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Abstract 
We have developed calibration models based on near-infrared (NIR) spectroscopy coupled with 
multivariate statistics to predict compositional properties relevant to cellulosic biofuels 
production for a variety of sorghum cultivars. A robust calibration population was developed in 
an iterative fashion. The quality of models developed using the same sample geometry on two 
different types of NIR spectrometers and two different sample geometries on the same 
spectrometer did not vary greatly.  
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1 Introduction 
There is great interest in the development of sustainable biofuels to displace petroleum and other 
fossil fuels, and investigations into a variety of dedicated bioenergy feedstocks are underway [1-
6]. Sorghum [Sorghum bicolor (L.) Moench] is one such dedicated bioenergy feedstock. Recent 
publications discuss the compositional variety and agronomic traits of different sorghum 
cultivars [7-12]. Rapid compositional analysis methods based on near-infrared (NIR) reflectance 
spectroscopy combined with multivariate statistics are well-established and widely used in 
agriculture [13-15]. Rapid compositional analysis methods have been developed for a number of 
different potential bioenergy feedstocks [16-18]. The goal of this work was to develop an NIR 
calibration model for sorghum as a rapid analysis tool for sorghum researchers. 

2 Materials and Methods 
 
2.1 Sample Selection 
Sorghum samples were taken from various breeding and agronomic trials conducted by the 
Texas Agrilife Research Sorghum Breeding program. The samples were collected from tests 
located in several different locations in Texas and a detailed description of the samples and their 
compositional variety has recently been published [9, 10]. Once all the samples were collected, 
they were dried in a forced air drier at 45°C. Samples were then knife-milled to pass through a 2-
mm screen and stored at ambient temperature in paper bags. 

2.2 Biomass Analysis  
Samples were analyzed using standard methods for summative biomass compositional analysis. 
A detailed review of the history of these methods and typical analytical uncertainties are 
available [19, 20]. Mass closures were close to 100%, with no systematic variation by sorghum 
type. A detailed discussion of the results of these analyses is presented elsewhere [9, 10]. The 
samples were analyzed in groups of five to eight over the course of several months. Table 1 
shows the summary compositional analysis results for the sorghum samples. 

One modification to the standard analytical methods described above was the determination of 
starch in the samples. We performed starch analysis on all samples as received using a standard 
assay procedure with HPLC rather than UV/VIS detection of the resulting glucose (Megazyme). 
We refer to this as-received value as the whole starch content. Any sample containing more than 
2% whole starch was also analyzed after water/ethanol extraction to determine the remaining 
amount of structural starch. This was necessary because the analytical hydrolysis procedure 
described above, used to break down cellulose to glucose, will also hydrolyze any structural 
starch that is present to glucose. In the absence of starch, all glucose is reported as structural 
glucan. With starch present, the structural glucan value must be corrected for structural starch. 
Of the 155 samples, 113 had non-zero amounts of whole starch, and 64 had non-zero amounts of 
structural starch. 

2.3 Near-Infrared Spectroscopy 
Two types of NIR spectrometers were used in this work: a grating-monochrometer type (XDS, 
Foss North America, Eden Prairie, MN) and a Fourier transform (FT) type (Antaris, Thermo-
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Fisher, Waltham, MA). The spectral range for the grating-monochrometer unit (hereafter referred 
to as the NIR unit) was 400–2,500 nm, although only the region of 1,100–2,500 nm was used for 
calibration model development. The spectral range of the Fourier transform unit (hereafter 
referred to as the FT-NIR unit) was 3,700–12,000 cm-1, although only the region of 4,000–9,000 
cm-1 was used for calibration model development. The spectral regions of the two instruments 
used for modeling are quite similar, and conversion between wavelength and wavenumber is 
straightforward (cm-1=107/nm). 

Knife-milled samples were placed in quartz sample cups and scanned in reflectance mode on 
both the NIR and FT-NIR instruments. Samples were also scanned in reflectance mode on the 
FT-NIR instrument using an automated sampling carousel and borosilicate sampling vials 
(Thermo-Fisher p/n 03-339-26C). All samples were scanned in either duplicate or triplicate. 
Replicate scans were averaged prior to building calibration models. Quality-control (“check”) 
materials were scanned along with the experimental samples to ensure instrument stability; no 
anomalies were seen with the check scans. 

2.4 Multivariate Analysis 
Multivariate analyses were performed in Unscrambler 10.1 (Camo Inc., www.camo.com). Some 
data manipulation and statistical analyses were performed in R (R Project for Statistical 
Computing, www.r-project.org). The quality of a calibration model was assessed (and different 
calibration models were compared) based on the correlation coefficient R and the root mean 
standard error of cross-validation (RMSECV). Correlation coefficients were first converted to z-
values using the Fisher z-transform, and then differences were compared using a pooled standard 
error )3/(1)3/(1 21 −+−= nnσ to the critical z-value of 1.96. Because the RMSECV values are 
the square root of a variance measure (in this case the variance of predicted and calibration 
values), the ratios of the squares of these values are compared to a critical F-value. 

Two types of partial least squares (PLS) calibration models were developed: grouped PLS-1 and 
PLS-2. The critical difference between the two types is that the grouped PLS-1 algorithm creates 
a calibration equation for each variable (in this case, for each constituent in sorghum) separately. 
The PLS-2 algorithm creates single calibration equations for the variable set at once; all 
constituent models are solved simultaneously. 

3 Results and Discussion 
 
3.1 Sample Selection 
Multivariate calibration models are secondary analytical techniques in that they require primary 
analytical data for calibration. Thus, a robust multivariate calibration model requires a sufficient 
number of representative samples with primary analytical data. Sample selection for the 
calibration models discussed here proceeded in an iterative manner. The first group of sorghum 
samples analyzed and included in the model included only commercially-available cultivars. 
Preliminary calibration models were developed using these samples and were used to predict 
later populations that included more experimental germplasm. Samples from these later 
populations were selected for wet chemical analysis for a number of reasons: they represented 
unique agronomic properties, they were poorly predicted by the preliminary model, or they had 

http://www.camo.com/
http://www.r-project.org/
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NIR spectra that were distinct from the original model population. Table 1 shows the summary 
statistics for the compositional analysis of the 155 sorghum samples used in this work. 

3.2 Calibration Model Results 
The average spectrum of the entire calibration set collected using each instrument assembly is 
shown in Figure 1. Table 2 shows the summary calibration statistics for PLS-2 models developed 
for each instrument assembly for the constituent glucan. We found that calibration models 
improved when the active wavelength ranges of the spectra were truncated to 4,000–9,000 cm-1 
for the FT-NIR system and 1,100–2,500 nm for the NIR system. These are essentially the same 
ranges because 4,000–9,000 cm-1 is equivalent to 1,111–2,500 nm. Using derivatization and 
smoothing improved the models as well; we saw a broad maximum in model quality with respect 
to the size of the window for Savitsky-Golay derivative smoothing. The 21-point window was 
used to produce the models discussed here; this value was a compromise that provided smooth 
regression coefficients for each constituent as well as optimal RMSECV values. Although the 
RMSECV value for the NIR assembly is slightly higher than for the FT-NIR assemblies, 
statistical analysis of the data in Table 2 showed no differences in RMSECV or R2 values for any 
of the models; the cross validation results suggest that all models are equivalent. 

 

Figure 1. Average spectra taken with each spectrometer assembly (NIR sample cup, FT-NIR 
sample cup, FT-NIR autosampler). The NIR spectra abscissa for the diffraction-based instrument 

(NIR sample cup) was converted from wavelength to wavenumber for the plots 
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Table 1. Summary Statistics for the 155 Sorghum Samples Used to Develop Calibration Models  

All constituent values are in dry weight percent. The samples were taken from a variety of agronomic field 
trials conducted at Texas Agrilife Research Stations. 

Constituent Mean Max Min SD 
Glucan 27.8 38.2 17.6 5.7 
Xylan 16.0 21.2 10.8 2.6 
Lignin 13.2 20.6 8.9 2.9 
Starch 9.0 30.9 0.0 8.0 
Extractives 27.2 49.9 13.3 8.7 
Ash 6.8 11.3 2.3 2.0 

 
 

Table 2. Summary Statistics for PLS-2 Calibration Models for Glucan Content in Sorghum Using 
Three Different Sets of NIR Spectra  

Spectral ranges are expressed in wavenumbers (cm-1) for the FT-NIR instrument and in wavelength (nm) 
for the diffraction NIR unit; the spectral ranges are essentially equivalent. The “Combined FT-NIR” model 

used both the sample cup and the autosampler spectra. 

Instrument/Model Spectral Range RMSECV R2 PCs (#) Samples (#) 
NIR Sample Cup 1,100–2,500 1.48 0.93 7 130 
FT-NIR Sample Cup 4,000–9,000 1.24 0.95 6 134 
FT-NIR Autosampler 4,000–9,000 1.25 0.95 5 121 
Combined FT-NIR  4,000–9,000 1.52 0.93 7 261 

 
 

Table 3. Summary Statistics for PLS-2 and PLS-1 Calibration Models for the Major Constituents 
(Glucan, Xylan, Lignin, Starch, Total Extractives, and Ash) of Sorghum Using FT-NIR Sample Cup 

Spectra  
Spectra underwent pretreatment prior to model-building. The PLS-2 model used six principal components 

(PCs) and had 134 samples. We saw no significant differences between PLS-1 and PLS-2 model 
statistics (p=0.05). Reference method uncertainty values are expressed as twice the standard deviation 

(sd) of replicate measurements and are taken from [20] except for starch, which is estimated as twice the 
sd of replicate measurement (unpublished results). 

 PLS-2 Model PLS-1 Model Reference Method 
Uncertainty Constituent RMSECV R2 RMSECV R2 PCs (#) Samples (#) 

Glucan 1.24 0.95 1.45 0.94 5 147 1.0 
Xylan 0.85 0.89 0.81 0.90 4 147 0.6 
Lignin 0.86 0.91 0.82 0.92 3 151 0.4 
Starch 2.33 0.91 2.43 0.90 5 140 0.6 
Extractives 2.29 0.91 2.33 0.93 5 146 1.2 
Ash 0.88 0.81 0.78 0.85 6 148 0.4 
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Summary statistics for the grouped PLS-1 and PLS-2 models for the FT-NIR sample cup spectra 
are shown in Table 3 along with the uncertainties of the primary analytical methods [20], and 
plots of the predicted vs. measured constituent values for the constituents in the PLS-2 
calibration model are shown in Figure 2. There are no significant differences between the 
grouped PLS-1 and the PLS-2 models; both algorithms provide equivalent results. The PLS-1 
models require fewer principal components, but a separate model is required for each 
constituent.  

 

 

Figure 2. Predicted vs. measured composition for FT-NIR quartz cell calibration model: (a) glucan, 
(b) xylan, (c) lignin, (d) starch, (e) extractives, (f) ash. Some constituent predictions exhibit greater 

uncertainty than others. 

 

(a) (b) 

(c) (d) 

(e) (f) 
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As the data in Table 2 indicate, there is little difference between the calibration models using FT-
NIR sample cup spectra and FT-NIR autosampler vial spectra. Each model could predict samples 
from the other model successfully, although there was approximately a two-fold higher 
uncertainty associated with the predictions (data not shown). A calibration model combining 
both the sample cup and autosampler vial spectra showed results similar to the individual 
models, although the RMSECV value is higher (p=0.05). These results suggest that with proper 
spectral pretreatment, a hybrid model consisting of samples taken with different sampling 
geometries may be possible. This is useful for two reasons. First, the borosilicate autosampler is 
a commodity item, available in large quantity very inexpensively. Second, samples can be stored 
in the autosampler vials immediately after milling, so the spectra of a given sample can be 
collected without additional handling of the sample. This minimizes operator effort and also 
reduces the opportunity for sample spillage or loss. 

4 Conclusions 
Robust multivariate calibration models using NIR spectroscopy coupled with chemometrics can 
be used as a rapid analysis tool for determining sorghum composition relevant for biofuels 
production. Sample selection is critical to building a robust model; multivariate calibration 
models must contain samples similar to those to be predicted. Standard spectral pretreatment 
methods reduce the number of principal components required for a model. Models developed on 
different types of NIR spectrometers, and with different sampling geometries, provided 
essentially equivalent results.  

We intend to continue development of the calibration models presented here. Integration of new 
samples (particularly those with interesting agronomic or genetic traits) as well as samples 
poorly predicted by the current models will increase the robustness of the model. With proper 
laboratory quality control processes in place to ensure the stability of instrument response over 
time, new samples can routinely be added as they are identified and undergo wet chemical 
analysis. 
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