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ABSTRACT 
The Ko displacement theory, formulated for weak nonuniform (slowly changing cross sections) 

cantilever beams, was applied to the deformed shape analysis of the doubly-tapered wings of the Ikhana 
unmanned aircraft. The two-line strain-sensing system (along the wingspan) was used for sensing the 
bending strains needed for the wing-deformed shapes (deflections and cross-sectional twist) analysis. The 
deflection equation for each strain-sensing line was expressed in terms of the bending strains evaluated at 
multiple numbers of strain-sensing stations equally spaced along the strain-sensing line. For the preflight 
shape analysis of the Ikhana wing, the strain data needed for input to the displacement equations for the 
shape analysis were obtained from the nodal-stress output of the finite-element analysis. The wing 
deflections and cross-sectional twist angles calculated from the displacement equations were then compared 
with those computed from the finite-element computer program. The Ko displacement theory formulated for 
weak nonlinear cantilever beams was found to be highly accurate in the deformed shape predictions of the 
doubly-tapered Ikhana wing. 

NOMENCLATURE 
c   distance from neutral axis to outermost point of a cross section of uniform beam, in 

� 

c(x)  distance from neutral axis to outermost point of 

� 

x -cross section of nonuniform beam, in 

� 

ci   = c(xi ) , distance from neutral axis to i-th surfaced strain sensor, in 

� 

cn   value of 

� 

ci  at wing tip, 

� 

x = xn = l, in 

� 

c0   value of 

� 

ci  at wing root, 

� 

x = x0 = 0 , in 

� 

di   strain-sensing lines separation distance at strain-sensing station, 

� 

xi, in 

� 

dn    value of 

� 

di  at wing tip, 

� 

x = xn = l, in 

� 

d0    value of 

� 

di  at wing root, 

� 

x = x0 = 0 , in 
E   Young’s modulus, lb/in2 

� 

h0   wing root depth at front strain-sensing line, in 

� 

hn   wing tip depth at front strain-sensing line, in 

� 

(h0)max   wing root maximum depth, in 

� 

(hn )max   wing tip maximum depth, in 

� 

′ h 0   wing root depth at rear strain-sensing line, in 

� 

′ h n   wing tip depth at rear strain-sensing line, in 
I   moment of inertia, in4 
i   = 0,1,2, 3,...,n , strain-sensing station identification number  
j   dummy index 
l   length of wing, in 
M   bending moment, in-lb 
n   index associated with the last span-wise strain-sensing station  
P   applied load, lb 
SPAR   Structural Performance And Resizing 
T   applied torque, in-lb 

� 

wn   wing tip chord length (width), in 

� 

w0   wing root chord length (width), in 
x, y  Cartesian coordinates (x in span-wise direction, y in vertical direction), in 

� 

xi  axial coordinate (

� 

x = xi) associated with 

� 

i -th surface strain sensor (called   
  strain sensing station), in  
xn    strain sensing station at wing tip (

� 

x = xn = l), in 
x0   strain sensing station wing root (

� 

x = x0 = 0), in 

� 

yi   vertical deflection at 

� 

x = xi , in  
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y0   vertical deflection at wing root (

� 

x = x0 = 0), in  
Δl          

� 

= l n , distance between any two adjacent strain-sensing stations (domain length), in 

� 

εi  bending strain associated with i-th surface strain sensor, in/in 
ε0   bending strain associated with wing root (

� 

i = 0) surface strain sensor, in/in 
θi   slope of deformed wing at 

� 

x = xi , rad or deg  
θ0    slope of deformed wing at wing root (

� 

x = x0 = 0 ), rad or deg  
σ i   stress associated with 

� 

εi, lb/in2 
σ0   bending stress at wing root upper front strain sensing station, lb/in2 
σ0    bending stress at wing root lower front strain sensing station, lb/in2 

� 

φi  cross-sectional twist angle at axial location, 

� 

x = xi , deg 
φn    cross-sectional twist angle at wing tip (

� 

x = xn = l), deg 

� 

( ′ )    quantity associated with rear strain-sensing line 

INTRODUCTION 
In-flight wing-deformed shape monitoring of manned or unmanned aircraft is particularly difficult 

because of instrumentation weight restrictions. Sensor wiring for conventional strain gage instrumentation is 
too heavy for many applications where wing shape sensing is desired. Fiber optic sensors offer many 
advantages over conventional sensor technology because they are lightweight, possess a fine flexible 
filament form factor (approximately the size of a human hair), and can be highly multiplexed at desired 
sensing intervals. If multiple strain sensors, such as light-weight fiber optic strain-sensing systems, are 
installed at discrete sensing stations on a beam-like structure (e.g., aircraft wings), it is possible to use those 
strain sensor data to input to special displacement equations in order to calculate the deflections and 
cross-sectional twist angles of a beam-like structure, and thereby predict its deformed shape. The above 
approach was originally used to develop strain-data-dependent displacement theories for the in-flight 
deformed shape predictions of the highly flexible, long-span, lightweight, unmanned Helios flying wing 
(247 ft wingspan; up to 40 ft wing tip deflection). 

 
Based on the classical beam theory, Ko (refs. 1–3) formulated several strain-data-dependent 

displacement equations for the predictions of deformed shapes (deflections and cross-sectional twist) of 
cantilever beams (uniform, tapered, slightly-tapered, and step-wisely tapered). The Ko displacement 
equations were formulated in terms of bending strains evaluated at multiple strain-sensing stations 
embedded on the surface of the beam. The measured (or finite-element generated) bending strain data are 
then input to the displacement equations for the calculations of deflections and the cross-sectional twist 
angle of the beam. When applied to the unmanned aircraft, it is possible for the ground-based pilot to 
visually monitor the deformed shapes of the aircraft during the flights. The Ko displacement theory together 
with the onboard fiber optics strain-sensing system could form a powerful tool for in-flight monitoring of 
the wing shapes by the ground-based pilot for maintaining safe flights of the unmanned aircraft.  In addition, 
the real-time shape monitoring of flexible structures also represents an important step toward the eventual 
goal of actively controlling the shape of these structures so that they can quickly adapt to their environment 
while in operation. 

  
This report deals with the preflight deformed shape analysis of the doubly-tapered wings of the Ikhana 

unmanned research aircraft. Because measured strain data are not yet available, finite-element analysis was 
used to generate the desired bending strains for inputs to the displacement equations (developed for 
nonuniform cantilever beams) for the Ikhana wing deformed shape predictions. The Ikhana wing deflections 
and cross-sectional twist angles calculated from the Ko displacement theory will be compared with those 
calculated from finite-element analysis, and the accuracy of the displacement theory will be examined. 
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BASICS OF THE KO DISPLACEMENT THEORY 
The formulation of the Ko displacement theory for nonuniform cantilever beams stems from the 

classical differential equation for the uniform beams given by (refs. 4–5)  
 

 d2y

dx2
=
M (x)
EI  

(1) 

 
in which y is the vertical displacement, x is the span-wise coordinate, M(x) is the bending moment, E is 
Young’s modulus, and I is the moment of inertia.  

 
Using the bending-stress/moment relationship and Hooke’s law, the bending moment M(x) may be 

written as  
 

 M (x) = I σ (x)
c

= EI
ε(x)
c  

(2) 

 
in which 

� 

c  is the uniform beam half depth and 

� 

ε(x) is the bending strain at the beam bottom (or top) 
surface. Substitution of equation (2) into equation (1) yields the following modified beam differential 
equation  
 

 d2y

dx2
=
ε(x)
c

 (3) 

 
Note that, under the present strain formulation, the beam differential equation (3) contains only the 

beam half depth 

� 

c  and the bending strain 

� 

ε(x). The flexural rigidity term EI is eliminated. 
 
The beam differential equation (3) for the uniform beam could be used with sufficient accuracy for 

nonuniform beams for which the cross-section is assumed to change gradually (ref. 4, p. 143). Replacing the 
constant half depth c in equation (3) with the varying 

� 

c(x), one obtains the following modified beam 
differential equation for nonuniform beams.  

 

 d2y

dx2
=
ε(x)
c(x)

 (4) 

 
Equation (4) is the basic equation from which the Ko displacement theory for nonuniform beams was 

formulated (refs. 1–3). The beam slope and deflection may be obtained by carrying out single and double 
integrations of equation (4).  

Discretization 

Using the piece-wise linear assumption and discretizing the beam domain into n sections, and integrating 
equation (4) (within each beam section) once to obtain the beam slopes, and twice to obtain the beam 
deflections; Ko (refs. 1–3) formulated the beam slope equations and beam deflection equations for each 
piece-wise linear section in terms of geometry and bending strains described below. 
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Let the bottom (or top) surface of the nonuniform beam [length l and varying beam depth 2

� 

c(x)] be 
installed with n +1 bending strain sensors at equally spaced strain-sensing stations 

� 

xi (axial coordinate, 
x = xi ), including the fixed end x0(x = 0) , and the free end xn (x = l) . The nonuniform cantilever beam 
domain is thus equally divided into n sections with sectional length, Δl = l / n . The beam is then idealized as 
a piecewise linearly tapered (either tapering down or tapering up) beam between any two adjacent 
strain-sensing stations { xi−1 , xi }. In the region xi−1 ≤ x ≤ xi  between the two adjacent strain-sensing 
stations { xi−1 , xi }, the vertical distance c(x)  from the neutral surface to the beam bottom (or top) surface, 
and the bending strain { ε(x)} may be assumed to be linear functions of x expressed as 

 

 c(x) = ci−1 − (ci−1 − ci )
x − xi−1

Δl
     ;     xi−1 < x < xi  (5) 

 

 ε(x) = εi−1 − (εi−1 − εi )
x − xi−1

Δl
     ;     xi−1 < x < xi  (6) 

 

where { ci−1, ci } and { εi−1, εi } are respectively the values of c(x)  and ε(x)  at the strain-sensing stations 
{ xi−1 , xi }.  

Slope Equation 

In light of equations (5) and (6), equation (4) may be integrated once (refs. 1, 2, 6) to yield the beam 
slope 

� 

tanθi  expressed in equation (7) (see Appendix A for derivation): 
 

 

 

tanθi =
Δl
2

1
c j−1

2 −
c j
c j−1

⎛

⎝
⎜

⎞

⎠
⎟ ε j−1 + ε j

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥j=1

i
∑ + tanθ0

=0


     ;     (i = 1, 2, 3, …, n) (7) 

 

Deflection Equation 

In light of equations (5) and (6), equation (4) may be integrated twice (refs. 1, 2, 6) to yield the beam 
deflection 

� 

yi expressed in equation (8) (see Appendix A for derivation):  
 

 
 

yi =
(Δl)2

6
1

c j−1j=1

i
∑ 3(2 j −1)− (3 j − 2)

ci− j+1
ci− j

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
εi− j + (3 j − 2)εi− j+1

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
+ y0 + (i)Δl tanθ0
=0 for cantilever beam
  

 

(i = 1, 2, 3, …, n) 

(8) 

 
For the cantilever beam, both the deflection 

� 

y0  and the slope tanθ0  at the built-in end are zero 
(i.e., y0 = tanθ0 = 0 ). The deflection equation (8) will now be used for the Ikhana wing deformed shape 
analysis with the aid of finite-element analysis. 
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For the uniform beams { ci (x) = c }, equation (8) degenerates into equation (9) (refs. 1–2) 
 

 
 

yi =
(Δl)2

6c
(3i −1)ε0 + 6 i − j( )ε j

j=1

i−1
∑ + εi

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥
+ y0 + (i)Δl tanθ0
=0 for cantilever beam
  

 

(i = 1, 2, 3, …, n) 

(9) 

IKHANA UNMANNED AIRCRAFT 
Ikhana (fig. 1) is an unmanned science and technology development research aircraft for civilian 

missions, built by General Atomics Aeronautical Systems Inc., San Diego, California (ref. 7). The aircraft 
has been named “Ikhana” (ee-kah-nah), a Native American word from the Choctaw Nation meaning 
intelligent, conscious or aware. The aircraft structure is fabricated with lightweight composite materials, and 
has a wingspan of 66 ft and a fuselage length of 36 ft. More than 400 lb of sensors can be carried internally 
and over 2,000 lb in external wing pods. Ikhana is powered by a Honeywell TPE 331-10T turbine engine 
(Honeywell Aerospace, Phoenix, Arizona) and is capable of reaching altitudes well above 40,000 ft. This 
aircraft is the first production Predator B equipped with an upgraded digital electronic engine controller 
(developed by Honeywell and General Atomics Aeronautical Systems Inc.) that will make Ikhana 5-10 
percent more fuel-efficient. 

 
The Ikhana aircraft, which is designed for long-endurance and high-altitude flight, will be used for Earth 

science studies. A variety of atmospheric and remote sensing instruments (e.g., a multi-spectral wildfire 
sensor), including duplicates of those sensors on orbiting satellites, can be installed to collect data for up to 
30 hours.  

 
Ikhana will also be used for advanced aircraft systems research and technology development. Initial 

experiments will look into the use of fiber optics for wing shape sensing and control, and structural loads 
measurements. 

IKHANA WING GEOMETRY 

Figure 1 shows the Ikhana unmanned research aircraft during flight. The Ikhana wing (fig. 2) is a 
doubly (horizontally and vertically) tapered long cantilever beam. The dimensions of wing length l, wing 
root and wing tip chord lengths {w0,wn }, and wing root and wing tip maximum depths 
{ (h0 )max,(hn )max } are listed in table 1. 
 

Table 1. Dimensions of the Ikhana wing. 
 

l , in w0 , in wn , in (h0 )max , in (hn )max , in 

360.00 64.80 28.80 12.96 5.76 
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TWO–LINE  STRAIN–SENSING SYSTEM 
The two-line strain-sensing system for bending strain sensing (fig. 2), may be used for the deformed 

shape analysis of the Ikhana wing. Each sensing line contains n+1 number of equally spaced strain-sensing 
stations 

� 

xi (i = 0, 1, 2, 3, …, n), including the wing root x0(x = 0)  and the wing tip xn (x = l) .  

Strain–Sensing Line Locations 

The installations of front and rear strain-sensing lines are planned on the upper convex surface of the 
Ikhana wing. Unlike a rectangular cross section with flat lower and upper surfaces, the installations of the 
two-line strain-sensing system on the upper convex surface of the Ikhana wing require the following 
technical considerations. 

 
It is desirable to install the strain-sensing lines near the summit of the upper convex surface of the 

Ikhana wing (small sensing-line-separation distance 

� 

di) in order to obtain larger outputs of bending strains 

� 

εi because the value of 

� 

ci, the vertical distance from the neutral surface to the sensing stations, reaches a 
maximum at the upper surface summit. However, to obtain more accurate data for the cross-sectional twist 
angle φi , a larger 

� 

di  is desired. But, the larger 

� 

di  will decrease the value of 

� 

ci because of decreasing wing 
depth from the summit. The decreased value of 

� 

ci will reduce the output of strain 

� 

εi at the same rate under 
bending moment M according to equation (2). As shown in equation (8), the depth term 

� 

c j−1 is in a 
denominator, but the strain terms {εi− j , εi− j+1}  are in a numerator. Therefore, simultaneous reductions of 
[ c j−1 , {εi− j , εi− j+1} ] at the same rate of increasing 

� 

di  may have little effect on the resulting value of 
deflection 

� 

yi. After exploratory finite-element trade-off studies using different 

� 

di , suitable locations were 
chosen for the two strain-sensing lines as discussed in the next section. 

 
Figure 2 shows the two strain-sensing lines to be installed at the suitable locations on the upper curved 

surface of the wing. Each sensing line is to sense the deflections along the sensing line direction. Note that 
the two strain-sensing lines are not parallel to each other, but separated according to the wing taper rate. The 
dimensions of sensing-line-separation distances { d0 , dn } at the wing root and wing tip finally determined 
are given by equation (10),  

 

 
d0
dn

⎧
⎨
⎩

⎫
⎬
⎭
=

18
 8

⎧
⎨
⎩

⎫
⎬
⎭

 in  (10) 

 
which has the taper rate dn = 0.4444

� 

d0  identical to the wing taper rate (table 1). The sensing-line-separation 
distance 

� 

di at any sensing cross section, 

� 

xi (i = 0, 1, 2, 3, …, n) is then given by 
 

 di = d0 − (d0 − dn )
xi
l

 (11) 

 
The wing depths under the two sensing lines at the wing root and wing tip are given in table 2. Note 

that, from table 2, the wing depths under the two strain-sensing lines are slightly less than the associated 
maximum wing depths, and that the wing depths under the rear strain-sensing line are much closer to the 
associated maximum wing depths as compared with the wing depths under the front strain-sensing line.  
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Table 2. Wing depths under two sensing lines. 
 

Wing root Wing tip 

h0 , in ′h0 , in hn , in ′hn , in 

11.9059 
= 0.9187 (h0 )max  

12.5008 
= 0.9646 (h0 )max  

5.2915 
= 0.9187 (hn )max  

5.5559 
= 0.9646 (hn )max  

Deflections 

The deflections { yi , ′yi } of the front and rear sensing stations lying at the sensing cross section 

� 

xi (i = 0,1, 2, 3, …, n) (fig. 2) may be calculated from the deflection equation (8), which is rewritten 
separately for the front and rear strain-sensing lines as,  
 
Front strain-sensing line: 
 

 
 

yi =
(Δl)2

6
1

ci− jj=1

i
∑ 3(2 j −1)− (3 j − 2)

ci− j+1
ci− j

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
εi− j + (3 j − 2)εi− j+1

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
+ y0 + (i)Δl tanθ0
=0 for cantilever beam
  

 

(i = 1, 2, 3, …, n) 
 

(12) 

Rear strain-sensing line: 
 

 
 

′yi =
(Δl)2

6
1
′ci− j

3(2 j −1)− (3 j − 2)
′ci− j+1
′ci− j

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

′εi− j + (3 j − 2) ′εi− j+1
⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪j=1

i
∑ + ′y0 + (i)Δl tan ′θ0

=0 for cantilever beam
  

 

(i = 1, 2, 3, …, n) 

(13) 

 
Equations (12) and (13) respectively give the deflections along the front and rear strain-sensing lines, 

which for the Ikhana case, are not parallel to each other according to equation (11), and therefore are not in 
the exact span-wise direction. Because actual measured strain data are not yet available, for the present 
pre-flight shape analysis, finite-element generated strains will be used as inputs to equations (12) and (13) 
for the calculations of deflections { yi , ′yi } (see FINITE-ELEMENT ANALYSIS section). It must be 
mentioned that for upward bending of the Ikhana wing, the induced upper surface bending strains { εi , ′εi } 
must be used in equations (12) and (13) to yield positive upward deflections { yi , ′yi }.  

Cross–Sectional Twist Angle  

Using the values of { yi , ′yi , di }, the cross-sectional twist angle φi  at the strain-sensing cross section  
x =

� 

xi may be calculated from the following cross-sectional twist angle equation, 
 

 φi = sin
−1 yi − ′yi

di

⎛
⎝⎜

⎞
⎠⎟

     ;     (i = 0, 1, 2, 3, …, n) (14) 

 
which gives zero twist angle φ0 = 0  (i = 0) at the wing root where y0 = 0  and ′y0 = 0 . The deflections 
{ yi , ′yi } appearing in equation (14) are to be calculated from deflection equations (12) and (13), and 

� 

di  is 
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calculated from equation (11). With the use of equation (14), installations of surface distortion sensors for 
torsion displacement measurements are not required.  

FINITE–ELEMENT ANALYSIS 

Before the installations of the two strain-sensing lines to gather the actual strain data for inputs to the 
displacement equations (12), (13), and (14); either from the ground tests or from the actual Ikhana flight 
tests, finite-element-generated input strains will be used in the present pre-flight wing shape analysis. The 
SPAR (Structural Performance And Resizing) finite-element computer program (ref. 8) was used in the 
finite-element analysis of the Ikhana wing. The SPAR finite-element outputs will provide both nodal 
stresses and nodal displacements (deflections). Through Hooks’s law, the nodal stresses can be converted 
into nodal strains for input to equations (12), (13), and (14) for the calculations of deflections, which may 
then be compared with the corresponding deflections (nodal displacements) obtained from the SPAR 
program. 

Ikhana Wing Model 

Figure 3 shows the SPAR finite-element model generated for the Ikhana wing, which has 3,639 nodes 
and 3,632 four-node bending elements. The Ikhana wing model was subjected to combined bending and 
torsion loading at the wing tip with upward vertical load of P = 200 lb  and clockwise (increasing 
angle-of-attack) torque of T = 1,000 ×wn  (figs. 2-3). 

Finite–Element Strains 

If σ i  is the axial stress at the strain-sensing station xi  obtained from the SPAR nodal stress outputs, 
then the corresponding bending strain 

� 

εi for the input to the deflection equations (12) and (13) may be 
calculated from Hooke’s law 

 

 εi =
σ i
E

 (15) 

 
where E is the Young’s modulus. 
 

The deflections calculated from equations (12) and (13) using the SPAR generated finite-element strains 
(eq. (15)) can then be compared along with the nodal displacements obtained from the SPAR outputs to 
validate the accuracy of the Ko displacement theory. 

 
Alternatively, using the SPAR displacement outputs, the bending strain 

� 

εi may also be obtained through 
dividing the element axial nodal displacement differentials by the length of the element at the strain-sensing 
station xi  (ref. 2). This element-displacement method gave practically identical bending strains as the 
element-stress method described above (eq. (15)). However, the element-displacement method was found to 
lose accuracy as the slope of the deflection curve increases toward the wing tip. The SPAR displacement 
outputs are in reference to the un-deformed wing axis. Therefore, at an increasing slope near the highly bent 
wing tip, the true tensile strains along the deformed wing axis, when projected on the un-deformed wing 
axis, may appear as apparent compressive strains near the wing tip. Therefore, the element-displacement 
method was not used. 
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CROSS–SECTIONAL NEUTRAL AXIS 
To apply the deflection equations (12) and (13), the input strains εi  and the values of the vertical 

distances { ci , ′ci } from the front and rear strain-sensing stations { xi , ′xi } to the cross-sectional neutral axis 
must be known for wing shape predictions. The airfoil geometry (cross-sectional shape) of the Ikhana wing 
is nonsymmetrical with respect to the neutral axis (fig. 4). If the lower strain sensors were also installed in 
addition to upper strain sensors, the values of { ci , ′ci } may also be determined experimentally by converting 
the measured bending strains into surface stresses (positive and negative) through which the zero-stress 
point may be located (fig. 4). Alternatively, the vertical distances { ci , ′ci } could be determined from the 
SPAR nodal stress outputs. In the present report, the latter method was used. 

 
Let {σ0 , σ0 } respectively be the bending stresses (finite-element calculated, or measured) at the upper 

and lower front strain-sensing stations at the wing root (built-in end), and let h0  be the vertical distance 
between the upper and lower wing-root strain-sensing stations, then the values of ci = c(xi )  at the wing 
root, c0 = c(0)  may be determined from 
 

 c0 =
σ0

σ0 +σ0
h0  (16) 

 
Equation (16) may be written for the rear sensing line using 

� 

( ′ )  symbol as  
 

 ′c0 =
′σ0

′σ0 + ′σ0
′h0  (17) 

 
From the SPAR nodal stress outputs (or actually measured), the values of {σ0 , σ0 } and { ′σ0 , ′σ0 } 

can be found, and the values of { c0 , ′c0 } may be calculated respectively from equations (16) and (17). The 
wing tip values { cn , ′cn } may then be obtained by using the wing taper rate as shown in equation (18). 

 

 
cn
′cn

⎧
⎨
⎩

⎫
⎬
⎭

= 0.4444
c0
′c0

⎧
⎨
⎩

⎫
⎬
⎭

 (18) 

 
The values of {

� 

c0, ′ c 0} and {

� 

cn, ′ c n } determined from the SPAR outputs are listed in Table 3. 
 

Table 3. Distance of strain-sensing stations measured from the neutral surface of the wing. 
 

Wing root Wing tip 

c0 , in ′c0 , in cn , in ′cn , in 

6.4051 
= 0.5380 h0  

7.3899 
= 0.5912 ′h0  

2.8467 
= 0.5380 hn  

3.2844 
= 0.5912 ′hn  

 
Note that, from table 3, because of the nonsymmetrical wing cross section with respect to the 

corresponding neutral axis, the magnitudes of { c0 , ′c0 , cn , ′cn } are slightly larger than one half of the 
respective local wing depth (neutral surface is not the mid-surface).  
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Finally, the values of { ci , ′ci } at any strain-sensing cross section may then be calculated from the 
following equations: 

 ci = c0 − (c0 − cn )
xi
l

 (19) 

   

 ′ci = ′c0 − ( ′c0 − ′cn )
xi
l

 (20) 

 

ACCURACY OF THE KO DISPLACEMENT THEORY 
Table 3 lists the bending strains calculated from equation (15) using the SPAR nodal stress outputs (eq. 

(15)), and the wing deflections calculated from deflection equations (12) and (13), and also from the SPAR 
program. The bending strains on the upper surface of the wing are compressive strains with negative signs 
in the SPAR outputs; however, the absolute values of the strain data were used for inputs to the deflection 
equations (12) and (13) to calculate the upward deflections. 

 
Table 4.  Ikhana wing deflections calculated from deflection equations (12), (13), and from the SPAR 
program; P= 200 lb, T= 1,000 × wn  in-lb. 
 

 Front sensing line Rear sensing line 

i  εi (SPAR), in / in  yi (Ko), in  yi (SPAR), in  ′εi (SPAR), in / in  ′yi (Ko), in  ′yi (SPAR), in  

0 0.643810-3 0.000000 0.000000 0.623810-3 0.000000 0.000000 

1 0.607619-3 0.102220 0.130155 0.634289-3 0.087930 0.085855 

2 0.599048-3 0.412410 0.445820 0.646667-3 0.362560 0.344290 

3 0.593333-3 0.942570 0.971055 0.637143-3 0.841590 0.810895 

4 0.574762-3 1.708610 1.723180 0.612857-3 1.540140 1.498400 

5 0.527619-3 2.723990 2.716775 0.563810-3 2.469490 2.418655 

6 0.444762-3 3.991970 3.956860 0.473333-3 3.632580 3.573760 

7 0.317143-3 5.497200 5.430535 0.300952-3 4.947445 4.947445 

8 0.000000-3 7.178920 7.095200 0.000000-3 6.497190 6.497190 

 
Figure 5 shows the plots of bending strains (absolute values) along the front and rear strain-sensing lines 

using the SPAR calculated bending strain data listed in table 4. The strain curves are strongly nonlinear and 
bow shaped because of the effect of double tapering and the cross-sectional shape of the Ikhana wing. Keep 
in mind that for the case of the classical uniform cantilever beam under tip vertical load, the strain curve is a 
straight line tapering down toward zero at the beam tip (refs. 4 and 5). 

 
Figure 6 shows the plots of wing deflections using the deflection data presented in table 4.  The 

excellent agreements between the deflection curves calculated from deflection equations (12) and (13), and 
from the SPAR displacement outputs, implies the high accuracy of the Ko displacement theory.  

 
Table 5 lists the wing cross-sectional twist angles 

� 

φi  calculated from the cross-sectional angle twist 
equation (14) and also from the SPAR program. 
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Table 5. Ikhana wing cross-sectional twist angles φi  calculated from the cross-sectional twist angle equation 
(14) and from the SPAR program; P= 200 lb, T= 1,000 × wn  in-lb. 

 

i φi (Ko), deg  φi (SPAR), deg  

0 0.00000 0.00000 

1 0.04890 0.15154 

2 0.18429 0.37531 

3 0.40600 0.64399 

4 0.74256 0.99077 

5 1.24112 1.45392 

6 1.96162 2.09106 

7 3.00807 2.99392 

8 4.57254 4.28736 
 
Figure 7 shows the plots of the cross-sectional twist angle φi  (fig. 3) using the data given in table 5. The 

correlation between the Ko displacement theory and the SPAR program is again quite good, but is not as 
close as the deflection curves (fig. 6). The SPAR program gives slightly higher values of φi  than the Ko 
displacement theory up to the sixth (i = 6) strain-sensing station and then gives slightly lower values beyond 
the sensing station i = 7. Keep in mind that φi  is extremely sensitive even to the graphically inconspicuous 
changes in deflections { yi , ′yi }.  

CONCLUDING REMARKS 
The Ko displacement theory formulated for nonlinear cantilever beams was used to predict the 

deformed shape of the doubly-tapered unmanned Ikhana aircraft wing. Some important conclusions are 
given as follows: 

 
1. The two-line strain-sensing system (bending sensor system) is a powerful method for 

simultaneously sensing the wing bending and torsion displacements without the need of installing 
surface distortion sensors. 
 

2. The two strain-sensing lines do not have to be parallel to each other, but follow the wing taper rate 
because each sensing line senses the deflections along the sensing line. 
 

3. To use the Ko displacement theory for shape predictions of a wing with an airfoil cross section, it is 
necessary to locate the wing cross-sectional neutral axis by means of finite-element analysis (or by 
direct measurements of top and bottom surface strains), and thereby determine the vertical distance 
from the sensing stations to the neutral axis (for input to the displacement equations). 

 
4. The wing deflections and twist angles calculated from the Ko displacement theory compared very 

nicely with the wing deflections and twist angles calculated from the finite-element program. 
  

5. The Ko displacement theory was found to be highly accurate in the deformed shape predictions of 
the doubly-tapered cantilever beam such as the Ikhana wing. 
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FIGURES 
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Figure 1. Ikhana unmanned science and technology development aircraft. 
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Figure 2. Tapered Ikhana wing installed with a two-line strain-sensing system on the upper surface. 
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Figure 3. The SPAR finite-element model generated for the Ikhana wing subjected to combined bending and 
torsion: P = 200 lb; T = 1,000 × wn in-lb. 
 

 
Figure 4. Determination of neutral axis for Ikhana wing root cross section using SPAR bending 
stress outputs.  
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Figure 5. Bending strain curves generated form SPAR element-stress outputs. 

 

 
Figure 6. Comparison of Ikhana wing deflections predicted by the Ko displacement theory and calculated by 
the SPAR analysis.  
 
 



 16 

 
Figure 7. Comparison of the Ikhana wing cross-sectional twist angles predicted by the Ko displacement 
theory and calculated by the SPAR analysis.   
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APPENDIX A  
DERIVATION OF DEFLECTION EQUATIONS FOR WEAK  

NONUNIFORM CANTILEVER BEAMS 
 
The deflection equation Ko (ref.1) formulated for weak nonuniform cantilever beams has the following 

form: 
 

 yi =
(Δl)2

6ci−1
3− ci

ci−1

⎛
⎝⎜

⎞
⎠⎟
εi−1 + εi

⎡

⎣
⎢

⎤

⎦
⎥ + yi−1 + Δl tanθi−1  (A1) 

 
in which the slope term tanθi−1  is expressed as (ref. 1) 
 

 tanθi−1 =
Δl

2ci−2
2 − ci−1

ci−2

⎛
⎝⎜

⎞
⎠⎟
εi−2 + εi−1

⎡

⎣
⎢

⎤

⎦
⎥ + tanθi−2  (A2) 

 

Write out equation (A1) and (A2) for different indices (i = 1-5) as follows: 
 

y1 =
(Δl)2

6c0
3− c1

c0

⎛
⎝⎜

⎞
⎠⎟
ε0 + ε1

⎡

⎣
⎢

⎤

⎦
⎥ + y0 + Δl tanθ0      ;     y0 = 0 ; Δl tanθ0 = 0  (A3a) 

   

y2 =
(Δl)2

6c1
3− c2

c1

⎛
⎝⎜

⎞
⎠⎟
ε1 + ε2

⎡

⎣
⎢

⎤

⎦
⎥ + y1 + Δl tanθ1      ;     tanθ1 =

Δl
2c0

2 − c1
c0

⎛
⎝⎜

⎞
⎠⎟
ε0 + ε1

⎡

⎣
⎢

⎤

⎦
⎥ + tanθ0  (A3b) 

   

y3 =
(Δl)2

6c2
3− c3

c2

⎛
⎝⎜

⎞
⎠⎟
ε2 + ε3

⎡

⎣
⎢

⎤

⎦
⎥ + y2 + Δl tanθ2      ;     tanθ2 =

Δl
2c1

2 − c2
c1

⎛
⎝⎜

⎞
⎠⎟
ε1 + ε2

⎡

⎣
⎢

⎤

⎦
⎥ + tanθ1  (A3c) 

   

y4 =
(Δl)2

6c3
3− c4

c3

⎛
⎝⎜

⎞
⎠⎟
ε3 + ε4

⎡

⎣
⎢

⎤

⎦
⎥ + y3 + Δl tanθ3      ;     tanθ3 =

Δl
2c2

2 − c3
c2

⎛
⎝⎜

⎞
⎠⎟
ε2 + ε3

⎡

⎣
⎢

⎤

⎦
⎥ + tanθ2  (A3d) 

   

y5 =
(Δl)2

6c4
3− c5

c4

⎛
⎝⎜

⎞
⎠⎟
ε4 + ε5

⎡

⎣
⎢

⎤

⎦
⎥ + y4 + Δl tanθ4      ;     tanθ4 =

Δl
2c3

2 − c4
c3

⎛
⎝⎜

⎞
⎠⎟
ε3 + ε4

⎡

⎣
⎢

⎤

⎦
⎥ + tanθ3  (A3e) 

 
Using the recursion relationships above, one can write out the deflection equation (A1) for different 

indices as  
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y2 =
(Δl)2

6c1
3− c2

c1

⎛
⎝⎜

⎞
⎠⎟
ε1 + ε2

⎡

⎣
⎢

⎤

⎦
⎥ + y1 + Δl tanθ1

    

    = (Δl)2

6c1
3− c2

c1

⎛
⎝⎜

⎞
⎠⎟
ε1 + ε2

⎡

⎣
⎢

⎤

⎦
⎥

     + (Δl)2

6c0
3− c1

c0

⎛
⎝⎜

⎞
⎠⎟
ε0 + ε1

⎡

⎣
⎢

⎤

⎦
⎥ + y0 + Δl tanθ0

y1  

+
(Δl)2

2c0
2 − c1

c0

⎛
⎝⎜

⎞
⎠⎟
ε0 + ε1

⎡

⎣
⎢

⎤

⎦
⎥ + Δl tanθ0

tanθ1  

 

    

    = (Δl)2

6c1
3− c2

c1

⎛
⎝⎜

⎞
⎠⎟
ε1 + ε2

⎡

⎣
⎢

⎤

⎦
⎥ +

(Δl)2

6c0
9 − 4 c1

c0

⎛
⎝⎜

⎞
⎠⎟
ε0 + 4ε1

⎡

⎣
⎢

⎤

⎦
⎥ + y0 + 2Δl tanθ0                                

 

(A4a) 
 

 

y3 =
(Δl)2

6c2
3− c3

c2

⎛
⎝⎜

⎞
⎠⎟
ε2 + ε3

⎡

⎣
⎢

⎤

⎦
⎥ + y2 + Δl tanθ2

    

   = (Δl)2

6c2
3− c3

c2

⎛
⎝⎜

⎞
⎠⎟
ε2 + ε3

⎡

⎣
⎢

⎤

⎦
⎥

     + (Δl)2

6c1
3− c2

c1

⎛
⎝⎜

⎞
⎠⎟
ε1 + ε2

⎡

⎣
⎢

⎤

⎦
⎥ +

(Δl)2

6c0
9 − 4 c1

c0

⎛
⎝⎜

⎞
⎠⎟
ε0 + 4ε1

⎡

⎣
⎢

⎤

⎦
⎥ + y0 + 2Δl tanθ0

y2  

 

     + (Δl)2

2c1
2 − c2

c1

⎛
⎝⎜

⎞
⎠⎟
ε1 + ε2

⎡

⎣
⎢

⎤

⎦
⎥ +

(Δl)2

2c0
2 − c1

c0

⎛
⎝⎜

⎞
⎠⎟
ε0 + ε1

⎡

⎣
⎢

⎤

⎦
⎥ + Δl tanθ0

Δl tanθ2  

    

    = (Δl)2

6c2
3− c3

c2

⎛
⎝⎜

⎞
⎠⎟
ε2 + ε3

⎡

⎣
⎢

⎤

⎦
⎥ +

(Δl)2

6c1
9 − 4 c2

c1

⎛
⎝⎜

⎞
⎠⎟
ε1 + 4ε2

⎡

⎣
⎢

⎤

⎦
⎥ +

(Δl)2

6c0
15 − 7 c1

c0

⎛
⎝⎜

⎞
⎠⎟
ε0 + 7ε1

⎡

⎣
⎢

⎤

⎦
⎥             

        + y0 + 3Δl tanθ0
 (A4b) 
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y4 = (Δl)2

6c3
3− c4

c3

⎛
⎝⎜

⎞
⎠⎟
ε3 + ε4

⎡

⎣
⎢

⎤

⎦
⎥ + y3 + Δl tanθ3

    

    = (Δl)2

6c3
3− c4

c3

⎛
⎝⎜

⎞
⎠⎟
ε3 + ε4

⎡

⎣
⎢

⎤

⎦
⎥   

    + (Δl)2

6c2
3− c3

c2

⎛
⎝⎜

⎞
⎠⎟
ε2 + ε3

⎡

⎣
⎢

⎤

⎦
⎥ +

(Δl)2

6c1
9 − 4 c2

c1

⎛
⎝⎜

⎞
⎠⎟
ε1 + 4ε2

⎡

⎣
⎢

⎤

⎦
⎥ +

(Δl)2

6c0
15 − 7 c1

c0

⎛
⎝⎜

⎞
⎠⎟
ε0 + 7ε1

⎡

⎣
⎢

⎤

⎦
⎥ + y0 + 3Δl tanθ0

y3  

    

    + (Δl)2

2c2
2 − c3

c2

⎛
⎝⎜

⎞
⎠⎟
ε2 + ε3

⎡

⎣
⎢

⎤

⎦
⎥ +

(Δl)2

2c1
2 − c2

c1

⎛
⎝⎜

⎞
⎠⎟
ε1 + ε2

⎡

⎣
⎢

⎤

⎦
⎥ +

(Δl)2

2c0
2 − c1

c0

⎛
⎝⎜

⎞
⎠⎟
ε0 + ε1

⎡

⎣
⎢

⎤

⎦
⎥ + Δl tanθ0

Δl tanθ3  

  

   

    = (Δl)2

6c3
3− c4

c3

⎛
⎝⎜

⎞
⎠⎟
ε3 + ε4

⎡

⎣
⎢

⎤

⎦
⎥ +

(Δl)2

6c2
9 − 4 c3

c2

⎛
⎝⎜

⎞
⎠⎟
ε2 + 4ε3

⎡

⎣
⎢

⎤

⎦
⎥ +

(Δl)2

6c1
15 − 7 c2

c1

⎛
⎝⎜

⎞
⎠⎟
ε1 + 7ε2

⎡

⎣
⎢

⎤

⎦
⎥                 

         + (Δl)2

6c0
21−10 c1

c0

⎛
⎝⎜

⎞
⎠⎟
ε0 +10ε1

⎡

⎣
⎢

⎤

⎦
⎥ + y0 + 4Δl tanθ0

 (A4c) 
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y5 =
(Δl)2

6c4
3− c5

c4

⎛
⎝⎜

⎞
⎠⎟
ε4 + ε5

⎡

⎣
⎢

⎤

⎦
⎥ + y4 + Δl tanθ4

=
(Δl)2

6c4
3− c5

c4

⎛
⎝⎜

⎞
⎠⎟
ε4 + ε5

⎡

⎣
⎢

⎤

⎦
⎥

+

(Δl)2

6c3
3− c4

c3

⎛
⎝⎜

⎞
⎠⎟
ε3 + ε4

⎡

⎣
⎢

⎤

⎦
⎥ +

(Δl)2

6c2
9 − 4 c3

c2

⎛
⎝⎜

⎞
⎠⎟
ε2 + 4ε3

⎡

⎣
⎢

⎤

⎦
⎥ +

(Δl)2

6c1
15 − 7 c2

c1

⎛
⎝⎜

⎞
⎠⎟
ε1 + 7ε2

⎡

⎣
⎢

⎤

⎦
⎥

     + (Δl)2

6c0
21−10 c1

c0

⎛
⎝⎜

⎞
⎠⎟
ε0 +10ε1

⎡

⎣
⎢

⎤

⎦
⎥ + y0 + 4Δl tanθ0

⎧

⎨

⎪
⎪

⎩

⎪
⎪

⎫

⎬

⎪
⎪

⎭

⎪
⎪

y4  

+

(Δl)2

2c3
2 − c4

c3

⎛
⎝⎜

⎞
⎠⎟
ε3 + ε4

⎡

⎣
⎢

⎤

⎦
⎥ +

(Δl)2

2c2
2 − c3

c2

⎛
⎝⎜

⎞
⎠⎟
ε2 + ε3

⎡

⎣
⎢

⎤

⎦
⎥ +

(Δl)2

2c1
2 − c2

c1

⎛
⎝⎜

⎞
⎠⎟
ε1 + ε2

⎡

⎣
⎢

⎤

⎦
⎥

+
(Δl)2

2c0
2 − c1

c0

⎛
⎝⎜

⎞
⎠⎟
ε0 + ε1

⎡

⎣
⎢

⎤

⎦
⎥ + Δl tanθ0

⎧

⎨

⎪
⎪

⎩

⎪
⎪

⎫

⎬

⎪
⎪

⎭

⎪
⎪

Δl tanθ4  

=
(Δl)2

6c4
3− c5

c4

⎛
⎝⎜

⎞
⎠⎟
ε4 + ε5

⎡

⎣
⎢

⎤

⎦
⎥

(Δl)2

6c3
9 − 4 c4

c3

⎛
⎝⎜

⎞
⎠⎟
ε3 + 4ε4

⎡

⎣
⎢

⎤

⎦
⎥ +

(Δl)2

6c2
15 − 7 c3

c2

⎛
⎝⎜

⎞
⎠⎟
ε2 + 7ε3

⎡

⎣
⎢

⎤

⎦
⎥                    

      + (Δl)2

6c1
21−10 c2

c1

⎛
⎝⎜

⎞
⎠⎟
ε1 +10ε2

⎡

⎣
⎢

⎤

⎦
⎥ +

(Δl)2

6c0
27 −13 c1

c0

⎛
⎝⎜

⎞
⎠⎟
ε0 +13ε1

⎡

⎣
⎢

⎤

⎦
⎥ + y0 + 5Δl tanθ0

 

 (A4d) 
 
 
In summary, 
 

y1 =
(Δl)2

6c0
3− c1

c0

⎛
⎝⎜

⎞
⎠⎟
ε0 + ε1

⎡

⎣
⎢

⎤

⎦
⎥ + y0 + Δl tanθ0  (A5a) 

 

y2 =
(Δl)2

6c1
3− c2

c1

⎛
⎝⎜

⎞
⎠⎟
ε1 + ε2

⎡

⎣
⎢

⎤

⎦
⎥ +
(Δl)2

6c0
9 − 4 c1

c0

⎛
⎝⎜

⎞
⎠⎟
ε0 + 4ε1

⎡

⎣
⎢

⎤

⎦
⎥ + y0 + 2Δl tanθ0  (A5b) 

 

y3 =
(Δl)2

6c2
3− c3

c2

⎛
⎝⎜

⎞
⎠⎟
ε2 + ε3

⎡

⎣
⎢

⎤

⎦
⎥ +

(Δl)2

6c1
9 − 4 c2

c1

⎛
⎝⎜

⎞
⎠⎟
ε1 + 4ε2

⎡

⎣
⎢

⎤

⎦
⎥ +

(Δl)2

6c0
15 − 7 c1

c0

⎛
⎝⎜

⎞
⎠⎟
ε0 + 7ε1

⎡

⎣
⎢

⎤

⎦
⎥

     + y0 + 3Δl tanθ0

 

(A5c) 
 



 21 

y4 =
(Δl)2

6c3
3− c4

c3

⎛
⎝⎜

⎞
⎠⎟
ε3 + ε4

⎡

⎣
⎢

⎤

⎦
⎥ +

(Δl)2

6c2
9 − 4 c3

c2

⎛
⎝⎜

⎞
⎠⎟
ε2 + 4ε3

⎡

⎣
⎢

⎤

⎦
⎥ +

(Δl)2

6c1
15 − 7 c2

c1

⎛
⎝⎜

⎞
⎠⎟
ε1 + 7ε2

⎡

⎣
⎢

⎤

⎦
⎥

       + (Δl)2

6c0
21−10 c1

c0

⎛
⎝⎜

⎞
⎠⎟
ε0 +10ε1

⎡

⎣
⎢

⎤

⎦
⎥ + y0 + 4Δl tanθ0

 

(A5d) 
 

y5 =
(Δl)2

6c4
3− c5

c4

⎛
⎝⎜

⎞
⎠⎟
ε4 + ε5

⎡

⎣
⎢

⎤

⎦
⎥ +

(Δl)2

6c3
9 − 4 c4

c3

⎛
⎝⎜

⎞
⎠⎟
ε3 + 4ε4

⎡

⎣
⎢

⎤

⎦
⎥ +

(Δl)2

6c2
15 − 7 c3

c2

⎛
⎝⎜

⎞
⎠⎟
ε2 + 7ε3

⎡

⎣
⎢

⎤

⎦
⎥

      + (Δl)2

6c1
21−10 c2

c1

⎛
⎝⎜

⎞
⎠⎟
ε1 +10ε2

⎡

⎣
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(A5e) 
 

Based on the indicial progressions in equations (A5a) to (A5e), the following generalized deflection 
equation for any index i (= 1, 2, 3, …, n) may be established: 
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� 

y0 = tanθ0 = 0 

(A5f) 

  

Equation (A5f) is the deflection equation (8) in the text. 
 

Accuracy Checks 

The general deflection equation (A5f) will be checked for its accuracy by using i = 4, 5.  
 

For i = 4, equation (A5f) takes on the following form, 
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which after writing out the summation yields, 
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(A7) 
 
which agrees with equation (A5d) and thus, confirms the accuracy of the general deflection equation (A5f) 
formulated for slightly nonlinear cantilever beams. 
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For i = 5, equation (A5f) takes on the following form: 
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Writing out the summations of equation (A8) results in, 
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(A9) 
 
which is identical to equation (A5e), and thus validates the accuracy of the general deflection equation (A5f) 
developed for slightly nonlinear cantilever beams. 
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