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Executive Summary 
Volume 1 

 
The 2004 NASA Seal/Secondary Air System workshop covered the following topics: (i) Overview  

of NASA’s new Exploration Initiative program aimed at exploring the Moon, Mars, and beyond; (ii) 
Overview of the NASA-sponsored Ultra-Efficient Engine Technology (UEET) program; (iii) Overview  
of NASA Glenn’s seal program aimed at developing advanced seals for NASA’s turbomachinery, space, 
and reentry vehicle needs; (iv) Reviews of NASA prime contractor and university advanced sealing 
concepts including tip clearance control, test results, experimental facilities, and numerical predictions; 
and (v) Reviews of material development programs relevant to advanced seals development.  

The NASA UEET overview illustrated for the reader the importance of advanced technologies, 
including seals, in meeting future turbine engine system efficiency and emission goals. For example, the 
NASA UEET program goals include an 8- to 15-percent reduction in fuel burn, a 15-percent reduction in 
CO2, a 70-percent reduction in NOx, CO, and unburned hydrocarbons, and a 30-dB noise reduction 
relative to program baselines.  

The workshop also covered several programs NASA is funding to develop technologies for the 
Exploration Initiative and advanced reusable space vehicle technologies. NASA plans on developing an 
advanced docking and berthing system that would permit any vehicle to dock to any on-orbit station or 
vehicle, as part of NASA’s new Exploration Initiative. Plans to develop the necessary mechanism and 
“androgynous” seal technologies were reviewed. Seal challenges posed by reusable re-entry space 
vehicles include high-temperature operation, resiliency at temperature to accommodate gap changes 
during operation, and durability to meet mission requirements. 
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NASA Glenn hosted the Seals/Secondary Air System Workshop on November 9-
10, 2004. At this workshop NASA and our industry and university partners shared 
their respective seal technology developments.  We use these workshops as a 
technical forum to exchange recent advancements and “lessons-learned” in 
advancing seal technology and solving problems of common interest.  As in the 
past we are publishing the presentations from this workshop in  two volumes.  
Volume I will be publicly available and individual papers will be made available 
on-line through the web page address listed at the end of this chapter.  Volume II 
will be restricted under International Traffic and Arms Regulations (I.T.A.R.).
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NASA Glenn Research Center
Seal Team

Workshop Agenda
Tuesday, Nov. 9, Morning

Registration 8:00 a.m.–8:30 a.m.

Introductions 8:30-9:30 
Introduction Dr. Bruce Steinetz, R. Hendricks/NASA GRC
Welcome Dr. Rich Christiansen, Deputy Director/NASA GRC
Overview of NASA Glenn Seal Program Dr. Bruce Steinetz/NASA GRC

Program Overviews and Requirements 9:30-10:30
Overview of NASA’s Exploration Initiative Mr. Joe Naininger for Harry Cikanek/NASA GRC
Overview of NASA’s UEET/QAT Project Ms. Carol Ginty/NASA GRC

Break 10:30 -10:45

Turbine Seal Development Session I 10:45-12:30
GE90 Aspirating Seal Engine Demonstration Test Ms. Marcia Boyle, B. Albers/GE Aircraft Engines
Geared Fan High Misalignment Seal Development Mr. Dennis Shaughnessy, L. Dobek/Pratt & Whitney
Face Seal Development Mr. Bud Watts for John Munson/Rolls-Royce-Allison
NASA GRC’s Turbine Seal Test Rig: Mr. Irebert Delgado/U.S. Army Res. Lab, 

Unique Features M. Proctor/NASA GRC
Leakage and Power Loss Test Results for  Ms. Margaret Proctor/NASA GRC, I. Delgado/ARL-VTC

Competing Turbine Engine Seals

Lunch: OAI Sun Room 12:30-1:30

The first day of presentations included overviews of NASA programs devoted to 
the President’s new Space Exploration Initiative and advancing the state-of-the-art 
in turbine engine technology.  Ms. Ginty presented an overview of the Ultra-
Efficient-Engine Technology  (UEET) and Quiet Aircraft Technology (QAT) 
programs.  The UEET program is aimed at developing highly-loaded, ultra-
efficient engines that also have low emissions (NOx, unburned hydrocarbons, 
etc.). Mr. Naininger of NASA’s Exploration Project office summarized key 
elements and long range plans for exploring the Moon and Mars through both 
robotic and manned missions. 

Dr. Steinetz presented an overview of NASA seal developments.   Representatives 
from GE provided insight into their advanced seal developments for both aircraft 
engines and ground power.  Mr. Shaughnessy presented an overview of the work 
P&W and Stein Seal are doing on the development of high misalignment carbon 
seals for a geared fan application. Mr. Delgado of NASA Glenn presented an 
overview of turbine testing at NASA GRC.  Ms. Proctor presented a comparison 
of leakage and power loss results for brush and finger seals NASA GRC obtained 
using the turbine seal rig.
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NASA Glenn Research Center
Seal Team

Workshop Agenda
Tuesday, Nov. 9, Afternoon

Turbine Seal Development Session II: 1:30-3:30 
Tip Clearance

Benefits of High Pressure Turbine Active Clearance Control Mr. Rafael Ruiz, B. Albers/General Electric Aircraft Engines
AADC/Rolls-Royce Active Tip Clearance Control Dev. Mr. Bud Watts, D. Dierksmeier/Allison Advanced Development Co. 

-Rolls Royce
Microwave Blade Tip Sensor Development: An Update Mr. Jon Geisheimer/Radatech Inc.
Test Rig for Active Turbine Blade Tip Clearance Dr. Scott Lattime/OAI, B. Steinetz, K. Melcher/NASA GRC,

Control Concepts: An Update J. Decastro/QSS
Latest Developments in Wear Prediction of Strip Seals Mr. Norm Turnquist, F. Ghasripoor/GE Global Research Center,

through Conductance M. Kowalczyk, B. Couture/GE Energy

Break 3:30-3:45

Turbine Seal Development Session III 3:45-5:00
Parametrical Study of Hydrodynamic Seal Using a 2D Dr. Xiaoqing Zheng/Perkin Elmer Centurion Mech. Seals

Design Code and Comparing with a 3D CFD Model
Non-Contacting Finger Seal Investigations Dr. Jack Braun, H. Pierson, D. Deng, F. Choi/University of Akron
Non-Contacting Seal Developments Mr. John Justak/Advanced Technologies Group
Role of Distributed Inter-bristle Friction Force Ms. Helen Zhao, R. Stango/Marquette University

On Brush Seal Hysteresis
DOE/PG&E LNG-Turboexpander Seal and Bearing Retrofit Dr. Donald Bently, D. Mathis, G. Richard Thomas

Bentley Pressurized Bearing Co.

Group Dinner: Viva Barcelona, Westlake 6:15-?

Turbine engine studies have shown that reducing high pressure turbine (HPT) blade tip clearances 
will reduce fuel burn, lower emissions, retain exhaust gas temperature margin and increase range.  
Mr. Ruiz, of General Electric Aircraft Engines, presented results of their Propulsion 21 HPT 
advanced clearance control study contract.  Mr. Watts of Allison Advanced Development Co. 
presented plans to develop an innovative SMART-Track clearance control mechanism to actively 
control HPT clearances in the AE30XX series of engines.  Mr. Geisheimer of Radatech presented 
an overview of their microwave blade tip sensor technology.  Microwave tip sensors show promise 
of operation in the extreme gas temperatures present in the HPT location.  Dr. Lattime presented 
the design and development status of a new Active Clearance Control Test rig aimed at 
demonstrating advanced ACC approaches and sensors.  Mr. Turnquist of General Electric Global 
Research Center presented an overview of wear studies of strip seals used extensively in the 
ground based power industry.

Dr. Zheng, of PerkinElmer Centurion Mechanical Seals, discussed a non-contacting seal for main 
shaft locations and component attributes of 2-D and 3-D modeling programs.  Dr. Braun presented 
investigations into a non-contacting finger seal under development by NASA GRC and University 
of Akron.  Mr. Justak presented an overview of non-contacting hybrid seal that combines flexible-
beam supported seal pads with a brush secondary seal.  Dr. Stango presented analytical 
assessments of the role of inter-bristle friction force on brush seal hysteresis.  

Mr. Richard Thomas of the Bentley Pressurized Bearing Co. presented an overview of a successful 
program to replace the improperly designed magnetic bearings and brush seals with pressurized 
bearings and labyrinth seals in a liquid natural gas turboexpander allowing the machine to operate 
at the required 70,000rpm.
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Seal Team

Workshop Agenda
Wednesday, Nov. 10, Morning

Registration at OAI 8:00-8:30

Space Vehicle Development 8:30-10:45
Future Space Vehicle Docking/Berthing Mechanism and Mr. Brandan Robertson, J. Lewis /NASA JSC

Seal Needs
X-37 Project Overview, Status and Seal Needs Dr. Victor Chen/Boeing
Overview of Scramjet Engine Demonstrator Program Mr. Ed Pendleton, AFRL/WPAFB 

Break 10:45-11:00

Structural Seal Development Session I 11:00-12:30
Evaluation of Ceramic Wafer Seals for Future Mr. Patrick Dunlap, B. Steinetz/NASA GRC,

Space Vehicle Applications J. DeMange/University of Toledo
Evaluation of X-37 Flaperon Seal Components Mr. Jeff DeMange/U. of Toledo, P. Dunlap/NASA GRC
Development of a Unique Arc Jet Test Apparatus for Mr. Josh Finkbeiner, P. Dunlap, B. Steinetz/NASA GRC

Control Surface Seal Evaluations M. Robbie, A. Erker, J. Assion/Analex
Investigations of High Temperature Knitted Spring Mr. Shawn Taylor/Case Western Reserve University, 

Tubes for Structural Seal Applications J. DeMange/U. of Toledo, P. Dunlap, B. Steinetz/NASA

Lunch OAI Sun Room 12:30-1:30

Mr. Robertson of NASA Johnson Space Center presented an overview of a novel docking 
and berthing mechanism being developed by NASA JSC with support from NASA Glenn 
Research Center and Marshall Space Flight Center for future space vehicles as part of 
NASA’s new Exploration Initiative.  This androgynous docking/berthing system would 
enable any vehicle to dock or berth with any other on-orbit vehicle.  To meet this 
requirement, a seal-on-seal interface is required posing several interesting challenges.  Dr. 
Chen of Boeing-Huntington Beach presented an overview of the X-37 vehicle 
development status and seal needs.  Mr. Ed Pendleton of Wright-Patterson Air Force Base 
presented a summary of the goals and objectives of the Air Force Scramjet Engine 
Demonstrator (SED) program.

Mr. Dunlap presented promising flow and high temperature durability results for a 
ceramic wafer seal being considered for a variety of applications including engine ramps 
of future hypersonic airbreathing engines.  Mr. DeMange presented recent flow and high 
temperature scrub results for several seals and counter-face materials being considered for 
the X-37’s control surfaces.

Mr. Finkbeiner presented an overview of an unique arc jet test apparatus being developed 
to evaluate control surface seals for next generation re-entry and hypersonic vehicles.  Mr. 
Taylor presented high temperature resiliency test results for candidate knitted spring tubes 
being evaluated for future re-entry vehicle seal needs.  Mr. Taylor demonstrated the 
temperature and resiliency benefits of Rene’41 over the baseline Inconel X-750 wire 
material.
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Seal Team

Workshop Agenda
Wednesday, Nov. 10, Afternoon

Structural Seal Development Session II 1:30-3:00
Modeling of Canted Coil Springs and Knitted Spring Mr. Jay Oswald, R. Mullen/Case Western Reserve Univ.

Tubes as High Temperature Seal Preload Devices P. Dunlap, B. Steinetz/NASA GRC
Development of High Temperature Seal Preloaders: An Update Mr. Ted Paquette/Refractory Composites
High Temperature Metallic Seal Development Mr. Greg More/Advanced Products, 

A. Datta/Advanced Components & Material
Oxidation of High-Temperature Alloy Wires Ms. Beth Opila/NASA GRC, J. Lorincz/Professional Service

for Hybrid Seal Applications Industries, Inc., M. Reigel/Colorado School of Mines  
J. DeMange/U. of Toledo

Tour of NASA Seal Test Facilities 3:15-4:15

Adjourn

In the afternoon session, Mr. Oswald presented finite element analysis results for 
two candidate seal preloaders:  the canted coil spring and the knitted spring tube.  
Mr. Oswald’s results are providing useful insight into the stress states that exist 
under load helping guide seal preloader design and selection.

Advanced structural seals and preloading elements require application of 
advanced high temperature materials.  The closing session of the workshop 
presented seal concepts and materials being developed at several locations. Mr. 
Paquette presented Refractory Composites’ efforts to develop a refractory metal 
canted coil spring seal preloader, under contract to NASA GRC.  Mr. More 
(Advanced Products) and Dr. Datta (Advanced Components and Materials) 
presented recent progress in their high temperature (1600-1800°F) metallic seal 
development.

Another Seal Team goal is to increase the temperature capability of our braided 
hybrid seal.  The hybrid seal combines the features of a lightweight braided 
ceramic core with an abrasion resistant metallic core outer sheath.  Formerly the 
outer sheath was made of Haynes 188 wires limiting use to <1800°F.  Ms. Opila 
investigated the oxidation behavior of several promising wire materials (e.g. 
Kanthal and PM2000) for service potentially to 2200°F.
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NASA Glenn Seal Team

Seal Team Leader: Bruce Steinetz
Mechanical Components Branch/RSM 5950

Turbine Seal Development
Develop non-contacting, low-leakage 
turbine seals
Margaret Proctor: Principal Investigator/POC
Irebert Delgado, Dave Fleming, Joe Flowers 
Dan Breen

Structural Seal Development
Develop resilient, long-life, structural 
seals for extreme environments
Pat Dunlap: Principal Investigator/POC
Jeff DeMange, Josh Finkbeiner

Jay Oswald, Shawn Taylor
Malcolm Robbie, Art Erker, Joe Assion

Emerging Areas
Fuel Cell Seals, Acoustic Seals
Pulse Detonation/Constant Vol. Combustion 
Engine Seals
Chris Daniels: Principal Investigator/POC
Josh Finkbeiner

Turbine Clearance Management
Develop novel approaches for blade-tip 
clearance control.
Scott Lattime: Principal Investigator/POC
Jim Smialek (5160), Kevin Melcher (5530), 
Malcolm Robbie

The Seal Team is divided into four primary areas.  The principal investigators and 
supporting researchers for each of the areas are shown in the slide.  These areas 
include turbine seal development, structural seal development, turbine clearance 
management, and seals for emerging areas.  The first area focuses on high 
temperature, high speed shaft seals for turbine engine secondary air system flow 
management.  The structural seal area focuses on  developing resilient structural 
seals required to accommodate and seal structural distortions in extreme space-
and aero-applications.  Our goal in the turbine clearance management project is to 
develop advanced sealing approaches for minimizing blade-tip clearances and 
leakage.  We are planning on applying either rub-avoidance or regeneration 
clearance control concepts (including smart structures and materials) to promote 
higher turbine engine efficiency and longer service lives.

We are also contributing seal expertise in a range of emerging areas.  These 
include acoustic seals (a GRC innovation, see Daniels et al, 2004), fuel cell seals, 
and seals for pulse detonation/constant volume combustion engines.  The fuel cell 
power and pulse detonation engine applications would see significant efficiency 
gains through the improvement of their sealing systems.  
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Attributes of Future Flight Vehicles

Vehicle 50% 
lighter

25% to 50% more 
Efficient 

Propulsion
Integrated Wing-Body Structure:

25% less drag
40% greater range

Extreme 
Maneuverability and 

Control

Highly Intelligent 
Systems

“Zero” Emissions

“Whisper” Quiet

Attributes of future aircraft are illustrated here. Future vehicles will incorporate 
advanced materials to reduce weight and drag.   Future aircraft will also use 
highly efficient quiet propulsion systems to reduce fuel burn, reduce emissions 
and reduce noise in and around airports.

One might ask: What role would advanced seals play in these future vehicles?  
Lower leakage engine seals reduce engine fuel burn and as a result reduce aircraft 
emissions.  Cycle studies have shown the benefits of increasing engine pressure 
ratios and cycle temperatures to decrease engine weight and improve performance 
in next generation turbine engines (Steinetz and Hendricks, 1998).  Advanced 
seals have been identified as critical in meeting engine goals for specific fuel 
consumption, thrust-to-weight, emissions, durability and operating costs.  NASA 
and the industry are identifying and developing engine and sealing technologies 
that will result in dramatic improvements and address each of these goals.
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Aspirating Seal Development: GE90 Demo Program
Funded UEET Seal Development Program

Goal:
Complete aspirating seal development
by conducting full scale (36 in. diameter)
aspirating seal demonstration tests in
GE90 engine.

Payoffs:
- Leakage ~1/4th labyrinth seal 
- Decrease SFC by 1.86% for three locations
- Operates without contact under severe conditions:

+ 10 mil TIR
+ 0.25°/0.8 sec tilt maneuver loads

(0.08” deflection!)
-

Schedule:
– Complete engine assembly: 4Q CY03
– GE90 engine test (completed): 1Q CY04

Partners:
GE/Stein Seal/CFDRC/NASA GRC

General Electric GE90

Sealing dam

Retraction spring

Hydrostatic bearing

Rotor

Phi

Labyrinth seal

General Electric is developing a low leakage aspirating face seal for a number of 
locations within modern turbine applications. This seal shows promise both for 
compressor discharge and low-pressure turbine balance piston locations.

The seal consists of an axially translating mechanical face that seals the face of a 
high speed rotor (Turnquist et al, 1999).  The face rides on a hydrostatic cushion 
of air supplied through ports on the seal face connected to the high pressure side 
of the seal.  The small clearance (0.001-0.002 in.) between the seal and rotor 
results in low leakage (1/4th that of new labyrinth seals). Applying the seal to 3 
balance piston locations in a GE90 engine can lead to >1.8% SFC reduction. GE 
Corporate Research and Development tested the seal under a number of 
conditions to demonstrate the seal’s rotor tracking ability.  The seal was able to 
follow a 0.010 in. rotor face total indicator run-out (TIR) and could dynamically 
follow a  0.25˚ tilt maneuver (simulating a hard maneuver load) all without face 
seal contact. The NASA GRC Ultra Efficient Engine Technology (UEET) 
Program funded GE to demonstrate this seal in a ground-based GE-90 
demonstrator engine in 2003-2004.  More details can be found in Boyle and 
Albers, 2005 in this Seal Workshop Proceedings and Turnquist, et al 1999.
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Non-Contacting Finger Seal Development
NASA GRC/University of Akron

Objective:
Develop non-contacting finger seal to overcome 

finger element wear and heat generation for 
future turbine engine systems

Approach:
• Solid modeling for finger and pad 

motion/stresses  
• Fluid/solid interaction for leakage evaluation
• Experimental verification

Status:
• Developed a simplified spring-mass-damper 

model to assess seal’s dynamic response.
• CFD-ACE+ (3-D Navier-Stokes code) utilized 

to analyze the thermofluid behavior and to 
obtain stiffness and damping parameters. 

• First prototype built: Testing underway

Program:
NASA/Univ. of Akron Coop. Agreement: 
Dr. Braun (U. of Akron) M. Proctor, Monitor

Axial View of Staggered High/Low 
Pressure Fingers Assembly  (View A-A)

A

A

Downstream Fingers 
With Pads (Low P)

Upstream Fingers
(High P)

Seal Prototype

1 2

Conventional finger seals like brush seals attain low leakage by operating in running contact 
with the rotor (Proctor, et al, 2002).   The drawbacks of contacting seals include wear over 
time, heat generation, and power loss (Proctor and Delgado, 2004).

NASA Glenn has developed several concepts for a non-contacting finger seal.  In one of 
these concepts the rear (low-pressure, downstream) fingers have lift pads (see pads 1 & 2 in 
inset figure) and the upstream (high pressure side) fingers are pad-less, and are designed to 
block the flow through the slots of the downstream fingers.  The pressure-balance on the 
downstream-finger lift-pads cause them to lift.  The front fingers are designed to ride slightly 
above the rotor preventing wear.  Pressure acts to hold the upstream fingers against the 
downstream fingers.  It is anticipated that the upstream/downstream fingers will move 
radially as a system in response to shaft transients.  The NASA Glenn non-contacting finger 
seal was recently awarded a U.S. patent No. 6,811,154. (Proctor and Steinetz, 2004)

Dr. J. Braun of University of Akron is performing analyses and tests of this GRC concept 
through a cooperative agreement (Braun et al, 2003).  University researchers developed an 
equivalent spring-mass-damper system to assess lift characteristics under dynamic 
excitation.  Fluid stiffness and damping properties were obtained utilizing CFD-ACE+ (3-D 
Navier-Stokes code) and a perturbation approach.  These stiffness and damping properties 
were input into the dynamic model expediting the solution to aid in the design of the finger 
and pod configurations.  Dr. Braun and his team subsequently fabricated a first generation 
non-contacting finger seal based on this design.  Early test results showed that the finger seal 
operates without contact with the shaft at pressures up to 15 psid.  Non-contact operation 
was proven via both electric-circuit continuity and high magnification photo-imagery.  More 
details can be found in  Braun et al, 2005 in this Seal Workshop Proceedings.  After 
feasibility tests are complete at the University, seals will be tested under high speed and high 
temperature conditions at NASA GRC.
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Turbine Clearance Management Goal

Develop and demonstrate clearance management technologies to 
improve turbine engine performance, reduce emissions, and increase 
service life

HPT blade

HPT 
disk

CDP air

HPT blade tip seal

Combustor

System studies have shown the benefits of reducing blade tip clearances in 
modern turbine engines, especially the high pressure turbine.  Minimizing blade 
tip clearances throughout the engine will contribute materially to meeting 
NASA’s Ultra-Efficient Engine Technology (UEET) turbine engine project goals 
of reducing fuel burn and emissions.  NASA GRC is examining two candidate 
approaches including rub-avoidance and regeneration.
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Tip Clearance Variation: 
Motivation for Clearance Management

SOA Thermal 
Clearance Control

Active  
Clearance Control 

Cruise
(new engine)

Cruise 
(worn engine)

15-20 mil

30-50 mil ~5 mil 

~5 mil 

0-10 mil ~5 milblade

shroud
Takeoff 

(new engine)
blade 

shroud 

The Problem:
Clearances between the shroud and blade 
tips vary over the operation and life of an 
engine.  Wear and thermal erosion 
increases blade tip clearance. 

Impacts:
• Loss of engine efficiency & increased SFC
• Increase in NOx & CO emissions
• Rise in exhaust gas temperature (EGT)

ACC System Challenges:

Temperature:       Gas path - >2500°F
Cooling air - >1200°F
Case - 600°F (w/ soak back)

Load/Response:   Actuators must react ~2000 lbf 
move ~0.05” in 10 sec

Accuracy:             Current Systems - 0.015-0.020-in
Goal – <0.005-in

Size/Weight:         Small, lightweight ACC systems required
Goal current thermal systems (<100 lbs).

Clearances between the shroud and blade tips vary over the operation and life of an 
engine.  During operation, variations in tip clearance occur primarily due to differences in 
thermal growth of the case and thermal-mechanical growth of the rotor.  Wear of the 
shroud and blade tips due to rubs and thermal erosion increases over the engine's life and 
contributes to permanent increases in blade tip clearance.  As clearances increase, the 
engine runs hotter (less efficient) to achieve the same thrust and speed.

Current ACC systems use fan and compressor air to contract the HPT case flanges, 
varying the shroud diameter, and hence blade-tip clearance during cruise (see thermal 
clearance control illustration above).  These systems cannot respond to fast transient 
events such as takeoff, re-accel, and sudden step altitude changes.  Adequate cold-build 
clearances are chosen to prevent rubbing between the blade tips and shroud seals during 
minimum clearance events.  As such, tip clearances are larger than desired throughout the 
flight profile causing greater fuel burn and emissions and shorter range.  Utilizing our 
proposed fast-response, mechanical systems will minimize clearances throughout flight 
operation, including fast transient events. (See active clearance control illustration above)

There are a number of challenges that must be overcome in developing a successful active 
clearance control (ACC) system.  One of the largest challenges of those listed above is the 
extreme thermal environment the ACC system must operate in.  Gas path temperatures 
exceed 2500°F and shroud cooling temperatures exceed 1200°F.
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• Fuel Savings/ Reduced Emissions (HPT)
– 0.010-in tip clearance is worth ~0.8-1% SFC
– Emissions Reduction (Landing/Takeoff – Ref. GE 

Propulsion 21 Study)
»NOx
»CO

• Increased Cycle Life (Reduced 
Maintenance Costs)

– Deterioration of exhaust gas temperature (EGT) 
margin is the primary reason for aircraft engine 
removal from service

– 0.010-in tip clearance is worth ~10 ºC EGT
– Allows turbine to run at lower temperatures, 

increasing cycle life of hot section components and 
engine time-on-wing (~1000 cycles)

• Increased Efficiency/Operability
– Increased payload and mission range capabilities
– Increased high pressure compressor (HPC) stall 

margin

Benefits of Blade Tip Clearance Control

Clearance Control Technology 
Promotes High Efficiency and 
Long Life
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Increased 
Time-on-
Wing

Time

Engine without
clearance control  
technology:
Shorter service life 

FAA  EGT Limit

Engine with
clearance control  
technology:
Longer service life

Blade tip clearance opening is a primary reason for turbine engines reaching their 
FAA certified exhaust gas temperature (EGT) limit and subsequent required 
refurbishment.  As depicted in the chart on the right, when the EGT reaches the 
FAA certified limit, the engine must be removed and refurbished. By 
implementing advanced clearance control measures, the EGT rises slower (due to 
smaller clearances) increasing the time-on-wing.

In summary, benefits of clearance control in the HPT turbine section include 
lower specific fuel consumption (SFC), lower emissions (NOx, CO), retained 
exhaust gas temperature  (EGT) margins, higher efficiencies, longer range 
(because of lower fuel-burn) (see General Electric Report, 2004 and Lattime et al, 
2002).  Benefits of clearance control in the compressor include better compressor 
stability (e.g. resisting stall/surge), higher stage efficiency, and higher stage 
loading.  All of these features are key for future NASA and military engine 
programs.
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Active Clearance Control Concept & Evaluation Test Rig

Heat Inputs:
+ Radiant
+ Air Supply

Chamber

Seal 
carrier 
assembl
y

Actuators
Gen 1: servo-hydraulic

Purpose:
• Evaluate actuator concept 

response and accuracy under 
appropriate thermal (to 1500°F) 
and pressure (to 120 psi) 
conditions.

• Evaluate clearance sensor 
response and accuracy

– Capacitance
– Microwave

• Measure secondary seal leakage 
due to segmented design and case 
penetration.

Advanced
Clearance 
Sensors

NASA GRC is developing a unique Active Clearance Control (ACC) concept and 
evaluation test rig. The primary purpose of the test rig is to evaluate actuator 
concept response and accuracy under appropriate thermal (to 1300+F) and 
pressure (up to 120 psig) conditions.  Other factors that will be investigated 
include: 

•Actuator stroke, rate, accuracy, and repeatability

•System concentricity and synchronicity

•Component wear

•Secondary seal leakage

•Clearance sensor response and accuracy

The results of this testing will be used to further develop/refine the current 
actuator design as well as other advanced actuator concepts.  More details 
regarding this test rig can be found in Lattime and Steinetz 2005 in this Seal 
Workshop Proceedings, and Lattime et al, 2003.
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ACC Test Rig Details

Multiple independently controlled 
actuators permit either axisymmetric or 
asymmetric control

radiant 
heater

inlet air 
(Phigh)

exhaust air 
(Plow)

chamber

seal carrier

proximity 
probe

footactuator 
rod

main 
housing

chamber 
support tubeactuator 

movement

chamber 
metal TC’s

chamber air 
TC

flow 
deflector

actuator 
mount

radiant 
heater

inlet air 
(Phigh)

exhaust air 
(Plow)

chamber

seal carrier

proximity 
probe

footactuator 
rod

main 
housing

chamber 
support tubeactuator 

movement

chamber 
metal TC’s

chamber air 
TC

flow 
deflector

actuator 
mount

Axisymmetric Asymmetric

turbine wheel
turbine shroud

turbine wheel
turbine shroud

ACC Test Rig fabrication complete
(rig assembly at vendor)

The ACC test rig under development utilizes nine independently controlled 
actuators.  This will permit assessment of both axisymmetric control and 
asymmetric control.  Because of engine thermal and structural non-uniformities, 
engine case structures can become egg-shaped.  Under these circumstances, 
asymmetric control strategies would permit more uniform clearances around the 
circumference.

The ACC test rig fabrication has been completed, as shown in the lower right 
figure.  However, the hydrotest performed revealed some weld cracks that are 
currently being investigated.
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NASA GRC Structural Seal Development Goals

Develop hot (2000-
2500+°F), flexible, dynamic 
structural seals for 
ram/scramjet propulsion 
systems (TBCC, RBCC)

Develop reusable re-entry 
vehicle control surface 
seals to prevent ingestion 
of hot (6000 °F) boundary 
layer flow

Example: X-37;  X-38 CRV

Control
Surface Seals

ISTAR Engine
Inlet Ramp Seal

LRC

TBCCRam/Scramjet Engines

RBCC

NASA GRC is developing advanced structural seals for both propulsion and 
vehicle needs by applying advanced design concepts made from emerging high 
temperature ceramic materials and testing them in advanced test rigs. See Dunlap 
2005, et al, and Finkbeiner 2005, et al in this Seal Workshop Proceedings and 
Dunlap 2004a, b, et al and DeMange 2004, et al for further details.
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FALCON Hypersonic Vehicle Seal Development

• Objective: Develop high 
temperature seals for control 
surfaces and access doors on 
future hypersonic vehicles

• Requirements
– Temperature: Extreme
– Life: Reusable
– Mission duration: Less than 2 hrs

• Approach
– Identify and develop high 

temperature seals and preload 
devices

– Perform critical function 
performance tests at GRC

– Perform arc jet tests on leading 
concepts at JSC

• Partner organizations: DARPA, 
Lockheed Martin

Model of GRC seal arc jet test fixture

NASA GRC is working under DARPA sponsorship to develop control surface 
seals for future hypersonic weapon systems under a program known as FALCON.

In this program we plan on identifying and developing seals and preloader system 
that can meet the expected temperatures and pressures.  We will perform critical 
function performance tests utilizing our new test capabilities described on the next 
chart.  Those concepts that meet functional requirements will then be tested in an 
arc jet environment at NASA JSC.  We will use an arc jet test fixture that can 
subject candidate seals and ceramic matrix composites to simulated hypersonic 
flight conditions.  

A unique feature of this new test fixture is the ability to asses the effects of flap 
motion on seal performance during arc jet testing.  More detail regarding this 
fixture can be found in Finkbeiner, et al, 2004 and Finkbeiner, et al 2005 in this 
Seal Workshop Proceedings.
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Example Structural Seals Being Investigated

Ceramic Wafer Seal
• High temperature operation: 2500+˚F
• Low Leakage
• Flexibility: Relative sliding of adjacent wafers 

conforms to wall distortions
• Ceramic material lighter weight than metal 

system
• Tandem seals permit central cavity purge 

(cooling)

Braided Rope Seal
• High temperature operation: 2400+°F
• Flexible: seals & conforms to complex 

geometries
• Hybrid design (ceramic core/superalloy wire 

sheath) resists abrasion
• Tandem seals permit central cavity purge 

(cooling) 

NASA GRC’s work on high temperature structural seal development began in the 
late 1980’s during the National Aero-Space Plane (NASP) project. GRC led the 
in-house propulsion system seal development program and oversaw industry 
efforts for propulsion system and airframe seal development for this vehicle. 

Two promising concepts identified during that program included the ceramic 
wafer seal (Dunlap, 2004a et al and Steinetz, 1991) and the braided rope seal 
(DeMange, 2004 et al, Steinetz and Adams, 1998) shown here.  By design, both of 
these seals are flexible, lightweight, and can operate to very high temperatures 
(2400+˚F).  Both types of seals require some form of high temperature preload 
system.  A high temperature canted coil spring is shown behind the seals shown.  
More information on the features and benefits of the canted coil spring can be 
found in Dunlap et al, 2004b and Oswald et al 2004 and Oswald 2005, et al in this 
Seal Workshop Proceedings.  Refractory metals and oxygen resistant coatings 
being considered for the spring can be found in Paquette, 2005 in this Seal 
Workshop Proceedings.

A second type of preload system is also under development at GRC for textile 
based thermal barriers.  A spring tube knitted out of Rene ’41 shows greater 
resiliency at both 1500° and 1750°F than if made of the conventional Inconel X-
750 material.  (Taylor et al, 2004 and in Taylor et al, 2005 in this Seal Workshop 
Proceedings.)
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Hot Compression/Scrub Seal Test Rig: Overview

Load 
frame

Laser extensometer

3000 °F 
furnace

Seal

Seal 
holder

Wafer 
seals

Seal 
holder

Inconel or Shuttle tile 
rub surfaces

NASA GRC has installed state-of-the-art test capabilities for evaluating seal 
performance at temperatures up to 3000 °F (1650 °C). This one-of-a-kind 
equipment is being used to evaluate existing and new seal designs by simulating 
the temperatures, loads, and scrubbing conditions that the seals have to endure 
during service.  The compression test rig (upper left photo) is being used to assess 
seal load vs. linear compression, preload, & stiffness at temperature.   The scrub 
test rig (middle photo) is being used to assess seal wear rates and frictional loads 
for various test conditions at temperature.  Both sets of fixtures are made of 
silicon carbide permitting high temperature operation in air. 

The test rig includes: an MTS servo-hydraulic load frame, an ATS high 
temperature air furnace, and a Beta LaserMike non-contact laser extensometer, 
and the special purpose seal holder hardware.  Unique features of the load frame 
include dual load cells (with multi-ranging capabilities) for accurate measurement 
of load application,  dual servo-valves to permit precise testing at multiple stroke 
rates (up to 8 in./s.), and a non-contact laser extensometer system to accurately 
measure displacements.  
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Shuttle Main Landing Gear Door Seal Tests

• Objective: Perform flow and compression 
tests on Shuttle main landing gear (MLG) 
door environmental seal at different 
compression levels

• Why important?
– JSC using data to determine acceptable seal 

gap range that can be verified each time MLG 
doors are closed for flight

– Concerned about long term seal creep; need 
way to predict when to change out seals

• Two phases of testing
– Phase I (Summer 2004): Flow tests on “as-

received” seals
– Phase II (1Q FY05): 

» Flow tests on “flown” seals
» Compression tests on “flown” and “as-

received” seals including 30-day 
compression test

At the request of NASA Johnson Space Center (JSC), a series of tests are being conducted by 
the Seal Team at GRC on the Shuttle main landing gear (MLG) door environmental seal in 
support of the Shuttle Return-to-Flight Program. This includes both flow tests and 
compression tests on the seals at different compression levels. JSC is using the data to 
determine an acceptable seal gap range that can be verified each time the MLG doors are 
closed for flight. They are also concerned about the effects of long-term creep when the seal 
is compressed for extended periods of time. The seal takes on a permanent set under these 
conditions and may not stay in contact with the opposing sealing surface at all times. JSC 
would like to determine a way to predict when the seals need to be replaced to avoid possibly 
dangerous situations that could occur if they take on too much permanent set.

This work has been divided into two phases of testing. This past summer the Seal Team 
completed a series of flow tests for JSC on samples of the “as-received” seal that had not yet 
flown on the Shuttle. Upon recently inspecting the MLG door environmental seals installed 
on several of the Shuttle orbiters, JSC discovered that they had taken on a set and were 
permanently compressed. JSC asked the Seal Team to repeat the sequence of leakage tests on 
these “flown” seals to determine how much flow gets past them if the seals do not stay in 
contact with the sealing surfaces in their permanently-compressed state. JSC has also 
requested that a series of compression tests be performed on as-received and flown seals to 
determine how much resiliency they have in each condition. A 30-day compression test will 
also be performed to evaluate the effects of long-term seal creep on seal resiliency.
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Shuttle MLG Door Seal Tests – Phase I Results

• Performed series of flow tests on 
“as-received” seals at different 
compression levels and gap 
sizes

• Seal: Molded silicone rubber 
tadpole wrapped with Nomex 
fabric

• Amount of flow past seals 
decreased as:

– Amount of compression 
increased

– Gap size decreased

• Shared results with JSC to input 
into their models

• Tests will be repeated using 
“flown” seals in Phase II tests

Main landing gear door environmental seal

Flow Results
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In Phase I, a series of successful flow tests were conducted on the “as-received”
seals at different compression levels and gap sizes. Samples were leak tested at 
pressures up to 14.7 psid.  This seal is currently produced by Northrop Grumman 
and consists of a silicone (ZZ-R-765, Class IIIa, Grade 50) core and tail which are 
wrapped with Nomex fabric. As expected, the amount of flow past the seals 
decreased as the amount of compression on the seals was increased and the gap 
size decreased. A final report was completed and forwarded to JSC for review and 
further analysis. These flow tests will be repeated in Phase II using “flown” seals 
that were removed from the Shuttle.
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Shuttle RCC Leading Edge Permeability Tests

• Objective: Measure permeability of Shuttle leading edge reinforced carbon/carbon 
(RCC) material (coated & uncoated) in support of Return-to-Flight program

• Why important?
– Material permeability determines amount of hot gas that can pass through leading edge 

and into cavity behind it

– JSC using permeability values for carbon/carbon oxidation calculations under reentry 
conditions

Individual leading edge panel

The GRC Seal Team is also supporting the Return-to-Flight program by 
measuring the permeability of the reinforced carbon/carbon (RCC) material that 
makes up the Shuttle leading edges. This material is being evaluated in both 
coated and uncoated states to determine how the coating affects RCC 
permeability. These tests are important because the permeability of this material 
determines how much hot gas is able to pass through the leading edge and into the 
cavity behind it where lower-temperatures structures are located. JSC is also 
planning to use the permeability values that GRC records to calculate oxidation of 
the RCC material under reentry conditions.
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Shuttle RCC Leading Edge Permeability Tests

• New test fixture used to 
measure permeability of porous 
and semi-porous materials 
based on data recorded during 
leak decay testing

• Automated data system tracks 
pressure decay vs. time

• Data used to calculate mass 
flow and permeability

• Initial results for coated RCC 
specimen show good correlation 
in mass flow vs. ΔP between 
GRC data and data recorded by 
Vought in 1980

Pressure transducers
Pressurized cylinder in water 

bath (for temp. control)
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To perform these tests, GRC has installed a new test fixture that is being used to 
measure material permeability based on data recorded during leak decay tests. 
During these tests, a cylinder upstream of the test specimen is pressurized to a 
desired pressure. This pressure is then allowed to decay as air flows through the 
test specimen. An automated data acquisition system monitors the pressure decay 
versus time, and this data is then used to calculate the amount of mass flow 
through the specimen and the permeability of the material. Initial results for a 
coated RCC specimen have shown good correlation in the amount of mass flow 
through the specimen versus the pressure drop across the specimen when 
comparing GRC data to data presented in a report by Vought in 1980. The next 
step is to test an uncoated specimen and compare its permeability to that of the 
coated specimen.
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Seal Development for Advanced Docking/Berthing System
Space Exploration Initiative

• Objective: Support NASA JSC by developing 
seals for advanced docking/berthing system

• Requirements
– Seal diameter: 54 in.
– Near hermetic seal
– Seal-on-seal interface for androgynous system
– Survive space environment (atomic oxygen, UV, 

thermal cycling) for long duration (est. 3-5+ yrs)

• Approach
– Identify candidate elastomeric and metallic seals
– Perform coupon-level and small-scale 

environmental exposure and flow tests
– Perform mid-scale flow tests before and after 

environmental exposure (incl. variable gap, 
offset, hot and cold, seal-on-seal)

– Down-select between competing concepts
– Support scale-up and thermal-vacuum system-

level tests at MSFC
Seal-on-seal interface

Docking/
Berthing
System

NASA plans on developing an advanced docking and berthing system that would 
permit any vehicle to dock to any on-orbit station or vehicle, as part of NASA’s 
new Exploration Initiative.  (More detail on this new docking and berthing system 
can be found in Robertson 2005, in this Seal Workshop Proceedings.)  To meet 
this “androgynous” operational goal, a seal-on-seal interface is required, as 
depicted in the lower graphic.

GRC will be supporting JSC in developing seal technology for this seal interface.  
Any seal developed must meet the stringent requirements identified including 
near-hermetic operation, prevent seal pull-out and resist space environments 
(atomic oxygen, UV, radiation and thermal cycling) for five plus years,  amongst 
others.  An evolutionary development approach has been identified as outlined 
above.
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Solid Oxide Fuel Cells and NASA Applications

Auxiliary Power Units (APU)
• Greater efficiency than traditional 

turbine APUs
• Aviation fuel capable and facilitates 

transition to H2 based systems
• Up to 20% Ground / Landing-Take-

Off aircraft NOx reduction
• About 20 dB noise reduction at the 

gate
Net reaction: 2H2 + O2 → 2H2O

Electrolyzer
• Night time power-production
• “Reversed” cell operation can create

– Breathable Oxygen
– Fuel for return-to-Earth

Unmanned Aerial Vehicles
• Increased fuel economy 

– More time aloft for mission
• Emissions reduction

How Does it Work?

Fuel Cell APU

Turbine APU

A fuel cell is an energy conversion device that generates electricity and heat by 
electrochemically combining fuel and oxidizer via an ion-conducting electrolyte.  
The electrochemical reaction is more attractive than combustion since the process 
is more efficient and less polluting.  Solid Oxide Fuel Cells (SOFCs) are unique in 
that they are fuel flexible, using hydrogen, carbon monoxide, natural or coal gas, 
or low-sulfur jet fuel as the reactant.

NASA has three potential applications for SOFCs... (1) Commercial aircraft 
would benefit greatly by the substitution of SOFC-powered auxiliary power units 
(APUs) with (a) increased efficiency at both ground idle and in cruise, (b) reduced 
emissions of NOx, SOx, and particulates, (c) potentially greater power generating 
capability at altitude, and (d) gate noise reduction.  (2) A hydrogen powered 
unmanned aerial vehicle (UAV) capable of flying for up to 10 days and solar-
electric aircraft capable of multiple-week duration flights are both candidates for 
SOFC propulsion power.  (3) A reversible SOFC could provide Space Exploration 
Initiative missions with power generation for base operations, fuel generation for 
the return trip, and breathable oxygen for astronaut explorers.

NASA/CP—2005-213655/VOL1 25



NASA Glenn Research Center
Seal Team

Fuel Cell Seal Development

What are the problems with SOFC 
seals?

• Coefficient of Thermal Expansion 
(CTE) mismatch between the adjacent 
components causes relative 
displacements and seal damage

• Loss of seal integrity reduces SOFC 
performance due to

– Fuel/air leakage
– Electrode poisoning

Approach: Pursue a multidisciplinary 
development effort including:

• Thermo-structural analyses
• Novel seal design concepts 
• Advanced materials
• Experimentation

Test Apparatus Capabilities:
– Temperatures (up to 1100°C)
– Temperature transients (approx. 

1°C/second)

– Gases (helium, air, and other non-
combustibles)

– Gas pressures (up to 2.5 psig)

– Mechanical loads (up to 1000 lbf)

Seal

Gas 
Supply

Ceramic/ Metal 
Sealing Surfaces

Planar SOFCs require high temperature hermetic seals to (1) prevent mixing of the 
fuel and oxidant within the stack, (2) prevent parasitic leakage of the fuel from the 
stack, (3) prevent contamination of the anode by air leaking into the stack, (4) 
electrically isolate the individual cells within the stack, and (5) mechanically bond 
the cell components.  The sealing challenges are aggravated by the need to 
maintain hermetic boundaries between the different flow paths during transient 
(heating / cooling) operation with vibration loads.

NASA GRC is taking a multidisciplinary approach to developing SOFC seals.  
Thermo-structural analyses, novel seal concept development, advanced materials 
development, and experimental leakage determination are being simultaneously 
pursued to solve the sealing challenges.

A leakage facility has been built at NASA GRC to accurately measure any 
leakage through SOFC seals while simultaneously exposing the seal to an 
environment that closely resembles that of an operating fuel cell.  Capable of 
heating to temperatures as high as 1100 Celsius at ramp rates of approximately 1 
degree Celsius per second, the system measures the leakage of any non-
combustible gas while maintaining compressive mechanical loads on the seal.
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• Seals technology recognized as critical in meeting next generation 
aero- and space propulsion, power and space vehicle system goals

• Performance 
• Efficiency 
• Life/Reusability
• Safety
• Cost

• NASA Glenn is developing seal technology and/or providing technical 
consultation for the Nation’s key aero- and space advanced 
technology development programs.

Summary

NASA Glenn is currently performing seal research supporting both advanced 
turbine engine development and advanced space vehicle/propulsion system 
development.  Studies have shown that decreasing parasitic leakage through 
applying advanced seals will increase turbine engine performance and decrease 
operating costs.  

Studies have also shown that higher temperature, long life seals are critical in 
meeting next generation space vehicle and propulsion system goals in the areas of 
performance, reusability, safety, and cost.

NASA Glenn is developing seal technology and providing technical consultation 
for the Agency’s key aero- and space technology development programs.
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NASA Seals Web Sites

• Turbine Seal Development
– http:/www.grc.nasa.gov/WWW/TurbineSeal/TurbineSeal.html

» NASA Technical Papers

» Workshop Proceedings

• Structural Seal Development
– http://www/grc.nasa.gov/WWW/structuralseal/

» NASA Technical Papers

» Discussion
» Seal Patents

– http://www/lerc.nasa.gov/WWW/TU/InventYr/1996Inv_Yr.htm

The Seal Team maintains three web pages to disseminate publicly available 
information in the areas of turbine engine and structural seal development.  Please 
visit these web sites to obtain past workshop proceedings and copies of NASA 
technical papers and patents. 
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The Vision for Space Exploration

Implement a sustained and affordable human and 
robotic program to explore the solar system and 
beyond

Extend human presence across the solar system, 
starting with a human return to the Moon by the year 
2020, in preparation for human exploration of Mars 
and other destinations;

Develop the innovative technologies, knowledge, and 
infrastructures both to explore and to support decisions 
about the destinations for human exploration; and

Promote international and commercial participation in 
exploration to further U.S. scientific, security, and 
economic interests.

THE FUNDAMENTAL GOAL OF THIS VISION IS TO ADVANCE U.S. 
SCIENTIFIC, SECURITY, AND ECONOMIC INTEREST THROUGH A ROBUST 

SPACE EXPLORATION PROGRAM

• On January 14th, the President announced that we were going back to the moon, 
continuing to Mars and Beyond.

• The plan to accomplish this is laid out in the Vision document

• Read “Fundamental Goal” Statement on chart

• Scientific – From a scientific standpoint, exploration and science leads to 
discovery, which is what drives us

• Security – Security in this sentence is not homeland security, but rather 
allowing other gov’t agencies to leverage our technologies to further their 
objectives.

• Economic Interest - For less than 1% of the budget, we have improved the 
quality of life and the aerospace industry has a major economic impact on the 
nation. We know we will have the same type of return through exploration and 
discovery in the future, we just can’t define what specifically it will be. 

• The key word here is sustainability – we are in it for the long haul – we have to 
get through 30 budget cycles, 8 presidential elections and multiple congresses. We 
need to be credible. When you have credibility and affordability, you have 
sustainability. 
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• Objectives

– Implement a sustained and affordable human and robotic program

– Extend human presence across the solar system and beyond

– Develop supporting innovative technologies, knowledge, and 
infrastructures

– Promote international and commercial participation in exploration

• Major Milestones

– 2008: Initial flight test of CEV

– 2008: Launch first lunar robotic orbiter

– 2009-2010: Robotic mission to lunar surface

– 2011 First Uncrewed CEV flight

– 2014: First crewed CEV flight

– 2015: Prometheus 1 - Jupiter Icy Moon Orbiter (JIMO)

– 2015-2020: First human mission to the Moon

Key Elements of the Vision

➘ We have identified a number of transforming changes discussed in our Strategic 
Plan that are important ingredients for fulfilling our Vision & Mission

➘ Highlight SUSTAINED being through the future not just for set amount of 
years.  

➘ Establish credibility by achieving  these milestones

➘ On time and within budget

➘ Sept 04 a RFI was sent out and over 1000 concepts were received for CEV and 
11 selections have been made

➘ Talk to timeline (major milestones)

➘ 2012 -2015 Maintaining the importance of Nuclear propulsion research through 
JIMO 

Other questions if asked: 

Difference from OSP to CEV is that OSP was low orbit crew return vehicle to 
ISS, but CEV is planned to travel to the moon and mars.
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Realizing the Future
Earth, Moon, Mars, and Beyond

Foster and sustain the exploration culture across generations

• Open new frontiers

• Continuing and inspiring

• A constant impetus to educate and train 

Identify, develop, and apply advanced technologies to…

• Enable exploration and discovery

• Allow the public to actively participate in the journey

• Translate the benefits of these technologies to improve life on Earth

Harness the brain power

• Engage the nation’s science and engineering assets

• Motivate successive generations of students to pursue science, math, 
engineering and technology

• Create the tools to facilitate broad national technical participation
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-This is a snap shot of the activities that NASA is engaged in across the agency

-Across the Agency everyone is involved and an intricate part of the success for 
the Vision

*Possible tailoring to the centers as what piece of the plan each center is involved 
with

This chart shows how comprehensive the Vision is. It encompasses Science, 
missions – human and robotic – and includes the Exploration Systems Mission 
Directorate’s portion.
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Preparing for Mars Exploration
Moon as a test bed to reduce risk for future human Mars 

missions
• Technology advancement reduces mission costs and 

supports
expanded human exploration

• Systems testing and technology test beds to develop 
reliability 
in harsh environments. 

• Expand  mission and science surface operations
experience and techniques

• Human and machine collaboration:  Machines serve as an 
extension of human explorers, together achieving more than 
either can do alone

• Breaking the bonds of dependence on Earth:  (e.g./Life 
Science/Closed loop life support tests)

• Power generation and propulsion development and testing
• Common investments in hardware systems for Moon, Mars 

and other space objectives

-Traveling to the Moon is important as it enables us to set test beds to go to Mars 
to minimize risk.  

-Establishing an infrastructure by going to the Moon will build sustainability, 
affordability, and establish credibility. 

-Reiterates points outlined

Questions:

Why are we going to the Moon and Mars?  Resources. Life Science.

NASA/CP—2005-213655/VOL1 36



Evolutionary Acquisition
INCREMENT 2

INCREMENT  3

• Urgency of requirement

• Maturity of key technologies

• Interoperability, supportability, and affordability of 
alternative acquisition approaches

• Cost/Benefit of evolutionary vs. single step approach

Key ConsiderationsKey Considerations

Single Step to Single Step to 
Full Capability ?Full Capability ?

OROR

Evolutionary Acquisition

• Spiral Development: The end-state requirements are not known at program initiation.  Those 

requirements are refined through system development and demonstration, risk management and 
continuous user feedback

• Incremental Development: The end-state requirement is known, and that requirement is met 
over time by developing several increments, each dependent on available mature technology and 

resources

Evolutionary Acquisition

• Spiral Development: The end-state requirements are not known at program initiation.  Those 

requirements are refined through system development and demonstration, risk management and 
continuous user feedback

• Incremental Development: The end-state requirement is known, and that requirement is met 
over time by developing several increments, each dependent on available mature technology and 

resources

Evolutionary Acquisition allows us to deliver a capability in increments, understanding 
that there is a need for future capability improvements. It allows us to time phase our 
requirements and integrate matured technologies into future increments to provide ever 
increasing capabilities. It is a method that allows for requirement uncertainty due to the 
inherent phasing of the development.

Evolutionary Acquisition directly contrasts the single step acquisition processes. In the 
single step acquisition process all of the requirements and the end state must be known up 
front. This has led to long lead acquisitions and changing requirements that are not able 
to benefit from maturing technology.

The two approaches utilized in evolutionary acquisition include Spiral Development and 
Incremental Development. These two approaches need not be used in separation from 
each other. In our case we are using the two in combination. We are acquiring the 
systems necessary to go to Mars using spiral development. We do not know the end point 
of the system capabilities required to go to Mars, but we do know that we need to have 
crewed flight, which is the first spiral. Within that spiral we have an increment to develop 
a CEV. We also know we will have a spiral to take us to the moon between 2015 and 
2020. The capabilities required for this spiral are still being defined. Once they are 
defined one or more increments that are managed as unique acquisitions will be used.
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Strategy-to-Task-to-Technology 
Process

Required Features &
Characteristics

Nation’s Vision

NSPD

Mission Concepts &
Requirements

Science Objectives &
Concepts of Operations

Tasks & Technology
Roadmaps

PROGRAM

MISSION

ENGINEERING

DeficienciesDeficiencies

TradeTrade
StudiesStudies

Investment Plan

Operational 
Environments

Available 
Technologies

PROGRAM

MISSION

OPERATIONS

Modeling& Modeling& 
Simulation Simulation 

Modeling/Simulation

System
Requirement
Documents

Affordable
System Design
& Development

Specific program tasks derive from management rigor – a disciplined approach to 
management that includes an acquisition and investment plan targeted toward 
building new capabilities and engaging in essential research and development. 
The process of flowing from our strategy to program tasks is iterative. Our 
strategy for ensuring affordable and sustainable design and development requires 
extensive modeling and simulation of concepts and their interactions within a 
range of anticipated operational environments. Cost, performance, and risk data 
are evaluated iteratively to determine the optimal:

•Requirements set and priorities 

•Design for desired capabilities

•Acquisition plan for new capabilities

•Investment plan for research and technology development.

Like our overall efforts, this strategy-to-task process is spiral in nature in that, 
through repeated cost analysis and performance options, trends and results –
including progress in developing specific capabilities and progress in maturing 
essential technologies – we spiral towards the deployment of new transformational 
capabilities in a manner that is safe, effective, and affordable.

NASA/CP—2005-213655/VOL1 38



Requirements and Technology
Investment Flow

Requirements

Prometheus

Constellation

Technology 
Maturation

Directorates

Directorates

Prototype Block I Block IISpiral Development:

Advanced 
Planning

Technologies 

Mature
Design

Slide shows the process and flow kicked off by requirements definition. The other 
directorates and advance planning will provide requirements. This flow helps 
develop and identify the technology in which we need to invest. Once the 
technologies are to a point of maturity, they can be integrated.

Analogy: If a car company wants to release a new model, they first build a 
prototype to be used as their concept car. When the concept is ready for 
manufacture, it moves to Block 1, which is similar to the first release of the car to 
the general public – say, a 2005. After gathering data on things that can be added, 
improved, repaired, or streamlined, the car manufacturer begins work on the next 
model, most likely to be released in 2006. This continuous improvement helps 
bring the design closer to maturity in a logical, controlled fashion based upon 
solid data. In addition, consumers who get a positive feeling from the 2005 model 
will tell friends and family and the market will be more willing to invest 
additional funds in a new, improved 2006 model. This allows the manufacturer to 
add more features and options to their car, just as NASA will be able to add more 
and more technology to projects as they evolve. 
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Cross-Agency, System of Systems Integration
(Lunar Architecture – Illustrative Example Only)

QuickTime™ and a
Graphics decompressor

are needed to see this picture.

Transit and
Launch Systems

Crew
Transport

Launch

Crew
Support

QuickTime™ and a
Graphics decompressor

are needed to see this picture.
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VisionVision
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OT&E

BB CC

Concept 
Refinement

Concept
Decision

Program
Initiation

Spiral nth?Spiral nth?

VisionVision

System of Systems
Integration

Explain that each of the areas mentioned are subject to their own individual 
spirals, such as the phases involved in creating the CEV. 

This slide exhibits the system of systems approached in ESMD, but for all of the 
technology and technical prowess, it is missing one key element. (Note: 
recommend adding picture of human using animation on this slide.) Humans are a 
key piece of functionality in any NASA system of systems.
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Constellation Systems (Crew Exploration 
Vehicle)
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Shows the systems engineering rigor of the program 

Shows overall integration of all spirals

Spiral develop and milestones within each spiral, rigorous implementation plans 

How systems engineering permeates throughout each spiral and between spirals
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Exploration Systems Mission Directorate

Assistant AA
Administration

Deputy AA
Systems 
Integration

Business
Operations

Research &
Tech Development

Capability
Development

Procurement

Deputy AA
Dev 

Programs/PEO

Deputy AA
Research
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Program/Risk 
Assessment

Vacant

Strategic Planning
P. Sunshine

Education
B. McClain

ISS Program
Scientist

D. Thomas

SI Manager
L. Guerra

Sr Advisor
T. Lomax

Deputy PEO
M. Hecker

Outreach/
Congressional

Liaison
D. Ladwig

Info Mgmt &
Operations
C. McCaslin Centennial  Challenges

B. Sponberg

Associate Administrator (AA) 
for 

Exploration Systems 

Deputy AA
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Development Programs

for Exploration Systems
Deputy AA

Development Programs/ 
Program Executive Officer (PEO)

CEV

Space Trans
Systems

Supporting 
Surface Systems

Supporting
In-space Systems

Nehman’s Acq
Bus to Hell

Exploration Systems
Research & Tech 

Human System
Research & Tech

Note 1 Transition Programs: X-37,  Orbital Express,, DART, PAD, NGLT, OSP

Research & 
Technology

Development 

Hubble
Service
Mission

Constellation
Systems

Transition
Programs1

Nuclear Technology 
& Demonstration

Advanced Systems
& Technology

Jupiter Icy 
Moons Orbiter

Capability Development

Research &Technology Development

Our Development Programs Division develops capabilities and their supporting 
technologies to sustained and affordable human and robotic exploration. Our 
Development team is responsible for implementing the requirements and 
developing the systems to realize the Vision. 

This chart demonstrates that the things that we are working in the Research & 
Technology Development and Nuclear Technology & Demonstration directly feed 
into Constellation System
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It is affordable and sustainable

• Paced by experience, technology readiness and flexibility

• Establishing Stepping Stones 

• Developing Building Blocks –technology to enable each successive 
step

• Employing New Approaches – spiral development – build and test 

• Fiscal Acquisition Management – Disciplined

It is focused and achievable

• Responds to the nation’s call for a long term space vision

• We have an integrated agency approach 

• We have the talent, experience and leadership – recent successes 
and demonstrated management reforms

• We have the passion and commitment to succeed

-

One Step at a Time

We are implementing the Vision one step at a time
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Major Challenges

• Integration of pieces
BAAs / Trades / RFP / Acq Plan / Budget / International

Detailed Plan - Disciplined Execution

• Refinement of Organization to Execute
Identify Needs -- Recruit

• IT Tools to Manage
Support In-House / Buy

• Cross Agency Integration with Industry
Stick to Plan -- Communicate

• Maintain Credibility with all Shareholders
• Sustainability with Budget Changes

Plan Contingencies
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Thoughts

• We Have a Great Team – Greater Than the Sum of Its Parts

• We Are Putting Together “World Class” Programs and Processes

• We Are Substantially Changing the Way NASA Does Business by Infusing 

Management Rigor, Consistency of Purpose, and Disciplined Processes

• Tremendous Support From Our Administrator, the White House and Growing 

Support in Our Congress

• Great Enthusiasm From US and International Industry to Participate

• We Have the Privilege to Be Working on Programs of High National Importance 

on Behalf of All Americans

• We Are Inspiring Our Children - the Next Generation of Americans That Will 

Pick up the Baton of Exploration

• United Support of Vision will Ensure Sustainability
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OVERVIEW OF THE ULTRA-EFFICIENT ENGINE TECHNOLOGY  
AND QUIET AIRCRAFT TECHNOLOGY PROJECTS 

 
Carol Ginty 

National Aeronautics and Space Administration 
Glenn Research Center 

Cleveland, Ohio 
 

November 9, 2004

Carol Ginty
Vehicle Systems Projects Office

Acting Deputy Chief
NASA GRC, Cleveland, Ohio

Overview of the 
Ultra-Efficient Engine Technology 

and 
Quiet Aircraft Technology 

Projects
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The Ultra Efficient Engine Technology (UEET) program is a NASA supported program to develop and 

demonstrate technology for quiet, fuel-efficient, low-emissions next generation commercial gas turbine aircraft 
engines. An essential role for achieving lower noise levels and higher fuel efficiencies is played by the power 
transmission gear system connected to the fan. Reduction geared systems driving the fan will be subjected to inertia 
and gyroscopic forces resulting in extremely high angular and radial misalignments. Because of the high 
misalignment levels, compartment seals capable of accommodating angularities and eccentricities are required. Pratt 
& Whitney and Stein Seal Company selected the segmented circumferential carbon seal as the best candidate seal 
type to operate at highly misaligned conditions and developed a test program to determine misalignment limits of 
current segmented circumferential seals. The long-term goal is to determine a seal design able to withstand the 
required misalignment levels and provide design guidelines. A technical approach is presented, including design 
modification to a “baseline” seal, carbon grade selection, test rig configuration, test plan and data acquisition. Near 
term research plans are also presented. 

NASA/CP—2005-213655/VOL1 89



2004 NASA Seal/Secondary Air System Workshop2004 NASA Seal/Secondary Air System Workshop
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Background

Tomorrow’s Engines with Geared Fans will be subjected to 
extreme conditions such as:

• High angular and radial seal misalignments
Gyroscopic loads - angular misalignment

Sun input gear orbiting - radial/eccentric misalignment

• Higher LPC shaft speed; ~10,000 RPM

• Large Diameter Fan Hub

Seals capable of accommodating high misalignment, high rubbing speeds, 

low pressure differentials and large diameters must be developed.

Background information on principal causes of  extreme conditions in Advanced 
Commercial Engines. Such conditions impose on  seals high misalignment, high 
rubbing speed, large diameters and low pressure differentials.
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High Misalignment Carbon Seals

Program Objective

The use of the reduction gear system as the platform for UEET 
demonstration engines will provide revolutionary improvements in
engine performance, weight, size, and noise. Due to high periodic radial 
and angular misalignments introduced into the gear system, high 
misalignment seals are required to provide adequate compartment 
sealing beyond present capability. These seals must also have adequate 
life.

Current Phase Objective

Using data and lessons learned from previous test phases, continue 
testing the advanced seal design to 0.105” with both the baseline material 
and an alternate material.

Overall program objective identifies the need for seals capable of periodic high 
radial and angular misalignment.

The current phase objective is to test an advanced seal design up to 0.105” of total 
misalignment using both the baseline material as well as an alternate material.
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Gear system must be flexibly connected 
between low spool and fan shaft

Geared Turbofan Engine (GTF)

Geared Turbo Fan Provides
• 3%-4% TSFC improvement over conventional turbofan engines.
• 30db noise reduction.

Misalignment seals are located along the flexible shaft between the low spool and 
fan shaft.
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FWD. AIR/OIL
SEAL

REAR AIR/OIL
SEAL

LPC COMPART-
MENT SEAL

Advanced Engine Seal Locations

Angular 
Misalignment

Eccentricity

High Angular Misalignment
High Eccentricity/
Oil Flooding

High Speed / Wear Life

Large Diameter Low Pressure Seal

Seal locations within the forward compartments of the fan drive geared engine. 
Forward air/oil seal represents the location of the highest source of angular and 
radial misalignment.
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Seal Operating Conditions

CURRENT FOCUS

FWD. REAR FDGS/LPC
AIR/OIL SEAL AIR/OIL SEAL COMPARTMENT SEAL

Required Life (hours) 30,000 30,000 30,000

Delta P (psi) <50 <50 40-50

Surface Speed (ft/s) 33 90 345

Buffer Air Temperature (deg. F) 350 350 415

Angular Misalignment (deg) 0.5 0.2 0.1

Eccentricity (inches) 0.005 0.02 0.005

Sealing Diameter (inches) 2.95 2.95 11.2

Type Segmented/ Segmented/ Segmented/
bellows/ other ring/
other other

Seal operating conditions (required life, pressure differentials, speeds, 
misalignment levels and others).

Critical requirements are highlighted.
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LPT Input Shaft Rotation
CCW from rear

A

Detail A

FWD Air/Oil Seal
High Misalignment Seal

LPC Compartment 
Seal

High Misalignment 
Seal

Sun Gear

Fan Drive Gear System must withstand periodic 
misalignments as high as 0.105” due to “g” and gyro loads.

Rear Air/Oil Seal

Fan drive gear systems must withstand periodic misalignments as high as 0.105”
due to “g” and gyro loads.
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Approach

Misalignment Seal Test Rig Program

Stein Seal selected as the seal supplier/tester.

Testing at supplier’s facilities.
Step 1 – Previous Update
• “Baseline” seal design
• Carbon grade “X” - high strength, low modulus.
• Misalignment increased in steps up to 0.020 in. radial & 0.5° angular
Step 2 – Previous Update
• Misalignment increased in steps up to 0.040 in. radial & 0.5° angular
Step 3
• Alternate seal with Carbon grade “X” tested
• Misalignment increased in steps up to 0.105 in. radial & 0.5° angular
• Alternate seal with Carbon grade “Y” tested
• Misalignment increased in steps up to 0.105 in. radial & 0.5° angular

Technical approach of misalignment seal development program. Three main steps 
will be followed starting from “baseline” seal testing.
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High Misalignment Carbon Seals

High Misalignment Test Rig Facility

High Misalignment Test Rig
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Air Side

Oil Side

Rig Bearing

Drive Section

CL

Test Section

Test Seal
Heater

Shim

Pilot RingShim

Shims - angular misalignment
Pilot ring - radial misalignment

A

Detail A

Radially Eccentric 
Runner

Runner

Offset

Seal Rig Imposes Radial and Angular Misalignment

Seal test rig schematics used to impose radial and angular misalignment. Shims 
are used to impose angular misalignment and pilot rings are used to impose radial 
misalignment.
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Carbon Seal Designs

1-Piece Segmented 
Circumferential

(Baseline Design)

3-Piece Segmented 
Circumferential 

(Advanced Design)

Circumferential 
Seal Ring

Seal Housing

Backplate

Retaining Ring

Garter Spring

Compression 
Spring

Back Ring 
Segment

Seal Housing

Backplate

Retaining Plate

Garter Springs

Compression 
Spring

Seal Ring

Retaining Ring

Cover Ring

• 1 Piece design resulted in wear rates 
that exceeded project limit goals.

• Base material (Carbon X) is suspect to 
be inappropriate for this application.

• Alternate design & material need to be 
investigated.

Baseline seal is compose of a one-piece 4 segmented seal. Alternate design is 
composed of a three-piece design, each piece consisting of four segments.
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• Carbon X repeatedly 
exceeds 100 hour wear limit.

1. Excessive coking indicated 
negative wear.

2. Test terminated after two 
attempts resulted in broken 
seal segments.

3-Piece Segmented Circumferential

Back Ring 
Segment

Seal Ring

Cover Ring

100 Hour Wear Limit

100 Hour Wear Limit

1 2

2

Carbon X repeatedly exceeds the 100 hour wear limit goal and testing was 
terminated after multiple failures.

NASA/CP—2005-213655/VOL1 100



2004 NASA Seal/Secondary Air System Workshop2004 NASA Seal/Secondary Air System Workshop

High Misalignment Carbon Seals
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Carbon Y - Radial Wear Results

• All components using Carbon Y 
meets the 100 hour wear limit in 
Radial misalignment tests.

• Carbon Y components exceed 100 
hour wear limit in axial 
misalignment tests. Mounting 
hardware damage identified.

3-Piece Segmented Circumferential

Back Ring 
Segment

Seal Ring

Cover Ring

100 Hour Wear Limit

100 Hour Wear Limit

Carbon Y meets the 100 hour wear limit under purely radial misalignment 
conditions. Seal retaining hardware suffered fatigue and failure during 
combination radial & angular misalignment tests. These failures are to be 
investigated at the potential reasons for the 100 hour wear limit to be exceeded.
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Backplate tang steadily wearing into slot of Retaining Ring. 
Current Seal Housing prohibited design change to increase 
Retaining Ring  to the full thickness of the tang.

Back Ring 
Segment

Seal Housing

Backplate

Retaining Plate

Garter Springs

Compression 
Spring

Seal Ring

Retaining Ring

Cover Ring

Retaining Ring

Backplate

Photos of seal retaining hardware show the wear the occurred during 
misalignment testing.
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Back Ring 
Segment

Seal Housing

Backplate

Retaining Plate

Garter Springs

Compression 
Spring

Seal Ring

Retaining Ring

Cover Ring

Backplate failure during test phase of 
advanced design misalignment tests

Seal Ring wear during test phase of 
advanced design misalignment tests

Backplate Key steadily wore into slot of Back Ring and 
Seal Ring. Modification increased the number of Keys 
from one to two.

Backplate stress crack identified after test with the largest 
combination of Radial and Angular misalignment. 
Modification increased the corner radii at the keys.

Photos of seal and associated retaining hardware show the wear and stress fracture 
that occurred during misalignment testing.
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High Misalignment Carbon Seals

Conclusions
• The baseline design does not meet wear requirements based on Phase II test 

results and should not be further developed.
• The optimized three-piece carbon design is a significant improvement over the 

baseline seal.
• The Carbon Y material appears to offer more consistent results and improved 

wear performance than the baseline Carbon X material.
• Seal retaining hardware on the 3-piece design worn in several instances and 

may explain carbon wear rates that were greater than goal.

Recommendations
1. Seal retaining hardware should be scrutinized and optimized for the three-

piece design.
2. Misalignment tests should be run on the improved seal retaining hardware 

with the three-piece carbon seal, fabricated from Carbon Y, and compared to 
current test results.

3. Upon successful completion of the misalignment tests, durability testing 
should be run on the three-piece carbon seals with improved hardware.

Conclusions identify that baseline seal design should not be further developed. 
Also the 3-piece design is a significant improvement over the baseline design. 
Carbon Y material appears to offer improved wear results from that of Carbon X. 
Further work is needed to improved the seal retaining hardware.

Recommendations are to investigate seal retaining hardware and improve. 
Another battery of tests utilizing Carbon Y and improved retaining hardware 
should be run and compared to the current results.
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Plans for Next Year & Beyond

Optimize seal designs
Fabricate test seals
Radial & angular misalignment tests
Optimized seal durability tests

Oil windback design
UEET demo engine hardware

Oil windback tests

2005 

2006

2007

Plans for continuation include design optimization, durability testing, and 
windback design and testing.
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High Misalignment Carbon Seals

Goal: Develop durable seals with 0.105” misalignment capability.

Schedule:
0.040 Baseline 

Misalignment Tests

Optimize Seal Design

Design & Mfg 
Improved Seal

0.105 Misalignment Tests on 
Baseline & Improved Design

Analysis 
& Report

Assess Current Cir. Seal 
Capability - Mfg. Seals for 
0.040 Misalignment Tests

Fabricate Test 
Seals

Radial & Angular Misalignment Tests Durability Tests

UEET Demo Engine Hardware

Oil Windback Development Tests

Oil Windback Design for High Misalignment Seals

2003

2005

2006

2007

Objective – Development of seals capable of 0.105” misalignment for use in the 
Pratt & Whitney reduction gear system.
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Base Seal - Radial Misalignment Tests
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Step one and two test results indicate wear rates in excess of those desired. 
Unexpected reduction in wear rates at higher levels of misalignment under 
investigation.
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Base Seal - Angular Misalignment Tests
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Step one and two test results indicate wear rates in excess of those desired. 
Unexpected reduction in wear rates at higher levels of misalignment under 
investigation.
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Carbon Seal Wear Damage 
at 0.040” Misalignment

Radial Pad

Radial Lip

Axial Lip

Axial Pad

Anti-rotation slot

Baseline Design Seals

Step one Carbons indicate excessive wear and chipping along the tongue and 
sockets of the segments.
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Commercialization Aspects

Fan Drive Gear System development identified certain technologies as key 
requirements of which, High Misalignment Seals are extremely important.

Geared Turbo Fan Provides:

• 3%-4% TSFC improvement over conventional turbofan engines.

• 30db noise reduction.

Gear System technology also lends itself to Rotorcraft transmissions.

The circumferential seals are Stein Seal designs that are being optimized in 
this program.

The Fan Drive Gear System offers significant advances in the areas of weight 
reduction, noise reduction and fuel consumption.

NASA/CP—2005-213655/VOL1 110



LEAKAGE AND POWER LOSS TEST RESULTS FOR  
COMPETING TURBINE ENGINE SEALS 

 
Margaret P. Proctor 

National Aeronautics and Space Administration 
Glenn Research Center 

Cleveland, Ohio 
 

Irebert R. Delgado 
U.S. Army Research Laboratory 

Glenn Research Center 
Cleveland, Ohio 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Advanced brush and finger seal technologies offer reduced leakage rates over conventional labyrinth seals used 

in gas turbine engines. To address engine manufacturers’ concerns about the heat generation and power loss from 
these contacting seals, brush, finger, and labyrinth seals were tested in the NASA High Speed, High Temperature 
Turbine Seal Test Rig. Leakage and power loss test results are compared for these competing seals for operating 
conditions up to 922 K (1200 °F) inlet air temperature, 517 KPa  (75 psid) across the seal, and surface velocities 
up to 366 m/s (1200 ft/s). 
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Reducing Secondary Air Leakage in Jet Engines

Benefits:
• Higher engine performance

– Decreased specific fuel consumption
– Increased thrust

• Better investment towards performance gain than components, such as
compressors and turbines.

Some Considerations:  Heat Generation and Power Loss
• Changes in engine air temperatures from stage to stage can
negatively affect engine efficiencies.

• Friction from contacting seals increases the amount of torque needed.

• Advanced engines operate at very high temperatures. Excessive heat
generation at the seal could expose downstream components to
temperatures that exceed material capabilities.

Self-explanatory
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Test Results Compared for…

Three Seals:

• 4-Knife Labyrinth

• Brush seal

• Finger seal

Test Rotors:

• 215.9 mm   (8.5 in)

• Grainex Mar-M-247

• CrC (HVOF) coating on o.d.

Initial radial clearance Axial length

229.0 μm  ( .009 in) 11.20 mm  (.44 in)

–96.5 μm  (-.0038 in)          4.27 mm  (.168 in)

–165.0 μm  (-.0065 in) —

Leakage rate, power loss and wear results are compared for 3 seals:  4-knife 
labyrinth seal, a brush seal, and a finger seal.

The labyrinth seal had an initial radial clearance of 229 microns.

Both the brush seal and the finger seal initially had an interference with the rotor.

The radial interference of the brush seal was 96.5 microns.

The radial interference of the finger seal was 165 microns.

The finger seal has an axial length similar to the brush seal.

The axial length of the brush seal is 38 percent of the labyrinth seal.

The 216 mm test rotors used are made of Grainex Mar M-247 and have a chrome 
carbide coating on the o.d.
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Four-Knife Labyrinth Seal

Labyrinth Seal Design Parameters

229 μm

4 knife labyrinth seal has straight thru knife-edges and a radial clearance of 229 
microns.

It is made of Inconel 625.

Only static tests were conducted. 

It was determined that for safe operation at maximum speed and temperature that 
the labyrinth seal would need radial clearance of 305 microns at build.

KTK, an labyrinth seal analysis code, was used to predict the flowrates of this 
larger clearance seal.
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Brush Seal With Flow Deflector 

• Inconel-625 sideplates

• Bristles are:
– Haynes-25
– 102 μm diameter
– At 50° angle to radius
– 675 bristles/cm of circumference

at seal i.d.

• Fence height:  1.27 mm

• Total axial thickness:  4.27 mm

This is the brush seal we tested.

A brush seal is simply an annular pack of bristles sandwiched between two annular 
plates.  This brush seal has a flow deflector on the upstream side to prevent the flow 
from jetting thru the bristles.

The sideplates are made of Inconel 625 and the bristles are made of Haynes-25.

The 102 micron (.004 in) diameter wire bristles are at a 50 degree angle to the radius 
allowing them to deflect away from the rotor as cantilever beams to accommodate 
rotor growth or deflections.

There are 675 bristles/cm of circumference at the seal id and the seal has a fence 
height of 1.27 mm  (.050 in). 

Fence height is the distance from the bristle i.d. to the i.d. of the seal backplate.

Total axial thickness is 4.27 mm (.168 in).
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Finger Seal Design

The finger seal functions similarly to the brush seal.

It is made of AMS 5537, a cobalt-base alloy.

It is comprised of forward and aft coverplates, 2 spacers, and 3 finger elements.

The annular finger elements are made of sheet stock and have a series of cuts 
along the inner diameter to create the fingers.  

These fingers deflect as cantilever beams when loaded by rotor interference due to 
design, thermal or centrifugal growth or rotordynamics. 
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High-Temperature, High-Speed Turbine Seal Rig

All the seals were tested in the High Temperature, High Speed Turbine Seal Rig at 
NASA Glenn Research Center.

Hot air enters the bottom of the test section, passes thru the seal and exits thru the 2 
exhaust lines.

Under some conditions it is necessary to bypass the seal to maintain the test 
temperature.

Seal supply and bypass flow rates are measured.  The difference of these 2 flows is the 
seal leakage rate.

An air turbine is used to power the rig.

The torquemeter is located between the turbine and the test rig.

A balance piston is used to control the thrust loads on the bearings due to the pressure 
differential acting on the seal test rotor.
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Test Seal Configuration and Location of Research Measurements

Here is the (Point out) the Test Rotor, Seal holder, and test seal.

The test seal is held in place by the spacer and the seal clamp.

For some tests proximity probes were mounted in the spacer to measure changes 
in clearance.

A metal c-seal is used to prevent flow from bypassing the test seal.

Inlet and exit pressures and temperatures are measured as well as the seal 
backface temperature.
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Flow Factor

m = air leakage flow rate, kg/s.

Tavg = average seal air inlet temperature, K.

Pu = air pressure upstream of seal, MPa.

Dseal = outside diameter of the test rotor, m.

•

We present the leakage performance of the seals in terms of flow factor.  Use of 
flow factor allows comparison of data taken at different test conditions and 
between seals of different diameters.

Flow factor is a function of: 

the mass leakage rate

average seal air inlet temperature and upstream pressure

and seal diameter
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Tests Conducted

• 4 hour endurance test:  inspections after 1, 2, and 4 hours

This is a table showing the tests conducted.

4 tests were conducted on both the brush seal and finger seal:  a static test, a 
performance test, an endurance test, followed by a post-endurance performance test.   
For the brush seal, the static test was repeated too.

Data was taken at five temperature conditions up to 922 K.

For the static tests, at each temperature the pressure differential  was increased to 517 
kPa (75 psid) and then decreased to 0.

In the performance tests, at each temperature, and at each of three pressure levels of 
69, 276, and  517 kPa, the speed was stepped up to 366 m/s (1200 ft/s) and the 
stepped back down.

The 4 hour endurance test was conducted at the maximum conditions of 922 K, 517 
kPa, and 366 m/s with inspections after hours 1, 2, and 4.

Only a room temperature static test was conducted for the labyrinth seal.
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Initial Static Leakage Performance of Brush and Labyrinth Seals
with KTK Predictions 

297 K Average Seal Inlet Air Temperature

229 μm

This is a comparison of the initial static leakage performance data measured for the 
brush seals and the labyrinth seal at room temperature.  The plot shows flow factor 
versus pressure drop across the seal.

Brush seal leakage is 24% less than the labyrinth seal and uses only 38% of the axial 
space the labyrinth seal requires.

The KTK predicted leakage rate for the seal tested is shown by the solid line.

The measured labyrinth seal leakage is 91% of KTK predicted flow factor of 17.6 kg–
√K/MPa-m-s.

For safe operation to 922 K and 366 m/s a labyrinth seal with a 305 μm radial clearance 
is required.

At that clearance, the KTK predicted flow factor is 25 which is twice the brush seal 
leakage.
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Time History of Finger and Brush Seal Endurance Tests

922 K, 366 m/s, 517 kPa 

This is a time history of the leakage performance of the brush and finger seals during 
the endurance test conducted at 922 K, 366 m/s and 517 kPa.

The finger seal flow factor shown by the solid symbols is less than the brush seal 
through out the test.

Initially the brush seal leakage is only slightly higher than the finger seal.

However, after 4 hours of testing the finger seal leakage flow factor was 36% less than 
the brush seal flow factor.
--------------
• The predicted flow factor for 305 μm radial clearance labyrinth seal at these

conditions is 26.1 kg–√K/MPa-m-s, which is 2.16 × brush seal, 3.38 × finger seal.
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Post-endurance Performance Tests – Finger and Brush Seal
Leakage Data

922 K Average Seal Inlet Air Temperature

After the endurance test the performance test was repeated. This is a comparison of 
the brush and finger seal leakage performance data at 922 K.

The brush seal flow factor data shown in black is higher than the finger seal data in 
red.

The finger seal shows a definite pressure closing effect as the flow factor is lower at 
higher pressure differentials.

At 922 K, 366 m/s, 517 kPa, the flow factors are greater than in the initial 
performance test by a factor of 1.6 for the Finger Seal and 2.5 for the Brush Seal.
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Post-Endurance Performance Tests – Finger Seal (FS) and Brush Seal (BS)
Average Power Loss Versus Average Surface Speed

922 K Average Seal Inlet Air Temperature

Seal power loss was calculated by measuring the torque with a seal and subtracting the tare 
torque measured without a seal to determine the seal torque and then multiplying the seal 
torque by the speed.

This is a comparison of the finger and brush seal power loss at 922 K (1200 ºF).  The data 
shown here is from the post-endurance performance test, which is very similar to the first 
performance test.

As expected the power loss increases with speed and with pressure differential across the seal.

At all three pressure conditions the brush seal power loss is slightly higher than the finger seal 
power loss.

At the maximum speed and pressure of 366 m/s and 517 kPa the power loss for the brush seal 
is 10.5 kW and for the finger seal it is 9.72 kW.

We recognize that these seal power loss values may be substantially higher than the true seal 
power loss since the tare torque was measured at ambient pressure.

NASA/CP—2005-213655/VOL1 125



NASA Glenn Research Center CD-04-82658

Finger Seal Approximated True Power Loss Versus Average Surface
Speed for Performance Test

922 K Average Seal Inlet Air Temperature

Windage losses on the high pressure side of the test rotor and balance piston were approximated 
using a solution provided by Schlicting. The additional torque on the bearings due to the thrust 
loads was also estimated.  These estimations were then used to determine the approximated true 
power loss for the finger seal shown here.

The approximated true power loss increases with speed and with pressure, but not to the same 
degree as the data based on the ambient pressure tare torque.

At the maximum conditions of 922 K, 366 m/s, and 517 kPa the approximated true seal power 
loss is 2.36 kW.  This is 1/4 of the seal power loss based on the ambient pressure tare torque.

Hence, this finding suggests that additional testing with a straight cylindrical seal or labyrinth 
seal is needed to establish tare torque data that accounts for pressure differentials across the test 
seal.

Using the ambient pressure tare torque is adequate for comparing performance, however.
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Finger and Brush Seal Accumulative Weight Loss Versus Accumulative
Run Time

This is a comparison of the finger and brush seal accumulative weight loss versus accumulative 
run time.

The finger seal had a final weight loss of 6 g and the brush seal lost ~1g. 

70–71% of the seal weight loss occurred in the initial performance tests.

Weight loss was used to calculate change in seal inner radius and final static,
room temperature clearance.

The brush seal had a final clearance of 34.5 microns and the finger seal final clearance was 724 
microns, which is 21 times greater than the brush seal.

---------------

Brush seal

• Calculated radius change

• Final clearance

131 µm

34.5 µm

Finger seal

889 µm

723.9 µm
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Rotor Wear

• Rotor wear due to brush seal was very minimal.

• Rotor wear due to finger was measurable, but small.

Average rotor wear track measurements for finger seal

Rotor wear was measured using a profilometer at 8 circumferential locations around 
the rotor od to measure wear track depth and width.

The average wear track measurements for the finger seal are shown here and are 
quite small with a maximum track depth of about 6 microns.

Rotor wear due to the brush seal was minimal.

The Chrome Carbide coating performed well.
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Conclusions

• Brush and finger seals have substantiality less leakage than labyrinth seals.

• The finger seal exhibited a more pronounced pressure closing effect than the
brush seal.

• Finger seal flow factor was 36% less than brush seal after 4 hour endurance 
test.

• Finger and brush seals have very similar power losses.

• Additional testing with cylindrical or labyrinth seal needed to establish 
pressurized tare data.

• Finger seal wear resulted in final radial clearance 21 times the brush seal.

• CrC rotor coating wear was minimal.

Self-Explanatory.

NASA/CP—2005-213655/VOL1 129



NASA Glenn Research Center CD-04-82658

Lox Seal Test Rig During Test

 

This photograph shows the Lox Seal Test Rig during a test at the old Rocket Engine Test 
Facility.

As you may recall our cryogenic seals testing has been on hold due to the airport 
expansion.

Our cryogenic component laboratory  has been re-located to Plum Brook Station in 
Sandusky, Ohio.   The facility systems verification testing is beginning as we speak and 
should be completed by March 1, 2005.  The facility has LN2, LH2, LOX, GN2, GH2, 
and GHe capabilities.  We are working to get resources to re-establish the cryogenic seal 
test rigs at Plum Brook.  If you have any need for cryogenic seals testing or testing of 
other cryogenic components, please let me know.  We’d like to put this new facility to 
good use.  You can contact me, Margaret Proctor,  at 216-977-7526 or speak with me 
over lunch or at a break while you are here.
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Objectives

• Design a fast mechanical ACC system for HPT tip seal clearance management
– Improve upon slow thermal response of “case cooling” methods used today.
– Provide continuous ACC throughout entire flight profile.

• Design a test rig to evaluate ACC system concepts.
– Evaluate actuator concept response and accuracy under appropriate thermal and 

pressure conditions in a non-rotating environment.
– Evaluate clearance sensor response and accuracy in a non-rotating “hot“

environment.
– Measure secondary seal leakage due to segmented shroud design, shroud 

actuation, and case penetration.

• Test Rig Capabilities:
– Chamber temperatures up to 1500 °F.
– Seal carrier backside pressure up to 120 psi (simulate cooling air Δp).
– Sized for actual seal hardware (20” diameter turbine).
– Simulate realistic tip seal clearance changes due to mechanical and thermal 

loading (electronically).
– Positioning feedback sensing, rig construction, and actuation system designed to 

achieve positioning accuracy 0.004-in.
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Test Rig/ ACC System Specifications

• Temperature
– The backside of the HPT shroud (blade 

outer-air-seal) is generally cooled with 
compressor discharge air (P3 air: 1200 to 
1300 ºF)

• Pressure
– The cooling air is also used to purge the 

leading and trailing edges of the shroud 
segments, providing a positive backflow 
margin from the hot rotor inlet flow.

– P3 is highest during maximum thrust events 
such as takeoff and re-accel.  For large 
commercial engines this translates to a 
maximum cooling air pressure differential of 
up to 150-psid across the shroud.

• Actuation Range and Rate
– Maximum tip clearance changes due to 

axisymmetric and asymmetric loads on the 
rotor and stator components are on the 
order of 0.050-in.

– FAA requires that engines have the ability to 
reach 95% rated takeoff power from flight 
idle (or from 15% rated takeoff power) in 5.0 
seconds.  

→ 0.01-in/s

HPT shroud hanger and seal 
w/ cooling and purge flow

compressor 
discharge air

leading edge 
cooling holes

impingement 
cooling holes

trailing edge 
cooling holes

~0.7P3

~0.3P3

~0.8P3

P3

shroud 
hanger

shroud 
tip seal

turbine 
blade

1200-1300 °F

The design was concentrated on simulating the temperature and pressure 
conditions that exist on the backsides of the seal segments, without the 
need for a rotating turbine.  This greatly simplified the rig design.  We plan 
to assess the response of the ACC system to the effects of a turbine wheel 
(i.e., rapid clearance closures due to mechanical and thermal loads) by 
simulating closures electronically, as will be discussed in a later. 
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Design Criteria

• The substantial diameter of the segmented shroud structure (~20-in), under 
moderate pressures (~120-psi), gives rise to significant loads, and hence 
stresses, to which the actuation system and components must react.  

• These stresses coupled with high temperatures (1200 to 1300 °F) can 
significantly reduce component cycle life due to creep.  

• Managing these stresses with adequate materials and geometry to improve 
component cycle life was a driving factor in the rig component design.  

• Larson-Miller parameter data for a variety of high temperature, super alloys 
was utilized to design components to achieve a desired minimum cycle life.

– Inconel 718 utilized for most of the hot section components.  

– Components were designed for less than 0.5% creep strain, resulting in a 15-ksi 
limiting stress.  

– 15-ksi stress level corresponds to over 100,000 hours life at 1300 ˚F and 
approximately 300 hours life at 1500 ˚F.
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ACC Concept Evaluation Rig
chamber

lower 
housing

radiant heater 
(lower half)

actuator 
mount

seal carrier 
assembly

air supply pipe 
(3 locations)

hydraulic 
servo 
actuator

Here we see the Gen 1 ACC System Concept and Test rig.

The test rig comprises six main components: the housing, the radiant 
heater, the pressurized chamber, the seal carrier assembly, the actuator 
rod assemblies, and the hydraulic actuators. 

At the heart of the rig is a segmented shroud structure (seal carrier) that 
would structurally support the tip seal shroud segments in the engine. 
Radial movement of the seal carriers controls the effective 
position/diameter of the seal shroud segments, thereby controlling blade tip 
clearance. 

The rig housing consists of two concentric cylinders, which form an annular 
cavity.  An annular radiant heater made of upper and lower halves 
surrounds the segmented seal carrier structure to simulate the HPT tip seal 
backside temperature environment.  A pressurized chamber encloses the 
carrier segments inside the annular heater through which heated 
pressurized air is supplied to simulate the P3 cooling/purge air pressure on 
the seal backsides.  Heated air enters the chamber via three pipes that are 
fed from a manifold at the air heater exhaust through radial inlet ports as 
shown.
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ACC Rig Cutaway 

radiant 
heater

inlet air 
(Phigh)

exhaust air 
(Plow)

chamber

seal carrier

proximity 
probe

footactuator 
rod

main 
housing

chamber 
support tubeactuator 

movement

chamber 
metal TC’s

chamber air 
TC

flow 
deflector

actuator 
mount

The carrier segments are connected to independent hydraulic actuators through an actuator rod 
assembly.  The foot of the actuator rod assembly positions the carrier segments in the radial 
direction, while allowing relative circumferential movement or dilation of the seal carrier segments 
through a pinned and slotted arrangement.

A series of radial tubes projecting outward from the chamber’s inner and outer side walls serve as 
supports, air supply and exhaust ports, probe fixtures, and the actuator rod guides.  The chamber 
functions to support and align the carrier segments and actuator rods, as well as to house 
instrumentation and to seal the pressurized air from the radiant heater which is not designed to 
carry any pressure loading.  

The inlet flow is baffled circumferentially around the outer chamber wall by a flow deflector to 
achieve uniform heating of the seal carrier assembly.  The pressurized air is sealed along the sides 
of the seal carrier segments by contacting face seals that are energized via metal “E”-seals 
imbedded in the upper and lower chamber plates.  The joints between adjoining carrier segments 
are sealed with thin metal flexures.  Air that escapes over and between the carrier segments is 
vented out of the rig through a number of exhaust pipes that protrude radially along the inner 
chamber wall.  The number and inner diameter of exhaust pipes were chosen to eliminate the 
possibility of backpressure at the exhaust ports.  

High temperature proximity probes measure the radial displacement of the seal carriers at various 
circumferential locations.  These measurements provide direct feedback control to the independent 
actuators and allow the desired radial position (clearance) to be set.  The direct feedback control 
system allows for simulation of realistic transient tip clearance changes in lieu of a rotating turbine 
wheel.  Superimposing a mission-clearance-profile over the actual clearance measurement input to 
the actuator controllers will allow researchers to assess the system’s response to the most dramatic 
transient events such as mechanical and thermal loading of the rotor during takeoff and re-accel.

The proximity probes are held at a constant standoff to the chamber inner wall via a spring-loaded 
piston arrangement.  The spring-loaded mounting keeps the proximity sensor at a relatively constant 
position to the chamber inner sidewall during the initial heating of the rig.  This arrangement also 
allows for easy removal of the probes without dismantling the housing. 

The chamber air temperatures will be measured at three circumferential locations on the high-
pressure side of the carriers to show how well the pressurized air is mixed by the chamber baffle.  
The chamber flange metal temperatures will be measured via two surface thermocouples attached 
to the inner and outer flange on the lower cover plate.  
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ACC Rig Test Stand

7’ 4’

Air Inlet

Air Exhaust

Air Heater

3’

Exhaust mixing air inlet

This slide shows the rig’s air supply and exhaust plumbing layout as well 
as the test stand dimensions.

The air heater system comprises two 36-kW, inline, flanged heaters, 
manufactured by Osram Sylvania.  It is designed to supply up to 75-scfm of 
air at 120-psi and 1500 °F.
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Carrier-Actuator Rod Assembly

• The slots are cut on a tangent to the radius 
on which the carrier pinholes are located.  

• Prevents the carrier segment from cocking 
while it is displaced radially and 
circumferentially.

• The length of the slot allows a radial 
displacement of 0.2-in for each of the nine 
segments.

pivotslot

&10.25”

0.25”

2.0”

carrier pin
(Inconel x750)

foot
(Inconel 718)

seal carrier
(Inconel 718)

flexure seal
(Inconel x750)

actuator rod
(Inconel 718)

Because the carriers are constrained by a pinned connection at one end 
and a slotted connection at the other, the segments must shift 
circumferentially as they are displaced in the radial direction. The slots in 
the feet are cut on a tangent to the radius on which the carrier pinholes are 
located.  This keeps the carrier segments from cocking while it is displaced 
in both the radial and circumferential directions.  The circumferential length 
of the carrier segments as well as the length of the slot in the actuator rod 
foot allows a radial displacement of 0.2-in for each of the nine segments.  
The slots for the flexure seals have adequate clearance to prevent the 
segments from becoming arch-bound as the segments are moved radially 
inward.  

The pins are made of Inconel X750.  This material was selected to help 
minimize galling against adjacent Inconel 718 components.  The pins have 
flats machined on the diameter that contacts the slots, providing a bearing 
surface and reducing the contact stress developed between the pin and 
foot
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Cooled Actuator Rod Design

exit cooling 
holes air inlet 

air outlet 

actuator 
mount 

inlet cooling 
holes

ring seals 
(Stellite 25 
/Inconel 625)

elastometric 
O-rings

support 
tube

actuator 
rod

The cooling scheme allows the actuator rod and support tube to function as 
a tube-in-tube heat exchanger using a small flow rate of ambient air to cool 
the assembly. 

The cooling holes were made from three sets of six, 0.03-in diameter holes 
drilled around the circumference of the hollow rod.  Ambient air, supplied at 
the rod end through features in the actuator mount, travels axially through 
the center of the rod, passes radially through the cooling holes, and exits 
between the support tube and outer diameter of the rod. 

NASA/CP—2005-213655/VOL1 139



at Lewis Field
Glenn Research Center
UEET – Tip Clearance Control

Rod Cooling Scheme Validation
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Air flow of 4.0 scfm kept both rod and 
tube ends < 250 °F.

A mockup of the cooled actuator rod design was built to validate the 
design.  A solid steel block (simulating the actuator foot) was bolted 
to one end of a stainless steel tube (simulating the rod).  Another 
larger tube was welded to the block (simulating the support tube) in a 
concentric arrangement.  An air supply line was attached to the end 
of the inner tube from which the assembly was supported and 
inserted into a box furnace.  The insulation thickness of the furnace 
closely approximated that of the radiant heater designed for the rig.  
A plastic supply line was used minimize heat loss through the supply 
tube.   Thermocouples were attached to measure the temperatures 
of the mass, the end of the inner rod, and the end of the outer tube.  
The furnace was heated to 1500 °F and after the mass temperature 
stabilized at 1500 °F, ambient air at approximately 70 °F was 
supplied to the assembly.  Temperatures of the furnace, mass, tube 
end, and rod end are shown as a function of time on the left vertical 
axis.  The cooling air volumetric flow is shown on the right vertical 
axis.  The chart shows that for minimal air flow (3.0 to 4.0-scfm) both 
the tube and rod end temperatures were kept below 250 °F.  Thus 
the cooling scheme design was successfully validated and 
implemented into the rig design to allow the use of conventional
actuators. 

NASA/CP—2005-213655/VOL1 140



at Lewis Field
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UEET – Tip Clearance Control

Chamber Seal Locations & Leakage

1.611500120C-seal (outer flange)

5.401500120E-seals (behind face)

2.101500120face seals

0.651500120piston rings

33.1Total

23.341500120flexure seals

Flow
(scfm)

Temp 
(°F)

ΔP 
(psi)

location

E-seal 
(Waspaloy)

face seal 
(Stellite 6B)

flexure seal 
(Inconel X750)

sacrificial stud 
(Inconel 718)

Phigh ~ 120-psig 
T ~ 1500 °F

bearing 
pads

C-seal  
(Waspaloy)

Plow ~ 0-psig  
T ~ 1500 °F

ring seals 
(Stellite 25 
/Inconel 625)

The nature of this ACC concept with its segmented shroud design and case penetration 
requires multiple high temperature seals.  The test rig will allow the development and 
evaluation of these seals that will eventually be required in an engine.  Obviously the 
leakage created by the use of these secondary seals must be minimized to gain the 
benefits of the ACC system.  For the test rig, the secondary seal leakage drove the design 
of the air heater.

Flexure seals are used to prevent the radial flow of pressurized air between the carrier 
segment joints.  The 2.0-in wide by 0.9-in long flexures are made of 0.02-in Inconel X750 
sheet stock.  This material was chosen for its galling resistance to the carrier material.  The 
carrier slits that contain the flexures are designed with a 0.01-in clearance.  

The chamber contains four “C-seals”, two on the upper and lower outer diameter flanges 
and two on the upper and lower inner diameter flanges of the cover plates.  The seals are 
made of Waspalloy and have a cross sectional thickness of 0.015-in. The seals were 
designed by Perkin-Elmer to seal against a 120-psi pressure at 1500 °F and they require a 
150-lbf/in seating load per seal at assembly. 

The upper and lower cover plates also house a metal face seal assembly. These seals act 
to block the pressurized air from flowing between the cover plates and carrier segments.  
The face seal, made of Stellite 6B, is a pressure balanced design and utilizes an “E-seal” as 
a preload and secondary seal device.  Stellite 6B was selected for the face seal material 
due to its high temperature properties and anti-galling performance against Inconel 718. 
The E-seals, also designed by Perkin-Elmer Fluid Sciences and made of Waspalloy, 
provide a closing force to the face seal on the carrier segments and prevent air from leaking 
between the face seal and cover plate.  Each E-seal provides about 10-lbf/in preload to its 
corresponding face seal.  The face seal was designed with a generous cross section, due to 
its large diameter, to provide stiffness for operation as well as manufacturing.  

The actuator rod contains two pairs of expanding concentric ring seal sets on its bearing 
surface.  Each pair is made of an outer Stellite 25 ring and an inner Inconel 625 ring. The 
seals were designed by Precision Rings, Inc. (Indianapolis, IN) for a 120-psi at 1500 °F.
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ACC Controller Framework

Actuator
Position
Sensor

++

ACC Test Rig

Real-time 
Controller
& Simulation

Desired 
Clearance

Simulated
Transients

+
-

ShroudActuator

Error Shroud 
PositionActuator

Command

Actuator 
Position

Simulated
Clearance

Advanced
Multivariable
Control Laws

Clearance
Probe

Engine Model

This slide shows a diagram of the control system strategy that will 
employed to operate and evaluate this first generation ACC system as well 
as future systems.  Each of the nine independent hydraulic actuators will 
have its own feedback control allowing the positioning of each cylinder or 
actuator.  An outer loop will be monitoring the position of the carrier 
segments.  The outer loop will determine the minimum clearance off of 
which the desired clearance will be measured.  The control system will be 
used to evaluate the accuracy and response of the ACC system to both 
steady state and transient clearance profiles.

Our next speaker, Mr. Kevin Melcher of the Controls and Instrumentation 
Branch at NASA GRC, will provide a more in depth discussion on his 
development of this control system and his work on defining control system 
requirements and architecture for advanced ACC systems.
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Test Rig Fabrication Status

Housing with lower 
heater half & TC’s

ACC Rig with 
shroud assembly

Shroud Assembly with 
Flow Deflector

capacitance sensor

ACC Rig with 
Chamber Installed

Displacement Sensor 
Assembly

Housing with upper & 
lower heater halves, TC’s

Here we can see some of the main components of the test rig as they are 
currently being fabricated.  The components are about 75% complete.  We 
expect assembly to occur at the end of the month, with rig check out 
occurring towards the end of December.
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Rig Assembly w/ Mechanical Checkouts & Gage Plate

Gage Plate

Mechanical Checkout
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Carrier Segments Cycled Through 0.2”

Gage Plate Pin Captured 
at Neutral Diameter

Segments at + 0.1”
( &max )

Segments at - 0.1”
( &min )
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Chamber Hydro Test

Deflections measured 
over face seal groove
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Schedule

Q1 FY05

Q1 FY05

Q2 FY05

Q2 FY05

Q1-2 FY06

Q1-2 FY06

Complete Assembly/ Facilities

Complete Rig Checkout

Evaluate Gen 1 ACC Concept (Ambient)

Evaluate Gen 1 ACC Concept (~1300 °F)

Evaluate AADC SMART Track Concept (Ambient)

Evaluate AADC SMART Track Concept (~1300 °F)
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Plans

• The ACC Test Rig will be used to evaluate the performance of GRC’s 
1st Gen ACC system and others (AADC –SMART Track).  Performance 
will be evaluated under a series of HPT simulated temperature and 
pressure conditions.  
– Actuator stroke, rate, accuracy, repeatability
– System concentricity, synchronicity
– Component wear
– Secondary seal leakage
– Clearance sensor response and accuracy

• The results of this testing will be used to further develop/refine the 
current actuator designs as well as other actuator concepts. 
– SMA’s, piezoelectric, magnetostrictive, other 

• Optimization of ACC system components for future flight hardware
development.
– increased cycle life 
– reduced size and weight 
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NASA Seals WorkshopNASA Seals Workshop
November 9November 9--10, 200410, 2004

Norman Turnquist – GE Global Research

Farshad Ghasripoor – GE Global Research

Mark Kowalczyk – GE Energy

Bart Couture – GE Energy

Wear Prediction of Strip Seals through Wear Prediction of Strip Seals through 
ConductanceConductance

WEAR PREDICTION OF STRIP SEALS THROUGH CONDUCTANCE 
 

Norman Turnquist and Farshad Ghasripoor 
GE Global Research 

Niskayuna, New York  
 

Mark Kowalczyk and Bart Couture 
GE Energy 

Schenectady, New York 
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Advanced Sealing Technology
at GE Global Research

Team
Shorya Awtar
Nitin Bhate
Bruce Briel
Bruce Brisson
Ray Chupp
Biao Fang
Farshad Ghasripoor
Chuck Golden
Mohsen Salehi
Omprakash Samudrala
Norman Turnquist
Kripa Varanasi
Chris Wolfe

Advanced Seal team at GE Global Research

-Developing advanced seal technologies for GE Aircraft Engines, Land-Based 
Gas Turbines, Steam Turbines, Industrial Compressors, etc.

-Developing seals for both new products and retrofits into existing equipment
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NASA Seals Workshop
November, 2004

Advanced Sealing Synergy

• Rotor dynamics
• Frictional heating
• Rub tolerant seal

• Short Cycle
• Low Cost

• Multi-Stage

• Seal Stability
• High swirl ratio & High speed
• High Temps & Creep
• Seal life & Reliability
• System Integration

• Longer life: 48,000 hrs
• Large Interference
• Secondary flow 

system optimization
• Field Performance

Monitoring

Gas 
Turbine

Steam 
Turbine

Aircraft Engine

GRC
Seal fundamentals

GE AE/PS applications
Seal Design/Development/Testing

Generator
• Oil & 
H2 Sealing

• Non-metallic 
Seals

Compressor
• Reverse Rotation

• Particles  
• Chemicals
• 2500 psi 

Seal design tools
Seal wear/life

Stability
Reliability

Field Performance & 
Validation

Different applications have different design considerations for advanced seals.

Seals are developed for each application, analytical design tools are developed, 
and the design tools can be applied across the spectrum of applications.

GE Global Research is a “hub” for Advanced Seals development across GE.
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High Pressure RigStatic Seal Rig

Large Diameter  Rig Abradable Seal Rig

ADVANCED SEALS - Test Facilities at GE-GRC

Several experimental rigs are used to quantify performance and characteristics of 
advanced seals.  A static rig is employed for testing both static and dynamic seals. 
It is a high pressure, high temperature rig that gives comparative leakage 
performance data for various seals types, i.e., cloth, labyrinth, brush, honeycomb, 
C-, E-, etc.  A smaller rotary rig (High Pressure Rig) is used for testing in air or 
steam of dynamic seals.  This rig is used to test subscale seals at full turbine 
conditions.  A larger rotary rig is used for testing full-scale dynamic seals at 
subscale conditions.  This rig is the one that has been used to test aspirating face 
seals as well as brush seals.  An abradable rub rig is a versatile rig for testing 
candidate abradable shroud materials rubbing against tipped and untipped blades.  It 
can simulate turbine blade-tip rotation and incursion rates, and has heating 
capability to operate at turbine environment temperatures.  Wear characteristics are 
determined from measured level of shroud and blade-tip wear.
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Abradable Abradable -- Strip Seal Strip Seal 
ConfigurationConfiguration

Help reduce clearances at tips:

• 2% Section Efficiency

• Easily refurbishable

Detail of strip seal 
configuration

GE HEAT Steam Turbine has 28 stages.

Caulked-in strip seals used in drum rotor turbine construction; strips caulked 
directly into rotor.

Strips used in conjunction with abradable coating on shrouded nozzle tips.

Strips can be replaced if damaged.

Abradable coating permits tight assembly clearances without risk of hard metal-
to-metal rubs.
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Mushroomed vs. UnMushroomed vs. Un--Mushroomed strip after rubsMushroomed strip after rubs
against an abradable coatingagainst an abradable coating

Broken strip after a Broken strip after a 
hard rubhard rub

Able to simulate rub events using a lab based rig

Rig Capability:
• Surface Speeds up to 335 m/s (1100 ft/s)
• Temperatures up to 1000 °C (1832) °F
• Radial, Axial and combined incursions between 

stator & rotor
• Incursion rates from 0.5 μm/s – 38 mm/s 

(0.00002 – 1.5 in/s)
• Continuous rails/strips or individual blades

Subscale rub tests demonstrate effectiveness of abradable coating in preventing 
strip damage during rub events  test rig also used to investigate rub behavior of 
various strip materials.
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The combined effect of high temperature increasing electron energy and electron 
scatter can lead to very different thermal behaviors for different materials

Thermal Conductivity Thermal Conductivity 
& Conductance& Conductance
THERMAL CONDUCTANCETHERMAL CONDUCTANCE - Also known as Heat 
Transfer Coefficient is a measure of the rate at which heat 
energy flows through a surface. It is a measure of the amount 
of energy flowing through a unit area, in unit time, when 
there is a unit temperature difference between the two sides 
of the surface.

Strip tip-base temperature disparity during rub

Definition of Aspect Ratio (α): (Thk/H)

.000"R

.000" Seal

.000 +.000 
          -.000

.000" +/-.000

.000"

.000"

Square Caulk Wire

t2

P

ra

rb

>900 °C

~200 °C

Conductance accounts for strip geometry as well as conductivity of the strip 
material.  Ability of strips to draw away heat from rub event is key to minimizing 
strip wear.

Aspect ratio is an important variable that is purely a function of  the strip 
geometry.
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Conductance as a function of aspect ratioConductance as a function of aspect ratio

Increasing strip thickness and/or aspect ratio improves conductance 

Conductance increases linearly with increasing aspect ratio.
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Wear of strip as a function of strip aspect ratioWear of strip as a function of strip aspect ratio

Un-Mushroomed tip

Mushroomed tip

• Increasing strip thickness improves wear behavior
• Strip wear is minimum for aspect ratios >0.07 

Increasing strip thickness increases Aspect Ratio, and therefore Conductance.

For the cases considered, Aspect Ratio = 0.07 is the cutoff between excessive and 
acceptable strip wear.
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Wear of strip as a function ConductanceWear of strip as a function Conductance

• Transition in wear behavior occurs over a narrow range of conductance
• Beyond a certain conductance (i.e. aspect ratio) conductance model for 

rub is ineffective

The transition from Severe Wear to Mild Wear is abrupt, and occurs when the 
heat transferred away  by Conductance is inadequate to prevent melting at the tip.
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Thermal Conductivity vs. Tensile StrengthThermal Conductivity vs. Tensile Strength

• Strength of strip has secondary effect at rub surface speeds in excess of 50m/s
• Conductivity has the most effect on rub behavior of strip

Tensile strength of the strip material has only a secondary effect on wear 
behavior; the wear is primarily driven by conductance.

The implication is that high strength superalloys are not necessarily good strip 
materials from a wear standpoint.
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Predictive wear modelPredictive wear model

Mathematical correlation is established based on test data

A predictive model for strip wear has been developed and validated with subscale 
rig tests.
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<418.0°F

1268.1°F

AR01

Test Test –– High thermal Conductivity stripHigh thermal Conductivity strip

Tested strip aspect ratio

Baseline temperature of ~ 350 °C with peaks 
approaching ~700 °C.

Strip temperatures measured using thermal imaging show peak temperatures of 
~700C for a high conductivity strip 
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Test Test –– Low thermal Conductivity stripLow thermal Conductivity strip

150.7°F

1874.6°F

1000
AR01

Strip temperature during rub validates conductance 
model

Tested strip aspect ratio

Baseline temperature of ~ 550 °C with peaks 
approaching ~1000 °C.

Strip temperatures measured using thermal imaging show peak temperatures of 
~1000C for a low conductivity strip.
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ConclusionsConclusions

Test data indicate strong influence of conductance in 
rub behavior of strip seals at speeds in excess of 50 
m/s.

Material strength appears to have little effect on rub for 
strip seals with aspect ratios <0.07

A predictive model is established as a tool to help 
select the strip material and in design of the strip

Best strip material selection and design would extend 
the strip seal’s ability to severe rub events beyond the 
abradable thickness

Conclusions

NASA/CP—2005-213655/VOL1 163



Page intentionally left blank 



CENTURION TM

MECHANICAL SEALS
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Hydrodynamic film-riding gas seal, having been successfully used in industrial pump and compressor 
applications for decades, is now finding way into aero-engines. Aerospace applications require the seal work 
robustly under various speeds and constantly changing pressures. Maintaining seal face flatness is also more 
challenging in aerospace than in industrial applications because of the seal size and the rapid thermal transition in 
aero-engines. Another difficulty in aerospace application comes from the altitude condition, where air is thin, not 
enough opening force may be generated to separate the seal faces from touching. Therefore, the hydrodynamic 
groove design is more critical in aerospace application. In order to maximize the seal performances, the groove 
shape and depth are optimized for the worst application condition, such as at the altitude, with using a 2D model 
coupled with a non-linear optimization procedure. 

Seals designed in this way have been found working well both in rig test and in on-flight evaluation. However, 
two recently designed seals based on full optimization were found not working during rig test. These two seals 
features very fine grooves that is thinner than the other seals that worked well. The 2D code from time to time 
predicted that seals work better if more grooves were engraved. The under-performed two seals indicted there might 
be something missing in the 2D model. It was speculated that the entrance losses and 3D effects for narrow grooves 
become significant, resulting in reduction of hydrodynamic opening force. In order to quantify the influences of 3D 
effect, a three-dimensional model is therefore developed to calculate the fluid flow between the seal faces, and then 
the results are compared with the 2D solution. The model solves a circumferential section of seal face that consists 
one land and one groove region. A small region outside the sealing face is also included to simulate the flow 
entrance and exit. It was found that the 3D CFD model generally agrees with the 2D model in determining the 
optimum groove dimensions. The 3D code gives similar trend predictions of seal opening force under the influences 
of groove depth, number of grooves, land to groove ratio and groove angle, although there exist differences in the 
absolute value levels. The 3D CFD results forced a re-examination of hardware and further re-test the seal. It is 
concluded that the problems were due to manufacture tolerance with such fine grooves. The design code is correct, 
but manufacture capability should be incorporated. CFD results and test data are reported in this paper. 
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MECHANICAL SEALS

IntroductionIntroduction

Hydrodynamic Face Seal
• Riding on a thin film
• No contacting, no wear
• Extremely small air leakage, no oil leakage

Challenge in Aerospace Application
• High-altitude: Thin air
• Transient
• Large diameter

Hydrodynamic film-riding gas seal, having been successfully used in industrial 
pump and compressor applications for decades, is now finding way into aero-
engines. Aerospace applications require the seal work robustly under various 
speeds and constantly changing pressures.  Maintaining seal face flatness is also 
more challenging in aerospace than in industrial applications because of the seal 
size and the rapid thermal transition in aero-engines. Another difficulty in 
aerospace application comes from the altitude condition, where air is thin, not 
enough opening force may be generated to separate the seal faces from touching. 
Therefore, the hydrodynamic groove design is more critical in aerospace 
application. In order to maximize the seal performances, the groove shape and 
depth are optimized for the worst application condition, such as at the altitude, 
with using a 2D model coupled with a non-linear optimization procedure.
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1. Seal Equation:

2. Code uses CFD to solve groove 
equations

3. Code is coupled with ADINA to analyze 
face deflections

4. Optional Dam Section Hydrostatic 
Equation: (for high pressure drop)

PKI “State Of The Art” Design Code Solves The Seal Equations
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Film Riding Hydrodynamic Face SealFilm Riding Hydrodynamic Face Seal

Automatic 6 design Automatic 6 design 
parameters Nonparameters Non--linear linear 
optimizationoptimization

The 2D seal code has been validated against rig test data including high-altitude 
conditions. It is then incorporated into the powerful ADINA program for 3D 
dynamic analysis. A non-linear procedure has been developed on top of the 
program. Each design is optimized based on the worst operating condition. 
Therefore each design is a result of full DOE analysis with direct simulations. As 
shown here, each design is distinctive in the shape, depth, and number of grooves.
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Design Tool ReliabilityDesign Tool Reliability？？

• When seal failed
• When seal contacts / wears
• When certain kind of seal under-performed

Is the design tool reliable?
If not sure, what is missing?

❧ 2D simplification in fluid simulation?
❧ Entrance loss (inadequate computational domain)?

Seals designed in this way have been found working well both in rig test and in on-
flight evaluation. However, two recently designed seals based on full optimization 
were found not working during rig test. These two seals features very fine grooves 
that is thinner than the other seals that worked well. The 2D code from time to time 
predicted that seals work better if more grooves were engraved. The under-
performed two seals indicted there might be something missing in the 2D model.  
It was speculated that the entrance losses and 3d effects for narrow grooves 
become significant, resulting in reduction of hydrodynamic opening force. 
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Design / Analytical ToolsDesign / Analytical Tools

• ADINA - Integrated Structural, Thermal, Dynamic and CFD 
Analysis

• Multiple Proprietary Design Codes (ADINA FEA plug-ins)

ADINA, a multi-physics engineering program specialized in Fluid-Structure 
Interaction simulation is used in our seal design and optimization. Uniquely, we 
have plugged our seal code into the ADINA system, therefore 3D CFD, Structural, 
Thermal dynamic analysis can be done efficiently for hydrodynamic seal design.
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• 3D CFD hydrodynamic 
analysis

3D CFD Model3D CFD Model

3D Gas Film 
Surface Pressure

Grooves

Gas film

Gas film Carbon OD

Carbon 
face

Mating ring 
surface

Groove Side

Groove ID

Groove OD Carbon ID

Periodical 
boundary

Block Outside of 
the Sealing region

The fluid flow domain includes the groove that extends beyond the carbon 
ID, the land area, dam area and areas outside of the sealing faces to 
include entrance losses in the model. One slice consisting of one groove 
and one land area is actually solved.
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Governing EquationsGoverning Equations

Governing Equations

• The equations solved are 3D Navier-Stokes 
Equations. No simplification is made.

Boundary conditions

1. The mating ring surface and grooves are rotating 
at a constant speed and the seal ring is stationary. 
The seal OD and ID are exposed to ambient 
pressure and room temperature.

2. Stationary and rotating walls are treated as non-
slipping

3. Periodical boundary condition for section interfaces
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Model SealModel Seal

Parameter Value Notes

Groove profile radius 1.47

Film thickness 0.000100

Number of grooves 20-70 While land to groove ratio is 
kept 0.75

Land to groove ratio 0.25-2 Number of groove is fixed

Groove depth 100-750 groove number and angle 
are fixed

Groove angle 6-30 Groove depth, number of grooves 
and land to groove ratio are fixed

Shaft speed 10,000 and 
20,000 rpm

Pressure Ambient for ID 
and OD
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The Influences of Number of GroovesThe Influences of Number of Grooves

Influence of Number of Grooves
at 20,000 rpm (260 ft/sec)
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The influences of number of grooves for this seal are studied at 10,000 rpm and 
20,000 rpm. The groove depth is set to 0.000350 inches more than the design 
value, the land to groove ratio is 0.75, and the groove angle is set to the design 
value. Both 2D and 3D models predict that more grooves, more opening force. 
Despite the difference of absolute opening force between the 3D and 2D results, 
the trend is parallel for both models.
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The Influences of Groove DepthThe Influences of Groove Depth

Influence of Groove Depth
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The groove number, the land to groove ratio and the groove angle are set to the 
design values in this study.  Both 2D and 3D models show strong dependency of 
hydrodynamic force on the groove depth. It is also interesting to note the 
difference between 2D and 3D model becomes smaller at the groove depth gets 
shallower or getting very deep.

In this case, the optimal groove depth under seal level pressure condition is close to 
the design value, predicted by both 2D and 3D models
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The Influences of Groove AngleThe Influences of Groove Angle

Groove Angle Effects
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The groove depth and the land to groove ratio are fixed with design values. The 
groove radius of curvature is 1.470 inches representing a spiral groove at the initial 
angle of groove.

Both 2D and 3D models show considerable dependency of hydrodynamic force on 
the groove angle. In this study, the groove profile curvature is fixed; only angle is 
changed to isolate the influence. For real spiral grooves, the curvature is a function 
of the groove angle.

In this case, the optimal groove angle predicted by the 2D model is only one 
degree higher than that by the 3D model.
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The Influences of Land to Groove RatioThe Influences of Land to Groove Ratio
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Revisit Tested SealRevisit Tested Seal

❖ Both 2D and 3D models suggest more grooves 
work better within the range that we are looking

Manufacture Discrepancy

➘ The designed land to groove ratio is 0.75. 
➘ The made is only 0.5. The grooves were made too 

wide. 
➘ If the land to groove ratio is set to 0.5, rerun the 

2D seal analysis confirms rig observation.
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ReRe--TestTest
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ConclusionConclusion

1. The 3D CFD model generally agrees with the 2D 
model.

2. The physical model of the 3D code is more accurate 
than that of the 2D code. 

3. However, the 2D model is solved numerically more 
accurately than the 3D model is. 

4. In most cases, At least theoretically, seals with more 
grooves work better. 

5. 3D CFD simulation also supports the groove design 
from the 2D model. 
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Production Seal ExampleProduction Seal Example

Lift Off Grooves Clean

920 Hours on Field Evaluation Seals (Jan 2004)920 Hours on Field Evaluation Seals (Jan 2004)

This is a picture we obtained from Honeywell earlier this year. It shows the 
hydrodynamic grooves still clean and there is no oil leakage. The seal has been 
qualified for production and has accumulated more than 51,000 hours in field with 
no failure.
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DOE/PG&E LNG-Turboexpander 

Seal and Bearing Retrofit

2004 NASA Seal / Secondary Air System Workshop
9 November 2004

Donald E. Bently, P.E
Dean W. Mathis

G. Richard Thomas, P.E.

Bently Pressurized Bearing Company
1711 Orbit Way
Minden, NV USA

 
 

The U.S. Department of Energy (DOE), the Idaho National Engineering and Environmental Laboratories (INEEL), and 
Pacific Gas & Electric (PG&E) have been involved in the development of new technologies to produce liquefied natural gas 
(LNG) for diverse consumer use at a PG&E facility in Sacramento, California. Their goal is to establish packaged LNG facilities 
at/near conventional high-pressure natural gas letdown stations where high-pressure (750 to 900 psig) pipeline gas is throttled to 
distribution pressures of 50 to 60 psi.   

Typically, in the past, this throttling process was achieved via pressure regulation valves. The new technology utilizes a 
turboexpander as the pressure throttling device. The turboexpander consists of a single stage radial inflow expansion turbine 
wheel on end of the shaft and a centrifugal compressor wheel on the other end of the shaft, in a conventional, double overhung 
arrangement. The benefit of the new process is to recover the energy of expanding pipeline gas from 750 psig to 60 psig, while at 
the same time recompressing a portion of the pipeline gas.   

Initially, the turboexpander was delivered with shaft contacting brush seals behind both wheels, 17-4 PH shaft material, and 
two combination radial/thrust magnetic bearings. INEEL and PG&E worked with the turboexpander OEM from early 2002 
through March 2004, unsuccessfully trying to commission the turboexpander. Due to stability issues, the turboexpander could not 
operate above 55 to 60,000 rpm. Required design speed is 70,000 rpm. 

In late March 2004, Bently Pressurized Bearing Company was asked to solve the stability issue.   
This was accomplished by modifying: 
 

- the existing shaft seal design, replacing the originally supplied brush seals with labyrinth seals (reduction in both axial 
loading and destabilizing tangential forces) 

- the existing shaft material to a titanium alloy (12 percent gain in stability margin) 
- the combination radial/thrust bearing design from magnetic bearings to pressurized gas bearings (increase in load 

carrying capability and stiffness with significant improvement in damping). The pressurized gas radial/thrust bearings 
utilizing the high pressure pipeline gas (methane) as the pressure source (425 psi) for the bearings and the gas 
distribution system as the low-pressure sink (60 psi) for the bearings. 

 

This presentation documents the: 
 

- operating characteristics of the turboexpander as originally supplied from the OEM with brush seals, 17-4 PH shaft 
material, and magnetic bearings, 

- the design modifications made to the turboexpander, 
- operating characteristics of the turboexpander with the modified labyrinth seals, titanium alloy shaft material, and 

pressurized radial and thrust gas(methane) bearings.  
 

The turboexpander now successfully and continually operates at 70,000 rpm. 
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Project Definition
❏ The US Department of Energy (DOE), the Idaho National Engineering 

and Environmental Laboratories (INEEL), and Pacific Gas & Electric 
(PG&E) have developed new technologies to produce liquefied natural 
gas (LNG) for diverse consumer use. 

❏ The goal is to establish packaged LNG facilities at / near conventional 
high-pressure natural gas letdown stations where the high-pressure 
(750 psig) pipeline gas is throttled to distribution pressure of 50 to 60 
psi. 

❏ The turboexpander consists of an expansion turbine stage on end of a 
shaft and a centrifugal compressor stage on the other end of the shaft, 
in a double overhung arrangement.

❏ The benefit of the new process is to recover the energy of expanding 
pipeline gas from 750 psig to 60 psig, while at the same time re-
compressing a portion of the pipeline gas.
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Project Definition
❏ Original turboexpander design:

■ Brush shaft seals - expander and compressor wheels
■ Combination radial / thrust magnetic bearings
■ 17-4 PH shaft material
■ Large Keyphasor hole / crude balancing
■ 85,000 rpm design speed 

❏ 667 ft/sec (455 mph) journal surface velocity
❏ 450 ft/sec ≈typical maximum for most industrial turbomachinery

❏ Turboexpander failed to operate satisfactorily during previous 
two years of field testing (Jan 2002 – March 2004).
■ Unacceptable seal leakage and thrust loading

❏ 300 ft/sec surface velocity 
■ Lack of both radial and thrust load carrying capability of the 

magnetic bearings
■ Magnetic bearing control system instability
■ Inability of magnetic bearings to operate above 55-60,000 rpm
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Cross section of original 
turboexpander 
rotor/bearing assembly

Compressor Expander

Overall cross section of turboexpander.  Original configuration with 
magnetic radial/thrust bearings, rolling element catcher bearings, brush 
type shaft end seals.
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Shaft Material:  17-4 PH
Shaft Mass:       6.35 lbm

7.06 lbm (including wheels)
Length:             10.2 in

Cross section of original 
turboexpander 
rotor/bearing assembly

Compressor Expander

Overall cross section of turboexpander.  Original configuration with 
magnetic radial/thrust bearings, rolling element catcher bearings, brush 
type shaft end seals.  Note that original shaft material is 17-4 PH hardened 
steel.
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Brush Seals

Seal Plate

Brush Seal

Original design shaft end seals – radial brush seal design
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Brush Seals

Brush Seal

Original design shaft end seal – radial brush seal design.  This particular 
seal is one of several that failed during operation – potentially due to 
surface velocities and diff pressure across the seal.
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Revised turboexpander seal geometry

Original shaft end seal design replaced with multi tooth labyrinth seals.  
Laby seals also included axial steps or swirl brakes.
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Revised turboexpander shaft 
geometry

Physical Vapor Deposition (PVD) is the act of vaporizing a solid material within a vacuum chamber. The 
temperature of the vaporized material is much higher than the inside the chamber, thus allowing the material 
to physically condense onto a substrate and form a coating.  Coatings produced by the PVD process are hard and 
have high density.

Shaft (Ti Alloy) Mass = 3.67 lbm (4.38 lbm including aluminum wheels)
Overall Length = 10.20 in

Coating material:  WC/C (tungsten-carbon-carbide)
Friction coefficient (dry steel): 0.10 – 0.20 
Coating process:  Physical Vapor Deposition (PVD)
Coating color:  black-grey
Coating structure:  lamellar

Redesigned shaft:  Ti Alloy, internal magnetic once per turn speed 
reference, WC-C PVD coating
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Cross section of rotor/bearing 
assembly

 

Expander 
Compressor 

Shaft

Bearings 

Gas exhaust 
Backers

Machine Case
Pressurized gas 
manifold 

Cross section of turboexpander with replacement externally pressurized 
gas bearings, laby seals, and new shaft installed
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Bearing Geometry and Features

Bearing Bearing and Backer

Left picture is the bearing itself

Right picture shows the bearing installed in the backer which was utilized to 
adopt the bearing geometry into the existing turboexpancer casing.  Oval 
port w/O-Ring groove is gas inlet port.  O-ring used to seal the backer to the 
casing.
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410,000 lbf/in stiffness
100 lbf *sec/in damping

Predicted damped response for the turboexpander 
retrofitted with labyrinths seals, Ti alloy shaft,  
and pressurized gas bearings

Predicted damped response, from finite element model, of the 
turboexpander rotor startup utilizing the new laby seals, new externally 
pressurized gas bearings, and redesigned Ti Alloy shaft.
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Predicted damped response for the turboexpander 
retrofitted with labyrinths seals, Ti alloy shaft,  
and pressurized gas bearings

410,000 lbf/in stiffness
100 lbf *sec/in damping

Predicted damped response, from finite element model, of the 
turboexpander rotor startup utilizing the new laby seals, new externally 
pressurized gas bearings, and redesigned Ti Alloy shaft.

Based on known residual unbalance in the impellers, vibration response 
was predicted to be 70-90 degrees out of phase with the expander end 
leading.
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Root locus stability analysis of 
redesigned turboexpander 
rotor/bearing system

δ = π (   )-α
ω

“Log Dec” loses information by taking the ratio of
Growth Rate to Natural Frequency:

δ = π (   )-α
ω

“Log Dec” loses information by taking the ratio of
Growth Rate to Natural Frequency:

α-α

ωd

Predicted Stability analysis via Root Locus methodology – predicted stable 
to 137,000 rpm, discounting aerodynamic effects
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Test Stand Bearing Design 
Verification - to 55,000 rpm on air

From Expander End
From Compressor End

Rotor run up in externally pressurized gas (air) bearings at Bently 
Pressurized Bearing Company test stand – to 55,000 rpm
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Installed field instrumentation

Viewed from the Expander End

Radial ProbesRTD Leads Thrust Probe Lead

Field commissioning:  expander end instrumentation
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Installed field instrumentation

Viewed from the Compressor End

Radial Probes RTD LeadsThrust Probe Lead

Field commissioning:  compressor end instrumentation
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Field static thrust load test
Viewed from the Compressor End

250 Pound Static Load

Thrust Probe Lead

Viewed from the Expander End

Dial Indicator –
Axial Movement

250 lb static thrust load test – radial and thrust bearings pressurized with 
450 psig air
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Transient Startup – 6 Oct 2004
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1X startup data – Bode plot
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Direct and 1X shaft relative orbit plots from expander and compressor end.

Note that expander 1X phase leads compressor 1X phase by 74 deg and 
that compressor response is 33% larger than expander end.  Refer back to 
predicted response on slide 13.  Very good agreement between predicted 
and actual response.

NASA/CP—2005-213655/VOL1 244



Transient Startup – 6 Oct 2004

Full spectrum from expander end xy shaft relative probes, shows forward 
and reverse vibration frequencies up to 74,200 rpm.  Response is all 
forward 1X, circular, symmetric response as would be expected from the 
externally pressurized gas bearings.
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Thank You

❏ Questions?
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Brandan Robertson, NASA-JSC/ES5 281-483-3732, Houston, TX

Advanced Docking/Berthing System 
NASA Seal Workshop

GRC

November 9-10, 2004 

ADVANCED DOCKING/BERTHING SYSTEM 
 

Brandan Robertson 
National Aeronautics and Space Administration 

Johnson Space Center 
Houston, Texas 
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NASA Glenn Research Center

♦High temperature, dynamic seals required in future space 
vehicles for sealing:
• Perimeters of movable ramps in hypersonic engines
• Heatshields and thermal protection systems (TPS) for aerocapture

and atmospheric entry systems
• Perimeters of movable control surfaces

Hypersonic engine seals

Introduction & Background

Seal 
location

Control
surface seals

Heatshield seals

High temperature, dynamic structural seals are required in many different 
locations on future space vehicles. Seals are required in advanced hypersonic 
engines to seal the perimeters of movable engine ramps for efficient, safe 
operation in high heat flux environments at temperatures from 2000 to 2500 °F. 
High temperature seals are also required around heatshields and within thermal 
protection systems for aerocapture and atmospheric entry systems. If a winged 
vehicle is used as an entry system, seals would also be required around the 
perimeters of movable control surfaces on the vehicle.
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♦ Design requirements are demanding:
• Restrict flow of hot gases at extreme temperatures

– Propulsion system applications: 
Up to 2500 °F with high heat fluxes

– Airframe applications:
• 2100 °F for tile-based TPS
• 2600+ °F for CMC systems

• Seal against distorted/curved surfaces

• Limit loads against sealing surfaces

• Stay resilient for multiple load/heating 
cycles

• Resist scrubbing damage

♦ Existing seals do not meet requirements

Seal Challenges & Design Requirements

Goal: Develop sealing systems that meet these requirements and 
demonstrate performance in relevant environments

CMC control 
surface

Seal
gap

The design requirements for these seal applications are very demanding. The seals 
must restrict the flow of hot gases and survive at very extreme temperatures. For 
propulsion system applications, temperatures can reach 2500 °F in the presence of 
very high heat fluxes. For airframe applications, such as TPS and control surface 
seals, peak temperatures depend on the type of materials used in the structures 
surrounding the seals. If insulating tiles are used around the seals, temperatures 
can reach about 2100 °F. However, if hot structure ceramic matrix composite 
(CMC) materials are used, seal temperatures can reach 2600 °F or even hotter.

In addition to surviving at extreme temperatures, the seals must seal against 
distorted, curved surfaces while not applying excessive loads to those surfaces. 
The seals must remain resilient for multiple load cycles and heating cycles in 
order to stay in contact with the opposing sealing surface. These seals are used in 
dynamic applications in which the sealing surfaces move during each mission. 
Because these surfaces are often rough, the seals must be able to survive 
scrubbing against them without a large change in leakage performance.

Existing seals do not meet these challenging requirements, so the Seal Team at 
NASA GRC is developing sealing systems that do meet these requirements and 
demonstrating their performance in relevant environments. 
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♦ Ceramic wafer seals originally developed during NASP program
♦ Preload device behind wafers maintains contact with sealing surface
♦ Current design:

• Material: monolithic silicon nitride (Honeywell AS800)
• Size: 0.5 in. wide x 0.92 in. long x 0.125 in. thick

Seal Specimens

0.5 in.

0.5 in.

The seals examined in this study were ceramic wafer seals that were originally 
developed during the NASP program. They are composed of a series of thin 
ceramic wafers installed in a channel in a movable panel and preloaded from 
behind to keep them in contact with the opposing sealing surface. Preload devices 
that have been considered for this application include helical compression springs 
and canted coil springs. 

Materials that were evaluated for the wafer seals during the NASP program 
included a cold-pressed and sintered aluminum oxide, a sintered alpha-phase 
silicon carbide, a hot-isostatically-pressed silicon nitride, and a cold-pressed and 
sintered silicon nitride. A detailed analytical comparison of all the materials that 
were considered ranked the advanced silicon nitride ceramics as the most 
promising material for future consideration. Given that those tests were performed 
in the late 1980’s, considerable improvements have been made since then to 
produce stronger and tougher ceramic materials. Because of these improvements 
and the high ranking of silicon nitride as a candidate wafer seal material, GRC 
selected silicon nitride as the best candidate for these seals. The wafers tested in 
the current study were made of monolithic silicon nitride (Honeywell AS800) and 
were 0.5-in. wide, 0.92-in. tall, and 0.125 in. thick. They had corner radii of 0.050 
in.
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♦ Goal: Provide ~0.1-in. stroke to keep seal in 
contact with sealing surface

♦ Silicon nitride compression springs
• Commercially available

• Potential for high temperature use (2000+°F)

• Evaluated 2 designs:

– Standard: 0.815 in. high x 0.520 in. diam.

– Modified: 0.694 in. high x. 0.435 in. diam.

♦ Canted coil springs
• Unique load vs. displacement curve provides 

nearly constant force over large range

• Spring modeling and development to be 
discussed in other presentations

Seal Preload Device Designs

Large working deflection of canted coil spring

5% 35%

Canted Coil 
Spring

Canted coil 
spring

Silicon nitride 
compression 

springs

The high temperature seal preload devices that are being developed and evaluated 
would be installed behind the seals to ensure sealing contact with the opposing 
sealing surfaces. The requirements for these devices are also quite challenging as 
they must operate in the same environment and temperature as the seals. For the 
sealing applications being considered, the goal is to have the preload devices 
provide a stroke of about 0.1 in. to keep the seals in contact with their opposing 
sealing surfaces for multiple load and heating cycles.

Two types of preload devices have been focused on for these applications. The 
first type of device was a silicon nitride compression spring produced 
commercially by NHK Spring Co., Ltd. Because they are made of silicon nitride, 
these springs have the potential to be used as high temperature (2000+ °F) seal 
preloading devices. Two different designs were tested for the current study: a 
standard spring and a modified design. The main physical difference between 
these designs was that the standard design was larger than the modified design.

Canted coil springs have also been evaluated as part of this effort because of their 
unique load versus displacement curve that provides a nearly constant force over a 
relatively large deflection range. The Seal Team’s efforts to develop and model 
these types of springs will be discussed in other presentations that follow this one.
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♦ Measure load vs. linear compression, resiliency, and stiffness of:
• Springs alone
• Wafer seals on top of springs

♦ Multiple load cycles at room temperature, 1600, 2000, 2200, & 2500 °F
♦ Silicon carbide test fixtures (test temperatures up to 3000 °F)

Hot Compression Test Fixture

Seal (4 in. long)

Seal 
holder

Loading rod 
connected to 

actuator

Box furnace 
rated to 3000 °F

Load cell 
below furnace

A series of hot compression tests were performed on the wafer seals and silicon 
nitride compression springs using GRC’s hot compression test rig. Compression 
tests were performed inside a box furnace capable of 3000 °F using the test setup 
shown here.  These tests were performed to determine the resiliency and stiffness 
of the springs by themselves and for the wafers on top of the springs. Load versus 
displacement (i.e., linear compression) data was also generated by these tests. Test 
specimens were installed into a holder that rested on a stationary base. A movable 
platen attached to the actuator was translated up and down to load and unload the 
test specimens. Test specimens were loaded for multiple load cycles at a variety of 
test temperatures including room temperature, 1600 °F, 2000 °F, 2200 °F, and 
2500 °F.
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Compression Test Results: Standard Silicon Nitride Compression Springs

♦ No permanent set at room temperature, 2000 °F, or 2200 °F after 10 cycles
♦ Observations from 2500 °F testing:

• Spring exhibited 44% permanent set after 10 cycles at 2500 °F
• Some load-bearing capability still exists
• Need to optimize material and design for multiple use at 2500 °F

28 lbf/in.

46 lbf/in.

28 lbf/in.

13 lbf/in.

31 lbf/in.

Springs show promise as high temperature seal preload devices

Permanent set

70°F, Cycle 10
2000°F, Cycle 10
2200°F, Cycle 10
2500°F, Cycle 1
2500°F, Cycle 10

17 lbf/in.

This figure shows the results for the compression tests performed on the standard 
silicon nitride compression spring design. For the tests performed at room 
temperature, 2000 °F, and 2200 °F, there was no permanent set or relaxation 
observed after 10 load cycles. For clarity, the figure only shows the curves for 
cycle 10 of these tests because they were almost identical to the curves for all 
other load cycles.

The test at 2500 °F produced somewhat different results than the tests performed 
at lower temperatures. The figure shows load cycles 1 and 10 for this test. For 
both of these load cycles, the peak loads were lower than those for the other tests. 
After 10 load cycles at 2500 °F the spring exhibited 44% permanent set but still 
had some load-bearing capability.

The results of these tests indicate that the silicon nitride compression springs show 
promise as high temperature seal preload devices, but some work needs to be done 
to optimize this material and spring design for use at 2500 °F.
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Compression Test Results: Modified Silicon Nitride Compression Springs

♦ No permanent set at any temperature even for wafer seals on top of 
springs

♦ Some hysteresis for wafers on top of springs; possibly due to friction 
between wafers and groove side walls

*Note: 4 springs 
tested under 
wafer seals; 1 
spring used for 
other tests
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This figure shows the results for the compression tests performed on the modified 
silicon nitride compression spring design. The modified springs were smaller than 
the standard springs, allowing them to be installed in a groove behind the wafer 
seals so that compression tests could be performed on the sealing system as a 
whole. In all of these tests there was no permanent set or relaxation observed after 
10 load cycles at room temperature, 1600 °F, 2000 °F, or 2200 °F. For clarity, the 
figure only shows the curves for cycle 10 of each test because they were almost 
identical to the curves for all other load cycles. For all of the tests performed on 
the silicon nitride springs by themselves, there was very little hysteresis in their 
load vs. linear compression data. For the tests performed with seals on top of the 
springs, there was virtually no hysteresis for the room temperature tests but a 
small amount for the tests at 1600 °F and 2000 °F. It is possible that during the 
high temperature tests, there was some small amount of friction between the 
wafers and the side walls of the seal groove that caused this hysteresis as the 
wafers and springs were unloaded during each load cycle. 
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Dwell Tests on Silicon Nitride Compression Springs

♦ Observed creep after 1.5 hrs under compression:
• At 2000 °F load dropped by 13.5%

• At 2200 °F load dropped by 34%

♦ Still residual load on springs after 1.5 hrs
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Test Results for Standard Spring Design

Dwell tests were also performed on the standard silicon nitride compression 
springs in which the springs were held under load for an extended period of time. 
After an hour and a half under compression at 2000 °F the load dropped off by 
13.5%. At 2200 °F the load dropped by 34% after an hour and a half. Although the
loads dropped, the springs were still able to bear a good amount of load in both 
cases after an hour and a half of loading at high temperatures. If these springs are 
used as preload devices in future seal applications, this drop in load will have to 
be accounted for.
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♦ Measure seal frictional loads and wear 
rates

♦ Test parameters:
• Tests at room temperature and 1600 °F

– Inconel 625 rub surfaces
– Rub surface roughness before testing = 

6 μin
• Test performed at 2000 °F 

– Silicon carbide rub surfaces
– Rub surface roughness before testing = 

29 μin
• Two sets of 32 wafers preloaded by silicon 

nitride compression springs

• Seal gap size = 0.125-0.135 in.
• 1000 scrub cycles; 2000 in. of scrubbing

Hot Scrub Test Fixture

Wafer 
seals

Seal 
holder

Inconel 625 rub surfaces

Wafer seals Seal holder

Silicon carbide rub surfaces

The main test rig that was used for the compression tests was also used to perform scrub tests on 
the seals using the set of test fixtures shown here. Tests were performed at room temperature, 1600 
°F, and 2000 °F to evaluate seal wear rates and frictional loads as the seals were scrubbed against 
Inconel 625 and silicon carbide rub surfaces. The seals were installed in grooves in two stationary 
seal holders on either side of a pair of movable rub surfaces. The rub surfaces were assembled in a 
holder that was connected through the upper load train to the actuator. 

Inconel 625 rub surfaces were used for the tests performed at room temperature and 1600 °F, while 
silicon carbide rub surfaces were used for the test performed at 2000 °F. The Inconel 625 rub 
surfaces had an average surface roughness before testing of about 6 μin. The roughness of the 
silicon carbide rub surfaces before testing was 29 μin. The gaps between the rub surfaces and the 
seals were set by spacer shims in front of and behind the seal holders. Gap sizes of 0.125-0.135 in. 
were used for these tests.

Four silicon nitride compression springs (modified spring design) were installed in the bottom of 
each seal groove to keep the wafer seals preloaded against both rub surfaces. A load transfer 
element was placed on top of the springs to support the wafers and distribute the load from the 
springs. Thirty two wafers were installed into each seal holder to fill the 4-in.-long seal grooves. 
The amount of compression on the seals and springs (0.030 in.) was set through an interference fit 
between the seals and the rub surfaces resulting in a preload of about 2 lb per inch of seal.

During these tests, the seals were held in place in the holders while the rub surfaces were scrubbed 
up and down against them. The seals were subjected to 1000 scrub cycles at 1 Hz for a total scrub 
length of 2000 in. for each test. Frictional loads were measured by the load cell under the furnace 
below the test fixture base. Seal wear rates were determined by examining the condition of the 
seals before and after each test and by measuring seal weight changes and changes in flow rates.
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Scrub Test Results

♦Room temperature test against 
Inconel 625
• Frictional loads peaked at 15.5 lb
• Friction coefficient reached ~1
• Rub surfaces became rougher 

(43 μin)

♦1600 °F test against Inconel 625
• Loads reached 23.5 lb
• Max friction coefficient = 1.5 
• Final rub surface roughness = 

34 μin

♦2000 °F test against silicon carbide
• Loads peaked at 12.8 lb
• Friction coefficient ~1 by end of test; surface roughness stayed ~28-29 μin
• No load spike at start of test; seals did not stick to surface during furnace heatup

Peak Frictional Loads During Scrub Testing
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Peak frictional loads for each of the scrub tests are presented in this figure. For the 
test performed at room temperature against Inconel 625 rub surfaces, the frictional 
loads started around 6 lbf at the beginning of the test and gradually rose as the test 
proceeded until they reached about 15.5 lbf by the end of the test. Based on these 
loads, the friction coefficient at the end of the test was about 1.0. Before this scrub 
test, the average surface roughness of the rub surfaces was about 6 μin. After the 
test, the surface roughness had risen to about 43 μin. This increase in surface 
roughness during testing likely contributed to the increase in frictional forces as 
the test proceeded.

For the test performed at 1600 °F against Inconel 625 rub surfaces, the load 
peaked initially before quickly dropping and then slowly rising again to about 23.5 
lbf by the end of the test. The friction coefficient reached 1.5 by the end of this 
test, corresponding well with an increased surface roughness of 34 μin.

For the test at 2000 °F using silicon carbide rub surfaces, lower loads were 
recorded than for the tests performed at lower temperatures against Inconel 625 
rub surfaces. There was no load spike at the start of the test, indicating that the 
seals did not stick to the silicon carbide rub surfaces during furnace heatup. By the 
end of the test, the load peaked at about 12.8 lbf. The friction coefficient for this 
test reached about 1.0, and the surface roughness of the silicon carbide rub 
surfaces remained at about 28-29 μin, the same roughness as at the start of the test.
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Scrub Test Results

♦ Little if any damage to silicon nitride wafers during scrub testing
• No chips in wafers
• Weight of wafer stacks almost identical before and after testing

♦ Superficial burnishing on Inconel 625 rub surfaces after testing
♦ Some debris on SiC rub surfaces after testing; believed due to 

abrasion of oxide layer 

Wafer seals after 1600 °F scrub test 
against Inconel 625

Wafer seals before 1600 °F scrub test 
against Inconel 625

Wafer seals before 2000 °F scrub test 
against silicon carbide

Wafer seals after 2000 °F scrub test 
against silicon carbide

After the scrub tests were completed, the seals and rub surfaces were inspected for 
signs of damage. These figures show what the seals looked like before and after 
scrubbing at 1600 °F against Inconel and before and after scrubbing at 2000 °F 
against silicon carbide. The seals showed little if any damage after testing. None 
of the wafers were chipped or broken during testing, and the total weight of the 
wafers before and after testing was almost identical. Superficial burnishing was 
observed on the Inconel rub surfaces after testing, but this was not deemed to be 
significant. A small amount of debris was observed on the silicon carbide rub 
surfaces after testing (also visible in the photo of the wafers after this test). It is 
believed that this debris is due to abrasion of the oxide layer that forms on the 
silicon carbide rub surfaces at high temperatures.
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Flow Test Results
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♦ No change in flow rates after scrubbing at room temp., 1600°F, or 2000°F
♦ Flow rates were ~32 times lower than those for best braided rope seals
♦ Flow rates lower for wafers tested at 1600°F and 2000°F due to tighter 

wafer height tolerance (0.0005 in. vs. 0.001 in. for RT test)

Flow test results for the wafer seals before and after each scrub test are presented 
here for a gap size of 0.135 in. These tests were performed with four silicon 
nitride springs installed behind the wafers to keep them preloaded against the 
cover plate. Flow rates for the wafers before and after scrubbing were almost 
identical in each case. This is consistent with the observation that the wafers 
were not damaged during the scrub test. These results are encouraging because 
they show that the seals are still effective at blocking flow even after 1000 
scrub cycles at room temperature. Additionally, flow rates for the wafer seals 
were up to 32 times better than those for the best braided rope seals.

Flow rates for the wafers tested at 1600°F and 2000°F were lower than those for 
the test performed at room temperature. This was because a tighter wafer 
height tolerance was used for the high temperature tests (0.0005 in.) than what 
was used for the room temperature test (0.001 in.).
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Flow Test Results

♦ Recorded “seal activating” pressure behind seals during flow tests 
before and after 2000 °F scrub test
• Augments preload devices to keep seals in contact with sealing surface

• Pressure behind seals was ~93% of pressure differential across seals 

0

10

20

30

40

50

60

70

80

90

100

0 20 40 60 80 100

Pressure differential across seal, psid

P
re

ss
u

re
 b

eh
in

d
 s

ea
l, 

p
si

g

For the flow tests that were performed on the wafers before and after the 2000 °F 
scrub test, a new pressure measurement was made that was not recorded in the 
previous flow tests. This pressure measurement allowed the pressure behind the 
wafers to be recorded as a function of the differential pressure across the seals. 
The figure on the right presents pressure data behind the wafer seals versus the 
pressure differential across the seals for the flow test performed on the wafers that 
were scrub tested at 2000 °F. This plot shows a linear relationship between these 
pressures such that the pressure behind the seals was equal to about 93% of the 
pressure differential across the seals. The pressure behind the seals serves as a 
“seal activating” pressure that augments the preload devices to further preload the 
seals against the sealing surface and keep them in contact with it. This seal 
activating pressure phenomenon for wafer seals was observed previously for wafer 
seals tested during the NASP program.
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♦ Wafer seals performed well in room temperature, 1600 °F, and 
2000 °F scrub tests
• No chips in wafers or any other signs of damage

• No change in flow rates after scrub testing

♦ Wafer seal flow rates were ~32 times lower than those for best 
braided rope seals

♦ Silicon nitride compression springs continue to show promise as 
high temperature seal preload devices; need to optimize material
and design for multiple use at 2500 °F

♦ Future work:
• Investigate other wafer shapes and sizes
• Investigate seal + preloading device combinations that satisfy requirements 

at higher temperatures

Summary

Based on the results of these tests, the following conclusions were made:

1. The silicon nitride wafer seals performed very well in scrub tests performed at 
room temperature, 1600 °F, and 2000 °F. No chips or any other signs of 
damage were observed on the wafers after testing, and there was no change in 
flow rates past the seals after scrub testing.

2. Flow rates for the wafer seals were up to 32 times better than those for the best 
braided rope seals.

3. Commercially available silicon nitride compression springs continue to show 
promise as high temperature seal preload devices, but the material and design 
for these springs needs to be optimized for multiple uses at 2500 °F.

More work needs to be done to investigate seal and preloading device 
combinations that ultimately satisfy all of the seal requirements. The authors 
plan to investigate other wafer shapes and sizes to see if those changes affect 
seal durability, frictional forces, and flow rates. Longer scrub tests will also be 
performed at higher temperatures to examine seal durability.
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Future seal requirementsFuture seal requirements
Test fixture design objectivesTest fixture design objectives
Simulation of reentry environmentSimulation of reentry environment
Test fixture design and capabilitiesTest fixture design and capabilities

Modular seal cartridgeModular seal cartridge
Modular flapModular flap
MetalMetal--toto--ceramic flap transmission systemceramic flap transmission system
InstrumentationInstrumentation
Angular positioningAngular positioning
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Future Vehicle Seal NeedsFuture Vehicle Seal Needs

Survive higher Survive higher 
temperaturestemperatures

Proximity to outer mold lineProximity to outer mold line
CMC hot structures CMC hot structures 
(2400(2400ººF) with high F) with high 
conductivityconductivity

Compatibility with Compatibility with 
advanced flap materialsadvanced flap materials
Improved resiliency to Improved resiliency to 
follow gap openingsfollow gap openings

ElevonRudder

Future reentry vehicles will require more advanced seals than the current 
generation of vehicles (i.e. Shuttle).  The seals must be capable of surviving 
higher temperatures for two primary reasons.  Next-generation vehicles will be 
smaller in size than the Shuttle, and as a consequence, the seals will be closer to 
the outer mold line of the vehicle.  Additionally, the next generation vehicles will 
employ CMC hot structures in place of the tile-insulated aluminum control 
surfaces currently used in Shuttle.  These materials will be exposed directly to 
temperatures of (anticipated) 2400 ºF.  Combined with the high thermal 
conductivity of these materials, new seal designs will be exposed to more severe 
thermal environments.  

The use of CMC materials also introduces a second challenge in the design of new 
control surface seals.  The seal materials must be chosen with care to ensure that 
the seal does not stick to the control surface material.  

Finally, the seal must be able to maintain resiliency at the elevated temperatures.  
The seal gap size can change due to thermal expansion and movement of the 
control surface during flight.  The seal must be capable of responding to gap size 
changes in these conditions.
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Seal Test RequirementsSeal Test Requirements
Require environment Require environment 
representative of reentryrepresentative of reentry

NASA JSC Arcjet simulates NASA JSC Arcjet simulates 
reentry environmentreentry environment

Heat FluxHeat Flux

Seal temp 1800Seal temp 1800--24002400ººFF

Pressure drop 56Pressure drop 56--100 psf100 psf

Exposure time ~15 minExposure time ~15 min

A simulated reentry environment is ideal for testing next-generation reentry 
vehicle control surface seals.  This includes a combination of the heat flux, 
temperature, pressure drop, and exposure time encountered during hypersonic 
flight.  

The arcjet facility at NASA Johnson Space Center will provide the simulated 
reentry heat.  Depending on the nozzle used in the facility, the arcjet will expose 
the seal to temperatures of 1800-2200 ºF with a pressure drop of 56-100 psf.  The 
facility is actively cooled, allowing it to simulate the reentry environment for 15 
minutes, a typical reentry time for Shuttle.
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Seal Test Fixture ObjectivesSeal Test Fixture Objectives

Test control surface seals in JSC arcjet tunnelTest control surface seals in JSC arcjet tunnel
Expose seals to reentry conditionsExpose seals to reentry conditions

Survive arcjet environmentSurvive arcjet environment

Movement of control surface during hot testMovement of control surface during hot test

Variability of test parametersVariability of test parameters
Seal shapes, sizes, and materialsSeal shapes, sizes, and materials

Fixture position (angular, spacial)Fixture position (angular, spacial)
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Fixture DesignFixture Design

Insulating Tile

Water-cooled
Copper Sides

C/SiC Flap

Water-cooled
Motor Housing

Water-cooled
Brake Housing

Seal Gap

Height Adjustment

Sting Arm

The design of the advanced seal arcjet test fixture provides flexibility for testing 
diverse seal designs at the same time as it is capable of surviving the harsh arcjet 
environment.  The leading edge of the fixture contains the seal specimen, 
instrumentation, and provides the primary structure of the test fixture.  The 
underlying structure of the leading edge is formed from water-cooled oxygen-free 
high-conductivity (OFHC) copper and is covered with insulating tile panels 
designed to minimize heat transfer to the structure.  The tiles are coated with a 
high emissivity coating to further reduce the heat loading on the interior structure.  

The leading edge is mounted against a C/SiC flap.  The leading edge and flap are 
connected via a set of motor and brake systems housed inside water-cooled OFHC 
copper enclosures.  The motor and brake systems allow the flap to move while the 
arcjet test is active.  This simulates loading on the seal during reentry conditions, 
including the effects of scrubbing a rough surface against the seal at high 
temperature.

The sting arm supports the test fixture in the arcjet facility and holds the fixture in 
the arcjet flow.  The sting arm allows movement of the fixture in the direction of 
the arcjet flow, while a high adjustment mechanism allows adjustment of the 
position of the fixture perpendicular to the flow stream.
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Test Fixture CapabilitiesTest Fixture Capabilities
Ability to move flap Ability to move flap 
during testduring test

Immersion in arc jet Immersion in arc jet 
flowflow

Modular seal cartridgeModular seal cartridge

Modular flap designModular flap design

Modify angle of attack Modify angle of attack 
and yaw angleand yaw angle

The flap can be moved while the arcjet is active while a test is in progress.  This 
allows recording of dynamic changes in the seal environment and permits 
recording the seal response to these dynamic changes.  

The seal specimen is mounted in a modular cartridge.  This cartridge allows 
diverse seal shapes and materials to be tested in the fixture while minimizing 
changes to the fixture.  New seal designs can be incorporated into the fixture by 
manufacturing a new low-cost cartridge instead of requiring expensive design 
changes to the entire fixture.

The flap is also modular, allowing not only the standard C/SiC flap, but also other 
designs (such as a tile-insulated aluminum flap).  The attachment mechanism of 
other flap designs need only conform to the interface transmission system of the 
fixture.

The fixture also permits changes to the angle of attack of the leading edge and the 
yaw angle.
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Modular Seal CartridgeModular Seal Cartridge
Rapid swapRapid swap--out of out of 
candidate sealscandidate seals

Tailor instrumentation Tailor instrumentation 
locations to specific seal locations to specific seal 
designdesign

Secondary seals Secondary seals 
eliminate sneak flowseliminate sneak flows

Permit proper evaluation Permit proper evaluation 
of candidate sealsof candidate seals

Prohibit hot gas Prohibit hot gas 
ingestion into fixtureingestion into fixture

The modular seal cartridge allows inexpensive testing of diverse seal shapes, 
sizes, and materials as well as fast turn-around time to incorporate new seal 
designs.  The cartridge is formed from a series of insulating tile blocks mounted to 
a metal backing plate.  The seal (in this case, a stack of ceramic wafers) fits 
between the two blocks.  A secondary rope seal fits around the cartridge, sealing 
the edges of the test seal and preventing sneak flows into the internals of the 
leading edge.  Each test seal has its own seal cartridge, providing a low-cost 
solution to expanding the capabilities of the test fixture.  Furthermore, the 
instrumentation locations can be altered for different seal designs by altering the 
instrument locations in the tile blocks.  

The seal cartridge attaches to a removable instrumentation tray which slides in 
and out of the bottom of the fixture along a series of guiding rails.  These rails 
constrain the instrumentation tray such that the seal is compressed uniformly 
against the flap.

NASA/CP—2005-213655/VOL1 286



InstrumentationInstrumentation

ThermocouplesThermocouples
Leading EdgeLeading Edge

Above coveAbove cove

Above sealAbove seal

Behind sealBehind seal

Pressure TransducersPressure Transducers
Above sealAbove seal

Behind sealBehind seal

Seal performance measurements include both pressures and temperatures.  

Thermocouple passages are machined into the top tile cover and seal cartridge and 
provide temperature measurements above the seal cove, inside the seal cove both 
immediately above and below the seal, and downstream of the seal cove, all at 
several locations along the width of the fixture.  Additionally, temperatures are 
monitored in sensitive locations inside the test fixture (e.g. the pressure 
transducers, motor and brake, etc.) to ensure that electronic components are not 
exposed to temperatures above their design specifications.

Pressure taps are also embedded in the top insulating tile and in the seal cartridge.  
These lines pass through the tile material and connect to one of two manifold 
blocks.  Each manifold block contains machined passages leading from the 
pressure taps to threaded connectors.  Small pressure transducers thread into these 
connectors.  This system allows fast-response pressure measurements while at the 
same time protecting the pressure transducers from the harsh arcjet environment.  
The manifold block permits the pressure transducers to fit into the small space 
provided in the leading edge.
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FlapFlap
Modular design permits Modular design permits 
testing of diverse testing of diverse 
materialsmaterials

MR&D/GE C/SiC flapMR&D/GE C/SiC flap
Anticipated test Anticipated test 
temperature of 2400temperature of 2400ººFF

Surface roughnessSurface roughness

TileTile--insulated insulated 
aluminum flapaluminum flap

7.9 in

C/SiC flap received from MR&D

The flap is a modular design, permitting diverse flap materials to be tested in the 
advanced seal arcjet test fixture.  As with the modular approach to seal designs, 
the modularized flap permits testing of various flap materials and finishes with 
candidate seal designs.  

The flap shown here is a C/SiC flap provided by MR&D and GE Power Systems.  
The flap is expected to be exposed to temperatures as high as 2400 ºF.  The C/SiC 
material represents future sealing challenges in an environment including a 
combination of high heat loading, high temperature, rough sealing surface, and 
scrubbing conditions.

The modular design of the flap permits the use of other flap designs such as a tile-
insulated aluminum flap characteristic of Shuttle.  
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Flap Transmission SystemFlap Transmission System
Transmission interfaces Transmission interfaces 
cooled metal to hot flapcooled metal to hot flap

Differences in thermal Differences in thermal 
growthgrowth
Inhibits heat transferInhibits heat transfer

Drive PlateDrive Plate
Boundary between metal Boundary between metal 
and ceramicand ceramic
NN22--cooled pins interface to cooled pins interface to 
hot ceramic flaphot ceramic flap
Locates motor and reduces Locates motor and reduces 
heat transferheat transfer

Brake prevents unpowered Brake prevents unpowered 
movement of flapmovement of flap

Motor

N2-cooled Pins

Motor Mounting
Brackets

N2 Cooling
Holes

The flap transmission system is capable of altering the flap angle while the fixture 
is in the arcjet flow stream.  At the same time, the transmission system holds the 
flap despite the differences in thermal expansion between the hot C/SiC flap and 
the cooled metallic components.   Furthermore, the transmission system inhibits 
heat transfer from the flap to the motor and brake, keeping the temperatures of 
these critical components below their design temperature limits. The transmission 
system also permits manual adjustment of the angle of attack of the leading edge.

The key to the transmission system is the nitrogen-cooled drive plate.  Nitrogen is 
fed into the plate through a channel around the outer diameter of the disk. Three 
pairs of cooling holes blow nitrogen onto the motor/brake face and onto the 
inboard labyrinth seal.  These holes can be orificed or plugged completely in order 
to supply more nitrogen to three Inconel drive pins. Each pin has an internal 
Inconel tube which supplies nitrogen directly to the internal tip of the pin.  The 
nitrogen flows along the inside surface of the hot pin and exits through holes near 
the plate.  The flow of nitrogen maintains the pin tips below 1500 ºF, even though 
the flap temperature is approximately 2400 ºF.  After exiting the pin, the nitrogen 
maintains a positive purge pressure in the motor/brake housings, preventing the 
ingestion of hot arcjet gases.  This effect is boosted by the inboard labyrinth seal.

Heat transfer from the flap to the inboard labyrinth seal is inhibited by a silicon 
nitride insulating disk.

NASA/CP—2005-213655/VOL1 289



Variable AnglesVariable Angles
Flap angleFlap angle

Variable from 0Variable from 0°° -- 30+30+°°

Increments of 1.5Increments of 1.5°°

Angle of attackAngle of attack
Alter seal environmentAlter seal environment

Variable from 0Variable from 0°° -- 9090°°

Increments of 6Increments of 6°° (finer (finer 
possible)possible)

Yaw angleYaw angle
Allow flow along seal gapAllow flow along seal gap

Rudder seals or special Rudder seals or special 
flight conditionsflight conditions

Yaw Angle

Angle of Attack

Flap Angle

Three test fixture angles are capable of being independently adjusted. 

The flap angle can be adjusted while the test fixture is exposed to the arcjet flow 
stream.  The angle can be adjusted between 0º and 30º, with small negative angles 
possible.  The brake constrains the flap angle to increments of 1.5º.

The angle of attack of the leading edge can be manually adjusted between tests.  
This permits alteration of the seal environment by manipulating the shock 
structure near the seal cove.  The angle of attack can be easily adjusted between 0º
and 90º in increments of 6º.  Finer angular increments can be obtained with some 
disassembly and reassembly of the fixture.

The fixture yaw angle can also be manually adjusted.  This adjustment permits 
some of the arcjet flow to move along the seal gap, exposing the seal to higher 
heat fluxes.  This simulates control surface environments such as rudders as well 
as special flight conditions where flow moves along seal gaps.
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SummarySummary

Future reentry vehicles pose greater sealing Future reentry vehicles pose greater sealing 
challenges than shuttlechallenges than shuttle

Seal proximity to outer mold lineSeal proximity to outer mold line
Hot (2400Hot (2400°°F) CMC control surfacesF) CMC control surfaces

Control surface seal test fixture permits seal Control surface seal test fixture permits seal 
tests:tests:

Under reentryUnder reentry--like conditions (arc jet)like conditions (arc jet)
With variable position/geometryWith variable position/geometry
Using several diverse seal conceptsUsing several diverse seal concepts
Against various flap materials and shapesAgainst various flap materials and shapes
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ScheduleSchedule

Prepare final drawings: 1Q FY05Prepare final drawings: 1Q FY05

Complete wood model test: 1Q FY05Complete wood model test: 1Q FY05

Complete fixture fabrication:  3Q FY05Complete fixture fabrication:  3Q FY05

Perform seal tests:  FY06Perform seal tests:  FY06

Checkout tests may be conducted in late FY05

NASA/CP—2005-213655/VOL1 292



Wood Model TestsWood Model Tests
Ensure that tunnel does Ensure that tunnel does 
not block due to size of not block due to size of 
modelmodel

Establish tunnel Establish tunnel 
operating settingsoperating settings

Check for hot spots on Check for hot spots on 
modelmodel

Perform critical fit Perform critical fit 
checkschecks

The advanced seal arcjet test fixture is anticipated to be one of the largest objects 
tested in JSC’s Arcjet facility.  The large size of the fixture has introduced the 
possibility that the fixture could block the JSC Arcjet tunnel. In this situation, the 
fixture deflects flow into the arcjet vacuum chamber, increasing the chamber 
pressure.  The higher chamber pressure prevents the arcjet stream from expanding, 
resulting in a high enthalpy gas stream tightly focused on a small area of the 
fixture.  This situation would result in the destruction of the fixture.  Fortunately, 
this situation is avoided by an automatic tunnel shutdown sequence.  

To permit the successful completion of seal tests, the test fixture must not block 
the arcjet tunnel.  The use of a larger tunnel nozzle can prevent the fixture from 
blocking the tunnel, although this comes with the trade-off of lower seal 
temperature and heat flux.  To determine the correct nozzle, a wood model of the 
test fixture was constructed and shipped to JSC.

The wood model will be placed in the arcjet stream for a few seconds.  The short 
time increment will be enough to determine whether the fixture size is too large 
for a particular nozzle.  Additionally, the wood model will reveal hotspots.  If 
these hotspots occur in places not forseen, the fixture cooling system can be 
modified to account for the higher heat transfer in these locations.
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Test Fixture AnalysisTest Fixture Analysis
Temperature profileTemperature profile

Within limits for OFHC Within limits for OFHC 
coppercopper

Below annealing Below annealing 
temperaturetemperature

Heating rates are Heating rates are 
conservativeconservative

Stagnation heating over Stagnation heating over 
front face, housingsfront face, housings

Side wall heating ratesSide wall heating rates

This is the temperature profile of the fixture before an insulating tile panel was 
added to the front face of the fixture.  
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Test Fixture SurvivalTest Fixture Survival
Water cooling positioned Water cooling positioned 
in high heating areasin high heating areas

Insulating tile cover Insulating tile cover 
minimizes cooling of minimizes cooling of 
flowflow

Measures to prevent hot Measures to prevent hot 
gas ingestiongas ingestion

Labyrinth sealsLabyrinth seals

Positive purge pressurePositive purge pressure

Secondary sealsSecondary seals

Motor
Housing

Brake
Housing

The cooling system for the leading edge and motor/brake housings.  This shows 
the water passages before an insulating tile was added to the front face of the 
leading edge.
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Brazing Trials for Main HousingBrazing Trials for Main Housing

Brazing trials on OFHC copper test specimens Brazing trials on OFHC copper test specimens 
Motor and brake housingsMotor and brake housings

SidewallsSidewalls

Passed hydrotest at 750 psi for 10 min.Passed hydrotest at 750 psi for 10 min.

Test specimen for side walls

Braze joint

Test specimen for motor and 
brake housings

Braze joints
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Control Surface Seal Design Challenges

• Prevent hot gas ingestion around actuated structures 
during atmospheric reentry

• Protect underlying temperature-intolerant structures
• Survive high temperature exposure (1800 – 2200°F)

• Maintain resiliency through multiple load/heating 
cycles

• Limit loads against sealing surfaces
• Resist abrasion damage

Control surface seals are used to fill the gap at the interface of static panels and 
actuated control surfaces such as rudders and elevons.  These seals protect 
underlying temperature-intolerant structures such as mechanical actuators from 
the hot gases encountered during atmospheric reentry.  The seals are typically 
installed in a compressed state that is 80% of the nominal seal diameter (20% 
compression).  This allows the seal to accommodate expansions and contractions 
of the gap as panels shift relative to one another during flight.  

To be effective, control surface seals must maintain enough resiliency to survive 
multiple compressive cycles at temperatures ranging from 1800-2200°F and  
remain in contact with both sealing surfaces.  Since control surface seals often 
experience scrubbing across the sealing surfaces as the control surfaces are 
actuated they must also be capable of resisting abrasion damage. In addition, 
these seals must also limit the force that they apply to contacted surfaces, as some 
surface materials (e.g., Shuttle tiles) are easily damaged if compressive loads are 
excessive.
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Baseline Seal Design on the X-38

Seal installed between the rudders 
and fins on the X-38 CRV

Control surface seals are typically installed in locations like the rudder/fin section 
shown above on the X-38 Crew Return Vehicle (CRV).  The baseline control 
surface seal to be discussed in this presentation was selected as the primary seal 
installed in this location to protect the CRV’s rudder drive motors from hot gas 
ingestion during atmospheric reentry.
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Baseline Seal Design on the Space Shuttle

Seal Locations
• Landing gear doors
• Payload bay door vents
• Orbiter external tank 

umbilical door

Different sized versions of the baseline control surface seal are used as thermal 
barriers on the Space Shuttle.  Seals are located around the landing gear doors, the 
payload bay door vents, and the orbiter external tank umbilical door. 
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Baseline Seal Components

• Inconel X-750 knitted wire spring tube
– Primary resilient element

• Saffil core
– Limits hot gas flow

• 2-layer Nextel 312 ceramic fabric sheath
– Provides a uniform sealing surface
– Acts as a thermal barrier
– Prevents loss of Saffil batting from seal core

Saffil core

Spring tube

Nextel 312 sheath

The baseline control surface seal is comprised of three parts: 

1. A knitted Inconel X-750 spring tube which is the primary resilient element of 
the seal

2. A Saffil core that limits the flow of hot gases through the seal

3. A 2-layer Nextel 312 ceramic fabric sheath which provides a uniform sealing 
surface, acts as a thermal barrier, and prevents the loss of Saffil from the core 
of the seal through the walls of the knitted spring tube
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Addressing Seal Inadequacies

• Permanent set and loss of 
seal resiliency occur above 
1200°F

• Poor performance due to 
creep and low yield 
strength of Inconel X-750

• Potential Resiliency 
Improvements
– Material substitution 
– Knit geometry modifications 

Permanent set

Baseline Seal

Goal: Enhance seal resiliency through spring tube 
design improvements

The baseline control surface seal has shown significant levels of permanent set in 
previous compression tests at elevated temperatures.  The image above presents a 
comparison between an untested seal and a seal that has been compressed and 
heated to 1900°F in a tube furnace.  The loss of resiliency in the tested seal is 
attributed to a decrease in strength of the Inconel alloy at the elevated test 
temperature.  Further testing has shown that resiliency loss becomes evident at test 
temperatures as low as 1200°F.  This temperature is noticeably close to the 
temperature at which the yield strength of the Inconel X-750 alloy begins to 
sharply decrease.  Based on these observations, efforts to enhance seal resiliency 
by improving the performance of the spring tube have become the primary focus.  
To enhance spring tube resiliency, material substitutions and knit geometry 
modifications are being investigated. 
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Spring Tube Knit Geometry

Knit Parameters
– Number of Wire Strands 
– Courses per Inch (CPI)  
– Needles (N)
– Wire Diameter 
– Tube Diameter 

The schematic above shows a representative geometry of a spring tube.  A defined set of knit 
parameters is used describe the spring tube geometry as follows:

•Number of Wire Strands:  The number of individual wires that are knitted in a parallel fashion to 
form the spring tube.  The baseline design has three wire strands, where the illustration above 
shows only a single strand. 

•Courses per Inch (CPI):  The number of individual courses (loops) counted per inch along the 
length of a spring tube.  The baseline design has 4.9 CPI.

•Needles (N):  The number of individual loops counted in a single rotation around the spring tube 
circumference.  The baseline spring tube has 10 needles.

•Wire Diameter:  The diameter of the individual wires that are knitted to make the spring tube.  
The baseline wire diameter is 0.009”.  

•Tube Diameter:  The outer diameter of the spring tube.  The baseline tube diameter is 0.560”.

Spring tube loop density (LD) was defined to facilitate an equivalent comparison of modified 
spring tube geometries.  This value combines both CPI and needles into a single parameter which 
represents the number of loops per square inch.  
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Spring Tube Material Selection

• Inconel X-750 baseline material

• Material substitution requirements
– High temperature yield strength
– Resistance to creep deformation at elevated temperatures
– Available in wire form

• Rene 41 chosen as X-750 replacement
– Improved high temperature yield strength
– Better resistance to creep deformation

The spring tube in the baseline control surface seal is fabricated from Inconel X-
750 wire.  Inconel X-750 is a precipitation hardenable nickel based superalloy.  
To improve high temperature spring tube performance, material substitutions were 
investigated.  Replacement materials were screened on the basis of  availability of 
wire form, high temperature yield strength, and resistance to creep deformation at 
elevated temperatures.  Based on these criteria, Rene 41, another precipitation 
hardenable nickel based superalloy, was selected as a potential near term 
replacement for the baseline material.  Rene 41 is commercially available in wire 
form, and it has high temperature creep and yield strength properties superior to 
those of Inconel X-750.  Oxide dispersion strengthened (ODS) alloys including 
PM 2000 and Inconel MA754 have high temperature creep properties better than 
Rene 41 above approximately 1550°F; however, these materials are difficult to 
obtain in wire form.  
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Spring Tube Material Selection

Creep Resistance
• Rene 41 superior to X-750
• ODS alloys best at high temp.

Yield Strength
• Rene 41 superior up to 1900°F
• ODS alloys better above 1900°F

The plots above present yield and creep rupture strength values at multiple 
temperatures for candidate materials.  On the plot of yield strength vs. 
temperature, it can be seen that Rene 41 is superior to the other alloys up to 
approximately 1900°F.  After that temperature, the ODS alloys maintain higher 
yield strengths.  The plot of rupture strength vs. temperature shows a similar trend.  
Up to approximately 1550°F Rene 41 has the highest rupture strength, but once 
that temperature is exceeded, the ODS alloys have better strength.  It is notable 
that Rene 41 has better strength properties than the baseline Inconel X-750 
material at all temperatures.   These figures also suggest that if the ODS alloys 
were obtainable in wire form for knitting, they could hold promise for improved 
spring tube performance at temperatures near 2000°F.
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Compression Test Fixture

Seal

Seal holder

Silicon carbide test fixture facilitates tests up to 3000°F

General test conditions
– 4 in. specimen length
– Preload = 0.2 lbf (0.05lbf/in.)
– Multiple load cycles to 20% 

compression
– 250 s. dwell
– Various test temperatures

To evaluate the performance of spring tubes and seals, samples were tested using 
a state-of-the-art test rig at NASA Glenn Research Center.  This rig facilitates 
high temperature compression testing at temperatures up to 3000°F.  This is made 
possible by the SiC test fixture shown above that can withstand the elevated test 
temperatures.  Spring tubes were tested in 4” lengths.  A preload 0.2 lbf was used 
in the testing to define uniform contact between the spring tube and the loading 
platen.  This was necessary because the samples are not visible during high 
temperature testing, as the furnace doors are closed.  The spring tubes were 
subjected to multiple load cycles to a nominal 20% compression. At maximum 
deflection, a dwell period of 250 seconds was used to simulate the predicted time 
of maximum heating during atmospheric reentry.  Multiple test temperatures were 
used to evaluate the performance of the spring tube samples.
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Knit Geometry Screening Tests

• Test matrix
– Inconel X-750 spring tube specimens

• Baseline, 3 strand, 28 loop density

• Modified, 1 strand, 34 loop density

• Modified, 1 strand, 64 loop density

– Heat treated and non-heat treated samples
– Single tests (no replicates)

• Additional test conditions
– Room temperature and 1500°F
– Flat platen spring tube support
– 10 compression cycles

A preliminary set of tests was conducted to evaluate the impact of knit geometry 
modifications on spring tube resiliency and load generation.  The investigated 
geometry parameters included the number of wire strands and spring tube loop 
density.  Single strand designs having loop densities of 34 and 64 loops per in.2

were compared to the three strand 28 LD baseline design.  Both heat treated and 
non-heat treated samples were tested.  Only single tests were run during the 
screening stage due to scheduling limitations and sample availability.  These tests 
were conducted at both room temperature and 1500°F, and consisted of 10 loading 
cycles. Spring tubes were supported with a flat platen to simplify contact 
conditions allowing test results to be used in support of numerical modeling 
efforts.  
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Loop Density Effects at 1500°F

Loop density increase from 34 to 64
• Improved cycle 10 resiliency by 21%
• Had a negligible effect on cycle 10 peak load

Effects plots were used to highlight trends in the collected data.  In the effects plot 
above, residual interference (seal spring-back) at the start of compression cycle 10 
is plotted against loop density.  A greater line slope suggests a more dominant 
influence of the factor on the response variable, which in this case is residual 
interference.  A zero slope would indicate that the factor had no influence on the 
response.  As shown above, increasing spring tube loop density from 34 to 64 
improved post deflection spring back by approximately 21%. The effect of loop 
density on cycle 10 load was determined to be negligible.  
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Strand Effects at 1500°F

Increasing the number of strands from 1 to 3
• More than doubled cycle 10 peak load
• Had a negligible effect on cycle 10 resiliency

In the effects plot above, the influence of the number of wire strands on the peak 
load generated by the spring tube at maximum deflection is highlighted for testing 
at 1500°F.  Increasing the number of strands from 1 to 3 more than doubled the 
cycle 10 peak load.  The change in the number of wire strands had a negligible 
effect on the resiliency.
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Material Selection Tests

• Test matrix
– Inconel X-750 and Rene 41 spring tube specimens

• Baseline knit geometry

• Heat treated and non-heat treated samples

– Rene 41 tests were repeated once
– Inconel X-750 tests were not replicated

• Additional test conditions
– Room temperature, 1200°F, 1500°F, 1750°F, and 2000°F
– Grooved seal holder spring tube support
– 20 compression cycles

To evaluate the impact of material selection on spring tube performance, baseline 
geometry spring tubes fabricated from Inconel X-750 and Rene 41 were tested at 
room temperature, 1200°F, 1500°F, 1750°F, and 2000°F.  Spring tubes of both 
materials were tested in the as-knitted (non-heat treated) and heat treated state.  
Material selection tests used a grooved seal holder to support the samples and 
were extended to 20 compression cycles instead of 10.  These procedural changes 
were used to create a test that was more representative of typical re-entry 
conditions.  Other test variables such as dwell time and compression level 
remained the same as in previous tests.  Tests on Rene 41 samples were repeated 
once, whereas tests on the Inconel X-750 samples were not.  
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Rene 41 Performance Improvements

• Rene 41 spring tubes showed large resiliency improvements over 
Inconel X-750 specimens

– Maintained >95% resiliency through 1200°F

– Exhibited a 5.2x resiliency improvement at 1500°F after 20 cycles 
– Maintained reasonable resiliency up to 1750°F

The impact of material substitution (Rene 41 for Inconel X-750) is highlighted in 
the bar chart above, where average residual interference (spring back) at the start 
of cycles 2 and 20 is plotted against test temperature.  Unlike the baseline Inconel 
X-750 spring tubes, Rene 41 samples maintained greater than 95% resiliency 
through 1200°F for all 20 compression cycles.  At 1500°F, Rene 41 spring tubes 
showed a 5.2x improvement during cycle 20 over the baseline design.  At 1750°F, 
Rene 41 spring tubes maintained a 28% cycle 20 residual interference when all 
resiliency was lost in the Inconel specimens.  Despite the performance 
improvements achieved by the interim material substitution, further material 
substitutions will be necessary in order to satisfy the 1800°-2200°F design 
requirements, as all resiliency was lost by cycle 20 in both spring tubes at 2000°F.
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Rene 41 Performance Improvements

Rene 41 substitution enhanced temperature capability ~275°F

The chart above plots cycle 20 residual interference vs. temperature for both 
spring tube materials to highlight the improvement in temperature capability 
attained through material selection only.  For an arbitrary 75% spring back, the 
substitution of Rene 41 for Inconel X-750 showed a temperature  improvement of 
~275°F.  
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Rene 41 Performance Improvements

Pre-test 2000°F1750°F1500°F1200°F

20% Compression Tests on IN X-750 Spring Tube

Permanent set

20% Compression Tests on Rene 41 Spring Tube

Pre-test 1200°F 1500°F 1750°F 2000°F

Significant permanent set in Inconel at 1500°F

No visible permanent set in Rene until 1750°F

Calculated resiliency improvements resulting from material substitution were 
visually confirmed during post test inspection of the spring tube samples.  As 
shown above, permanent set in the Inconel X-750 specimens was clearly evident 
at 1500°F.  In the Rene 41 samples, however, resiliency loss was not visually 
distinguishable until 1750°F.  
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Rene 41 Performance Improvements

• Improved resistance to load relaxation during dwell at 1500°F 
– Force during cycle 1 dropped ~17% for Rene 41 vs. 40% for Inconel

• Produced higher peak loads than Inconel 
– 26% load increase at room temperature

– Loads still within the 5 lbf/in. limit for shuttle tiles

Rene 41 spring tubes knitted using the baseline knit geometry produced higher 
peak loads throughout all test cycles at 1500°F and resisted load relaxation during 
dwell better than the baseline Inconel X-750 spring tube samples.  The plot of 
load vs. time above shows that during compression cycle 1, the load generated by 
the Inconel X-750 spring tube decreased approximately 40%, whereas the Rene 41
spring tube suffered only a 17% load relaxation.  Even though the Rene 41 spring 
tube generated room temperature peak loads that were approximately 26% higher 
than those produced by the Inconel X-750 spring tube, contact forces were still 
well below the 5 lbf/in. load limit for Space Shuttle tiles.  
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Heat Treatment Effects

• Heat treatment of Rene 41 spring tubes improved cycle 20 
resiliency 9.3x at 1750°F

• Heat treatment did not improve Inconel spring tube performance

A comparison was also made during screening tests to determine the effects of 
heat treatment on the performance of the individual materials.  As illustrated 
above, heat treated Rene 41 maintained much better high temperature resiliency 
than the non-heat treated samples.  At the start of cycle 20 at 1750°F, heat treated 
Rene 41 spring tubes showed a 9.3x higher residual interference than the non-heat 
treated specimens.  This behavior was not observed in tests of the baseline Inconel 
X-750 spring tubes.  
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Modification Effects on 1500°F Resiliency

• Material substitution improved cycle 10 resiliency by 2.5x
• Rene 41 heat treatment improved resiliency by 93%
• Loop density increase from 34 to 64 improved resiliency ~21%
• Effect of number of strands was negligible

The effects plot above summarizes the relative influence of each of the evaluated 
spring tube factors on average residual interference at the start of cycle 10 for tests 
ran at 1500°F.  As shown, the most significant factors were material selection and 
heat treatment of the Rene 41 spring tube.  Material substitution of heat treated 
Rene 41 improved cycle 10 resiliency by approximately 2.5x when compared to 
the baseline Inconel X-750 spring tube.  Heat treatment of the Rene 41 spring tube 
increased resiliency by 93% over the non-heat treated sample.  Geometry effects 
were determined to be less significant; however, results did show that moderate 
performance improvements through knit geometry modification were feasible.  
Increasing the loop density in single stranded Inconel X-750 spring tubes from 34 
to 64 improved residual interference by approximately 21%.  Resiliency changes 
due to increasing the number of wire strands from 1 to 3 were determined to be 
negligible.  
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Further Improvements

• Rene 41 material substitution for Inconel X-750 
yielded ~275°F temperature improvement

• Further improvements needed to reach design goal 
of 2200°F
– Material selection
– Heat treatment
– Geometry

• Determination of dominant deformation mechanism
– Identify creep or time-independent plastic flow as primary  

cause of resiliency loss 
• Eliminated test dwell periods and increased load rates to 

minimize ‘time effects’
• Tested heat treated Rene 41 spring tubes (standard geometry) 

at 1750°F

Screening tests showed that a material substitution of heat treated Rene 41 for the 
baseline Inconel X-750 alloy could increase temperature capabilities of the 
baseline knit geometry spring tube by ~275°F for an arbitrary residual interference 
of 75%.  Preliminary geometry modifications also showed potential for enhancing 
spring tube performance. However, to reach the operating temperature design goal 
of 2200°F, further spring tube improvements will be needed.  Utilizing data 
collected through the effects screening tests, material selection, heat treatment, 
and knit geometry will be revisited as opportunities for additional spring tube 
performance enhancement. 

Previous tests showed a correlation between the temperature at which resiliency 
loss was detected and the temperature at which the alloys being tested were 
known to suffer significant decreases in yield strength.  Permanent deformation in 
the spring tubes was suspected to be the result of both creep deformation and non 
time dependent plastic flow, but the dominant deformation mechanism was 
unknown.  To distinguish between the two mechanisms, standard test conditions 
were modified to minimize the ‘time effects’ influencing  the experimental results.  
Dwell periods were eliminated, and load rates were increased to limit the amount 
of creep deformation occurring during the tests.  These tests were conducted at 
1750°F using heat treated Rene 41 spring tubes with standard geometries and a 
20% compression level.         
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Deformation Mechanism Identification

Eliminating dwell and increasing load rates at 1750°F
• Showed higher resiliency: 2.1x at cycle 10 and 2.5x at cycle 20
• Identified creep as dominant mechanism causing permanent set

The bar chart above plots average residual interference vs. compression cycle to 
illustrate the effect of eliminating the dwell periods and increasing load rate of the 
standard spring tube compression tests.  Calculated resiliencies for spring tubes 
tested without dwell periods at maximum deflection were 2.1x higher at the start 
of cycle 10 and 2.5x higher at the start of cycle 20 when compared to the 
corresponding resiliencies calculated from standard compression tests with dwell 
periods.  These results provided a strong indication that creep deformation was the 
dominant mechanism that will need to be addressed in order to further improve 
spring tube performance.  
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Spring Tube Microscopy

• Enhanced performance of larger grain, heat treated 
Rene 41 supports creep deformation theory

• Improved resiliency may be achieved through modified 
Rene 41 heat treatments or ODS alloy substitution

Heat Treated 
Inconel X-750

Non-Heat Treated 
Rene 41

Heat Treated 
Rene 41

To support the theory identifying creep as the dominant deformation mechanism 
leading to permanent set in tested spring tubes, a microstructure evaluation was 
conducted.  Untested samples of heat treated Inconel X-750, non-heat treated 
Rene 41, and heat treated Rene 41 spring tubes were mounted in epoxy, sectioned, 
and examined using an optical microscope.   As shown above, heat treated Inconel 
X-750 and non-heat treated Rene 41 samples had comparable grain sizes.  These 
two spring tubes performed similarly during high temperature compression 
testing, taking on significant permanent set, whereas larger grain, heat treated 
Rene 41 spring tubes showed significant resiliency improvement. These findings 
support the theory of creep dominance, as large grain metals are classically better 
for resisting creep deformation than fine grain alloys. Based on this, improved 
resiliency may be achieved through modified Rene 41 heat treatments or ODS 
(oxide dispersion strengthened) alloy substitution that would provide an enhanced 
resistance to creep deformation.
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DOE Analysis

• DOE based on screening tests
• Results will be combined for an 

optimized spring tube design

Heat Treatment
• Rene 41 baseline
• Rene 41 modified for 

enhanced γ’ growth

Knit Geometry
• Number of strands

• 3 strands

• 10 strands

• Wire diameter
• 0.005” dia.

• 0.009” dia.

• Loop Density
• 28 LD

• 127 LD

Spring tube samples ordered 
for testing in early December

Factors and Levels

In order to apply and test the concepts for improving spring tube performance 
generated through preliminary testing, a formalized design of experiments (DOE) 
study will be conducted.  The factors to be tested include heat treatment, number 
of strands, wire diameter, and loop density.  The levels for these factors are 
presented above.  Spring tubes will be fabricated from Rene 41 and tested using 
previously defined test parameters, including a 20% nominal compression, 1750°F 
test temperature, and a 250 second dwell period at maximum deflection during 
each of the 20 compression cycles.  Results from these tests will be used to 
produce an ‘optimized’ spring tube design which will then be incorporated into a 
control surface seal for evaluation. 
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Conclusions

• Current baseline control surface seal is inadequate 
for future space vehicles

• Heat treated Rene 41 material substitution for Inconel 
X-750 yielded ~275°F temperature improvement 

• Material substitution showed resiliency improvements 
as high as 5.2x at cycle 20, 1500°F

• Preliminary geometry modification showed resiliency 
improvements as high as 21% at cycle 10, 1500°F

• Creep deformation identified as dominant mechanism 
leading to resiliency loss

• DOE analysis will be used to optimize Rene 41 spring 
tube design

• Further material substitution may be needed to reach 
2200°F design goal

NASA/CP—2005-213655/VOL1 321



 



MODELING OF CANTED COIL SPRINGS AND KNITTED SPRING TUBES  
AS HIGH-TEMPERATURE SEAL PRELOAD DEVICES 

 
Jay J. Oswald and Robert L. Mullen 
Case Western Reserve University 

Cleveland, Ohio 
 

Patrick H. Dunlap, Jr., and Bruce M. Steinetz 
National Aeronautics and Space Administration 

Glenn Research Center 
Cleveland, Ohio 

 

NASA/CP—2005-213655/VOL1 323



S
ea

l P
re

lo
ad

er
s 

-
A

pp
lic

at
io

ns

C
an

te
d 

C
oi

l S
pr

in
gs

K
ni

tte
d 

S
pr

in
g 

T
ub

es

R
op

e 
se

al
s 

in
st

al
le

d 
in

 
gr

oo
ve

C
an

te
d 

co
il 

sp
rin

g 
in

st
al

le
d 

be
hi

nd
 w

af
er

 
se

al
s

S
pr

in
g 

tu
be

 
in

 r
op

e 
se

al

NASA/CP—2005-213655/VOL1 324



C
an

te
d 

C
oi

l S
pr

in
gs

C
an

te
d 

co
il 

sp
rin

gs
 o

ffe
r 

a 
ne

ar
ly

 c
on

st
an

t f
or

ce
 o

ve
r

a 
w

id
e 

di
sp

la
ce

m
en

t r
an

ge

NASA/CP—2005-213655/VOL1 325



W
ire

 M
es

h

•
20

 n
od

e 
so

lid
 e

le
m

en
ts

•
M

es
h 

de
ns

ity
 r

ef
in

ed
 b

y 
in

cr
ea

si
ng

:
–

E
le

m
en

ts
 p

er
 fa

ce
–

F
ac

es
 p

er
 u

ni
t l

en
gt

h

•
E

va
lu

at
ed

 lo
w

 a
nd

 h
ig

h 
m

es
h 

de
ns

iti
es

5 
el

em
en

ts
 p

er
 fa

ce
20

 e
le

m
en

ts
 p

er
 fa

ce

NASA/CP—2005-213655/VOL1 326



C
an

te
d 

C
oi

l S
pr

in
g 

A
ni

m
at

io
n

NASA/CP—2005-213655/VOL1 327



C
an

te
d 

C
oi

l S
pr

in
g 

B
eh

av
io

r C
T

C
T

B
A

(A
) 

an
d 

(B
) 

ro
ta

te
 a

bo
ut

 th
e 

bo
tto

m
 o

f e
ac

h 
co

il.

E
ac

h 
ar

c 
m

us
t f

ol
lo

w
 p

at
h 

(C
)

(A
)

is
 s

tr
et

ch
ed

(B
) 

is
 c

om
pr

es
se

d

NASA/CP—2005-213655/VOL1 328



V
er

ifi
ca

tio
n 

of
 S

pr
in

g 
B

eh
av

io
r 

M
od

el

C
om

pr
es

si
on

T
en

si
on

B

A

A

B

F
E

A
 r

es
ul

ts
 s

ho
w

 c
om

pr
es

si
on

 a
nd

 te
ns

io
n 

as
 p

re
di

ct
ed

 in
 b

eh
av

io
r 

m
od

el

C
an

te
d

 c
o

il 
sp

ri
n

g
s 

st
o

re
 e

n
er

g
y 

in
 b

en
d

in
g

 r
at

h
er

 t
h

an
 t

o
rs

io
n

NASA/CP—2005-213655/VOL1 329



C
om

pa
ris

on
 o

f E
xp

er
im

en
ta

l a
nd

 A
na

ly
tic

al
 

R
es

ul
ts

O
bs

er
va

tio
ns

–
G

oo
d 

ag
re

em
en

t i
n 

be
ha

vi
or

 a
nd

 m
ag

ni
tu

de

–
M

od
el

 a
cc

ur
ac

y 
de

cr
ea

se
s 

w
ith

 h
ig

he
r 

st
iff

ne
ss

 s
pr

in
gs

–
M

od
el

 in
iti

al
ly

 u
nd

er
es

tim
at

es
 s

pr
in

g 
st

iff
ne

ss

NASA/CP—2005-213655/VOL1 330



E
ffe

ct
 o

f S
pr

in
g 

Le
ng

th

•
S

pr
in

g 
st

iff
ne

ss
 

de
pe

nd
s 

on
 le

ng
th

–
S

ho
rt

er
 s

eg
m

en
ts

 
ar

e 
so

fte
r,

 m
or

e 
no

n-
lin

ea
r

–
S

ho
rt

er
 s

pr
in

gs
 

co
m

pr
es

s 
ax

ia
lly

 
un

de
r 

tr
an

sv
er

se
 

lo
ad

in
g

NASA/CP—2005-213655/VOL1 331



E
ffe

ct
 o

f F
ric

tio
n 

on
 C

an
te

d 
C

oi
l S

pr
in

gs

•
F

ric
tio

n 
is

 m
od

el
ed

 
w

ith
 a

 C
ou

lo
m

b 
ap

pr
ox

im
at

io
n 

(F
 =

 μ
N

)

•
In

cr
ea

si
ng

 fr
ic

tio
n 

in
cr

ea
se

s 
th

e 
st

iff
ne

ss
 o

f t
he

 
sp

rin
g

NASA/CP—2005-213655/VOL1 332



S
um

m
ar

y 
of

 a
 C

an
te

d 
C

oi
l S

pr
in

g 
P

ar
am

et
er

 S
tu

dy
P

ar
am

et
er

 s
tu

dy
–

w
id

th
–

ec
ce

nt
ric

ity
–

co
ils

 p
er

 in
ch

–
w

ire
 d

ia
m

et
er

–
ca

nt
 a

m
pl

itu
de

In
cr

ea
si

ng
 c

an
t a

m
pl

itu
de

 ➠

In
cr

ea
si

ng
 w

ire
 d

ia
m

et
er

 ➠

NASA/CP—2005-213655/VOL1 333



S
pr

in
g 

T
ub

e 
C

on
st

ru
ct

io
n

1(
)

f
t

%

2(
)

f
t

%

1e%

2e%

B
as

e 
sh

ap
e:

•L
in

e
•C

irc
le

 s
eg

m
en

t

M
irr

or
 b

as
e 

sh
ap

e 
2x

 

“W
ra

p”
ba

se
 

sh
ap

e 
pa

tte
rn

 
ar

ou
nd

 h
el

ix

S
ta

ck
 h

el
ix

 
pa

tte
rn

 to
 

cr
ea

te
 tu

be

H
al

f 
“n

ee
dl

e”

NASA/CP—2005-213655/VOL1 334



S
ym

m
et

ry
/N

od
e 

C
ou

pl
in

g

A
ll 

co
up

le
d 

se
ts

 
ar

e 
pa

ra
lle

l t
o 

th
e 

ax
ia

l d
ire

ct
io

n

NASA/CP—2005-213655/VOL1 335



N
ee

dl
e 

In
te

ra
ct

io
n 

M
od

el
s

L
in

ke
d

:
N

ee
dl

es
 

ar
e 

“h
in

ge
d”

w
ith

 
ad

ja
ce

nt
 n

ee
dl

es

F
re

e:
A

dj
ac

en
t 

ne
ed

le
s 

ha
ve

 n
o 

in
flu

en
ce

 o
n 

al
lo

w
ed

 m
ot

io
n

Li
nk

ed
 n

ee
dl

es
 a

ss
um

e 
m

or
e 

ne
ed

le
 in

te
ra

ct
io

n 
an

d 
in

cr
ea

se
 th

e 
st

iff
ne

ss
 o

f t
he

 m
od

el
.

NASA/CP—2005-213655/VOL1 336



S
pr

in
g 

T
ub

e 
A

ni
m

at
io

n

NASA/CP—2005-213655/VOL1 337



S
in

gl
e 

S
tr

an
d 

R
es

ul
ts

S
in

gl
e 

st
ra

nd
6 

co
ur

se
s 

pe
r 

in
ch

10
 n

ee
dl

es
 p

er
 tu

rn

S
in

gl
e 

S
tr

an
d

7 
co

ur
se

s 
pe

r 
in

ch
16

 n
ee

dl
es

 p
er

 tu
rn

B
ot

h 
si

ng
le

 s
tr

an
d 

ca
se

s 
ar

e 
be

st
 a

pp
ro

xi
m

at
ed

 w
ith

 fr
ee

 (
un

lin
ke

d)
 n

ee
dl

es

NASA/CP—2005-213655/VOL1 338



T
rip

le
 S

tr
an

d 
R

es
ul

ts

•
E

xp
er

im
en

ta
l d

at
a 

sh
ow

s 
2 

re
gi

on
s

–
S

m
al

l c
om

pr
es

si
on

 –
le

ss
 in

te
ra

ct
io

n

–
H

ig
h 

co
m

pr
es

si
on

 –
m

or
e 

in
te

ra
ct

io
n

•
Li

ne
 s

lo
pe

s
–

Li
nk

ed
 m

od
el

: 0
.0

07
 lb

f/i
n.

–
H

ig
h 

co
m

pr
es

si
on

 0
.0

07
 lb

f/i
n.

–
U

nl
in

ke
d 

m
od

el
: 0

.0
04

 lb
f/i

n.

–
Lo

w
 c

om
pr

es
si

on
 0

.0
05

 lb
f/i

n.

H
ig

h
er

 w
ir

e 
d

en
si

ty
 s

p
ri

n
g

 t
u

b
es

 
ex

h
ib

it
 m

o
re

 n
ee

d
le

 in
te

ra
ct

io
n

T
rip

le
 s

tr
an

d
4.

9 
co

ur
se

s 
pe

r 
in

ch
10

 n
ee

dl
es

 p
er

 tu
rn

NASA/CP—2005-213655/VOL1 339



S
um

m
ar

y 
of

 P
re

lo
ad

 D
ev

ic
e 

A
na

ly
se

s

•
B

ot
h 

m
od

el
s 

ve
rif

ie
d 

w
ith

 e
xp

er
im

en
ta

l d
at

a

•
C

an
te

d 
C

oi
l S

pr
in

g
–

E
ne

rg
y 

st
or

ag
e 

is
 in

 b
en

di
ng

–
In

cl
ud

in
g 

a 
fr

ic
tio

n 
m

od
el

 a
nd

 c
om

pa
rin

g 
w

ith
 a

 lo
ng

er
 te

st
 

sp
rin

g 
im

pr
ov

es
 a

cc
ur

ac
y

•
S

pr
in

g 
tu

be
–

Li
ne

ar
 b

eh
av

io
r 

pr
ed

ic
te

d

–
“F

re
e”

ne
ed

le
s 

m
od

el
 is

 b
et

te
r 

fo
r 

le
ss

 d
en

se
 tu

be
s

–
C

om
bi

na
tio

n 
of

 “
fr

ee
”

an
d 

lin
ke

d 
m

od
el

s 
yi

el
ds

 b
es

t p
re

di
ct

io
n 

fo
r 

m
or

e 
de

ns
e 

sp
rin

g 
tu

be
s

•
B

ot
h 

m
od

el
s 

gu
id

e 
an

d 
op

tim
iz

e 
de

si
gn

 o
f h

ig
h 

te
m

pe
ra

tu
re

 s
ea

l p
re

lo
ad

 d
ev

ic
es

NASA/CP—2005-213655/VOL1 340



HIGH-TEMPERATURE METALLIC SEAL DEVELOPMENT  
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Maximum Stress in Finger 
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OXIDATION OF HIGH-TEMPERATURE ALLOY WIRES  
FOR HYBRID SEAL APPLICATIONS 
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Small diameter wires (150 to 250 μm) of the high-temperature alloys Haynes 188, Haynes 230,  
Haynes 214, Kanthal A1 and PM2000 were oxidized at 1204 °C in dry oxygen or 50 percent H2O/50 percent O2 for 
70 hours. The oxidation kinetics were monitored using a thermogravimetric technique. Additional cyclic oxidation 
exposures were conducted in air for one hour cycles at 1204 °C for times up to 70 hours. Oxide phase composition 
and morphology of the oxidized wires were determined by x-ray diffraction, field emission scanning electron 
microscopy, and energy dispersive spectroscopy. The alumina-forming alloys, Kanthal A1 and PM2000, out-
performed the chromia-forming alloys under these test conditions. Correlations between oxidation lifetime and wire 
diameter were considered. PM2000 was recommended as the most promising candidate for advanced hybrid seal 
applications for space reentry control surface seals or hypersonic propulsion system seals.  
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Oxidation of High-Temperature Alloy Wires for Hybrid 
Seal Applications

Elizabeth J. Opila, Jonathan A. Lorincz*, Marissa M. Reigel^, 
Jeffrey J. DeMange&

NASA Glenn Research Center, Cleveland, Ohio
*CON/SPAN, Dayton, OH

^Colorado School of Mines, Golden, CO
&University of Toledo, Toledo, OH

2004 NASA Seal/Secondary Air System Workshop
Ohio Aerospace Institute

November 10, 2004

NASA/CP—2005-213655/VOL1 359



Glenn Research Center at Lewis Field

Why study oxidation of wires?
Understanding of wire oxidation needed for development of advanced 
high-temperature seals for future hypersonic and reentry vehicles. 

•Structural seal restricts hot gas leakage to underlying 
low-temperature control actuators

• Wire overwrap needed for wear resistance
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Glenn Research Center at Lewis Field

State of the art hybrid seals

• Tmax=800°C
• Ceramic batting or fiber core (alumina or 

aluminosilicate)

• Haynes 188 or 230 overwrap/overbraid, 40-125 
micron diameter wire

Nextel 312 fibers
Haynes 230 overbraid
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Glenn Research Center at Lewis Field

Requirements for advanced hybrid seals

• Withstand temperatures up to 1400°C
• Operate without active cooling
• Flexible, resilient, wear resistant

• Airframe control surface seals
– Reentry environment:  reduced pressure air, plasma
– Reusability of 10 to 100 cycles of 30 minutes each

• Hypersonic propulsion system seals
– Propulsion environment: high pressure water vapor
– Reusability of 1000 cycles of 250 sec/cycle (70 hours) 
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Glenn Research Center at Lewis Field

Objectives of this study

• Characterize isothermal and cyclic oxidation 
resistance of high-temperature alloy wires

• Guide selection of higher temperature alloys for 
hybrid seal applications
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Glenn Research Center at Lewis Field

Alloy wires

Fe base, 20 Cr, 5.5 Al, 0.5 Ti, 0.5 Y2O3

Fe base, 22 Cr, 5.8 Al, Si<0.7, Mn<0.4

Ni base, 16 Cr, 4.5 Al, 3 Fe, 0.2 Si, trace: Mn, Zr, C, B, Y

Ni base, 22 Cr, 14 W, Co<5, Fe<3, 2 Mo, 0.5 Mn, 0.4 Si, 
0.3 Al, trace: C, La, B

Co base, 22 Cr, 22 Ni, 14 W, Fe< 3, Mn <1.25, 0.5 Si, 
0.12 La, trace: C, B 

Composition, wt%

150

250

250

250

250

Diameter, 
μm

PM 2000

Kanthal A1

Haynes 214

Haynes 230

Haynes 188

Alloy

Haynes 188, and 230 are chromia forming alloys.  Haynew 214 is a marginal 
alumina forming alloy.  Kanthal A1 and PM2000 are alumina forming alloys.  
PM2000 contains the reactive element Y2O3 which improves oxide adherence.

Note smaller diameter wire for PM2000.

NASA/CP—2005-213655/VOL1 364



Glenn Research Center at Lewis Field

Experimental Procedure

• Coil 60 cm length of wire
• Oxidation of wires

– 1204°C (2200°F)
– 1 atm
– 70h
– Three exposure environments

• Isothermal: O2 (0.4 cm/sec) 
• Isothermal: 50% H2O/50% O2 (4.4 

cm/sec)
• Cyclic: stagnant air, 1h hot, 20 

min. cool, 70 cycles

• Weight change of wires
• X-ray diffraction (XRD) analysis
• Field Emission-Scanning Electron 

Microscopy/Energy Dispersive 
Spectroscopy (FE-SEM/EDS)

0.5 cm

Weight gain indicates oxide formation.  Weight loss indicates loss of oxide by 
spallation or volatilization.
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Glenn Research Center at Lewis Field

Thermogravimetric Analysis
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Glenn Research Center at Lewis Field

Cyclic Oxidation 

One cycle = 1 hour hot,  20 minute cool..

NASA/CP—2005-213655/VOL1 367



Glenn Research Center at Lewis Field

Results for wire oxidation in dry O2
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Glenn Research Center at Lewis Field

Weight change of wire: 1204°C, dry O2, 0.4 cm/s
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Haynes 188 completely oxidized after about 20 hours.
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Glenn Research Center at Lewis Field

Weight change of wire: 1204°C, dry O2, 0.4 cm/s
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Note:  All compositions except PM2000 
exhibited spallation on cooling

Haynes 230, PM2000, Kanthal A1 show desired parabolic oxidation kinetics.

Haynes 214 shows protective oxidation after initial transient of fast oxidation.

Bump in PM2000 kinetics at 45h may be due to depletion of alumina and 
beginning of chromia scale formation.
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Glenn Research Center at Lewis Field

Coiled wires after oxidation: 1204°C, 70h, dry O2, 0.4 cm/s

Haynes 188 Haynes 230 Haynes 214

PM 2000Kanthal A1

0.5 cm

Haynes 188 brittle.  Haynes 230, 214, Kanthal A1 show spallation to bare metal.
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Glenn Research Center at Lewis Field

X-ray diffraction results for wires:
1204°C, 70h, dry O2, 0.4 cm/s

Fe base, 20 Cr, 5.5 Al, 0.5 Y2O3

Fe base, 22 Cr, 5.8 Al

Ni base, 16 Cr, 4.5 Al

Ni base, 22 Cr, 14 W

Co base, 22 Cr, 22 Ni, 14 W

Major components of alloy, wt%

α Al2O3

α Al2O3

NiCr2O4/NiAl2O4
NiO

Cr2O3
NiCr2O4

NiO

NiWO4
NiCr2O4

NiO

Oxidation products

PM 2000

Kanthal A1

Haynes 214

Haynes 230

Haynes 188

Alloy

Chromia formation not observed for Haynes 188 after 70h.  Note presence of 
NiWO4 oxide phase.

First three alloys show spinel (AB2O4) formation.  This is not a protective oxide.  
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Cross-sectional FE-SEM of wire: 
1204°C, 70h, dry O2, 0.4 cm/s

100 μm

Haynes 214

100 μm

Haynes 230

100 μm

Kanthal A1

100 μm

Haynes 188

100 μm

PM2000

Haynes 188:  (Co,Ni)O, CoCr2O4, CoWO4-bright phase.  Wire completely 
consumed.

Haynes 230:  Cr2O3

Haynes 214:  Al2O3 inner layer, spinel outer layer, NiO blocks on surface

Kanthal A1:  Oxide scale completely nonadherent.
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Summary of results:
Wire oxidation 1204°C, 70h, dry O2, 0.4 cm/s

• Haynes 188 completely oxidized
• Haynes 230 formed chromia scale, spalled on cool down
• Haynes 214 formed inner alumina scale, external spinel, NiO, 

spalled on cool down
• Kanthal A1 formed alumina scale, completely nonadherent after 

cool down
• PM2000 smaller diameter wire formed an adherent alumina 

scale, aluminum completely depleted from wire, inner 
discontinuous layer of chromia, internal void formation
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Results for wire oxidation in 50% H2O/50% O2
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Volatility of oxides formed on Haynes 188  exposed at 
1204°C, 50% H2O/50 %O2

Deposit found on 
hanger downstream of 
sample.  Deposit 
determined to be WO3
and NiWO4 by XRD.

Calculated gas species formed from  oxides in water vapor.  W is very volatile.
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Breakaway oxidation for PM2000 at 68 h.
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Correlation between breakaway oxidation and wire diameter

• Breakaway oxidation occurs when aluminum is depleted to low level:  
protective oxide scale formation no longer possible

• Aluminum depletion depends on ratio of wire volume to surface area.
– Extrapolating time to breakaway for PM2000 at 1204°C in 50% H2O for 

other wire diameters.

Wm = weight of metal consumed during oxidation, V = wire volume,  
A = wire surface area, r = wire radius, t = oxidation time

– Experimentally determined time to breakaway for 150 μm dia wire is 68h.  

– Predict time to breakaway for 250 μm dia wire is 189h for comparison to 
other alloy wires of 250 μm dia.

– Predict time to breakaway for 40 μm dia wire at 5h for finest diameter 
wire proposed for use in seal applications.

2
b

2
a

b
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mA
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m
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Fe base, 20 Cr, 5.5 Al, 0.5 Y2O3

Fe base, 22 Cr, 5.8 Al

Co base, 22 Cr, 22 Ni, 14 W

Major components of alloy, wt%

(Fe,Cr)2O3

α Al2O3

NiO 
NiCr2O4

Oxidation products

PM 2000

Kanthal A1

Haynes 188

Alloy

X-ray diffraction results for wires:
1204°C, 70h, 50% H2O/50% O2, 4.4 cm/s

No W containing phase found on Haynes 188.  W is completely volatilized.

Al2O3 not found on PM2000 after 70h in this environment in contrast to results in 
dry O2.
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Cross-sectional FE-SEM of wire: 
1204°C, 70h, 50% H2O/50% O2, 4.4 cm/s

100 μm

100 μm

100 μm

Haynes 188

Kanthal A1

PM2000

Porosity in Haynes 188 where NiWO4 found after exposure in dry O2.

Oxide scale not adherent on Kanthal A1.

Adjacent cross-sections of PM2000 show one completely oxidized, the other 
metallic with nearly protective scale still intact.
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Summary of results:  Wire oxidation, 
1204°C, 70h, 50% H2O/50% O2, 4.4 cm/s

• Haynes 188 completely oxidized, all W volatilized leaving 
porosity.

• Kanthal A1 formed alumina scale, completely nonadherent, 
much of scale spalled.

• PM2000 smaller diameter wire experienced breakaway 
oxidation.  Portions of wire completely oxidized, show remainder
of alumina scale.  Portions of wire show protective alumina 
scale.  

• Time to breakaway oxidation expected to vary with the square of 
the wire diameter.
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Cyclic Oxidation Results
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Weight change of wire: 1204°C, stagnant air, 1 h cycles
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Haynes 188 weight change similar to isothermal exposures in that oxidation is 
about complete at 20h.

PM2000 showing parabolic oxidation to 60+ hours.

Kanthal A1 shows weight loss and spallation after third cycle.  Breakaway 
oxidation at 55h.
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X-ray diffraction results for wires:
1204°C, 1h cycles, stagnant air

>70

60

30

Time to failure, h

Fe base, 20 Cr, 5.5 Al, 0.5 Y2O3

Fe base, 22 Cr, 5.8 Al

Co base, 22 Cr, 22 Ni, 14 W

Major components of alloy, wt%

tbd

Fe2O3

(Ni,Co)O 
(Ni,Co)Cr2O4

Oxidation 
products

PM 2000

Kanthal 
A1

Haynes 
188

Alloy

Non protective Fe2O3 found for Kanthal A1.
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Cross-sectional FE-SEM of wire: 
1204°C, 1h cycles, stagnant air

100 μm

100 μm

100 μm

Haynes 188, 30 cycles

Kanthal A1, 60 cycles

Haynes 188 shows core of wire still present after 30 cycles.

Kanthal A1 has some cross-sections just beginning non-protective oxide formation 
(top) and others completely oxidized (bottom).  The original wire diameter of 
Kanthal A1 is marked by darker phases (alumina and chromia) in lower right 
micrograph.
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• Haynes 188 had similar failure time as in isothermal 
testing.

• Kanthal A1 failed earlier in cyclic oxidation testing.  
Weight loss and oxide spallation detected as early as 
third temperature cycle.  Breakaway oxidation 
occurred after 55 cycles.

• PM2000 showed parabolic oxidation kinetics 
throughout 70h cyclic test.  No evidence of spallation.

Summary of results:  Wire oxidation, 
1204°C, 1h cycles, stagnant air
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Conclusions

• Alumina-forming alloys with reactive element additions perform 
best at 1204°C under all test conditions: O2, H2O, temperature 
cycling
– Slow growing oxide
– Alumina is the most stable protective oxide scale in water vapor

– Adherent scales

• Small diameter wires have limited oxidation lifetimes. 
– Limited reservoir of aluminum for protective scale formation

– Smaller diameter wires more prone to spallation:  increased stress 
in oxide due to larger radius of curvature

• Oxidation lifetimes can be predicted based on the wire diameter 
and rate of aluminum loss.

• From these results PM2000 is recommended as the best 
candidate for further development in advanced hybrid seal 
applications.
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Proceedings of a conference held at Ohio Aerospace Institute sponsored by NASA Glenn Research Center, Cleveland,
Ohio, November 9–10, 2004. Responsible person, Bruce M. Steinetz, organization code RSM, 216–433–3302.

The 2004 NASA Seal/Secondary Air System workshop covered the following topics: (i) Overview of NASA’s new Exploration
Initiative program aimed at exploring the Moon, Mars, and beyond; (ii) Overview of the NASA-sponsored Ultra-Efficient Engine
Technology (UEET) program; (iii) Overview of NASA Glenn’s seal program aimed at developing advanced seals for NASA’s
turbomachinery, space, and reentry vehicle needs; (iv) Reviews of NASA prime contractor and university advanced sealing concepts
including tip clearance control, test results, experimental facilities, and numerical predictions; and (v) Reviews of material development
programs relevant to advanced seals development. The NASA UEET overview illustrated for the reader the importance of advanced
technologies, including seals, in meeting future turbine engine system efficiency and emission goals. For example, the NASA UEET
program goals include an 8- to 15-percent reduction in fuel burn, a 15-percent reduction in CO2, a 70-percent reduction in NOx, CO,
and unburned hydrocarbons, and a 30-dB noise reduction relative to program baselines. The workshop also covered several programs
NASA is funding to develop technologies for the Exploration Initiative and advanced reusable space vehicle technologies. NASA plans
on developing an advanced docking and berthing system that would permit any vehicle to dock to any on-orbit station or vehicle, as
part of NASA’s new Exploration Initiative. Plans to develop the necessary mechanism and “androgynous” seal technologies were
reviewed. Seal challenges posed by reusable re-entry space vehicles include high-temperature operation, resiliency at temperature to
accommodate gap changes during operation, and durability to meet mission requirements.
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