General Disclaimer One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.
- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.
- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.
- This document is paginated as submitted by the original source.
- Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission.

(HASA-CR-175455) VEGETATICN ANALYSIS FOR NE5-15500 $\triangle B I D$ LAMDS GEOBCTANY Final EGFCrt (California Univ.) 35 P EC AOB/MF AO1 CSCI 08B Unclas G3/43 14307

Final Report

Vegetation Analysis for Arid Lands Geobotany

Michael G. Barbour, Principal Investigator
Susan L. Ustin, Research Associate

Contract \# 9556902
Jet Propulsion Laboratory
Pasadena, CA 91109

Department of Botany
University of California
Davis, CA 95616

This report was prepared for the Jet Propulsion Laboratory, California Institute of Technology, sponsored by the National Aeronautics and Space Administration.

Three primary study sites were selected for measurement of plant pitenological properties and spectral analysis. The sites selected represented typical sagebrush, creosote bush and saltbush communities in Owens Valley. They were located close to man-made features for identification on remotely sensed Images but showed little evidence of recent disturbance. ,

The saltbush site, located near Dirty Socks springs at the southern end of Owens Lake, is at $4,000 \mathrm{ft}$. elevation. This site, actually two subsites located about 2 miles apart, is representative of the saltbush flora commonly found in saline or alkaline areas. We identifie: for study five species which were the most abundant species and which exhibited contrasting leaf morphologies of potential spectral interest. The morphological characteristics of these species were matched with species having similar or eontrasting morphologies at the other sites. It was hoped this would allow some preliminary assessment of the significance of these features in remotely sensed data.

The other study sites are located on S.erran fans at $4,500 \mathrm{ft}$. The creosote bush site, west of Cartago, CA, represents the northernmost extreme of this vegetation type, in the transition zone between Mojave and Great Basin floras. While most members of this community are typical of the Mojave province (although the sagebrush along the stream channel is not), the low abundance of creosot? bush is somewhat anomalous compared to more centrally located stands in its range. The presence of sagebrush at this site is obviously influenced by the stream; however, it allows an opportunity for us to determine if its presence can be identified in remotely sensed data. The abundance of Haplopappus Cooperi and Chrysothamnus teretifolius at both fan localities permits further such comparisons between sites.

The sagebrush site is located west of Independence, CA within the upper fan zone which includes Purshia and Coleogyne. This vegetat ton type is extensive at this elevation within the valley and is the most comnon type represented on the numerous burns north and south of Independence. (Many of these fires were intentionally set by ranchers to remove Coleogyne from range land.) This site gave us an opportunity to compare phenological status as well as a control locality for comparisons between cover and species composition in assessment of revegetation and associated spectral changes after fire.

In addition to the primary study localities we have been measuring cover and species composition at five different aged burns. Four of these have bsen on granitic alluvium and one on a volcanic substrate having a very different albedo.

Selection of these sites has permitted us to make phenological and morphological comparisons that will be used in subsequent analysis and modeling of spectral characteristics within and between the three vegetation types.

II. Soil analysis

Arrangements have been made with Mr. Fred Fischer of the Soil Conservation Service, in Bishop, CA, to map our soils. The service will do a complete map, including a textural and chemical analysis. In the fall we have arranged to rent a back-hoe so that they can map the soil profile through the root zone. We will use this opportunity to examine the root distribution of the study species through the soil profile. This information will be used in interpreting and modeling shoot water content and water movement from the soil.
III. Collection of leaf and plant samples

In May, leaf samples of all species were collected, fixed in gluteraldehyde, and returned to U.C.D. for analysis. Dr. Leslie Sunell, Dept. of Botany, is characterizing the morphological characteristics of each leaf type, using SEM techniques. Samples will be analysed later for elemental composition using the x-ray microprobe. This technique, if successful, will be useful in determining the presence and location of inorganic ions within foliar tissue.

Four to five plants of each species have been transplanted into 6 inch containers and returned to greenhouses at U.C.D. or the U.C. White Mt. Field Station. It was necessary to collect these plants now for analysis of photosynthetic and water relations properties next winter because of the long time they require to become established.

IV. Results of Phenological Studies

Several phenological characteristics were chosen for measurement. These included: leader length; \% of buds on branches; bud, flower, and fruit class; \% of canopy green and \% cover; and \% ci leaf senescence. Plant size was also measured. Although the phenological studies are not completed, several interesting trends have emerged. Spring growth and leaf senescence began earliest in the creosote bush community, last in the saltbush community. Most rapid growth began in late March at all sites. There are differences between species at all sites, although they appear to be relatively subtle and may not be detectable by remotely sensed data. However, the timing of leaf senescence may be more readily observed. There are more obvious differences between sites and species in this regard. Growth had slowed for most species by June, with the exception of species in the saltbush community. Flowering of some species can be expected to alter their spectral responses. This data will be used to aid interpretation of seasonal patterns in spectral characteristics. Summaries of the phenological data are included in Appendix A. Data for each species is presented covering the 1984 growing season. Column headings indicate the following:

```
1. "Days" = Number of days since February 25, 1984
2. "%brown" = Mean percentage of plant surface that was brown ( }n=10\mathrm{ )
on each sample day
3. "%cover" = Mean percentage of ground surface covered by plant
( }n=10\mathrm{ ) on each sample day
4. "leadr,mm" Mean length of leader growth ( }n=10\mathrm{ leaders from 10
```

shrubs)
Plot headings are indicated:

1. On multiple plots, "A" = "\%brown", "B" = "\%cover"
2. Single plots indicate "leader length"
3. Days are always indicated on the x-axis.

Data for the following species are inclided:

1. Sagebrush site
a. Artemesia tridentata
b. Chrysothamnus teretifolius
c. Coleogyne ramosissima
d. Eriogonum fasiculatum
e. Purshia glandulosa
2. Creosote bush site
a. Artemesia tridentata
b. Encelia virginensis
c. Grayia spinosa
d. Franseria dumosa
e. Larrea divaricata
3. Saltbush site
a. Atriplex canescens
b. Atriplex Parryi
c. Distichlis spicata
d. Sarcobatus vermiculatus
e. Suaeda ramosissima

V. Results of Vegetation Analysis

Community composition has been studied at these three sites plus five burned sites. Ten 50 m transects at each locality have been measured for percent cover (over 10 cm) by species. On each transect we have conduc ed 2 point quarter and 5 nearest neighbor analyses. These data gave us \% cover, cover by area, plant size, tendency for association, and recolonization patterns after a disturbance. These data will be used for assessment of changes in species composition and plant densii; on spectral response. These data are also necessary for predictive analyses and modeling of the spectral responses of vegetation. Percentage plant cover is shown in Appendex B for six sites. The column headings indicate the following:

Co1. \# 1. "symburn" = Symmes Creek, burned area
2. "symoffb" $=$ Symmes Creek, non-burned area
3. "sagof $f b^{\prime \prime}=$ Onion Valley Road, non-burned area
4. "sageburn"= Onion Valley Road, burned area
5. "Divcrofb"= Division Creek, non-burned area, granite soil
6. "Creosofb"= Creosote bush site, non-burned area
7. "Saltbush"= Saltbush site, non-burned area

Analysis of variance is shown for the following pairs:

1. Symmes Creek burned and non-burned areas ($P<.001$)
2. Symmes Creek non-burned and Onion Valley non-burned (NS)
3. Onion Valley burned and non-burned areas ($P<.005$)
4. Onion Valley non-burned and Division Creek non-burned (NS)
5. Symmes Creek burn and Onion Valley burn (Pく.025)
VI. Summary of selected phenological data

These data summarize the phenological studies conducted this growing season. They will be pubilshed in an appropriate journal with the spectral data obtained in the Arid Lands Geobotany project.

FCLDCUT FiAMAR

nte > Stop

MTR > PLOT

I FOLDOUT FRAME
-
\pm

嵒

\sum_{2}
这
a
\pm

2 FOLDOUT I IWM

FOLDOUT FAM.i.

2 Foldoun huine

FOLDOUT FRAME

0
$+$
व者:

[^0]3

FOLDOUT FRAME

a
-4

エ

๔ \pm \pm
a

ROW IIAYS \%RROWN \%COUER LEADR,MM +
∞
0
0
\vdots
∞
∞

\sum foldout frame

FOLDOUT FRAME

2 foldout framg

fOLDOUT FRAME

2 foloout framis

FOLDOUT FRAME

$<$ FOLDOUT FRAME

$\frac{\infty}{5}$

FOLDOUT FRAME

1 MISSING ORSERVATIONS
MTB > STOF

FOLDOUT FRAME

』
MTB > MPLOT C2 US C1 C3 US C1

の

0
∞
π

$$
\Psi
$$

$$
\infty \quad \llbracket
$$

Ψ

∞

4
$0100400<\pi \infty$
$\propto<$

HTB $>$ PLOT CA US C1

(FOLDOUT FRAME

2 FOLDOUT FRAME

EOLDOUT. FRAME

EOLDOUT FRAME

2 foldout frame

EOLDOUT FRAME

∞

ص

5

\sum eolout framag

" 4×4

FOLDOUT FRAME

	070 vegetation couru at allected sagebush síto							
MTE $>$ FRINT C1-C7								
ROW SY	SYMBURN	SYMOFFB	SAGOFFE	SAGEBUFN	DIVCROFB	CREOSOFB	SAL	BUSH
1	12.2	30.8	29.1	16.4	26.6	24.9		6.4
2	14.2	29.6	35.6	16.8	41.8	*		14.0
3	21.8	36.0	37.6	16.6	35.8	*		*
4	24.8	34.0	29.8	29.4	31.2	*		-
5	15.0	33.2	36.4	21.4	28.2	*		*
6	12.6	*	*	22.8	30.0	*		*
7	7.0	*	*	33.4	12.0	*		*
8	14.6	*	*	29.2	30.6	*		*
9	16.9	*	*	24.4	25.8	*		*
10	22.6	*	*	21.6	33.4	*		*
MTE $>$ AOVO C2 C1								
ANALYSIS OF VARIANCE								
SOURCE	IF	SS	HS	F				
FACTOR	1	913.0	913.0	40.32				
ERROR	13	294.4	22.6					
TOTAL	14	1207.4						
				INIIVII	JAL 95 PC	CI'S FIR		
				BASEI 1	- POOLEI	IIEV		
LEVEL	N	MEAN	STIEV	---t--	----ナ-	----		+
SYMOFFB	B 5	32.72	2.55			(-----		-)
SYMBURN	N 10	16.17	5.46	(----*				
POOLED STIEV $=$		4.76		15.0	22.5	30.0		. 5
MTB $~$ AOVO C2 C3								
ANALYSIS OF UARIANCE								
SOURCE	DF	SS	MS	F				
FACTOR	1	2.4	2.4	0.22				
ERROR	8	88.5	11.1					
TOTAL	9	90.9						
				INDIVII	JAL 95 PC	CI'S FOR	AN	
				BASFI	F FOOLEI	LIEV		
LEVEL	N	MEAN	STIFU	-------	------	+------	+	-
SYMOFFB	B 5	32.72	2.55	(-----	-----*-	---------		
SAGOFFB	B 5	33.70	3.95	(-	---------	--		-)
FOOLEA STIEV $=3.33$				31		636		
$\mathrm{MTE}>\mathrm{AQVOC3} \mathrm{C4}$								
ANALYSIS OF UARIANCE								
SOURCE	[1F	SS	MS	F				
FACTOR	1	367.5	367.5	12.60				
ERFOK	13	379.1	29.2					
TOTAL	14	746.6						
				INDIVII	JAL 95 FC	CI'S FOR	EAN	

$$
\begin{aligned}
& 2 \text { FOLDOUT Fluming } \\
& \begin{array}{l}
\text { サでし } \\
\downarrow
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \text { 以上 } \\
& \begin{array}{l}
09.2 \\
1
\end{array}
\end{aligned}
$$

[^0]: ,

