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Abstract

Stereo imaging is a technique commonly employed for vision-based
navigation. For such applications, two images are acquired from dif-
ferent vantage points and then compared using transformations to ex-
tract depth information. The technique is commonly used in robotics
for obstacle avoidance or for Simultaneous Localization And Mapping,
(SLAM). Yet, the process requires a number of image processing steps
and therefore tends to be CPU-intensive, which limits the real-time data
rate and use in power-limited applications. Evaluated here is a tech-
nique where a monocular camera is used for vision-based odometry. In
this work, an optical flow technique with feature recognition is performed
to generate odometry measurements. The visual odometry sensor mea-
surements are intended to be used as control inputs or measurements in
a sensor fusion algorithm using low-cost MEMS based inertial sensors
to provide improved localization information. Presented here are vi-
sual odometry results which demonstrate the challenges associated with
using ground-pointing cameras for visual odometry. The focus is for
rover-based robotic applications for localization within GPS-denied en-
vironments.
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1 Introduction

Conventional navigation techniques such as GPS do not presently of-
fer adequate position knowledge inside of buildings or below the earth’s
surface. Numerous challenges exist for utilizing GPS in these environ-
ments, including weak or lack of signal, dilution of precision and mul-
tipath effects. In addition, for robotic or human surface exploration
beyond the Earth, the GPS infrastructure is not available. The local-
ization of an individual or robotic platform is often desired for these en-
vironments. Numerous approaches have been presented in the research
community for navigation knowledge within GPS-denied environments.
The use of vision-based sensors to provide navigation information is a
common alternative to large and expensive inertial measurement devices.
Vision-based sensors may also be used to augment inertial devices to re-
set errors due to inertial drift. These errors are especially apparent in
non military-grade or inexpensive MEMS inertial sensor devices.

A common approach to visual navigation is the use of stereo imag-
ing to replace the inertial navigation system. The Mars Exploration
Rover, for example, extracts visual odometry information from a pair of
stereo images [1], [2]. For stereo-based image processing, the required
image pre-processing tends to be CPU-intensive and limits the real-time
data rate. As an alternative, here we investigate the use of vision-based
sensors to augment inexpensive MEMS-based navigation systems.

For wheel-based robotics, incorporation of wheel odometry measure-
ments is one simple method for providing additional sensor input to the
navigation estimation algorithm. Traditional odometry methods utilize
rotary encoders to measure wheel rotations. Motion estimation using
odometry techniques alone is unreliable as the measurements suffer from
errors due to slippage which will accumulate over time. Furthermore,
wheel odometry on a robotic platform using skid-steering technology is
even more unreliable, as turning is achieved through wheel slippage. As
an alternative to traditional odometry methods, a vision-based sensor
may be used for odometry measurements. Such visual odometry tech-
niques are not prone to errors associated with wheel slippage like tradi-
tional wheel sensor techniques. This work further investigates the use of
vision-based sensors for odometry measurements.

2 Methodology

Visual odometry is performed by determining the position from se-
quential camera image analysis. In contrast to stereo-vision implemen-
tations, here only a single camera is used in order to reduce compu-
tational requirements by eliminating the requirement for feature-based
stereo matching algorithms. The compromise is that with a single cam-
era, a three-dimensional position is no longer computed for each selected
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feature, and only two-dimensional translational information is obtained.
The single downward pointing camera is intended to replace or augment
encoder-based odometry for applications on skid-steering robotic plat-
forms. The concept is akin to that of an optical mouse. A similar visual
odometry concept with a single downward-pointing camera is discussed
in Reference [3], but the approach and implementation is different. Here,
the approach is to use feature tracking between two temporally spaced
image frames to construct an optical flow field. The relative displace-
ment between each image frame is then extracted and used as an input to
a position estimation algorithm. The basic methodology follows closely
that of a visual odometry system and includes:

1. Frame Acquisition: Acquire temporally spaced images.

2. Feature Detection: Determine features in the image frames to
use for tracking.

3. Optical Flow: Use the tracked features to perform optical flow
calculations between the two image frames.

4. Sensor Filtering: Filter noisy data using estimation algorithms.
Eliminate erroneous data and obvious outliers.

5. Localization: Use optical flow measurements in motion estima-
tion algorithms to determine position.

Typically, vision-based navigation systems also perform an image correc-
tion step to account for errors such as lens distortions. Here for simplicity
reasons, no corrections are made to the image to account for these er-
rors. Yet the general method allows for the corrections to be applied
as needed. In addition, for the downward-pointing camera it is assumed
that the image plane is sufficiently parallel to the surface ground plane
such that a change in pose corresponds directly to a planar transforma-
tion of the images. Again, a correction step may be needed to satisfy
this assumption.

3 Implementation

3.1 Testbed

For initial proof of concept demonstration purposes, a localization
experiment using a visual odometry setup is constructed. The experi-
mental setup consists of hardware currently available on-hand without
any additional procurement. A crude “duct-tape integration” approach
accurately describes the setup. All of the hardware is attached to a labo-
ratory cart, which contains four swivel caster wheels. The caster wheels
allow the cart to be moved in any direction within the plane of the floor.
It should be noted, that a setup with rotating caster wheels is actually
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a more challenging configuration for position and trajectory estimation
than that of a rover, where the wheels or skids provide constraints to
the direction of motion. With traditional wheels or skids, a change in
the velocity to the cross-track direction requires slipping of the wheels
or sliding of the tracks.

3.2 Frame Acquisition

For the visual odometry measurements a frame capture device is
required. Although only a single video camera is used for the visual
odometry measurements, two cameras are attached to the laboratory
cart for performance comparison purposes. The first video camera is a
common web camera. For this setup, a 640x480 image is acquired with
the web camera. Images are acquired between five and ten frames per
second, depending on the exact test configuration. The video camera is
attached to a laptop computer where the frame capture data is available
for near real-time visual odometry measurements.

The second camera attached to the laboratory cart is a high-definition
(HD) video camera. The HD video camera (720p, 60 fps) is currently
used only for comparison of results. The video stream from the HD video
camera is recorded and then used for post-processing video odometry
measurements. The available HD video camera is designed to dump the
video data directly to a storage medium, and therefore is not available
for real time processing. Both the web camera and the HD video camera
produce color video. Since only gray-scale image frames are required for
the visual odometry algorithm, color frames are converted to gray scale
prior to use.

For repeatable visual odometry measurements and to ensure proper
calibration, it is necessary to maintain a constant distance from the cam-
era optics to the tracked object. For this application, the tracked features
are on the ground. Maintaining a constant distance to the tracked ob-
ject is not a restrictive requirement as the rover has wheels or tracks on
the ground. Thus, by positioning the web camera to acquire images of
the ground near the wheels, a constant distance to the imaged surface is
maintained.

3.3 Feature Detection and Optical Flow

For feature detection and the optical flow analysis, the routines avail-
able in the Open Source Computer Vision library (OpenCV)1 are used.
Feature detection is implemented using Shi and Tomasi corner detec-
tion [4]. The optical flow analysis is then performed using a Pyramidal
implementation of the Lucas-Kanade optical flow technique [5], [6]. The
parameters used in the feature detection and optical flow tracking rou-
tines are found in Table 1.

1OpenCV is available from http://opencv.willowgarage.com
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Parameter Setting

Feature Detection:
Number of Features 100
Quality Level 0.04
Minimum Distance 0.01
Block Size 3

Optical Flow:
Window Size 3 x 3
Pyramid Level 5
Max Iterations 20

Table 1. Feature Detection and Optical Flow Parameters

One difficulty with performing optical flow measurements using tem-
porally spaced image frames is the potential variation in illumination
between images. Optical tracking algorithms assume a consistent il-
lumination of the picture frame between successive frames. For this
experimental setup the difficulty is overcome by adding a direct illumi-
nation source near the camera. The light source is placed at an angle
to the observed surface such that there is no direct reflection back into
the camera from shiny surfaces. In addition, by illuminating the imaged
surface from a non-zero angle of incidence, shadows are produced from
any textures, dirt, or surface roughness which may be present. The ad-
dition of these shadows aids the feature tracking routines by potentially
generating more points of interest for feature tracking.

3.4 Sensor Data Filtering

When using visual measurements, the results often contain a number
of outliers. Furthermore, methods which match “point” features are not
usually robust. For this downward pointing camera approach, outliers in
the results are especially likely. Pictures of the ground typically do not
have ample features to provide transformation tracking. The images may
also lack an adequate number of matching features between sequential
frames to provide a reasonable statistical representation of the measure-
ments. However, as will be demonstrated in this work, it is possible to
achieve feature tracking using ground images. Figure 1 shows for exam-
ple a representative optical flow measurement image frame using tracked
features from a downward pointing camera. The image shows a number
of flow lines with a common direction and magnitude. There are also a
number of clearly erroneous tracked features depicted by the flow lines.
By using proper estimation and data filtering methods, the optical flow
data set can still be used to produce reasonable information. In prac-
tice, robust estimation techniques such as Random Sample Consensus
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Figure 1. Optical flow results on a textured surface. The red lines depict
offsets for tracked features. The bold cyan line in the middle indicates
the estimated result of all the tracked features in the image.

(RANSAC) [7], or M-estimator Sample Consensus (MSAC) [8] are often
used. One disadvantage of RANSAC-based methods, is that the routine
is iterative and the number of iterations required between each successive
estimation is not necessarily predictable. In addition, the thresholds set
in the algorithm are likely to be problem specific. For these reasons, an
alternative approach is taken here.

Close examination of the sample histogram for a number of optical
flow results lends insight to the necessary filtering approach. The opti-
cal flow results may contain features that are not necessarily Gaussian.
Furthermore, the characteristics between successive optical flow results
may exhibit different characteristics. A collection of optical flow results
were found to exhibit multimodal, heavy- or light-tailed characteristics
as well as Gaussian distributions. Figure 2 shows for example a sample
histogram for the direction of motion as estimated from an optical flow
analysis. The histogram indicates a multimodal distribution is present
in the data. In this particular instance, the correct result is associated
with the mode of lower probability density.

For a proof-of-concept demonstration, it is desired to use standard
techniques for which software libraries or toolboxes are easily obtained.
For this work, the Kalman filter routine available in OpenCV is used.
Yet, in order to use a Kalman filter, additional processing of the data is
necessary. Kalman filters only represent the state of the system using a
single Gaussian and our data may contain multimodal distributions from
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Figure 2. Histogram of optical flow measurements for estimated di-
rection of travel. A Gaussian kernel density estimation is depicted.
The histogram indicates a multimodal distribution. The results around
1.5 radians with the lower probability density is the correct result.

erroneous data. Our simplistic solution is to eliminate the multimodal
nature of the data by selecting only the highest probability Gaussian
representation contained within the data set prior to incorporation into
the Kalman filter. Also, only the mean of the resulting measurements
contained within a single image is used by the Kalman filter for estimat-
ing the direction and magnitude of motion associated with the optical
flow measurements.

For the case depicted in Figure 2, the most likely answer from strictly
a probability density perspective yields the incorrect result. Kalman fil-
ters can effectively smooth through occasional erroneous data values. Yet
it can be extremely difficult to recover from the mistake. Particle filters
are likely to be more suitable for this application than the traditional
Kalman filter approach. Particle filters allow for multiple hypotheses to
be tracked and therefore better cope with measurements consisting of
multiple modes. Therefore, if it is desired to have a system with more
robust properties, a particle filter approach should be considered.

3.5 Localization

The ultimate goal of this work is to use visual odometry measure-
ments in conjunction with low-cost MEMS based inertial sensors to pro-
vide improved localization or navigation information. The focus here
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is to first provide localization information using only the sensor input
from the visual odometry measurements. Thus, we first use only visual
odometry processing to determine the path traveled. A standard linear
Kalman filter with position and velocity as states and two measurements
is implemented using the routines available in the OpenCV library. For
use in the Kalman localization routine, the optical flow measurements
are converted to an estimated velocity, which is calculated by dividing
by the elapsed time between the acquired frames.

The process for testing the experimental setup includes displaying
video results to the user as well as recording the video for later post
processing. The position and velocity results of the Kalman filter are
depicted in near real-time on the laptop display. The additional pro-
cesses of displaying the in-time measurements does however add to the
computational load. For an actual deployed system, only the computed
odometry measurements would need to be made available. Therefore, the
processor load and visual odometry update rates are not representative
of a deployed system.

4 Results

The visual odometry experimental setup is used to produce localiza-
tion results in an indoor environment with a variety of different ground
surface textures. The surfaces include both linoleum and short pile car-
pet surfaces, both with limited indoor lighting conditions. The visual
odometry system is capable of sensing a translation within the image
frame and is not used to sense rotations. Since an inertial unit is not
currently used to sense rotational motion, the laboratory cart motion
consists only of simple two-dimensional translations. The majority of
the data runs consist of moving the cart in nearly a straight line for a
pre-determined distance. Most data runs are for approximately 4.5m,
which is limited by the room size.

Using the web camera to acquire image frames, feature detection
and optical flow results are produced. Figure 3 shows a representative
image with unfiltered optical flow measurements and the corresponding
sample histogram. The optical flow results are then incorporated into
the Kalman filter for position estimation. Figure 4 depicts the estimated
localization information using only the web camera for visual odometry
measurements.

5 Discussion

The results depicted in Figure 4 indicate that visual odometry mea-
surements from a single downward-pointing camera are useful for deter-
mining localization information. Careful inspection of the localization
results indicate the measurements as is are not currently robust enough
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(a) Optical flow results on a textured surface. The red lines depict
offsets for tracked features. The bold cyan line in the middle indicates
the estimated result of all the tracked features in the image.

0 1 2 3 4 5 6 7
Displacement Direction, [rad]

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Pr
ob

ab
ili

ty
 D

en
si

ty

KDE

�120 �100 �80 �60 �40 �20 0 20 40
x Displacement, [pixels]

�20

�10

0

10

20

30

40

50

60

y 
Di

sp
la

ce
m

en
t, 

[p
ix

el
s]

(b) Histogram of optical flow measurements for estimated direction of
travel. An x-y scatter plot of the optical flow displacement measure-
ments is shown within the subplot.

Figure 3. Optical flow results.
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Figure 4. Localization results from visual odometry.

to provide stand-alone high-precision localization information. Yet the
results are accurate to a modest level and the results represent the gen-
eral path traveled during the experiment. Figure 4 does show an irreg-
ular discontinuity in the localization information near the x-y position
of (0,1)m. For this experiment, the cart input translation is not tightly
controlled as the setup is pushed by a human. Sudden changes in input
displacement and speed are expected and may be correlated with the
human stride. The use of caster wheels on the laboratory cart further
allows for cross track translations. Still, a discontinuity in the localiza-
tion measurements should not be expected. The sudden change in the
position results is likely due to an incorrect optical flow measurement
getting passed into the Kalman estimation algorithm. Further work to
improve the estimation technique is likely to reduce errors due to erro-
neous measurements.

5.1 Challenges

Although the optical flow measurements are useful for localization
information, a few challenges still exist for a potential designer. For in-
stance, valid optical flow measurements are not available at a constant
rate from the hardware. The loss of the optical flow measurements will
occur. In this experiment, loss of optical flow measurements are often a
result of lack of features to track or over/under exposed image frames.
The web camera used in this setup adaptively changes the exposure set-

NASA/TM—2012-216043 10



tings and occasionally produces over exposed images and the low-light
performance of the hardware is not exceptional. Control over the hard-
ware settings, such as focus and exposure settings will help to control
such variations. Still, it should be expected that due to the nature of
the imaged surface, adequate tracking features may not exist in the im-
age frames. Thus, using the visual odometry measurements to estimate
position by simply summing up the displacement measurements in the
along-track and cross-track directions will be in error. The technique
applied here, where the displacement measurements are converted to an
instantaneous velocity measurement and then used within an estimation
algorithm does allow for the occasional missing measurement.

As with any visual processing algorithms, the computational intensity
of the routines is always a concern. Processor load is a function of the
number of tracked objects, image frame rate and image size. For faster
dynamics, higher frame rates are needed. For instance, if the system is
only capable of a one frame per second acquisition rate, then the total
field of view associated with the camera must not have been traveled
during that one second time frame. Depending on the field of view of
the camera, this could be a matter of centimeters. By moving the camera
further away from the target, the rate of displacement may be increased,
but it comes at the cost of reduced resolution and hence fewer tracked
objects. With the in-time position visualization disabled, update rates
in excess of 10Hz are achieved with the web camera setup.

For a proof of concept experiment, the utilized hardware is suffi-
cient. Yet, the resulting images are often blurred, limiting the motion to
unacceptably slow speeds. The HD camera exhibited much better per-
formance. The resulting video contained more features, exhibited better
low-light performance and the resulting images were rarely blurred. The
quality of the optical flow results, and hence the derived navigation po-
sition information, are substantially better for the HD video case. Un-
fortunately, the HD video camera could not be tested in near real-time
as the available on-hand hardware only records the captured video to a
local storage medium.

6 Summary

This work demonstrates the use of a single downward-pointing cam-
era and visual odometry techniques for localization. The technique uses
feature detection and optical flow measurements to provide sensor infor-
mation to localization algorithms. The application is specifically targeted
to robotic platforms in GPS-denied environments. The work is primarily
intended to provide a proof-of-concept demonstration of the technique
and shows potential to aid localization algorithms. Future work will in-
vestigate the inclusion of the visual odometry measurements with MEMS
based inertial sensors.
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