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Abstract 
This paper presents an algorithm that automatically 

identifies and extracts steady-state engine operating points 
from engine flight data. It calculates the mean and standard 
deviation of select parameters contained in the incoming flight 
data stream. If the standard deviation of the data falls below 
defined constraints, the engine is assumed to be at a steady-
state operating point, and the mean measurement data at that 
point are archived for subsequent condition monitoring 
purposes. The fundamental design of the steady-state data 
filter is completely generic and applicable for any dynamic 
system. Additional domain-specific logic constraints are 
applied to reduce data outliers and variance within the 
collected steady-state data. The filter is designed for on-line 
real-time processing of streaming data as opposed to post-
processing of the data in batch mode. Results of applying the 
steady-state data filter to recorded helicopter engine flight data 
are shown, demonstrating its utility for engine condition 
monitoring applications. 

Introduction 
Aircraft operators rely on engine condition monitoring 

programs to assist them in managing the health of their gas 
turbine engine assets. These functions, which are based on 
engine gas path measurement data collected at a small number 
of quasi-steady-state operating points each flight, are typically 
performed in off-board ground stations (Refs. 1 to 3). The 
quality of the steady-state measurement data directly impacts 
the quality and timeliness of the corresponding health 
assessments. For commercial transport aircraft, which follow a 
consistent flight profile including extended time at cruise 
operating points, data acquisition strategies are applied to 
collect engine data at relatively consistent points from flight to 
flight. However, for military or other aircraft that do not 
follow a regular flight profile, data acquisition at repeatable 
engine operating points each flight is not possible, or may be 
limited to takeoff data points only. Engines on these aircraft 
can experience a broad range of operating conditions during 
the course of a flight, including periods of transient and of 
quasi-steady-state operation. The steady-state data acquisition 
approach presented in this paper is applicable for all aircraft 
engines including those that exhibit relatively stable operating 
profiles and those that exhibit highly transient behavior. The 
approach is designed for real-time on-board implementation, 

but it can also be used for processing recorded data post-flight. 
In either application it will significantly compress the data into 
a reduced number of points reflecting engine performance. 
Such an approach is beneficial for situations where it is not 
practical to transmit full flight data sets off the aircraft, or to 
archive flight data for the entire lifetime of an engine. 

This work was initiated under a previous effort conducted 
by the authors to develop a prototype technique to perform the 
real-time automated assessment of available power in 
helicopter turboshaft engines (Ref. 4). That effort included the 
development of a steady-state data filter designed to process 
actual helicopter engine Health and Usage Monitoring System 
(HUMS) data to extract steady-state operating points. The 
steady-state data were in turn utilized to trend engine 
operating performance over time. Although initially applied to 
helicopter engine data, this filter and the associated lessons 
learned have broad applicability to other aircraft gas turbine 
engine applications including fixed-wing military and 
commercial aircraft. 

The remaining sections of this paper are organized as 
follows. First, the steady-state data filter architecture is 
presented and individual elements are discussed. Next, 
additional logic applied to limit analysis of data to that 
collected within a user-defined range of the engine operating 
envelope and to reduce data outliers is discussed. Several 
examples of the steady-state data extracted by the filter from 
helicopter engine flight data sets are given. These include 
examples of engines exhibiting nominal performance 
characteristics, as well as several anomalous performance 
examples. Following the example results, a discussion of 
practical considerations for applying the method is provided. 
Finally, conclusions are presented. 

Nomenclature 
KIAS Indicated airspeed, knots 
HUMS Health and usage monitoring system 
LPF Low pass filter 
N Number of samples in steady-state buffer 
Ng Gas generator speed 
Np Power turbine speed 
OAT Outside air temperature 
SHP Shaft horsepower 
TGT Turbine gas temperature  
Tminbuff Minimum steady-state buffer length 
Tthermmax Maximum temperature difference 
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yk Parameter sample at current time step, k 
σ Standard deviation 
μ Mean 
ωn Low pass filter natural frequency 
ζ Low pass filter damping ratio 
τtherm Thermal transient filter time constant 
k Time sample index (subscript) 

Steady-State Data Filter Approach 
The steady-state data filter, which is coded in Matlab (The 

MathWorks, Inc.), is designed to perform the real-time 
identification and archiving of steady-state engine operating 
points from streaming flight data. The architecture of this filter 
is shown in Figure 1. The fundamental component of the 
architecture is the state transition logic, which determines the 
steady-state operating status of the engine. The state transition 
logic is predominantly generic, and can be applied to data 
collected from any dynamic system with minor modifications. 
The other components shown in Figure 1 are included to 
improve the quality and quantity of the identified steady-state 
operating points. The incoming flight data processed by the 
steady-state data filter consist of various sensed engine and 
aircraft parameters of interest, selected by the end user. Each 
incoming parameter stream, or channel, of the flight data first 
passes through a discrete low pass filter to reduce noise. 
Additional logic is applied to detect large thermal transients 
(thermal transient filter) and to ensure that data are only 
archived from desired regimes of the engine operating 
envelope (operating regime recognition logic). The low pass 
filtered data, the engine’s thermal transient status, and the 
engine’s operating regime status are passed into the state 
transition logic. Here the data are buffered into a window of 
data, and the mean and standard deviation of each parameter 
within the buffer window are calculated. The logic transitions 
between different states denoting transient or steady-state 
operation based upon whether standard deviation magnitude, 
persistency, and operating regime constraints are met. A 
vector of parameter means is archived for each identified 
steady-state operating point. The remainder of this section will 
discuss each element of the architecture in more detail. 

State Transition Logic 

The steady-state data filter is designed to facilitate on-line 
real-time processing of dynamic data (as opposed to post-
processing of the data in a batch mode). The key component 
of the filter is the state transition logic shown in Figure 2. 
Most of the state transition logic is completely generic. 
Domain-specific knowledge is only incorporated through a 
small number of operating regime conditional statements. 

The state transition logic has three states it can transition 
between when processing incoming data. These three states 
are described below: 

  

Flight 
data

Low pass 
filters

State transition 
logic

Steady‐state 
operating 
points

Thermal 
transient filter

Operating 
regime 
recognition 
logic

Ss1 = [120.1 90.4 555.6]
Ss2 = [140.6 92.3 660.1]

0

1

2

 
 

Figure 1.—Steady-state data filter architecture. 
 

State 0: Buffer initial window of data  
Within State 0 an initial window of data of a user specified 

length is buffered. The time length of this buffer is referred to 
as Tminbuff. The underlying logic associated with State 0 is: 

 
• The state transition logic enters State 0 upon startup and 

any resets. 
• The logic remains in State 0 until a Tminbuff window of 

data is buffered from the incoming data stream. 
• Encountering any of the following conditions will result 

in the buffer being cleared (reset), and the state transition 
logic remaining in State 0: 
– Operating regime exceedance. 
– Thermal transient exceedance. 
– Data dropouts in the incoming data stream. 

• Once a Tminbuff window of data is buffered, the mean and 
standard deviation of the data contained within the 
window for each parameter are calculated. If the standard 
deviation of all parameters falls below user specified 
thresholds, the engine is considered to be at steady-state. 
The program will transition to: 
– State 1 if the steady-state criteria are not met. 
– State 2 if the steady-state criteria are met. 

State 1: Sliding Buffer Window of Non-Steady-State 
Data 

Within State 1, the state transition logic slides the buffer 
window of data forward in time when a new incoming data 
slice becomes available. This is achieved by appending the 
new data slice to the buffer and discarding the oldest data 
slice. This buffer will be of fixed length, specified by Tminbuff. 
The logic within State 1 does the following: 

 
• Recursively calculates the mean and standard deviation for 

each parameter whenever an update to the buffer occurs.  
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In 
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Reset
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Append new
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μ and σ
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No
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during the previous
time step
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μ’s calculated during

the previous time step.
Buffer the most recent
Tminbuff of data, and

calculate μ and σ of each
parameter in the buffer.

Yes

 
 

Figure 2.—Steady-state data filter state transition logic. 
 
 

 
• Remains in State 1 while: 

– The steady-state criteria are not met 
 
and 
 
– Operating regime exceedance, thermal transient 

exceedance, and data dropouts are not encountered. 
• Triggers a transition to State 2 if the steady-state criteria 

are met. 
• Triggers a transition to State 0 if operating regime 

exceedance, thermal transient exceedance, or data 
dropouts occur. 

State 2: Expanding Buffer Window of Steady-State 
Data 

If all of the defined steady-state criteria are met, the state 
transition logic enters State 2. In State 2, the buffer is 
expanded by appending new incoming data as long as all 
steady-state criteria continue to be met. The logic associated 
with State 2 does the following: 

 

• Appends new time slices of data to the existing steady-
state data buffer. 

• Recursively calculates the mean and standard deviation 
for each parameter in the buffer each time new data are 
added. 

• If operating regime exceedance, thermal transient 
exceedance, or data dropouts are encountered, mean 
steady-state data that were calculated during the previous 
time step are archived, the buffer is reset, and the logic 
transitions to State 0. 

• If the standard deviation of any of the parameters 
exceeds its defined threshold, the engine is assumed to 
no longer be in steady-state. As a result, the logic 
associated with State 2 does the following: 
– The mean parameter values that were calculated 

during the previous time step are archived. 
– A new data buffer consisting of the most recent 

Tminbuff window of data is created. 
– The mean and standard deviation of each parameter 

within the new window are calculated. 
– The logic transitions to State 1. 

 
No limit is placed on the maximum size of the buffer 

window in State 2. In general, a larger buffer will require a 
larger transient to trigger a standard deviation threshold 
exceedance. However, this has not been found to have any 
noticeable effect on the quality of the archived mean steady-
state data.  

Recursive Calculation of Mean and Standard 
Deviation 

To facilitate real-time implementation, the mean, μ, and 
standard deviation, σ, of each parameter are calculated 
recursively. Whenever a new time slice of data is added to an 
existing data buffer, the standard deviation and mean for each 
incoming parameter are updated. Re-calculating the mean and 
standard deviation values each time step based upon all 
samples stored in the buffer (batch mode) would require 
considerable processing overhead. Therefore, recursive 
calculations for the mean and standard deviation are used. 
These equations only require the mean and standard deviation 
values from the previous time step, the most recent parameter 
sample, and in the case of the sliding window (State 1) the 
oldest parameter sample. There are a few issues that 
complicate this logic, namely: 

 
• Parameters are not all sampled at a common frequency.  
• Parameters that are sampled at a common frequency are 

not necessarily synchronized to sample at the same time. 
• Synchronization discontinuities in the data sample rate 

and intermittent data dropouts occasionally occur.  
 
The steady-state data filter includes logic to account for each 
of the issues listed above. 
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Different recursive mean and standard deviation 
calculations are applied depending on which state the logic is 
in. These calculations are shown below: 
 
 

1. New parameter appended, oldest parameter removed 
from buffer channel (sliding buffer—State 1) 
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where 
 
N number of parameter samples in buffer channel 
k  current time step 
yk  parameter sample at current time step, k 
y0  oldest parameter sample, which is being removed from 

buffer 
 
 

2. New parameter appended to existing buffer channel 
(expanding buffer—State 2) 
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Equations (1) to (4) can be derived from the approaches and 
formulas for the recursive calculation of mean, variance, and 
standard deviation in References 5 to 7. 
 

Low Pass Filters  
During initial development, the steady-state data filter was 

applied to a helicopter HUMS data set. At this time, an 
interesting observation was made when comparing the number 
of steady-state data points the filter identified in the two 
engines installed on the same aircraft. Although the two 
engines were operated in a very similar fashion, the steady-
state data filter consistently identified more steady-state points 
in engine no. 2 than it did in engine no. 1. Upon closer 
observation it was discovered that the primary factor causing 

this discrepancy was the variance in engine sensor 
measurements, particularly the engine no. 1 torque sensor 
measurement. To address this issue, discrete second order low 
pass filters (LPFs) were added to pre-process the data 
contained in each incoming HUMS data channel. The 
formulation of the LPFs is given in Eq. (5) where ωn is the 
natural frequency and ζ is the damping ratio of the filter. 
Although Eq. (5) is shown in continuous time form, the LPFs 
are actually implemented in discrete time form (i.e., digital 
filters) as the incoming HUMS data are digital. The LPF 
associated with each data channel is discretized and applied in 
accordance with the sample rate of the channel. The effect of 
adding these filters is two-fold. First, it provides improved 
consistency in the number of steady-state points identified 
from each engine. Second, it also allows more steady-state 
points to be identified, particularly at high power regions 
where the sensor measurements tend to exhibit more variance. 
Adding the LPFs resulted in approximately a 2.5  increase in 
the number of steady-state points identified. 

 

( )
( )

2filtered
2 2

unfiltered 2
n

n n

Y s
Y s s s

ω
=

+ ζω +ω  
(5)

 

Thermal Transient Filter  
In investigating the outlier points identified by the steady-

state data filter with the low pass filters, it was observed that 
many of these points were collected immediately after the 
engine had undergone a substantial power transient. For 
example, the first data point collected after transitioning from 
idle power to an intermediate or high power point was often an 
outlier. These occurrences may have resulted from the fact 
that the engine had not yet reached a thermal equilibrium; 
metal temperature thermal heat soak effects are typically slow 
relative to other engine dynamics. To help address this issue, 
additional logic was developed and incorporated into the 
steady-state data filter to ensure that the recorded engine 
turbine gas temperature (TGT) is in quasi-steady-state for an 
extended period of time (on the order of minutes) prior to 
collecting steady-state points. This thermal transient logic is 
implemented by calculating a lagged version of TGT from the 
HUMS data with a time constant of τtherm, and comparing this 
parameter to the second-order low pass filtered value of TGT. 
The continuous time formulation of the TGT first order lag is 
shown in Eq. (6). A discrete version of this equation is 
implemented within the thermal transient filter.  

Figure 3 shows a transient example of TGT (black curve), the 
corresponding low pass filtered TGT (blue curve), and first 
order lagged TGT (red curve).1 If the absolute difference  
 

                                                                 
1Due to the proprietary nature of the data, axis scales have been removed from 
the figures in this document 
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Figure 3.—Comparison of unfiltered, low pass 
filtered, and lagged TGT during a thermal 
transient. 

 
 
between the low pass filtered and lagged versions of TGT is 
greater than Tthermmax the engine is assumed to be in thermal 
transient. In this case, the buffer is cleared and the state 
transition logic enters State 0. Once the absolute difference 
between these two parameters is less than Tthermmax, the logic 
resumes buffering data. τtherm and Tthermmax can be considered 
tuning parameters. Results will vary as these parameters are 
adjusted. 

 
( )
( )

lagged

unfiltered therm

TGT 1
TGT 1

s
s s

=
τ +

 (6)

 

Operating Regime Recognition Logic 
The steady-state data filter also includes operating regime 

recognition logic. The purpose of this logic is to ensure that 
steady-state data are only collected when the engine is 
operating within a user specified portion of the operating 
envelope, and to help reduce outlier points. For example, one 
can include constraints to ensure that data are only collected 
within a certain altitude, airspeed, power setting, or time range 
within the flight profile. Additional logic can be included to 
ensure that steady-state data are not collected while the engine 
is operating in a mode known to impact engine performance, 
such as when the anti-ice bleed system is on.  

Helicopter Engine Example 
HUMS data sets provided by the U.S. Army were used to 

develop and evaluate the steady-state data filter. All HUMS 

data provided were collected from UH-60L aircraft equipped 
with T700-GE-701C engines. The T700-GE-701C engine 
serves as the power plant for the latest UH-60L Black Hawk 
variants and AH-64A/D Apaches (Refs. 8 and 9). This 
1800 horsepower-class engine is a modular two-spool design 
consisting of a gas generator section and a free power turbine. 
The engine is controlled through the interaction of an 
Electrical Control Unit and a Hydromechanical Control Unit. 
These HUMS data sets included data from 15 different vehicle 
tail numbers (30 engines) encompassing 1688 missions 
totaling 2813 aircraft flight hours. Also, these data consisted 
of a select subset of the HUMS parameters available. A list of 
the 14 HUMS parameters provided, along with their 
associated sample rates, is shown in Table 1. 
 

TABLE 1.—HUMS PARAMETERS 
Parameter  

name 
Sample 

rate 
Definition 

1. Time_Stamp Variable Time of data sample 
2. Baro_Alt 5 Hz Pressure altitude (ft) 
3. Anti-Ice 1 1 Hz Engine 1 anti-ice bleed (on/off) 
4. Anti-Ice 2 1 Hz Engine 2 anti-ice bleed (on/off) 
5. KIAS 5 Hz Indicated airspeed (knots) 
6. Ng 1 5 Hz Engine 1 gas generator speed (%) 
7. Ng 2 5 Hz Engine 2 gas generator speed (%) 
8. Np 1 5 Hz Engine 1 power turbine speed (%) 
9. Np 2 5 Hz Engine 2 power turbine speed (%) 
10. OAT 2 Hz Outside air temperature (°C) 
11. TGT 1 2 Hz Engine 1 turbine gas temp (°C) 
12. TGT 2 2 Hz Engine 2 turbine gas temp (°C) 
13. Torque 1 5 Hz Engine 1 torque (%) 
14. Torque 2 5 Hz Engine 2 torque (%) 

 
Tables 2 through 5 show the various constraints and design 

parameters applied in setting up the steady-state data filter for 
the helicopter engine data example. The maximum acceptable 
standard deviation, σ, for each parameter, along with the 
minimum buffer window length, Tminbuff, is shown in Table 2. 
All seven of the σ constraints and the Tminbuff constraint must 
be met for an engine to be considered in steady-state. There is 
a trade-off in the specification of these parameters—smaller σ 
constraints and a larger minimum buffer size will generally 
result in improved quality (less variance) in the identified 
steady-state points, although there will be relatively fewer of 
them, whereas larger σ constraints and a smaller minimum 
buffer size will result in greater variance but more identified 
points. The values in Table 2 were established manually 
through trial and error while observing the quality of the 
identified steady-state data. 

The design parameters for the low pass filter and the 
thermal transient filter are shown in Tables 3 and 4. Similar to 
the σ and Tminbuff constraints, these values were chosen through 
trial and error while observing the quality of the identified 
steady-state data. 
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TABLE 2.—STEADY-STATE DATA FILTER MAXIMUM 
ACCEPTABLE STANDARD DEVIATION LEVELS AND 

MINIMUM BUFFER WINDOW LENGTH 
Parameter Maximum σ 

and minimum buffer length 
Torque σ 0.5% 

Ng σ 0.2% 
TGT σ 1.5 °C 
Np σ 0.2% 

Baro Altitude σ 30 ft 
KIAS σ 4 knots 
OAT σ 1 °C 
Tminbuff 15 s 

 
 

TABLE 3.—LOW PASS FILTER DESIGN PARAMETERS 
Parameter Value 
ωn (natural frequency) .......................................... 0.05⋅2π (radians) 
ζ (damping ratio)......................................................................... 1.4 

 
 

TABLE 4.—THERMAL TRANSIENT FILTER DESIGN 
PARAMETERS 

Parameter Value 
τtherm (time constant) .................................................................. 80 s 
Tthermmax (max Δ between filters) .............................................. 5 °C 

 
 

The applied operating regime logic constraints are shown in 
Table 5. For this example, steady-state points are only 
collected above 90 percent corrected gas generator speed to 
avoid engine start-up and idle operating points. Logic is also 
applied to make sure the engine anti-ice bleed valve is not 
open, as that will impact engine performance. Additionally, 
logic is applied to make sure that the aircraft is operating in 
flight at an indicated airspeed (KIAS) above 40 knots. It was 
observed that many of the steady-state outlier points were 
collected at the start of a mission while the aircraft was 
operating on the ground. While the cause of these outliers is 
not completely understood, adding the KIAS operating regime 
constraint helped to alleviate that problem.  

 
TABLE 5.—OPERATING REGIME LOGIC CONSTRAINTS 

Parameter Constraint 
Ng Corrected ......................................................................... > 90% 
KIAS ............................................................................... > 40 knots 
Anti-Ice Bleed ............................................................................ Off 

Results 
Figure 4 shows a time history plot of TGT collected from 

one engine over one flight. This illustrates the highly transient 
behavior of the data and the challenge in identifying steady-
state operating points. 

 

 
Figure 4.—Measured TGT from one engine over one flight. 

 

 
Figure 5.—Comparison of raw and steady-state SHP versus 

TGT data collected from a single flight. 
 
 

An example of the steady-state HUMS data from a single 
flight is shown in Figure 5. Here SHP2 versus TGT data are 

plotted. Because engine operation is strongly influenced by the 
ambient operating conditions, corrected parameters (Ref. 10) 
are shown here and throughout the remainder of the paper to 
reduce data scatter. In Figure 5, the cyan points represent all of 
the raw SHP versus TGT data collected during the mission 
while the red points represent the steady-state points identified 
by the steady-state data filter. Due to transient operating 
excursions, a considerable amount of variation is evident in 
the raw data. The steady-state points represent a tighter 
clustering around the engine steady-state operating line. 

Figure 6 shows a scatter plot of the steady-state data points 
identified from a single engine over a 5 month period of time. 
The upper half of the figure shows Ng versus TGT data and 
the lower half of the figure shows SHP versus TGT data. The 
color of each point denotes the time the steady-state point was 
collected, corresponding to the color bar on the right side of 
the plots. As a point of reference, the engine steady-state cycle 
deck response at the corrected operating condition is shown 
(green curves).  
 
                                                                 
2Note: Shaft horsepower, SHP, which is proportional to torque times power 
turbine speed, is not measured directly. It is calculated as:  
SHP = Constant  Torque  Np 
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Engine condition monitoring is frequently conducted by 
comparing engine data to a reference model, e.g., a cycle deck. 
The difference between the actual engine data and the 
reference model forms what are known as performance 
residuals or performance deltas (Ref. 2). Figure 7 shows a 
scatter plot of the ΔNg and ΔSHP performance residuals for 
the same steady-state engine data shown in Figure 6. At each 
identified steady-state operating point, a ΔNg and ΔSHP 
residual were generated by referencing the mean Ng and SHP 
data against that predicted by the cycle deck when run to the 
corresponding altitude, airspeed, OAT, and turbine 
temperature (TGT). For this engine, it can be observed that 
ΔNg is operating at approximately 1 percent above nominal 
over the entire TGT operating range. The ΔSHP residual is 
shown to vary as a function of TGT. This relationship is due to 
the lapse rate effects of the T700 engine. Power lapse rate 
reflects the change in the ratio of actual to rated power with 
operating condition and deterioration level. The steady-state 
data examples shown over the remainder of the paper will 
present residual data. 

Results—Benefit of Including the Low Pass 
Filter (LPF) and the TGT Thermal Transient 
Filter 

Figure 8 illustrates the benefit of including the low pass 
filter in the steady-state data filter logic. This figure shows a 
comparison of the steady-state data points identified with and 
without applying the LPF. All results are based on a HUMS 
data set collected from a single aircraft over 45 days. The 
upper two subplots show the ΔSHP versus TGT steady-state 
data collected without the LPF, while the bottom two subplots 
show the data collected with the LPF. The inclusion of the 
LPF significantly increases the number of steady-state points 
identified. Furthermore, the number of steady-state points 
identified on each of a helicopter’s two engines was found to 
correlate better when the LPF was applied. 

As previously described, the application of the TGT 
thermal transient filter excludes steady-state data collected 
immediately after the engine has undergone a significant 
thermal transient. Figure 9 shows an example of the ΔSHP 
versus TGT steady-state data points identified without (top 
plot) and with (bottom plot) this filter. This example is based 
upon data collected from one engine over a two month time 
period. In the top plot there are several outlier points above the 
main cluster of data. In the bottom plot most of these points 
have been eliminated. The inclusion of the TGT filter results 
in a tighter clustering of the data, but it also reduces the 
overall number of steady-state points identified. A system 
designer must weigh these trade-offs when deciding whether 
or not to include the filter, and also when choosing what 
values to specify for the filter’s design parameters. 

 

 
Figure 6.—Example of the steady-state data collected from an 

individual engine over 5 months. 

 
Figure 7.—Example of the steady-state residual data collected 

from an individual engine over 5 months. 

 
Figure 8.—Example of ΔSHP versus TGT with and without LPF. 
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Figure 9.—Example of ΔSHP versus TGT with and without 

TGT transient filter. 

 
Figure 10.—Example of steady-state points collected with anti-

ice bleed valve open. 

 
Figure 11.—Example of steady-state data points collected with 

(postulated) inlet barrier filter installation. 

Results—Visualization of Changes in Engine 
Performance 

In analyzing the HUMS data sets, it was observed that 
several of the engines exhibited abrupt performance shifts. 
These events were all discovered through manual analysis–the 
steady-state data filter does not include any automated 
diagnostic functionality. Several examples of these events are 
shown and discussed below to demonstrate how the steady-state 
data filter outputs could potentially be used for engine condition 
monitoring purposes if coupled with diagnostic logic.  

Anti-Ice Bleed On 
As previously described, the operating regime recognition 

logic includes a check to make sure that the engine anti-ice 
bleed valve is not open when steady-state data are collected. 
To illustrate what could occur if that logic were not included, 
a HUMS data set was analyzed using the steady-state data 
filter with the anti-ice bleed valve logic disabled. Figure 10 
shows the results of that evaluation. Here five steady-state 
data point outliers were identified. These five points were 
collected on a single flight while the anti-ice bleed valve was 
open. These points are approximately –15 percent ΔSHP from 
the other steady-state points collected from the engine. The 
shift in ΔNg when the bleed valve is open is less apparent. 
Although this example is not an actual bleed anomaly it 
illustrates how the steady-state data filter could be used to 
recognize bleed valve faults. 

Installation of Auxiliary Hardware 
Figure 11 shows an example of the steady-state ΔSHP 

versus TGT data collected from two engines installed on the 
same aircraft over a three month time period. Both engines 
undergo an abrupt decrease in ΔSHP on the same date. 
Steady-state points collected after this date are denoted by the 
cyan through red color spectrum. While the authors have no 
knowledge of the actual cause, it is postulated that this shift 
was due to the installation of inlet barrier filters on the 
engines. Like the anti-ice bleed valve example, this is not an 
actual anomaly. However, it illustrates the potential use of the 
tool to reveal abrupt performance shifts. It also demonstrates 
the need to be aware of any maintenance actions or the 
installation of auxiliary hardware, such as inlet barrier filters, 
on the engine(s).  

Instrumentation Anomalies 
Figure 12 to Figure 14 show three instrumentation 

anomalies that were discovered in the HUMS data sets. The 
first example, shown in Figure 12, depicts steady-state data 
collected from an engine over a three month time period. The 
figure contains two separate groupings of steady-state data. 
The initial data (blue points) were collected when a bias was 
present in the TGT measurement recorded in the HUMS unit. 
A clearly discernable shift in the data is evident on the flights  
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Figure 12.—Example of steady-state data points collected with 

a TGT instrumentation bias. 

 
Figure 13.—Example of steady-state data points collected with 

a torque measurement dropout. 

 
Figure 14.—Example of steady-state data points collected with 

an OAT instrumentation bias. 

after this problem was rectified (red points). Since both ΔNg 
and ΔSHP are referenced against TGT, this anomaly resulted 
in a noticeable shift in both plots (ΔNg versus TGT and ΔSHP 
versus TGT). 

Figure 13 shows an example of the steady-state data 
collected when a dropout of the torque measurement occurred. 
Unlike the previously presented TGT bias example, this 
instrumentation anomaly was intermittent. At times the torque 
reading appeared correct, while at other times a full dropout 
(torque reading of zero) or a partial dropout (incorrect reading 
greater than 0) occurred. SHP is calculated as a function of the 
recorded torque and power turbine speed. Therefore the torque 
dropout instrumentation anomaly is evident in the ΔSHP 
versus TGT plot, but does not affect the ΔNg versus TGT plot 
as Ng is sensed directly (i.e., it is not calculated as a function 
of measured torque).  

The final instrumentation anomaly example is shown in 
Figure 14. This figure shows steady-state data points from an 
aircraft experiencing intermittent bias in the outside air 
temperature (OAT) measurement. The recorded aircraft OAT 
measurement intermittently exhibited a negative bias as large 
as 80 °C. OAT is used for parameter correction (correction of 
Ng, SHP, and TGT), as well as input to the cycle deck used to 
calculate the nominal Ng and SHP values. Therefore, any bias 
in OAT will have a pervasive effect on the ΔNg versus TGT 
and ΔSHP versus TGT plots. Although data from only one 
engine are shown, the OAT bias has the same effect on the 
data collected from each engine installed on the same aircraft.  

Discussion 
The development of the steady-state data filter described in 

this paper was an evolutionary process. The initial version of 
the architecture only contained the state transition logic, which 
is completely general and applicable to any dynamic system. 
Due to the insufficient quantity and quality of the steady-state 
points identified by the filter, attributed primarily to 
characteristics of the engines’ operation, additional domain-
specific functionality was progressively added. This included 
the low pass filter, the thermal transient filter, and the 
operating regime recognition logic (see Figure 1). Discussions 
with T700 domain experts in the U.S. Army proved to be 
invaluable during this process. These discussions provided 
insight into the engine operating modes that could impact 
performance readings, and approaches that could be taken to 
improve the filter, including those that help to reduce data 
outliers. Based on the experience with the T700 helicopter 
engine data, it is expected that similar adaptations would be 
necessary to extend the technique to other gas turbine engine 
applications. 

In analyzing the HUMS data sets, it was found that 
instrumentation anomalies and the occurrence of events that 
impacted engine performance were fairly common. If 
unaccounted for, these events could negatively impact the 
performance of an engine monitoring system that relies on the 
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identified steady-state data to make engine health assessments. 
Consequently, additional sensor validation logic should be 
included within the engine monitoring system in a practical 
implementation (Refs. 11 and 12). Furthermore, it would be 
beneficial for such an engine monitoring system to have 
knowledge of engine maintenance actions that might impact 
performance readings, including engine overhauls, line 
maintenance, or installation of auxiliary hardware such as inlet 
barrier filters. In the case of the automated power assessment 
logic described in Reference 4, trend monitoring reset logic 
was included in case the engine performance parameters are 
observed to undergo an abrupt shift. This allows a more rapid 
and accurate response to performance changes. 

As shown in Tables 1 to 5, the steady-state data filter 
incorporates a number of user-defined design parameters. To a 
large degree the specification of these parameter values is made 
based on a manual assessment of the data identified by the filter. 
There are definite trade-off decisions. The designer is typically 
faced with choosing between quantity (i.e., more points) versus 
quality (i.e., less variance in the data and fewer outliers). For 
instance, for a fault detection scheme it would be important to 
eliminate known outliers to help reduce false alarms. 

In the case of the automated power assessment logic 
described in Reference 4, the objective is to provide a real-
time assessment of available power. Therefore, every steady-
state point identified was utilized. However, if the data were to 
be used for other applications, such as ground-based post-
flight performance trend monitoring, it might be prudent to 
include logic to limit the number of steady-state points 
collected. This would be desirable if the cost of telemetering 
large quantities of data off the aircraft is a concern, or if the 
end user wants to maintain uniform temporal spacing between 
the data points collected. Additionally, logic could be added to 
constrain the filter to collect only a specified number of points 
each flight. This could be within fixed ranges of engine 
operating power specified by the user (e.g., ground idle, 
intermediate power, high power).  

Conclusions 
A technique for the automatic detection and archiving of 

steady-state engine operating points has been developed and 
demonstrated. Its ability to effectively recognize steady-state 
segments in transient data has been shown. The initial 
implementation was completely general and applicable to any 
dynamical system. In the course of developing the tool, several 
domain-specific enhancements were incorporated to improve the 
performance of the steady-state data filter. These enhancements 
included low pass filtering of the incoming data, logic to avoid 
collecting data immediately after a major thermal transient, and 
operating regime recognition logic to constrain the operating 
point and operating mode where data are collected. The technique 
has been demonstrated to be effective in revealing engine 
performance shift events due to the installation of auxiliary 
hardware and instrumentation anomalies. 

The steady-state data filter could be an important part of a 
diagnostic system for engines that do not have a consistent 
operating profile, such as those on military vehicles. Its ability 
to identify and archive steady-state points for use in trend 
monitoring can have a profound impact on the way propulsion 
health monitoring is carried out; an example of this impact is 
the previously reported turboshaft engine power assurance 
system, which uses this filter. Although designed for real-time 
on-board implementation, the filter could also serve an 
important role for post-processing of engine data collected in 
flight. The storage requirements necessary to archive full 
flight HUMS data collected from a fleet of aircraft is 
staggering. The data filter could be used to compress engine 
flight data into a small number of steady-state performance 
points collected during each flight. This approach could 
eliminate the need for long term archiving of the HUMS data, 
thus greatly reducing data storage requirements. 
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