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Optimization of Low-Thrust Spiral Trajectories by

Collocation

As NASA examines potential missions in the post space shuttle era, there has been
a renewed interest in low-thrust electric propulsion for both crewed and uncrewed mis-
sions. While much progress has been made in the field of software for the optimization
of low-thrust trajectories, many of the tools utilize higher-fidelity methods which, while
excellent, result in extremely high run-times and/or poor convergence when dealing with
planetocentric spiraling trajectories deep within a gravity well. Conversely, faster tools
like SEPSPOT provide a reasonable solution but typically fail to account for other forces
such as third-body gravitation, aerodynamic drag, solar radiation pressure. SEPSPOT is
further constrained by its solution method, which may require a very good guess to yield
a converged optimal solution. Here the authors have developed an approach using collo-
cation intended to provide solution times comparable to those given by SEPSPOT while
allowing for greater robustness and extensible force models.

Nomenclature

t Time, days
x State variable vector
u Time-varying control variable vector
φg Global design variable vector
φp Phase design variable vector
ψ0 Initial boundary constraint
ψf Final boundary constraint
ψp Path constraint
τ Non-dimensional time within a segment polynomial
∆c Continuity defect
∆s Differential defect
Li Lagrange interpolation matrix for interior nodes
Di Lagrange derivative matrix for interior nodes
Dc Lagrange derivative matrix for cardinal nodes
n Number of state variables
m Number of time-varying control variables
ncnp Number of cardinal nodes per phase
ninp Number of interior nodes per phase
z Independent variable vector in the nonlinear optimization problem
g Boundary constraint vector for the nonlinear optimization problem
a Semi-major axis, km
e Eccentricity
i Inclination, deg
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Ω Right ascension of ascending node, deg
ω Argument of periapsis, deg
θ True anomaly, deg

h Specific angular momentum, km2

sec
p Semilatus rectum, km
f X-component of eccentricity vector in the equinoctial frame
g Y-component of eccentricity vector in the equinoctial frame
j X-component of ascending node vector in the equinoctial frame
k Y-component of ascending node vector in the equinoctial frame
L True longitude, deg
r Spacecraft radius from central body, km
v Spacecraft velocity in the EME2000 frame, km

sec
m Spacecraft mass, kg
rev Number of orbital revolutions
Tp Orbital period, days
PQW Perifocal coordinate frame
NTW Velocity-vector aligned spacecraft coordinate frame
RSW Local-vertical, local-horizontal spacecraft coordinate frame
EME2000 Earth Mean Equator of J2000 inertial coordinate frame
rcb Central body equatorial radius, km

µ Gravitational parameter of the central body, km3

s2

P0 Spacecraft propulsion system input power, kW
η Spacecraft propulsion system efficiency
Isp Spacecraft propulsion system specific impulse, sec
Subscript
L Lower bound
U Upper bound
i Interior node
c Cardinal node
0 Initial condition
f Final condition

I. Introduction

For several decades, SEPSPOT has been NASA’s primary tool for the optimization of planetocentric
low-thrust trajectories.1 SEPSPOT takes advantage of orbital-averaging techniques to greatly increase

the speed of computation at the expense of fidelity. Generally, orbital averaging techniques provide an
accurate answer regarding the transfer of one orbit to another, but lack the precision to put a spacecraft at
a given position at a specific time. Although relatively fast, SEPSPOT suffers from some weaknesses that
result in difficulty when using it to analyze state-of-the-art low-thrust transfers. SEPSPOT utilizes indirect
optimization techniques based on Hamilton-Lagrange theory. In addition to providing an initial guess at
values of the orbital state variables, one must also provide a fairly accurate guess for initial and final values
of the costates, which can be challenging. More critically, extending the equations of motion to include
additional force models (atmospheric drag, solar pressure, perturbations by the Moon and Sun, etc.) would
require the equations of motion of the costate variables to be rederived from their current form.

To address these issues, the authors have embarked on developing an approach which uses a collocation
technique to transform an initial-value-problem (IVP) or two-point boundary value problem (TPBVP) into a
nonlinear programming (NLP) problem, which may be solved utilizing an off-the-shelf optimization software
package. Since this approach utilizes direct optimization method, it has the advantage that new environ-
mental and vehicle related force models may be added with relative ease. Collocation and pseudospectral
optimization techniques were demonstrated by Dickmanns and Well2 and Hargraves and Paris3 and have
been used with success in software such as OTIS4,4 DIDO,5 and SOCS.6 Collocation and pseudospectral
methods have previously been applied to the low-thrust spiraling problem by Betts.7 However, in his work
he directly transcribed the equinoctial equations of motion with respect to time, which led to a mesh grid

NASA/TM—2012-217699 2



of over 16000 points and a run time of several hours.7 Rather than take this approach, which sees highly
oscillatory behavior in the time-histories of the states and controls, the authors utilize orbital averaging
techniques in conjunction with hybrid control formulations which largely remove the oscillatory behavior
from the problem. This substantially reduces the number and order of the collocating polynomials, which
reduces the size of the NLP problem and results in run times on the order of a few seconds to minutes.

Kluever demonstrated an orbital averaging problem which utilizes the Gauss form of the Lagrange plan-
etary equations in conjunction with a hybrid control technique.8 Using only a handful of mesh points for the
controls, he demonstrated the ability to optimize a LEO to GEO transfer in good agreement with SEPSPOT.
For this approach the authors elected to use collocation of the states and controls since the method tends
to show an ability to find optimal solutions given a relatively poor initial guess. The authors use equations
of motion based on a modified set of equinoctial elements, which don’t suffer from as many singularities as
the Lagrange planetary equations.

Like Kluever, the authors utilize a hybrid set of control variables. These control variables are the costates
of the Hamilton-Lagrange formulation. They show a relatively smooth time-history throughout an orbital
transfer, which is beneficial for collocation, but internally are transformed into a set of pitch and yaw angles
which may oscillate greatly over the course of any single orbit. Furthermore, due to the extensible nature
of the collocated form of this problem, alternative guidance strategies can be easily implemented so long as
they can be parameterized such that their control variables do not exhibit ”excessively” oscillatory behavior
throughout the orbital transfer. As such, this method allows users to determine both the optimal (minimum
time, minimum propellant, etc.) transfer guidance history, but also how it compares to a custom guidance
strategy. The use of collocation to solve the optimal control problem should, in general, result in a greater
radius of convergence such that the initial guesses to the costates need not be as accurate as those supplied
to SEPSPOT.

This approach does sacrifice fidelity for speed, and thus is intended for the preliminary analysis of low-
thrust trajectories and guidance algorithm development. For example, orbital averaging is incapable of
analyzing a lunar insertion maneuver as demonstrated by Betts. However, the run-time is so small that
using a collocated averaging technique to ”dig” out of the deepest part of the gravity well would greatly
reduce analysis time. Once at a sufficiently high intermediate orbit, the oscillatory behavior of the state
and control time histories is low enough to permit collocation of non-averaged equations of motion from the
intermediate orbit to the final target.

II. Formulation

A. The Collocation Problem

Collocation is used to simultaneously simulate and optimize the trajectory of a dynamical system. As
a fallback, the implementation also supports a more traditional explicitly integrated shooting method for
trajectory optimization, though experience has shown that implicit integration is not only faster, but often
capable of finding more optimal solutions.

In general terms, the optimization problem is of the following form:

Minimize fobj(x(t0|f ), t0|f ,u(t0|f ), φg , φp) (1)

s.t. xL ≤ x ≤ xU (2)

tL ≤ t ≤ tU (3)

uL ≤ u ≤ uU (4)

φg,L ≤ φg ≤ φg,U (5)

φp,L ≤ φp ≤ φp,U (6)

ψ0,L ≤ fψ0(x(t0), t0,u(t0), φg , φp) ≤ ψ0,U (7)

ψf ,L ≤ fψ0(x(tf ), tf ,u(tf ), φg , φp) ≤ ψf ,U (8)

ψp,L ≤ fpath(x(t), t,u(t), φg , φp) ≤ ψp,U (9)

Where x and u are the time-varying states and controls, respectively. The vectors φg and φp contain
static optimization variables (design variables) for the entire problem, and a specific phase, respectively.
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Variable t is the time at the point of the objective function evaluation; either the beginning or end of a
phase. All states, controls, design variables, and time may have simple bounds. Furthermore, we may
impose boundary constraints at the start or end of a phase (ψ0 and ψf ), or path constraints to be assessed
throughout a phase (ψp).

Figure 1. The state time-history of a single state in a phase consisting of three 3rd-order segments, including

the differential defects (∆si,j) and continuity defects (∆ci,j)

The collocation problem consists of a series of phases in which the forces acting upon the spacecraft
are consistent such that the states are C1 continuous within a phase. Each phase is defined on an interval
[t0, t0 + tp], and the equations of motion dictate some set of states x and controls u. Each phase is further
subdivided into a series of segments along which the states and controls are represented by a polynomial of
at least order 3, and thus C2 continuous. For each state and control along each segment, this polynomial is
defined at a series of nodes called the cardinal nodes. Internally, each segment of order o is defined on the
interval [−1, 1] (so called τ -space) and has cardinal nodes at the (o+1) Legendre-Gauss-Lobatto points. For
example, a 3rd-order polynomial segment has four cardinal nodes. The collocation engine uses a nonlinear
optimization routine to vary the cardinal values of the states and controls, the phase start time and duration,
and design variable values such that state time histories accurately reflect the equations of motion and the
objective function (1) is satisfied.

The accuracy of the collocated polynomials in representing the dynamics of the system is measured by
comparing the slope of the polynomial for a given state to the derivative of that state as given by the
equations of motion. These differences are called differential defects. A well-posed initial-value-problem has
a unique solution and requires that the number of independent variables is equal to the number of equality
constraints. Figure 1 illustrates the setup of a collocation problem for one state variable in a phase of three
3rd-order polynomial segments. With just one state this problem has 14 variables: the initial time and phase
duration (2), and the state values at four cardinal nodes in each of three segments (12). We require that
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there be no discontinuity in the value of a state variable at the segment boundaries.

∆ci,j = xc,j − xc,i = 0 (10)

Furthermore, the initial time, duration, and initial state value in this phase are fixed via bounds, giving
a total of five equality constraints. The remaining nine equality constraints are achieved by requiring the
differential defects at three points in each segment to be zero. The points in each polynomial where the
defects are assessed are referred to as the interior nodes. Within each segment we may construct a Lagrange
interpolation matrix Li and a Lagrange derivative matrix Di such that the values and derivatives of the
states and controls at the interior nodes may be obtained by simple matrix-vector products:

xi = Lixc (11)

dxi

dt
= Dixc

dτ

dt
(12)

(13)

Finally, the differential defects of the states at the interior node of the phase are:

∆si = feom (xi , ti,ui , φg , φp)−
dxi

dt
= 0 (14)

Some preliminary tests suggest that a good choice of interior nodes is to determine the LGL points for
an (o+ 1) polynomial and remove the endpoints. Reusing the first (or last) o cardinal nodes as the interior
nodes is also possible, but generally exhibits poorer convergence. On the other hand, if the convergence
issues can be fixed, reusing the cardinal nodes as interior nodes would reduce equation of motion evaluations
by nearly a factor of two, and no matrix multiplications (11) would be required to determine the state and
control values at the interior nodes.

Experience has also shown that convergence is aided by requiring both value and rate continuity to
be imposed on the control values at the segment boundaries. Control rates at the segment boundaries
are determined with a Lagrange derivative matrix constructed such that it returns the derivatives of the
polynomial at the cardinal nodes:

duc

dt
= Dcuc

dτ

dt
(15)

B. The NLP Interface

The optimization problem above is transcribed by the collocation engine into the following form:

Minimize fobj(z) (16)

s.t. gL ≤ g(z) ≤ gU (17)

zL ≤ z ≤ zU (18)

This transformed optimization problem may be solved by a variety of off-the-shelf nonlinear optimization
software packages. Currently the authors are using the IPOPT9 which is able to capitalize on the sparsity
of the Jacobian matrix that is characteristic of the collocaiton problem.

The times, states, controls, and design parameters are scaled and packed into the independent variable
array for the NLP (z). Currently a basic scaling scheme is used whereby each independent variable is scaled
by the inverse of its expected magnitude such that the corresponding component of z is roughly on the order
of one. The independent parameter array is packed in the following order:

1. The scaled global design parameter values comprise the first elements of z

2. The scaled design parameter values of the first phase comprise the next elements of z
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3. The scaled initial time and duration of the first phase are the next two elements of z

4. The cardinal values of the n states and m controls of the first phase are packed as the next (n+m)·ncnp

elements, where ncnp is the number of cardinal nodes in the phase. These values are packed such that
the states and columns at any given cardinal node are contiguous. Conceptually, this is the same as
constructing the following ncnp by n+m matrix XcUc and unraveling its values in row-major order.

XcUc =





x0,0 x1,0 · · · xn−1,0 u0,0 · · · um−1,0

x0,1 x1,1 · · · xn−1,1 u0,1 · · · um−1,1
...

...
. . .

...
...

...
...

x0,ncnp−1 x1,ncnp−1 · · · xn−1,ncnp−1 u0,ncnp−1 · · · um−1,ncnp−1




(19)

5. Items 2 through 4 are repeated for each phase in the problem.

z =
�
[φg ]

T [φp ]
T t0 tp [XcUc ]0 · · · [XcUc ]ncnp−1

�
(20)

Similarly, the constraints of the collocation problem are packed into the NLP constraint array (g) array
in the following order:

1. The phase linkage constraints comprise the first elements of g

2. The ninp · n state defects for the first phase are stored node-by-node as the next elements of g.

3. The state and control continuity conditions at each of the num seg− 1 segment boundaries in the first
phase make up the next (num seg − 1) · (n+m) elements of g.

4. The control continuity rate conditions at each of the num seg−1 segment boundaries in the first phase
make up the next (num seg − 1) ·m elements of g.

5. The initial and final boundary constraints of the first phase make up the next elements of g

6. Finally, the path constraints are evaluated at each cardinal node and comprise the final ncnp · npc
elements of g, where ncp is the number of path constraints in the phase.

7. Items 2 through 6 are repeated for each phase in the problem.

g =
�
[∆s]T0:ninp−1 [∆c]T0:num seg−1 [∆ċ]T0:num seg−1 [ψ0 ]

T [ψf ]
T [ψp ]

T
0 · · · [ψp ]

T
ncnp−1

�
(21)

By ordering the z and g arrays in such a way the sparsity pattern of the Jacobian matrix is largely
block-diagonal. The use of a nonlinear programming routine which is able to capitalize on the sparsity of
the Jacobian matrix is a critical feature which enables the solution to the collocation problem to be obtained
rapidly.

C. Equations of Motion

In his work, Kluever showed that, by applying orbital averaging to the Gauss form of the Lagrange planetary
equations,10 he was able to get very good agreement with SEPSPOT results by parameterizing the controls
at some set of control nodes and explicitly integrating the solution.8 However, the Lagrange planetary
equations are problematic in the context of a collocation formulation since they exhibit singularities at zero
eccentricity and zero inclination, a point which is of interest for the purpose of examining trajectories to or
from geostationary orbit. Instead, the authors utilized a set of modified equinoctial elements as given by
Walker.11 Betts also utilized this set of equations of motion in his low-thrust orbit transfer example, though
he did not employ an averaging technique.12
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ẋ =





0 2p
w

�
p
µ 0

�
p
µ sin (L)

�
p
µ

[(w+1)cos(L)+f ]
w −

�
p
µ

g(jsin(L)−kcos(L))
w

−
�

p
µcos (L)

�
p
µ

[(w+1)sin(L)+g]
w

�
p
µ

f(jsin(L)−kcos(L))
w

0 0
�

p
µ

s2

2w cos (L)

0 0
�

p
µ

s2

2w sin (L)

0 0
�

p
µ

jsin(L)−kcos(L)
w

0 0 0

0 0 0








ar
as
aw



+





0

0

0

0

0
√
µp

�
q
p

�2

−ṁ

˙rev





(22)

where the state vector consists of the modified equinoctial elements and spacecraft mass

x =
�
p f g j k L m rev

�T
(23)

the accelerations

a =




ar
as
aw



 (24)

are the radial, local-horizontal, and orbit normal perturbing accelerations where

s2 = 1 + j2 + k2 (25)

w =
p

r
= 1 + fcos (L) + gsin (L) (26)

Note we refer to the equinoctial element h as j to avoid confusion with the specific angular momentum
of the orbit. The equations of motion (22) account for central-body gravitation in the absence of perturbing
accelerations. Adding different perturbing accelerations is as simple as converting them to the RSW frame
and including them in (24). For the purposes of this paper, the only non-two-body accelerations are due to
thrust and J2 perturbations.

The mass flow rate (ṁ) is based on the propulsion system model (29).
The number of orbital revolutions performed by the spacecraft can be approximated by treating it as an

integrated state variable with a derivative function equal to the frequency of the spacecraft orbit.

˙rev =
1

Tp
=

√
µ

2πa
3
2

(27)

D. Solar Electric Propulsion Model

The solar electric propulsion system generates power based on its distance to the Sun and the angle between
the array plane and the Sun vector. In the analysis below the Sun is assumed to be 1 A.U. from the spacecraft
at all times and the arrays are always perfectly pointed at the Sun. If the nominal array power at 1 A.U. is
given by P0, then the spacecraft acceleration due to thrust is8

aT =
2ηP0

mgIsp
(28)

and the rate of propellant expenditure due to engine firing is derived from the definition of thrust:

FT = ṁgIsp −→ ṁ =
2ηP0

g2I2sp
(29)
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E. Gravitational Perturbations due to Oblateness of the Central Body

Kechichian quantified J2 perturbations in the RSW frame as:13

aJ2 =





− 3µJ2r
2
cb

2r4

�
1− 12 (jsin(L)−kcos(L))2

s4

�

− 12µJ2r
2
cb

r4
(jsin(L)−kcos(L))(jcos(L)+ksin(L))

s4

− 6µJ2r
2
cb

r4
(jsin(L)−kcos(L))(1−k2−j2)

s4



 (30)

F. Orbital Averaging

The equations of motion (22) are subject to oscillatory behavior which can greatly increase the number of
collocation segments required for a converged solution. To enable better performance from the collocation
routine, the equations of motion are averaged. The averaged equations of motion are obtained by converting
ẋ to dx

dθ , integrating for an entire orbital revolution, and dividing by the orbital period to obtain the average
rates of change in the modified equinoctial elements for a given orbital state.8 The anomaly term (true
longitude for the modified equinoctial elements) is not included among the averaged orbital elements.

¯̇x =
1

Tp

� π

−π

dx

dt

dt

dθ
dθ (31)

The transformation from time to true anomaly (θ) is approximated using the perturbation-independent term
of the Gauss form of the Lagrange planetary equation for true anomaly.10

dθ

dt
≈ h

r2
(32)

G. Eclipse Arcs

While accelerations due to solar electric propulsion only need to compute the integral in (31) through the
illuminated orbital arcs, forces due to gravitational harmonics, solar radiation pressure, drag, third-body
effects, and trapped radiation impingement require that the entire orbit be integrated. To determine those
points at which the spacecraft enters and exits the shadow of the central body, the authors employed Escobal’s
quartic shadow function:1415

S = α0cos (θ)
4 + α1cos (θ)

3 + α2cos (θ)
2 + α3cos (θ) + α4 (33)

where





α1

α2

α3

α4

α5




=





e4 −2(β2
2 − β2

1)e
2 (β2

2 + β2
1)

2

4e3 −4e(β2
2 − β2

1) 0

6e2 −2((β2
2 − β2

1) + e2 ∗ (1− β2
2)) 2(β2

2 − β2
1)(1− β2

2)− 4(β2
1β

2
2)

4e −4e(1− β2
2) 0

1 −2(1− β2
2) (1− β2

2)
2








α4

α2

1



 (34)

α =
rcb
p

(35)

and β is the unitized vector from the central (shadowing) body to the Sun in the perifocal frame (PQW):15

r̂s = β1p̂ + β2q̂ + β3ŵ (36)

NASA/TM—2012-217699 8



The solution of the quartic shadow funtion (33) will yield false positives, which must be filtered out.
Furthermore, since we seek θ and the solution is in the form cos (θ), an even function, we must account for
all possible combinations. This yields as many as eight potential solutions for the roots, expressed in terms
of sin (θ) and cos (θ) :

�
cos (θ1) cos (θ2) cos (θ3) cos (θ4) cos (θ1) cos (θ2) cos (θ3) cos (θ4)

�
(37)

�
sin (θ1) sin (θ2) sin (θ3) sin (θ4) −sin (θ1) −sin (θ2) −sin (θ3) −sin (θ4)

�
(38)

The true roots in cos (θ) are obtained by passing (37) through the shadow function as given by Vallado
(39).15 Here the shadow function has been normalized by the central body radius to help with numerical
errors:

S(θ) = (1 + ecos (θ))2 +

�
p2

r2cb

�
(β1cos (θ) + β2sin (θ))

2 −
�
p2

r2cb

�
(39)

Both Escobal’s quartic shadow function (33) and the form given in Vallado (39) will also have valid roots
on the illuminated side of the central body. These are filtered by assuring that we only take those roots for
values of true anomaly at which central body is between the spacecraft and the Sun. Using equation 5-3
from Vallado,15 the shadow entry and exits must be such that:

β1cos (θ) + β2sin (θ) ≤ 0 (40)

Now the roots of the shadow function in true anomaly are known, and the derivative of the shadow
function at the roots indicates whether the root is a shadow entry (dSdθ > 0) or shadow exit (dSdθ < 0).

dS

dθ
= 2

�
p2

r2cb

�
(β1cos (θ) + β2sin (θ))(−β1sin (θ) + β2cos (θ))− 2esin (θ) (1 + ecos (θ)) (41)

We can introduce breakpoints in the integral from (31) and evaluate the integral along each illuminated
or shadowed segment, applying thrust due to a solar electric propulsion system accordingly. For each interval
in a given orbit, the integrand in (31) is evaluated using a ninth-order Legendre-Gauss quadrature.

H. Control Parameterization

The forces due to thrust are determined by the guidance scheme of the spacecraft. In his non-averaged
scheme, Betts used a unitized thrust vector in the RSW frame as the control.12 This is not possible using
an orbital-averaging approach, since a single control vector is needed that will provide the appropriate
oscillatory behavior of the thrust direction within a single averaged orbit. Kluever showed that the costates
of the classical orbital elements can be used as the time-varying guidance parameters for an averaging
approach.8 Kluever’s approach (42) assumes we only have costates governing the ”slow” orbital elements,
and provides a thrust vector in the velocity vector-aligned frame (NTW):

aTMcoe û =





0 2a2v
µ 0

rsin(θ)
a·v

2(e+cos(θ))
v 0

0 0 r cos(ω+θ)
h

0 0 r sin(ω+θ)
hsin(inc)

− 2e+(r cos(θ)
a )

e·v
2sin(θ)
e·v

−rsin(ω+θ)cos(inc)
hsin(inc)









an

at

aw




(42)
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Since our equations of motion are formulated using modified equinoctial elements, the classical elements
must first be computed (see reference 12). The guidance parameters are a given as a vector of the classical
orbital element costates, excluding true anomaly.

λcoe =
�
λa λe λi λΩ λω

�T
(43)

and the thrust unit vector in the NTW frame is:

ûNTW =
−MT

coeλcoe

�MT
coeλcoe�

(44)

In his work, Kluever divides λa by the semi-major axis and parameterizes the other costates as a function
of the semi-major axis.8 In this approach λa is normalized by the semi-major axis before being used in (44),
but all costates are functions of time. Notably, since the guidance parameters here are not functions of
semi-major axis, the posibility exists to use these controls for a single-phase ”round-trip” trajectory or other
trajectories which involve both increasing and decreasing the semi-major axis of the orbit.

We may derive a similar guidance scheme where the equinoctial equations of motion and costates are
used in place of the classical orbital element equations and costates.

aTMmee û =





0 2p
w

�
p
µ 0

�
p
µ sin (L)

�
p
µ

[(w+1)cos(L)+f ]
w −

�
p
µ

g(jsin(L)−kcos(L))
w

−
�

p
µcos (L)

�
p
µ

[(w+1)sin(L)+g]
w

�
p
µ

f(jsin(L)−kcos(L))
w

0 0
�

p
µ

s2

2w cos (L)

0 0
�

p
µ

s2

2w sin (L)









ar

as

aw




(45)

The guidance parameters are a given as a vector of the modified equinoctial element costates, excluding true
longitude.

λmee =
�
λp λf λg λj λk

�T
(46)

and the thrust unit vector in the RSW frame is:

ûRSW =
−MT

meeλmee

�MT
meeλmee�

(47)

In the modified equinoctial element control formulation, λp is divided by the semi-latus rectum before
being passed to (47).

The modified equinoctial element-based guidance scheme is similar to that used in SEPSPOT1 and is
less prone to singularities, except when an orbit is nearly retrograde. However, if one only cares to control
semi-major axis, eccentricity, and inclination of the spacecraft, this requires only three time-varying control
variables (λa, λe, λi) in the case of the classical element formulation, but five time-varying control variables
(λp, λf , λg, λj , λk) in the case of of the modified equinoctial element formulation. The additional control
variables increase the size of the collocation problem, and may adversely affect runtime, though this effect
has not yet been quantified.

III. Results

The collocation formulation of a planetocentric low-thrust trajectory optimization problem shown here
is demonstrated with comparisons to the LEO to GEO and GTO to GEO cases in Kluever’s demonstration
of his solution method.8
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A. Minimum Time LEO to GEO

The minimum time LEO to GEO spiral transfer uses the same assumptions as those given by Kluever.8 The
spacecraft initially has a mass of 1200 kg and the propulsion system has a nominal power level of 10 kW,
a specific impulse of 3300 sec, and a propulsive efficiency of 65%. The initial time of the propagation is
January 1, 2000 and the initial state vector is given in Table 1.

Variable Initial Value

p 6927 km

f 1.0E-6

g 0

j 0.2539676

k 0

m 1200 kg

rev 0

Table 1. LEO to GEO initial variable values (fixed)

The solution shown here uses the classical orbital element costates as guidance parameters. The semi-
major axis costate (λaa) is fixed at -1, giving a tangential thrust vector when λe = 0 and λi = 0. Costates
for right ascension of ascending node (λΩ) and argument of periapsis (λω) are fixed at 0.

The costates corresponding to eccentricity and inclination are time-varying optimal controls. Initially
the value of these controls is a linear fit of the guessed initial and final values.

Parameter Initial Value (guess) Final Value (guess) Lower Bound Upper Bound Scale Factor

λe 0 0.5 -1 1 100

λi 0 3 -10 10 100

Table 2. LEO to GEO time varying guidance parameters

Initially, the trajectory is simulated starting at the initial state for the guessed elapsed time using linear
fits to the time-varying controls. This explicit simulation provides values for the state variables at the
cardinal nodes in the phase. At this point, the solution is physically accurate (the defects are approximately
zero) but the constraints are not yet satisfied.

Variable Lower Bound Upper Bound Scale Factor

a 42164 (km) 42164 (km) 1
42164

e 0.0001 0.001 100

i 0 (deg) 0.01 (deg) 100

Table 3. LEO to GEO final boundary constraints

In addition to the boundary constraints above, a path constraint is used to ensure the value of periapsis
altitude is at least 300 km. Without this path constraint, the optimizer sometimes attempts to push periapsis
of the orbit below the surface of the Earth.

With the initial trajectory of the vehicle reasonably defined from the explicit simulation and the boundary
and path constraints in place, the solution is solved using IPOPT.9 Reasonable convergence was achieved
with the phase broken into 15 equal 3rd-order polynomial segments. The solution converged in 91 iterations.
The resulting minimum transfer time is given in Table 4 including comparisons to results obtained by Kluever
and SEPSPOT.

The time histories of semi-major axis, eccentricity, and inclination are shown in figure 2. They show good
agreement with the results achieved by Kluever.8 Figure 3 shows the time history for the eccentricity and
inclination costates used as optimal control variables. Both exhibit some ”wagging” at the beginning and end
of the phase. This indicates that the scaling in the collocation problem needs improvement, but the very good
agreement with other results suggests that the solution is insensitive to the values of the control variables at
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those times. Better scaling may reduce or eliminate the ”wagging” behavior and improve convergence but
not have a significant impact on the solution.

Figure 2. Semi-major axis, eccentricity, and inclination histories for the minimum-time LEO to GEO transfer.

Markers indicate cardinal nodes of the collocation problem.

Figure 3. Eccentricity and inclination costates used as the time-varying optimal controls for the minimum-time

LEO to GEO transfer.

Solution Technique Transfer Time (days)

Collocation 198.6

Kluever Control Parameterization8 199.0

SEPSPOT Result8 198.8

Table 4. LEO to GEO results
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Figure 4 shows the evolution of the orbit from LEO to GEO for the minimum time solution, with orbits
plotted at the collocation segment boundaries, roughly once every 13.2 days.

Figure 4. Evolution from the initial orbit (blue) to the final orbit (red) for the minimum time LEO to GEO

transfer.

B. Minimum Time GTO to GEO

As in the previous case, the minimum time GTO to GEO spiral transfer uses the same assumptions as those
given by Kluever.8 The spacecraft initially has a mass of 1200 kg and the propulsion system has a nominal
power level of 5 kW, a specific impulse of 1800 sec, and a propulsion system efficiency of 55%. The initial
time of the propagation is March 22, 2000 and the initial state vector is fixed to the values given in Table 5.

The costates corresponding to eccentricity and inclination are time-varying optimal controls with their
values linearly fit to guessed initial and final values (Table 6), and the initial state values at the cardinal
nodes are obtained through an explicit simulation. The final boundary constraints are the same as those
given in Table 3 and the path constraint on periapsis radius has the minimum value constrained to 185 km.

In this case the phase was broken into 10 equal 3rd-order polynomial segments. Despite the reduction
in the number of variables in the problem due to the reduced number of cardinal nodes, the GTO to GEO
transfer required 299 iterations to achieve convergence. The resulting minimum transfer time is given in
Table 7 with comparisons to results obtained by Kluever and results generated by SEPSPOT.
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Variable Initial Value

p 11359.07 km

f 0.7306

g 0

j 0.2539676

k 0

m 1200 kg

rev 0

Table 5. GTO to GEO initial time and state values (fixed)

Parameter Initial Value (guess) Final Value (guess) Lower Bound Upper Bound Scale Factor

λe 0.5 6 0 15 100

λi 1 10 -15 15 100

Table 6. GTO to GEO time-varying guidance parameters

Solution Technique Transfer Time (days)

Collocation 118.29

Kluever Control Parameterization8 118.36

SEPSPOT 118.29

Table 7. GTO to GEO results

Figure 5 shows the time histories of semi-major axis, eccentricity, and inclination for the minimum time
GTO to GEO solution, which again compare favorably with the results achieved by Kluever.8

Figure 5. Semi-major axis, eccentricity, and inclination history for the minimum-time GTO to GEO transfer.

Figure 6 shows the time history for the eccentricity and inclination costates used as optimal control
variables. Again, ”wagging” behavior is present, especially in the inclination costate. The insensitivity of
the result to the terminal value of the costates is a likely source of some of the convergence issues experienced
in this case. One possible reason for this is scaling. However, the fact that the behavior seems to be exhibited
where the orbit is nearly circular or near zero inclination suggest the singularities in the classical orbit element
control formulation may be responsible.
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Figure 6. Eccentricity and inclination costates used as the time-varying optimal controls for the minimum-time

GTO to GEO transfer.

Figures 7 and 8 show the evolution of the orbit from GTO to GEO for the minimum time solution. Orbits
are plotted at the collocation segment boundaries, or approximately once every 12 days.

Figure 7. Evolution from the initial orbit (blue) to the final orbit (red) for the minimum time GTO to GEO

transfer.
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Figure 8. Evolution from the initial orbit (blue) to the final orbit (red) for the minimum time GTO to GEO

transfer.

IV. Conclusions and Future Work

The results shown here indicate that a collocation technique, combined with orbital averaging of the
modified equinoctial elements, is capable of generating optimal solutions for planetocentric low-thrust orbit
transfer problems relatively quickly. While the results given here were set up for comparisons with Kluever’s
results,8 the implementation can be extended to include other forces on the spacecraft such as atmospheric
drag and perturbation by the Moon and Sun.

Despite the fact that this approach uses costates of the classical or modified equinoctial orbital elements,
the use of collocation instead of a shooting method generally allows for greater convergence. Rough guesses
at the guidance parameters can yield an optimal solution.

The issues of high nonlinearity in the terminal control conditions clearly need to be addressed. Better
scaling of the NLP will likely help, but experience with OTIS4 has shown that other measures may be
necessary. In the use of OTIS4, a common approach to such issues is to add control rate constraints, which
often forces the control time history to be more smooth. A grid refinement algorithm should also be put
into place to ensure that the converged solution adequately matches an explicitly integrated trajectory.

The ease of which this method can be extended to include other control formulations lends itself to
experimenting with more control laws in the future. Solving these problems using the modified equinoctial
element control formulations may also prove to be more robust due to the lack of singularities in those
equations. Other guidance laws which do not require high-frequency time-varying controls, such as Q-Law,16

will also be explored.
Modeling the spacecraft subsystem in greater fidelity will also be a priority. Degradation of the solar

arrays due to the impingement of trapped particles can be implemented as it was in SEPSPOT. Reference 1
includes a great amount of detail as to that implementation. The authors intend to implement more detailed
radiation modeling in the future using more recent and higher-fidelity models.

So far this method has been demonstrated for a single phase trajectory. Using a multiple phase approach
in which later phases employ non-averaged equations of motion may allow for fast, robust solutions to
planetocentric spiral trajectories which target lunar orbit or lagrange points in a terminal phase.
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