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Data Mining-Aided Crystal Engineering for the Design of Transparent Conducting Oxides 
 
Changwon Suh, Kwiseon Kim, Joseph J. Berry, Jinsuk Lee, and Wesley B. Jones 
 
National Renewable Energy Laboratory, 1617 Cole Blvd., Golden, CO 80401, U.S.A. 
 
 
ABSTRACT 
 

The purpose of this paper is to accelerate the pace of material discovery processes by 
systematically visualizing the huge search space that conventionally needs to be explored.  To 
this end, we demonstrate not only the use of empirical- or crystal chemistry-based physical 
intuition for decision-making, but also to utilize knowledge-based data mining methodologies in 
the context of finding p-type delafossite transparent conducting oxides (TCOs). We report on 
examples using high-dimensional visualizations such as radial visualization combined with 
machine learning algorithms such as k-nearest neighbor algorithm (k-NN) to better define and 
visualize the search space (i.e. structure maps) of functional materials design. The vital role of 
search space generated from these approaches is discussed in the context of crystal chemistry of 
delafossite crystal structure.  
 
INTRODUCTION 
 
 Crystal structure of materials is closely linked with its final property [1]. In this regard, 
the ability to understand structural factors governing desired properties is critical in better 
designing functional materials. However, one of the current challenges in finding functional 
materials arises from the lack of tools to explore the huge search space. A good example is the 
discovery process for advanced TCOs due to the extremely huge search space from the many 
possible combinations from the periodic table to meet the TCO requirements.  
 There are two main approaches to handle huge search space. One is a combinatorial high-
throughput synthesis and materials informatics to synthesize and interpret composition spreads, 
respectively [2, 3]. The other approach is to directly define the search space for TCOs such as 
structure mappings based on the concept of crystal chemistry [4]. While the former have been 
modernized successfully, the latter is still considered as a classical tool for identifying search 
space of materials. An example of the latter for designing new TCO includes identifying the role 
of the cations by Shannon et al in the 1970’s to the phase stability, chemical bonding, and 
transport properties [5, 6]. The starting point of their approach was a classical bivariate structure 
field map consisting of ionic radii of A and B sites of the delafossite ABO2 (ex. A=Cu, Ag, Pd, 
Pt; B=Co, Cr, Fe, Ga, In) structure [4], which were successfully revisited by Marquardt et al. 
later for exploring p-type TCOs [7]. This delafossite structure map was again noteworthy to the 
TCO community in the 2000s because only a few p-type TCOs such as Cu2O have been 
developed so far [8], and there is much that still needs to be explored. Nevertheless, the 
approaches of the latter are inconclusive to elucidate interrelationships between structural factors 
and electrical/optical properties because two structural parameters used in the classical structure 
maps are usually not enough to fully delineate relationships of structural factors and performance 
of TCOs and therefore there is a need to systematically explore their inherent inter-complexities 
between multivariate structural factors.  
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APPROACHES 
 
 To solve the addressed issues here for oxide discovery as a TCO application, we revisit 
classical bivariate ABO2 structure maps and modify them as modernized multivariate search 
spaces for ultimately finding potential p-type TCOs. We aim at fundamentally changing the 
conventional processes for TCO design to rational approaches by mainly focusing on a way to 
reduce the search space and simultaneously explore design routes in the space.  
 

 
Structural aspects of ABO2 delafossites for p-type TCOs  

 The delafossite structures have several advantages as the candidates for p-type TCO. For 
instance, tetrahedral coordinations of oxide ions reduce the non-bonding characteristics of the 
oxide ions, which lead to the delocalizations of the holes at the valence band edges. This layered 
structure enhances the bandgap enlargement and the low coordination number of the A ions is 
more effective to introduce comparable energy levels of Ad10 to those of O2p [9, 10]. 
 

 
Database of ABO2 compounds 

 The search space includes selection of elements for multinary metal oxides with possible 
structures such as delafossites (ABO2) as well as available compositions for alloys based on 
literature survey. Following the scheme of Marquardt et al.[7], A and B are systematically 
mutated by coordination classes of ABO2 compounds (i.e. AVI B1/2

VI B1/2
VIO2

VI, 
AIVB1/2

IVB1/2
IVO2

IV, AVIIIB1/2
IVB1/2

IVO2
VI, and AII B1/2

VIB1/2
VI O2

IV) and the delafossites in ABO2 
compounds include AB1/2

3+ B1/2
3+ O2, AB1/2

2+ B1/2
4+ O2, AB2/3

2+B1/3
5+O2, and A(B′3+, B″3+)O2. 

Note that B site cation is marked with B1 and B2 to effectively include all the complex 
delafossites into the database. The order of B1 and B2 is not critical because we include all the 
mutations such that B1= B2/3

2+ and B2=B1/3
5+ as well as B1=B1/3

5+ and B2= B2/3
2+ in AB2/3

2+B1/3
5+, 

for example. While we mainly used an inorganic material database, the so-called atomwork of 
National Institute for Materials Science in Japan, for structural information, TCO related 
electrical and/or optical properties were also collected from the literature [7, 9, 11-37].  
 

 
Figure-of-merit of ABO2 structure maps 

 With two (sometimes three) carefully chosen physical factors, structure maps can be 
regarded as the first step of the materials design processes because they ensure that each 
compound is spatially located by its structure type [1, 38]. In this regard, it is possible to search 
stable phases of hypothetical materials. The figure-of-merit of structure maps can be defined as 
the ability to separate different structure types.  However, it is a formidable task to choose 
appropriate physical factors to meet the above requirements of structure maps. With the aid of 
data mining techniques, there has been a study for developing multivariate structure maps 
without any a priori assumption of which two parameters are to be selected [38]. However, the 
approach of principal component analysis (PCA) that was used in that study can only be used 
when our data sets have no missing data points since it treats data as a matrix for eigenvalue 
decomposition. Instead, in our approach we demonstrate other data mining aided approaches 
such as high-dimensional visualization that are more robust to missing data.  



3 
 

 
High-dimensional visualization for multivariate structure maps  

 The next stage of the data-driven TCO discovery process is to map out a set of multi-
dimensional points onto low dimensional space using high-dimensional visualization. In this 
way, the multivariate search space provides more possibility to identify various governing 
structural factors that determines performance of TCO, the degree of the relative impact of 
factors, and interdependency between factors are extracted.  
 
1) Radial visualization as high-dimensional data representation 
 As a high-dimensional visualization tool, we utilize a radial visualization in a way that 
the multiple variables are equally laid out on the circumference of the circle (Figure 1(a)). This 
visualization uses the concept of Hooke’s law such that a data point for a sample sits in a circle 
and it is connected with virtual springs. The spring constant ki is the scaled data value in each 
variable. The position of each data point is assigned at the equilibrium position where the sum of 
spring forces is zero. The location of each data point is assigned at the equilibrium position 
where the sum of spring forces is zero. The mathematical foundations and some features of radial 
visualization can be found in literature [39, 40].  
 
2) k-nearest neighbor (k-NN) algorithm to optimize radial visualization 
 While the advantage of radial visualization over any other dimension reduction 
techniques such as PCA is the direct use of original data sets, the display of radial visualization 
highly depends on the layout of the variables. Moreover, when we show I variables of total M 
variables, the possible projections of I variables are M!/((M-I)!I!) and each selection of I 
variables produce different radial projections of (I-1)!/2 [41, 42]. In our approach, we use k-NN 
algorithm to evaluate usefulness of radial projections created by changing the order of multiple 
variables as Leban et al. suggested [41]. As shown in Figure 1(b), k-NN algorithm searches the 
patterns for the k-training samples that are closest to the unknown samples in high-dimensional 
space. The unknown sample is assigned the most common class (i.e. structure types in this study) 
among its k-nearest neighbors. To this end, we calculate the accuracy of k-NN on positional 
information generated from radial visualization. The accuracy is estimated using the leave-one-
out cross validation methods such that each data is classified in terms of structure types while 
other samples participate in the prediction of structure types. The computational details are 
beyond the scope of this paper but the reader is referred to the literature for more information 
[41-44]. 

RESULTS AND DISCUSIONS  
 
 Generated ABO2 structure maps by radial visualization are shown in Figure 2. The top-
left projection may be most useful for assigning structure types of hypothetical ABO3 
compounds since it most clearly separates ABO2 compounds with different structures. Figure 
3(a) is an example of a radial structure map consisting of five structural factors. From the 
locations of each data point, delafossites have higher values of MA. Most known delafossite TCO 
are Cu- and Ag-based which have relatively high Mendeleev numbers of 72 and 71, respectively. 
It should be noted that it is always possible to unexpectedly uncover the roles of any structural 
factors with this approach. 
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(a)

 

(b) 

 
 

Figure 1. (a) A schematic of radial visualization for representing a point having 8 variables. (b) 
A procedure for finding interesting projections via k-NN algorithm in radial visualization. Note 
that the structure type of each sample (ex. marked with star-shaped) is assigned in a given order 
of variables for radial visualization. Here, when k=5, the four nearest neighbors are class of 
“red”, while one is class of “green’. Therefore, the star-marked sample is assigned as “red” class.  
 

 

Figure 2. Exemplary ABO2 
structure maps generated by radial 
visualization and k-NN 
algorithms. The used notations in 
Figure 2 and Figure 3 are RA and 
RB:  Shannon’s ionic radius of A 
and B, a and c: lattice parameter of 
a- and c-axis, MA, MB1, and MB2: 
Mendeleev sequential number of 
A and B, fB1, fB2: fraction of B, 
and V: volume of unit cell. B1 and 
B2 were devised to deal with 
complex delafossites in the 
database (see the section of 
database of ABO2 compounds). 

 
The ratio of ionic radii in A and B site (RA/RB) can be a good classifier to discriminate α-
NaFeO2 from CuFeO2 delafossites. The reason is that in Figure 3(b) the structure of α-NaFeO2 
has high values of RA/RB while the structure of CuFeO2 delafossites has low values. Note that 
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this relationship is known as a result of painful crystallochemical analysis of the structure with 
the criterion of RA/RB>1[36]. 
 
(a) 

 

(b)  

 
 

Figure 3. (a) An example of radial visualization-derived multivariate ABO2 structure map. (b) 
Variable rankings of ABO2 in terms of number of appearances in top 1000 radial projections.  
 
The radial visualization can also provide variable ranking in a given data. For example, Figure 
3(b) shows the number of appearances in top 1000 projections for each variable. From this, we 
identify that the main classifiers (i.e. variables to classify these structures) in a given ABO2 
formula are Ma, Ra, a, c etc. From the color of the figure, delafossites are more related to 
Pettifor’s Mendeleev sequence numbers defined in literature [1], which were also confirmed in 
Figure 3(a).  
 

CONCLUSIONS 
 

Our approaches have shown the value of high-visualization techniques and machine 
learning algorithms such as radial visualization and k-NN for developing multivariate structure 
maps of ABO2 compounds, including delafossites. Our study can be applied any kinds of dataset. 
Apart from the visualization of search space in terms of structure mapping, we can also unravel 
complex structure-processing-property relationships of materials using the demonstrated 
concepts in the field of materials informatics by including structural factors, processing 
conditions, and properties. These relationships are useful to suggest hypothetical delafossites for 
p-type TCO applications. We are currently developing various physicochemical parameters for 
better multivariate TCO structure maps. 
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