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Mapping Bedrock Surface Contours Using the Horizontal-
to-Vertical Spectral Ratio (HVSR) Method Near the Middle 
Quarter Area, Woodbury, Connecticut

The bedrock surface contours in Woodbury, Connecticut, 
were determined downgradient of a commercial zone known 
as the Middle Quarter area (MQA; fig. 1) using the novel, 
noninvasive horizontal-to-vertical (H/V) spectral ratio (HVSR) 
passive seismic geophysical method. Boreholes and monitoring 
wells had been drilled in this area to characterize the shallow 
subsurface to within 20 feet (ft) of the land surface, but little 
was known about the deep subsurface, including sediment 
thicknesses and depths to bedrock (Starn and Brown, 2007; 
Brown and others, 2009). Improved information on the altitude 
of the bedrock surface and its spatial variation was needed for 
assessment and remediation of chlorinated solvents that have 
contaminated the overlying glacial aquifer that supplies water to 
wells in the area.

Depth to bedrock near the MQA was first determined using 
the HVSR method, which uses three-component seismometers 
to record the ambient seismic noise, such as that induced by 
distant weather or ocean waves impacting the shore. In areas 
that have a strong acoustic impedance contrast between the 
bedrock and overlying sediments, such as near the MQA, the 
seismic noise induces resonance at frequencies in the range 
of about 0.1 to 100 hertz. The ratio of the average horizontal- 
and vertical-component amplitude spectrums produces a 
spectral ratio curve with peaks at fundamental and higher order 
resonance frequencies. Resonance frequencies are a function 
of both sediment layer thickness and average layer shear-
wave velocity.

Measurements were made along several transects 
downgradient of the MQA (fig. 1) using the field methods 
described in Lane and others (2008). Additional measurements 
were collected at several surrounding bedrock wells where 
the altitude of the bedrock surface is known. These were used 
to calculate a local regression line based on the relationship 
between the sediment thickness (z) and the resonance frequency 
(fr; in hertz) of the main peak in H/V spectra:

	 z = a fr
-b.	 (1)

where
	 a and b	 are empirically derived coefficients (Ibs-von 

Seht and Wohlenberg, 1999).
Once calculated, the local regression line was used to 

determine sediment thickness from observed frequencies 
within the same geologic framework. The values for a (209.17) 
and b (0.798) were determined from the observed resonance 
frequencies and corresponding depths to bedrock (table 1; fig. 2) 
at six well locations around the MQA. Using these values for a 
and b, the depth of the bedrock (y; in feet) is calculated to be:

	 y = 209.17fr
-0.798 .	 (2)

Once the depths to bedrock were calculated using the local 
regression, bedrock altitude was determined by subtracting 
the depths determined from a 2-ft contour light detection and 
ranging (LiDAR) digital elevation model (State of Connecticut, 
2011) or from land-surface altitudes previously surveyed at 
monitoring wells; these bedrock altitudes and regional-scale 
studies of the bedrock surface (Starn and Brown, 2007; Burton, 
2011) constrained by bedrock outcrops and drilling logs from 
domestic wells were used to draw bedrock altitude contours 
(fig. 3).

The bedrock-surface contour map shows a high area to 
the southwest of the MQA within a larger bedrock valley. 
The bedrock surface could affect the movement of dense 
nonaqueous phase liquids (DNAPLs) in the glacial aquifer. The 
modeled bedrock surface provides a tool to help target drilling 
locations for characterization of DNAPL contaminants in the 
source area.
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Figure 1.  Aerial photograph of study area showing locations of seismometer readings, the study transects, and the 
monitoring wells in Woodbury, Connecticut.

Figure 2.  Regression plot and line equation for resonance 
frequency and depth to bedrock in Woodbury, Connecticut. 
(fr, resonance frequency; r2, coefficient of determination; 
y, depth to bedrock).
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Seismometer 
reading sites

Resonance 
frequency,  

in hertz

Estimated 
bedrock depth,  

in feet

Estimated  
bedrock 
altitude,  
in feet  

(NAVD 88)

7–10 4.41 64.0 151.5
WY83 8.16 39.2 206.2
WY84 4.92 58.7 184.1
WY931 7.28 42.9 208.7
WY75 4.09 68.0 150.5

Calibration 
well

Resonance 
frequency,  

in hertz

Bedrock depth,  
in feet

Bedrock 
altitude,  
in feet  

(NAVD 88)

WY69 3.73 66.9 166.3
WY77 4.48 63.0 175.1
WY89 9.83 37.1 226.0
WY981 16.39 21.7 230.6
WY106 3.75 70.9 148.9
WY111 2.06 125.0 140.0

1Outside of the area shown in figure 1.

Seismometer 
reading sites

Resonance 
frequency,  

in hertz

Estimated 
bedrock depth,  

in feet

Estimated  
bedrock 
altitude,  
in feet  

(NAVD 88)
2–1 4.16 67.1 161.4
2–2 4.36 64.6 164.3
2–3 5.28 55.4 174.0
2–4 5.63 52.7 176.6
2–5 6.04 49.8 179.4
2–6 5.45 54.1 175.4
2–7 4.42 63.9 160.1
2–8 4.06 68.4 147.3
3–1 3.45 77.9 152.0
3–2 3.48 77.3 153.2
3–3 3.94 70.0 160.2
3–4 3.98 69.5 158.3
3–5 4.22 66.3 159.5
3–6 4.27 65.7 160.8
3–7 4.31 65.2 161.3
3–8 3.81 71.9 155.1
3–9 4.31 65.2 162.9
3–99 4.73 60.5 168.2
4–1 3.39 79.0 147.0
4–2 3.25 81.7 145.1
4–4 3.22 82.3 146.2
4-5 2.73 93.8 144.4
5–1 3.47 77.5 152.8
5–2 3.63 74.8 158.0
5–3 3.81 71.9 161.3
5–4 3.80 72.1 160.8
5–5 3.86 71.2 160.4
5–6 3.80 72.1 159.4
5–7 3.75 72.8 158.6
5–8 3.52 76.6 153.0
5–9 3.59 75.4 149.7
5–20 3.44 78.0 140.5
5–21 3.47 77.5 137.9
6–0 3.06 85.7 143.5
6–1 3.17 83.3 145.4
6–2 3.75 72.8 159.5
6–3 3.70 73.6 157.1

MQT-1 3.17 83.3 146.6
7–0a 3.72 73.3 159.4
7–0b 3.77 72.5 159.3
7–1 3.93 70.2 160.4
7–2 4.08 68.1 161.9
7–3 4.19 66.7 161.1
7–8 4.19 66.7 155.1

Table 1.   Resonance frequencies and estimated bedrock depths and altitudes for seismometer reading sites and calibration wells in 
Woodbury, Connecticut.

[NAVD 88, North American Vertical Datum of 1988, in feet]
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Figure 3.  Aerial photograph of the study area showing locations of seismometer readings, monitoring wells, and the 
bedrock altitudes and contours in Woodbury, Connecticut. NAVD 88, North American Vertical Datum of 1988.
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For more information, contact:

Craig Brown
New England Water Science Center
Connecticut Office
101 Pitkin St.
East Hartford, CT 06108
Telephone: 860–291– 6766
Email: cjbrown@usgs.gov
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