Eechnical Note

DISTRIBUTION OF MAIL BY DESTINATION AT THE SAN FRANCISCO, LOS ANGELES, AND BALTIMORE POST OFFICES

U. S. DEPARTMENT OF COMMERCE NATIONAL BUREAU OF STANDARDS

THE NATIONAL BUREAU OF STANDARDS

Functions and Activities

The functions of the National Bureau of Standards are set forth in the Act of Congress, March 3. 1901, as amended by Congress in Public Law 619, 1950. These include the development and maintenance of the national standards of measurement and the provision of means and methods for making measurements consistent with these standards; the determination of physical constants and properties of materials; the development of methods and instruments for testing materials, devices, and structures; advisory services to government agencies on scientific and technical problems; invention and development of devices to serve special needs of the Government; and the development of standard practices, codes, and specifications. The work includes basic and applied research, development, engineering, instrumentation, testing, evaluation, calibration services, and various consultation and information services. Research projects are also performed for other government agencies when the work relates to and supplements the basic program of the Bureau or when the Bureau's unique competence is required. The scope of activities is suggested by the listing of divisions and sections on the inside of the back cover.

Publications

The results of the Bureau's work take the form of either actual equipment and devices or published papers. These papers appear either in the Bureau's own series of publications or in the journals of professional and scientific societies. The Bureau itself publishes three periodicals available from the Government Printing Office: The Journal of Research, published in four separate sections, presents complete scientific and technical papers; the Technical News Bulletin presents summary and preliminary reports on work in progress; and Basic Radio Propagation Predictions provides data for determining the best frequencies to use for radio communications throughout the world. There are also five series of nonperiodical publications: Monographs, Applied Mathematics Series, Handbooks, Miscellaneous Publications, and Technical Notes.

Information on the Bureau's publications can be found in NBS Circular 460, Publications of the National Bureau of Standards ($\$ 1.25$) and its Supplement ($\$ 1.50$), available from the Superintendent of Documents, Government Printing Office, Washington 25, D.C.

NATIONAL BUREAU OF STANDARDS Eechnical Note

DECEMBER 1959

DISTRIBUTION OF MAIL BY DESTINATION AT THE SAN FRANCISCO, LOS ANGELES, AND BALTIMORE POST OFFICES

Norman C. Severo and Arthur E. Newman

Abstract

NBS Technical Notes are designed to supplement the Bureau's regular publications program. They provide a means for making available scientific data that are of transient or limited interest. Technical Notes may be listed or referred to in the open literature. They are for sale by the Office of Technical Services, U. S. Department of Commerce, Washington 25, D. C.

DISTRIBUTED BY

UNITED STATES DEPARTMENT OF COMMERCE

 OFFICE OF TECHNICAL SERVICESWASHINGTON 25, D. C.
Price $\$ 1.50$

TABLE OF CONTENTS

Page

1. Summary and Conclusions 1
2. Introduction 4
3. Definitions and Model 5
3.1 Definitions 5
3.2 The Model 6
4. Type of Mail Studied at San Francisco, Los Angeles, 6 and Baltimore
5. San Francisco Study 9
5.1 Volume Count Data 9
5.2 Tabulation of Estimated Distribution and 9 Observations
6. Los Angeles Study 23
6.1 Volume Count Data 23
6.2 Tabulation of Estimated Distribition and 23 Observations
7. Baltimore Study 40
7.1 Volume Count Data 40
7.2 Tabulation of Estimated Distribution and 40 Observations

LIST OF FIGURES

Page

1. Flow Chart Lodel for the Distributions of7Outgoing Hail
2. San Francisco Flow Chart 12
3. Graph of Largest 200 Destinations for 13 San Francisco
4. Los Angeles Flow Chart 27
5. Graph of Largest 200 Destinations for 28 Los Angeles
6. Baltimore Flow Chart 43
7. Graph of Largest 200 Destinations for 44 Baltimore
LIST OF TABLES
8. San Erancisco Volume Count Data 11
9. Tabulation of Estimated Percentages of 14 the Total Volume to Each Destination for San Francisco
10. Los Angeles Volume Count Data 25
11. Tabulation of Estimated Percentages of 29 the Total Volume of Each Destination for Los Angeles
12. Baltimore Volume Count Data 41
13. Tabulation of Estimated Percentages of the 45 Total Yolume to Each Destination for Baltimore

Distribution of Yail by Destination at the San Francisco, Los Angeles, and Baltimore Post Offices

Norman C. Severo and Arthur E. Newman

This report presents the results of the application of the sampling method presented in a paper by Norman C. Severo and Arthur E. Newman entitled MA statistical chain-ratio method for estimating relative volumes of mail to given destinations", to appear in NBS Journal of Research 64C, No. 1 (Jan.-Mar. 1960). These studies were made at the San Francisco, Los Angeles, and Baltimore Post Offices.

1. Sumary and Conclusions

This report presents the results of the application of the "Statistical Chain Ratio" method of sampling to determine the distribution of mail by destination. The applications are applied to outgoing first class letter-mail at the San Francisco, Los Angeles, and Baltimore Post Offices. The results for each of these post offices are included here. Some of the principal conclusions of this study are: San Francisco:

1. The largest 200 Destinations received 80% of the Total Volume.
2. Seventy-six percent of the Total Volume remained in the state of California (not including Air-mail and Go-backs).
3. Thirty-nine percent of the Total Volume remained in San Francisco.
4. Only seven Destinations received more than 1% of the Total Volume, respectively.
5. The largest 200 Destinations received 81% of the Total Volume.
6. Seventy-eight percent of the Total Volume remained in the state of California (not including Airm mail and Go-backs).
7. Forty-two percent of the Total Volume remained in Los Angeles.
8. Only six Destinations received more than 1% of the Total Volume, respectively.

Baltimore:

1. The largest 200 Destinations received 78% of the Total Volume.
2. Sixty-six percent of the Total Volume remained in the state of Maryland (not including Airmail and Go-backs).
3. Fifty-one percent of the Total Volume remained in Baltimore.
4. Only four cities received more than 1% of the Total Volume, respectively.

In General:

1. The final percentages given in Tables 2,4 , and 6 may be used to determine the expected number of letters per Destination un a daily or weekly basis. This may be done by multiplying the percentage, expressed in decimals, corresponding to the Destination by the average daily or weekly Total Volume of letters.
2. When additional data of this type are needed for other post offices it is strongly recommended that a statistical sampling plan similar to that described in NBS Journal of Research 64C, No. 1 (Jan. - Mar. 1960) be used. The use of such a plan will result in:
a. accurate results,
b. no delay in moving the mail through the post office, c. relatively small cost.
3. In the past such data have been gathered by complete enumeration. It is our recommendation that such methods be discarded for the more scientific statistical sampling procedures.
4. The studies in this report were conducted over very limited periods of time, one or, at most, two weeks. If information about a longer period of time is desired then fewer samples over a longer period of time could be taken.
5. In order to investigate regional patterns, additional studies should be made in post offices within the various regions.
6. All the data gathered thus far have been obtained from fairly large size post offices. Some study should be given to post offices that are somewhat smaller than those already studied.
7. Introduction.

This report presents the results of a statistical sampling procedure discussed in NBS Journal of Research 64C, No. 1 (Jan. - Mar. 1960) designed to estimate the distribution of mail by destination (i.e., the proportion of mail going to each destination). The results apply to outgoing first class letter-mail at the San Francisco, Los Angeles and Baltimore Post Offices.

It was intended, initially, to study five cities: Baltimore, Washington, Philadelphia, Chicago and Los Angeles. Philadelphia, Baltimore, and Washington were chosen because they would tend to give a pattern of postal operations on the East Coast. Chicago was chosen to show Mid-West influence, and Los Angeles was selected to show the West Coast influence. San Francisco was added to the list in an effort to find out whether or not Los Angeles was atypical, because Los Angeles services an unusually large area, as compared with other Post Offices.

Section 3 gives the definitions used in this report and the model of the flow of mail that is studied. Section 4 defines precisely the types of mail that were studied at San Francisco, Los Angeles and Baltimore. Sections 5, 6, and 7 present the results of the San Francisco, Los Angeles, and Baltimore studies, respectively.

3. Definitions, and Model

3.1 Definitions. A list of definitions of terms, as used in this report, is given here for reference. l/ These definitions are given in order to avoid misinterpretation and ambiguity because of postal language differences between post offices.

1. Separation. - A Separation is a classification characterized by a labeled pigeon-hole on a sorting case.
2. Destination. - A Destination for a given post office is a final Separation made at that post office. All directs and residues are included in this classification. ${ }^{2}$ /
3. Direct. - A Direct is a Destination to a single given post office.
4. Distribution. - A Distribution is the function of physically sorting letters into their respective separation boxes.
5. Primary, - The term Primary, (of ten referred to as Mailing Primary), is the first stage of Distribution of outgoing mail.
6. Secondary. - The term Secondary (often referred to as State Primary), is the second stage of Distribution of outgoing mail. Secondary mail can not be distributed to final Destination on the Primary.
7. Tertiary - The term Tertiary, (often referred to as State Secondary), is the third stage of Distribution of outgoing mail. Tertiary mail cannot be distributed to final Destination on the Secondary.
8. By-pass mail. - The term By-pass mail refers to mail which receives its first Distribution in the Secondary or Tertiary cases. Also the term refers to mail which goes directly to the city section.
9. Residue. - The term Residue refers to mail destined for post offices for which no direct Separation is provided in case or rack.

[^0]3.2 The Model. The model for the operation of outgoing mail that is discussed in this report consists of a three stage sorting scheme which can be represented by a flow chart as given in Figure 1. The Total Volume in the top box consists of those types of mail indicated in Section 4. This volume then divides into two parts, that which goes into the Primary and that which by-passes the Primary. The By-pass mail is sent either to the city section or into the Secondary. Mail leaving the Primary may go either to its Destinations or into the Secondary. Mail leaving the Secondary goes either to its Destinations or into the Tertiary. Mail leaving the Tertiary goes directly to its Destinations.
4. Type of Mail Studied at San Francisco, Los Angeles, and Baltimore.

The Total Volume of mail studied in the San Francisco, Los Angeles and Baltimore Post Offices may be classified as outgoing first class letter mail of the following types:

1. Cancellation Mail (Machine and Hand)
a. Stamped Mail into Mailing Primary
b. Air Mail to Mailing Primary
c. Specials to Mailing Primary
d. Stamped Mail into Secondary by-passing Primary
e. Stamped By-pass mail to city.

Figure 1
Flow Chart Model for the Distribution of Outgoing Mail

- 7 -

2. Non-Cancellation Mail
a. Metered into Primary
b. Metered into Secondary by-passing Primary
c. Air Mail into Mailing Primary
d. Specials into Mailing Primary
e. Permit into Primary
f. Permit into Secondary by-passing Primary
g. Penalty to Primary
h. Metered and Permit By-Pass to City
3. Dis Mail
a. Transit and Red Line $\underline{3}^{/}$into Secondary
b. Transit and Red line into Tertiary
c. Transit and Red line to city

Not included in this study is any type of incoming letter mail nor outgoing first class letter mail of the following types:

1. All mail to Air Mail and Special Delivery Sections by-passing mailing Primary
2. Dis mail to dispatch without separation
3. Large special mailings which would tend to bias the sample.

3/ Regular first class mail carried by air.
5. San Francisco Study
5.1 Volume Count Data. Special volume counts were made in San Francisco to determine what percentage of the Total Volume flowed into the Primary, how much by-passed the Primary and flowed either into the City section for local distribution or into the Secondary. These counts were made on six days, June $21,24,25,26,27$, and 28,1957 , between the hours of 10:00 A.M. and 10:00 P.M.

The Total volume figures and the corresponding percentages are summarized in Table 1 and are presented here to enable the reader to convert the final percentage figures of mail to each Destination to pieces. The flow chart given in Figure 2 contains the basic proportion figures of the Total Volume of mail to each stage of Distribution.
5.2 Tabulation of Estimated Distribution and Observations.

The tabulation of the estimated proportions of the Total Volume mail going to each Destination is given in Table 2. These are listed in order of descending value. The largest 200 are listed by name and the remainder grouped by percentages. Figure 3 graphically portrays the largest 200 Destinations by percentage. Several observations, based on the tabulation, are given here:

1. The largest, 200 Destinations received 80% of the Total Volume
2. Seventy-six percent of the Total Volume remained in the State of California (not including Air Mail and Go backs)
3. Thirty-nine percent of the Total Volume remained in San Francisco
4. Seven Destinations: San Francisco, Oakland, Los Angeles, Washington State, Berkeley, New York City, and Sacramento were the only Destinations to receive more than one percent of the Total Volume
5. Eighty percent of the Total Volume remained on the West Coast (not including Air Mail and Go backs)
 27,231.08 ${ }^{\prime}$ ∞
0
-1
0
N
N
N $1,147.92$
$2,872.33$
59.83
$4,080.08$
13.00 $\begin{array}{cccc}\therefore 8 & \text { in } & \text { in } & 0 \\ 0 & 0 & N & N \\ N \\ \dot{0} & 0 & N & -1 \\ \text { in } & \cdots & \infty\end{array}$ $31,392.41^{\prime}$

$$
\leftrightarrow O T, 6 S 6 T
$$

$$
\begin{array}{cc}
1^{\prime} & 3^{n} \\
6^{\prime} & 0 \\
6^{\prime} & 10^{\prime \prime} \\
14.08^{\prime} \\
.26
\end{array}
$$

\&6, 686 L $\because L$,02ZZ $\begin{aligned} 2270^{\prime} & 7^{\prime \prime} \\ 195^{\prime} & 0 \\ 3^{\prime} & 6^{\circ \circ} \\ 12^{\prime} & 0\end{aligned}$ $\begin{aligned} 2270^{\prime} & 7^{\prime \prime} \\ 195^{\prime} & 0 \\ 3^{\prime} & 6^{\circ \circ} \\ 12^{\prime} & 0\end{aligned}$ 4465.83^{\prime} 10
10
0
0
 $\begin{array}{cc}6^{\prime} & 0 \\ 10 & 0 \\ 5^{\prime} & 5^{\prime \prime} \\ 21.42^{\prime} \\ .41\end{array}$ 5220.42^{\prime}
e7ed 7 unos suntoa oosțouexy ues 10:00 AM Through 10:00 PM

$$
\begin{aligned}
1924^{\prime} & 8^{\eta} \\
2403^{\circ} & 9^{\eta} \\
195^{\circ} & 3^{\prime \prime} \\
19^{\circ} & 0 \\
23^{\prime} & 3^{\prime \eta}
\end{aligned}
$$ (in feet)

6-27-57 1984' 6-26-57 $2136^{\circ} 7^{\text {" }}$
 $193^{\circ} 10^{\prime \prime}$ 5
is $5^{\prime} 9^{\prime \prime}$
 $148^{\prime} 17^{\prime \prime}$
$345^{\prime} 0$
$13^{\prime} 11^{\prime \prime}$ 4907.00^{\prime}

$$
\overline{5477.49^{\prime}}
$$ ∞

M
M
M
N 0
0
0
0

$$
6-25-57
$$ 4565.92^{\prime}

89.57 508.33^{\prime}
9.97

table 1
6-24-57
 2
0
-1
0
0
N
0 $2^{\prime} 0$ 4602.17^{\prime}

89.44 Koi | 880.08^{\prime} | 535.92^{\prime} |
| :---: | :---: |
| 15.87 | 10.42^{\prime} |
| | $1^{\prime} 3^{\prime \prime}$ |
| | $6^{\prime} 0$ |
| 0 | 0 |
| 0 | 7.25^{\prime} |
| | |
| 5544.66^{\prime} | 5145.34^{\prime} |

2007' 6" Mail to:
Primary
Stamp
Meter
Penalty
City Go Backs
Post Cards *
Total
Percent City By-Pass

$460^{\prime} 12^{\prime \prime}$	83^{\prime}
$418^{\prime} 13^{\prime \prime}$	452^{\prime}
0	
880.08^{\prime}	535.9
15.87	10.4
	1^{\prime}
	6^{\prime}
0	0
0	7.2
5544.66^{\prime}	5145.34

\[
6-28-57

\] | 2 |
| :--- |
| |
| |
| 0 |
| 0 |
| 4 |

OBTAINED FROM SAMPLES
O OBTAINED FROM VOLUME COUNTS

Figure 2
San Francisco Flow Chart

TABULATION OF ESTIMATED PERCENTAGES OF THE TOTAL VOLUME TO EACH DESTINATION FOR SAN FRANCISCO
 Largest 200 Destinations Listed by Name

		Percent	Cumulative Percent
1	San Francisco Inc. City By Pass	38.501	38.501
2	Oakland, California	8.158	46.659
3	Los Angeles, California	2.789	49.448
4	Sacramento, California	1.364	50.812
5	Washington State	1.155	51.967
6	Berkeley, California	1.147	53.114
7	New York City, New York	1.116	54.230
8	San Jose, California	. 961	55.191
9	Seattle, Washington	. 860	56.051
10	Oregon State	. 775	56.826
11	San Mateo, California	. 759	57.585
12	Redwood City, California	. 679	58.264
13	Daly City, California	. 670	58.934
14.	Palo Alto, California	. 654	59.588
15	Fresno, California	. 612	60.200
16	Portland, Oregon	. 605	60.805
17	South San Francisco	. 574	61.379
18	Chicago, Illinois	. 566	61.945
19	San Rafael, California	. 521	62.466
20	Stockton, California	. 504	62.970
21	Burlingame, California	. 396	63.366
22	Menlo Park, California	. 394	63.760
23	Santa Rosa, California	. 352	64.112
24	San Diego, California	. 349	64.461
25	Vallejo, California	. 295	64.756

26. Reno, Nevada
27. Hayward, California
28. Richmond, California
29. San Leandro, California
30. Long Beach, California
31. Alameda, California
32. San Bruno, California
33. Mill-Valley, California
34. San Carlos, California
35. Walnut Creek, California
36. Washington, D. C. (off. and unoff)
37. Salt Lake City, Utah
38. Santa Cruz, California
39. Sunnyvale, California
40. Denver, Colorado
41. Watsonville, California
42. Los Altos, California
43. Salinas, California
44. Vet. Adm., (Denver, Colo.)
45. Concord, California
46. Phoenix, Arizona
47. Mountain View, California
48. San Anselmo, California
49. Millbrae, California
50. Santa Clara, California
51. Napa, California
52. Modesta. California
53. Los Gatos, California
54. Bakersfield, California
55. Belmont, California
. 292
. 287
.281
. 277
. 272
. 264
. 261
. 252
. 244
. 234
. 232
. 229
.210
. 207
. 205
. 195
. 192
. 189
. 187
. 185
.183
.167
.167
.164
. 164
. 162
.159
. 158
.152
. 138
65.048
65.335
65.616
65.893
66.165
66.429
66.690
66.942
67.186
67.420
67.652
67.881
68.091
68.298
68.503
68.698
68.890
69.079
69.266
69.451
69.634
69.801
69.968
70.132
70.296
70.458
70.617
70.775
70.927
71.065
56. Eureka, California 135
57. Sausalito, California
58. Santa Barbara, California134 129
59. Monterey, California 127
60. Philadelphia, Pennsylvania
61. La Fayette, California 116121
62. Ukiah, California 114
63. Minneapolis, Minnesota 112
64. Emeryville, California 110
65. Pasadena, California 110
66. Petaluma, California
67. Chico, California
68. St. Louis, Missouri
69. Brooklyn, New York
70. Redding, California
71. Sharp Park,California 100108107106106 104
72. San Lorenzo, California
73. Long Isl. Cities, New York
74. Elcerrito,California
75. Detroit, Michigan
76. Garden City, New York.098097095.094094
77. Merced, California 094
78. Dallas, Texas
79. Carmel, California
80. Castro Valley, California 092
81. Las Vegas, Nevada
82. San Pedro, California093093
. 088087
83. Sonoma, Califoriia 086
84. Houston, Texas
.085085
71.200
71.334
71.463
71.590
71.711
71.827
71.941
72.053
72.163
72.273
72.381
72.488
72.594
72.700
72.804
72.904
73.002
73.099
73.194
73.288
73.382
73.476
73.569
73.662
73.754

73,842
73.929
74.015
74.100
74.185
86. Tuscon, Arizona 083
87. Glendale, California 082
88. Cleveland, Ohio 080
89. Sebastapol, California 079
90. Lodi, California 079
91. Atherton, California
92. Hawaii
93. Cincinnati, Ohio
94. San Antonio, Texas078077
.076
95. Beverly Hills, California075
96. Martinez, California
97. Visalia, California
98. Whittier, California
99. Pittsburg, California
100. North Hollywood, California
101. Riverside, California
102. Novato, California
103. Turlack, California
104. Paso Robles, California
105. Van Nuys, California
106. Kansas City, Missouri
107. Saratoga, California
108. Baltimore, Maryland
109. Albany, California
110. Kentfield, California
111. Boise, Idaho
112. Cupercino, California
113. New Orleans, Louisiana073072071069069 068068068068068.067067067067067067
.066066065
114. Orinda, California 063
115. Woodland, California
74.268
74.350
74.430
74.509
74.588
74.666
74.743
74.819
74.894
74.967
75.039
75.110
75.179
75.248
75.316
75.384
75.452
75.520
75.588
75.655
75.722
75.789
75.856
75.923
75.990
76.056
76.122
76.187
76.250
76.313

116. Burbank, California	.062	76.375
117. Santa Monica, California	.061	76.436
118. Santa Ana, California	.061	76.497
119. Inglewood, California	.061	76.558
120. San Bernadino, California	.060	76.618
121. Stanford, California	.060	76.678
122. Milwauke, Wisconsin	.060	76.738
123. Healdsburg, California	.060	76.798
124. Campbell, California	.059	76.857
125. Sanora, California	.058	76.915
126. Fairfax, California	.057	76.972
127. San Luis Obispo, Caifornia	.056	77.028
128. Marysville, California	.055	77.083
129. Corte Madera, California	.055	77.138
130. Oroville, California	.055	77.193
131. St. Paul, Minnesota	.055	77.248
132. Ogden, Utah	.055	77.303
133. Ontario, Canada	.054	77.357
134. San Fernando, California	.054	77.411
135. Pittsburgh, Pennsylvania	.053	77.464
136. Gilroy, California	.052	77.516
137. Woodside, California	.052	77.568
138. Fort Ord, California	.051	77.619
$139 . ~ L i v e r m o r e, ~ C a l i f o r n i a ~$.050	77.669
140. Terre Haute, Indiana	.049	77.718
$141 . ~ R o s s, ~ C a l i f o r n i a$	77.767	
142. Monterey Park, California	.049	77.815
143. San Pablo, California	.048	77.863
$144 . ~ A u b u r n, ~ C a l i f o r n i a ~$.048	77.911
$145 . ~ A l h a m b r a, ~ C a l i f o r n i a ~$	77.958	

117. Santa Monica, California
118. Santa Ana, California
119. Inglewood, California
120. San Bernadino, California
121. Stanford, California
122. Milwaukee, Wisconsin
123. Healdsburg, California
124. Campbell, California
125. Sonora, California
126. Fairfax, California
127. San Luis Obispo, Caiifornia
128. Marysville, California
129. Corte Madera, California
130. Oroville, California
131. St. Paul, Minnesota
132. Ogden, Utah
133. Ontario, Canada
134. San Fernando, California
135. Pittsburgh, Pennsylvania
136. Gilroy, California
137. Woodside, California
138. Fort Ord, California
139. Livermore, California
140. Terre Haute, Indiana
141. Ross, California
142. Monterey Park, California
143. San Pablo, California
144. Auburn, California
145. Alhambra, California
.062
. 061
.061
. 061
. 060
. 060
. 060
. 060
. 059
.058
.057
. 056
.055
. 055
.055
. 055
. 055
. 054
. 054
. 053
. 052
. 052
. 051
. 050
. 049
.049
. 048
Q
.047
76.375
76.436
76.497
76.558
76.618
76.678
76.738
76.798
76.857
76.915
76.972
77.028
77.083
77.138
77.193
77.248
77.303
77.357
77.411
77.464
77.516
77.568
77.619
77.669
77.718
77.767
77.815
77.863
77.958

146	Tracy, California	. 047	78.005
147	Yuba City, California	. 047	78.052
148	Larkspur, California	. 047	78.099
149	Antioch, California	. 047	78.146
150	El Paso, Texas	. 046	78.192
151	Hanford, California	. 046	78.238
152	Ventura, California	. 045	78.283
153	Vancouver, B.C.	. 045	78.328
154	Brisbane, California	. 045	78.373
155	Pacific Grove, California	. 044	78.417
156	Omaha, Nebraska	. 044	78.461
157	Indianapolis, Indiana	. 043	78.504
158	Dayton, Ohio	. 043	78.547
159	Hollister, California	. 043	78.590
160	Madera, California	. 041	78.631
161	Fort Bragg', California	. 041	78.672
162	Guernerville, California	. 041	78.713
163	Montreal, Quebec	. 041	78.754
164	Calistoga, California	. 041	78.795
165	Arcata, California	. 041	78.836
166	Albuquerque, New Mexico	. 040	78.876
167	Santa Maria, California	. 040	78.916
168	Ft. Worth, Texas	. 040	78.956
169	Toronto, Ontario	. 040	78.996
170	Grass Valley, California	. 039	79.035
171	Anaheim, California	. 039	79.074
172	St. Helena, California	. 038	79.112
173	South Gate, California	. 038	79.150
174	Pleasantville, New York	. 037	79.187
175	Seaside, California	. 037	79.224

176. Belvedere, California
177. Torrance, California
178. Newark, New Jersey
179. Vacaville, California
180. Tulare, California
181. Louisville, Kentucky
182. Atlanta, Georgia
183. San Gabriel, California
184. Oklahoma City, Oklahoma
185. Paradise, California
186. Pomona, California
187. Roseville, California
188. Fullerton, California
189. Miami, Florida
190. Buffalo, New York
191. Des Moines, Lowa
192. Arcadia, California
193. Fairfield, California
194. Danville, California
195. Pleasant Hill, California
196. Wilmington, California
197. Lakeport, California
198. Willits, California
199. Porterville, California
200. Placerville, California
.036
.035
. 035
.034
.033
.033
.033
. 033
.032
.032
. 032
. 032
. 032
. 032
. 032
. 032
. 032
.031
.031
.031
.030
. 030
. 029
. 029
. 029
79.260
79.295
79.330
79.364
79.397
79.430
79.463
79.496
79.528
79.560
79.592
79.624
79.656
79.688
79.720
79.752
79.784
79.815
79.846
79.877
79.907
79.937
79.966
79.995
80.024
$\left.\begin{array}{lccccc}\text { Rank } & \text { No. in Group } & \begin{array}{c}\text { Individual } \\ \text { Percent }\end{array} & & \begin{array}{c}\text { Group } \\ \text { Percent }\end{array} & \end{array} \begin{array}{c}\text { Cumulative } \\ \text { Percent }\end{array}\right)$

Go Backs .753
87.992

Skips
3.564 91.556

Air Mail
3.200
94.756

Nixies
Foreign
Residues
. 426
95.182
95.383
100.000

Breakdown on Residue

Illinois	.253	Colorado	.121
Indiana	.108	Nevada	.060
Iowa	.103	Utah	.114
Massachusetts	.194	Wyoming	.041
Michigan	.162	South Dakota	.030
Wisconsin	.103	North Dakota	.035
Maryland	.076	Arizona	.058
Delaware	.007	New Mexico	.037
Nebraska	.051	Mississippi	.046
Kansas	.106	Alabama	.034
Maine	.029	Florida	.102
Vermont	.014	Tentucky	.057
New Hampshire	.020	North Carolina	.084
Connecticut	.074	Virginia	.073
Missouri	.106	Arkansas	.066
Texas	.252	Georgia	.070
Minnesota	.101	Louisiana	.082
New Jersey	.249	Oklahoma	.078
New York	.257	South Carolina	.019
Ohio	.189	West Virginia	.034
Pennsylvania	.373	California	.307
Montana	.074	Allother	
Idaho			.017
		Tanadas	4.617

6. Los Angeles Study
6.1 Volume Count Data. Special volume counts were made in Los Angeles to determine what percentage of the Total Volume flowed into the Primary, how much by-passed the Primary and flowed either into the City section for local Distribution or into the Secondary. These counts were made on six days, June 11, 12, 13, 14, 17, and 18, 1957, between the hours of 10:00 A.M. and 10:00 P.M.

The Total Volume figures and the corresponding percentages are summarized in Table 3 and are presented here to enable the reader to convert the final percentage figures of mail to each Destination to pieces. The flow chart given in Figure 4, contains the basic percentage figures of the Total Volume of mail to each stage of Distribution. It is to be noticed that the Primary mail is divided into three parts because Los Angeles made use of three Primary cases of different sizes, notably 36 hole, 49 hole, and 63 hole cases.
6.2 Tabulation of Estimated Distribution and Observations.

The tabulation of the estimated percentages of the Total Volume of mail going to each Destination is given in Table 4. These are listed in order of descending value. The largest 200 are listed by name and the remainder grouped by percentages. Figure 5 graphically portrays the largest 200 Destinations by percentage. Several observations, based on the
tabulation, are given here:

1. The largest 200 Destinations received 81% of the Total Volume
2. Seventy-eight percent of the Total Volume remained in the state of California (not including Air Mail and Go backs).
3. Forty-two percent of the Total Volume remained in Los Angeles.
4. Six Destinations: Los Angeles, Beverly Hills, Pasadena, Long Beach, New York City, and San Francisco, were the only cities that received more than one percent of the Total Volume.
5. Seventy-nine percent remained on the West Coast (not including Air Mail and Go backs).

Angeles Volume Count Data Los Angeles Volume count Data
10:00 AM Through 10:00 PM
(in feet)
6-14-57

is
 \circ
is
is
is

 $6-12-57$
 जo

[^1]TABLE 3 （Continued）

	in ∞ OO N ต ต m N以OO ஸ ๓ か －oivoinv のMのみもかN －M moN	2 10 0 10 0 0 0 0
10 1 0 1 1 0	$\begin{array}{ll} 0 \text { o } 0 \end{array} \quad \text { in in }$	- 0 0 ¢ － － －

＊Appropriate conversion factor is used．

Figure 4
Los Angeles Flow Chart

- 27 -

TABULATION OF ESTIMA'AED PERCENTAGES OF THE TOTAL VOLUME TO EACH DESTINATION FOR LOS ANGELES

Largest 200 Destinations Listed by Name

	Percent	Cumulative percent
1. Los Angeles, Inc. City By-pass	42.403	42.403
2. Beverly Hills, California	1.816	44.219
3. Pasadena, California	1.377	45.596
4. Long Beach, California	1.343	46.939
5. New York City, New York	1.219	48.158
6. San Francisco, California	1.151	49.309
7. Glendale, California	. 989	50.298
8. North Hollywood, California	. 955	51.253
9. Santa Monica, California	. 949	52.202
10. San Diego, California	. 814	53.016
11. Burbank, California	. 765	53.781
12. Chicago, Illinois	. 759	54.540
13. Inglewood, California	. 753	55.293
14. Van Nuys, California	. 698	55.991
15. Sacramento, California	. 681	56.672
16. Washington State	. 640	57.312
17. Whittier, California	. 583	57.895
18. Compton, California	. 540	58.435
19. Culver City, California	. 498	58.933
20. Alhambra, California	. 489	59.422
21. Huntington Park, California	. 456	59.878
22. Phoenix, Arizona	. 384	60.262
23. Oregon State	. 378	60.640
24. South Gate, California	. 359	(i). 930
25. Santa Ana, California	. 341	(i) . 340

26.	Montebello, California	. 331	61.671
27.	Oakland, California	. 328	61.999
28.	San Bernardino, California	. 326	62.325
29.	Sherman Oaks, California	. 303	62.628
30.	Gardena, California	. 299	62.927
31.	Denver, Colorado	. 289	63.216
32.	Torrance, California	. 285	63.501
33.	Newark, New Jersey	. 280	63.781
34.	San Gabriel, California	. 269	64.050
35.	Santa Barbara, California	. 265	64.315
36.	S. Pasadena, California	. 256	64.571
37.	Fresno, California	. 250	64.821
38.	Arcadia, California	. 248	65.069
39.	Anaheim, California	. 248	65.317
40.	Hawthorne, California	. 248	65.565
41.	El Monte, California	. 236	65.801
42.	Downey, California	. 236	66.037
43.	Bakersfield, California	. 235	66.272
44.	Riverside, California	. 233	66.505
45.	Monrovia, California	. 228	66.733
46.	Norwalk, California	. 228	66.961
47.	San Fernando, California	. 224	67.185
48.	Pomona, California	. 216	67.401
49.	Washington, D. C.	. 214	67.615
50.	Philadelphia, Pennsylvania	. 212	67.827
51.	Venice, California	. 206	68.033
52.	Detroit, Michigan	, 189	68.222
53.	San Jose, California	. 186	68.408
54.	Redondo Beach, California	. 183	68.591
55.	Dallas, Texas	. 181	68. 772

56. Monterey Park, California

57. Bell, California

58. Cleveland, Ohio
59. Boston, Mass.
60. Reseda, California
61. San Marino, California
62. Covina, California
63. San Pedro, California
64. Tuscon, Arizona
65. Lancaster, California
66. Lakewood, California
67. Salt Lake City, Utah
68. Berkeley, California
69. Brooklyn, New York
70. Fullerton, California
71. Minneapolis, Minnesota
72. Temple City, California
73. Garden City, New York
74. St. Louis, Missouri
75. Manhattan Beach, California
76. Stockton, California
77. Pacoima, California
78. Lynwood, California
79. Pacific Palisade, California
80. Canoga Park, California
81. Pittsburgh, Pennsylvania
82. Houston, Texas
83. Garden Grove, California
84. Wilmington, California
85. Cincinnati, Ohio
.176
.174
.172
.170
170
.164
. 160
. 160
.159
.148
.148
.148
.148
.147
.146
.145
.143
.140
.138
.134
. 133
.129
. 127
. 126
.124
. 123
. 123
. 121
. 121
. 118
69.122
69.294
69.464
69.634
69.798
69.958
70.118
70.277
70.425
70.573
70.721
70.869
71.016
71.162
71.307
71.450
71.590
71.728
71.862
71.995
72.124
72.251
72.377
72.501
72.624
72.747
72.868
72.989
73.107
86. Encino, California 117
87. West Covina, California 11473.224
88. Oxnard, California
89. Palm Desert, California114
90. Altadena, California
91. La Cresenta, California
92. Rivera, California111108108
. 104 104
93. Ventura, California 102
. 101099
. 098098
94. Kansas City, Missouri
95. Ontario, California
96. Studio City, California
97. Palo Alto, California
98. Hermosa Beach, California
99. La Puente, California
100. El Segundo, California
101. Baldwin Park, California
102. Northridge, California
103. Sun Valley, California
104. Woodland Hills, California
105. Maywood, California
106. Palm Springs, California
107. Milwaukee, Wisconsin097.094093092092.091091.089087.087086082081
108. Baltimore, Maryland .080
109. Laguna, California
110. Puente, California080.079079
111. La Habra, California
73.338
112. Newport Beach, California . 077
113. San Luis Obispo, California
114. Rosemead, California
115. Indianapolis, Indiana
116. Albuquerque, New Mexico
117. Dayton, Ohio
118. Lawndale, California
119. Chula Vista, California
120. La Jolla, California
121. Fontana, California
122. Orange, California
123. Palos Verdes Estate, California
124. Costa Mesa, California
125. Redlands, California
126. Oceanside, California
127. St. Paul, Minnesota
128. El Paso, Texas
129. Tujunga, California
130. Paramount, California
131. Louisville, Kentucky
132. Fort Worth, Texas
133. El Centro, California
134. Santa Maria, California
135. Sierra Madre, California
136. San Antonio, Texas
137. Pico, California
138. South San Gabriel
139. New Orleans, Louisiana
140. Terre Haute, Indiana
.077
.077
.077
.076
.073
.072
.072
.072
.071
.071
.071
.070
.070
.070
.069
.068
.068
.066
.066
.066
.065
.065
.065
.065
.064
.064
.064
.064
76.042
76.119
76.196
76.273
76.349
76.422
76.494
76.566
76.638
76.709
76.780
76.851
76.921
76.991
77.061
77.130
77.198
77.266
77.332
77.398
77.464
77.529
77.594
77.659
77.724
77.788
77.852
77.916
77.980

	Percent	Cumulative Percent
145. La Mesa, California	. 063	78.043
146. Claremont, California	. 063	78.106
147. Colunbus, Ohio	. 062	78.168
148. Omaha, Nebraska	. 062	78.230
149. Vet. Adm. Denver, Colorado	. 061	78.291
150. San Mateo, California	. 060	78.351
151. Granada Hills, California	. 058	78.409
152. Sunland, California	. 058	78.467
153. Vista, California	. 058	78.525
154. Salinas, California	. 057	78.582
155. Buena Park, California	. 055	78.637
156. Sepulveda, California	. 055	78.692
157. San Clemente, California	. 055	78.747
158. Saugus, California	. 054	78.801
159. La Mirada, California	. 054	78.855
160. Camarillo, California	. 054	78.909
161. Tarzana, California	. 054	78.963
162. Richmond, California	. 054	79.017
163. San Ysidro, California	. 054	79.071
164. Modesto, California	. 053	79.124
165. Chino, California	. 053	79.177
166. Carona, California	. 052	79.229
167. Bronx, New York	. 052	79.281
168. Pleasantville, New York	. 052	79.333
169. Glendory, California	. 051	79.384
170. El Cajon, California	. 051	79.435
171. Escondido, California	. 050	79.485
172. Indio, California	. 050	79.535
173. Lomita, California	. 050	79.585

174. Oklahoma City, Oklahoma
.050
175. Daly City, California
176. Santa Paula, California
177. Toledo, Ohio
178. Tulsa, Oklahoma
179. Upland, California
180. Palmdale, California
181. Santa Rosa, California
182. Duarte, California
183. Des Moines, Iowa
184. Hayward, California
185. Malibu, California
186. Montrose, California
187. Taft, California
188. Santa Cruz, California
189. Memphis, Tennessee
190. Colton, California
191. Los Altos, California
192. Camp Pendleton, California
193. Universal City, California
194. Victorville, California
195. Vallejo, California
196. Visalia, California
197. Rolling Hills, California
198. Reno, Nevada
199. National City, California
200. Buffalo, New York
79.635
79.684
79.732
79.780
79.828
79.875
79.921
79.967
80.012
80.057
80.102
80.147
80.192
80.237
80.281
80.324
80.367
80.409
80.451
80.493
80.535
80.577
80.619
80.661
80.702
80.743
80.783
$\left.\begin{array}{lrllll}\text { Rank } & \text { No. in Group } & \begin{array}{c}\text { Individual } \\ \text { Percent }\end{array} & & \begin{array}{c}\text { Group } \\ \text { Percent }\end{array} & \end{array} \begin{array}{c}\text { Cumulative } \\ \text { Percent }\end{array}\right]$

Rank	No. in Group	Individual Percent	Group Percent	Cumulative Percent
457-489	33	. 009	. 297	85.870
490-528	39	. 008	. 312	86.182
529-584	56	. 007	. 392	86.574
585-646	62	. 006	. 372	86.946
647-716	70	. 005	. 350	87.296
717-839	123	. 004	. 492	87.788
840-980	141	. 003	. 423	88.211
981-1178	198	. 002	. 396	88.607
1179-1413	235	. 001	. 235	88.842
1414-1587	174	$<.001$. 030	88.872
Air Mail			. 485	89.357
Postage Due			. 375	89.732
Uncanceled			5.483	95.215
Foreign			. 529	95.744
Go Backs			. 392	96.136
Residue			3.864	100.000

Breakdown of Residue:

Illinois	.267
Ohio	.161
Michigan	.158
Minnesota	.098
North Dakota	.025
South Dakota	.063
Wisconsin	.092
Arizona	.050
Colorado, New Mexico	.074
North Carolina	.055
Kentucky	.057

Maryland	. 030
Texas	. 200
Idaho	. 033
Montana	. 033
Nebraska	. 061
Utah	. 069
Wyoming	. 023
Iowa	. 091
Kansas	. 073
Missouri	. 094
Tennessee	. 048
Indiana	. 122
Massachusetts	. 110
Pennsylvania	. 218
Nevada Scheme	. 025
California Scheme	. 087
Arkansas	. 083
Alabama	. 043
Florida	. 062
Georgia	. 044
Louisiana	. 074
Mississippi	. 051
South Carolina	. 022
Delaware	. 010
Comnecticut	. 051
Maine	. 019
New Hampshire	. 021
Rhode Island	. 013
Virginia	. 050
West Virginia	. 030
New Jersey	. 125

New York State	.206
Oklahoma	.056
California A-B	.057
California C	.056
California H-L	.141
California M-N	.058
California T-Z	.071
She Scheme	.039
California B. San	.043
Colorado, N. Lex. Res.	.008
Elp and La. No. 4	.001
Alb. and La. 18-20	.001
Res. to Arizona	.007
Alb. to La., N.M.	.001
Alb. and La, Colo.	.001
Gr. Jct. and Ogd.	.002
Om. and Ogd., Colo.	.001

7.1 Volume Count Data. Special volume counts were made in Baltimore to determine what percentage of the Total Volume flowed into the Primary, how much by-passed the Primary and flowed either into the Secondary or into the city section for local Distribution. These counts were made on January 17, 18, 21, 22, 23, 24, 25, 28, 29, 30, 1957 between 11:00 A.M. and 11:00 P.M.

The Total Volume figures and corresponding percentages are summarized in Table 5 and are presented here to enable the reader to convert the final percentage figures of mail, to each Destination, to pieces. The flow chart given in Figure 6 contains the basic percentage figures of the Total Volume of mail to each stage of Distribution.
7.2 Tabulation of Estimated Distribution and Observations. The tabulation of the estimated percentages to each Destination is given in Table 6 . These are listed in order of descending value. The largest 200 are listed by name and the remainder grouped by percentages. Figure 7 graphically portrays the largest 200 Destinations by percentages. Several observations, based on the tabulation, are given here:

1. The largest 200 Destinations received 78% of the Total Volume
2. Sixty-six percent of the Total Volume remained in the state of Maryland (not including Air Mail and Go backs)
3. Fifty-one percent of the Total Volume remained in Baltimore
4. Four Destinations: Baltimore, Washingtor, New York, and Philadelphia were the only cities to receive more than one percent of Total Volume.

1-18-57	1-21-57
918,185	953,917
69.08	78.22

$$
\begin{aligned}
& \text { Mail to: } \\
& \text { Primary } \\
& \text { Total } \\
& \text { Percent } \\
& \text { Sec-By-Pass } \\
& \text { Bundle Dis. } \\
& \text { From City Sec. } \\
& \text { By-Pass Dis. } \\
& \text { By-Pass Mtrd. } \\
& \oplus \text { Total } \\
& \text { Percent } \\
& \\
& \\
& \text { City-By-Pass } \\
& \text { Bundle-To City } \\
& \text { Mtrd to City } \\
& \text { Total } \\
& \text { Percent } \\
& \text { ToTAL }
\end{aligned}
$$

GRAND TOTAL
$\begin{array}{r}8,700,086 \\ 68.10\end{array}$

$2,710,000$
21.21

$1-29-57$
856,561
64.46

 $\left|\begin{array}{c}\infty \\ 0 \\ 0 \\ \infty \\ 0 \\ 0 \\ -1\end{array}\right|$
$1-28-57$
700,158
64.99

$\left|\begin{array}{c}\text { n } \\ 0 \\ \text { N } \\ \text { N } \\ 0 \\ \vdots \\ i-1\end{array}\right|$

$1-25-57$
828,923
62.80

$1,319,909$
TABLE 5 (Continued)

Mail to:

Primary

Percent
Sec-By-Pass
From City Sec.
n
n
n
n
n
1
1

Total
Percent
Cit.y-By-Rass Bundle-To City Mtrd. to City Total Percent
TOTAL

OBTAINED FROM SAMPLES
OBTAINED FROM VOLUME COUNTS

Figure 6
Baltimore Flow Chart

TABULATION OF ESTIMATED PERCENTAGES OF THE TOTAL VQLUME TO EACH DESTINATION FOR BALTIMORE

Largest 200 Destinations Listed by Name

	Percent	Cumulative
1. Baltimore Incl. Int. Rev,		
Percent		

			Cumulative Percent
26. Linthicum Heights, Maryland	Percent	.237	62.964
27. Pleasantville, New York	.227	63.191	
28. Newark, New Jersey	.217	63.408	
29. Hyattsville, Maryland	.225	63.633	
30. Cumberland, Maryland	.225	63.858	
31. St. Louis, Missouri	.209	64.067	
32. Bel Air, Maryland	.208	64.275	
33. Roanoke, Virginia	.204	64.479	
34. Long Island, New York	.195	64.674	
35. Arlington, Virginia	.184	64.858	
36. Miami, Florida	.182	65.040	
37. Severna Park, Maryland	.179	65.219	
38. Randallstown, Maryland	.179	65.398	
39. Bethesda, Maryland	.179	65.577	
40. Minneapolis, Minnesota	.176	65.753	
41. Univ. of Md. (College Park), Maryland	.175	65.928	
42. Rockville, Maryland	.175	66.103	
43. Swings Mills, Maryland	.175	66.278	
44. Garden City, New York	.173	66.451	
45. Harrisburg, Pennsylvania	.169	66.620	
46. Salisbury, Maryland	.165	66.785	
47. Timonium, Maryland	.161	66.946	
48. Ft. George G. Meade, Maryland	.161	67.107	
49. Cockeysville, Maryland	.161	67.268	
50. Naval Academy, Maryland	.152	67.420	
51. Charlottesville, Virginia	.151	67.571	
52. Boston Station, Mass.	.145	67.716	
53. Cambridge, Maryland	.144	67.860	
54. Columbus, Ohio	.143	68.003	
55. Alexandria, Virginia	68.145		

56. Hampstead, Maryland
57. College Park, Maryland
58. Arnold, Maryland
59. Detroit, Michigan
60. York, Pennsylvania
61. Los Angeles, California
62. Flushing, New York
63. Westbury, New Yorl
64. Glenarm, Maryland
65. Havre de Grace, Maryland
66. Charlotte, North Carolina
67. Dallas, Texas
68. Bridgeport, Connecticut
69. Easton, Maryland
70. Greensboro, North Carolina
71. Milwaukee, Wisconsin
72. Dayton, Ohio
73. Stevenson, Maryland
74. Denver, Colorado
75. Louisville, Kentucky
76. Odenton, Maryland
77. Atlanta, Georgia
78. Hartford, Connecticut
79. St. Petersburg, Florida
80. Camden, New Jersey
81. Burfalo, New York
82. Parkton, Maryland
83. Newport News, Virginia
84. New Haven, Connecticut
85. Winston Salem, North Carolina
86. Rochester, New York
.140
.140
.140
.135
.125
.124
.123
.121
.119
.115
.109
.109
.109
.106
.106
.105
.104
.103
.103
.102
.102
.099
.099
.096
.094
.092
.089
.089
.088
.088
.087
68.285
68.425
68.565
68.700
68.825
68.949
69.072
69.193
69.312
69.427
69.536
69.645
69.754
69.860
69.966
70.071
70.175
70.278
70.381
70.483
70.585
70.684
70.783
70.879
70.973
71.065
71.154
71.243
71.331
71.419
71.506
87. Aberdeen, Maryland88. Scranton, Pennsylvania89. Elkton, Maryland
88. Trenton, New Jersey
89. Miami Beach, Florida
90. Lancaster, Pennsylvania
91. Boston (zones l-18), Mass.
92. Detroit (unzoned), Michigan085
.084

71.675081081080079079
95. Reading, Pennsylvania
96. Upper Darby, Pennsylvania079
97. Memphis, Tennessee 075076
.076
98. Lynchburg, Virginia 075
99. Houston, Texas 073
100. Laurel, Maryland
101. Emmitsburg, Maryland
102. Jamaica, New York073073

$$
.070
$$103. Jersey City, New Jersey104. Jacksonville, Florida105. Nashville, Tennessee106. Chevy Chase, Maryland

107. Durham, Noxth Carolina
108. Atlantic City, New Jersey
109. Akron, Ohio
110. Raleigh, North Carolina
111. Birmingham, Alabama
112. Altoona, Pennsylvania
113. Brooklandville, Maryland
114. Portsmouth, Virginia
115. Orlando, Florida
116. Providence, Rhode Island
117. Cambridge 38, Mass.
71.591
71.756
71.837
71.917
71.996
72.075
72.154
72.230
72.306
72.381
72.456
72.529
72.602
72.675
72.745
72.815
72.885
72.954
73.023
73.092
73.160
73.228
73.296
73.362
73.427
73.491
73.555
73.619
73.682
73.745
118. Parkersburg, West Virginia
.062
73.807
73.869
73.931
73.992
74.053
74.113
74.173
74.233
74.292
74.351
74.410
74.468
74.525
74.581
74.636
74.691
74.745
74.799
74.851
74.902
74.953
75.004
75.055
75.105
75.155
75.205
75.255
75.305
75.355
119. Wilmington, North Carolina
120. Haddonfield, New Jersey
121. Erie, Pennsylvania
75.404
75.453
75.502
122. Fairmont, West Virginia

Percent

.049
151. Madison, Wisconsin
152. Chambersburg, Pennsylvania
.047
75.551
75.598
75.645
75.692
75.739
75.786
75.833
75.880
75.926
75.972
76.018
76.063
76.107
76.151
76.195
76.239
76.283
76.326
76.369
76.412
76.454
76.496
76.538
76.580
76.622
76.663
76.704
76.745
76.786
76.827
76.867
181. Oakland, California
182. Berlin, Maryland
183. Elizabeth, New Jersey
184. Backbay (zones 15-16-17), Mass.
185. Worcester, Mass.
186. San Diego, California
187. Youngstown, Ohio
188. Taneytown, Maryland
189. Warren, Pennsylvania
190. Allentown, Pennsylvania
191. Poconoke City, Maryland
192. Fayetteville, North Carolina
193. Canton, Ohio
194. Paterson, New Jersey
195. Rockhall, Maryland
196. White Marsh, Maryland
197. Morgantown, Hest Virginia
198. Smithsburg, Maryland
199. Tucson, Arizona
200. Chattanooga, Tennessee
. 039
. 039
. 039
.038
.038
.038
. 038
.038
. 037
. 037
.037
.036
.036
.036
.036
.036
.036
.035
.035
.035
76.945
76.984
77.022
77.060
77.098
77.136
77.174
77.211
77.248
77.285
77.321
77.357
77.393
77.429
77.465
77.501
77.536
77.571
77.606

Rank	No. in Group	Individual Percent	Group Percent	Cumulative Percent
201-202	2	. 035	. 070	77.676
203-205	3	. 034	. 102	77.778
206-212	7	. 033	. 231	78.009
213-221	9	. 032	. 288	78.297
222-230	9	. 031	. 279	78.576
231-234	4	. 030	. 120	78.696
235-242	8	. 029	. 232	78.928
243-245	3	. 028	. 084	79.012
246-252	7	. 027	. 189	79.201
253-260	8	. 026	. 208	79.409
261-269	9	. 025	. 225	79.634
270-280	11	. 024	. 264	79.898
281-287	7	. 023	. 161	80.059
288-302	15	. 022	. 330	80.389
303-316	14	. 021	. 294	80.683
317-331	15	. 020	. 300	80.983
332-345	14	. 019	. 266	81.249
346-357	12	. 018	. 216	81.465
358-373	16	. 017	. 272	81.737
374-399	26	. 016	. 416	82.153
400-415	16	. 015	. 240	82.393
416-445	30	. 014	. 420	82.813
446-477	32	. 013	. 416	83.229
478-515	38	. 012	. 456	83.685
516-544	29	. 011	. 319	84.004
545-587	43	. 010	. 430	84.434
588-642	55	. 009	. 495	84.929
643-699	57	. 008	. 456	85.385
700-767	68	. 007	. 476	85,861
768-859	92	. 006	. 552	86.413
860-982	123	. 005	. 615	87.028
983-1125	143	. 004	. 572	87.600
1126-1295	170	. 003	. 510	88.110
1296-1544	249	. 002	. 498	88.608
1545-1780	236	. 001	. 236	88.844
1781-1887	107	less than . 001	. 046	88.890
Residue			11.110	100.000

Uncanceled	2.879	91.769
Special Delivery	.011	91.780
APO Foreign	.148	91.928
Star Route	.507	92.435
Nixies	.216	92.651
Go Backs	.030	92.681
Air Mail	.172	92.853
Misfiles	.073	92.926
Residues	7.074	100.000
TOTAL	11.110	

Breakdown on Residue

Alaska	.004
Idaho	.023
Montana	.030
New Mexico	.082
Nebraska	.070
Oregon	.046
Nevada	.011
Arizona	.022
Utah	.024
Arkansas	.059
Colorado	.046
Kansas	.080
Minnesota	.069
Oklahoma	.044
Washington State	.062
Wyoming	.005
New Jersey	.509

Virginia RPO 414
Wash. D.C., Mtr. Route 004
Maryland 107
Wash. D.C., Mtr. Route 001
Wash. D.C., Mtr. Route 015
Maryland RPO 029
Louisiana 058
Tennessee 178
Mississippi 093
New York 395
Maine 081
Vermont 042
Connecticut 176
Rhode Island 074
North Carolina RPO 427
California RPO 531
Delaware RPO 010
Iowa 085
Alabama 175
I111nois A-K L-Z 274
Wisconsin 113
Ohio RPO 370
Indiana RPO 034
Kentucky RPO 063
N. Y. and Pitts., Ind. 046
Wash. and Grafton, Kentucky 057
Wash. and Cinn., Kentucky 023
Georgia RPO 028
South Carolina RPO 068
Wash. and Bristol, Georgia 039
Wash. and Hamlet, South Carolina 036
Wash, and Flor, Georgia 012
Wash. and Flor., South Carolina 056
Wash. and Charl., Georgia 045
Wash. and Charl., South Carolina 068
West Virginia 048
Texas RPO 178
N.Y. and Pitts., Texas. 078
Massachusetts 229
Florida 1 and 2 282
Michigan A-K L-Z 207
Missouri 082
Pennsylvania 494
New Hampshire 058
'TOTAL 7.074

NATIONAL BUREAU OF STANDARDS

THE NATIONAL BUREAU OF STANDARDS

The scope of activities of the National Burcau of Standards at its major laboratories in \mathbb{W} ashingion, D.C.. and Boulder, Colorado, is suggested in the following listing of the divisions and sections engaged in technical work. In general, cach section carrics out spccializcd research, development, and engineering in the field indicated by its titlc. \& brief description of the activities, and of the resultant publications, appears on the inside of the front cover.

WHSHINGTON, D.C.

Electricity and Electronics. Resistance and Reactance. Electron Devices. Electrical Instruments. Magnetic Measurements. Diclectrics. Enginecring Electronics. Elcctronic Instrumentation. Electrochemistry.

Optics and Mctrology. Photometry and Colorimetry. Photographic Technology. Length. Engineering Metrology.

Heat. Temperature Physics. Thermodynamics. Cryogenic Physics. Rheology. Molecular Kinetics. Free Radicals Research.

Atomic and Radiation Physics. Spectroscopy. Radiometry. Mass Spectrometry. Solid State Physics. Electron Physics. Atomic Physics. Vcutron Physics. Radiation Theory. Radioactivity. X-rays. High Energy Radiation. Nucleonic Instrumentation. Radiological Equipment.

Chemistry. Organic Coatings. Surface Chemistry. Organic Chemistry. Analytical Chemistry. Inorganic Cheinistry. Electrodeposition. Molecular Structure and Properties of Gases. Physical Chemistry. Thermochemistry. Spectrochemistry. Pure Substances.

Mechanics. Sound. Mechanical Instruments. Fluid Mechanics. Engineering Mechanics. Mass and Seale. Capacity, Density, and Fluid Meters. Combustion Controls.

Organic and Fibrous Materials. Rubber. Textiles. Paper. Leather. Testing and Specifications. Polymer Structure. Plastics. Dental Research.

Metallurgy. Thermal Metallurgy. Chemical Metallurgy. Mechanical Metallurgy. Corrosion. Metal Physics.

Mineral Products. Engineering Ceramics. Glass. Refractories. Enameled Metals. Constitution and Microstructure.

Building Technology. Structural Engineering. Fire Protection. Air Conditioning, Heating, and Refrigeration. Floor, Roof, and Wall Coverings. Codes and Safety Standards. Heat Transfer. Concreting Materials.

Applied Mathematics. Numerical Analysis. Computation. Statistical Engineering. Mathematical Physics.
Data Processing Systems. SEAC Engineering Group. Components and Tcrliniques. Digital Circuitry. Digital Systems. Analog Sy steins. Application Enginecring.

- Office of Basie Instrumentation. - Office of \mathbb{I} eights and Measures.

BOLLDER, COLORADO

Cryogenic Engineering. Cryogenic Equipment. Cryogenir Processes. Propertics of Materials. Gas Liquefaction.

Radio Propagation Physies. Upper Atmosphere Research. Ionosipherie Researeh. Regular Propagatiou Scrvices. Sun-Earth Relationships. VHIF Research. Radio Warning Servirct. Airglow and Aurora. Radio Astronony and Arctic Propagation.

Radio Proptgation Engencering. Data Reduction Instrmmentation. Morlulation Rescarch. Radio Voise. Tropospheric Measurements. Troposplecric Analysis. Propagation Ohstarles Engineering. Radio-Veterorology. Lower Atnosphere l'liysics.

[^2]- 1 B

[^0]: 1/ Terms not defined in this section are used as given in the "Glossary of Postal Terms in Common Use".
 2/ Nixies, Go-backs, Misfiles, Air Mail and Foreign off Primary are also considered Destinations in this study.

[^1]: * Appropriate conversion factor is used.

[^2]: Radio Standards, High l'requency Flectrieal Standards. Rardio Broaldast Servier. High Frequreney lme pedance Standards. Electronic Calibration Center. Mirrowave Physies. Mierowave Circuit Standarts.

 Radio Communication and Systems. Low Frecpency and Dery Law Frequemey Reacard. High lire-
 tion Rescarclı. Antenna Rewareli. Vavigation Systems. Systemy Inalysis. Fïld Oprathons.

