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Tip Vortex and Wake Characteristics of a 
Counterrotating Open Rotor 

 
Dale E. Van Zante and Mark P. Wernet 

National Aeronautics and Space Administration 
Glenn Research Center 
Cleveland, Ohio 44135 

Abstract 

One of the primary noise sources for Open Rotor systems is the interaction of the forward rotor tip 
vortex and blade wake with the aft rotor. NASA has collaborated with General Electric on the testing of a 
new generation of low noise, counterrotating Open Rotor systems. Three-dimensional particle image 
velocimetry measurements were acquired in the intra-rotor gap of the Historical Baseline blade set. The 
velocity measurements are of sufficient resolution to characterize the tip vortex size and trajectory as well 
as the rotor wake decay and turbulence character. The tip clearance vortex trajectory is compared to 
results from previously developed models. Forward rotor wake velocity profiles are shown. Results are 
presented in a form as to assist numerical modeling of Open Rotor system aerodynamics and acoustics. 

Nomenclature 

X,Y  Cartesian PIV coordinates, inches 
Z  Axial PIV coordinate, inches 
MSTA  Model Station axial coordinate, inches 
U,V  Velocity components in X and Y directions, ft/s 
W  Velocity component (axial) in Z direction, ft/s 
Vr  Radial velocity, ft/s 
Vtheta  Tangential velocity, ft/s 
ORPR  Open Rotor Propulsion Rig 

Introduction 

The Open Rotor based propulsion system offers the potential for substantial fuel burn reductions, 
greater than 20 percent, compared to contemporary turbofan based propulsion systems. The increase in 
fuel costs and greater emphasis on reducing carbon emmisions have both contributed to the renewed 
interest in Open Rotors. 

Open Rotor concepts, previously called propfans, were studied extensively in the 1980s as a result of 
the oil price shocks of the 1970s. Development advanced as far as flight test engines. For example, the 
General Electric (GE) Unducted Fan (UDF) engine flew on both MD-80 and 727 airframes. Oil prices 
stabilized and interest in these radical new engine concepts waned. The UDF program at GE ended in 
1989. 

The 1980s demonstrator engines were memorable for their unique, scimitar shaped blades, their fuel 
burn reduction, and their noise levels. Design systems of the time were limited in their ability to optimize 
for both performance and acoustics simultaneously. The current generation of open rotors have been 
designed with both three-dimensional aerodynamics tools and computational aeroacoustics tools. This has 
enabled the new designs to match the best aero performance of the 1980s but with much improved noise 
characteristics. The goal of the current work is to achieve 15 to 17 EPNdB cumulative margin to the 
Chapter 4 noise regulations. 
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Stereo PIV Data Processing 

The collected SPIV image data were processed using an in-house developed SPIV cross-correlation 
processing program called PIVPROC (Ref. 6). The correlation based processing software program 
supports subregion image shifting and multi-pass correlation to improve the spatial resolution of the 
resultant velocity vector maps. In addition, PIVPROC also supports subregion distortion processing 
(Ref. 7). In multipass-correlation mode, the correlation processing grid is initially coarse (typically 
6464 pixel subregions), followed by a higher resolution 2nd pass (typically 3232 pixel subregions) in 
order to improve the spatial resolution of the resulting vector field. The objective of the multi-pass 
approach is to keep the correlation peak at the center of the correlation plane, which mitigates higher 
order errors in the correlation peak detection process (Ref. 8). In each pass, PIVPROC uses a spurious 
peak removal algorithm which removes any vector lying more than three standard deviations from its 
surrounding 8 neighbors and replaces it with an interpolated value. The estimates for the subregion offsets 
used in each pass are computed from the previous pass vector map. The offsets are computed from a 
spatially weighted average of the vector field. PIVPROC uses a simulated annealing approach in the 2nd 
pass of the multi-pass correlation operation. For example, the first pass correlations were performed at 
6464 pixel subregions on a 3232 pixel grid followed by 2nd pass operations on 3232 pixel subregions 
on a 1616 pixel grid. In PIVPROC, a total of 6 passes at the higher grid density can be used, where in 
each successive pass the region on the correlation plane that is examined for correlation peaks is reduced. 
In the 6th pass, the correlation plane search region may only be 1/3 of the initial size. Since the subregion 
image shifting keeps the correlation peak at the center of the correlation plane, this simulated annealing 
approach reduces the number of spurious vectors by limiting where on the correlation plane that the 
correlation peaks can be detected. The offsets are computed from the surrounding flow field, so the local 
flow directs the correlation operation on where to find the correlation peak.   

In addition to multi-pass correlation processing, PIVPROC also employs subregion distortion 
processing (Ref. 7). Subregion distortion processing is used to correct for velocity gradients across the 
subregion and to minimize the “peak-locking” effect, which is the tendency for the estimated particle 
displacements to preferentially concentrate at integer values. In the subregion distortion technique, the 
local velocity gradients surrounding the current correlation subregion are used to distort the subregion 
before the cross-correlation processing operation. Distorting the subregion yields correlation subregions 
with uniform particle displacements, and hence, reduces any bias caused by the velocity gradients. 
Typically, two additional passes after the multi-pass processing are used with subregion distortion applied 
to refine the correlation peak estimates. 

The data were collected to maximize the information content with respect to the tip vortices from the 
blade tips and also provide blade wake trajectories down to the hub. In the near hub measurements, flare 
light scattering off of the hub corrupted the PIV image data. Hence, Symmetric Phase Only Filtering 
(SPOF) correlation processing was used to minimize the data corruption from flare light scattered off of 
the model (Ref. 9). SPOF is a modification of the traditional cross-correlation processing used in PIV, 
where the phase information in the frequency domain is emphasized and the image amplitude (flare light) 
information is suppressed. Combining all of these processing strategies yielded the high quality data sets 
presented here. 

Sequences of 400 velocity vector maps were acquired at each measurement station and ensemble 
averaged to provide first and second order statistics over the entire measurement plane. Chauvenet’s 
criteria was used to eliminate any outliers in the ensemble averaging process (Ref. 10). All of the 
processed PIV data were placed in the model coordinate system to facilitate comparison with CFD 
predictions. The final processed velocity vector maps had an in-plane spatial resolution of 1.43 mm in 
both the x- and y-directions. 
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Results 

PIV flowfield measurements were acquired for multiple operating conditions and forward rotor phase 
positions for the Historical Baseline blade set. Table 2 lists the data conditions and repeat measurement 
(23Aug10e). Figure 6 shows a representative data volume at one phase step. Two phase steps of the 
forward rotor were acquired for each operating condition so that the tip vortex would be captured in the 
higher radial resolution portion of the measurement grid for the entire axial extent of the vortex. This is a 
consequence of slicing a helical shaped flow feature with flat planes. Results from both phase steps are 
used to determine the vortex core trajectory. The resolution of the forward blade wake does not change 
with phase step so representative results are shown for one phase step only. 
 

TABLE 2.—GENERAL TEST CONDITIONS 
PIV data set 

name 
Blade set Model 

config 
Blade pitch 

angle, 
Front/Aft 

Front 
rotor, 
rpm 

#PIV measurement 
planes 

Front rotor PIV 
delay phase step 

23Aug10a F31/A31 Take Off 40.1/40.8 6444 30 0 
23Aug10b F31/A31 Take Off 40.1/40.8 6453 30 14.7 
23Aug10c F31/A31 Take Off 40.1/40.8 5680 30 0 
23Aug10d F31/A31 Take Off 40.1/40.8 5684 30 16.7 
23Aug10e F31/A31 Take Off 40.1/40.8 6452 24 0 
25Aug10a F31/A31 Approach 33.5/35.7 5704 30 0 
25Aug10b F31/A31 Approach 33.5/35.7 5707 30 18.1 

 

Tip Vortex Behavior 

The size, strength, trajectory and decay rate of the forward rotor tip vortex are all key parameters in 
assessing the acoustic influence of this flow feature on the system. For example, aft rotor clipping is a 
possible noise mitigation strategy in which the aft rotor is shortened sufficiently so that the tip vortex does 
not interact with the blade. However, aft clipping can have a negative impact on system efficiency so a 
minimal amount of clipping is desired to obtain the acoustic benefit without a substantial efficiency loss. 

Several models for the tip vortex interaction have been developed. See Majjigi, et al. (Ref. 11) for one 
example of a model developed at GE. The GE model was developed based on analytical assumptions 
about the vortex and some limited experimental data. The data available at the time consisted of 1) 
helicopter rotor in hover data for the tip vortex trajectory and 2) data from finite span airfoils at angle of 
attack in a wind tunnel (for vortex decay). Neither of these data are necessarily representative of the 
vortex character and flow conditions experienced by counter rotating open rotors. Majjigi, et al. noted 
many times that the accuracy, completeness, and sophistication of the model can be extended with the 
inclusion of more representative data.  

The tip vortex trajectory has been extracted from the current PIV data sets. The vortex core location 
was determined by looking at in-plane velocity vectors and in-plane streamlines as shown in Figure 7 for 
a specific axial location. The vortex core radial location is easily determined from this graphical view of 
the data. The process is repeated for additional axial planes until the vortex has moved outside of the PIV 
measurement volume. The accuracy of the location is assumed to be the spacing of the PIV measurement 
planes, either 0.1 or 0.2 in. at these locations. The geometric relationship between the PIV measurement 
coordinate system (shown in Fig. 10) and the open rotor model station coordinates is given in Table 3. 
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The PIV data could be analyzed further to determine the relative importance of the sometimes 
competing effects of viscous decay and wake stretching. The turbulence character of the wake could also 
be analyzed to help guide broadband noise assessments. 

Summary 

A high quality, three dimensional velocity data set for counterrotating open rotors has been analyzed 
for tip vortex trajectory and rotor wake velocity profile characteristics. The tip vortex trajectory shows a 
linear character with axial distance. This is substantially different than the hyperbolic character derived 
from helicopter rotor measurements in the 1980s. The forward rotor wake profiles show the classical 
turbomachinery wake character for the more inboard span locations. The wake velocity character is 
heavily influenced by the tip vortex at the outer span locations and does not exhibit a classical wake 
behavior. 

The data set is of sufficient resolution and quality that further analysis is warranted to determine the 
vortex core diameter and wake turbulence characteristics.  
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