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Abstract

Runtime monitors have been proposed as a means to increase the reliability of safety-critical
systems. In particular, this report addresses runtime monitors for distributed hard real-time
systems. This class of systems has had little attention from the monitoring community. The
need for monitors is shown by discussing examples of avionic systems failure. We survey
related work in the field of runtime monitoring. Several potential monitoring architectures
for distributed real-time systems are presented along with a discussion of how they might
be used to monitor properties of interest.
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1 Introduction

Former U.S. President Ronald Reagan’s signature phrase was the Russian proverb “Trust,
but verify.” That phrase is symbolic of the political environment during the U.S.-Soviet Cold
War. For safety-critical systems, we must have a similar level of vigilance. The probability of
a catastrophic failure occurring in ultra-critical digital systems—such as flight-critical com-
mercial avionics—should be no greater than one in a billion per hour of operation despite the
hostile environments in which they execute [2]. To achieve this order of reliability, a system
must be designed to be fault-tolerant. However, unanticipated environmental conditions or
logical design errors can significantly reduce a system’s hypothesized reliability.

Testing is infeasible to demonstrate that a system exhibits “1 in a billion” reliability—the
essential problem is that simply too many tests must be executed [3]. Formal verification—
i.e., rigorous mathematical proof—at the code level that a system exhibits ultra-reliability is
also currently impractical for industrial designs, although “light-weight” methods continue
to gain traction [4].

Because neither testing nor formal verification alone is sufficient to demonstrate the
reliability of ultra-reliable systems, the idea of monitoring a system at runtime has been
proposed. A monitor observes the behavior of a system and detects if it is consistent with
a specification. We are particularly interested in online monitors, which check conformance
to a specification at runtime (as opposed to offline, at a later time) and can therefore drive
the system into a known good state if it is found to deviate from its specification. A monitor
can provide additional confidence at runtime that the system satisfies its specifications.

Survey Contributions As we describe in Section 4, research in monitoring has mostly
focused on monitors for software that is neither real-time nor distributed. Only a few
studies have addressed monitoring real-time or distributed systems, which characterized
safety-critical systems such as flight-critical systems for aircraft and spacecraft.
The open question—and the one for which this survey lays the groundwork for answering—
is whether safety-critical embedded systems can be made more reliable by online monitoring.
In summary, the contributions of this survey are as follows:

e Distributed real-time monitoring: An investigation of a class of systems that is un-
derrepresented in the monitoring literature and for which monitoring may improve its
reliability.

o System-level monitoring: A focus on system-level properties, like fault-tolerance and
distributed consensus, that cannot be monitored locally but are global properties of a
distributed system.

o Foundations for distributed real-time system monitoring: A set of requirements that
monitors for real-time distributed systems must satisfy as well as three abstract ar-
chitectures for monitoring (see Section 6). We also present a set of properties for
monitors to address in these systems (see Section 7).

Outline A brief outline of this document follows:

e Section 2: Describes three failures of safety-critical systems, two in commercial avia-
tion and one in the Space Shuttle. We intermittently reference these scenarios through-
out the document to ground our discussions.

e Section 3: Presents definitions, terminology, and basic concepts on distributed systems,
fault-tolerance, and real-time systems.



Section 4: Surveys recent research in monitoring broadly related to our investigation
of monitoring distributed real-time systems.

Section 5: Places monitoring in context given that our investigations are particularly
motivated by safety-critical Space Shuttle and aircraft systems. In this context, mon-
itoring is one aspect of an integrated vehicle health management approach to system
reliability.

Section 6: Describes how theoretical results in distributed systems (particularly per-
taining to synchrony and faults) affect the ability to monitor them. We then present
requirements that a monitoring architecture must satisfy to be beneficial to a system
under observation. Finally, three conceptual architectures (bus monitor, single pro-
cess monitor, and distributed processes monitor) for monitoring distributed real-time
systems are presented.

Section 7: Describes properties to be monitored in distributed real-time systems in-
cluding various kinds of timing and data faults, point-to-point error detection, and
fault-tolerant management software.

Section 8: Summarizes the report and make concluding remarks.



2 The Need for Monitors: Real-World Failures

The design of highly-reliable systems is driven by the functionality it must deliver as well as
the faults it must survive. Three case studies are presented in which safety-critical computer
systems failed. Although none of these errors resulted in the loss of life or loss of the vehicle,
the problems were sufficiently severe as they could have led to such a loss if they occurred in
less favorable circumstances. First, is a presentation of a case study of a fault that recently
occurred during the launch sequence of the shuttle orbiter. The next section covers an in-
flight upset of a Boeing 777 due to a software design error. Finally, an in-flight upset of an
Airbus A330 is presented.

2.1 Shuttle MDM Failure

The Space Shuttle’s data processing system has four general purpose computers (GPC) that
operate in a redundant set. There are also twenty-three multiplexer de-multiplexer (MDM)
units aboard the orbiter, sixteen of which are directly connected to the GPCs via shared
buses. Each of these MDMs receive commands from guidance navigation and control (GNC)
running on the GPC and acquires requested data from sensors attached to it, which is then
sent to the GPCs. In addition to their role in multiplexing/demultiplexing data, these MDM
units perform analog/digital conversion. Data transfered between the GPC and MDMs is
sent in the form of serial digital data.

The GPCs execute redundancy management algorithms that include a fault detection,
isolation, and recovery (FDIR) function. During the launch of shuttle flight Space Trans-
portation System 124 (STS-124), there was reportedly a pre-launch failure of the fault
diagnosis software due to a “non-universal I/O error” in the Flight Aft (FA) MDM FA2
located in the orbiter’s aft avionics bay [5].

According to [5,6], the events unfolded as follows:

e A diode failed on the serial multiplexer interface adapter (SMIA) of the FA2 MDM.

e GPC 4 receives erroneous data from FA2. Each node votes and views GPC 4 as
providing faulty data. Hence GPC 4 is voted out of the redundant set.

e Three seconds later GPC 2 also receives erroneous data from FA2. In this case, GPC
2 is voted out of the redundant set.

e In accordance with the Space Shuttle flight rules [7], GPC 2 and GPC 4 are powered
down.

e The built in test equipment for FA 2 was then queried (port 1 status register for MDM
FA 2). This caused GPC 3 to fall out of the redundant set with GPC 1. GPC 1 was
left to run to gather more data, but engineers terminated the launch and the problem
with FA2 was isolated and the unit replaced.

The above set of events sequentially removed good GPC nodes, but failed to detect and act
on the faulty MDM. Based on the analysis reported in [6], it seems that the system does
not tolerate single points of failure. Even though the nodes were connected to the MDM via
a shared bus, conditions arose where different nodes obtained different values from MDM
FA2 (Driscoll et al., describe possible causes of Byzantine faults over a shared bus [1]). The
observed behavior is consistent with the MDM FA2 exhibiting a Byzantine failure sending
different values to the GPCs using the topology in Figure 1. The design engineers likely
assumed that since the GPCs and MDMs all communicate via a shared bus, that each GPC
would always obtain the same value from the MDM and consequently asymmetric faults
would not occur.
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Figure 1. MDM, FA2, and GPCs
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Figure 2. Boeing 777 Flight Computer

2.2 Boeing 777 In-Flight Upset

The primary flight computer on the Boeing 777 receives inertial data from the Air Data
Inertial Reference Unit (ADIRU) [8], the Secondary Altitude and Air Data Reference Unit
(SAARU), and Actuator Control Electronics (ACE) unit as depicted in Figure 2. These
are all connected to the primary flight computer via Aeronautical Radio Inc. (ARINC) 629
units. The ADIRU and SAARU both accept inputs from a variety of sources including
Pitot probes—devices used to measure air speed—and sensors indicating air temperature
and aircraft angle of attack. The data from these sources is then used in computations, the
results of which are fed to the flight computers. The two units differ in their design and
construction ostensibly to provide fault-tolerance through design heterogeneity. Both units
provide inertial data to the flight computer, which selects the median value of the provided
data. The primary flight computer will compute aircraft control surface position commands
based on input data and sends commands to the ACE, which perform analog/digital con-
version, controls the variable feel actuators, and controls the aircraft control surfaces [9,10].
The Boeing 777 has three flight computers to provide triple redundancy.



The ADIRU depicted in Figure 2 is composed of seven fault containment Areas (FCA),
each of which contains several fault containment modules (FCM) [8]. For instance, the
Gyro FCA contains six ring-laser gyro FCMS and the Accelerometer FCA contains six
accelerometer FCMs. The processor FCA is composed of four processor FCMs that execute
redundancy management software that performs fault detection and isolation.

On August 1, 2005 a Boeing 777-120 operated as Malaysia Airlines Flight 124 departed
Perth, Australia for Kuala Lumpur, Malaysia. Shortly after takeoff, the aircraft experienced
an in-flight upset event as it was climbing to flight level 380.! According to [11], the events
unfolded as follows:

e A low airspeed advisory was observed and simultaneously the slip/skid deflected to
the full right indicating the aircraft was out of trim in the yaw axis.

e The primary flight display indicated that the aircraft was simultaneously approaching
overspeed limit and the stall speed limit.

e The aircraft nose pitched up sending the aircraft climbing to flight level 410.

e The indicated speed decreased from 270 nautical miles per hour (kts) to 158kts and
the stall warning and stick shaker devices activated.

e The pilot reported he disconnected the autopilot and lowered the nose of the aircraft.

e The aircraft autothrottle then executed an increase in thrust, which the pilot coun-
teracted by moving the thrust levers into idle.

e The crew was then able to use radar assistance in order to return to Perth.

Although no one was injured, the erratic information presented to the crew meant that they
could not trust the instruments that they depend upon to safely fly the aircraft. The fact
that the autopilot acted on the erratic information gave additional cause for concern.

An analysis performed by the Australian Transport Safety Bureau [11] reported that
the problem stemmed from a bug in the ADIRU software that was exposed by a series of
events that was unlikely to have been revealed during certification testing. On June 2001,
accelerometer 5 failed, but rather than failing in a fail stop manner, it continued to output
high voltage values. The failure is recorded in the on-board maintenance computer, but was
not directly readable by the crew and since no in-flight warning had previously been sounded,
there was no clear directive to replace the unit. The software was programmed to disregard
output from accelerometer 5 and to use data produced by back-up accelerometers. The
accelerometer failure was masked each time power was cycled in the ADIRU because even
though the error was logged in the maintenance computer, the memory of this computer was
not checked during the initialization process. Approximately one second before the upset
event was recorded, accelerometer 6 failed. Due to a software bug, the fault-tolerant software
used the erroneous data produced by accelerometer 5. The bug had been in previous releases
of the ADIRU software, but had been masked by other code. In the version of the software
used in the aircraft in question, the fact that only an error in accelerometer 6 had been
detected since the unit was started meant that the software assumed there was no problem
with accelerometer 5. A detailed critique from various perspectives can be found in Johnson
and Holloway [12].

The designers clearly wanted to separate the maintenance computer’s functionality from
the operational flight functions, but a software bug resulted in errors detected by the main-
tenance computer not being transmitted to the flight systems and thus not realizing that
accelerometer 5 was faulty.

1The “flight level” is a standard nominal altitude of an aircraft in hundreds of feet calculated from the
world-wide average sea-level pressure.
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2.3 A330 In-Flight Upset

The Airbus A330 has three primary flight computers (known as PRIMs) and two secondary
flight computers. One PRIM acts as the master sending orders to the other computers. The
PRIMs are connected to three Air Data Inertial Reference Units (ADIRU). An ADIRU is
composed of the following components:

e An air data reference (ADR) component that supplies barometric altitude, speed,
angle of attack information, and other data. Air data modules convert pneumatic
data from pitot and static probes into numeric data for the ADIRUs.

e An inertial reference (IR) component that supplies attitude, flight-path vector, track
heading, and other data. This component has two independent GPS receivers.

ADIRU 1 is connected to PRIM 1 and ADIRU 2 is connected to PRIM 2 and ADIRU
3 is connected to PRIM 3. The pilot and copilot’s displays are connected to PRIMs 1 and
2 respectively, but either display can switch to PRIM 3 if necessary. The architecture is
illustrated in Figure 3.

The Air Data Inertial Reference System (ADIRS) control panel is located in the overhead
panel of the flight deck. The panel provides local fault indications for the ADIRU IR and
ADR components. A fault is indicated for a particular part (IR1, IR2, IR3, ADR1, ADR2,
ADRS3) by an amber fault light. The relevant part can be deactivated by pressing a button.

The flight computers execute a set of control laws. In ‘normal law’, the computer prevents
the aircraft from exceeding a predefined safe flight envelope regardless of flight crew input.
Note that many of the decisions are based on input from the ADIRUs. In an ‘alternate law’,
there are either no protections offered or there are different types of protections used.

On October 7, 2008 an Airbus A330 operated as Qantas Flight QF72 from Singapore
to Perth, Australia was cruising at flight level 370 with autopilot and auto-thrust engaged
when an in-flight upset occurred. The events unfolded as follows [13,14]:

e Autopilot disengaged and the IR 1 failure indication appeared on the ADIRS control
panel.

e The flight display indicated that the aircraft was simultaneously approaching over-
speed limit and the stall speed limit.



e The ADR 1 failure indication appeared on the ADIRS control panel.

e Two minutes into the incident, a high angle of attack was reported and the computers
ordered a significant nose-down pitch and the plane descended 650ft.

e The crew switched the PRIM master from PRIM 1 to PRIM 2.

e PRIM 3 indicates a fault.

e The crew returned the aircraft to flight level 370.

e The captain switched his display to show data from ADIRU 3 instead of ADIRU 1.
e The computers ordered a nose down pitch and the plane descends 400ft.

e The captain applied back pressure to the sidestick.

e The crew switched the PRIM master from PRIM 2 to PRIM 1.

e The flight control law was manually changed from ‘normal law’ to ‘alternate law’ so
that the computer was no longer enforcing predefined flight parameters.

e The crew made an emergency landing at Learmouth.

The incident resulted in injuries requiring fourteen people to be hospitalized.

The preliminary investigation uncovered that ADIRU 1 failed in a manner producing
spurious spikes in data values [14]. Additional spikes in data from ADIRU 1 continued
throughout the flight. Given that the computers were still reacting to corrupt data, it
appears that the computer still accepted information from ADIRU 1 after the pilot switched
the display to no longer show information from that unit. It was only after the pilot changed
to the alternate control law did the aberrant behavior cease since the computers were no
longer using algorithms that depended on the corrupt data. Although a final report is not
expected for some time, it appears that ADIRU 1 failed while ADIRU 2 and ADIRU 3
appear to have operated normally, but the system design failed to identify and isolate the
problem automatically. As long as the normal control law was engaged, the avionics system
seems to have used the spurious data from ADIRU 1. The system designers likely assumed
that such a problem would be detected and the bad unit disengaged before suffering any ill
effects.

It is not clear from the literature exactly how fault tolerant the system was designed to
be without human intervention. The system was not able to recover from a single point of
failure of what seems to have been a babbling device without the crew taking action. Hence
the architecture of the avionics was likely a contributing factor.
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3 Preliminary Concepts

Having provided some motivating examples of real-world safety-critical system failures, this
section introduces some preliminary concepts and terminology used throughout the remain-
der of this survey. Specifically, we introduce distributed systems, fault-tolerance, and real-
time systems.

3.1 Distributed Systems

Introductory material on the foundations of distributed systems and algorithms can be found
in Lynch’s textbook [15]. A distributed system is modeled as a graph with directed edges.
Vertices are called nodes or processes. Directed edges are called communication channels or
channels. If channel ¢ points from node p to node ¢, then p can send messages over ¢ to ¢,
and ¢ can receive messages over ¢ from p. In this context, p is the sender or transmitter,
and ¢ is the receiver.

The only distributed systems considered in this survey are those containing a fixed set
of nodes and a fixed set of interconnects between nodes. Nodes or interconnects being
introduced or removed from the system only happens at a conceptual level, resulting from
faults removing nodes and interconnects, or nodes and interconnects reintegrating into the
system after suffering a transient fault [16].

3.2 Fault-Tolerance

The terms ‘failure’; ‘error’, and ‘fault’ have technical meanings in the fault-tolerance litera-
ture. A failure occurs when a system is unable to provide its required functions. An error
is “that part of the system state which is liable to lead to subsequent failure,” while a fault
is “the adjudged or hypothesized cause of an error” [17]. For example, a sensor may break
due to a fault introduced by overheating. The sensor reading error may then lead to system
failure.

In this report, we are primarily concerned with architectural-level fault-tolerance [18].
A fault-tolerant system is one that continues to provide its required functionality in the
presence of faults (for the faults tolerated). A fault-tolerant system must not contain a single
point of failure such that if the single subsystem fails, the entire system fails. Thus, fault-
tolerant systems are often implemented as distributed collections of nodes such that a fault
that affects one node or channel will not adversely affect the whole system’s functionality.

A fault-containment region (FCR) is a region in a system designed to ensure faults do
not propagate to other regions [19]. The easiest way to ensure this is to physically isolate
one FCR from another. However, because FCRs may need to communicate, they share
channels. Care must be taken to ensure faults cannot propagate over these channels. Gen-
erally, physical faults in separate FCRs are statistically independent, but under exceptional
circumstances, simultaneous faults may be observed in FCRs. For example, widespread
high-intensity radiation may affect multiple FCRs.

Here, we characterize the faults of a node in a distributed system based on the messages
other nodes receive from it. Faults can be classified according to the hybrid fault model
of Thambidurai and Park [20]. (The same characterization could be made of channels.)
First, a node that exhibits the absence of faults is non-faulty or good. A mnode is called
benign or manifest if it sends only benign messages. Benign messages abstract various
sorts of misbehavior that is reliably detected by the transmitter-to-receiver fault-detection
mechanisms implemented in the system. For example, a message that suffers a few bit
errors may be caught by a cyclic redundancy check. In synchronized systems, nodes that
send messages received at unexpected times are considered to be benign, too. A node is
called symmetric if it sends every receiver the same message, but these messages may be
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arbitrary. A node is called asymmetric or Byzantine if it sends different messages to different
receivers, and at least one of the messages received is not detectably faulty [21]. (Note that
the other messages may or may not be incorrect.)

The foregoing list of faults is not exhaustive. More elaborate fault models have been
developed [22]. The benefit of more refined fault models is that a system designed to diagnose
less severe faults can exhibit more reliable behavior in the presence of other faults as well.
For example, a six-node distributed system can only tolerate one Byzantine fault, but it
can tolerate up to one Byzantine fault and two benign faults [15]. Advanced fault-tolerant
architectures, like NASA’s SPIDER, are carefully designed under hybrid fault model for
maximal fault-tolerance for the amount of redundant hardware [23,24].

A mazimum fault assumption (MFA) states the maximum kind, number, and arrival
rate of faults for each FCR under which the system is hypothesized to operate correctly. If
the MFA is violated, the system may behave arbitrarily. The satisfaction of the MFA itself
is established by statistical models that take into account experimental data regarding the
reliability of the hardware, the environment, and other relevant factors [25]. For example,
for safety-critical systems designed for commercial aircraft, statistical analysis should ensure
that the probability of their MFAs being violated is no greater than 10~ per hour of
operation [2]. Note that even if a system is proved to behave correctly under its MFA, but
the probability of the MFA being violated is too high, the system will not reliably serve its
intended function.

3.3 Real-Time Systems

Real-time systems are those that are subject to operational deadlines called “real-time”
constraints. Consequently the correctness of such systems depends on both temporal and
functional aspects. Real-time systems are generally classified as soft real-time systems or
hard real-time systems. In soft real-time systems, missing a deadline degrades performance.
For instance, dropping video frames while streaming a movie may inconvenience the viewer,
but no permanent harm is done. In hard real-time systems, deadlines cannot be missed.
For instance, a car engine control system is a hard-real time system since missing a deadline
may cause the engine to fail. In such systems, deadlines must be kept even under worst-case
scenarios.

12



4 Monitors: An Introduction and Brief Survey

A monitor observes the behavior of a system and detects if it is consistent with a given
specification. The observed system may be a program, hardware, a network, or any combi-
nation thereof. We refer to the monitored system as the system under observation (SUQ).
If the SUO is observed to violate the specification, an alert is raised. Monitoring can be
applied to nonfunctional aspects of a SUO such as performance, but historically, its focus
has been on functional correctness. A variety of survey articles on monitoring have been
published [26-29].

Early work on software monitoring focused on off-line monitoring, where data is collected
and the analysis done off-line [30-32]. (Indeed, the term monitor was usually used to
denote the act of collecting a program trace.) The focus of recent research has been online
monitoring, where a specification is checked against an observed execution dynamically
(although online monitoring may only be used during testing, if, for example, monitoring
consumes too many additional resources). Online monitoring can be performed in-line, in
which case the monitor is inserted into executing code as annotations. The Anna Consistency
Checking System (Anna CCS) [33] is representative of a number of early monitor annotation
systems. In Anna CCS, a user annotates Ada programs with properties written in the Anna
specification notation and the system generates a function that acts as a monitor for this
property. The functions are then called from the location where the annotation was placed.
Recently, Java 5 [34] allows basic assertions to be inserted into programs. Online monitoring
can also be out-line, where the monitor executes as a separate process [35,36]. Examples
of monitoring systems whose architectures combine aspects of both in-line and out-line
monitoring are presented later. Historically, the focus has been on monitoring monolithic
systems instead of distributed systems. A discussion of monitoring distributed systems is
deferred until Section 4.1.

The research challenges of online monitoring include implementing efficient monitors
(assuming the monitor shares resources with the observed system) that are synthesized
from higher-level behavior specifications. In particular, efforts have focused on synthesizing
safety properties (informally, properties stating that “nothing bad ever happens”) from
temporal logic specifications. Arafat, et al., have developed an algorithm for generating
efficient monitors for a timed variant of linear temporal logic (LTL) [37]. Since LTL’s models
are traditionally infinite traces [38] while a monitor typically has only a finite execution
trace available, many monitoring systems use past-time linear temporal logic (PTLTL) as a
specification language. PTLTL employs past-time temporal operators such as “previously”
and “always in the past”. PTLTL is as expressive as LTL, but more succinct than LTL [39].
Havelund and Rosu proposed a monitor synthesis algorithm for PTLTL [40] that created
efficient monitors. This work extends PTLTL, allowing one to express properties such as
“function g() is always called from within function f()” [41].

The Eagle logic [42] is an attempt to build logics that would be powerful enough to sub-
sume most existing specification logics. Eagle is a first order fixed-point, linear-time tempo-
ral logic with a chop operator modeling sequential composition. Although quite expressive,
it does not yield efficient monitors. RuleR [43] attempts to address these inefficiencies. A
monitor is expressed in RuleR as a collection of “rules” specified in propositional temporal
logic, as a state machine, or context free grammar. A trace can be efficiently checked against
the rules using a relatively simple algorithm.

The Monitoring and Checking (MaC) toolset is a sophisticated monitoring framework [44—
48]. MaC is targeted at soft real-time applications written in Java. A distinguishing feature
of the MaC project is that integration and monitoring concerns are divided into separate
tasks. Requirements specifications in the form of safety properties are written in the Meta
Event Definition Language (MEDL). MEDL is a propositional temporal logic of events and
conditions interpreted over a trace of observations of a program execution. The logic has
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been extended to handle dynamic indexing of properties [48]. The Primitive Event Def-
inition Language (PEDL) is used to define program events to be monitored and gives a
mapping from the program-level events to higher-level events in the abstract specification.
A PEDL compiler takes as input the PEDL specification and a Java implementation and
produces two artifacts:

e A sensor (called a filter) is generated that is inserted into the code (in this case
bytecode) that keeps track of changes to monitored objects [44,45].

e An event recognizer that processes information sent from the sensor and detects the
events being monitored.

A MEDL compiler takes the MEDL specification and produces a verifier that checks
that the trace of recorded events as provided by the event recognizer satisfies the safety
properties given in the MEDL specification. The architecture is illustrated in Figure 4.

Another monitoring framework, also for Java, is the Java PathExplorer (PaX) [49, 50].
The basic architecture of PaX is similar to MaC in that it separates the integration and
verification aspects of generating a monitor. PaX distinguishes itself in two areas. First, in
addition to verifying logical properties, PaX performs error-pattern analysis by executing
algorithms that identify error-prone programming practices. Secondly, the specification
language is not fixed. Instead, users may define their own specification logics in Maude [51].

Monitor Oriented Programming (MOP) [52-54] can be seen as having evolved from PaX
and is based on the idea that the specification and implementation together form a system.
Users provide specifications in the form of code annotations that may be written in a variety
of formalisms including extended regular expressions (ERE), Java modeling language (JML),
and several variants of LTL. MOP takes annotated code and generates monitors as plain
Java code. MOP monitors may be in-line or out-line. Monitors that enforce properties
across many objects or threads are by necessity out-line monitors [54]. MOP includes an
efficient mechanism for implementing such out-line monitors. A property that may hold in
a number of objects may have an object parameter. MOP employs an efficient indexing
scheme to look up instances of monitors when a monitored event occurs.
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Much of the recent research on monitoring has focused on Java programs. A notable
exception is the requirement monitoring and recovery (RMOR), which focuses on monitor-
ing C programs [55]. In this work, monitors specifying both safety and bounded liveness
properties are expressed as state machines observing events recorded in a trace. In a manner
similar to PEDL/MEDL, the monitor-refinement specification, mapping high-level events
to program-level events, is composed with the specification for the properties to be moni-
tored. RMOR takes the behavioral and the refinement specifications as well as a C program
and produces a new C program augmented with code to drive the monitor. The moni-
tors created by RMOR run in constant-space (i.e., no dynamic memory management) and
hence are suitable for memory-constrained environments. Techniques from aspect-oriented
programming are utilized in generating the monitors.

When a monitor detects that a property is violated, it may raise an alarm to alert the
user of a potentially catastrophic problem or take action to compensate for the problem by
steering the system into a safe mode of operation [47]. We do not specifically address the
steering problem in this report.

4.1 Monitoring Distributed Systems

Most research in runtime monitoring has focused on monolithic software as opposed to dis-
tributed systems. That said, there has been some research in monitoring distributed systems;
Mansouri-Samani and Sloman overview this research area (up to 1992) [56]. Bauer, et al.,
describe a distributed system monitoring approach for local properties that require only a
trace of the execution at the local node [57]. Each node checks that specific safety prop-
erties hold and if violated, sends a report to a centralized diagnosis engine that attempts
to ascertain the source of the problem and to steer the distributed system to a safe state.
The diagnosis engine, being globally situated, collects the verdict from observations of local
traces and forms a global view of the system to render a diagnosis of the source of the error.

Bhargavan, et al., [58,59] focus on monitoring distributed protocols such as TCP. They
employ black-box monitors that have no knowledge of the internal state of the executing
software. Their monitors view traffic on the network, mimic the protocol actions in response
to observed input, and compare the results to outputs observed on the network. A domain
specific language, Network Event Recognition Language (NERL), is used to specify the
events on the network that they wish to monitor and a specialized compiler generates a
state machine to monitor for these events [59].

A more decentralized approach is taken by Sen, et al., which grew out of the MOP
project described above [60]. A major contribution of this work is the introduction of an
epistemic temporal logic for distributed knowledge that allows the specification to reference
different nodes. The task of monitoring a distributed computation is distributed among the
nodes performing the computation with each node monitoring properties that refer to the
state of other nodes. In order for a monitor at one node to access the state at another node,
state vectors are passed around in a manner inspired by vector clocks. Since a node cannot
know the current state of another node, the epistemic logic references the last known state
of that node. When monitoring local properties, the monitors are similar to those in MOP.
The communication overhead may be a concern in some application domains.

Chandra and Toueg [61] propose to extend the asynchronous model of computation (in
which there may be unbounded delays on communication?) by adding distributed failure
detectors, which are located at each node. Each detector maintains a set of nodes it suspects
to have crashed. The detectors are unreliable in that they may erroneously add good nodes
to the list of accused nodes and the list of suspects may differ at different nodes. At each
step of computation, the failure detectors pass a list of processes currently suspected of

2The asynchronous model of computation is not generally applicable to hard real-time systems.
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crashing. If the detectors satisfy certain conditions, the consensus problem can be solved.
Several attempts have been made to extend this work [62-66]. Yet many of these attempts
only handle what we would classify as benign faults rather than Byzantine faults. Kihlstrom
et al. [65] uses statistical techniques and report that they can detect Byzantine faults.

4.2 Monitoring Hard Real-Time Systems

Real-time systems are a target for monitoring since they their temporal constraints make
them hard to test and debug. Generally, research has targeted soft real-time systems (like the
MaC work discussed earlier) or off-line monitoring. Early research in off-line monitoring was
to debug scheduling errors [30-32,67]. This line of research usually focused on instrumenting
applications with sensors to simply capture a time stamped trace of system calls, interrupts,
context switches, and variables for the purposes of replay and analysis.

An early application of online monitoring to real-time systems focused on verifying that
timing constraints are satisfied [67]. Telecom switches have real-time constraints, and ap-
proaches to monitoring these are investigated by Savor and Seviora [68]. The authors intro-
duce a notation for specifying time intervals in the Specification and Description Language
(SDL). Algorithms are developed for processing different interleavings of signals as well as
to monitor that the specified signals occur within their designated timing intervals.

Many variants of temporal logics have been developed for specifying properties of real-
time systems. A survey of these logics is given in Alur and Henzinger [69]. Recently,
several efforts in the monitoring community have focused on monitoring metric temporal
logic (MTL) specifications of real-time systems [70]. MTL can be used to reason about
quantitative properties over time. For instance, one can specify the time elapsed between
two events.

Before discussing monitoring based on MTL specifications, some of the distinguishing
features of MTL are introduced. The semantics for an MTL expression is defined in terms
of a timed state sequence p(o, 7) composed of a finite sequence of states ¢ = o1,...,0, and
a finite sequence of real numbers 7 = 7y,..., 7, of equal length. The pair of sequences are
interpreted to read at time 7;, the system is observed to be in state o;. MTL quantifiers can
be defined over intervals. Let I be one of the following:

e An interval on the non-negative reals, the left endpoint of which is a natural number
and the right endpoint of which is either a natural number or co.

e A congruence =4 ¢, for integers d > 2 and ¢ > 0. The expression y €=4 ¢ denotes
y = cmod d.

The semantics for the temporal logic next operator is given as (p,7) E Qo iffi < |p|, (p,i+
1) = ¢ and 7i41 € 7; + I. From the definition we see (p = Ojm,n) true) holds if 7,11 — 7; €
[m,n] and (p = O=,¢ true) holds if 7,11 = ¢ mod d. The semantics for the until operator
is defined as p = ¢1 U ¢ iff (p,j) = ¢2 for some j > ¢ with 7; € 7, — I and (p, k) = ¢1
for all i < k < j. Thus ¢ Uy g ¢ says that ¢ holds between time units 4 and 8 and
¢ holds until then. The semantics for [I; ¢ and ¢; ¢ are similarly defined. Thati and
Rosu [71] gave an algorithm for monitoring MTL formula and showed that even for a simple
fragment of MTL, the algorithm is exponential in time and space. Drusinsky [72] uses a
restricted fragment of MTL and represents MTL formulas as alternating finite automata
to substantially reduce the space requirements. More recently, Basin, et al., [73] propose a
monitoring algorithm using finite structures to represent infinite structures that yields an
online monitoring algorithm for a significant fragment of MTL that is polynomially bound
in the size of the space consumed.

The synchronous model of computation is used in computer hardware as well as hard
real-time systems such as avionics. The synchronous paradigm follows a stream model
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of computation. The stream values at an index are interpreted as being computed syn-
chronously, and communication between streams is instantaneous. Synchronous languages
like Lustre [74,75] have been used by the embedded systems community for many years.

Although the synchronous paradigm is in common use in real-time systems, we know
of only one effort focusing on specifying monitors for synchronous systems. LOLA [76]
is a specification notation and framework for defining monitors for synchronous systems.
LOLA is expressive enough to specify both correctness properties and statistical measures
used to profile the systems producing input streams. A LOLA specification describes the
computation of an output stream from a given set of input streams. A LOLA specification
is a set of equations over typed stream variables of the form:

S1 = el(tl,...,tm,sl,...,sn)

Sn = en(tr,. ytm,S1,--+,Sn)
where t1,...,t,, is the set of input stream variables (also called independent variables)
and s1,...,8, is the set of output stream variables (also called dependent variables) and
ey, ...,e, are stream expressions over the stream variables. Stream expressions are built

from constants, stream variables, functions over stream expressions, boolean stream ex-
pressions (if-then-else), and expressions of the form eli, c], referring to offset ¢ of stream
expressions e, where ¢ is a constant that acts as the default if the offset lands before the
beginning of the stream or after the end of the stream. Four examples follow:

s1 = t1 Vi <1

s5 = ((t2)® +7) mod 15
sz = ite(sy, 82,80+ 1)
sa = t1[+1, false]

Stream equations “lift” operators to the stream level, so s; says that at position i of the
stream, ¢1(2) Vt2(i) < 1, where t; is a stream of binary values and ¢ is a stream of integers.
The next specification simply takes the integer stream o and computes a new integer. The
steam expression defining sz references the previous two expressions as inputs. If s;(i) is
true, then s3(i) takes on the value s3(i), otherwise it takes the value s2(i) + 1. The final
example illustrates the offset operator. Here, each position ¢ of stream s4 corresponds to the
values at position ¢ 4+ 1 of the input stream ¢; and to false if 7 + 1 is beyond the current end
of the t; stream. The authors present a monitoring algorithm for converting the equational
LOLA specifications into efficient executable monitors.

Mok and Liu developed the language Real-Time Logic (RTL) for expressing real-time
properties for monitoring. A timing constraint specifies the minimum /maximum separation
between a pair of events. A deadline constraint on an event F; and an event Es is violated
if the event Fs does not occur within the specified interval after event E;. Given an event e
and a natural number ¢, the occurrence time of the i-th instance of e is denoted as Q(e, 7).
Timing constraints in RTL often take the following form:

Q@Q(a,i) +20 > Q(b,7) > Q(a,i) +5
Q(b,7) +10 > Q(¢,4) > Q(b,4) + 2

which says that event b should not happen earlier than five time units after event a and no
later than twenty time units after event a and that event ¢ must not happen earlier than
two time units after b or later than ten time units after . To monitor RTL constraints,
Mok et al. employ sensors that send timestamped events to the monitor, and an algorithm
computes the satisfiability of the constraint [77,78].
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Any runtime monitoring of hard real-time systems cannot interfere with the execution
of the application and particularly its timing constraints. Consequently, out-line monitors
(i.e., monitors executing as a separate process from the one being monitored) are preferred.
Pellizzoni et al. [35,36] have constructed monitors in FPGAs to verify properties of a PCI
bus. The monitors observe data transfers on the bus and can verify if safety properties are
satisfied.
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5 Integrated Vehicle Health Management and Monitor-
ing

This section places monitoring within the context of the larger goals of an integrated vehicle
health management (IVHM) approach to system reliability. As overviewed by Ofsthun,
IVHM is a program to increase the accuracy, adaptability, and management of subsystems
in automobiles, aircraft, and space vehicles [79]. The goals of IVHM are to increase safety
while decreasing maintenance costs (for example, by reducing false positives in built-in
testing). IVHM broadly applies to the subsystems of a vehicle including propulsion systems,
actuators, electrical systems, structural integrity, communication systems, and the focus
here, avionics. Ofsthun notes that recent advances in IVHM add prognostics (i.e., predictive
diagnostics), which allow systems to determine the life or time span of proper operation of a
component. In the case of components that tend to degrade due to wear and tear, predictive
systems identify degraded performance and identify when preventive maintenance is needed.

IVHM research in aviation and space systems has typically focused on physical compo-
nents such as actuators [80], engine components, and structures. Recent advances in sensors,
signal processing, and computing allow accurate measurements of such components to be de-
termined in real-time. Advances in engineering science have yielded improved models of the
physical aircraft itself. IVHM systems monitor the physical system and compare it against
the mathematical model of the physical system. As noted by a National Research Council
report, this allows the “aircraft to trace back the system anomalies through a multitude of
discrete state and mode changes to isolate aberrant behavior” [81]. These diagnostics allow
the aircraft to detect unseen cracks in moving parts. Such systems can lower maintenance
costs as well as improve safety.

Such IVHM measures make sense for systems that degrade over time, like materials or
hardware. But software does not degrade over time, so it should be reliable on its first
use, and it should remain reliable over time. Evidence for the reliability of critical software
comes principally in one of three forms: certification, testing, and verification.

The Federal Aviation Authority (FAA) codifies high-assurance software development
processes in standards such as DO-178B [82]. Currently, these standards rely heavily on a
combination of rigorously-documented development processes and software testing. While
certification provides evidence that good practices are followed in software development, it
does not guarantee correctness. Recall from Section 2.2 the incident involving a Malaysian
Air Boeing 777 where a software problem was undetected during DO-178B certification.
Although we were not able to determine if the system was subject to level A certification,
it nevertheless is disconcerting that the problem went undetected in certification. More or
better testing is not a feasible solution for demonstrating reliability, at least for ultra-critical
real-time software [3]. Consequently, The National Academies advocate the use of formal
methods to augment testing using mathematical proof [83].

However, such proofs are not over the realizations themselves but over models of the
realizations and the complete verification of a complex implementation remains elusive. As-
suming that formal methods are applied to an abstraction of the system, some verification
that the implementation complies to the specification is needed, especially when the speci-
fication has built-in assumptions about the implementation. Of course, as a model’s fidelity
to an implementation increases, so does the cost of formal verification.

Because of the respective disadvantages of certification, testing, and formal methods, a
fourth form of evidence is being explored: the idea of runtime monitoring. Runtime moni-
toring can be seen as an aspect of IVHM [84-86] that can potentially detect, diagnose, and
correct faults at runtime. Indeed, Rushby argues that runtime monitoring can be considered
as a form of “runtime certification” [84,85]. As Rushby notes, one motivation for runtime
certification is that one source of software errors is a runtime violation of the assumptions
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under which the software is designed (and certified). Runtime monitoring frameworks can
refine formal specifications of requirements into software monitors. Furthermore, Rushby
argues that monitors have the greatest potential payoff in monitoring system-level properties
rather than unit-level requirements, which DO-178B practices catch well.
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6 Monitor Architectures for Distributed Real-Time Sys-
tems

In this section, we explore various abstract monitoring architectures for fault-tolerant real-
time systems, focusing on their tradeoffs. First, some theoretical aspects of monitoring
distributed systems which frame our discussion are presented. Next, requirements relating
to functionality, schedulability, and reliability relating to monitor architectures are consid-
ered. Finally, we present and compare three abstract monitor architectures for distributed
systems.

6.1 The “Theory” of Distributed Monitoring

Recall that this paper examines the applicability of runtime monitoring to real-time dis-
tributed systems. Consequently, we wish to understand the limits of the ability of monitors
to detect faults in these systems. While it may seem that monitoring distributed real-time
systems requires a new theory, we argue that it does not. Rather, theoretical results in
distributed systems subsume monitoring.

Our reasoning is based on the following uncontroversial thesis we propose:

Distributed-System Monitoring Thesis: Monitors for a distributed system are
other processes in the distributed system.

The thesis implies that there is no omniscient view of a distributed system. A monitor,
whether it be a user or a process, somehow gathers information from the other processes in
a distributed system, just like those other processes gather information from each other for
distributed computation. A monitor may be privileged—for example, it might have a more
accurate physical clock or it might have communication channels from every other node in
the system—but these are differences of degree and not of kind: in principle, other processes
could be augmented with more accurate clocks or more channels.

Some consequences follow from the thesis. The first consequence we have already men-
tioned: Any theoretical result on distributed systems applies to distributed-system monitors.
The theory of distributed systems is well-developed, and has established fundamental limits
on synchronization, fault-tolerance, fault-detection, and observation [15,87,88]. Any theo-
retical limitation on distributed systems applies to a distributed-system monitor. Therefore,
let us review known theoretical limitations and consequences for monitoring distributed sys-
tems regarding synchronization and faults.

Synchronization and faults make distributed computing complex. Let us ignore the
problem of faults for a moment and focus on synchronization. If a distributed system can
synchronize, then computation can be abstracted as a state machine in which individual
processors act in lock-step. Mechanisms have been developed to ensure that individual
nodes agree on time, at two levels of abstraction [87,88]. Simply agreeing on the order
of events in the system is called logical clock synchronization. If processes must agree
on the real time (or “wall-clock time”) that events occurred at, then processes maintain
and synchronize physical clocks. (Physical clocks can be implemented, for example, using
crystal-controlled clocks common in digital hardware devices.)

The presence of faults complicates matters. A monitor detects faults in the system
under observation (SUO). However, the monitor itself may suffer faults, and if it does, it
may incorrectly attribute the fault to the SUO or take some other unanticipated action. A
monitor must therefore be shown not to degrade the reliability of the SUO. For example, a
monitor should be demonstrated not to become a “babbling monitor,” continuously signaling
an error even if there are no faults in the SUO. We expand on this issue in Section 6.3.
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Figure 5. A Byzantine Interpretation of a Signal

But anomalous behavior is possible even if no process in the distributed system—
including the monitor—is faulty. In particular, consider a distributed system which main-
tains synchronized clocks (as is the case in ultra-reliable fault-tolerant architectures [19]).
Synchronized physical clocks do not maintain perfect synchrony. Because of the inherent im-
precision of physical clocks, they can only be kept synchronized within some small real-time
value d. The inherent asynchrony results in the potential for Byzantine behavior, which oc-
curs when a single process appears to broadcast two different signals to two recipients [1,21].
As an example, consider Figure 5, which depicts two processes, p and g. For p, the function
¢p(T') takes a discrete clock time T from its own clock and returns the earliest real time
when it reaches that clock time, and similarly for q. Note that these real times fall within d
of each other, so we consider them to be synchronized. Suppose further they both monitor
the same signal on a wire. For the signal to register with a process, it must be above some
threshold. In the figure, p does not detect the signal while ¢ does. Thus, g accuses the
process transmitting the signal of being faulty while p does not, even though they are both
synchronized.

As Fidge notes [88], such behaviors introduce nondeterminism: the same trace of actions
by individual processes may lead to different global behaviors. Consequently, if a monitor
observes violations of a property, and that property depends on some observable event
meeting a real-time deadline, then the monitor will return both false positives and false
negatives. Within some delta of real-time, it is indeterminate whether the property is
satisfied.

6.2 Whither the Software-Hardware Distinction?

Monitoring approaches generally fall into ones for hardware and ones for software. The
approaches we have surveyed in Section 4 primarily focus on software. However, for fault-
tolerant real-time systems, the distinction is less useful from both the real-time and fault-
tolerance aspects.

First, real-time guarantees are dependent upon the behavior of both software and hard-
ware. Attempting to decompose a monitor to observe just the real-time behavior of the
software or hardware in isolation is not practical (and perhaps not even feasible). Rather,
if a monitor detects a missed deadline, a probabilistic analysis can be used to determine
whether the failure is due to a systematic (i.e., software) fault or a random (i.e., hardware)
fault. For example, if the deadline is missed by a large margin, then a logic error might be
considered to be more probable than a random hardware fault. A similar conclusion might
be reached if deadlines are missed too often. (Also see Section 7.1.2 for a more detailed
discussion of these issues.)

Like real-time behavior, faults originate in either software or hardware and cannot gen-
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erally be distinguished on the basis of a single observation. Rather, probabilistic methods
can be used, based on knowledge of the environment and of the failure rate of the hardware.

6.3 Monitor Architecture Requirements

A monitor architecture is the integration of one or more monitors with the system under
observation (SUQO). The architecture includes all the additional hardware and interconnects
required to carry out the monitoring. Monitoring fault-tolerant real-time systems places
special constraints on potential architecture. We propose the following to be architectural
constraints that must be met:

1. Functionality: the monitor does not change the functionality of the SUO unless the
SUO violates its specification.

2. Schedulability: the monitor architecture does not cause the SUO to violate its hard
real-time guarantees, unless the SUO violates its specification.

3. Reliability: the reliability of the SUO in the context of the monitor architecture is
greater or equal to the reliability of the SUO alone.

4. Certifiability: the monitor architecture does not unduly require modifications to the
source code or object code of the SUO.

If these criteria are met, we say that the monitor benefits the SUO. The functionality require-
ment is characteristic of monitoring systems and simply ensures that the monitor behaves
like a monitor and does not modify the nominal functionality of the SUO. However, the
monitor may modify the behavior of the SUO if the SUO is detected to violate its specifi-
cation. We diagram this relationship in Figure 6; any portion of the behaviors exhibited by
the SUO that are not allowed by the monitor may be modified by the monitor.

The schedulability requirement ensures that the monitor does not interfere with the
timeliness of the services provided by the SUO. Timeliness violations can occur both due to
additional constraints on the processes and the channels between processes that monitoring
places upon the system. For example, software in the processes might be instrumented
with additional code for monitoring purposes, which can affect the timeliness of services.
Likewise, distributed monitors that communicate over the same channels that are used by
the SUO can decrease the bandwidth available for the messages of the SUO.
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When a monitor detects a runtime error, it may steer the SUO into a good state (although
in general, steering is a separate concern from monitoring). The schedulability requirement
should not be taken to imply that the SUO’s schedule cannot be disrupted or modified
during the steering phase.

The reliability criterion is somewhat subtle. The requirement is intuitive insofar as a
monitor architecture should not decrease the reliability of the SUO. However, note that it
is allowable for the reliability of the SUO in the context of the monitor architecture to be
equal to the reliability of the SUO alone. For example, if the monitor only collects data
for off-line analysis, then the monitor’s reliability should not adversely affect the reliability
of the SUO—even if the monitor is quite unreliable. Furthermore, this criterion does not
mandate that faults in the monitor architecture must not propagate to a failure in the
SUO. That is, suppose the reliability of a system S is 1 — 107X per hour of operation.
Now suppose that S is composed with a monitor M, resulting in S U M. Suppose in the
composition, the monitor takes no corrective action, but faults from M can propagate to
S, and that the reliability of the composition is 1 — 10~ per hour, where Y < X that
is, the composition is less reliable than S alone. Now suppose that in the composition,
the monitor does take corrective action if faults are detected in S, and suppose that under
this scenario, the reliability of the composition is 1 — 107% per hour, where Z > X. Then
the reliability criterion is satisfied, even though faults can propagate to the SUO from the
monitor. Additionally, an implementation might refine the property to show, for example,
that the monitor degrades gracefully in the presence of faults.

When we speak of the reliability of the SUO, we must keep in mind the difference between
its nominal reliability, in which we suppose the only source of faults are environment-induced
hardware failures, and its actual reliability, which takes into account both hardware failures
as well as systematic design errors (in either hardware or software). Design errors may
dramatically reduce the reliability of an ultra-reliable system [3]. If it is hypothesized that
the reliability of the SUO is below its required reliability due to unknown design errors, then
it may be quite easy for a monitor architecture to satisfy the reliability requirement. Indeed,
each scenario described in the case-studies presented in Section 2 resulted from systematic
errors rather than environment-induced random errors.

Finally, we propose the constraint of certifiability. If an SUO is intended to be evaluated
under a safety-critical certification standard (e.g., DO-178B [82]), introducing a monitor
should not make a re-evaluation of the SUO in the context of the monitor overly difficult.
If the monitor satisfies the functionality, schedulability, and reliability constraints, then a
certified SUO should be certifiable in the context of the monitor, but those constraints do
not address the kind and level of evidence required to demonstrate that they are satisfied.
An evaluation intended to provide this evidence could range from simply composing the
independent evaluations of the SUO and the monitor to requiring a complete re-evaluation of
the SUO in the context of the monitor. In practice, the evidence required will fall somewhere
within that range: the certifiability constraint is one of degree. An “upper bound” is that
adding a monitor would require fully repeating the verification and validation of the SUO
in the context of the monitor.

We postulate that a monitor framework that requires rewriting or modifying the source
code or object code of the SUO—Iike most monitoring frameworks do—generally makes re-
evaluation too onerous, since it likely requires full re-evaluation of the SUO. Therefore, the
constraint of certifiability is taken to mean that the monitor does not introduce “significant”
source (or object) code modifications to the SUO.

A proven means to ease the difficulty of demonstrating that one software system does not
inappropriately interact with another is to make the argument at the hardware-architecture
level. For example, time-triggered architectures make this guarantee in the temporal dimen-
sion [24,89]. The monitoring architectures described in Section 6.4 are intended to describe
the hardware-architecture level approaches to monitoring distributed systems.
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Finally, Rushby recently argues that runtime monitoring can provide a framework for
runtime certification, in which some evidence of correctness is deferred to runtime [84]
when monitors collect the evidence. The novel notion of runtime certification depends on a
constraint like the certifiability constraint to hold as well as the monitors themselves being
fault-free [90].

6.4 Monitor Architectures

We propose three abstract monitor architectures and discuss them in the context of the
requirements stated above. We keep our presentation at a conceptual level given that we
are primarily proposing architectures that may be investigated in future research. In the
figures, we show a distributed SUO and an associated monitoring architecture. The SUO
architecture is made up of a set of distributed processes xq, 1, ..., x, together with an
interconnect. We represent the interconnect abstractly. For example, the interconnect
could be a simple serial bus, or it could be a graph of interconnects, such as a ring or
star, between processes [19]. Recall from Section 3.1 that we are considering monitors for
distributed systems containing a fixed set of nodes and a fixed set of interconnects between
nodes that are modified only by faults in the systems.

Our presentation begins with the simplest architecture employing a single monitor and
requiring no additional hardware, and proceeds in order of increasing complexity.

6.4.1 Bus-Monitor Architecture

The first architecture under consideration is depicted in Figure 7, where the monitor M
observes traffic on the data bus of the SUO. In this architecture, the monitor receives
messages over the bus just like any other process in the system. However, the monitor would
likely be a silent participant that does additional error checks on in-bound messages or verify
that protocol communication patterns are being followed. Only if it detects a catastrophic
fault would it send messages to the other processes through the bus. As discussed in 4.2,
BusMoP [35,36] adapts this very architecture to verify bus protocols. In the case of BusMoP,
the monitor is implemented in an FPGA that is interposed between the peripheral hardware
and the bus allowing it to sniff all activities on the bus. Bhargavan et al. similarly monitor
activity over the wire to capture TCP packets [58,59].

As compared to the other architectures being considered, the bus-monitor architecture
requires the least additional hardware for monitoring. It is arguably the simplest monitor-
ing architecture, although it must be ensured that the monitor does not become faulty and
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consume unallocated bandwidth on the data-bus (provided it is not restricted from sending
messages on the bus). The class of faults this monitoring architecture is able to capture,
however, is limited: the monitor can only infer the health of a process from the messages pro-
cesses passes over the bus. In particular, such an architecture is not amenable to performing
fault detection beyond the level that the SUO itself could perform if it were so designed.
This architecture, like BusMoP, is motivated by the use of commercial-off-the-shelf hardware
that is not designed to be fault-tolerant.

6.4.2 Single Process-Monitor Architecture

Having observed that the SUO and monitor sharing a common bus can lead to problems, a
natural alternative is for each to have its own dedicated bus, as depicted in Figure 8. Each
process in the SUO is attached to the data bus as well as a single monitor process. In this
architecture, each process is instrumented to send data to the monitor over the monitor
bus, and the single monitor can compare the incoming data. As necessary, the monitor may
signal the processes if a fault is detected. It would be relatively straightforward to adapt
existing monitoring systems such as MaC [44-48] to this architecture. Rather than a single
process sending data to single monitor, multiple processes send state information to a single
monitor via a dedicated bus.

Let us briefly analyze the abstract architecture with respect to the requirements listed in
Section 6.3. In this architecture, the modification required to the SUO is ostensibly minor;
each process needs only to be instrumented to broadcast select messages that it receives or
sends over another bus, helping to ensure that the functionality of the SUO is not interfered
with. On the other hand, all state information must be explicitly passed to the monitors
via dedicated messages over the monitor’s bus. By using a separate bus for monitoring
messages they are not passed on the SUO interconnects, so there is less chance the monitor
causes the SUO to violate its timeliness guarantees (additionally, faults in the data bus are
independent of the monitor’s bus). Whether this monitor architecture satisfies the reliability
requirement depends on the specific implementation. If the monitor is simple compared to
the processes in the SUO, the probability of design faults is lower. Furthermore, if the
monitor architecture can be shown to only exhibit fail-silent (or other benign) failures, then
its failure will not adversely affect the SUO.

In some cases, it might be possible to conceptually combine an architecture in which a
monitor has a dedicated bus with the previous architecture described, in which a monitor
watches a shared bus. For example, if the interconnect is TTTech’s TTEthernet [91], monitor
messages might be sent between distributed monitors over the network as conventional
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Ethernet traffic, which is guaranteed by the TTEthernet not to interfere with safety-critical
messages sent over the same network.

6.4.3 Distributed Process-Monitor Architecture

We show an architecture in Figure 9 where there are distributed monitors My, M, ..., M,
corresponding to each process g, x1, . . ., , in the SUO. Monitor M; may be implemented on
the same hardware as process x;, or it could be in its own fault-containment unit; the former
is cheaper (in terms of hardware resources), but the latter provides less chance of a monitor
failing due to the same fault as its associated process. Note that the monitor’s interconnect
may be fault-tolerant even if the SUQ’s interconnect is not. Thus, you can “clamp on”
fault tolerance. In this architecture, online distributive monitors need to communicate with
each other in order to reach agreement on diagnoses. Thus, we abstractly represent some
interconnect between the monitors. This is similar to the architectures implemented in [60]
and [57], but in those cases the SUO and the monitors use a shared bus, which given the
traffic between monitors may compromise hard real-time deadlines.

As compared to the single process-monitor architecture in Figure 8, this architecture has
the advantage that it supports a potentially more reliable monitor since the monitors are
distributed. So even if one or more M;’s fail, the monitor may assist the system.

A distributed monitor also has an additional benefit in that an individual monitor M;
can serve as a guardian to its corresponding process x;. In the single process-monitor
architecture, a “babbling” process could prevent other processes from sending messages to
the monitor or prevent the monitor from signaling the processes in the case of a detected
error.

On the other hand, a distributed monitor is more complicated, and that complexity
may lead to less reliability in the monitor. Furthermore, the distributed process-monitor
architecture may be nearly as expensive in terms of processes and interconnects as the SUO
itself. A distributed architecture may not be feasible if the monitor has stringent cost, size,
weight, or energy consumption constraints.
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7 Monitoring Properties: What the Watchmen Watch

Thus far, we have discussed fault-tolerant distributed systems, monitoring in general, and
potential monitor architectures. Our discussion leaves open the question of what to monitor
in fault-tolerant real-time systems. Here, we attempt to classify relevant general properties
and describe potential approaches to monitoring these classes of systems.

Again, we remind the reader that fault-tolerant real-time systems used in safety-critical
contexts are typically engineered according to best-practices and are extensively tested.
Thus, the kinds of properties described in this section are often taken into account in the
architectural design. That said, the case studies in Section 2 illustrate situations in which
deployed safety-critical systems have failed due to incorrect designs or architectures that
make invalid assumptions about the environment. These systems are good candidates for
monitoring.

In general, monitors can observe arbitrary safety properties in distributed real-time
systems, up to the limits described in Section 6.1 and by Fidge [88]. Informally, safety
properties state that “something bad does not happen.” This is opposed to liveness prop-
erties, stating that “something good eventually happens” [92]. Liveness properties include
important properties (e.g., program termination), but in general, they cannot be monitored
at runtime—intuitively, this is because there is no bound on when to declare the property
to be falsified. However, as Rushby notes for real-time systems, all properties are effectively
safety properties, since showing that “¢ eventually happens by a finite deadline” is equiva-
lent to showing that “not ¢ does not happen by the deadline” [84]. The classes of properties
described in this section are safety properties.

This section is organized as follows. First, we consider using online monitoring to
strengthen the fault model under which a system was originally designed—in particular,
for tolerating Byzantine faults a system was not originally designed to tolerate. Online
monitoring to strengthen point-to-point error detection (e.g., cyclic redundancy checks)
is then considered. Finally, we consider its use to check the correctness of software that
manages fault-tolerance in a system.

For each class of properties, the applicability of the architectures proposed in Section 6
is considered.

7.1 Monitoring Fault-Model Violations

Fault-tolerant systems are designed to withstand a particular maximum fault assumption
(MFA)—recall the review of fault-tolerance concepts from Section 3.1. A designer’s formu-
lation of a system’s MFA is based on a variety of factors including knowledge about the
operational environment, reliability of the individual components, expected duration a sys-
tem is to be fielded, number of fielded systems, cost, and so on. Many of these factors are
under-specified at design time (for example, systems are used well beyond their expected
retirement dates or for unanticipated functionality). Because the MFA is chosen based on
incomplete data, it may be inappropriate, and in particular, too weak. Furthermore, a
system’s MFA is built on the assumption that there are no systematic software faults, but
software faults can dramatically reduce the hypothesized reliability of a system [3].

In a fault-tolerant system, the relationship between software and hardware is subtle.
We can characterize two kinds of software in such a system: the software that implements
a system’s services, and the software that manages the system’s response to faults. The
behaviors of fault-management software are determined by the presence of random hardware
failures caused by the environment—indeed, the software can be thought of as a reactive
system responding to faults. Thus, to know at runtime whether fault-management software
is behaving correctly, one must also know the status of the hardware failures in the system.
So it would seem that for a monitor to determine the health of the fault-management
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software, it must know which hardware faults are present. But detecting hardware faults is
precisely the job of the fault-management software itself!

In Section 2, we saw concrete examples of system failures that were the result of an
insufficient MFA (i.e., unexpected faults). As mentioned before, Byzantine or asymmetric
faults are particularly nefarious and often unanticipated. Consider the case of the aborted
space shuttle launch described in Section 2.1. The failure of a single diode produced asym-
metric faults that the system design failed to anticipate. It appears that the system was
designed to satisfy a MFA that did not accommodate asymmetric faults. It is conceivable
(we are speculating here) that designers chose a fault-model that excludes asymmetric faults
because the designers judged that the probability of their occurrence to be so small that
the additional complexity required in a system design intended to detect and mask such
events was unwarranted. Indeed, in some cases, designs that handle rare faults can increase
the probability that less rare faults do occur [93]. The intuition is that fault-tolerance re-
quires redundancy, and redundancy means more hardware. The more hardware there is,
the more likely some component in the system will fail.> However, it has also been argued
that Byzantine faults, while rare, are much more probable than generally believed [1].

The fundamental property that establishes the absence of a Byzantine fault is a consensus
property [21]. Consensus tells us that each receiver of a broadcasted message obtains the
same value. If we presume that a system is not designed to tolerate Byzantine faults at the
outset to ensure a consensus property holds, we are inclined to monitor consensus properties
at runtime.

Below, we consider the use of the monitoring architectures we have described both to
ensure consensus of distributed values and then to ensure timing assumptions made by the
system are met.

7.1.1 Monitoring Consensus

To monitor consensus at runtime, the values receivers obtain must be compared. Con-
sider exact agreement, where each receiver should obtain the exact same value, rather than
approrimate agreement, where each receiver should obtain data that agrees within some
small §, such as exchanged clock values [23]—we treat approximate agreement in the fol-
lowing section.

Consider a simple single-broadcast system in which one node, a transmitter, broadcasts
a message to other nodes, the receivers. The transmitter, a receiver, or the interconnect
may suffer a fault that causes a receiver to compute a received value that differs from those
received by the other receivers. We will refer to the interconnect as the “bus” although it
may be a virtual bus as described in Section 6.4.

In a Byzantine-agreement algorithm [21, 23], receivers exchange messages to compare
their received values and ensure consensus. But if the system is not instrumented originally
to be resilient to Byzantine faults using such algorithms, can any of the architectures pro-
posed in Section 6 be adapted to verify consensus? Consider the three monitor architectures
we have proposed:

e The bus-monitor architecture illustrated in Figure 7 of Section 6.4.1 will not reliably
detect consensus violations by monitoring the broadcast messages sent on the bus,
since the monitor acts just like another receiver.

e The process-monitor architecture depicted in Figure 8 of Section 6.4.2 can be applied to
monitor this property as follows. Each receiver is instrumented to send a copy of (or a
checksum of) its received message to the monitor. The monitor must ascertain whether

3Random hardware failure is statistically-independent: if the failure rate for a component is 10~ per hour
and there are 10 components, the failure rate is 10~% overall, assuming each component fails independently.
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or not the messages belong to the same round of communication. If so, the monitor
then compares the values received to determine if they are the same. The solution
is straightforward, but for the monitor to accurately make a diagnosis of consensus,
neither the monitor itself nor the interconnects from the nodes to the monitor may
suffer faults. In either case, false negatives could result—i.e., the monitor mistakenly
reports that consensus is violated, since even if the receivers obtain the same values
from the transmitter, the monitor might receive or compute different values for each
receiver. The chances of a false positive are arguably smaller. A false positive requires
a scenario in which either (1) the monitor obtains the correct value from a receiver
despite the receiver obtaining an incorrect value, or (2) the monitor itself confirms
consensus even when the monitor receives inconsistent values.

e Finally, consider the distributed monitor architecture depicted in Figure 9 of Sec-
tion 6.4.3, where each node has a dedicated monitor that samples receivers to deter-
mine the values they receive. For the monitors to determine whether consensus is
reached, they must exchange values with one another. If our fault assumption allows
for the monitors to exhibit Byzantine faults, then they must execute a Byzantine fault-
tolerant algorithm to exchange values to determine whether consensus is reached, just
as the original nodes would.

If our fault model allows for the possibility that monitors exhibit Byzantine faults, then
the complexity introduced in order to handle Byzantine faults is relegated to the monitor
architecture. Relegating the complexity may be redundant (i.e., the SUO should be made
fault-tolerant in the first place), but if the SUO is a legacy system, it may be possible to
compositionally add fault tolerance to the system through the use of monitors.

7.1.2 Monitoring Timing Assumptions

One architectural approach to ensure hard real-time deadlines are met is the time-triggered
approach [89]. In time-triggered systems, events are driven by a globally-known predeter-
mined schedule, even in the presence of faults. Because the execution of a time-triggered
system is driven by the passage of time, it is imperative that the distributed nodes in the sys-
tem are periodically synchronized and that they agree with the real (i.e., “wall clock”) time.
Time-triggered architectures are particularly prominent in fault-tolerant data buses includ-
ing, for example, FlexRay (in some configurations), SAFEbus™, SPIDER, and TTA [19].

A sophisticated time-triggered data bus is the “backbone” that provides services such
as communication, time reference, and fault management to various avionics functions. As
such, the correctness of the bus is essential, and in particular, specific timing properties
must hold to ensure the bus delivers the time-triggered abstraction.

Formulating and verifying the timing properties of a particular implementation is not
easy (consider the appendices analyzing the timing properties of NASA’s SPIDER [24]).
To simplify and generalize matters, Rushby presents a mathematical theory called the
time-triggered model [94] that presents a set of assumptions (or axioms) such that any
time-triggered system satisfying them is guaranteed (i.e., by mathematical proof) to be-
have synchronously. The axioms constrain system assumptions about the clock skew, clock
drift, communication delay, as well as place constraints on the scheduling of communication
and computation events in the system (schedules are functions from local clock-times to
actions). Unfortunately, even the formulation of these high-level specifications is difficult.
Rushby’s original formulation was found to contain errors that were subsequently corrected
by Pike [95,96].

Because the timing constraints are complex, yet it is essential that they hold, we are
motivated to see whether they can be monitored at runtime. The question to ask then is
how can these properties be monitored?
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Unfortunately, the timing constraints cannot be monitored directly. The constraints es-
sentially relate the values of local hardware clocks to one another and to the “real” (or “wall-
clock”) time. As a concrete example, consider the (revised) clock drift-rate constraint [95]
that bounds the clock-time of a local clock to drift no more than a linear rate of real-time:

Let ¢1, t2 € R be real (or wall-clock) times (modeled as real numbers) such that
t;1 > to. Let p € R be a constant such that 0 < p < 1. Suppose that C' models
a digital clock, by mapping a real-time value to the current clock-time. Then

[(L=p)- (tr —t2)] < C(t1) = Clt2) < [(1+p) - (t1 — t2)].

The property cannot be monitored directly—a monitor does not have access to the “true”
real time any more than the monitored node does (assuming each of their hardware clocks
are equally accurate).

Rather than monitoring timing constraints directly, one can only monitor for the pres-
ence of faults. Both random hardware failures (e.g., caused by radiation) and systematic
faults (e.g., caused by incorrect timing assumptions) may result in the same observations.
In general, a monitor cannot distinguish whether an observed event results from one or the
other faults. However, for a given set of environmental conditions, the rate of observed faults
due to random hardware failures may differ from the fault-arrival rate due to systematic
timing constraint violations. In this case, probabilistic modeling methods may be useful for
characterizing the probable cause of an observed fault [97-99]. The soundness of diagnosing
the cause of an observed fault depends on the fidelity of the fault model stating the prob-
ability of random faults caused by hardware failure and the environment. In general, there
is a paucity of reliable fault-arrival data [100]. It may be possible to apply recent advances
in monitoring probabilistic properties [101,102] to monitor for timing faults.

7.2 Point-to-Point Error-Checking Codes

CRCs Error-checking codes are standard practice in point-to-point communication for
detecting data corruption. One popular class of error-checking code is cyclic redundancy
checksums (CRC) [103,104]. CRCs are functions that compute a remainder using polynomial
division modulo 2 over a bitstream (we refer to the remainder as a CRC and let context
distinguish the uses). In general, the way a CRC is used to detect faults in point-to-point
communication is for the transmitter to compute a CRC over a data word (a fixed-width
bitstream) and then to send both the word and the CRC to the receiver. The receiver then
computes a CRC over the received word, and the result should match the received CRC.

CRCs are popular error-checking codes because they can be implemented efficiently in
hardware, and they are good at detecting random errors. In particular, CRCs using a
polynomial of degree n will detect any single burst error of length n or less—that is, it can
detect any subsequence by, bo, ..., b, of bits in a message where each bit b; is arbitrarily a
0 or 1. In addition to detecting burst errors, CRCs can detect errors that are arbitrarily-
spaced. The Hamming Distance (HD) of a CRC for a word is the smallest number of
arbitrary errors that go undetected by the CRC. The HD of a CRC depends on both the
specific CRC and the size of the data word. For typical CRCs and data bitstream sizes,
HDs are less than 10; as the size of a bit stream increases, HDs decrease [104].

CRCs are widely-used in telecommunications, Ethernet, and embedded systems. In par-
ticular, CRCs are used in ultra-reliable systems—i.e., systems designed so that the prob-
ability of their failure is no greater than 10~ per hour of operation [2]. Paulitsch et al.
describe the use of CRCs in ultra-reliable systems and highlight a variety of flawed assump-
tions about system design and CRC usage that may reduce the ability of CRCs to capture
transmission errors [103]. Indeed, some flawed assumptions may reduce the overall reliability
of the system by an order of magnitude or more.
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Figure 10. Driscoll et al.’s Schrodinger CRC [1]

Schrédoinger CRCs For example, Driscoll et al. describe what they call “Schrédinger’s
CRCs” [1]. A Schrodinger’s CRC is a bitstream and CRC that is broadcast by a transmitter
to two different receivers such that the original bitstream and the CRC is corrupted in a way
so that bitstreams received differ, but they pass the respective CRC checks (“Schrodinger’s
CRC” pays homage to the famous Schrodinger’s Cat thought experiment from Quantum
Mechanics). To illustrate the phenomenon, consider Figure 10. We illustrate a transmitter
broadcasting an 11-bit message to two receivers listening on a data bus. We use the USB-
5 CRC (25 + 22 + 1), a CRC generally used to check Universal Serial Bus (USB) token
packets [104].

Now, suppose the transmitter has suffered some fault such as a “stuck-at-1/2” fault so
that periodically, the transmitter fails to drive the signal on the bus sufficiently high or low.
A receiver may interpret an intermediate signal as either a 0 or 1. In the figure, we show
the transmitter sending three stuck-at-1/2 signals, one in the 11-bit message, and two in
the CRC. USB-5 catches a one-bit error in the message, so if the receivers interpret the
bit differently, one of their CRCs should fail. However, if there is a bit-error in the CRC
received from the transmitter also, then each receiver computes a correct CRC even though
they receive different messages!

Effects like these (as well as others discussed by Paulitsch et al. [103]) can reduce the
effectiveness of CRCs and more generally reduce the reliability of a system. Moreover,
the example demonstrates that CRCs are insufficient for preventing Byzantine faults from
occurring in a distributed system.

Monitoring CRCs Because there are known faults that can cause point-to-point error-
checking codes to fail in unexpected ways, we might ask if online monitoring can help. Here
we speculate on monitoring approaches.

Examples like Schrodiger’s CRC are instances of the more general Byzantine fault prob-
lem, in which case a system should be built to tolerate Byzantine faults by executing
fault-tolerant consensus algorithms [21]. If the system cannot be (re)designed to tolerate
Byzantine faults, then the monitoring approaches we described in Section 7.1 for detecting
consensus violations are generally applicable.

Indeed, an “optimization” is that monitors themselves can use CRCs to check consen-
sus. One advantage in doing so is that CRCs require less bandwidth than the message itself.
This is of interest in monitoring architectures in which nodes of the SUO send special mon-
itoring messages to monitors, monitors exchange messages with each other, or the monitors
communicate over the same bus used by the SUO. Furthermore, a shorter message has less
chance of being corrupted itself in transit to the monitor. However, by using CRCs, there
is a danger that consensus is violated, but CRCs sent to or exchanged by monitors agree
(i.e., a false negative).
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7.3 Monitoring Fault-Tolerant Management Software

Thus far we have focused on directly monitoring fault-tolerance at the architectural level
rather than the functional correctness of the software that manages fault tolerance. The
failure of the fault-tolerant management software affects the functional correctness of a
system, and in its worst manifestation, it can result in a safety violation. Consequently,
monitoring for an error in the fault-tolerant management software reduces to traditional
monitoring of safety properties.

7.3.1 Safety-Critical Systems

Consider the canonical steam-boiler example [105], which has features that is representative
of safety-critical control applications. The following description is taken directly from [105]:

The physical plant consists of a steam boiler. Conceptually, the boiler is
heated and the water in the boiler evaporates into steam and escapes the boiler
to drive a generator. The amount of heat and, therefore, the amount of steam
changes without any considered control. Nevertheless, the safety depends on a
bounded water level ¢ in the boiler and steam rate v at its exit. A set of four
equal pumps supply water for steam that leaves the boiler. These four pumps
can be activated or stopped by the controller system.The controller reacts to the
information of two sensors, the water level sensor and the steam rate sensor, and
both may fail.

The water level has two safety limits, one upper (M, ) and one lower (M;).
If the water level reaches either limit, there is just time enough to shut down
the system before the probability of a catastrophe gets unacceptably high. The
steam rate has an upper limit of W and, again, if reached the boiler must be
stopped immediately.

A monitor would need to verify that v < W and M; < ¢ < M, possibly shutting the system
down if the bounds are violated.

As noted above, we assume that the SUO is a fault-tolerant system and we are verifying
that a fault in the fault-tolerant management system does not interfere with the functional
correctness by monitoring the steam rate and water levels. In considering the most appro-
priate monitoring architecture for this application, we assume that the steam rate sensor
and water level sensor communicate to the computers via a shared data bus. Having the
monitor attached to the data bus as depicted in Figure 6.4.1 of Section 7 is not appropriate
since this architecture cannot detect Byzantine faults. The single monitor architecture of
Figure 8 in Section 6.4.2 would require each of the nodes to be instrumented to report to
the monitor a copy of the received message. CRC checks can be used to mitigate errors in
transit. Implementing this architecture is straightforward, but we must assume that there
are no faults in the monitor, which is a reasonable assumption, given its simplicity. A more
sophisticated approach may be a fault-tolerant monitoring system using the architecture in
Figure 9 in Section 6.4.3, where each node’s monitor checks the measured values received,
data is exchanged among the monitors and votes are taken. This would add an additional
level of fault-tolerance at the expense of additional complexity.

7.3.2 Traffic Patterns

One can monitor a protocol’s behavior by observing internal state, but this requires some
instrumentation of the protocol in order to insert sensors that transmit the state information
to the monitor. In many cases, this is impractical because the manufacturer will not allow
a third-party to access their product, or because the protocol is implemented in silicon as
a FPGA or a customized chip. Many protocol properties may be verified by observing
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the communication traffic and verifying that the messages obey the pattern defined by the
protocol specification that the message fields have the expected value. Although there are
significant challenges in recognizing the protocol events of interest in a huge stream of data
and verifying properties over that event trace, there has been some progress in this area
that can be applied to critical systems. For instance, Bhargavan et al. [58,59] observe TCP
traffic and verify that a trace of messages between two nodes satisfy properties such as:

e An acknowledgement is generated for at least every other TCP message received.
e Acknowledgement sequence numbers are non-decreasing.

We also discussed BusMoP [35,36] in Section 4.2 that monitored data transfers on a PCI
bus. An example is a property that says any modification to a particular bus control register
only happens when not in use. It may be possible to apply similar techniques to monitor
communication patterns for fault-tolerant buses such as TTEthernet.

The most straightforward monitor architecture to monitor bus-traffic patterns is depicted
in Figure 6.4.1 in Section 7. As noted above, this architecture cannot be used to detect
Byzantine faults, but can be employed to monitor messages if there are no Byzantine faults.
This may seem a relatively easy solution to engineer, but Bhargavan et.al. [58] show that
simply viewing the traffic from the point of an external observer is quite difficult since events
may be buffered or lost between the monitor and the SUO. The single monitor architecture
of Figure 8 in Section 6.4.2 would require each of the nodes to be instrumented to report
to the monitor a copy of the received message. The monitor then checks that the message
is correctly formed and obeys the protocol’s communication pattern. This choice has the
disadvantage that nodes have to be instrumented to send the message to the monitors and
a failure on the monitor link could mean that the message received by the monitor differs
from the message actually received, but CRCs could be employed to mitigate that issue.
The distributed monitor in Figure 9 in Section 6.4.3 would use the monitor at each node to
check the messages received at that node. The monitors may have to communicate, which
as we saw above can be a drawback. The latter two architectural design choices should not
require as much buffering of the data stream since the nodes would be instrumented to only
send the packets of interest to the monitor, but this does not mean that messages still cannot
be lost under the right conditions. Regardless of the architecture chosen, data corrupted on
the interface to the monitor could lead to both false positives and false negatives.
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8 Conclusions

Online monitoring is a promising technique for making safety-critical real-time distributed
systems more reliable. Section 4 surveyed a number of past and recent efforts in software
monitoring. Several research groups have had ongoing efforts in the area for over a decade
and have produced impressive tool sets to both create monitors and to instrument the SUO.
Consequently, there is a solid foundation of research in online monitoring of conventional
software systems upon which to build. Yet little research to date has focused on hard real-
time critical systems, where monitoring can arguably have the most impact in preventing
costly and possibly fatal system failures.

Section 5 introduced the IVHM philosophy of monitoring a vehicle while in motion for
wear and tear on the physical systems such as cracks on aircraft wings. We argued that
software monitoring fits in with the IVHM philosophy by monitoring for violations of specific
safety properties, namely, consensus properties.

Sections 6 and 7 explored monitoring frameworks for distributed real-time systems. We
have described potential monitoring architectures and have discussed their tradeoffs. We
have also described classes of properties to monitor. We believe this work will provide a
foundation for future directed research.
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