenarios 1 and 2, but added 
little information in Model 5, as compared to Model 4, in 
Scenario 3. The values of the model coefficients for turbidity 
(0.01 and 0.009) and specific conductance (‑0.003 and ‑0.003) 
did not change much in Scenario 3, whether or not discharge 
(Q) was included, nor was there any substantive change 
in the BCF or adjusted‑R2. Sine and cosine terms were not 
significant (p > 0.05) for the models, indicating that seasonality 
was either unimportant or was already captured by the 
continuously monitored variables; these terms are therefore 
not shown in table 10.

Log transformation of the dependent variable was 
especially helpful for producing estimated TSS concentrations 
using continuous monitor data, despite requiring the use of 
a BCF when transforming the estimated values into normal, 
non‑logarithmic space. In Scenario 1, the coefficients of 
determination for log-transformed (Model 1, adjusted 
R2  =  0.936) and non-transformed (Model 2, adjusted 
R2   =  0.956) TSS are good. However, many non-transformed 
values of TSS predicted from continuous monitor data using 
Model 2 (not shown) were negative, particularly outside of the 
specific calibration period of the autosampler storms; negative 
predicted TSS values are an unacceptable outcome and render 
Model 2 unusable. In subsequent regression calculations, 
the log-transformed values of TSS were always used for the 
dependent variable. 

The use of different data scenarios for developing 
regression models met with mixed success but illustrates 
the need for more comprehensive input data. As expected, 
Scenario 1, using only the autosampler data, produced 
regressions with high adjusted-R2 (> 0.90), most likely a 
result of serial correlation in the autosampler-only data 
and a small range of environmental conditions sampled; 
however, the Scenario 1 regressions also had relatively large 
mean error and validation RMSE values, and non-randomly 
signed residuals from the sign test, when compared with the 
broader validation dataset. Model 3 (Scenario 2), combining 
autosampler data with USGS‑NWIS historical data, had 
similar calibration statistics to Model 6 (Scenario 3) but 
still may have been affected by serial correlation in the 
autosampler data. Nonetheless, from the validation process 
for Model 3, the mean error was intermediate (although 
indicating a high bias rather than a low bias) and the z-statistic 
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Figure 5. Matrixes of scatter plots of calibration data using (A) Scenario 1 and (B) 
Scenario 3 datasets, from Fanno Creek near Durham, Oregon. Scenario 1 data were 
from autosampler deployments: storm 1, June 17–18, 2002; storm 2, May 4–5, 2003; 
storm 3, May 8–9, 2003. Data sources for Scenario 3 include U.S. Geological Survey 
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milligrams per liter, and units for E. coli bacteria are in colonies per 100 millimeters.
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from the sign test was considerably lower than the models 
from Scenario 1; also, the coefficient of determination (0.83) 
was the among the highest of all models. Despite the more 
randomly signed residuals, the Nash‑Sutcliffe coefficient 
for Scenario 2 indicates that the predictive power of Model 
3 may be worse than using the mean of the laboratory data. 
For Scenario 3 (which uses high‑flow data from USGS and 
Clean Water Services, with monthly Clean Water Services 
ambient monitoring data and the peak discharge samples from 
the autosampler deployment), the regression coefficients, 
correlation statistics, and validation statistics were similar with 
or without discharge (Models 4 and 5). Model 6 was evaluated 
to test the importance of log transformation of the explanatory 
variables in Scenario 3, but this transformation increased 
the mean error and RMSE for the validation statistics. All 
Scenario 3 models had poor coefficients of determination 
(<0.1) and Nash‑Sutcliffe coefficients (<0.1), suggesting that 
they did not reproduce the validation data well, and that the 
means of the validation data would provide estimates that were 
as good or better than the model estimates. However, because 
the validation data are heavily weighted towards base‑flow 
conditions, and the objective of the modeling exercise is 
primarily to predict the high constituent concentrations during 
stormflows, these coefficients probably do not adequately 
reflect the utility of the model.

Model 5 produced diagnostic statistics equivalent to 
Model 4 but used an extra variable, discharge (Q), indicating 
that Model 5 probably is overfitted and therefore less robust 
(Helsel and Hirsch, 1992), and that Model 4 may be the most 
appropriate functional form given the available datasets. 
Conversely, specific conductance has little physical relevance 
to TSS other than as a surrogate for discharge, yet it was 
an important variable in all models. VIF values were less 
than 5 for all independent variables in the models shown; 
however, the largest VIF for Model 3 (for logQ) exceeded the 
VIFcrit. LogQ was highly significant in the model (p <0.0001, 
not shown); whereas logSC was only slightly significant 
(p = 0.07). The inclusion of discharge as an independent 
variable may be needed to represent mid‑winter, high‑flow 
conditions. Specific conductance was a significant (p <0.05) 
model coefficient in all other models. The relatively low 
VIFcrit for Model 3 may be a reflection of the Scenario 2 
dataset and the model’s relatively low adjusted-R2.

Plotting a time series of the measured TSS concentrations 
against those predicted using the regression models allows 
the overall results of the model to be evaluated qualitatively. 
Individual data from the Scenario 3 calibration and validation 
datasets and the results from spring 2002 until summer 2003 
including the 95 percent prediction interval of Model 4, are 

shown in figure 6. This period includes the two storms when 
the autosampler was deployed (table 9), and encompasses 
January 2003 when the station was moved from Durham City 
Park to Durham Road (fig. 6). Upon a cursory inspection, 
the model seems to predict slightly lower baseline TSS 
concentrations prior to moving the station. However, this 
period also predominantly encompasses spring–autumn, 2002, 
with naturally lower discharges; whereas the period after 
January 2003 is predominantly winter, characterized by higher 
discharges, so it is reasonable to expect higher baseline TSS 
concentrations in the winter. Calibration and verification data, 
which (except for the autosampler data) were collected at the 
Durham Road site, also show this shift, indicating that moving 
the station had a negligible effect on model calibration and 
predictions. 

Although Scenario 3 demonstrates the type of dataset 
that may be most appropriate for developing robust regression 
models (that is, data that are independent, year-round, and 
include high‑flow samples), validation of results from Models 
4, 5, and 6 is hampered because few high‑flow samples are 
included in either the calibration or validation datasets. Many 
high TSS concentrations are predicted but few calibration 
or validation data points are present during the high TSS 
events for comparison (fig. 6). Model 4 appears to be the 
most robust model for TSS at Fanno Creek, on the basis 
of up-front assumptions about the value of the different 
potential calibration datasets, and on the results in table 10 
(the relatively low coefficient of determination [0.04] from 
the validation dataset notwithstanding). Visually, figure 6 
shows that the storm-related predictions are relatively accurate 
for the moderate-sized storms represented in the available 
datasets. The log-scale used on the y-axis in figure 6 can cause 
a misperception in the magnitude of errors: during base‑flow 
conditions, the model appears to slightly overpredict TSS 
concentrations; however, the actual errors are small compared 
to those at higher concentrations. Validation of these models 
at higher concentrations cannot be accomplished with the 
available data. 

Comparing the measured and predicted values directly 
provides additional perspective into the uncertainties and 
limitations of the available datasets and models (fig. 7). That 
comparison, using results from Model 4, shows that the 
indicated prediction interval spans a range of almost an order 
of magnitude (~0.75 log units) for a given measured value. 
Available measured-TSS data are relatively well represented 
up to about 102 (or 100) mg/L, with a few additional samples 
at slightly higher concentrations up to about 102.5 (or 
316) mg/L. 
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Figure 7. Comparison of concentrations of measured and predicted 
total suspended solids from Model 4, using the calibration dataset from 
Scenario 3, Fanno Creek near Durham, Oregon. Native reporting units 
for total suspended solids concentrations prior to log transformation 
were in milligrams per liter.

Total Phosphorus
Example regression models for TP at the Fanno Creek 

site are shown in table 11. As for TSS, initial results for 
TP produced many negative predictions when TP was 
not log transformed (Scenario 1, Model 3), despite the 
adjusted-R2 being relatively high (0.905). Bias correction 
factors for all models with log-transformation of TP (that 
is, all except Model 3) were similar, ranging from 1.01 
to 1.03. Log transformation of explanatory variables was 
evaluated in Model 2 and does not seem to provide any 
benefit. The resulting adjusted‑R2 is slightly lower than for 
non-transformation of the same variables (Model 1), and the 
regression RMSE is slightly larger. Validation statistics for 
Model 2 also are poorer than for Model 1. Sine and cosine 

terms were not significant, indicating that no seasonal cycles 
were present that were not already expressed by the other 
independent variables.

Adjusted-R2 values for Scenario 1 (calibration 
using autosampler data only) generally were higher 
than for Scenarios 2 and 3, which may be an artifact of 
serial correlation in the autosampler data, and fewer data 
representing the range of variability from different seasons 
or more high‑flow events. Although turbidity seems to be 
the most directly linear predictor of TP when examined 
graphically from the autosampler data alone (fig. 5), 
specific conductance also was repeatedly an important 
independent variable in the regression process (table 11). 
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Discharge, which often is significantly correlated with 
turbidity and TSS as well as TP, was evaluated for Fanno 
Creek in the scenario using high‑flow data (Scenario 3, 
Model 6). Model results using discharge were not noticeably 
better than those in Model 5 without it, and its inclusion in 
models would likely result in overfitting. Although Model 5 
is presumed, like Model 4 for TSS, the most robust because 
the input dataset is the most comprehensive and the least 
affected by serial correlation, the model’s correlation and 
validation statistics were relatively poor. In particular, the 
coefficients of determination for the initial model calibration 
(adjusted-R2  =  0.575) and for the validation (<0.01)
indicate substantial room for improvement, although the 
validation dataset may not have a large enough range in TP 
to be useful for an R2 determination. Turbidity and specific 
conductance in Model 5 have VIF values exceeding the 
VIFcrit, but both variables are highly significant in the model 
(p <0.0001) indicating that the VIFcrit which is low because 
of the low adjusted-R2, does not accurately reflect the severity 
of multicollinearity. In Model 6, discharge is not a significant 
variable (p = 0.89, not shown) and seems to contribute to 
multicollinearity problems. 

The predicted results from Model 5 were biased low 
compared to the validation dataset in Scenario 3, which 
could be a result of the large amount of calibration data 
representing baseline rather than high‑flow conditions. These 
goodness‑of‑fit statistics, like those for TSS at the Fanno 
Creek site, are a measure primarily of the base flow rather 
than high‑flow conditions, due to a relative lack of high‑flow 
data for comparison. The model, therefore, is not necessarily 
as poor as the goodness‑of‑fit statistics might indicate, and 
the model predictions during storms probably still have some 
value.

Models 1, 4, and 5 are of the form logTP= f (Turb, SC), 
using datasets from Scenarios 1, 2, and 3, and their respective 
model coefficients and BCFs are relatively similar (table 11). 
The same is true of their model validation statistics; although 
the coefficient of determination and the Nash‑Sutcliffe 
coefficient are the best for Model 4, no model’s validation 
statistics are particularly good. Although the VIFs indicate 
possible multicollinearity in Model 5, this is a result of the 
model’s adjusted-R2 being relatively low. It is, therefore, 
reasonable that this model form is appropriate for TP at Fanno 
Creek near Durham, but that gathering larger, more applicable 

datasets with high‑flow samples will result in more refined 
model coefficients (the values for a, c, d, and BCF in table 11) 
rather than changing the functional form of the model. 

Despite the relatively poor correlation and validation 
statistics mentioned above, the predicted results from Model 5 
appear to capture the overall pattern of TP concentrations 
in Fanno Creek reasonably well (fig. 8), especially at low 
flow conditions. Most observed values are well within the 
95 percent prediction interval for the model, despite often 
being separated from the model’s prediction line. A few high 
spikes in concentration are predicted during winter events 
(fig. 8A) when concentrations may reach 10 mg/L or higher; 
however, the accuracy of these spikes cannot be evaluated 
because no samples representing those events were available. 
The model also achieved a reasonable representation of TP 
during storms when the autosamplers were in use, June 2002 
and May 2003. 

Baseline conditions in the data are well represented in 
the model, with relatively constant average concentrations 
about 0.1–0.15 mg/L. Observed concentrations during 
summer 2002 were slightly higher than the predicted values, 
whereas in Winter 2002–03 they were slightly lower than 
those predicted, but the differences are within the uncertainty 
range indicated by the prediction interval. These differences 
are unrelated to the relocation of the continuous monitor 
from Durham City Park (site 1a in fig. 2) to Durham Road 
(site 1b in fig. 2), because that relocation would only affect 
the predicted concentrations rather than the observed. Instead, 
with generally higher discharges during winter samplings, the 
TP concentrations may be diluted during certain conditions 
such as the falling limb of storm hydrographs as reported 
by Anderson and Rounds (2003). With the exception of the 
autosampler data, most data in the Scenario 3 calibration and 
validation datasets were collected without regard to storm 
conditions and many were collected immediately after storm 
discharge peaks. Discharge is not included as an independent 
variable in Model 5, and generally was not significant in the 
candidate models (table 11). Future formulations of a model 
for TP at Fanno Creek may be enhanced by evaluating a model 
calibrated specifically for winter periods. 

A comparison of measured and predicted TP 
concentrations illustrates that most of the available data 
occupy a relatively narrow range of TP concentrations, from 
about 10-1.2 to 10-0.8 (or about 0.06 to 0.16) mg/L, with only a 
few at higher concentrations being represented (fig. 9).
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Figure 9. Comparison of concentrations of measured and predicted 
total phosphorus from Model 5, using the calibration dataset from 
Scenario 3, Fanno Creek near Durham, Oregon. Native reporting units 
for total phosphorus concentrations prior to log transformation were 
in milligrams per liter.

Escherichia coli Bacteria
Model results for E. coli bacteria were moderately 

successful (table 12), with several model forms having similar 
coefficients and reasonably strong adjusted‑R2 values
(0.586–0.713). No data on E. coli bacteria were available from 
the USGS databases, so the data for calibration were available 
for Scenarios 1 and 3 only, modified by the lack of USGS data. 
Models 1–5 used log-transformation of E. coli bacteria counts, 
and each model used turbidity as an explanatory variable. In 
Models 1, 3, 4, and 5, in which turbidity is not transformed, 
the regression coefficients for turbidity (0.014– 0.016) and 
the intercepts (2.17–2.53) vary only slightly. The addition 
of discharge as an explanatory variable, whether or not it 

was transformed, was not particularly useful, as evidenced 
by the lack of changes in the coefficients for turbidity, 
minor increases in the models’ adjusted-R2, and substantial 
increases in validation RMSE when discharge was added. 
Bias correction factors were all relatively large, particularly 
for the Scenario 3 datasets (about 1.4–1.5), indicating 
substantial negative bias in the uncorrected values. Once 
again, sine and cosine terms were not significant, so no 
models using them are shown. Goodness‑of‑fit statistics 
indicate relatively large uncertainty in the predicted values 
compared to the validation data, with a large (negative) 
mean error and RMSE values measured that mostly are 
about 1,000 or more for the Scenario 3 dataset. Model 6 
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had the highest adjusted-R2 for calibration in Scenario 3, 
and the coefficient of determination and Nash‑Sutcliffe 
coefficient were high (0.69 and 0.69, respectively). However, 
the explanatory and dependent variables were untransformed, 
and many predicted values during the modeled 2002–03 time 
period were negative, rendering Model 6 unusable for general 
purposes. Regression coefficients for the independent variables 
and intercept in Model 6 were 2–3 orders of magnitude higher 
than those in the other models, which is an artifact of the lack 
of log transformation. 

All models with more than one independent variable were 
possibly affected by multicollinearity, despite maximum VIF 
values that were less than 3, again reflecting the relatively low 
adjusted-R2 values for the models. In each case, the statistical 
significance of the discharge term was poor ( p = 0.003, 0.438, 
0.233, and 0.0025 for Models 2, 4, 5, and 6, respectively). 
Thus, the addition of discharge increased multicollinearity 
without an offsetting gain in model confidence. 

Given the results from table 12, with previous 
assumptions that Scenario 3 represents the most appropriate 
input data available, Model 3 then represents the presumed 
best available model for E. coli bacteria. Predicted data from 
Model 3, together with the 95 percent prediction interval and 
the calibration and validation datasets are shown in figure 10. 
The prediction interval is substantially larger for models 
predicting E. coli bacteria than for TSS or TP, spanning almost 
2 orders of magnitude. The model predicts baseline E. coli 
bacteria counts of about 300 colonies/100 mL during summer 
2002, which is close to the single-sample water quality 
standard of 406 colonies/100 mL. It also predicts closer to 
400–500 colonies/100 mL during Winter 2003, overpredicting 
most calibration and validation samples and indicating 

that baseline predictions may have little utility. The model 
predicts numerous peaks of 10,000–100,000 colonies/100 mL, 
and mirrors the pattern of turbidity and discharge in Fanno 
Creek. Because most Clean Water Services monitoring 
data are from relatively low‑flow conditions, few data are 
available to confirm these high counts, although the model 
accounts reasonably well for the variability observed over 
the hydrographs during storms sampled by the autosamplers 
in June 2002 and May 2003 (fig. 10B and C). Quantitation 
of E. coli bacteria at concentrations greater than about 
1,000 colonies/100 mL is not routinely done by the Clean 
Water Services laboratory owing to the difficulty of 
differentiating tightly packed colonies grown on agar, or the 
nonconservative nature of large dilutions for bacterial growth 
(J. Miller, Clean Water Services, oral commun., June 2008). 
For that reason, obtaining reliable data from storms to 
calibrate or validate these or subsequent E. coli bacteria 
models may be difficult.

Prediction intervals for E. coli bacteria from Model 3 
range almost 2 orders of magnitude (fig. 11). Measured 
data (that is, samples) are predominantly at low E. coli 
bacteria counts, with only a few from counts greater than 
103 (1,000) colonies/100 mL. The model captures some 
trends in the measured bacteria concentrations, showing 
that the explanatory variable (turbidity) has some predictive 
information, but the uncertainty is large enough that this 
particular model has limited application until a better dataset 
becomes available. On the other hand, if use of the model 
were limited to predicting periods when bacterial counts 
exceed a threshold value such as 1,000 colonies/100 mL, 
rather than quantifying the actual peak values, model 3 might 
be adequate. 
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Figure 11. Comparison of concentrations of measured and predicted 
Escherichia coli (E. coli) bacteria counts from Model 3, using the 
calibration dataset from Scenario 3, Fanno Creek near Durham, Oregon. 
Native reporting units for Escherichia coli bacteria counts prior to log 
transformation were in colonies per 100 milliliters.
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The response of Dairy Creek to storm runoff is different 

than that of many other streams included in this study. The 
Dairy Creek basin is predominately agricultural and is 
relatively insensitive to runoff from small- to medium-sized 
storms unless antecedent rainfall is high, a characteristic that is 
likely related to the small amount of impervious land upstream 
of the sampling site and the relatively low surrounding 
topographic relief. Prolonged dry conditions during summer 
cause streamflow to recede and several consecutive days to 
weeks of rain are usually required for streamflow to increase.

Once the soils are well saturated in autumn, streamflow 
in Dairy Creek tends to increase rapidly to relatively high 
levels and remains sustained for long periods during the winter 
until conditions begin to dry in late spring. Also potentially 
contributing to the hydrological and chemical response of the 
drainage basin, about 36 percent of the agricultural land in 
the Dairy Creek basin uses subsurface drainage or tile drains 
(U.S. Department of Agriculture, 1995). Tile drains are used 
where soil drainage is poor, allowing cultivation on lands that 
might otherwise preclude agricultural activities. However, tile 
drains also can provide an effective route for preferential flow 
of water and solutes to streams, speeding hydrologic response 
and reducing chemical transformations such as uptake, 
adhesion, or degradation (Stone and Wilson, 2006). The actual 
effect of tile drains was not evaluated directly in this study. 

During the study period, the continuous monitor at Dairy 
Creek was deployed seasonally. The monitor was installed 
in spring when stage receded to allow wading, and removed 
in the autumn when stage was expected to become high. 
Backwater from the Tualatin River was sometimes the cause 
of high stages that limited access to the creek. As a result 
of the winter high stages, neither continuous monitor nor 
discharge data are available at Dairy Creek during the winter 
and early spring months (about November–May), limiting 
the ability to make predictions during those periods. Stream 
stage, which was the only continuously recorded parameter 
during the winter months in the study period, can be a useful 
surrogate for discharge. 

Individual storms were sampled during October 
2003 by autosamplers at Dairy Creek, with relatively little 
antecedent rainfall, and November 2003, with slightly wetter 
antecedent conditions than the October storm. The pattern 
of events sampled resulted in streamflow and water‑quality 
conditions that were different between storms (although the 
stage during storms remained less than 10 ft). Therefore, 
data for discharge, stage, turbidity, and specific conductance 
had bimodal distributions that were dominated by storm-to-
storm differences when all samples were included (fig. 12A). 
Specific conductance, in particular, showed little variability 
during the October 2003 storm, and varied only by about 
5 percent during the November 2003 storm. In contrast to 
the autosampler data, the Clean Water Services ambient 
monitoring dataset includes numerous samples with stages 
greater than 10 ft (maximum 22.42 ft) during 2002-04. 
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Linear relationships between turbidity and TSS were evident 
in both the autosampler-only and larger combined (Scenario 2) 
datasets; however, few other constituent pairs have apparent 
linear relations at the Dairy Creek site. 

The sampling during storm 1 was triggered by an 
individual turbidity value (32 FNU) from the continuous 
monitor that was greater than the autosampler threshold 
value used to initiate sampling (25 FNU); however, turbidity 
values were less than 10 FNU in most subsequent samples. 
A slight increase in stream stage accompanied this storm and 
the samples were retained for analysis, despite the relatively 
modest overall storm response. Consequently, the sampler 
had been removed for cleaning before a larger storm several 
days later, which may have produced a broader range of 
values for field parameters and laboratory constituents. Soils 
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Figure 13. Probability that (A) specific conductances and (B) turbidities were exceeded at Dairy Creek at 
Highway 8 near Hillsboro, Oregon, during May 2002 to September 2004. 

in the drainage basin were apparently well saturated by the 
November 2003 storm, and stream stage increased to levels 
that were too high to collect samples.

Specific conductance during autosampler deployments 
was representative of mostly average conditions, ranging 
from 117 to 140 μS/cm, values that were exceeded about 
40–70 percent of the time during the study period (fig. 13A). 
The sampled turbidity data represented a broader range of 
conditions at Dairy Creek, ranging from about 6 to 30 FNU, 
values that were exceeded between 1 and almost 90 percent of 
the time during the study period (fig. 13B). Recall, however, 
that the dataset used to determine these exceedances was 
derived from monitoring data that did not include winter 
high‑flow conditions. 
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Total Suspended Solids
Models for the autosampler-only data and the Clean 

Water Services ambient monitoring data were selected for 
high flow and the first routine samples from each month 
(the presumed best calibration data available) (table 13). 
Adjusted-R2 values were similar in models from Scenarios 1 
and 2 (0.695–0.758). However, coefficients of determination 
for the goodness‑of‑fit validations were poor, less than 0.2 
for all models. Bias correction factors were 1.02–1.03 for all 
models. Seasonal factors evaluated by inclusion of sine and 
cosine terms were insignificant and models using them are not 
shown. 

Turbidity was an important explanatory variable for 
all models in both scenarios. In Scenario 1, the addition of 
discharge as an independent variable caused small increases 
in the adjusted R2 in Models 2 and 4 over Models 1 and 3. 
However, the addition of discharge generally increased the 
error when predicted values were compared to the validation 
dataset. The addition of discharge also increased the level of 
multicollinearity, with VIFs for both turbidity and discharge 
exceeding the calculated VIFcrit in Model 4. In contrast, the 
addition of discharge to Scenario 2 models had little effect on 
the calibration of the models, provided only a minor benefit to 
the models’ validation, and incurred possible multicollinearity 
in Model 6. High stages were not experienced during the 
autosampler deployments so discharge data were available and 
meaningful for all the Scenario 1 samples. However, stages 
greater than 10 ft were recorded for several samples in the 
Scenario 2 dataset. No discharge data were available for these 
samples from high stages, which explains the lack of benefit of 
discharge as an explanatory variable for TSS in Models 6 and 
8. 

The inclusion of specific conductance data was not 
statistically significant for any Scenario 1 or 2 models, and 
reduced the fit in almost all cases. The model coefficients for 
turbidity were the same in Models 1 and 3 (a = 0.025), and 
in Models 2 and 4 (a = 0.019), regardless of the addition of 
specific conductance, with similar effects in Scenario 2. 

Scenario 2 may represent the most robust input datasets 
available for Dairy Creek, and Models 5 or 6, therefore, may 
represent reasonable initial models for TSS, although their 
respective goodness‑of‑fit statistics were poor. Models 5 
and 6 provide similar results (hence, Model 6 is not shown 

in figure 14), and capture the baseline conditions (about 
10 mg/L) moderately well for some periods in each summer 
during 2002–04. Model 1, derived from autosampler-only data 
and, therefore, limited by the range of conditions observed 
and by serial-correlation issues, overestimates the baseline 
conditions more than Models 5 or 6, especially when the 
actual TSS values drop to less than about 8 mg/L. Model 1 
also has much greater variability and higher peak values than 
Models 5 or 6. 

Results from the Scenario 1 and Scenario 2 models 
indicate that the most robust model form for TSS at Dairy 
Creek will probably be logTSS= f (Turbidity), although the 
addition of discharge (or stage) may be beneficial, especially 
at high discharges. Backwater issues will make discharge a 
difficult variable to use in the winter. Although stage data 
remain accurate during backwater conditions, the presence 
of these conditions still may require development of separate 
models for free‑flowing and backwater conditions. Assuming 
that Scenario 2 uses more representative and thorough datasets 
than Scenario 1, the presumed best model for TSS at Dairy 
Creek, given the available data, is currently Model 5. Model 5 
may appear to underestimate TSS during base flow (fig. 14), 
but this is an artifact of the superposition of the Model 1 
results onto the graph, where the Model 5 line is obscured by 
the Model 1 line. The base‑flow calibration and validation 
data are relatively well represented by the Model 5 results, 
and furthermore they are well within the 95 percent prediction 
interval for Model 5. Given this, Model 5 may perform 
adequately during summer.

A comparison of predicted and measured TSS 
concentrations from Model 5 (fig. 15) further illustrates 
the predominance in the Scenario 2 dataset by samples 
at relatively low TSS concentrations. Most measured 
concentrations were in the range of 100.6 (or about 4.0) to 101.5 
(or about 32) mg/L, Importantly, this comparison also reveals 
the relatively large uncertainty of the model, with prediction 
intervals that encompass about a full order of magnitude. The 
clustering of predicted values at about 101.0 (or about 10) mg/L 
despite a moderate range in measured values likely is an 
indication that a model based on turbidity alone is insensitive 
to some of the factors contributing to raised TSS, and that 
inclusion of other independent variables such as stage or 
discharge or separation of models based on a stage threshold 
such as 10 ft will be beneficial. 
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Figure 15. Comparison of predicted and measured concentrations of 
total suspended solids from Model 5 for Dairy Creek at Highway 8 near 
Hillsboro, Oregon. Native reporting units for total suspended solids 
concentrations prior to log transformation were in milligrams per liter.

Total Phosphorus
Models for TP at Dairy Creek from Scenario 1 were 

primarily dependent on turbidity, with discharge and specific 
conductance playing a lesser role. Using the Scenario 2 
data, however, each model includes specific conductance 
which exerts a stronger role than either turbidity or discharge 
(table 14), and which may be a result of the more expansive 
range of specific conductances encompassed by the Scenario 
2 dataset. Sine and cosine terms again were insignificant, 
suggesting that seasonal considerations were unimportant or 
already incorporated with the other independent variables. 
Coefficients of determination (adjusted‑R2) for calibration 
of Scenario 1, Models 1 and 2, were substantially better than 
those from all other models examined, regardless of input 
datasets, potentially owing to serial correlation. Coefficients 
for turbidity in Scenario 1 ranged from 0.012 to 0.021, and 
coefficients for discharge and specific conductance were 
an order of magnitude less, varying little between models 
where they were used. Bias correction factors were relatively 
low, ranging from 1.01 to 1.04 among all models and both 
scenarios. 

In Scenario 2, coefficients for specific conductance were 
essentially unchanged (0.003–0.004) between models, and 
were slightly less than one half the value of the respective 
Scenario 1 models (0.009). The number of observations (n) 
in the Scenario 2 models were, for the most part, fewer than 
those used in the Fanno Creek models (Scenarios 2 and 3, 
table 11). The number of observations was less because the 
Scenario 2 dataset includes many samples from mid-winter 
during 2002–04, when stage in Dairy Creek was greater than 
10 ft (discharge unavailable), and (or) the continuous monitor 
at the Dairy Creek site had been removed for the winter. The 
use of stage as an explanatory variable in Scenario 2, in place 
of discharge, allowed the inclusion of eight additional samples 
in the calibration dataset but resulted in a lower adjusted-R2 
for the model. 

On the basis of calibration and validation statistics, no 
model from either scenario is strong enough for predictive 
purposes. Mean errors are relatively small, especially for 
Scenario 2 models. Possible multicollinearity was indicated 
for Models 1, 3, and 8, although the maximum VIFs were 
relatively low. Coefficients of determination for  
the model validation exercise were highest (0.55) for Model 1, 
and were otherwise poor (<0.1–0.38) for all other models. 
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Many of the Nash‑Sutcliffe coefficients were near zero 
or negative (max = 0.26), indicating that the means of the 
laboratory data may be as good a predictor as the models 
derived from it. The goodness‑of‑fit statistics are more 
reflective of base flow than high‑flow conditions because of 
the paucity of high‑flow data, especially for the validation 
dataset; therefore, model performance could not be properly 
evaluated. Additional data would be needed to refine and 
evaluate the models.

The predicted results of Scenario 2 models for TP at 
Dairy Creek captured the general seasonal pattern of summer 
baseline concentrations relatively well, but did not appear 
to capture the shorter term variability associated with events 
or other factors (fig. 16). Although Scenario 2 is assumed to 
represent a more robust calibration scheme than Scenario 1, 
Model 1 results tracked better with the laboratory data from 
the Storm 2 hydrograph than either Model 5 or Model 7, and 
may better represent the range of variability experienced under 
normal conditions. Model 1 also predicted high storm peaks 
of TP, sometimes exceeding 1 mg/L, but the accuracy of these 
predictions could not be evaluated. Results from Model 8, 
which incorporate stage rather than discharge, are not shown 
in figure 16 because they were almost identical to those of 
Model 7. Likewise, Model 6 (not shown in figure 16), the 
highest ranked model from Scenario 2 that used turbidity, did 
not capture the Storm 2 increases in TP and produced only 
minor variations compared to Models 5–8. 

Comparisons of measured and predicted TP values for 
Model 1 have less variability and stay within the prediction 
intervals better than the values for Model 5 (fig. 17). Model 
6 results were similar to those from Model 5. However, 
Model 1 used input data from Scenario 1 and Model 5 used 
input data from Scenario 2, so the two models are not directly 
comparable. 

Generally, Scenario 1 models, particularly Model 1, 
were slightly more useful than those from Scenario 2 for 
estimating TP concentrations at Dairy Creek, but no model 
provided acceptably accurate predictions using the available 
datasets. Model 1 may overestimate variability in stream TP 
concentrations, but could be useful for understanding the 
overall pattern of TP resulting from changes in streamflow, 
turbidity, or specific conductance. However, it must be 
stressed that maximum TP concentrations encompassed by the 
Scenario 1 input data were less than 0.25 mg/L, so the model 
cannot be relied upon for predictions of concentrations greater 
than 0.25 mg/L. Furthermore, the reliance on discharge will 
be a limitation during high stages unless backwater conditions 
are comprehensively understood at the Dairy Creek site at 
Highway 8. The inclusion of specific conductance in almost 
every model implies that much of the TP in Dairy Creek 
may come from dissolved sources or may be associated with 
the movement of solutes in the basin, which is consistent 
with known groundwater inputs of dissolved phosphorus to 
Tualatin River basin streams during summer. Alternatively, 
because specific conductance is sometimes correlated with 
discharge, its presence in the models might also reflect erosion 
and solute sources, including phosphorus, at higher flows.
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Figure 17. Comparison of measured and predicted total phosphorus 
concentrations at Dairy Creek at Highway 8 near Hillsboro, from (A) 
Scenario 1, Model 1, and (B) Scenario 2, Model 5, Tualatin River basin, 
Oregon. Native reporting units for total phosphorus concentrations 
prior to log transformation were in milligrams per liter.
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Escherichia coli  Bacteria 
Models for E. coli bacteria at Dairy Creek were 

primarily functions of specific conductance; only Model 4 
in Scenario 1, using the autosampler data, did not include 
specific conductance (table 15). Furthermore, seasonal 
aspects were unimportant, with sine and cosine terms again 
being insignificant. The coefficients for specific conductance 
varied little between the individual models within a specified 
scenario, ranging from -0.025 to -0.029 for Scenario 1 models, 
and from 0.011 to 0.013 for Scenario 2 models. Coefficients 
for specific conductance were negative in Scenario 1 and 
positive in Scenario 2, suggesting that the response of E. coli 
bacteria during the storms sampled by autosamplers in autumn 
2003 was different than in the long term Scenario 2 dataset. 
Multicollinearity, which can result in coefficients with signs 
different than expected, may have contributed to the results of 
Models 7b or 8, despite the low maximum VIFs of 1.4 and 1.2, 
respectively. The low VIFcrit values for these models reflect 
the poor adjusted-R2 values for the Scenario 2 dataset—all 
VIF values are well below the general rule‑of‑thumb values 
sometimes used by other investigators (Helsel and Hirsch, 
1992); likewise the Condition Index (not shown), an alternate 
measure of multicolinearity (Draper and Smith, 1998) was 
about 50 for Models 1 and 3 but less than 20 for Models 6 and 
7, in the range previously described as acceptable (Draper and 
Smith, 1988).

Although bacteria often are associated with particles in 
streams, E. coli bacteria regression models resulting from 
this study were only a function of turbidity in a few cases, 
primarily from Scenario 1. Log transformation introduced 
substantial bias when predicting E. coli bacteria, resulting 
in BCF values for Scenario 2 models from 1.29 to 1.45, 
indicating corrections of about 29 to 45 percent. Scenario 1 
BCFs were lower (1.05–1.12) than those in Scenario 2, 
but remain mostly higher than for TP (table 14) and TSS 
(table 13). Comparatively high BCFs were also determined for 
E. coli bacteria models for Fanno Creek (table 12).

Adjusted-R2 values for calibration of Scenario 1 
models for E. coli bacteria were substantially greater than 
for Scenario 2 models, which was also the case for models 
for TSS and TP. In contrast, model validation statistics, 
particularly the coefficients of determination and the Nash‑
Sutcliffe coefficients, were all poor. None of the models’ 
validation statistics were within the optimal ranges for errors 
generated by the prediction of E. coli bacteria counts. The 
highest Nash‑Sutcliffe coefficient was only 0.21 for the 
Scenario 2 model using stage instead of discharge (Model 7b) 
as an independent variable, and all the coefficients of 
determination were less than or equal to 0.1. 

The negative coefficients for specific conductance from 
the Scenario 1 models were opposite in direction to those 
from Scenario 2. As a consequence, the pattern from models 

using specific conductance in Scenario 1 also were opposite in 
direction to those from Scenario 2. All models overestimated 
bacteria counts in storm 1 (fig. 18). Data collection for storm 1 
preceded the largest stream response by about 1 day, although 
Model 4, which was a function of turbidity only, predicted 
bacteria counts that were closest to the measured values. 
Model 1 (not shown), with a negative coefficient for specific 
conductance, predicted summer E. coli counts that were below 
the baseline and were not realistic. Model 4 also performed 
better during storm 2 than either Scenario 2 model shown 
(fig. 18C), mimicking the temporary increases in bacteria 
counts during the storm. Models 5 and 7b were selected 
for plotting because they represented the best Scenario 2 
calibration model according to the Mallow’s Cp selection 
scheme and the best validation according to the Nash‑Sutcliffe 
coefficients, respectively. Both models performed almost 
identically; the line from either model obscures the other in 
figure 18, reflecting the influence of specific conductance as an 
independent variable. 

Comparison of measured and predicted values for E. coli 
bacteria models show considerable variation and generally 
poor predictions, especially by Model 5 (fig. 19B). Uncertainty 
around Model 5 was greater than for Model 4, particularly at 
low and high bacteria counts. Neither model demonstrated 
acceptable abilities to reproduce the measured values; all 
models should be considered preliminary. It is possible that 
the sources and dynamics of E. coli bacteria in Dairy Creek 
cannot be well characterized by variables such as flow, stage, 
specific conductance, and turbidity. If so, then this approach 
of using continuous monitors to estimate E. coli bacteria 
concentrations in Dairy Creek may fail. More data are needed 
to make such a conclusion.

Given the model calibration and validation statistics, 
and the performance of the models at predicting time series 
data and reproducing the original measured values used in the 
correlations, reliable predictions for E. coli bacteria at Dairy 
Creek at Highway 8 is a possibility, but several challenges 
remain. Although the continuous monitor at that site was 
converted to a permanent installation in 2004, the potential 
for backwater at stages greater than 10 ft during winter causes 
several concerns. Stage instead of discharge may be required 
as an explanatory variable, and separate models may be 
needed for winter and for summer. E. coli bacteria (and other 
constituents) may respond differently to backwater conditions 
than to unimpeded flow conditions, including potential 
issues of particle settling or upstream sources. One potential 
problem with backwater, the introduction of water from the 
downstream receiving waters at the sampling location, does 
not occur at the Highway 8 site (C. Beaman, Oregon Water 
Resources Department, written commun., April 22, 2009). 
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Figure 19. Comparison of measured and predicted Escherichia coli 
(E. coli) bacteria counts using (A) Model 4 and (B) Model 5, Dairy Creek 
at Highway 8 near Hillsboro, Oregon. Native reporting units for E. coli 
bacteria counts prior to log transformation were in colonies per 100 
milliliters.

Non-Target Sites

Preliminary model forms were identified for TSS, TP, and 
E. coli bacteria at the non-target sites using autosampler-only 
data (table 16) and minimization of Mallow’s Cp. Other 
than removal of outliers that cannot be resolved, and log-
transformation of dependent variables, no attempt was made 

to verify homoscedasticity, use additional data, compensate 
for autocorrelation, or otherwise optimize the models. Model 
coefficients and adjusted‑R2 values are not shown because 
the objective of this exercise was to evaluate the likelihood 
that models that are more robust could be developed if data 
representative of the range of environmental conditions at 
these sites become available. 
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Table 16.  Preliminary functional model forms for total suspended solids, total phosphorus, and Escherichia coli bacteria at non-target 
tributary sites in the Tualatin River basin, Oregon, 2002–04.

[Model forms are based on autosampler‑only data. If the adjusted‑R2 of the optimum model, based on minimization of Mallow’s Cp, was greater than 0.5, 
then the functional form of the optimal model is shown, without model coefficients. If the adjusted‑R2 was less than 0.5, then no model is shown and the result 
is listed as N/A (not applicable). Turb, Q, and SC are the explanatory variables of turbidity (in Formazin Nephelometric Units), discharge (in cubic feet per 
second), and specific conductance (in microsiemens per centimeter), respectively. Abbreviations: TSS, total suspended solids; TP, total phosphorus; E. coli, 
Escherichia coli bacteria; log, base 10 logarithm; f, a function of indicated constituents]

Site
Functional model form

TSS TP E. coli

Beaverton Creek at SW 170th Ave. logTSS=f(Turb,SC,Q) logTP=f(Turb,SC,Q) N/A

Chicken Creek at Scholls-Sherwood Highway logTSS=f(Turb,SC,Q) logTP=f(Turb,SC,Q) N/A

Rock Creek at Woll Pond Way near Hillsboro logTSS=f(Turb,SC,Q) logTP=f(SC,Q) N/A

Gales Creek at Old Highway 47 logTSS=f(Turb,SC,Q) logTP=f(Turb,SC,Q) logE. coli=f(Turb,SC,Q)

Results in table 16 indicate a high probability that robust 
regression models can be developed for TSS and TP at all 
non-target sites, but that E. coli bacteria may be difficult to 
predict at sites other than Gales Creek at Old Highway 47. In 
almost all other cases, models of the form logX= f (Turb, SC, 
Q), where X is the dependent variable, may be constructed and 
would provide acceptable predictions. For the Rock Creek site, 
a regression model with specific conductance and discharge 
may be sufficient to predict logTP. When E. coli bacteria 
model results are not applicable, the adjusted-R2 values of the 
functional models were much lower than 0.5 as indicated in 
table 16; most were less than 0.1, and the available data were 
insufficient for predicting E. coli bacteria. The adjusted-R2 
values for all other indicated models were greater than 0.7, 
which in some cases indicate even stronger correlations than 
the models for Fanno and Dairy Creeks. However, some of the 
limitations of the available data and the stream responses at 
the non-target sites should be considered:
1. Discharge (and stage) was not continuously measured 

at either the Rock Creek or Beaverton Creek sites, so 
instantaneous values at those sites were reconstructed by 
simple routing of upstream discharges at existing stream 
gages. Considerable error likely was inherent in the 
timing and magnitude of the resulting hourly estimates 
of the storm hydrographs, especially considering the 
dynamic and variable nature of stream responses to 
different storms.

2. No large storms were sampled at Chicken Creek, where 
the relatively undeveloped drainage basin muted the 
stream response to storms. Indeed, the stream response 
may represent an increase in groundwater input after 

storms rather than direct runoff, as indicated by minimal 
increases in turbidity and increases (rather than the 
expected decreases) in specific conductance. Nonetheless, 
Chicken Creek does, at times, respond to large storms, 
and warrants future study. 

3. Storm responses at the Gales Creek site were more muted 
than at several of the other sites and had lower flows 
than originally intended, and the range of values of the 
potential explanatory variables (turbidity, discharge, and 
specific conductance) was small. 

4. The Rock Creek at Woll Pond Way site was just 
downstream of an anomalous sediment source, where the 
streambank was observed to episodically calve into the 
river during high flow and cause short‑term pulses of high 
turbidity that may have been poorly mixed. It is likely that 
the turbidity and sediment response at this site were not 
necessarily reflective of larger drainage basin processes. 
Subsequent to this study, the monitor at the Rock Creek 
site was moved downstream to a bridge crossing and 
reinstalled with a more permanent (all-season) design, so 
any attempt to predict water quality in Rock Creek would 
benefit from collection of data at the new site. 

Given these limitations, additional efforts to further refine 
the model results at the non-target sites are not warranted 
without additional data collection specifically from high flow 
conditions and during several seasonal periods. Nonetheless, 
preliminary results in this study indicate that reasonably robust 
models for some constituents can be developed if appropriate 
data become available. 
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Discussion
The use of continuously measured parameters as 

surrogates for unmeasured constituents, including real-time 
applications, has increased in recent years. Rasmussen and 
others (2008) published regression models for 19 constituents, 
including whole-water and dissolved solutes such as various 
major ions (calcium, magnesium, and sulfate) nutrients, 
and bacteria (bacteria, fecal coliform, and enterococcus) at 
5 sites in Kansas. The program in Kansas has been successful 
enough that results of the regression predictions are posted 
online in real time, and coefficients of determination for the 
regression models mostly range from about 0.6 to greater 
than 0.9. However, the streams in Kansas, which are known 
to consistently carry appreciable sediment loads and to have 
relatively steady flow, are different from Tualatin River 
tributaries in Oregon. In the Tualatin River basin, most 
streams are considerably smaller than the streams monitored in 
Kansas and many have rapid, short-term responses to rainfall 
runoff (due to their highly urbanized upstream land uses) or 
highly variable streamflows (given the prolonged dry climate 
in summer and prolonged wet periods in winter). It was not 
clear, therefore, that the modeling approaches taken in Kansas 
and elsewhere could be successfully applied in the Tualatin 
River basin. 

Given the uncertainty over application of the predictive 
regression techniques to conditions in the Tualatin River 
tributaries, this study followed a proof-of-concept approach. 
Regression models and predictions were developed for this 
report as examples of the type of results that could be obtained 
for selected Tualatin River tributaries, if additional data were 
collected to better represent the range of conditions at those 
sites. Although all the sites (target and non-target) in the 
study are considered important for management of non-point 
runoff, the target sites (on Fanno Creek and Dairy Creek) 
were selected for detailed analysis because they represent land 
use types (urban and agricultural, respectively) of interest 
from a management standpoint. Furthermore, additional 
stream-chemistry data were available for these sites from 
Clean Water Services (and for Fanno Creek, from USGS) 
beyond the temporary autosampler deployments used in this 
study. However, the resulting regression models for these 
sites are considered preliminary because the available data 
do not adequately represent the range of conditions expected 
at these sites, particularly high flows that often lead to high 
concentrations and loads. Therefore, several models are shown 
and discussed for each site, any of which could, with sufficient 
additional data, become the most useful model form for 
predicting the indicated parameter. Water-quality constituents 
associated with suspended particulates, notably TSS, TP, 
and E. coli bacteria, were modeled (as dependent variables) 

because they are the constituents of greatest interest to local 
regulators and resource managers, and because they may be 
most effectively modified through land use management, 
whereas dissolved constituents such as nitrate or phosphate 
may be more controlled by groundwater and microbiological 
processes. 

Neither historical dataset (from Clean Water Services 
and USGS) was originally collected for the purposes used in 
this report, so neither dataset represented optimal input data 
for calibration or validation of regression models. High‑flow 
conditions, which in particular cause high concentrations and 
loads of TSS, TP, and E. coli bacteria, are under-represented. 
The regression models and coefficients discussed in this 
report, therefore, are considered examples or starting points 
for future modeling efforts. Furthermore, the aggregation 
of data from multiple laboratories that was done for Fanno 
Creek introduced additional uncertainty, particularly for 
predictions of TSS, for which the input calibration and 
validation datasets used a combination of TSS analysis from 
Clean Water Services and suspended sediment concentration 
analysis from USGS laboratories. No data were available upon 
which to base any adjustment of USGS suspended sediment 
concentration data to compare with the TSS analysis by Clean 
Water Services. Any inherent differences were incorporated 
into the regression model uncertainties and the magnitude of 
the prediction intervals. 

Several sites in the Tualatin River basin continuously 
measure streamflow and stream stage, and water‑quality 
monitors collect temperature, specific conductance, dissolved 
oxygen, pH, and turbidity data, and, at some sites, chlorophyll 
a (see http://or.water.usgs.gov/tualatin/monitors/). Of these, 
specific conductance, turbidity, and streamflow most directly 
indicate short-term physical changes in the stream that may 
result in water-quality changes, and are the most likely 
candidates to be used as surrogates for water-sample chemical 
data. Seasonality also was explored with the incorporation of 
sine and cosine transformations of sample date. 

Most results from the regressions for the highly urbanized 
Fanno Creek site were consistent with findings from Anderson 
and Rounds (2003), who determined that TSS from three 
sites in Fanno Creek was significantly correlated with several 
parameters, including discharge, turbidity, and total dissolved 
solids (a surrogate for specific conductance). Similarly, TP 
was significantly correlated with total dissolved solids and 
turbidity, and E. coli bacteria was significantly correlated 
with turbidity. In this study, models for TSS, TP, and E. coli 
bacteria were primarily a function of turbidity, with discharge 
and specific conductance typically having various influences 
on the models. Despite sometimes impressive adjusted-R2 
values for model calibration, the goodness‑of‑fit statistics 
from the model validation exercise generally reflected poor 

http://or.water.usgs.gov/tualatin/monitors/
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agreement with the validation datasets. This poor agreement 
with the validation datasets was particularly true for the 
Nash‑Sutcliffe coefficient, a measure of model errors that 
is more stringent than the coefficient of determination for 
the model. The validation datasets in this study, however, 
are primarily composed of low‑flow samples and do not 
adequately evaluate the response of the models to high flows, 
so the actual fit during these conditions is unknown. 

Results from Dairy Creek at Highway 8, with primarily 
undeveloped or agricultural land upstream, were equivocal 
and likely reflect the limited dataset. No data were available 
from routine or sporadic studies by the USGS (unlike at 
Fanno Creek), and no winter data were available for any 
of the independent variables except stage during 2002–04. 
Furthermore, backwater conditions at Dairy Creek during 
late autumn and winter may have a major effect on any 
correlations that involve discharge and may necessitate 
separate models for free‑flowing as opposed to backwater 
flow regimes at that site. Using discharge as an independent 
variable at these high stages would require a different 
method of stream gaging (for example, measuring stream 
velocity and deriving a rating for velocity with discharge). 
Velocity also may be a useful independent variable at this 
site. The slower velocities associated with backwater produce 
much less turbulence than the faster velocities associated 
with unimpeded streamflow thus affecting the quantity 
of suspended sediment and other particulates. Therefore, 
correlations of streamflow, turbidity, or specific conductance 
with TSS, TP, E. coli bacteria, and other parameters likely 
would be different under backwater conditions. The effect of 
backwater on correlations with dissolved constituents such as 
orthophosphorus or nitrate-nitrogen may depend on its effect 
on different sources such as groundwater discharge at high 
stage. For example, redox or other conditions in temporarily 
saturated soils could cause changes in the release of nutrients, 
dissolved minerals, or dissolved organic carbon (which 
could affect turbidity and specific conductance) if backwater 
conditions are prolonged.

The lack of significance of sine and cosine terms in 
any of the regression models may indicate that the other 
independent variables inherently capture most of the seasonal 
signal contained in the data. To the extent that seasonal 
processes such as riparian or upland growth would affect 
runoff patterns, the continuous records of turbidity, specific 
conductance, and discharge also should reflect these factors 
and may more directly measure the indirect seasonal patterns. 
Additionally, Dairy Creek, with its larger upstream area of 
agricultural land use and pervious surfaces, generally would 
be more susceptible to seasonal patterns than Fanno Creek; 
however, regression modeling was less successful overall 
at this site than at Fanno Creek. The lack of appropriate 
high‑flow data and difficulties with backwater may have 
caused problems with the regression-based models at the 

Dairy Creek site that masked sine- or cosine-dependent 
seasonal patterns. Finally, dissolved constituents that are 
more directly functions of biological processing may be more 
likely than TSS and TP to exhibit seasonal fluctuations (for 
example, nitrate production from nitrification, or dissolved 
orthophosphate uptake during primary production; Anderson 
and Rounds, 2003). For future modeling efforts, particularly 
those involving dissolved chemical species, seasonal 
aspects should be evaluated using sine and cosine terms as 
independent variables. 

Using the Regression Equations

Assuming future development of regression models 
is successful for some constituents at sites in the Tualatin 
River basin, the models can be used in several ways. The 
primary expected use is to evaluate peak concentrations in 
the modeled streams in response to hydrologic events, and 
thereby anticipate related water-quality effects or conditions 
in the mainstem Tualatin River. To fully evaluate effects 
on the Tualatin River, constituent loads (in mass per year) 
exported from the tributaries should be calculated or estimated 
as well; a simple matter if the monitoring station and a 
streamflow gaging station are located together (for example, 
Uhrich and Bragg, 2003). Regulators may compare predicted 
concentrations with benchmarks such as regulatory criteria 
or TMDL-based requirements, but model uncertainty (for 
example, the range of possible concentrations indicated by 
prediction intervals around a given predicted value) should 
be considered in any such comparison. Water managers may 
also wish to evaluate predicted concentrations as a potential 
response of stream restoration or other land-use management 
changes in the drainage basin. After several years of data 
collection and iterations of model calibrations, it may be 
possible to use such models to detect trends in water quality 
over time. If model coefficients or functional forms change 
consistently over time in ways that are insensitive to simple 
increases in the number of samples available for calibration, 
then such changes could indicate new or reduced sources, 
steady changes in the association of a particular constituent 
with another, or other process-based changes in the drainage 
basin. For example, model forms at a site that are constant for 
TSS but that have declining coefficients for turbidity in a TP 
model could indicate that the source of TP has changed and 
may be less dependent on suspended particulates.

Suggestions for Future Study

The initial plan for this study was to use autosamplers, 
deployed in conjunction with, and potentially triggered by, 
continuous monitors to collect high-density data over the 
course of several storms at individual sites, six of which had 
been identified in the larger tributaries to the Tualatin River. 
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These deployments would provide data spanning a broad 
range of environmental conditions and that could be used to 
establish initial regression models. The planned sampling 
was limited, however, by available resources such that only 
two sites could be sampled for each storm; furthermore, the 
sampled storms proved to be relatively small and did not 
produce the desired range of hydrologic responses in the 
sampled streams. Additional constraints were imposed by 
limited, seasonal deployments of the continuous monitors at 
some sites, resulting in fewer continuously monitored data 
being collected with autosamplers at the highest streamflows. 
Streamflow or stage was not directly available at two sites 
(Beaverton and Rock Creeks), and was subject to backwater 
at another site (Dairy Creek at Highway 8), so only a few 
measurements were available for use as a surrogate for those 
sites. 

Site Considerations
To build on the findings from this study, several 

considerations could improve data collection procedures and 
help select locations at which success would be most likely. 
These include
1. Permanent or long-term installations of equipment such 

as streamflow and stream‑stage sensors, continuous 
monitors, and (or) autosamplers, during all seasons 
and streamflow conditions, and maintenance of 
stage-discharge rating curves and electronic databases 
for streamflow and continuous monitors under high and 
low streamflow conditions. When streamflow cannot 
be directly monitored at a site, estimation of discharge 
from upstream or nearby gaging stations requires a more 
thorough approach than the simple summation and routing 
that was used at some non-target sites in this study; 

2. Availability of telemetry or other remote communication 
with monitors and autosamplers to enhance the quality 
of monitor data, reduce downtime, anticipate stream 
conditions that might result in autosamplers triggering, 
and allow determination of the status of sample collection. 
Such communication, together with currently available 
database software, allows the real-time display of 
calculated concentrations, loads, and prediction intervals 
in other locations around the Nation (for example, see 
http://nrtwq.usgs.gov/ks/);

3. Avoidance of backwater conditions that may render 
regression models inapplicable under certain situations; 
alternatively, the development of models that apply 
seasonally or under specific streamflow conditions;

4. Avoidance of local influences that do not adequately 
represent drainage basin conditions, but which may exert 
disproportionately strong influence on water quality at 

the sampling or monitoring sites, such as nearby tributary 
inputs, localized erosion or other sediment sources, point 
sources, or impoundments.
Samples were collected from Fanno and Dairy Creeks 

and several additional sites. Regression models were 
not explored for these additional sites, however, because 
insufficient storm data were available for 2002‑03, or other 
individual considerations, and because water managers were 
more interested in Fanno and Dairy Creek. Chicken Creek did 
not respond readily to storms during the period of study, and 
seemed to have a groundwater-dominated hydrologic response 
that resulted in low concentrations of suspended materials. 
Likewise, Gales Creek at Old Highway 47, with a primarily 
forested upstream drainage basin, did not show a substantive 
hydrologic response to storms during periods of monitor 
deployment. Beaverton and Rock Creeks did not have stream 
gages at the same sites where the monitors and autosamplers 
were deployed, and efforts at simple mass-balance routing 
of streamflow from upstream gaging stations, including 
tributaries, were unsuccessful for the purposes of this study. 
Within a short distance upstream of the Rock Creek sampling 
site, a streambank was actively eroding during high‑flows, 
and that episodic contribution of suspended sediment may 
not have been representative of upstream sediment and 
chemistry sources. Although these streams may be subjects 
of future studies, careful selection of sampling locations 
and equipment installation will be needed to provide data of 
sufficient seasonality and quality for successful development 
of regression models. 

Autosamplers
Autosamplers allow the collection of unattended samples 

during inconvenient times or unsafe conditions and the 
collection of time-series samples over the course of a storm 
hydrograph. However, autosamplers are expensive and require 
maintenance (for example, for intake clogging, battery and 
ice replacement, and programming). They also have sampling 
reliability issues (for example, inadvertent triggering when the 
stream hydrograph does not match the desired pattern, [that 
is, false starts], or conversely not triggering when the stream 
response should have dictated the desired sampling), and 
quality assurance concerns. As a result, although autosamplers 
can change the types and frequency of samples collected and 
make certain sample-collection schedules logistically possible, 
they do not necessarily reduce the expense of sampling. 
Finally, the use of multiple samples collected during a few 
storm hydrographs for regression modeling may result in 
serial correlation issues, artificially inflating the value of 
coefficients‑of‑determination (R2) for regression models, 
and indicating a level of model robustness that may not 
be warranted.

http://nrtwq.usgs.gov/ks/
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Despite these issues, autosamplers can be highly useful 
for developing a robust dataset for refining the regression 
models started in this study. Primary uses for autosamplers 
could include
1. Unattended sampling at nights, weekends, or other 

situations that are difficult to sample manually;

2. Sampling in streams with rapid hydrological responses, 
when it may be difficult to get to the site before the peak 
discharge; 

3. Collecting enough samples during a storm hydrograph, 
together with continuous monitor or streamflow data, 
to allow screening for key samples for laboratory 
submission, on the basis of peak discharge or turbidity 
values; 

4. Collecting samples at multiple sites during a single storm, 
if enough autosamplers are available for deployment; 

5. Collecting samples from locations that are inconvenient or 
unsafe for human sampling, such as manholes or culverts; 
and 

6. Exploring within-storm variability of selected water-
quality constituents, such as comparing constituent 
concentrations as streamflow increases and decreases 
during storms.

Quality assurance data collected for this study indicate that 
autosamplers can be used for collection of representative 
samples in Tualatin River basin streams, but additional tests 
during high streamflow conditions and at additional sites are 
warranted. Appropriate tests include evaluation of sample 
holding times, especially for bacteria and during warm 
weather, additional determination of cross section coefficients 
at high flows and at various sampling sites, and additional tests 
of equipment contamination or carryover when sample tubing 
has been deployed for extended periods. 

Water Sample Collection
Historical data from USGS and Clean Water Services 

databases were helpful for evaluating whether or not useful 
regression models can be developed for Fanno Creek, 
Dairy Creek, and elsewhere. These databases extended the 
range of conditions represented in the models, increased the 
number of samples and thereby the degrees-of-freedom of 
the regressions, supported the use of several scenarios of data 

aggregation to better understand the constraints of available 
data, and allowed validation of the developed models with 
independent data not used for model calibration. The historical 
data were collected to meet other objectives, however, and 
therefore were not as useful in this study for predictive 
purposes as might be desired. The primary limitation was the 
lack of samples collected during storms or other high‑flow 
periods. Clean Water Services data were collected in a routine 
manner as part of an established ambient monitoring program, 
during which samples were sometimes collected during 
storm runoff, but collection was not designed specifically for 
those conditions. USGS data collection at Fanno Creek was 
mostly routine, although several additional high‑flow samples 
had been collected as part of other studies (see Anderson 
and Rounds, 2003). No historical USGS data that could be 
used for this study were available from Dairy Creek near 
Highway 8. Also, USGS data did not include E. coli bacteria 
so regression models for bacteria had fewer samples to use. 
Additional uncertainty may have been introduced to the Fanno 
Creek analysis by combining analytical results from USGS 
and Clean Water Services databases, representing different 
laboratory methodologies—most likely for the suspended 
sediment concentration and total suspended solids data, which 
could not be compared because of a lack of available data 
from concurrent samplings. 

To build on the models initiated in this report, and 
to develop robust regressions that can be useful for 
understanding concentrations and (or) loading of water-
quality constituents, additional high‑flow samples are needed 
to extend the range of conditions represented. The baseline 
conditions are well represented in the available data (for 
example, figure 3), and probably can be easily predicted. 
The models discussed in this report do a reasonable job of 
predicting a range of baseline conditions, especially for Fanno 
Creek, such that routine sample collection could theoretically 
be scaled back (regulatory considerations aside) with minimal 
loss of understanding of stream conditions. 

Although redesigning the Clean Water Services ambient 
monitoring program is beyond the scope of this report, the 
simple addition of several samples each year from high flow 
conditions would allow the model results from this study 
to be revisited and improved upon, particularly if those 
samples included the most extreme conditions. If the use of 
surrogates for predictive modeling as outlined here were the 
sole objective of a modified sampling plan, at least for selected 
sites, it might include elements such as 
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1. Reducing the routine sampling frequency at each site 
to twice‑monthly intervals, especially during low‑flow 
periods; 

2. Installing autosamplers that are designed to capture 
instantaneous (not flow‑weighted) samples during storms, 
thus allowing the selection of samples for laboratory 
analysis (based on streamflow or turbidity, for example), 
and sampling during weekends and evenings, ideally with 
remote interrogation or activation capabilities;

3. Sampling of selected storms manually, particularly the 
most extreme events each year, with an added focus 
on collecting cross sectional data for evaluating the 
representativeness of the autosampler’s intake location; 

4. Evaluating analytical procedures, especially for E. coli 
bacteria, to ensure that resulting data will meet the needs 
of model development; 

5. Developing predictive models for other stream 
constituents, such as chlorophyll, dissolved 
orthophosphate, or nitrogen either as total nitrogen, 
nitrate-nitrogen, or ammonia-nitrogen; and

6. Considering additional independent variables such as 
continuously monitored water temperature, optical 
measurements of chlorophyll or ultraviolet fluorescence, 
or local precipitation data.

Model Development and Selection 
Log transformation of dependent variables was an 

important step in the development of most predictive models 
for this study, an approach that is similar to those from other 
studies. Distributions of many environmental parameters 
are log-normal in nature, so such transformations often are 
consistent with stream processes (Helsel and Hirsch, 1992). 
Additionally, log transformation has the practical benefit 
of eliminating negative results when model predictions are 
converted back to normal units. However, log transformation 
can introduce a bias that needs to be corrected. Duan’s Bias 
Correction Factor (Duan, 1983), or BCF, which converts 
the logarithmic residuals from the regression process 
into normal space and then averages them, has been used 
frequently in recent studies (Uhrich and Bragg, 2003; 
Anderson, 2007; Rasmussen and others, 2008) and is used 
by the USGS as part of a national protocol for surrogate 
prediction by regression models (Rasmussen and others, 

2009). Other steps in the maintenance of data and regression 
modeling include graphical evaluation of the relations 
between independent and dependent variables (for example, 
figure 5), removal of outliers (if careful attempts to resolve 
them were unsuccessful), and evaluation of residuals for 
homoscedasticity (constant variance across the range of data; 
Rasmussen and others, 2009).

When predicting surrogate concentrations using 
regression models such as those presented in this report, model 
uncertainty should be considered. In this study, 95 percent 
prediction intervals are included in figures showing time‑series 
based on the continuously measured independent variables (for 
example, figure 6). For log-transformed dependent variables, 
lower and upper prediction interval values initially were in 
logarithmic terms and needed the bias correction applied 
after conversion to normal units in the same way as the actual 
predicted independent values. Although many models did not 
perform well for predicting the exact value of the independent 
variables in the validation datasets, the prediction intervals 
almost always encompassed the validation data. It is therefore 
important to display the range covered by the lower and upper 
prediction intervals, and equally important for water managers 
to consider that the actual concentration of an unmeasured 
constituent could fall anywhere within the portrayed interval 
range.

In this report, regression models were compared against 
an independent validation dataset through the determination 
of several goodness‑of‑fit statistics (table 8), including RMSE, 
a coefficient of determination analogous to the model’s 
R2, and the Nash‑Sutcliffe coefficient, which measures the 
contribution of the predicted values to the measured variance. 
This approach appears somewhat unique among recent studies 
that predict surrogate values from continuous monitors, but 
provides a critical assessment of the model’s performance 
against an independent dataset. The available datasets for 
model validation in this study were not adequate to assess 
model performance at the high values, most of which was 
during stormflow periods, so the goodness‑of‑fit statistics 
presented in this report would change if the same models were 
evaluated with a more complete dataset. 

The use of continuous parameters such as discharge, 
stage, turbidity, or specific conductance for estimation of 
additional constituents has inherent risks of multicollinearity, 
wherein the independent variables are correlated, potentially 
causing spurious regression results or confounding the values 
of regression coefficients. Multicollinearity is a potential 
risk because many of the physical processes that affect these 
continuous parameters, such as discharge and turbidity, are 
related. Multicollinearity can be measured through the use of 
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variance inflation factors (VIFs), which provide a measure of 
the independence of the individual variables, and generally 
is reduced with increasing numbers of samples (Draper 
and Smith, 1998). Assessment of multicollinearity is not 
straightforward, however, and must be done in conjunction 
with specific study objectives. In this study, VIFs were all less 
than general rules-of-thumb (that is, less than 5–10) that are 
sometimes cited (Helsel and Hirsch, 1992). Critical VIFs were 
calculated according to the SAS Institute’s method (1989) by 
using the model’s adjusted-R2 in equation 3, and compared 
with the VIFs for the individual parameters. As a result, 
multicollinearity was potentially indicated for at least one or 
two models for each estimated parameter at each site because 
the respective adjusted-R2 values were low. The collection of 
additional data to increase the sample size and the number of 
values (constituent data) measured during storm conditions 
would be expected to reduce the likelihood of multicollinearity 
among independent variables in future studies. 

Model selection schemes initially used backward 
stepwise regression to identify potential explanatory variables, 
followed by the use of Mallow’s Cp to reduce the likelihood 
of producing models that were overfitted (Helsel and Hirsch, 
1992). The Best Subsets algorithm, which is widely available 
in many statistical software packages, makes formal use of 
Mallow’s Cp along with alternating inclusion and exclusion 
of independent variables to achieve a parsimonious model 
(Draper and Smith, 1998). Future work on model selection 
also could benefit from a more broad‑based selection scheme 
that uses all the information available from regression 
statistics to identify the most robust and parsimonious 
models, and to minimize the use of extraneous independent 
variables. An example model selection metric that could be 
useful is Akaike’s Information Criterion, or AIC (Burnham 
and Anderson, 2002), which provides numerous scores and 
weights to identify the best model from a suite of potential 
regression models. Regardless of which of these schemes is 
used, however, the process can be expected to be iterative, 
particularly with exploration of transformation schemes and 
evaluation of seasonal variation by using sine and cosine 
transformations, while concurrently watching for potential 
problems with multicollinearity and serial correlation. 

Conclusion
For the water-quality constituents in the small 

Tualatin River basin streams presented in this report, 
automatic samplers were capable of collecting unbiased and 
representative stream samples. No major cross‑contamination 
issues from sample to sample were observed. Sufficient care 
certainly must be exercised to keep the samples on ice and 

deliver them to the laboratory in a timely manner, but when 
used with a good quality assurance plan, autosamplers were 
a useful component of a sampling plan. Used in conjunction 
with water-quality monitors that can trigger sampling, 
autosamplers may become an invaluable component of future 
monitoring or sampling schemes.

The use of continuously measured field parameters to 
predict constituents of regulatory interest in streams could be 
helpful for understanding the effect of management strategies 
on water quality in the Tualatin River basin. Results of this 
study indicate that the potential to develop predictive relations 
is good. Additional data, including more water-quality data 
over a broader range of conditions along with co-located 
discharge monitoring, would increase the predictive ability of 
the resulting regressions. 

These sorts of predictive regression equations may 
be used to quantify peak concentrations or annual loads 
of sediment or phosphorus moving through the system. 
The equations may be useful in suggesting certain types 
of occurrences during storms or other conditions that 
merit further study, thus aiding in our understanding of 
the water-quality dynamics of these streams. This method 
of using continuous water-quality monitors to predict the 
concentrations of unmeasured water-quality constituents is 
an underutilized technique that deserves more attention in the 
future.

This study was a reconnaissance effort to determine the 
transferability of techniques used elsewhere to tributaries 
of the Tualatin River basin. These techniques for predicting 
the unmeasured concentrations of selected water quality 
constituents from continuously monitored surrogates require 
site‑specific correlations and relatively consistent upstream 
conditions. If successful, this effort could provide a foundation 
for development of more detailed and accurate correlations 
at the study locations and elsewhere, and for their use in 
near‑real time, potentially allowing evaluation of the efficacy 
of land-use and other management decisions.
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66  Continuous Monitors and Autosamplers Used to Predict Water-Quality Constituents, Tributaries of Tualatin River, Oregon
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68  Continuous Monitors and Autosamplers Used to Predict Water-Quality Constituents, Tributaries of Tualatin River, Oregon
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72  Continuous Monitors and Autosamplers Used to Predict Water-Quality Constituents, Tributaries of Tualatin River, Oregon
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