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Abstract 

A Kalman filter-based approach for integrated on-line 
aircraft engine performance estimation and gas path fault 
diagnostics is presented. This technique is specifically 
designed for underdetermined estimation problems where 
there are more unknown system parameters representing 
deterioration and faults than available sensor measurements. A 
previously developed methodology is applied to optimally 
design a Kalman filter to estimate a vector of tuning parame-
ters, appropriately sized to enable estimation. The estimated 
tuning parameters can then be transformed into a larger vector 
of health parameters representing system performance 
deterioration and fault effects. The results of this study show 
that basing fault isolation decisions solely on the estimated 
health parameter vector does not provide ideal results. 
Furthermore, expanding the number of the health parameters 
to address additional gas path faults causes a decrease in the 
estimation accuracy of those health parameters representative 
of turbomachinery performance deterioration. However, 
improved fault isolation performance is demonstrated through 
direct analysis of the estimated tuning parameters produced by 
the Kalman filter. This was found to provide equivalent or 
superior accuracy compared to the conventional fault isolation 
approach based on the analysis of sensed engine outputs, 
while simplifying online implementation requirements. 
Results from the application of these techniques to an aircraft 
engine simulation are presented and discussed.  

Introduction 
Aircraft engine performance trend monitoring and gas path 

fault diagnostics are closely related technologies that assist 
operators in managing the health of their gas turbine engine 
assets. Today, these functions are primarily performed off-
board the aircraft within engine health management ground 
stations, which provide fleet-wide engine health management 
functionality (Ref. 1). This is accomplished by processing 
snapshot engine measurement data acquired in-flight. A top-
level description of the aircraft engine performance trend 
monitoring and gas path fault diagnostics process is given in 

Reference 2, and a representation of this process is shown in 
Figure 1. The process begins by calculating residuals between 
measured engine outputs and a reference model. Performance 
trend monitoring is conducted by analyzing the sensor 
residuals to assess performance changes that a gas turbine 
engine will naturally incur over time due to turbomachinery 
deterioration. Typically, this is performed by estimating and 
trending health parameters reflective of gradual performance 
deterioration within each major engine module. Since the 
unknown health parameters typically outnumber the available 
sensor measurements, this poses an underdetermined estima-
tion problem. Gas path fault diagnostics is the process of 
detecting and isolating the occurrence of faults impacting 
engine flow-path performance. It is performed by detecting 
any rapid or abrupt engine performance changes, and then 
isolating the most likely cause. Often a single fault isolation 
approach is applied based on the assumption that engine gas 
path faults usually occur in an isolated fashion. The observed 
shift in sensed engine outputs is compared against a collection 
of known fault type signatures, and the best match is then 
isolated as the root cause for the event. An illustration of 
gradual versus rapid performance shifts is shown in Figure 2. 
Additional details on conventional engine performance trend 
monitoring and fault diagnostics can be found in References 3 
to 6.  

An emerging approach in the field of aircraft engine controls 
and health management is the inclusion of real-time on-board 
models for the in-flight estimation of engine performance 
variations (Refs. 7 to 9). This technology, typically based on 
Kalman filter concepts, enables the estimation of unmeasured 
engine performance parameters that can be directly utilized for 
controls and health management applications. Recently, NASA 
proposed a model-based gas path health management architec-
ture for on-board performance trend monitoring and gas path 
fault diagnostics (Refs. 10 and 11). This architecture, shown in 
Figure 3, is similar in design to the ground-based architecture 
shown in Figure 1, and provides the same perfor- 
mance estimation and fault diagnostic functionality. The 
benefits of the on-board architecture include the real-time  
continuous monitoring of engine performance and the  
early diagnosis of fault conditions. This architecture  
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Figure 1.—Ground station performance trend monitoring and gas path diagnostic process. 
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Figure 2.—Gradual versus rapid performance shifts 

 
 
 

Control
logic

Sensor
Measurements

Actuator
Commands

Fault diagnostics

Transmission to
ground station

Engine performance and diagnostic information

Real-time adaptive
performance  model 

(Performance trend monitoring)

Performance 
baseline model

Model tuning
parameters

+
-

Compare to 
baseline model

∆y

 

Figure 3.—On-board performance trend monitoring and gas path diagnostic pro-
cess (original proposed design). 
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Figure 4.—On-board performance trend monitoring and gas path diagnostic pro-
cess (simplified proposed design). 

 
contains two engine models designed to operate in parallel. 
The first model, referred to as the real-time adaptive perfor-
mance model, applies a Kalman filter to estimate a vector of 
adjustable model tuning parameters that enable the model to 
track engine performance over the engine’s lifetime of use. To 
address the underdetermined estimation problem, a previously 
developed optimal tuner selection strategy is applied to design 
the Kalman filter (Refs. 12 and 13). This enables the Kalman 
filter to estimate a reduced-order tuner vector that can be 
directly transformed into a vector of estimated health parame-
ters reflecting gas path deterioration and/or individual fault 
magnitudes. The second model, referred to as the performance 
baseline model, serves as a baseline of recent engine perfor-
mance. Residuals between the engine and performance 
baseline model outputs are monitored for fault detection and 
isolation purposes.  

A criticism of the on-board architecture shown in Figure 4 
is its complexity as it requires the implementation of two 
separate on-board engine models. This may not be feasible 
given on-board processor limitations. In an attempt to design a 
simpler architecture, this paper will evaluate fault diagnostics 
based on the model tuning parameters produced by the 
Kalman filter-based real-time adaptive performance model as 
shown in Figure 4. Such an approach, if successful, bypasses 
the need for the on-board performance baseline model.  

The remainder of this paper is organized as follows. First, 
some mathematical preliminaries are given regarding the 
problem formulation including the linear model representing 
system dynamics and the formulation of the Kalman filter. 
The optimal tuner selection methodology that enables the 
estimation of health parameters when facing underdetermined 
estimation problems is also introduced. Next, two fault 
isolation approaches are presented. The first approach bases 
fault isolation decisions directly on the health parameter 
estimates. The second approach applies a weighted least 
squares single fault isolation strategy that seeks to determine 

the fault type that best matches the observed signature in the 
Kalman filter estimated model tuning parameters. This is 
followed by an example application of the techniques to a 
linear turbofan engine model. Finally, conclusions are 
presented. 

Nomenclature 
A, Axh, Axq 
B, Bxh, Bxq, 
C, Cxh, Cxq, 
D, L, M 

system matrices 

C-MAPSS Commercial Modular Aero-Propulsion 
System Simulation 

DM Mahalanobis distance 
H fault influence matrix  
HPC high pressure compressor 
HPT high pressure turbine 
I identity matrix 
K∞ Kalman filter gain 
LPC low pressure compressor 
LPT low pressure turbine 
P covariance matrix 
PMC probability of misclassification 
P∞ Kalman filter state estimation covariance 

matrix 
Q, Qxh, Qxq process noise covariance matrices 
R measurement noise covariance matrix 
SSEE sum of squared estimation errors 
V* transformation matrix relating h to q 
VSV variable stator vane 
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VBV variable bleed valve 
Wf fuel flow 
WSSR weighted sum of squared residuals 
h health parameter vector 
q Kalman filter tuning parameter vector 
u actuator command vector 
v measurement noise vector 
w process noise vector 
x state vector 
xxh augmented state vector (x and h) 
xxq reduced-order state vector (x and q) 
y vector of measured outputs 
  
Subscripts  
f fault 
h health parameter vector 
k discrete time step index 
q tuner vector 
xh augmented state vector (x and h) 
xq reduced-order state vector (x and q) 
ss steady-state value 
  
Superscripts  
† pseudo-inverse 
^ estimated value 
~ error value 
T transpose 

Problem Formulation 
Problem formulation will begin by reviewing the steps 

necessary to design a Kalman filter applying the optimal tuner 
selection methodology described in Reference 12. First, 
consider the discrete linear time-invariant engine state space 
equations about a linear design point given as 

 1k k k k k

k k k k k

x Ax Bu Lh w
y Cx Du Mh v

+ = + + +

= + + +
 (1) 

where k is the time index, x is the vector of state variables, u is 
the vector of control inputs, and y is the vector of measured 
outputs. The vector h, where h ∈ p, represents the engine 
health parameters, which induce shifts in other variables as the 
health parameters deviate from their nominal values. The 
vectors w and v are uncorrelated zero-mean white noise input 

sequences. Q will be used to denote the covariance of w, and R 
to denote the covariance of v. The matrices A, B, C, D, L, and 
M are of appropriate dimensions. Through algebraic manipula-
tion Equation (1) can be re-written such that h is concatenated 
with x to form an augmented state vector, xxh, as shown in 
Equation (2). Since engine performance deterioration is very 
slowly evolving relative to other engine dynamics, h is here 
modeled without dynamics. 
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(2) 

The vector wxh is zero-mean white noise associated with the 
augmented state vector, [xT hT]T. wxh consists of the original 
state process noise, w, concatenated with the process noise 
associated with the health parameter vector, wh. 

 ,
,

k
xh k

h k

w
w

w
 

=  
 

 (3) 

The covariance of wxh, denoted as Qxh, is necessary for 
Kalman filter formulation as will be discussed later in the 
paper.  

Reduced-Order State Space Model  
To enable Kalman filter formulation for an underdetermined 

estimation problem, a reduced-order state space model must 
be constructed. This is accomplished by defining a model 
tuning parameter vector, q, which is a linear combination of 
all health parameters, h, given by 

 *q V h=   (4) 

where q ∈ m, h ∈ p, m < p, and V* is an m × p transfor-
mation matrix of rank m, which relates h to q. Although q is a 
linear combination of health parameters, the elements of q do 
not have any physical meaning. Their purpose is to allow an 
accurate estimation of unmeasured engine parameters. 
However, given an estimate of q (i.e., q̂ ), an approximation of 
the health parameter vector, ĥ , can be obtained as 
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 *†ˆ ˆh V q=  (5) 

where V*† is the pseudo-inverse of V*. Substituting Equation 
(5) into Equation (2) yields the following reduced-order state 
space equations that will be used to formulate the Kalman 
filter 
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(6) 

 

For the reduced-order system, the state process noise, wxq, and 
its associated covariance, Qxq, are a function of the full-order 
state process noise and covariance (i.e., wxh and Qxh) and the 
transformation matrix, V* 
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 (7) 

Here, as in many Kalman filter designs, the specification of 
system process noise covariance, Qxh, can be treated as a 
design parameter. Increasing the process noise will cause the 
ensuing Kalman filter to place more emphasis on the meas-
urements, and less on the process model. An evaluation of the 
effect of Qxh specification on the estimation accuracy and 
responsiveness of a Kalman filter applying the optimal tuner 
selection methodology can be found in Reference 13.  

Kalman Filter Formulation  
In this study, steady-state Kalman filtering is applied. This 

means that although the Kalman filter is a dynamic system, the 
state estimation error covariance matrix and the Kalman gain 
matrix are invariant; instead of updating these matrices each 
time step, they are held constant. Given the reduced-order 
linear state space equations shown in Equation (6), the state 
estimation error covariance matrix, P∞, is calculated by 
solving the following Riccati equation (Ref. 14) 

 
1( )

T
xq xq

T T T
xq xq xq xq xq xq xq

P A P A

A P C C P C R C P A Q
∞ ∞

−
∞ ∞ ∞

=

− + +



 (8) 

The steady-state Kalman filter gain, K∞, can then be calculated 
as follows (Ref. 14) 

 ( ) 1T T
xq xq xqK P C C P C R

−

∞ ∞ ∞= +  (9) 

and, assuming steady-state, open-loop operation (u = 0), the 
Kalman filter estimator takes the following form 

 ( ), , 1 , 1

ˆ
ˆ ˆ ˆ

ˆ
k

xq k xq xq k k xq xq xq k
k

x
x A x K y C A x

q − ∞ −
 

= = + − 
 

 (10) 

Using Equation (5), the reduced-order state vector estimate,
xqx̂ , produced by Equation (10) can be transformed into an 

estimate of the augmented state vector as follows 

 


,

, ,*† *†

ˆ

ˆ 0 0 ˆ
ˆ ˆˆ ˆ0 0

xq k

k k
xh k xq k

kk
x

x I I x
x x

qV Vh

       
= = =       
       

 
(11) 

Optimal Transformation Matrix Selection 
As presented in Reference 12, the estimation accuracy of 

the Kalman filter is directly dependent on the selection of the 
transformation matrix, V*. This gives rise to the optimization 
problem of selecting V* to minimize the estimation error in the 
parameters of interest. This can be accomplished by conduct-
ing an optimal iterative search to select a V* matrix that 
minimizes the mean sum of squared estimation errors (SSEE) 
in the parameters of interest 

 ( )
*

*arg min
m pV

SSEE V
×∈

 (12) 

Readers are referred to Reference 12 for the derivation of 
health parameter mean SSEE as a function of V* under open-
loop steady-state operating conditions.  

Analysis of Kalman Filter Parameter Estimates 
for Gas Path Fault Isolation 

As opposed to performing fault isolation by analyzing 
sensor measurements directly, this study proposes the 
monitoring of the estimated parameters produced by the 
Kalman filter. Like the sensed measurement illustration shown 
in Figure 2, Kalman filter-produced estimated parameters are 
expected to undergo a discernable change when the engine 
experiences a gas path fault. However, monitoring the Kalman 
filter outputs directly helps simplify the diagnostic system 
design. While it will require the archival of past tuning 
parameter values in order to calculate the magnitude of any 
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recent abrupt/rapid change, it eliminates the need to imple-
ment and maintain a complete reference model for diagnostic 
purposes (e.g., the Performance Baseline Model previously 
shown in Figure 3). Although diagnostics typically consist of 
the two-step process of fault detection and fault isolation (see 
Figure 1), this study will exclusively focus on the fault 
isolation aspect of the problem while assuming that fault 
detection has already successfully occurred. While not 
explicitly analyzed or demonstrated, it is anticipated that event 
detection techniques similar to those commonly applied to 
monitor for changes in sensed engine outputs (e.g., see 
Refs. 15 to 17) can be applied to detect event changes in 
estimated Kalman filter outputs as well. The fault isolation 
techniques considered in this study consist of two separate 
approaches designed to analyze Kalman filter-produced 
parameter estimates. The first approach is designed to analyze 
the health parameter estimates, ĥ  (given by Eq. (11)), while 
the second approach is designed to analyze the tuning 
parameter estimates, q̂  (given by Eq. (10)). These two 
approaches are further discussed in the sections below. 

Fault Isolation Through ĥ Analysis 

The first fault isolation approach performs fault isolation 
based on the estimated health parameters that undergo the 
largest magnitude change (relative to recently archived 
values). For example in a turbofan engine, if the largest 
estimated health parameter changes are observed in fan 
efficiency and fan flow capacity a fan fault is declared. In 
addition to turbomachinery module faults, the capability to 
isolate other gas path system fault types may be addressed by 
incorporating additional health parameters (e.g., health 
parameters representing actuator and sensor biases). Doing so 
increases the number of health parameters, resulting in the 
following updated state-space equations 

 
1

,

,

k
k k k f k

f k

k
k k k f k

f k

h
x Ax Bu L L w

h

h
y Cx Du M M v

h

+

 
 = + + +  

 
 

 = + + +  
 

 (13) 

where hf represents non-turbomachinery module faults, and 
the matrices Lf and Mf reflect the effects of those additional 
faults in the system states and sensed outputs, respectively. As 
the optimal tuner selection methodology enables the estima-
tion of any number of health parameters, estimation of the 
expanded health parameter vector is feasible. However, this 
will require selection of a V* matrix optimized, and appropri-
ately sized, for the expanded health parameter configuration. 

Fault Isolation Through q̂  Analysis 

While the previously described fault isolation approach 
based on ĥ  analysis is simple and intuitive as it provides a 
direct estimate of fault magnitude, it does have limitations. It 
is predicated on the assumption that when a fault occurs, the 
resulting change in health parameter estimates will be sparsely 
concentrated in those health parameters associated with the 
fault. However, due to the underdetermined nature of the 
estimation problem the occurrence of a fault will often result 
in a “smearing” of estimates across the entire vector of 
estimated health parameters (Ref. 18). Furthermore, the 
underdetermined nature of the Kalman estimation problem 
worsens as the dimension of hf expands to incorporate more 
fault types. Borguet and Léonard presented an encouraging 
sparse isolation approach for underdetermined least squares 
estimation problems (Ref. 19). However, it is unclear if this 
approach can be extended to online Kalman filter estimation 
applications. Instead of basing fault isolation decisions on 
those health parameters that undergo the largest change, an 
alternative fault isolation strategy is to monitor for specific 
fault signatures contained within the estimated reduced-order 
tuner vector, q̂ , produced by the Kalman filter. This tech-
nique is analogous to the single-fault isolation strategy that is 
commonly applied to sensed engine outputs. To apply this 
technique it is first necessary to determine the q̂  signature 
that corresponds to each fault type. This derivation will be 
made assuming quasi-steady-state open-loop operating 
conditions and assuming that the Kalman filter has been 
designed based upon the reduced-order state-space model 
equations shown in (6). These derivations will take advantage 
of the following expected value properties at steady-state 
open-loop operating conditions 
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 (14) 

By taking expected values of both sides of the ensuing 
Kalman filter shown in Equation (10), the expected value of 

kxqx ,ˆ  can be obtained as a function of yss 
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 (15) 

Next, the steady-state engine sensed outputs as a function of 
the fault condition will be derived. The derivation will be 
based upon the system equations shown in Equation (13) with 
the expanded health parameter vector to encompass additional 
fault types. Taking expected values produces 

 

( )
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k
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y

k k k

k
f k

f k

ss ss f
f

ss f f
f

G

ss y
f

E y CE x DE u

h
M M E E v

h

h
y Cx M M

h

h
y C I A L L M M

h

h
y G

h

−

= +          
 

 + +      
 

 
 = +   

 
 

   = − +     
 

 
=  

 





 
(17) 

Substituting Equation (17) into Equation (15) enables the 
calculation of the reduced-order state vector as a function of 
the fault condition 

 ( ) 1
,ˆxq ss xq xq xq y

f

h
x I A K C A K G

h
−

∞ ∞

 
= − +  

 
 (18) 

Recall that xqx  is the concatenation of x and q (see Eqs. (6) 
and (10)). Therefore, based on Equation (18), an expression 
for the steady-state reduced-order tuner vector as a function of 
the fault condition can be obtained 

 

[ ]( ) 1
ˆ 0

ˆ

q

ss xq xq xq y
f

G

ss q
f

h
q I I A K C A K G

h

h
q G

h

−

∞ ∞

 
= − +  

 

 
=  

 



 (19) 

The above equation can be used to construct a fault influence 
coefficient matrix, denoted as H, that relates fault effects to 
Kalman filter tuning parameter estimates under steady-state 
conditions. This is performed off-line (i.e., during the system 
design phase) by individually perturbing health parameters, or 
combinations of health parameters, representing each system 
fault type to determine the corresponding change induced in 
the elements of the vector ˆssq . Dividing the change in ˆssq  by 
the inserted fault magnitude produces a column of the fault 
influence coefficient matrix. Once a fault influence matrix 
column has been calculated for each fault type they can be 
concatenated to form the matrix. This gives rise to the 
following quasi-steady-state equation representing q̂  as a 
function of the fault condition 

 ˆ qq H f v= +  (20) 

where the vector f represents system faults and vq represents 
random uncertainty in the q̂  estimates with covariance Pq. Pq 
can be analytically derived based upon the system matrices, 
measurement noise covariance, and the Kalman gain as shown 
in Reference 12. It is important to emphasize that the dimen-
sion and elements of the fault vector f do not have to be 
equivalent to those of [h hf]T. For example, it may be desirable 
to model a turbomachinery module fault as a combined shift in 
efficiency and flow capacity health parameters as opposed to 
separating them into two separate faults. Given Equation (20), 
a least squares fault isolation approach can be formulated. 
Here, each fault type is evaluated individually, and the 
hypothesized fault type that best matches the observed q̂  
signature in a weighted least squares sense is isolated as the 
fault type. For example, for the ith fault type the estimated fault 
magnitude is calculated as 

 ( ) 11 1ˆ ˆT T
i i q i i qf H P H H P q

−− −=  (21) 

where Hi is the column of the H matrix corresponding to the ith 
fault type, and the scalar îf  is the estimated magnitude of the 
ith fault type that produces the best match of the observed q̂  
signature in a weighted least squares sense. The resulting îf  
estimate is then used to calculate the estimation error residual 
vector for the ith fault type as 
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 ( )
( )

11 1

11 1

ˆˆ ˆ ˆ
ˆˆ

ˆ ˆ

ˆ

i i

i i

T T
i i q i i q

T T
i i q i i q

q q q

q H f

q H H P H H P q

I H H P H H P q

−− −

−− −

= −

= − ⋅

= −

 = − 
 



 (22) 

The weighted sum of squared residuals for the ith hypothesized 
fault type is calculated as 

 1ˆ ˆT
i i q iWSSR q P q−=    (23) 

After WSSR’s are calculated for each potential fault type they 
are compared, and the hypothesized fault type that produces 
the minimum WSSR is isolated as the fault cause.  

Probability of Fault Misclassification 

This subsection will introduce a stochastic approach for 
calculating the probability of fault misclassification for the 
single fault weighted least squares isolation approach previ-
ously presented. This information will be incorporated into the 
optimal iterative search routine designed to select the trans-
formation matrix V*. Doing so will make tuning parameter 
selection a dual-objective function of minimizing estimation 
error within the parameters of interest while also minimizing 
the probability of misclassification when performing fault 
isolation. Several simplifying assumptions are made in 
producing this calculation. First, the calculation applied to 
approximate the misclassification rate only considers the 
probability of misclassification between fault pair combina-
tions (i.e., makes the assumption that only two fault classes 
exist). The two-class misclassification rate results across all 
fault pairs are then summed to estimate an overall misclassifi-
cation rate. Calculating the two-class misclassification rate is 
readily tractable compared to multi-class misclassification rate 
given three or more faults. While this simplification does not 
enable an exact calculation of the overall misclassification rate 
for a given fault type, it is effective for identifying fault pairs 
at high risk of misclassification. Second, misclassification 
rates are based on an assumed mean fault magnitude for each 
fault type. While this assumption does not fully account for 
the fact that faults can be of varying severity or magnitude it is 
effective for identifying the misclassification probability for 
faults of average severity. Let us consider a fault of a given 
type, a, and magnitude, fa. From Equation (20) the expected 
estimated tuner vector under this condition becomes 

a a aq H f= . The probability that a q̂  observation collected 
when fault fa is present is misclassified as fault type b 
(assumed to be of equivalent probability and equivalent q̂  
covariance as fault type a) is given as (Ref. 20) 

 ( )1
| 21b a MPMC D= −Φ ⋅  (24) 

where PMCb|a is the probability of misclassifying fault type a 
as b, Φ is the standard normal distribution function, and DM is 
the Mahalanobis distance defined as 

 
( ) ( )

( ) ( )

1

1

min or

T
a b q a b

M

T
a b q a b

q q P q q

D

q q P q q

−

−

 − − 
 = − − 
 

+ +  

 (25) 

The above expression accounts for the fact that the least 
squares estimation approach is able to produce bi-directional 
fault estimates of either a positive or negative magnitude. The 
sign that produces the minimum distance will have the largest 
contribution to the misclassification rate. In Equation (25), qb 
is the estimated tuner vector for fault type b, scaled to be the 
same weighted length as qa as shown in the equation below. 

 
1

1

T
a q a

b b T
b q b

q P q
q H

H P H

−

−
=  (26) 

The above equations allow approximate measures for the 
probability of misclassification PMCb|a for each fault pair to 
be included within the optimization routine designed to select 
the V* matrix.  

Turbofan Engine Example 
A linear model extracted from the NASA Commercial 

Modular Aero-Propulsion System Simulation (C-MAPSS) 
high-bypass turbofan engine model (Ref. 21) is used to 
evaluate the methodology. The linear model has two state 
variables and three control actuators as shown in Table 1. Also 
shown in Table 1 are 13 health parameters used for the 
purposes of this study. This includes 10 efficiency and flow 
capacity health parameters associated with the major rotating 
modules of the engine, plus 3 actuator bias health parameters. 
The model’s six sensed outputs, and corresponding sensor 
noise standard deviation, are shown in Table 2. The gas path 
fault types and corresponding health parameter magnitude 
shifts applied to simulate these fault types are shown in 
Table 3. The values shown in Table 3 reflect rapid/abrupt 
deltas, or shifts, in these parameters relative to a recently 
archived baseline. These values were manually chosen 
through trial and error to present challenging, yet representa-
tive, fault isolation scenarios.  
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TABLE 1.—STATE VARIABLES, HEALTH  
PARAMETERS, AND ACTUATORS 

State  
variables 

Actuators Health  
parameters 

Nf – fan speed Wf – fuel flow Fan efficiency 
Nc – core speed VSV – variable stator 

vane 
Fan flow capacity 

 VBV –variable bleed 
valve 

LPC efficiency 

  LPC flow capacity 
  HPC efficiency 
  HPC flow capacity 
  HPT efficiency 
  HPT flow capacity 
  LPT efficiency 
  LPT flow capacity 
  Wf bias 
  VSV bias 
  VBV bias 

 
TABLE 2.—SENSED OUTPUTS AND STANDARD DEVIATION 

AS PERCENT OF OPERATING POINT TRIM VALUES 
Sensed  
output 

Standard deviation, 
% 

Nf – fan speed 0.005 
Nc – core speed 0.005 
T24 – HPC inlet total temperature 0.015 
Ps30 – HPC exit static pressure 0.010 
T30 – HPC exit total temperature 0.015 
T48 – Exhaust gas temperature 0.015 
 

TABLE 3.—GAS PATH FAULT  
TYPES AND MAGNITUDES 

Fault type Health parameter  
shifts 

Fan –2% ηfan and –2% γfan 
LPC –4% ηLPC and –4% γLPC 
HPC –2% ηHPC and –2% γHPC 
HPT –2% ηHPT and +2% γHPT 
LPT –2% ηLPT and +2% γLPT 
Wf bias –2% Wf bias 
VSV bias –2% VSV bias 
VBV bias –10% VBV bias 

 
The linear model is used as the truth model for this applica-

tion example. The model is run open-loop, so all control 
inputs remain at 0, unless an actuator bias fault is present. In 
emulating turbomachinery performance deterioration effects, 
deviations in the first ten health parameters are considered. 
Variations in these health parameters are assumed to be 
uncorrelated, and randomly shifted from their trim conditions 
with a standard deviation of ± 0.02 (± 2 percent). Since a 
parameter’s variance is equal to its standard deviation squared, 

the health parameter covariance matrix, Ph, is defined as a 
diagonal matrix with all diagonal elements equal to 0.0004.  

For evaluation purposes, the optimal tuner selection method-
ology was applied to produce three separate Kalman filter 
designs for application at a single open-loop operating point. 
The first Kalman filter was designed to minimize the sum of 
squared estimation errors (SSEE) in the first 10 health parame-
ters listed in Table 1. In constructing this Kalman filter, the 
system state space equations were assumed to be of the form 
shown in Equation (1), and the three health parameters 
associated with actuator bias were not included in the design. 
Furthermore, fault probability of misclassification was not 
considered in the selection of the V* matrix. The second Kalman 
filter was designed in accordance with Equation (13) assuming 
all 13 health parameters (the 10 representing turbomachinery 
deterioration plus the three actuator bias health parameters). The 
second Kalman filter required selection of a V* matrix with 
three additional columns to accommodate the additional health 
parameters. Here, V* matrix selection was performed to 
minimize the sum of squared estimation errors (SSEE) in the 
first 10 health parameters listed in Table 1. While the second 
Kalman filter design does provide an estimate of all 13 health 
parameters, the accuracy of the 3 health parameters reflecting 
actuator bias was not considered during the V* matrix selection 
process.1 The associated fault isolation strategy was to identify 
the health parameter(s) that exhibited the largest change in 
accordance with the eight fault types listed in Table 3. The third 
Kalman filter was designed in accordance with Equation (1) to 
enable an estimate of the first 10 health parameters shown in 
Table 1 to be produced. Optimal tuner selection was performed 
with the two-fold objective of minimizing the SSEE in the first 
10 health parameters and minimizing the probability of fault 
misclassification between all fault pairs. A summary of the three 
Kalman filter designs is shown in Table 4. 

 
TABLE 4.—SUMMARY OF KALMAN FILTER DESIGNS 

Kalman 
filter 

design 

Size of h used 
in design of 

Kalman filter 

V* 

optimization 
objective 

Fault isolation 
strategy 

1 10 health 
parameters Minimize ĥ  SSEE q̂  least squares 

2 13 health 
parameters minimize ĥ  SSEE 

(in elements 1 to 10 
only) 

ĥ  maximum 
element(s) 

3 10 health 
parameters Minimize ĥ  SSEE 

and minimize 
PMCb|a 

q̂  least squares 

                                                           
1This decision was made in an attempt to strike a balance between the 
dual objectives of performance estimation and fault diagnostics. 
Accurate turbomachinery deterioration estimation is necessary for 
performance trend monitoring purposes. Conversely, from a fault 
isolation standpoint accurate actuator bias estimation is secondary to 
the ability to discriminate between different fault types.  
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First, an evaluation of the ĥ  estimation accuracy provided by 
the three Kalman filter designs was conducted. Theoretically 
predicted results are based on the analytical derivations found in 
Reference 12. Experimental results were obtained through a 
Monte Carlo simulation analysis where the first 10 health 
parameters varied over a random distribution in accordance with 
the covariance matrix, Ph. The test cases were provided to the 
C-MAPSS linear discrete state space model given in Equation 
(1), with an update rate of 15 ms. Each individual health 
parameter test case lasted 30 s, and a total of 200 test cases were 
evaluated. The experimental estimation errors were determined 
by calculating the mean squared error between estimated and 
actual values during the last 10 s of each 30 s test case. The 
error calculation is based on only the last 10 s so that engine 
model outputs and Kalman estimator outputs have reached a 
quasi-steady-state operating condition prior to calculating the 
error. This ensures that the experimental results are consistent 
with the theoretically predicted estimation errors that are 
derived assuming steady-state operation. 

The theoretically predicted and the experimentally obtained 
ĥ  estimation error results are shown in Table 5. The best 
estimation accuracy is provided by Kalman filter design 1. 
This is expected as this design has been optimized for 
estimating the first 10 health parameters. This produces 
a theoretical SSEE of 17.111. For the second and third Kalman 
filter designs, the theoretical ĥ  SSEE increases to 20.648 and 
19.848, respectively. For the second design the increase is due 
to adding three additional parameters to the health parameter 
vector. This increases the underdetermined nature of the 
estimation problem, causing a decrease in estimation accuracy. 

In this case, the design choice to perform V* selection to 
minimize the estimation error in the first 10 health parameters 
was found to be helpful, but this design could not replicate the 
accuracy of the first Kalman filter. The third Kalman filter, 
like the first Kalman filter, is designed assuming 10 system 
health parameters. However, the dual optimization objectives 
of minimizing the ĥ  SSEE and the probability of misclassifi-
cation applied in selecting V* causes an increase in ĥ  SSEE. 

Next, an evaluation of the fault isolation accuracy provided 
by the three Kalman filter designs was assessed. Experimental 
results were obtained through simulation analysis where eight 
gas path fault cases of the type and magnitude shown in 
Table 3 were individually analyzed. These eight test cases 
were provided to the C-MAPSS linear discrete state space 
model shown in Equation (13), with 13 health parameters and 
an update rate of 15 ms. Each test case was 300 s in duration, 
and a fault isolation assessment is conducted at each 15 ms 
time step (20,000 per test case). Only the health parameters 
associated with the fault under consideration were varied 
during each case. All remaining health parameters were left 
unchanged at their default values of zero.  

The ensuing fault isolation results are shown in Table 6 
through Table 8. Table 6 shows the resulting fault isolation 
confusion matrix when using Kalman filter design 1 and the 
q̂ analysis fault isolation approach. The elements along the 
diagonal of the confusion matrix represent correct isolation 
percentages. Perfect fault isolation performance is achieved 
for HPC, HPT, LPT, and Wf faults. Of the remaining faults, 
LPC, VSV and VBV are the most challenging to isolate. The 
overall correct isolation rate for this design is 90.5 percent. 

 
 

TABLE 5.—HEALTH PARAMETER PERCENT SQUARED ESTIMATION ERRORS 
Estimator Error type h1 h2 h3 h4 h5 h6 h7 h8 h9 h10 SSEE 

Kalman 
filter 
design 1 

Theor. squared bias 0.007 0.065 0.112 0.474 0.073 0.124 0.044 0.033 0.144 0.035 1.111 
Theor. variance 3.131 1.523 3.304 1.725 0.034 0.232 0.701 0.000 2.355 2.995 16.000 
Theor. squared error 3.138 1.588 3.416 2.200 0.107 0.355 0.745 0.034 2.499 3.029 17.111 
Exper. squared error 3.477 1.495 3.847 1.940 0.107 0.351 0.689 0.033 2.457 2.796 17.192 

Kalman 
filter 
design 2 

Theor. squared bias 0.006 0.023 0.113 0.406 0.073 0.019 0.029 0.021 0.168 0.043 0.901 
Theor. variance 3.146 2.084 3.306 1.834 0.039 1.780 0.843 1.219 2.411 3.084 19.747 
Theor. squared error 3.152 2.107 3.419 2.240 0.112 1.799 0.871 1.240 2.579 3.128 20.648 
Exper. squared error 3.388 2.196 3.836 2.039 0.110 1.833 0.776 1.402 2.619 3.001 21.200 

Kalman 
filter  
design 3 

Theor. squared bias 0.051 0.101 0.117 0.269 0.074 0.129 0.039 0.032 0.170 0.014 0.996 
Theor. variance 3.683 1.812 3.974 1.834 0.048 0.324 0.885 0.000 2.514 3.779 18.852 
Theor. squared error 3.733 1.913 4.091 2.103 0.122 0.453 0.924 0.032 2.684 3.793 19.848 
Exper. squared error 4.181 1.747 4.886 1.861 0.125 0.472 0.838 0.032 2.594 3.426 20.163 
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TABLE 6.—CONFUSION MATRIX  
(KF DESIGN 1, q̂  LEAST SQUARES) 

 Isolated fault state  
 (%) 

Fan LPC HPC HPT LPT Wf VSV VBV 

Tr
ue

 c
on

di
tio

n 

Fan 99.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 
LPC 0.1 77.8 12.0 6.4 0.0 1.3 0.3 2.2 
HPC 0.0 0.0 100.0 0.0 0.0 0.0 0.0 0.0 
HPT 0.0 0.0 0.0 100.0 0.0 0.0 0.0 0.0 
LPT 0.0 0.0 0.0 0.0 100.0 0.0 0.0 0.0 
Wf 0.0 0.0 0.0 0.0 0.0 100.0 0.0 0.0 

VSV 2.1 2.8 1.6 1.5 3.3 2.3 82.5 3.9 
VBV 3.2 8.2 2.2 5.8 5.3 4.1 6.1 65.1 

Overall correct isolation rate (%) = 90.5% 
 

TABLE 7.—CONFUSION MATRIX  

(KF DESIGN 2, MAXIMUM ĥ ) 
 Isolated fault state  

 (%) 
Fan LPC HPC HPT LPT Wf VSV VBV 

Tr
ue

 c
on

di
tio

n 

Fan 14.8 45.2 8.5 21.2 10.4 0.0 0.0 0.0 
LPC 0.0 82.3 14.9 2.7 0.0 0.0 0.0 0.0 
HPC 0.0 0.8 99.2 0.0 0.0 0.0 0.0 0.0 
HPT 0.0 0.1 0.0 99.9 0.0 0.0 0.0 0.0 
LPT 11.6 17.0 0.0 2.6 68.8 0.0 0.0 0.0 
Wf 0.0 0.9 0.0 0.0 0.0 99.1 0.0 0.0 

VSV 0.1 54.0 42.4 3.1 0.5 0.0 0.0 0.0 
VBV 0.2 92.5 5.9 1.2 0.2 0.0 0.0 0.0 

Overall correct isolation rate (%) = 58.0% 
 

TABLE 8.—CONFUSION MATRIX  
(KF DESIGN 3, q̂  LEAST SQUARES) 

 Isolated fault state  
(%) 

Fan LPC HPC HPT LPT Wf VSV VBV 

Tr
ue

 c
on

di
tio

n 

Fan 97.6 0.0 0.0 0.0 2.2 0.0 0.0 0.2 
LPC 0.1 90.7 3.6 0.1 0.0 0.9 0.0 4.6 
HPC 0.0 0.0 100.0 0.0 0.0 0.0 0.0 0.0 
HPT 0.0 0.0 0.0 100.0 0.0 0.0 0.0 0.0 
LPT 0.0 0.0 0.0 0.0 100.0 0.0 0.0 0.0 
Wf 0.0 0.0 0.0 0.0 0.0 100.0 0.0 0.0 

VSV 1.3 2.8 1.9 2.1 3.5 1.6 85.6 1.3 
VBV 6.8 11.2 0.3 0.2 2.1 3.9 0.1 75.6 

Overall correct isolation rate (%) = 93.7% 
 
Table 7 shows fault isolation results obtained applying 

Kalman filter design 2 and making fault isolation decisions 
based on observed health parameter shifts. Here, an estimated 
magnitude for each of the five turbomachinery module faults 
was calculated as the root-sum-squared value of the module’s 
efficiency and flow capacity ĥ  values. Actuator bias fault 
magnitudes were calculated by taking the absolute value of the 
corresponding ĥ  values. Fault isolation was then made by 
selecting the fault type with the largest estimated magnitude. 
 

 
Figure 5.—Example of Kalman filter design 2 health 

parameter estimation during fan fault (top) and HPT 
fault (bottom). 

 
The results in Table 7 show that while some faults such as 
HPC, HPT, and Wf are isolated with a high degree of 
accuracy, the overall fault isolation accuracy of 58 percent is 
relatively poor. In fact, faults such as Fan, VSV, and VBV are 
usually misclassified. This suggests that simply adding 
additional health parameters as part of the optimal tuner 
design process does not guarantee that the estimation accuracy 
of those health parameters will be adequate. In fact, in this 
case, which is attempting to simultaneously estimate 13 health 
parameters based on only 6 sensor measurements, there is a 
high degree of “smearing” of the estimates. This in turn results 
in unsatisfactory fault isolation performance. An illustration of 
the health parameter estimation results is shown in Figure 5 
for a fan fault and an HPT fault. In the fan fault case (top 
plot), the Kalman filter is unable to provide good health 
parameter estimation, and consequently a fault misclassifica-
tion will occur. In the HPT fault case (bottom plot), some 
smearing of the estimates across multiple health parameters is 
observed, but the largest estimated deviations are in health 
parameters 7 and 8 (HPT efficiency and flow capacity). Here, 
correct classification as an HPT fault will occur. 

Table 8 shows confusion matrix results obtained using 
Kalman filter design 3 and the q̂  analysis single fault 
isolation approach. Recall that this Kalman filter was designed 
with the objective of minimizing ĥ  SSEE and the probability 
of fault misclassification. The overall correct isolation rate is 
93.7 percent, which is an improvement over the results shown 
in Table 6 and Table 7. This is encouraging as it demonstrates 
that selection of the V* matrix can have a positive impact on 
diagnostic performance. However, it is also acknowledged that 
this improvement in diagnostic performance comes at the 
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expense of a slight degradation in performance estimation 
accuracy as previously shown in Table 5. 

As a final comparison, an assessment of the fault isolation 
performance achievable through the analysis of sensor 
residuals is assessed. This serves as a baseline, and is repre-
sentative of the fault diagnostic approaches shown in Figure 1 
and Figure 3 designed to process ∆y information. Here, the 
fault isolation approach is designed to analyze the estimated 
ŷ  values produced by Kalman filter design 1.2 This approach 

is the same as that described for processing the q̂  estimates, 
but the confusion matrix and the measurement covariance 
matrix are updated to reflect sensed engine outputs. The 
results from this assessment, shown in Table 9, reveal that this 
approach provides fault isolation performance very similar to 
that shown in Table 6. This is very encouraging as it suggests 
that analyzing the estimated tuning parameters produced by 
the Kalman filter can yield isolation results of equivalent or 
better performance than the conventional approach of 
analyzing sensor residuals. Furthermore, the q̂  analysis 
approach does not require a separate reference baseline model 
for residual calculation purposes. Conversely, ∆y analysis 
would require a reference or baseline model against which 
measurement residuals could be calculated.  

 
TABLE 9.—CONFUSION MATRIX  

(KF DESIGN 1, ŷ  LEAST SQUARES) 
 Isolated Fault State  

(%) 
Fan LPC HPC HPT LPT Wf VSV VBV 

Tr
ue

 C
on

di
tio

n 

Fan 99.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 
LPC 0.1 76.1 13.1 7.2 0.1 1.7 0.3 1.6 
HPC 0.0 0.0 100.0 0.0 0.0 0.0 0.0 0.0 
HPT 0.0 0.0 0.0 100.0 0.0 0.0 0.0 0.0 
LPT 0.0 0.0 0.0 0.0 100.0 0.0 0.0 0.0 
Wf 0.0 0.0 0.0 0.0 0.0 100.0 0.0 0.0 

VSV 2.3 2.9 1.6 1.6 3.4 2.3 83.1 2.8 
VBV 4.0 8.2 2.8 6.4 6.5 5.2 7.4 59.5 

Overall Correct Isolation Rate (%) =89.7% 

Conclusions 
The Kalman filter-based approach for combined aircraft 

engine performance estimation and gas path fault diagnostics 
has been shown to simplify implementation requirements 
without sacrificing performance. This simplification comes 
about by eliminating the need to maintain a second reference 
model for diagnostic purposes. Instead of analyzing sensor 
residuals to diagnose faults, it has been demonstrated that 

                                                           
2 Estimated sensor measurements, ŷ , produced by the Kalman filter 
are used instead of actual sensor measurements, y, to conduct this 
comparison. The estimated values track measured values well and are 
less noisy, thus providing superior isolation performance. 

direct analysis of the deviations in Kalman filter estimates can 
be performed for fault diagnostic purposes. In the context of 
this effort, two variations in the fault isolation approach were 
evaluated. Both approaches are based upon a previously 
developed optimal tuner selection methodology for underde-
termined Kalman filter estimation applications. This method-
ology enables estimation of a set of model tuning parameters 
that can be transformed into a vector of health parameters 
reflecting engine performance deterioration. The first fault 
isolation approach expands the number of health parameters to 
encompass additional (actuator) fault types, and then conducts 
fault isolation based upon the estimated health parameter(s) 
that exhibit the largest change. The second fault isolation 
approach relies on the analytically derived open-loop quasi-
steady-state signature that a fault will produce in Kalman filter 
estimated tuning parameters. Here, fault isolation is performed 
by identifying the fault type signature that best matches the 
observed tuning parameters in a least squares sense. As a 
comparison, these two fault isolation techniques were 
compared against the conventional technique of performing 
fault isolation based upon sensor measurements. Simulation 
studies demonstrated that the first design did not provide ideal 
results. Due to the underdetermined nature of the estimation 
problem, individual faults were found to produce a “smearing” 
of estimates across multiple health parameters, including 
parameters not associated with the fault, which led to fault 
misclassification. Furthermore, adding additional health 
parameters to the design to account for actuator faults was 
found to compound the underdetermined nature of the 
problem. The fault isolation results were not ideal, and 
furthermore the estimation accuracy in the subset of health 
parameters reflective of performance deterioration worsened 
when the additional actuator bias health parameters were 
added to the design. Conversely, the second design was found 
to provide fault isolation accuracy comparable to that of the 
conventional approach of analyzing changes in engine sensed 
outputs. Furthermore, it was shown that an approximate 
measure for the probability of fault misclassification can be 
analytically formulated and incorporated into the optimal 
iterative search applied to select the Kalman filter tuning 
parameters, which was found to provide improved fault 
isolation performance. This modification did result in a 
decrease in performance deterioration estimation accuracy. 
The merits of its application are thus dependent upon end-user 
objectives. 

The initial findings of this study have been encouraging. 
Follow-on evaluations are recommended to incorporate 
additional fault types and to consider larger variations in fault 
magnitudes. Additionally, evaluations are needed to assess the 
technique over a broader range of operating conditions. Due to 
system nonlinearities, it is reasonable to assume that the fault 
signatures contained within the estimated tuning parameters 
will vary as a function of engine operating point. If so, the 
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proposed fault isolation approach will either require a means 
to archive/retrieve fault influence coefficient matrix infor-
mation as a function of operating point, or it will be limited to 
performing fault isolation analysis at fixed operating condi-
tions. Additional studies, such as closed-loop nonlinear 
simulation studies and actual aircraft engine data studies, are 
warranted to fully assess these design issues.  
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