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Abstract—Load forecasting at the day-ahead timescale is a 

critical aspect of power system operations in the unit 
commitment process. It is also an important factor in renewable 
energy integration studies, where the combination of load and 
wind or solar forecasting techniques create the net load 
uncertainty that must be managed by the economic dispatch 
process or with suitable reserves. An understanding of the load 
forecasting errors that may occur in this process can lead to 
better decisions about the amount of reserves necessary to 
compensate for the errors that do occur. In this work, we 
performed a statistical analysis of the day-ahead (and two-day-
ahead) load forecasting errors observed in two independent 
system operators for a one-year period. Comparisons were made 
with the normal distribution commonly assumed in power system 
operation simulations used for renewable power integration 
studies. Further analysis identified time periods when the load is 
more likely to be under- or overforecast. 
 

Index Terms—forecasting, load modeling, power system 
analysis computing, statistical distributions 

I.  INTRODUCTION 
oad forecasting has always played an important role in 
power system operations, giving an estimate of the 

amount of generating capacity that must be available at any 
future point in time. Accurate forecasting in the short-term, 
defined here as the hours-to-days time frame, can lead to more 
economic system operation. This increased efficiency is 
accomplished through more accurate scheduling, which 
decreases the amount of out-of-merit dispatch caused by the 
combination of forecasting errors and unit ramping limits, and 
a reduction in reserves. Scheduling in power system 
operations is conducted through the unit commitment and 
economic dispatch process. Unit commitment involves 
determining which generating units will be turned on during 
future time periods. It is a necessary process and is often 
performed at a day-ahead interval because some thermal units 
require long start-up and shutdown times. Because the unit 
commitment process determines the availability of units for 
the next day, accurate day-ahead load forecasts are required to 
ensure that production can meet demand in an economic 
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manner. Dispatch is the process by which the unit outputs are 
fine-tuned to match the more accurate load forecasts produced 
at shorter timescales. 
  The unit commitment and economic dispatch processes 
form the basis for renewable power integration study 
simulations such as the Western Wind and Solar Integration 
Study [1]. Load forecasting can be included in these studies, 
to see how the interaction of load and wind or solar 
forecasting errors impact system operations. Many previous 
studies have assumed that the load forecast errors follow a 
normal distribution [2-5]. This assumption has been made for 
the day-ahead and hour-ahead timescales commonly used to 
represent the unit commitment and economic dispatch time 
frames. This assumption is often made without an examination 
of real forecast data from the area under study and can impact 
study results. 

In this work, we studied the statistical properties of 
short-term load forecast errors, made comparisons to the 
commonly assumed normal distribution, and suggested an 
alternative model distribution.  

II.  METHODS AND DATA 
In this section, we describe the load forecasting data used 

in this study and the methods used in the analysis. Section II-
A describes the load forecasting data used in the study, while 
Section II-B discusses the statistical background and methods 
used for the characterization of load forecasting errors. 

A.  Data Utilized 
In this work, we analyzed load forecasting data from two 

timescales and geographic locations. The data came from two 
independent system operators in the United States: the 
California Independent System Operator (CAISO) and the 
New York Independent System Operator (NYISO). Day-
ahead and two-day-ahead load forecasts for each hour of the 
day, as well as matching actual load data, were obtained for 
the entire year 2010 from the CAISO Open Access Same-
Time Information System [6]. The mean load value during the 
course of the year was 26,186 MW, the maximum load value 
was 47,282 MW, and the minimum load value was 17,890 
MW. The NYISO hourly load data and day-ahead load 
forecasts from 2010 were obtained from the NYISO Market & 
Operations Data website [7]. The mean load value for the year 
was 18,664 MW. The minimum and maximum loads were 
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11,859 MW and 33,452 MW, respectively. Fig. 1 shows the 
hourly values of the NYISO load during the course of the year 
2010. 

 
Fig. 1. NYISO hourly load for the year 2010, in MW.  

B.  Statistical Background 
The range of values that a random variable may take can be 

described through the use of a probability density function. 
The normal (or Gaussian) distribution is among the most 
common and has often been assumed to describe load 
forecasting errors [2-5]. The truncated normal distribution is 
often used to provide support over a fixed interval. The 
normal distribution can be fully described by the first two 
statistical moments: mean and variance; however, the third 
and fourth moments—skewness and kurtosis, respectively—
can be utilized to provide additional information about an 
observed distribution. If an observed distribution is well 
represented by the normal distribution, the skewness and 
excess kurtosis values should both be close to zero. Skewness 
is a measure of the asymmetry of a distribution; kurtosis 
provides a measure of the distribution’s peakedness and the 
weight of the distribution’s tails. The normal distribution has a 
kurtosis value of three, and thus the excess kurtosis is the 
kurtosis value minus three. Because we used the normal 
distribution as a point of reference in what follows, when we 
subsequently refer to kurtosis we specifically refer to the 
excess kurtosis value. A distribution with a high kurtosis 
value is known as a leptokurtic distribution; a lower kurtosis 
value is described as platykurtic. 

The R statistical computing environment [8] was used in the 
analysis work performed in this study, and the hyperbFit 
function of the HyperbolicDist package [9], in particular, was 
used to characterize the distributions and provide estimates of 
the hyperbolic distribution parameter values. The Shapiro-Wilk 
[10] normality test was used to test whether an observed 
distribution comes from a normally distributed population. 

III.  RESULTS 
  To understand the impact of load forecasting errors on 
system operations and renewable power integration studies, 
we analyzed and characterized the distribution of load forecast 
errors that occurred during 2010 in the NYISO and CAISO 
balancing areas. Section III-A examines the distribution of 
day-ahead load forecast errors in the CAISO system. A similar 
analysis of the two-day-ahead load forecast errors in CAISO 
is presented in Section III-B. The NYISO day-ahead load 
forecast errors are examined in Section III-C. Section III-D 
discusses some of the consequences of erroneously assuming 
that load forecasting errors are normally distributed. 
 

A.  CAISO Day-Ahead Load Forecasts 
 Day-ahead load forecasts are important in power system 
operations because, through the unit commitment process, 
they help determine which slow-starting thermal power plants 
(e.g., coal and nuclear plants) will be on during which hours 
of the next day. Load forecast errors can therefore cause a 
suboptimal commitment of thermal generation in the day-
ahead market. System operators are accustom to uncertainty in 
load and therefore have methods of dealing with forecasting 
inaccuracies (e.g., regulation reserve and hour-ahead 
dispatch); however, large load forecast errors can have large 
negative consequences for system operation. One traditional 
method of examining statistical distributions is through the 
plotting of a histogram. A critical parameter in the plotting of 
a histogram is the choice of the number of bins. Because we 
are particularly interested in the tails of the distributions—i.e., 
the large forecast errors—we chose n = 200, a number that is 
greater than the recommendation from Scott’s rule [11]. Fig. 2 
shows the observed day-ahead load forecast errors for the 
CAISO system in 2010. The dotted line shows a normal 
distribution with the same mean and standard deviation as the 
observed errors. The blue line is a hyperbolic distribution fit 
to the observed errors. The observed error distribution is more 
peaked, with narrower shoulders and larger tails than the 
normal distribution assumption would suggest. One of the 
most critical features of the observed distribution is the 
negative mean bias, represented by a mean value of -84.71 
MW. The distribution is also positively skewed and 
leptokurtic. It is also important to note the spread of the 
forecast errors, with both positive and negative errors of 
approximately 4 GW. These are very significant errors on a 
system with a mean load of approximately 26 GW, and would 
require very large corrective actions before the actualization 
time, at high economic cost, to prevent reliability issues. 
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Fig. 2. Histogram of the observed day-ahead forecast errors in the CAISO 
system in MW, μ = -84.71; σ = 851.05; γ = 0.44; κ = 0.92. The blue line 
represents a hyperbolic distribution fit to the data, with parameter values: π = 
0.274, ζ = 3.076, δ = 1,156.279, μ = -564.815. The black dashed line 
represents a normal distribution with the same mean and standard deviation. 
 
 Although the examination of the histogram of day-ahead 
load forecast errors seems to indicate that the distribution is 
non-normal, additional assurance was provided by utilizing a 
normal quantile-quantile (Q-Q) plot. Fig. 3 shows a normal Q-
Q plot of the CAISO day-ahead load forecast errors. The line 
drawn passes through the first and third quartiles of the 
observed errors and should pass through all of the data points 
if the data is from a normal distribution. However, we noticed 
significant deviations from the normal distribution, most 
pointedly in the tails of the observed error distribution. 
Additional assurance of non-normality was provided by 
performing a Shapiro-Wilk [10] test on the data. The null 
hypothesis of the CAISO day-ahead forecast error data 
coming from a normal distribution was rejected at a 
significance level of α = 0.000001, i.e., the 99.9999% 
confidence interval. 
 

 
Fig. 3. Normal Q-Q plot for the CAISO day-ahead forecast errors. The line in 
the graph passes through the first and third quartiles of the observed data and 
should pass through all of the data points if the distribution is normal.  
 
 Another means by which distributions may be compared is 
through the plotting of their cumulative distribution functions. 
A cumulative distribution plot—like that shown in Fig. 4—
also allows us to compare the fit of the proposed hyperbolic 
distribution to both the observed errors, and a normal 
distribution with the same first two statistical moments. One 
can observe that the normal distribution shows significant 
deviations from the observed errors in the tails and shoulders 
of the distribution. On the other hand, the hyperbolic 
distribution fit to the data parallels the observed error 
distribution almost exactly, with only minor deviations in the 
transition area between the shoulders and tails of the 
distributions. 
 

 

Fig. 4. Cumulative distribution plot for the day-ahead forecast errors in the 
CAISO system during a 12-month period. The red line represents a normal 
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distribution with the same mean and standard deviation. The blue line 
represents a hyperbolic distribution fit to the data with: π = 0.274, ζ = 3.076, δ 
= 1,156.279, μ = -564.815.  
 
 Although the figures above are useful for examining the 
whole range of errors observed, they do not give any 
indication as to the timing of the errors. The histogram, Q-Q, 
and cumulative distribution plots provide an aggregated view 
of the errors that is not particularly useful for improving 
forecasts. By disaggregating the data into hourly and monthly 
pieces, we can analyze when the forecasts are most accurate 
and inaccurate, with the goal of considering the temporally-
specific conditions at those times to improve the forecasts. 
Fig. 5 provides a heat map of the mean hourly forecast error 
per month. This indicates that load forecasting tends to 
underforecast the demand during the morning load ramp, 
especially during the summer months. The forecasting also 
tends to underforecast significantly during the early evening 
hours of the winter months. Another interesting result is that 
the summer late night months tend to be overforecast. That the 
summer months provide the most trouble for the forecast is 
not surprising; they have the largest daily variability, as shown 
in Fig. 6, which shows the hourly CAISO load for the entire 
year 2010. Based on the results of examining the heat maps, 
we noticed that the forecasts have difficulty forecasting the 
timing of the morning and evening up- and down-ramps, a 
problem that is most pronounced during the summer months. 
 

 

Fig. 5. Heat map of the mean CAISO day-ahead forecast errors for each hour 
of the day per month of the year.  
 

 

Fig. 6. CAISO hourly load for the year 2010, in MW. Notice the increased 
daily variability during the summer months.  
 

B.  CAISO Two-Day-Ahead Load Forecasts 
 Two-day-ahead load forecasts are not as widely utilized as 
day-ahead forecasts, but they can play an important role in 
reliable system operations. Sometimes a look ahead greater 
than 24 hours is used in the unit commitment and economic 
dispatch process to prevent time boundary issues with slow-
starting thermal units. In this case, a two-day-ahead load 
forecast enables more efficient commitment through the 
generation of a 48-hour schedule, where only the first 24 
hours are binding. Alternatively, the two-day-ahead forecast 
can be used to ensure supplemental resource availability from 
units that have longer than day-ahead start or minimum run 
times. Although small errors in the two-day-ahead forecast are 
not important (because of the subsequent additional unit 
commitment performed at the day-ahead timescale), large 
errors could result in insufficient reserve capacity availability. 
For this reason, the tails of the two-day-ahead load forecast 
errors are the most important feature of the distribution. Fig. 7 
shows a histogram of the two-day-ahead load forecasting 
errors observed during one year in the CAISO system. 
Compared to the day-ahead forecast errors, the two-day errors 
were more biased, with a mean value of approximately -180 
MW, and had a slightly higher standard deviation. They also 
were less skewed (or more symmetric) and more leptokurtic. 
Interestingly, the maximum positive forecast error was greater 
for the day-ahead forecast (4,163 MW vs. 3,380 MW), while 
for the negative forecast errors the two-day-ahead forecast 
error is larger (-3,838 MW vs. -4,972 MW), as expected, 
because the day-ahead forecast can incorporate more recent 
information. 
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Fig. 7. Histogram of the observed two-day-ahead forecast errors in MW for 
the CAISO system, μ = -181.63; σ = 879.52; γ = 0.03; κ =1.46. The blue line 
represents a hyperbolic distribution fit to the data, with parameter values: π = 
0.084, ζ = 1.872, δ = 873.105, μ = -318.944. The black dashed line represents 
a normal distribution with the same mean and standard deviation. 
 
 Examining the Q-Q plot of the two-day-ahead forecasts in 
Fig. 8, the deviations from normality are clearly demonstrated 
when a comparison was made between the tails of the 
observed distribution and a line through the first and third 
quartiles. Again, a Shapiro-Wilk test confirmed the non-
normality with the null hypothesis of the CAISO two-day-
ahead forecast error data coming from a normal distribution 
being rejected at a significance level of α = 0.000001, i.e., the 
99.9999% confidence interval. 
 

 
Fig. 8. Normal Q-Q plot for CAISO two-day-ahead forecast errors. The line in 
the graph passes through the first and third quartiles of the observed data and 
should pass through all of the data points if the distribution is normal.  

 As shown in the cumulative distribution plot of the two-
day-ahead forecasts in Fig. 9, the fit hyperbolic distribution 
provided a more accurate representation of the observed errors 
than did the normal distribution. This is particularly evident in 
the tails of the distribution, which are underrepresented by the 
assumption of normality. 
 

 
Fig. 9. Cumulative distribution plot for the two-day-ahead forecasts in the 
CAISO system during a 12-month period. The red line represents a normal 
distribution with the same mean and standard deviation. The blue line 
represents a hyperbolic distribution fit to the data with: π = 0.084, ζ = 1.872, δ 
= 873.105, μ = -318.944.  
 
 The same general trends that were noted in the hourly 
timing of day-ahead forecasting errors were also apparent in 
the two-day-ahead forecasts, as shown in Fig. 10. The load 
was often underforecast during the morning ramp—especially 
during the summer months—and the significant 
overforecasting events tended to occur late at night and, again, 
were most severe during the summer months. There were also 
significant underforecasting tendencies noticeable during the 
early evening hours in the winter. These results intuitively 
made sense because the times of greatest errors tended to 
occur during the times of greatest variability in load, which 
coincided with the times of greatest uncertainty. 
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Fig. 10. Heat map of the mean CAISO two-day-ahead forecast errors for each 
hour of the day per month of the year.  
 

C.  NYISO Day-Ahead Load Forecasts 
 Examining the statistical moments of the NYISO day-ahead 
load forecast error distribution revealed some interesting 
results. For example, the mean of the data was nearly -450 
MW, indicating a very significant negative mean bias in the 
forecast. Additionally, the distribution was significantly 
leptokurtic, with a kurtosis value of 3.8. This is clearly visible 
in Fig. 11, where the normal distribution is much less peaked 
than the observed error distribution. There was also 
significantly more kurtosis than was evident in the CAISO 
day-ahead load forecasts. In addition, the observed error 
distribution was thinner through the shoulders than the normal 
distribution and has heavier tails. The spread of the forecast 
errors was similar to that of the CAISO errors, but the NYISO 
system had a significantly lower mean yearly load. The high 
kurtosis value indicated that although the forecasts were more 
accurate than expected from the normal distribution much of 
the time, when there were very significant forecasting errors, 
they were greater than they would have been assumed with the 
normal distribution. The distribution also had significant 
positive skewness. 
 

 

Fig. 11. Histogram of the observed day-ahead forecast errors in MW for the 
NYISO system, μ = -447.26; σ = 665.21; γ = 0.38; κ =3.80. The blue line 
represents a hyperbolic distribution fit to the data, with parameter values: π = -
4.189 E-5, ζ = 0.023, δ = 10.076, μ = -446.904. The black dashed line 
represents a normal distribution with the same mean and standard deviation. 
 
 A Q-Q plot of the forecast errors provided evidence of non-
normality, as shown in Fig. 12. The observed errors form the 
S shape commonly seen in heavy-tailed distributions. A 
Shapiro-Wilk test confirmed the non-normality with the null 
hypothesis, that the NYISO day-ahead forecast error data 
came from a normal distribution, being rejected at a 
significance level of α = 0.000001. 
 

 
Fig. 12. Normal Q-Q plot for the NYISO day-ahead forecast errors. The line 
in the graph passes through the first and third quartiles of the observed data 
and should pass through all of the data points if the distribution is normal.  
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 The cumulative distribution plot in Fig. 13 shows 
significant differences between the normal distribution and 
observed errors for the NYISO day-ahead load forecast errors. 
Most important were those observed in the tails of the 
distribution. There were also noticeable, though much smaller, 
differences between the fit hyperbolic distribution and the 
observed errors. This demonstrates that although the 
hyperbolic distribution shows significant improvements from 
the normal distribution in use as a model distribution, it was 
not an exact representation of the observed forecast errors. 
Fig. 14 shows an alternative means of comparing the fit of the 
hyperbolic distribution, a Q-Q plot between the observed data 
and the fit hyperbolic distribution. Note the improved fit 
compared to Fig. 12. 
  Fig. 15 shows a heat map of the mean hourly forecast 
error per month. The figure shows a tendency to strongly 
underforecast the load during the morning ramp, with the 
largest errors occurring during the month of March. The 
variable weather during this month also led to the strongest 
tendency to overforecast, namely during the late-night hours. 
Generally speaking, load was often underforecast in the 
NYISO system, with the mean forecast error of approximately 
-450 MW. By comparison, the CAISO day-ahead forecast 
errors showed a mean bias less than -100 MW. 
 

 
Fig. 13. Cumulative distribution plot for the day-ahead forecasts in the NYISO 
system during a 12-month period. The red line represents a normal distribution 
with the same mean and standard deviation. The blue line represents a 
hyperbolic distribution fit to the data with: π = -4.189 E-5, ζ = 0.023, δ = 
10.076, μ = -446.904.  
 

 

Fig. 14. Q-Q plot for the NYISO day-ahead forecast errors compared with the 
hyperbolic distribution fit to the data.  
 

 

Fig. 15. Heat map of the mean NYISO day-ahead forecast errors for each hour 
of the day per month of the year.  
 

D.  Implications of Non-Normality 
 We have shown that day-ahead and two-day ahead load 
forecasting errors do not follow a normal distribution for these 
individual independent system operators, but what are some of 
the consequences of this finding for power system operations 
and renewable power integration studies? Because the 
distribution of observed errors is more leptokurtic than the 
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normal distribution, this implies that assuming the normal 
distribution underrepresents the tails of the distribution. 
Therefore, there will be more frequent large forecasting errors 
that occur than are assumed, which can lead to 
undercommitting generating units in the day-ahead market. 
This suboptimal commitment will lead to more expensive, 
fast-acting units having to come online after the unit 
commitment phase, or perhaps during the economic dispatch 
stage, instead of cheaper baseload units. This will raise the 
cost of electricity during these time frames. In addition, both 
systems examined show significant negative mean bias in the 
forecasts. This contrasts sharply with the zero mean bias 
normal distribution assumption commonly made in the 
renewable integration study literature. This consistent 
underforecasting of load can have significant economic 
consequences, as if the forecasts were zero mean biased more 
of the load could be fulfilled through lower-cost baseload 
units, and more expensive, fast-acting units would be utilized 
less to accommodate the underforecasting errors. 

IV.  CONCLUSION 
 In this study, we analyzed and characterized the load 
forecasting errors that occur in relatively large balancing areas 
at the day-ahead and two-day-ahead timescales. The forecast 
error distributions have been shown to not follow a normal 
distribution, and the hyperbolic distribution has been proposed 
as a more accurate means of modeling the distribution.  This is 
consistent with findings from wind and solar power forecasts, 
both at the day-ahead, and smaller timescales, and for many 
different geographic locations [12-16]. In addition, the 
forecasting errors were disaggregated into months and hours 
of the day, and the times where large forecasting errors are 
most likely to occur were identified. These results can be 
utilized in power system operations studies, including wind 
and solar integration studies, to more accurately model the 
variability and uncertainty faced in system operations. The 
significant non-normality and mean biases of the load 
forecasting error distributions could have significant economic 
consequences in these studies. The examination of the 
operating cost results from simulations run with the zero mean 
bias normal distribution forecast error assumption and those 
performed with forecast error results based on historical data 
for the system under study is an area for future examination. 
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