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Analysis of Off-Board Powered 
Thermal Preconditioning in Electric Drive Vehicles 

Robb A. Barnitt, Aaron D. Brooker, Laurie Ramroth, John Rugh, and Kandler A. Smith 

National Renewable Energy Laboratory, 1617 Cole Blvd., Golden, CO 80401, U.S.A. 
E-mail: robb.barnitt@nrel.gov 

 
Abstract—Following a hot or cold thermal soak, vehicle climate control systems (air conditioning or heat) are required 
to quickly attain a cabin temperature comfortable to the vehicle occupants. In a plug-in hybrid electric or electric vehicle 
(PEV) equipped with electric climate control systems, the traction battery is the sole on-board power source. Depleting 
the battery for immediate climate control results in a reduced charge-depleting (CD) range and additional battery wear. 
PEV cabin and battery thermal preconditioning using off-board power supplied by the grid or a building can mitigate the 
CD range reduction and battery life impacts of climate control. To quantify the impact, the National Renewable Energy 
Laboratory (NREL) applied the Powertrain Systems Analysis Toolkit vehicle simulation program to develop and validate 
models of three relevant PEV platforms: a blended plug-in hybrid electric vehicle (PHEV) with a 15-mile (24-km) 
electric range (PHEV15), a series PHEV with a 40-mile (64-km) electric range (PHEV40s), and an electric vehicle with a 
100-mile (161-km) electric range (EV). Second, NREL surveyed literature and test data to develop representative air 
conditioning and heater load profiles. Next, NREL simulated PEV performance with and without thermal 
preconditioning over the UDDS and HWFET drive cycles, and for three different ambient temperature scenarios. Finally, 
battery wear was characterized using a physically justified semi-empirical lithium ion battery life model. This analysis 
shows that climate control loads can reduce CD range up to 35%. However, cabin thermal preconditioning can increase 
CD range up to 19% when compared to no thermal preconditioning. In addition, this analysis shows that while battery 
capacity loss over time is driven by ambient temperature rather than climate control loads, concurrent battery thermal 
preconditioning can reduce capacity loss up to 7% by reducing pack temperature in a high ambient temperature scenario. 
 

Keywords— EV, PEV, PHEV, thermal, climate control 
 

1. Introduction 
Production and sales of plug-in hybrid electric and 

electric vehicles are forecasted to increase in the coming 
years. PEVs are viewed as a means to reduce liquid 
petroleum fuel consumption by using a greater fraction of 
electrical energy supplied by an on-board battery. The 
charge-depleting (CD) range of a PEV is limited by on-
board battery capacity, which is used not only for driving 
but also other loads. Notably, climate control loads 
(heating and cooling) can reduce the PEV’s CD range 
and/or cause the internal combustion engine to operate 
more frequently. Climate control loads increase PEV 
operating costs (liquid fuel and battery wear) and diminish 
the PEV’s intended usability (decreased CD range). PEVs 
represent a unique opportunity to thermally precondition a 
vehicle when it is plugged into an off-board power source. 
During hot or cold weather, the climate control load on the 
on-board power source is high at startup to cool down or 
warm up the vehicle from a thermal-soaked condition to a 
comfortable condition. If the cool down or warm up can be 
accomplished during battery charging, the higher transient 
climate control load on the power source could be 
eliminated. The reduction of the climate control load due 
to preconditioning has the potential to reduce fuel 
consumption and partially restore CD range. Additional 
advantages include improved battery life, improved 
occupant thermal comfort, and potentially improved safety 
due to enhanced driver vigilance. 

2. Project Approach 
  This section describes the approach to vehicle selection, 
model development and validation, fuel economy 
calculation, climate control load profile development, 
battery life modeling, and climate control scenarios. 

2.1 Vehicle Selection 

PEVs that operate in CD mode at the beginning of a trip 
can potentially benefit from off-board powered thermal 
preconditioning. The most relevant PEV platforms that are 
scheduled for near-term market release are: 

 
1. PHEV15—a blended PHEV with an approximately 

15-mile (23.4-km) all-electric range (AER) under 
certain usage conditions. 

2. PHEV40s—a series PHEV designed to provide up 
to 40 miles (64 km) of AER, then operate in 
charge-sustaining (CS) mode using a range-
extending gasoline engine. 

3. EV—an EV designed to provide up to 100 miles of 
AER. 

 
  All three PEVs use electric heating and cooling climate 
control systems. 

2.2 Vehicle Model Development 

Vehicle models were assembled using the Powertrain 
Systems Analysis Toolkit (PSAT). Relevant vehicle model 
specifications for each vehicle platform are presented in 
Table 1. 
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Table 1: Vehicle Model Inputs 
 PHEV15 PHEV40s EV
Cd  0.25 0.28 0.29 
Frontal Area (m2)  2.07 2.09 2.33 
Vehicle Mass (kg)  1,490 1,588 1,271 
Engine Power (kW)  73 53 NA 
Motor Power (kW)  60, 42 100 80 
Battery Capacity 
(kWh)  

5.2 16 24 

Battery Delta State of 
Charge (SOC) 

66% 54% 84% 

Battery Maximum 
SOC 

80% 80% 95% 

Battery Thermal 
Management Strategy 

Air 
cooling 

Liquid 
cooling 

No 
active 

cooling 
Battery Heat Transfer 
Coefficient (W/m2K) 

20 110 0 

Accessory Load  (W) 300 300 300 

2.3 Vehicle Model Validation 

Once assembled, the models were validated based on 
fuel consumption in CS mode, CD range, and acceleration 
performance. Generally, the simulated results fell within 
10% of the published data (Table 2). 

Table 2: Vehicle Model Validation Results  
 PHEV15  PHEV40s  EV  
CD Range (km) 
Published 23.4  64.4  160.9  
Simulated  24.9 66.3 168.8 
Error  +6.6% +3.0% +4.9% 
Fuel Consumption CS Mode (L/100km) 
Published 3.27 4.70 NA 
Simulated 3.42 4.39 NA 
Error +4.59% -6.60%  
0-60 mph Acceleration  
Published  10.9  8.5 NA 
Simulated 9.6 8.9 NA 
Error -11.9% +4.7%  

 

2.4 Fuel Economy and CD Range Calculations 

  A series of steps is used to estimate conventional and 
hybrid electric vehicle fuel economy. Before 2008, the 
U.S. Environmental Protection Agency (EPA) estimated 
vehicle fuel economy using two cycles, one representing 
city driving, and the other representing highway driving. 
Since these tests underestimated the amount of fuel use 
consumers would typically experience, each test result was 
multiplied by an adjustment factor. A weighted average 
was then used to combine the two adjusted test results.  
 
  In 2008, three more cycles were added to the test 
procedure to improve the fuel economy estimate. The five-
cycle test procedure would take especially long to run for 
PHEVs. PHEVs have two fuel economies that characterize 
their performance on a drive cycle, the CD fuel economy 
and the charge sustaining (CS) fuel economy. Both 
estimates are needed to calculate a combined average 
based on how much driving is done in each mode. To 

calculate the two fuel economies, each drive cycle must be 
repeated until the vehicle depletes the battery and runs one 
complete CS mode cycle. Repeating five cycles multiple 
times is computationally intensive. 
 
  EPA derived a two-cycle approximation of the five-cycle 
test, as seen below in equations (1) and (2). This was used 
in this study to reduce computational time. For the 
PHEVs, the two-cycle approximation is used for CD mode 
and CS mode, as described in [1]. A weighted average of 
the two different mode fuel economies is then calculated 
based on statistics that show the distance typically driven 
in each mode.  
  1/ .003259 .    (1) 

  1/ .001376 .    (2) 

 
  The CD range estimate used for the fuel economy 
calculation would not work for this study. It is based on 
discrete cycle increments, which would not capture the 
shorter cycle changes caused by preconditioning. Instead, 
this study used SOC values to estimate the CD range. 
Specifically, the CD distance was defined as the distance 
at which the SOC first reaches the average CS SOC plus 
1%. One percent SOC was added to the average CS SOC 
to improve the consistency of the method. Without the 
addition, the CD range did not consistently line up well 
with where the SOC leveled out. 
 
  A similar approach was used to estimate the range of the 
EV. This approach also used the two-cycle approximation 
of the five-cycle test procedure. Also, like the way each 
cycle was repeated multiple times for the PHEVs to 
estimate CD and CS mode fuel economies, the cycles were 
repeated twice for the EV to account for the higher heating 
or A/C load during the first cycle. Each depletion rate was 
then converted to a miles per gallon gasoline equivalent 
and adjusted using the two-cycle approximation equations. 
Unlike the PHEVs, a 30% fuel consumption adjustment 
ceiling was used to prevent the equations from 
extrapolating too far outside their intended domain. The 
two adjusted cycle consumption rates were then averaged 
based on the distance that would be driven in each mode, 
similar to how the CS and CD modes were averaged for 
PHEVs. Finally, the averaged adjusted city and highway 
results were average-weighted 55% and 45%, respectively, 
to come to a single fuel consumption rate. This rate was 
then multiplied by the usable capacity to estimate the total 
range. 

2.5 Climate Control Loads 

  A climate control load is divided into two parts: 
 
1. Transient—After a thermal soak, the transient climate 

control is characterized by a high initial load that 
decreases with time. An example is entering a hot 
vehicle after parking in the sun, driving, and having 
the air conditioning (A/C) on with maximum blower 
airflow to cool the interior. Vehicles have different 
transient times due to a variety of factors based on 
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manufacturer design choices. We selected 10 minutes 
as a representative transient duration. 

2. Steady State—During steady state, the impact of the 
thermal soak has been diminished. The climate 
control system maintains the thermal conditions in the 
passenger compartment. An example is driving down 
the interstate in the winter and having a moderate heat 
setting with the blower on low. 

  
  Thermal preconditioning eliminates the transient climate 
control load on the battery. In this situation, the on-board 
power supply has only to provide the steady-state climate 
control load. We surveyed literature and test data to 
develop representative A/C and heater load profiles for our 
simulation vehicles. 

2.5.1 Cooling 

  For the A/C load, we constructed a load vs. time profile 
that was representative across our range of vehicles. Table 
3 shows the range of vehicle types, environments, and A/C 
systems from a variety of sources that we considered.  

Table 3: Cooling Load Data Sources 
Source Vehicle Environment A/C 

SAE 
ARCRP [2] 

N/A, 
bench data hot mechanical 

ANL [3] small EV moderate electrical 
NREL [4] Prius hot electrical 
Ford [5] Fusion hot electrical 

ANL [3] 
Mercedes 

S400 moderate electrical 

Visteon [6] 
midsized 

SUV hot mechanical 
 
  The data from these sources were averaged to create a 
composite load profile. The 10-minute transient load was 
applied to the model as a linear decay from a peak power 
of 3.89 kW at the start of the drive to a 2.10-kW steady-
state load. This equates to an average transient load of 2.99 
kW for the 10-minute period (Table 5). For the thermal 
preconditioning case, the steady-state load of 2.1 kW is 
applied at the start of driving. Additionally, an electric 
condenser fan is assumed to draw 150 W during the 10-
minute transient and 50 W during the steady-state period 
[7].  

2.5.2 Heating 

  For the electric heating load, it was not possible to define 
a single load profile for all vehicles because of the 
different control strategies to use electric power in PHEVs 
and the availability of waste heat in some vehicles. We 
reviewed the literature and defined composite electric 
heating loads for a PHEV15, PHEV40s, and EV. Table 4 
shows the vehicle types and environments we considered 
from a variety of sources.  
 
  PHEV15—The electric heaters transition from 4 kW to 0 
kW in 10 minutes as waste heat becomes available in the 
no thermal preconditioning scenario. For the thermal 
preconditioning scenario, the electric heater is not used. As 
the vehicle begins to operate in CS mode and the engine 

operates intermittently, waste heat will be available for 
cabin heating. 
 
  PHEV40s and EV—There is no waste engine heat, and 
all the heating power is supplied by electric heaters. There 
is a peak load of 6 kW initially that decreases to 2 kW at 
10 minutes (Table 5). For the thermal preconditioning 
scenario, the 2 kW load is applied at all time points during 
the simulation.  

Table 4: Heating Load Data Sources 
Source Vehicle Environment 

Behr [8] analysis cold 
ANL [3] small EV moderate 
GM [9] conventional cold 
Ford [10] EV cold 
GM [11] HEV cold 
Valeo [12, 13, 
14] EV cold 
 
 Table 5: Climate Control Load Profiles 

Mode Vehicle 

Peak 
Load 
(kW) 

Average 
Transient 

Load 
(kW) 

Steady-
state 
Load 
(kW) 

A/C all 3.89 2.99 2.1 
heat PHEV15 4 2 0 

heat 
PHEV40s 
and EV 6 4 2 

 
  In the development of the SAE mobile A/C life cycle 
climate performance model, it was assumed that the 
blower was operated any time the vehicle was operated 
[15]. Our analysis was consistent with this, and a 150-W 
blower load was applied during all runs. 

2.6 Battery Life 

  Battery aging is caused by multiple phenomena related to 
both cycling and calendar age. Battery degradation is 
accelerated with the depth-of-discharge (DoD) of cycling, 
elevated temperature, and elevated voltage exposure, 
among other factors. Worst-case aging conditions drive the 
need to oversize batteries to meet warranty requirements. 
Systems and controls, such as thermal preconditioning, 
may be able to lessen the impact of some of these 
conditions. 

 
At the battery terminals, the observable effects of 

degradation are an increase in resistance and a reduction in 
capacity. These two effects can be correlated with power 
and energy loss that cause battery end-of-life in an 
application. Mechanisms for resistance growth include 
loss of electrical conduction paths in the electrodes, 
fracture and isolation of electrode sites, growth of film 
layers at the electrode surface, and degradation of 
electrolyte. Mechanisms for capacity loss include fracture, 
isolation, and chemical degradation of electrode material, 
as well as loss of cyclable lithium (Li) from the system as 
a byproduct of side reactions. 
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Under storage or calendar-aging conditions, the 
dominant fade mechanism is typically growth of a 
resistive film layer at the electrode surface. As the layer 
grows, cyclable Li is also consumed from the system, 
reducing capacity. In the present model, resistance growth 
and Li-capacity loss are assumed to be proportional to the 
square-root of time, t1/2, typical of diffusion-limited film-
growth processes. Under cycling-intense conditions, 
degradation is mainly caused by structural degradation of 
the electrode matrix and active sites. Cycling-driven 
degradation is assumed to be proportional to the number of 
cycles, N. 

 
Cell resistance growth due to calendar- and cycling-

driven mechanisms are assumed to be additive, 
NataaR 2

2/1
10 ++=                                  (3)  (1) 

  Cell capacity is assumed to be controlled by either loss of 
cyclable Li or loss of electrode sites, 

),min( sitesLi QQQ =                                    (4) (2) 

where  
2/1

10 tbbQLi += , and                                 (5) (3)  

NccQsites 10 +=                                          (6) (4) 
 
  Models (3), (5), and (6) are readily fit to a resistance or 
capacity trajectory measured over time for one specific 
storage or cycling condition. Using multiple storage and 
cycling datasets, functional dependence can be built for 
rate constants a1(T, V, ΔDoD), a2(T, V, ΔDoD), b1(T, V, 
ΔDoD), c1(T, V, ΔDoD). The present battery life model 
was fit to laboratory aging datasets [16-19] for the Li-ion 
graphite/nickel-cobalt-aluminum (NCA) chemistry as 
described in [19]. The NCA chemistry has generally 
graceful aging characteristics, and is expected to achieve 8 
or more years of life when sized appropriately for a 
vehicle application. 

2.7 Climate Control and Temperature Scenarios 

  Battery degradation is greatly affected by temperature, 
both while the vehicle is driving as well as while the 
vehicle is parked. Battery temperature when parked will be 
affected by recent driving history, outside ambient 
conditions, and heat dissipation path to outside ambient 
conditions where those ambient conditions have strong 
daily and annual variations. As an initial study, the present 
work neglects temperature variation due to variable 
ambient conditions.  
 
  Each climate control scenario incorporated an ambient 
temperature condition. For scenarios that include thermal 
preconditioning, the battery pack temperature was adjusted 
from ambient temperature. That is, for thermal 
preconditioning scenarios, the battery was warmed above a 
cold ambient temperature or was cooled below a hot 
ambient temperature over a 20-minute period prior to 
driving. These climate control, ambient, and battery pack 
temperature scenarios are presented in Table 6. 

Table 6: Climate Control, Temperature Scenarios 
Climate 
Control 
Scenario 

Ambient 
Temp. 

Thermal 
Preconditioning 

Initial 
Battery 
Temp. 

A/C on 
(hot) 35°C yes 26.7°C 

no 35°C 
Heat on 
(cold) -6.7°C yes 1.7°C 

no -6.7°C 
Neither 
A/C nor 
heat on 

20°C NA 20°C 

 
  Twenty-four–hour profiles for battery temperature were 
created using battery heat generation rates taken from 
previously described vehicle simulations. As shown in 
Figure 1, the profiles assume a daily travel distance of 
52.8 km/day (33 miles/day), divided into two driving trips, 
one at 8:00 a.m. and one at 5:00 p.m. Battery charging 
occurs at 10:00 p.m. at a 6.6-kW rate. For cases with 
thermal preconditioning, the two daily driving trips are 
preceded by a 20-minute ramp to the preconditioned 
temperature. 

 
Figure 1: Battery temperature and SOC profiles for 
PHEV40s, 35°C ambient temperature, with and without 
thermal preconditioning 

3. Results 
This section presents the results of vehicle performance 

and battery life analyses for the range of climate control 
system usage, ambient and battery temperature, and 
thermal preconditioning scenarios. 

3.1 Vehicle Performance 

Fuel consumption and CD range were simulated for 
each vehicle platform, with and without thermal 
preconditioning, for each climate control scenario. Results 
indicate the relatively large impact of climate control on 
CD range reduction, as well as the benefit of thermal 
preconditioning in avoiding climate control system-
induced battery discharge. 

 
Figure 2 presents results for the PHEV15. This vehicle 

was modeled to use both engine and battery as needed in a 
blended fashion. Using heat increases fuel consumption by 
3.3% and decreases the CD range by 19.5%. Using A/C 
increases fuel consumption by 49.3% and decreases the 
CD range by 32.3%. Thermal preconditioning provides 
measureable benefits by reducing the initial climate 

6 am 10 am 3 pm 8 pm 1 am 6 am

Rest

20 minute preconditioning

8:00 am: 16.5 mile trip

Rest

20 minute preconditioning

5:00 pm: 16.5 mile trip

10:00 pm: Charge at 6.6 kW

Rest

6 am 10 am 3 pm 8 pm 1 am 6 am
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control system load. Compared to no thermal 
preconditioning, thermal preconditioning with heat 
decreases fuel consumption by 1.4% and increases CD 
range by 19.2%. Compared to no thermal preconditioning, 
thermal preconditioning with A/C decreases fuel 
consumption by 0.6% and increases the CD range by 
5.2%.  

 

 
Figure 2: PHEV15 performance 

  Figure 3 presents results for the PHEV40s. Using heat 
increases fuel consumption by 60.7% and decreases the 
CD range by 35.1%. Using A/C increases fuel 
consumption by 56.8% and decreases the CD range by 
34%. Compared to no thermal preconditioning, thermal 
preconditioning with heat decreases fuel consumption by 
2.7% and increases the CD range by 5.7%. Compared to 
no thermal preconditioning, thermal preconditioning with 
A/C decreases fuel consumption by 1.5% and increases the 
CD range by 4.3%. 
 

 
Figure 3: PHEV40s performance 

  Figure 4 presents results for the EV. Using heat decreases 
the CD range by 34.7%. Using A/C decreases the CD 
range by 32.7%. Compared to no thermal preconditioning, 
thermal preconditioning with heat increases the CD range 
by 3.9%. Compared to no thermal preconditioning, 
thermal preconditioning with A/C increases the CD range 
by 1.7%. 
 

 
Figure 4: EV performance 

3.2 Battery Life Impacts 

Battery 24-hour duty-cycle profiles were input into the 
life model described in Section 2.5 to simulate battery 
resistance growth and capacity fade over 10 years. Those 
results are presented here as a percent-per-year 
degradation rate. The primary factor causing different 
battery degradation rates between preconditioned and non-
preconditioned cases is the battery temperature exposure. 
Non-thermally-preconditioned vehicles also experience 
slightly deeper battery discharges each day, although this 
is a minor factor in the present battery degradation 
predictions. 

 
Figure 5 shows percent resistance growth per year (blue 

bar), percent capacity loss per year (green bar), and battery 
average temperature (red symbol) for the PHEV15 for the 
various constant ambient temperatures, with and without 
preconditioning. For reference, end-of-life is commonly 
defined when battery remaining capacity has reached 70% 
to 80% of beginning-of-life capacity. A 2.5% capacity loss 
per year would result in 80% remaining capacity after 8 
years. For example, a 2.0% capacity loss per year in 
Figure 5 would result in 80% remaining after 10 years. 
Ambient temperature has the strongest influence on 
battery degradation rates. Compared to the 20°C baseline 
case, the 35°C ambient case with no preconditioning 
increases capacity fade rates by 43%. The −6.7°C ambient 
case reduces fade by 52% relative to 20°C ambient. 

 
Battery fade rates for actual geographic locations will be 

a composite of the constant ambient temperatures 
simulated here. In the United States, Phoenix, Arizona, is a 
typical worst-case high-temperature location, with annual 
and daily temperature variation expected to cause battery 
degradation similar to a 30°C constant temperature aging 
condition [20]. 

 
For the PHEV15 in Figure 5, thermal pre-heating 

at -6.7°C ambient has a slight negative impact on battery 
capacity loss, increasing fade rate by 4.5%. At such low 
temperatures, however, the small fade rates are relatively 
inconsequential. Hot ambient conditions will derive the 
most benefit from thermal pre-cooling. At 35°C ambient 
temperature, pre-cooling decreases the capacity-fade rate 
by 2.1% for the PHEV15 with air-cooled battery. This 
reduction in the hot-climate fade rate can be used in either 
of two ways: (1) if battery size is fixed, a preconditioned 
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battery will last longer than a non-preconditioned battery, 
or (2) if battery size is not fixed, a preconditioned battery 
can be sized slightly smaller (with lower cost) and still 
achieve the same life as a non-preconditioned battery. 

 

 
Figure 5: PHEV15 battery degradation rates (left axis) and 
average temperature (right axis) 

Figure 6 and Figure 7 show battery degradation rates for 
the PHEV40s and EV platforms, respectively. Trends are 
similar to the PHEV15. At 35°C ambient, thermal 
preconditioning reduces capacity-loss rate by 4.1% and 
7.1% for the respective PHEV40s and EV platforms. 
Reductions in resistance-growth rate are 7.0% and 13.8% 
for the respective platforms. 
 

 
Figure 6: PHEV40s battery degradation rates (left axis) and 
average temperature (right axis) 

 

 
Figure 7: EV battery degradation rates (left axis) and 
average temperature (right axis) 

In summary, pre-cooling of electric-drive vehicle 
batteries is predicted to reduce capacity fade by 2.1% to 

7.1% and resistance growth by 3.0% to 13.8% in hot 
(35°C) ambient conditions. In a hot geographic location 
such as Phoenix, Arizona, (where degradation due to 
fluctuating ambient temperature is similar to constant 
30°C aging), the realized reduction in battery degradation 
will be slightly less. The three vehicle platforms each 
derive slightly different benefits from pre-cooling, partly 
due to the assumed battery thermal management strategies 
(Table 1) and partly due to the size of each vehicle’s 
battery. Battery temperature rise results from multiple 
factors, namely battery thermal mass, heat generation rate 
while driving, and rate of active cooling. Energy storage 
systems that benefit most from pre-cooling will be those 
with small battery thermal mass, those with high heat 
generation rates, and those with limited or no active 
cooling while driving. Each of these systems is likely to 
experience a large temperature rise while driving and will 
benefit from starting a driving trip with a pre-cooled 
battery. 

4. Conclusions 

  This analysis shows that climate control system loads can 
significantly increase fuel consumption (up to 60.7%) and 
decrease CD range (up to 35.1%) in PEVs. Off-board 
powered thermal preconditioning of a vehicle cabin is one 
way to reduce the negative impact of climate control 
system loads. When compared to no thermal 
preconditioning, thermal preconditioning can provide a 
moderate reduction in fuel consumption (up to 2.7%). 
However, thermal preconditioning can partially restore CD 
range (up to 19.2%). The restoration of several kilometers 
of CD range may resonate with consumers for whom 
“range anxiety” is an issue and potential barrier to 
widespread adoption of PEVs. 

 
  Pre-cooling of electric-drive vehicle batteries is predicted 
to reduce capacity fade by 2% to 7% and resistance growth 
by 3% to 14% in hot (35°C) ambient conditions. Vehicles 
that benefit most from battery pre-cooling will be those 
with small battery thermal mass or high heat generation 
rates (i.e., PHEVs with a short electric range) and those 
with limited battery active cooling systems. 

 
  Off-board powered thermal preconditioning has benefits 
to the consumer via CD range extension and less 
expensive energy costs (electricity versus liquid fuel 
and/or battery capacity), as well as vehicle manufacturers 
via extended battery life and avoided warranty claims. 
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