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ABSTRACT

Main purpose of this study is to determine the accuracy of the
line spring model, to investigate the effect of interaction between
two and three cracks, and to provide extensive numerical results
which may be wuseful 4in applications. Line spring model with
Reissner's plate theory is formulated to be used for any number and
configurations of cracks provided that there is symmetry. This model
is used to find stress intensity factors for elliptic internal
cracks, elliptic edge cracks and two opposite elliptic edge cracks.
Unfortunately, because of the unavailability of previous work done
on the cases considered, only stress intensity factors for central
elliptic erack could be compared with other methods. Despite the
simplicity of the line spring model, the results are found to be

surﬁrisingly close.
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1. INTRODUCTION

From the viewpoint of practical applications, the analysis of a
part through crack in a structwal ccmponent which may locally be
represented by a "plate™ or a "shell" is certainly ome of the most
important problems in fractwe mechanies. In .its general form, the
problem is a three-dimensiomal crack problem in a bounded geametry
where the stress fields perturbed by the crack interacts very
strongly with the swrfaces of the solid. At present, even for the
linearly elastic solids, a neat analytical treatment of the problem
very heavily rely on some kind of numerical technique, such as
alternating method, [5], [6], or boundary integral equation method,
[7]; but most notably on the finite element method, [8]-[10]. The
renewed interest in recent years in the so called "line-spring
model®” first desaribed in [3] has been due partly to the desire of
providing simpler and less expensive solutions to the part-through
crack problem and partly to the fact that for certain important
crack gecmetries, the model seems to give results that have an

acceptable degree of accuracy.

In a plate or shell containing a part-through crack and
subjected to membrane and bending loads, the net ligament(s) around
the crack would generally have a constraining effect on the crack
surface displacements and rotations. The basic idea underlying the

"line-spring model" consists of approximating the three-dimensional
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crack problem by a two-dimensiomal coupled bending-membrane problem
through the reduction of the net ligament stresses to the neutral
surface of the plate or shell as a membrane load N and a bending
moment M, In the resulting two-dimensional problem, the crack
surface displacements are represented by a crack opening
displacement & and a crack swface rotation 8, referred to, again,
the neutral swface. The quantities N, M, 8§ and 8 are assumed to be
functions of a single variable, namely the coordimate X1, along the
crack in the neutral swface (Fig. 1). The pair of functions ($,8)
or (N,M) are determined from the corresponding mixed boundary value
problem for the plate or the shell having a through grack in which N
and M arfe treated as unknown crack surface loads. Once N and M are
determined, the stress intensity factors are evaluated from the two-
dimensional elasticity solution of a strip under the membrane force

N and the bending moment M.

The model introduced in [3] is based on the classical theory.
However, the asymptotic stress field around the crack tip given by
classical plate bending theory is pot consistant with the elasticity
solutions, whereas a transverse shear theory (such as that of
Reissner's) which can accomodate all stress and marent resultants on
the crack surface seperately (i.e., three boundary conditions in
plates, five in shells) give results which are identical to the
asymptotic solutions obtained from the plane strain and anti-plane

shear crack problems [2], [11]. The line spring model was later used
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in [12], [13] to treat the longitudinal part-through crack problem
in a cylinder by using the classical shell theory and in [1], [14]
by using transverse shear theory. Rather extensive results for
corner cracks and for collinear surface cracks in a plate having a
finite width are given in [15]. The similar problem of surface
crack-boundary interaction in a c¢ylindrical shell with a free or a

fixed boundary is considered in [16] and [17].

In this study, stress intensity factors for elliptic internal
cracks under pwre bending and tension, and for collinear elliptic
edge cracks under pwe tension will be studied by using the line-
spring model with Reissner's plate bending theory. Interaction of
two and three identical elliptic edge and internal crcaks will also

be .studied by using the same method.



2. FORMILATION OF THE PROBLEM

2.1 Governing Integral Equations

The problem under consideration is a swface or an internal
crack problem for a relatively thin-walled structural component
which is solved basically as a plate or shell problem. In the uswal
notation uy, up, usz are the camponents of the displacement vector,
31 and 32 are the angles of rotation of the normal to the neutral
surface in XqX3 and XoX3 planes, respectively, and Nij’ Mij and
Vi(i,;j:1,2) are respectively the membrane, moment and transverse

shear resultants (Fig. 1).

Related mixed boundary value problem for any number of cracks
hds been formulated in [15] by using Reissner's plate bending
theory. The derivatives of the crack surface displacement and the
‘crack surface rotation on the neutral surface are chosen as the
unknown functions. Fredholm kernels k1(x,t) and kz(x,t) in [15]
represent the effect of finite length of the plate in xq direction.
They will vamish in this case since the plate has an infinite length
in X4 direction. Integral equations are written for only half of the
infinite plate (x1 > 0) and are only valid when symmetry with
respect to the X5X3 plane exists. D represents the normalized
cracked region on the x4 axis, which means that if there is a crack

in the region (b,c), D represents the region (b/a , c¢/a) where ma"



is the half crack length and equals to (e¢~b)/2. x is also normalized
parameter on X4 axis which is x=x1/ai, where ay the half crack

length for the corresponding crack(i subscript is needed because

general formulation is done for more than one crack).

From [15], integral equations are as faollows:

o(x) 1 1 1 co(x)
-— | [—=+ —]ere) at = ,  x€ED, (D
E 2n t=x t+x E
D
n(x) 1 1 I 1
——-31 [Bz[—+—]-R3[ +
6E D t=x t+x (t-o:)3 (t:-y-x)3
- 1 1
t=-x t+x
m,(x)
= ’ x€D , (2)
6E

-

where K2 is the modified Bessel funection of the second kind and the
constants R1, Rz, R3, R,_‘ and p are defined in Appendix I. h is the
thickness of the plate, 2a is the length and L(x1) is the depth of

the crack (Fig. 1). E is the modulus of elasticity and y is the

Poisson's ratio of the material. The unknown functions are defined

by



0
G1(X) -'-—a-; Sy(x,+0) ’ G2(x) =%; V(X,+0) ’ (3

sy:ﬁ?_ ’ v:uz/a .

The external loads

. 22 mo-ﬁMgz (%)
= o - ?
° n 12

represent uniform membrane and bending resultants applied to the

plate away froam the crack region and ¢ and m which are defined by

N(x,0) 6M(x,0)
G(X) = s m(x) S erm— xeD ’ (5)
h he

are the membrane and bending locads applied to the crack swfaces
(Fig. 1). The integral equations are obtained from the following

mixed boundary conditions in x2=0 plane



Noo(x,0) = -N3, + N(x) , x€D, (6a)
u,(x,0) =0 , x€D , (6b)
My5(x,0) = =M35 + M(x) , x€D, (7a)
£,(x,0) =0 ; x€D , (Tb)

where the general principle of superposition is used to account for
the loading N‘Z’Z, and "22 applied to the structure away froam the

crack region.

2.2 Line-Spring Model for an Edge Crack

Edge crack is chosen for introductory purroses because of the
simplicity of its formulation. Modifications will be made as more

complicated crack geocmetries are examined.

The configuration studied here is an "infinite" elastic plate
of thd?ckness h, which contains a surface crack of length 2a and
depth L(x1) penetrating part through the thickness (Fig. 1). For
general purposes L(x1)can be any function which enmables us to treat
any crack geometry. At remote distances from the crack site, the
plate is subjected to loads equipollent to a uniform simple tension

in the x, direction and to pure bending about the Xq axis. The first
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assumption in the line-spring analysis is that the stress intensity
factor at a point along the crack front with coordimte xq 1is
identical to the stress intensity factor for an edge cracked strip
in plane strain (Fig. 2), subjected to an axial force and moment
equal, respectively, to sz(x.',o) and M22(x1’°)' and having a crack
depth equal to L(xq). In [1], [3], mode I stress intensity factor

for the plane strain problem is given as

K(s) =yh [eg.(s) + mgy(s)] , (8)

L(xq)/h , (9

s(x4)

where functions gt(s) and gb(s) are called shape functions for

tension and bending respectively, and given as

"

g (s) = YHWs i{V_'bisa("'” ’ (10a)
al
n

8y(s) = \/‘usz cis(i'” . (10b)
iml

The value of n is chosen according to the desired acewacy. The
coefficients b; and ¢y can be found by a suitable curve fitting
(Appendix II). Coefficients of the shape functions for a number of

crack geametries are given in Tables 2, 4, 6, 8, 10, 12, 14, 16, 17.



In order to obtain N(x,) and M(x4) in terms of G, and G,, the
energy available for fracture along the crack front is expressed in
two different ways, namely as the crack closure energy and as the
product of load-load point displacement. In a plate with an edge
crack subjected to uniform tension N and uniform bending moment M
(Fig. 2), if K is the stress intensity factor given by the plane
strain solution, from the crack closure energy, the energy (per unit

width) available for fracture may be obtained as

n) 1-p2
Gz —(U-V) = —n K R (11)
L E

where U is the work done by the external locads and V is the strain

energy.

, Let $ and & be the load line displacements corresponding to N
and M shown in Fig. 2 and d§ and d®& be the changes in & and 8 as
the crack length goes from L to L+dL under fixed load conditions.
Then referring to Fig. 2, the changes in U and V may be expressed as

dU = Ndd + Md®& , (12)

dav

(1/72) [N(B+dD) + M(B+dB) -~ (1/72) (& + MB) =

(172) (Ndd + Ma8) (13)

Equations (12) and (13) give the energy available for a crack growth

dL as follows:
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d(U-V) = (1/2) (Ndd® + Md®) . (14)

On the other hand for constant-N and M, and for a change of dL in

the crack length, we have

RY 3 Qe
dd = —dL , d8 = — dL . (15)
oL oL

Thus, from (14) and (15) it follows that

d 1708 Qs
_(U-V)=G=_[N—+ M——.], (16)
oL 2 L oL oL

and, by using (11) we find

~

1 .98 e, 1-#2
;.[N—+M_]=

. (17)
oL oL

E

From (5) and (8), we may rewrite (17) in terms of & and m as

11



follows:

1 98 n2de 1-p2
— [Ch et D= = h (g26'2 + 2g.8.6n + gzmz) . (18)
2 [ OL 6 OL ] E t £°b b

In order to solve © and m in terms of & and ® or vice versa we
introduce the so called compliance coefficients. In a cracked strip,
displacement and rotation are functions of both the applied stress

and bending mament. This relation may be expressed as

hd

h%8/6 = A6 + Am (190)

Agy® + A, (19a)

where (with proper normalizations) App=Ap, by elastic reciprocity.

The compliance coefficients Ai depend only on L and vanish when

J
L=0. If we substitute (19) into (18) and equate common coefficients

in the quadratic forms of both sides, we get

diyy  2(1-p2)h
= Bt
dL E

(20a)
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2

= g.8 (20b)
dL dL E % *
dA 2(1-#2)h

bb 2
dL E
By defining
L
Cij = h-1 f gisj dL ? (i,J - b, t) ’ '(21)
o]

and knowing that Aij=0 at L=0, we may write

2h2(1-v2)
E
2h2(1-92)
E
2n2(1-92)
E

13



Substitution of (22) into (19) gives

2h( 1-p2)
= (o:ttc + Qupm) (23)
E
12(1-p2)
E

where &, =&,.. From (3), ® and ® may be expressed in terms of the

unknown functions G1 and G2 as

X

-] X
= 2au2(x,+0) = 2a sz(t) it . (26)

If we solve (23) and (24) for ®(x) and m(x) and substitute (25) and
(26) for & and ®, we can determine €(x) and m(x) in terms of the

unknown functions G1 and G2 as follows:

X x
c(X) = E [‘Ytt(x) sz(t) dt + ‘Ytb(x)j’(}‘](t) dtJ y (27)
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x X
m(x) = 6E [¥ e (x) JGz(t) dt + ¥ pp(x) | Gy(t) dt] , (28)
-1 -]

where

a «
bb
.. = , (29a)
b n(1-92) A
1 {+ 4
tb
e 4 - — ’ (29b)
€ " 6(1-#2) A :
1 - 4
bt
B v S - ) (290)
B " gn(1-#2) A
1 ' ctt
Y = ’ (29d)
bb " 35(1-¢2) &

We should keep in mind that aij is a function of L(x)/h, which means

“ij is also a function of x.

15



For a single crack shown in Fig. 1, the normalized cracked
region on x4 axis (called D in (1) and (2)) is defined as (0,1). (1)

and (2) then become

e(x) 1 1 1 S,
- [ + ]G1(t)dt=-—, 0<x<1, (30

E 27 t=-x t+x E
Q
]
n(x) 1 1 1 1
-B ||y —+— - 33[ + ]
6E Z tex  tex (t=x)3  (t+x)3

1 1
+ Ru[—Kz(pIt-xl) +—K2(p|t+x|)}]62(t) dt
t=x t+x

—_ 0<x< 1., (31)

For convenience in the numerical solution of integral equtions we
need to convert the integrals calculated over (0,1) to (-1,1).
Because of that the geametry and loading conditions are symmetrie
with respect to the XoX3 plane, uz(x,+0) and Bz(x,+0) should also

be symmetric with respect to the same plane. In mathemathical form

up(=x,+0) = us(x,+0) , (32a)
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Bo(-x,40) = Bo(x,+0) . (32b)

Observing that derivative of a symmetric function is antisymmetric,

we may write

G1(-t) - -G1(t) ’ (33a)

Gy(-t) = =Gy(t) . (330)

By applying the above properties, integrand of (30) can be rewritten

as

i ]
1 1 1
[-——- + —]G1(t) dt =
t-x t+x t~x

Gy () dt

(o)
o

-+

tq+x
o]

By a change of variable t.' = -t and from (33a), we can write
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o

r
1 1 .

-t+x

o)
(4

— G, (t) dt . (35)
J t=x !

ol

Substituting (35) in (34)

1 1 1
[—+—]5 ) at = Gy(t) dt . (36)

t=x t+x t-x
o) =1

After applying the same procedure to (31) and substituting (27) and
(28) for ®(x) and m(x), integral equations take the following final

form

b3
1 1
t

-x (tex)3
- -1 -1
X
1
- |
Bo
2e— , =1<x<1 , (37a)

6E
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X x

‘ftb(x) fG1(t) dt + ‘Ytt(X)f Gz(t) dt
-1 ] il

1 (t) ¢

K dt.—.-—°, -1<x< 1. (37b)
oy 4 t-x E

-1

From (3) it follows that the unknown functions G1 and G2 must

satisfy the single valuedness conditions given by

J’G.‘(t) dt = 0, fez(t) dt = 0 . (38)
-] -1

After sollving (37) and (38) by using Gauss-Chebyshev closed type
integration formula which is defined in Appendix III, a backward
procedure is applied to find the stress intensity factors along the
crack front. Unknown functions are integrated (Appendix IV) from =1
to the value of x at which the stress intensity factor is desired.
Then those integrals are substituted to (27) and (28) with the
functi?ns 'fij(x), (i, j=t,b) evaluated at that particular point to
get corresponding ¢ and m. Once & and m are found, (8) gives the

stress intensity factor at a specific paint on the crack front.
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2.3 Internal Cracks

The line-spring model described in the previous section may
easily be extended to internal cracks such as that shown in Fig. 3.
In this case the basic integral equations remain the same and again
are given by (1) and (2). However, there are two crack tips (shown
as A and B in Fig. 3) which create two different stress intensity
factors for each cross-section taken perpendicular to X4 direction.
Previous assumptions regarding the stress intensity factors will
also remain the same; however, they are now defined seperately,

i.e.,

KA = ﬁ [cht(S) + mgAb(s)] s (393)

Kg = Vh [Sgg,(s) + mggy ()] ,  (39%)

where 8atr Bpp» Egi» 8pp are the shape functions corresponding to
crack tips A and B. Unlike the edge orack case, these shape
functions are now functions of both L(x1)/h and d/h where d 1s the

distance from the center of the crack to the neutral plane. Two way

20



parametrization is needed in order to define the shape functions
which are valid for any kind of internal crack. Since ellaiptic
cracks whose major axis are parallel to the free surface are the
main concern in the present study, parametrization can be simplified
by observing that the distance between the center of any crack
obtained by taking cross-sections perpendicular to the major axis
and the center line of the plate is fixed. In other words, d is
constant for any elliptic crack whose major axis is parallel to the
free surface. Because of this property, as in the previous case, we
may again define the shape functions for each crack as a function of

only one variable, which is L(x1)/h, as

n

_ SAt = Vﬂs Zleisz(i-1) ’ (uoa)
a
n

8Ab :\/ﬂs ;%151.1 , (40b)
1=
.

gpt = V‘ll’s .Z'bBiSZ( 1-1) ’ (40c)
iw
n

8gp = \/isg o::Bisj"'1 . (40d)
|

Keep in mind that coefficients are different for each value of d.

The next step is the representation of the energy available for
fracture in terms of both stress intensity factors and product of

load~load poant displacement. As L increases by dL, the energy

21



increment available for fracture may be expressed as

2
1=-F
a(e-v) = k2 aw2) + &3 awa)] (41)
E
giving
1-#2
G =—(U-V) = —— (K3 + K3) , (42)
L 2E

which replaces (11). The rate of energy available for fracture as
expressed in terms of the load line displacements and forces remains
the same and is given by (16). If the same procedure as in the

previous section is followed, the functions ®(ij) may be found as

L
«y, = 01 [ (&f, +dza (43a)
~ OL
&y, = b7 f (83, +&3,)/2 dL (43b)
° L
o

After this point, everything, including the resulting integral

22



equations and the solution method, is exactly the same as explained
in Section 2.2. After solving the equations, the functions G4 and G,
are again substituted to (27) and (28) to find © and m, which are
then substituted to (39) to find the two stress intemsity factors at

the corresponding value of x.

2.4 Symmetric Internal Crack

This is a special case of an internal crack where d=0. Due to
the fact that simple tension ;:annot create any crack surface
rotation and simple bending cannot create any crack opening
displacement (on the neutral plane), from (23) and (24) one can

write

which gives

Substitution of (45) into (37) would decouple the integral equations
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(only unknown in (37a) is Gy while the only unknown in (37b) is Gz)
which would in turn enable us to solve them seperately. This
property reduces both the computer time and memory space needed in

the numerical solution.

2.5 Two Opposite Elliptic Edge Cracks

Two opposite edge cracks shown in Fig. 4 has exactly the same
properties as symmetric internal cracks exeept for the coefficients
of the shape functions. Once the shape functions are established by
a suitable curve fitting, the same procedure that is applied to
symmetric internal cracks is applied to find the stress intensity

factors.

2.6 Interaction Between Two Identical Cracks

All the crack geometries that we considered up to now were
single cracks 1lying in the region (-a,a) on the X4 axis. Only

difference among them was their configuration in the thickness
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direction. Shape functions, energy available for fracture and
functions “:Lj and 'fi:j are all sensitive to this configuration,
while the form of the integral equation is independent of it. In
this section, we will modify (1) and (2) for two identical cracks
which is shown in Fig. 5. In this case D is defined as (b/a , c/a).

With the new definition of D, (1) and (2) will take the following

form.
cl
c(x') 1 1 1 s,
- [ + ]G.l(z) dz =——, b'<x'<e', (46)
E 27 . Ze=x! z+x ! E
b
cl
m(x') 1 1 1 1
2 | [ ] s [ g s ]
E , Z=x"! zZ+x ! (z-x')3 (z+x')3
b
1 1
+ Rll[ . Kz(plz—x'l) + , Kz(p|z+x'|)]] G,(z) dz
Z=X Z4X
o,
=T ’ b* < x' < e' , (47)
~ E
where
x!' = x1/a, b' = bra, ¢! = c/a .

Again we have to convert the limits of integrals to (-1,1) for
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numerical solution purposes. By introducing the following parameters

(keep in mind that from Fig. 5, (e'=b')/2 = 1)

x = (2x'-c'-b') / (e'-b') (48)
x' = [(et=b')x+c'+b'] / 2 = x + [(c'+b?) /7 2] , (49)
dx'= dx ,

and
t = (2z-c¢'=b') / (c'=b') , (50)
z = [(e'=b')tect+b'] / 2 = t + [(c'4b?) / 2] , (51
dz = dt ,

and substituting (27) and (28) for &(x) and m(x) respectively, (46)

and (47) can be rewritten as follows:

X
Ybb(x)fG1(t) dt - R J[RZ[L +l] - 33[1—3 +—1-3]

S l v Y2 i ¥2

x
1 1

+ Ru[y— Ko (p]yq ) +; K2(PlY2|)] ] Gy(t) dt + * pe(x) f Go(t) dt
1 2
-1

26



fe— , =1<x<1 , (52)

x x 1

1 11
* ¢plx) JGj(t) dt + Y pe(x) | Go(t) db = [ —+—] Go(t) dt
2% - "¥y Yo

- - -
%
= — y =1<x<1 , (53)
E

where

N
1]
cr
+
]
+
<
+
e

(54)

Integral equations (52) and (53) will again be solved by Gauss-

Chebyshev closed form integration formula with the additional

conditions

(1]
o
-

!
- J"c;,(t) at

gl

~~
t
N
(=9
(32
"

o

and the same backward procedure defined in Section 2.2 is used to

find stress intensity factors at any point on the crack defined in
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the region (b,c). Due to symmetry with respect to the x2x3 plane,
stress intensity factors on the two cracks are also symmetric with
respect to the same plane. Integral equations are valid for any two
identical crack (edge, internal, two opposite) problem providing the

corresponding 4 functions defired in Section 2.2 .

2.7 Interaction of Three Identical Cracks

As stated earlier integral equations for general case given in
(1) and (2) are valid for any number of cracks provided there is
symmetry with respect to the XgX3 plane. This means that any three
cra;ck system composed of a symmetric crack surrounded by two
identical cracks (not needed to be identical with the third one) can
be solved by wusing (1) and (2). But in this study, for
simplification purposes, all of them are chosen identical.
Configuration and parameters are shown in Fig. 6. D is defined as
(0,1), (b/a , c/a). Because of the nature of the problem, we expect
that erack surface displacements and rotations be symmetric with
respect to the XpX3 plane. This suggests that two outer cracks
should have the same rotation and displacement at the equidistant
points from the origin, while the third one undergoes completely

different displacement and rotation. For this reason G functions
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should be defined seperately for inner crack and two outer cracks.

Let

G ¢ Crack surface rotation derivative for
11
the inner crack, (-a,a),

G12 ¢ Crack opening displacement derivative for
the inner crack, (-a,a),

(}21 : Crack swrface rotation derivative for
the outer crack, (b,e),

G22 : Crack opening displacement derivative for
the outer crack, (b,c).

Also €©(x) and m(x) for the inner and outer cracks should be defined

seperately as follows,

6'1(x) : €(x) for inner crack,
o, (x) : m(x) for inner crack,

€,(x) : &(x) for outer crack,

m2(x) : m(x) for outer crack.

(1) and (2) can be written for inner ecrack

[~
€,x) 1 [1 o ]Gn(Z)dz'-j;;J'[1
b

E 27m z=-x! 2+x"! Z=x"!

29



1 L
+ ] 612(2) dz = —— , 0<x'< 1, (55)
Z+X! E

A [ L] - a

zZ=x'  zZ+x! (z=x')3 (z+x')3
o

1 1
-+ Ru[—— Kz(p Z-x' ) -+
z=x! z+x!

1 1 ! 1
= R‘IJ [Rz[z-xt * z+xv] ) I:t3|:(z-x')3 . (z+x')3]

1 1
+ Byl — Kp(plz-x']) +
z-x1! z+x!

Kz(p Z+4x! )]]G1a(z) dz

Kz(plz-t-x'l)]] G,(2z) dz

Oo

2 —_— 0<x*< 1, (56)

6
and for outer crack
| c'
°2(x') 1 1 1 1 1
- — [_+ ]61 (z) dz = —
E m Z=x"! zZ+x'! 27 z=x"!
e} b

1 L

+ ]G12(z) dz = —, b' < x' < ', (57)
Z+x? E
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(x*) 1 1
2 (e - e
z-x' z+x' (z=x')3  (z+x1)3

o

1 1
Kz(plz-x'l) +
Z=-x! Z4+x!

+ Ry Kz(p|2+x'l)]]G12(z) dz

c

1 1 1 1
" h J/ [Rz[z-x' i z+x'] i R3[(z-x')3 i (z+x')3]

bl

1

K, (p|z+x! l)] ] Gyp(z) dz

K> (plz-x'[) +

+ R [
4 z=-x! z+x!'

==—2 , b'<x'<ec', (58)
6E
where x'= x/a, b'=s b/a, c¢'=c/a.
From (36), we may write
i l
1 1 1
z=x" z+x! Z=x!
(o} -1
i
1 1 1 1
+ - R + + R K,(plz=x"'])
z=x! Z+x! 3[(z-x'):*" (z+x')3] l;[z-x' 2
o
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— 1 1 1
+ K2(p|z+x'l)]]G12(z) dz = Ry - R

Z+x"' z-x' 3 (z-x1)3

1
+ Ry —— Kz(plz-x'l)] Gyo(2z) dz . (60)
2=x!

Same expressions as (59) and (60) can also be written for G4 and

Gop-

If we define
x' = x for -1 <x"'"< 1 ’
) z =t for =1<z <1 ,

and use (49) and (51) for b' < x' < e¢' and D' < z < ¢!
respectively, and substitute (27), (28) for ®(x) and m(x), (55),

(56), (‘57), (58) will take the following final form.

X
L (x) J'Gm(t) dt - R J[Rz[l+—1-] - 33[-15 +1—3]

-1 - 1 Y2 Y2

1 1 1
+ Ru[—Kz(plYﬂ) +—K2(ply2l)]} Goq(t) dt - R, J’[Rz _
¥q Yo y3
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X

1 1
- 33—3 + Rll— Kz(F'Y3I)] G11(t) dt + ‘th(X) Gzz(t) dt
Y3 Y3
-1
m
= — , =1<x<1, (61)
6E
X x 1 '
'ftb(X) JG21(t) dt «+ ?tt(X) jGZZ(t) dt = — [_..
| 2 Z'R_ ¥4
1 ,
+—] Gp(t) at = — _612(1:) dt 2ems , -1<x<1, (62)
Y2 R E
x l .
1 1 11
¥ bp(x) jGn(t) dt - R1J[ o[+ —]- = [_+_3]
iy 1 vy Vs v3 ¥
]
1 1 1
+ Ry—K(p 7y ) +—K(p ¥ )]]Ga“) dt - Ry [ —
Jy ¥g l ¥q
1 1 x
- R3 ""3"’ R).;—Kg(p ¥ ) ] G11(t) dt + ‘fbt(X) G12(t) dt
¥3 ¥q 2
m
: — ., =1<x<1, (63)
6E
x x ]
1 1
2n ¥y

-1 -1 |
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where ¥4

This problem

1 [ s,

dt = — | —Gyo(t) dt =— , =1 <x <1, (64)
2% ¥y E
-
= t-x ’
= tex+b'+e!? ’
= t-x - [(b'+c') / 2] ’
= t+x + [(b'+ec') / 2] '
= t-x + [(b'+ec') / 2] .
has four integral equations, (61), (62), (63),

(64), with four unknown functions, Gyqs Gqps Gpq» Gpp, which will be

solved by Gauss-Chebyshev closed type integration formula under the

following single-valuedness conditions.

I
=i
|
R} _{ Gyo(t) dt = 0 ,
|
!
szz(t) dt = 0 .
-1

After solving for the unknown functions, the same baclward procedure
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defined in Section 2.2 will be used for each crack seperately in

order to find stress intensity factars.

Provided the corresponding % functions, equations (61), (62),
(63), (64) can be applied to any type(edge, internal, collinear) of
identical cracks. The only reason for considering identical cracks
to demonstrate interaction of three cracks in this section is
simplicity. Line-~-spring model can also be applied to any three crack
system which has two outer identical «coracks with another
symmetric(with respect to the x2x3 plane) crack in the middle. In
this case, % functions and crack length will be defined seperately
for both(outer ones and inner one) cracks. One should keep in mind
that crack length is a parameter in the coefficients of (61), (62),
(63), (64). Attention must be paid to redifine the coefficients in

such case.
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3. RESULTS AND DISCUSSION

There are two main objectives in this study:

1. Assess the accuracy of line spring model,

2. Provide extensive numerical results which may be useful
in application.

Due to unavailability of the solutions for the cases that we
are interested in, the first objective can only be reached for the
central (d/h=0) elliptiec internal crack under pure tension.
Extensive results for central, eccentric internal cracks and two
opposite edge cracks as well as the interaction among two and three
cracks are tabulated. In all cases it was assumed that ¢=0.3 .
However, the effect of P on the stress intensity factors does not

seem to be significant.

First step for the application of 1line spring model is to
represent the SIFs as a polynomial in L/h. For this purpose,
extensive information about plane strain (a/Lo } stress intensity
factors are needed. These results are obtained from previous
materials for internal cracks, from [18] for two opposite edge
ecracks and are tabulated in Tables 1,3,5,7,9,11,13,15. Corresponding
coefficients of shape functions are  tabulated in Tables
2,4,6,8,10,12,14,16. Coefficients of shape functions for the edge

erack case are directly taken from [1] and tabulated in Table 17.
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As noted before, for the application of the line spring model,
the contour of the part-through crack can be any reasonable curve,
Elliptic cracks are studied here since it is believed that ellipse
is the closest contour for the actual shape of the crack which may
be encountered in practical applications. Thus, crack length for any

ecross section is defined by,

L(xq) = LV1 = (x,/2)2 = LV1 - 2

L, being the total crack length at the midsection (x=0) . Note that

i
1

the limiting values of the SIF are

- K=-~0 for a/h-0 H K-»Koo for a/h«00

The first case that is studied is the central internal elliptic
erack (d/h=0). Extensive results and formulas developed from a
finite element method for this case are given in [19]. Table 18 and
Figs. 19,20 show the comparision of the SIFs obtained from this
study with those generated from the formulas given in [19]. SIFs
obtained from [19] are represented as K' while the normalizing SIF
is K, = co\/quo/z where &, = Ng;/h. Both values and the percent
differences between them are given for various parameters at x=0 and

x=1/2 . As expected, the SIFs K(Lo) for the elliptic crack are
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consistently smaller than the plane strain values. The table shows
that with the exception of relatively small values of a/LO at small
Lo/h {for which the line spring is really not a suitable model) the
agreement 1s surprisingly good. From the results, one may conclude
that 1line spring can be used with some confidence for any central

internal elliptic crack which has an a/L° ratio larger than 2.

SIFs for the same geometry, but under pure bending are given in
Table 20 (Fig. 21). This time, normalizing SIF is defined as
K, = mOORL°/2)1/2 where m, = 6M§§/h . The results given are for the
tension side. On the compression side the stress intensity factors
have the same values with a negative sign. Under pure bending, since
the crack faces on the compression side of the plate would close,
the results given in the table cannot be used seperately. The
results are, of course, useful and valid if the plate is subjected

to tension, as well as bending, in such a way that the superimposed

SIF is positive everywhere,

From Table 20, by excluding the case of a/LO=0.5 which proved
to be unreliable, it may be concluded that SIF are independent of
a/Ly ratio for L,/h < 0.5 . For L,/h > 0.5 , SIF begins to increase
with increasing L, /h ratio, which is expected. Though we are unable
to confirm the accuracy of the line spring model in this case, we
could say that there is no unusual behaviour in the results. Results

are asymptotically approaching to plane strain values as a/Lo is
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increased except for large Lo/h values.

Another comparision with the previous finite element results
{20] is shown in Table 19 (Fig. 23). It should be noted that in the
results given in Table 19 a/L,=1.25 is relatively small for the line
spring model to be effective. Despite that, the relative error does

not seem to be very high.

After symmetric internal cracks, nonsymmetrically located
internal cracks are studied both under pure tension and pure bending
conditions, Extensive results which scan almost all possible
configurations are given in Tables 21-32 (Figs. 7-18). Normalizing
SIFs are the same as that defined in the previous case for both
teq;ion and bending. Again we are unable to verify in which region
the line spring results are reliable because of the lack of previous
work done on this kind of problem. Asymptotic convergence to plane
strain results is fairly good. A close observation of the tension
results would show that for small a/Lo ratios SIFs first decrease,
then increase with increasing Lo/h. This is mainly due to the fact
that éabulated results are normalized with respect to covGFE;7§ .
Thus, even though the normalized SIF is decreasing, the real SIF may
increase (which indeed happens in this case) but with a lower rate
than the rate of increase of L, . Also, again for small L,/h and
a/L° values SIF on the inside part of the crack front turns out to

be greater than that on the other part of the crack border which is
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closer to the free surface.

Two opposite elliptic edge cracks have been studied only under
pure tension. Normalizing stress intensity factor 1is again
&, (®L,/2)1/2 with &, = Npo/h . Decreasing-increasing behaviour of
the SIFs 1s again observed here. Same explanation which is given
earlier is also valid for this case. Plane strain results are very
close to each other in the region that we observe the slight
decrease in SIFs, For this reason, a small uncertainity in the
" calculations can easily result with a slight decrease while we are
expecting a slight increase. Except this behaviour, everything is as

expected in Table 33 (Fig. 22).

Results for the interaction of two identical elliptic internal
cracks under pure bending and pure tension have been tabulated in
Tables 34 and 35 respectively. It can be seen that there is almost
no interaction between two identical elliptic edge cracks if the
distance between them (Fig.5) is larger than 8 times the half crack
lengthz a. Another result which may be observed is that the
interaction is more effective for the cracks having large Lo/h

ratioes.

SIFs for the two identical central internal elliptiec cracks are
tabulated in Table 36. Results are given only for tension case

because it has been observed that there is no appreciable

ho
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interaction for the crack geometries given in Table 36 under pure
bending. SIF deviates not more than 1% from the single crack value
for b/a=0.1 in bending. It is seen that as the distance between the
two caracks is increased the single crack solution is easily
recovered. There is almost mo interacticn for b/a 3 0.1 for the
cracks L,/h < 0.5 ., If LO/h > 0.5 , no interaction region can be

defined for b/a > 4 .

Interaction results for any two identical elliptic internal
cracks are given in Table 37. Same erratic results are observed for
small a/L, ratios at small L/h ratios. Clearly, for these ecrack

geometries line spring is not a suitable model.

_ As the last example, SIFs for the three identical internal
elliptic cracks under pure tension are calculated and are given in
Table 38. The only conclusion one may draw from these results is
that the SIFs on the middle crack are slightly higher than the SIFs
on the outer crack, But the difference is so small that they may be

regarded as equal.
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TABLES
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Table 1. Stress intensity factors for centrally cracked
plate subjected to tension N or bending M
under plane strain conditions.

Wh | (K/K )y (R/K, )y
0.05 0.0250
0.1 | 1.0060 0.0500
0.2 | 1.024 0.1001
0.3 | 1.0577 0.1505
0.4 | 1.1094 0.2023
0.5 | 1.1867 0.2573
0.6 | 1.3033 0.3197
0.7 | 1.4884 0.398
0.8 | 1.8169 0.5186
0.9 | 2.585 0.7776
0.95 | 4.252 1.1421

Table 2. The coefficients bi and ey for the shape

- functions g¢ and g for symmetric internal
(d/h=0) crack.

43

i bi ey
1 0.7070 0.0169
2 0.4325 -0.4629
3 -0.1091 15.0622
4 T7.37T11 -143,7384
5 -57.7894 807.2449
6 271.1551 -2844, 8525
7 ~T44,4204 61468, 9152
8 1183.9529 -9477.5512
9 ~1001.4920 8638.7826
10 347.9786 ~4455,2167
11 993.24 82



Table 3. Stress intensity factors for the plate which has an
internal crack with d/h=0.05 subjected to uniform
tension N or bending M under plane strain conditions,

Wh | (Ry/K)y (Rp/R)y (Ka/Ko)y (Rp/Kody

0.0001 0.1001 0.1000
0.09 1.0053 1.0050 0.1455 0.0555
0.18 1.0221 1.0200 0.1923 0.0120
0.27 1.0530 1.0452 0.24%09 =0.0305
0.36 1.1021 1.0823 0.2925 =0.0722
0.45 1.1769 1.1340 0.3497 =0.1134
0.54 1.2909 1.2053 0.4175 =0.1547
0.63 1.4731 1.3053 0.5068 =0.1973
0.72 1.7983 1.4518 0.6467 =0.2430
0.81 2.5631 1.6887 0.9525 =0.2923
0.855 | 3.6610 1.8858 1.3814 -0.3125

Table 4. The coefficients of bi and ¢y for the shape
functions g and g for internal crack with

d/0=0.05.

3 Pas PB4 °at °By

1 0.7071 0.7071 0.0708 0.0707
2 0.4597 0. 4347 -0.0623 ~0.3701
3 0.7671 -0.0915 13.1229 0.5654
4 0.1552 2.6973  =166.4280 -6.6423
5 -9.3017 -14,115  1145,8217 45.7189
6- 97.3172 54,9653  =4762.0914  -189.9515
T | -413.9673  -135.3432  12511.5152 498. 8163
8 936. 4719 205.3051 -20927.0019 -~834.5704
9 |-1078.2322  -173.3480  21613.9362 862.1672
10 5040555 62.8847 -12568.0268  -501.4354
11 3148.4879 125.589
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Table 5. Stress intensity factors for the plate which has an
internal crack with d/h=0.10 subjected to uniform
tension N or bending M under plane strain conditions.

Wh | (Ry/R)y (Kg/Kl)y (Kp/K)y (Kp/Koly
0.0001 0.2001  0.2000
0.08 |1.0050  1.004  0.2410  0.1609
0.16 |1.0212  1.0179  0.2843  0.1236
0.24 |1.0513  1.0399  0.3308  0.0881
0.32 [1.0998  1.0709  0.3821  0.0545
0.40 |1.1743  1.1126  0.4410  0.0231
0.48 |1.2887  1.1677  0.5136 =-0.0059
0.56 |1.4722  1.2418  0.6123 =0.0313
0.64 [1.8002  1.345  0.7701 =-0.0504
0.72 |2.5705  1.5167  1.1183 =0.0519
0.76 [3.6693  1.672T  1.6050 =0.0280

Table 6. The coefficients of by and ¢y for the shape
functions g, and g, for internal crack with
d/h=0.10.

i Pas ®B1 ! °By

1 0.7071 0.7072 0.1415 0.1414

2 '0.5498 0.5043 =0.1734 -0.3871

3 1.5235 -0.5779 18.7434 1.2936

4 ~2.2395 7.6480 -266.7713 -17.0715

5 -5.28u44 -52.8793 2066.46 92 132.028

6~ 226.0267 257.2074 -%61.5218 -617.3023

7 -1423.2887 -799.7410 28556.2764 1826.3191

8 4348.1546 1530. 8314 =53734.1216 -3441.9797

9 -6553.5540 -1634.0240 62435.9340 4007.6642

10 3959.2116 749.0673  -408u4.2364 -2628.6642

11 11511.5612 T43.3343

45



Table 7. Stress intensity factors for the plate which has an
internal crack with d/h=0.15 subjected to uniform
tension N or bending M under plane strain conditions.

Wwh | (Ky/R)y (Kg/K)y (Kp/Kdy (Rp/Kody
0.0001 0.3001 0.3000
0.07 1.0049 1.0045 0.3365 0.2663
0.14 1.0208 1.0172 0.3763 0.2352
0.21 1.0506 1.0380 0.4206 0.2066
0.28 1.0988 1.0671 0.4714 0.1807
0.35 1.1729 1.1057 0.5319 0.158
0.42 1.2868 1.1561 0.6089 0.1395
0.49 1.46 93 1.2235 0.7164 0.1271
0.5 |1.7938 1.3197  0.8%09  0.1259
0.63 2.5476 1.489 1.2760 0.1533
0.665 | 3.6065 1.6426 1.8090 0.2032
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Table 8. The coefficients of bi and ey for the shape
functions g; and g, for internal crack with
d/h=0.15.

i bpg bpy Cai Cpi

1 0.7071 0.7072 0.2122 0.2121
2 0.7028 0.6376 =0.2929 -0.4042
3 2.7653 -1.2331 26.3239 2.2494
4 ~7.2036 19.0057 -427.2558 =33.6757
5 9.1384 -173.8407 3782.9591 297.4990
6 667.4954 1108.9410 -20214.1250 -1590.1109
7 -6105.7233 -4517.1019 68285.5344 5378.6049
8 25260.2847 11317.3469 -146859.5866 -11588.2217
9 -50586.0954 -15802.5485 195038.2341 15425.1699
10 40325. 8388 ou75.74 80 -145833.6228 ~11566.8288
11 46980.5243 3740.3538



Table 9. Stress intensity factors for the plate which has an
internal crack with d/h=0.20 subjected to uniform
tension N or bending M under plane strain conditions.

0.0001 0.4001 0.4000
0.06 1.0048 1.0044 0.4319 0.3718
0.12 1.0205 1.0170 0.4682 0.3468
0.18 1.0497 1.0374 0.5102 0.3252
0.24 1.0968 1.0660 0.5601 0.3070
0.30 1.1691 1.1034 0.6216 0.2930
0.36 1.2799 1.1535 0.7020 0.2844
0.42 1.4562 1.2202 0.8162 0.2839
0.48 1.7668 1.3161 1.0031 0.2981
0.54 2.4756 1.4 806 1.4127 0.34&
0.57 3.4498 1.6422 1.9674 0.4165

Table 10, The coefficients of bi and ey for the shape
functions g, and g, for internal crack with

d/h=0.20.

. bas Py Cai °Bi

1 0.7071 0.7072 0.289 0.288
2 0. 9394 0.8534 ~0.4105 -0.4192
3 5.0186 -2.2518 36.3675 3.4524
y -19.6345 47.2610 -686.9924 -59.384 8
5 76.1489 ~589.3736 T097. 1745 611.7194
6 2376. 8770 5125.5432  -44245,1037  -3814.7743
7 | -32402.0663 -28413.7181  174386.6733  15058.0019
8 187563.3073 96818.0664 -437594.1661 -3780.2290
9 |=-517T758.7465 -183T43.9141 678087.6506 58816.9514
10 566112.6482 149736.5141 -591607.7634 ~51479.6217
11 222394.827T  19433.7456
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Table 11. Stress intensity factors for the plate which has an
internal crack with d/h=0.25 subjected to uniform
tension N or bending M under plane strain conditioas.

h | (Kp/Ro)y (Kp/Roly  (Kp/Koly (Kp/Koly

0.0001 0.5001 0.5000
0.05 1.0046 1.0042 0.5273 0.47T1
0.10 1.0197 1.0165 0.5598 0.4583
0.15 1.0476 1.0364 0.5991 o.4434
0.20 1.0925 1.0644 0.6473 0.4327
0.25 1.1610 1.1016 0.7084 0.4270
0.30 1.2652 1.1505 0.7%00 0.4277
0.35 1.42% 1.2160 0.9074 0.4380
0.40 1.7151 1.3099 1.099% 0.4649
0.45 2.3529 1.4684 1.5149 0.5310
0.475 | 3.2077 1.6192 2.0658 0.6085

Table 12. The coefficients of bi and ey for the shape
functions g¢ and gy for internal crack with

d/h=0.25.

i bay bpy Cpy :7

1 0.7071 0.7071 0.3536 0.3536
2 1.3041 1.1918 -0.52146 ~0.428Y
3 9.6510 -4.1793 50.2589 4.85%
4 -57. 8163 129,.7358  =1136.1027 ~97.6558
5 450.7761  =-2325.3551 14085.0245 1206.5210
& 10351. 821  29069.6053 =105370.0173  =9029.9162
7 | -227973.9193 -231101.0011 498386.1475  42788.3389
8 | 1960136.6080 1128028.3541 -1500844.1305 -129153.3052
9 |-7899243.5583 ~3063223.0225 2791092.0497 240895.9775
10 |12538854.7550 3568834.5097 ~-2922538.27T7T9 =-253169.5873
11 1318591.9416 114779.2%5
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Table 13. Stress intensity factors for the plate which has an
internal crack with d/h=0.30 subjected to uniform
tension N or bending M under plane strain conditions.

/h (Kp/Kdy  (Kp/Kody  (Kp/K)y  (Rp/Kgly
0.001 0.6001  0.6000
0.04 1.0043  1.0040  0.6226  0.584
0.08 1.0183  1.0155  0.6510  0.568
0.12 1.08452  1.0343  0.687  0.5607
0.16 1.0855  1.0608  0.7320  0.5568
0.20 1.1481 1.0959  0.799  0.558
0.24 1.2425  1.1419  0.8708  0.5669
0.28 1.3898  1.2031 0.986  0.5855
0.32 1.6423  1.2895  1.1755  0.6209
0.36 2.1937  1.4309  1.5773  0.6939
0.38 2.9157  1.5591  2.0992  0.7709

Table 14. The coefficients of bi and ey for the shape
functions gt and 8p for internal crack with
d/h=0.30.
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bpy bps Ca1 Cpy
1 0.7071 0.7071 0.4244 0.4243
2 1.9027 1.74 80 -0.6553 -0.4321
3 20. 8636 -8. 9087 72.3179 6.6403
3 -197.8895 440.7103 -2037.1553 -160.0429
5 2675.1513 -12390.9668 31569.7505 2468. TT4T
6 - T71601.3880 241718. 2677 -205202.5115 ~23090.84 86
7! =2639273.5314 <2989605.6659 1T45346.7908 136788.4159
8| 35994016.1511 22618755.1306 -6570139.7052  =516213.4074
9|-227958779.2155 -94950523.9757  15273818.2302  1203928.2026
10| 567162515, 8604 170542044.2578 -19993047.6604 -1582260.0614
11 11276922.9053 897240.7983



Table 15. Stress intensity factoars for the plate with
collinear edge cracks subjected to uniform
tension N under plane strain conditions.

Wh (K/K,) y

o
o
s

1.1221
1.1231
1.1254
1.1292
1.1370
1.1546
1.2117
1.3254
1.5393
2.0836

e e o e« o s e
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Table 16. The coefficients of b; for the shape function
8¢ for collinear edge crack.

L]

by

0.7934
0.0775
-0.7542
T7.5&85
-12.1712
~186.5011
1236.2858
-3043.6190
3350.3456
-1374. 8426

OCWoOTOWUVMEWN =

-l
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Table 17. The coefficients of bi and cy for the shape

functions gy and g; for edge crack.

i bi ey

1 1.1216 1.1202
2 6.5200 -1.8872
3 -12.3877 18.0143
4 89.0554 -87.3851
5 -188.608 241.9124
6 207.3870 ~319,9402
7 =-32.0524 168.0105
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Table 18. Comparison of the stress intensity factars K(x)
calculated in this study at x=0 and x=1/2 (x=x,/a)
for an internal planar elliptic crack in a plate under
uniform tension N with the corresponding values KT (x)
given in Ref.[19] . ¥D=100(kKT-K)/K' .

r
L,/h a/L, X K(x)/Ko K (x)/K, %D
0.1 0.5 0 0.916 0.637 43.7
0.1 0.5 1/2 0.868 0.637 36.2
0.1 1.0 0 0.955 0.827 15.5
0.1 1.0 1/2 0.896 0.785 14.2
u1 200 0 0.9’6 0'935 403
.1 2.0 172 0.911 0.875 4.1
0.1 3.0 0 0.983 0.967 1.7
0.1 3.0 172 0.916 0.902 1.6
0.1 4.0 o 0.987 0.980 0.6
0.1 4.0 1/2 0.919 0.914 0.5
0.1 10.0 0 0.993 0.999 =0.6
- 0.1 10.0 172 0.923 0.930 -0.7
0.2 0.5 0 0.82 0.638 35.1
0.2 0.5 1/2 0.827 0.638 29.6
0.2 1.0 0 0. 931 0.830 12.2
0.2 1.0 172 0.880 0.788 11.6
0.2 2.0 0 0.971 0.942 3.1
< 0.2 2.0 172 0.908 0.881 3.1
0.2 3.0 0 0.98 0.976 1.0
0.2 3.0 /2 0.918 0.910 0.9
0.2 5.0 0 0.993 0.99 0.2
0.2 4.0 172 0.923 0.923 0.0
0.2 10.0 0 1.007 1.013 =0.6
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Table 18~ Cont.

'
O,
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K(x)/Ko

K"(x)/K°

o O
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oo
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ww ww W w ww w W ww

oo
e e

= ww n - 2 o0
L] L] L]
oo oo [eNe] T,

[N e]

0.814
0.79%6

0.920
0. 871

0.979
0.914

1.001
0.930

1.012
0.937

1.034
0.952
0.798
0.775

0.920
0.871

1.000
0.929

1.030
0.950

1.047
0.961
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0.641
0.640

0.837
0-79“

0.957
0.893

0.9%
0.927

1.014.
0.942

1.041
0.966
0.61;5
0.644

0.851
0.804

0.984
0.915

1.031
0.955

1.054
0.974

1.091
1.005



Table 18- Cont.

r

L/h | a/Ly | x K(x)/R,  KT(x)/K, %D

0.5 0.5 0 0.783 0.654 19.8
0.5 0.5 172 0.761 0.650 17.2
0.5 1.0 0 0.932 0.874 6.7
0.5 1.0 1/2 0.880 0. 821 7.3
0.5 2.0 0 1.036 1.030 0.6
0.5 2.0 1/2 0.956 0.949 0.7
0.5 3.0 0 1.078 1.090 -1.1
005 3.0 1/2 0-9&" 00998 -101;
0-5 u-o 0 10101 10121 -1-8
0.5 4.0 1/2 0.998 1.023 -2.4
005 10.0 0 1.11"5 10172 -2.1"
0.5 10.0 /2 1.025 1.063 ~-3.5
0.6 0.5 0 0.779 0.667 16.9
0.6 0.5 1/2 0.756 0.658 14.9
0.6 1.0 0 0.%0 0.911 5.4
0.6 1.0 1/2 0.901 0. 846 6.4
0.6 2‘0 0 1.095 10103 -0.8
0.6 2.0 1/2 0.997 0.999 -0.2
0.6 3.0 0 10151 1.183 -2.7
0.6 3.0 1/2 1.033 1.061 -2.6
0.6 3.0 0 1.183 1.225 -3.5
006 u.o 1/2 1'052 1.092 -306
0.6 10.0 0 1.245 1.298 =4.0
0.6 10.0 1/2 1.088 1.143 -4.7
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Table 18- Cont.

r
Lsh | oasL, | x K(x)/K,  KF(x)/K, 3D
0.7 0.5 0 0.788 0.687 .7
0.7 0.5 172 0.760 0.671 13.3
0.7 1.0 0 1.009 0.9%38 4.3
0.7 1.0 1/2 0.935 0.88 6.0
0.7 2.0_ 0 1-187 1.213 -2.2
007 2.0 1/2 1.058 1.067 -Oo
0.7 3.0 0 1.266 1.322 -4.2
0.7 3.0 1/2 1.106 1.144 -3.3
0.7 u-o 0 1.310 1.381 "'501
0.7 4,0 172 1.132 1.183 -4.3
0.7 10-0 0 1.“03 10&83 ‘.5.4
0.7 10. 172 1.179 1.242 =-5.1
0.8 0.5 0 0.818 0.717 14,
0.8 0.5 172 0.777 0.686 12.9
0.8 1.0 0 1.0% 1.051 y,
0.8 1.0 172 0.991 0.930 6.
0.8 2.0 0 1.341 1.372 -2.
0.8 2.0 172 1.152 1.182 0.
. 0.8 3.0 0 1.457 1.521 -4.3
0.8 3.0 172 1.218 1.245 -2.2
0.8 3.0 0 1.525 1.603 -4,
0.8 4.0 172 1.253 1.290 =-2.
0.8 10.0 0 1.674 1.747 -4.2
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Table 18- Cont.

r
Lo/h a/Lo X K(x)/K° K (x)/Ko ZD
0.9 0.5 0 0.905 0.759 19.3
0.9 0.5 172 0.813 0.709 14.7
0.9 1.0 0 1.284 1.167 10.0
0.9 1.0 172 1.086 0.987 10.1
0.9 2.0 0 1.661 1.594 4,2
0.9 2.0 172 1.310 1.246 5.1
0.9 3.0 0 1.858 1.799 3.3
0.9 4.0 0 1.981 1.912 3.6
0.9 4.0 1/2 1.456 1.392 4.6
Table 19. Ccmparison of the stress intensity factors K(Lo)

calculated in this study at the midsection of a

symmetrically located internal(d/h=0) planar crack

in a plate under uniform tension N with the
corresponding results KT given in [20].

a/Lg=1.25, x=xq/a=cosB, $D=100(K-K")/K.

Lo/h=-75’

e x KT/K, /K, 4D
90° 0 0.985 1.120 13.7
80° | 0.174 0.971 1.103 13.6
70° | 0.342 0.94Y 1.0%2 11.4
60° | 0.500 0.898 0.973 8.4
45° | 0.707 0.810 0.832 2.7
40° | 0.766 0.770 0.742 -3.6
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Table 20. Normalized stress intensity factors calculated
at the midsection of a symmetrically located
(d/h=0) internal planar elliptic crack in a
plate under uniform bending M.

a/Ls>0.5 2.0 3.0 40 5.0 10.0 |Plane
Lo/h Strain
0.1 .05 .05 .050 .050 .05 .050 |.050
0.2 .099 .099 .099 .099 .099 .099 |.100
0.3 138  .1h9 149 .149  .149 .149 |[.151
0.4 .195  .199  .199 .199 .200 .200 |.202
0.5 .280 .250 .251 .252 .253 .254 |.257
0.6 .285 . 305 .308 .310 311 «313 .320
0.7 .332  .369 .375 .379 .38 .387 |.399
0.8 .387 457 .470 .478 .483 4% |.519
0.9 476 .619 .650 .670 .68 .77 |.778
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Table 21. Normalized stress intensity factors calculated at the
midsection of an internal planar elliptic crack with

d/h=.05 in a plate under uniform tension N.

KA/Ko

a/Lo-.O.S 1.0 2.0 3.0 4.0 7.0 10.0 Plane
LO/h Strain
.05 0.954 0.975 0.987 0.990 0.992 0.9% 0.99 1.002
.15 0.887 0.944 0.976 0.988 0.994 1.001 1.004 1.015
.25 0.838 0.926 0.979 0.998 1.008 1.022 1.028 1.045
.35 0.84 0.9217 0.9¢6 1.025 1.040 1.061 1.070 1.0%
A5 0.78 0.931 1.032 1.073 1.0% 1.126 1.139 1.177
.55 0.775 0.959 1.09% 1.153 1.185 1.231 1.251 1.307
.65 0.786 1.018 1.204 1.288 1.336 1.407 1.439 1.529
.75 0.88 1.134 1.407 1.539 1.619 1.742 1.799 1.970
.85 0.994 1.479 1.987 2.268 2.452 2.761 2.921 3.481
- KB/Ko

a/Lo...O.s 1.0 2.0 3.0 4.0 7.0 10.0 Plane
Lo/h Strain
.05 0.955 0.976 0.987 0.997 0.993 0.99%5 0.99% 1.002
.15 0.891 0.94% 0.977 0.988 0.993 1.001 1.003 1.074
.25 0.847 0.929 0.978 0.99 1.006 1.018 1.023 1.039
.35 - 0.817 0.923 0.991 1.017 1.031 1.049 1.056 1.078
.45 0.798 0.928 1.017 1.051 1.070 1.0% 1.105 1.134
.55 0.789 0.944 1,05 1.102 1.127 1.161 1.176 1.215
.65 0.788 0.972 1.115 1.176 1.210 1.257 1.277 1.333
.75 0.797 1.017 1.201 1.284 1.332 1.401 1.432 1.517
.85 0.822 1.088 1.334 1.455 1.529 1.643 1.697 1.859
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Table 22, Normalized stress intensity factors calculated at the
midsection of an internal planar elliptic crack with
d/h=0.10 in a plate under uniform tension N.

Ky /K,

a/Ly+0.5 1.0 2.0 3.0 4.0 7.0 10.0 Plane

L,/h Strain
.05 0.950 0.974 0.98 0.990 0.992 0.9% 0.99 1.002
.15 0.878 0.940 0.975 0.988 0.994 1.003 1.006 1.018
.25 0.825 0.921 0.98 1.002 1.013 1.029 1.036 1.0%
.35 0.789 0.919 1.004 1.037 1.055 1.081 1.092 1.124
.45 0.770 0.937 1.056 1.105 1.132 1.172 1.189 1.240
.55 0.770 0.98 1.152 1.226 1.268 1.331 1.360 1.44%4
.65 0.805 1.093 1.342 1.42 1.534 1.646 1.699 1.860
.75 0.9%1 1.426 1.900 2,159 2.329 2.615 2.764 3.291
Kp/K,

a/L,=0.5 1.0 2.0 3.0 4.0 7.0 10.0 Plane

L,/h Strain
.05 0.952 0.974 0.98 0.990 0.993 0.9 0.99% 1.002
.15 0.88 0.943 0.976 0.988 0.993 1.001 1.005 1.016
.25 0.843 0.927 0.979 0.998 1.007 1.021 1.026 1.043
.35 0.815 0.923 0.993 1.020 1.034 1.054 1.062 1.085
.45 0.798 0.928 1.019 1.055 1.075 1.102 1.113 1.145
.55 . 0.789 0.944 1.059 1.107 1.133 1.171 1.187 1.231
.65 0.788 0.970 1.116 1.181 1.218 1.272 1.29% 1.363
.75 0.795 1.010 1.203 1.297 1.355 1.445 1.488 1.625
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Table 23. Normalized stress intensity factars calculated at the
midsection of an internal planar elliptic crack with
d/h=0.15 in a plate under uniform tension N.

Ky /K,
a/Lg»0.5 1.0 2.0 3.0 4.0 7.0 10.0 Plane
LO/h Strain
.05 0.944 0.971 0.98 0.989 0.992 0.99% 0.99 1.002
.15 0.84% 0.93% 0.974 0.988 0.9% 1.006 1.010 1.02%
.25 0.808 0.916 0.98 1.009 1.022 1.041 1.049 1.076
.35 0.773 0.921 1.020 1.060 1.083 1.115 1.129 1.173
45 0.761 0.956 1.101 1.164 1.200 1.25% 1.279 1.354
.55 0.784 1.051 1.273 1.378 1.441 1.540 1.588 1.733
.65 0.926 1.362 1.789 2.021 2.172 2.427 2.560 3.033
Kp/K,

a/L 0.5 1.0 2.0 3.0 4,0 7.0 10.0 Plane
Ly/h Strain
.05 0.964 0.972 0.985 0.99 0.992 0.9%5 0.99 1.002
.15 0.876 0.939 0.975 0.988 0.994 1.003 1.007 1.020
.25 0.833 0.923 0.979 1.000 1.012 1.027 1.033 1.054
.35 0.806 0.920 0.997 1.027 1.044 1.067 1.077 1.106
.45 0.791 0.929 1.028 1.070 1.093 1.126 1.141 1.18
.55 0.784 0.947 1.076 1.134% 1.167 1.216 1.238 1.303
.65 _ 0.783 0.976 1.15%2 1.239 1.293 1.379 1.422 1.561
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Table 24, Normalized stress intensity factors calculated at the
midsection of an internal planar elliptic crack with
d/h=0.20 in a plate under uniform tension N.

KA/Ko
a/Ld-o.s 1.0 2.0 3.0 4.0 7.0 10.0 Plane
LO/h Strain
.05 0.964 0.967 0.98 0.98 0.991 0.995 0.99% 1.003
.15 0.848 0.928 0.974 0.990 0.999 1.011 1.016 1.033
.25 0.790 0.914 0.9%2 1.022 1.039 1.062 1.073 1.107
.35 0.761 0.933 1.054 1.104 1.133 1.176 1.166 1.258
U5 0.770 1.019 1.202 1.289 1.342 1.424 1.463 1.587
.55 0.8%6 1.293 1.666 1.83 1.990 2.204 2.316 2.T10

KB/Ko
- a/Loq—O.S 1.0 2.0 3.0 4,0 7.0 10.0 Plane
Lo/h Strain
.05 0.939 0.968 0.98 0.989 0.992 0.995 0.9% 1.003
.15 0.8%3 0.933 0.974 0.988 0.9% 1.006 1.011 1.026
.25 0.818 0.918 0.98 1.006 1.020 1.038 1.04 1.072
.35 0.793 0.918 1.007 1.043 1.063 1.092 1.105 1.144
.45 0.779 0.931 1.049 1.102 1.132 1.178 1.199 1.263
.55 0.770 0.955 1.121 1.204 1.25 1.340 1.382 1.52%4
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Table 25. Normalized stress intensity factors calculated at the
midsection of an internal planar elliptic crack with
d/h=0.25 in a plate under uniform tension N,

KA/Ko
a/Lo--O.S 1.0 2.0 3.0 4.0 7.0 10.0 Plane
LO/h Strain
.05 0.927 0.962 0.981 0.988 0.991 0.99% 0.997 1.005
.15 0.831 0.922 0.976 0.995 1.006 1.020 1.026 1.048
.25 0.776 0.919 1.013 1.051 1.071 1.101 1.115 1.161
.35 0.768 0.977 1.133 1.201 1.241 1.303 1.333 1.429
45 0.876 1.228 1.540 1.698 1.798 1.964 2.051 2.353
KB/Ko
a/Lo-»O.S 1.0 2.0 3.0 4.0 7.0 10.0 Plane
I.IO/h Strain
.05 0.930 0.964 0.982 0.988 0.991 0.995 0.997 1.004
.15 0.847 0.926 0.973 0.991 1.000 1.012 1.0%17 1.036
.25 0.801 0.913 0.98 1.018 1.034 1.057 1.068 1.102
.35 0.775 0.919 1.026 1.072 1.098 1.138 1.157 1.216
.45 0.758 0.938 1.095 1.172 1.220 1.297 1.336 1.468
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Table 26. Normalized stress intensity factors calculated at the
midsection of an internal planar elliptic crack with
d/h=0.30 in a plate under uniform tension N.

Ky/K,
a/Lo-’O.S 1.0 2.0 3.0 4.0 T.0 10.0 Plane
Lo/h Strain
.05 0.917 0.958 0.98 0.987 0.991 0.99% 0.998 1.007
.15 0.816 0.921 0.985 1.008 1.021 1.038 1.04 1.073
.25 0.780 0.951 1.070 1.119 1.146 1.187 1.207 1.273
.35 0.89 1.170 1.420 1.537 1.610 1.727 1.787 1.9%
KB/KO
a/Lo-O.S 1.0 2.0 3.0 4.0 7.0 10.0 Plane
Ly,/h Strain
.05 0.919 0.959 0.98 0.987 0.991 0.996 0.997 1.006
.15 0.829 0.920 0.976 0.997 1.008 1.023 1.030 1.053
.25 0.783 0.914% 1.005 1.042 1.063 1.093 1.108 1.156
.35 0.753 0.927 1.071 1.138 1.178 1.243 1.276 1.387
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Table 27. Normalized stress intensity factors calculated at the
midsection of an internal planar elliptic crack with
d/h=0.05 in a plate under uniform bending M.

KA/Ko

a/Lo-—‘].O 2.0 3.0 4.0 7.0 10.0 Plane
Lo/h Strain
.05 0.118 0.119 0.120 0.120 0.120 0.120 0.121
.15 0.170 0.173 0.174 0.175 0.176 0.176 0.177
.25 0.217 0.222 0.224 0.225 0.227 0.228 0.230
.35 0. 266 0.274 0.278 0.279 0.282 0.283 0.287
.45 0.316 0.229 0.335 0.338 0.342 0.344 0.350
<55 0.371 0.391 0. 400 0.405 0.412 0.416 0.426
.65 0.436 0.9 0.48 0.403 0.506 0.513 0.532
.75 0.528 0.58 0.614 0.631 0.659 0.673 0.716
.85 0.753 0.889 0.963 1.013 1.099 1.1484 1.313
] Kp/K,

a/Lo—-1.0 2.0 3.0 4.0 7.0 10.0 Plane
LO/h Strain
.pS 0.073 0.074 0.074 0.074 0.074 0.075 0.075
.15 0.020 0.023 0.024 0.025 0.025 0.026 0.026
.25 -0.032 -0.027 =0.025 ~0.024 -0.023 =0.022 -0.021
.35 -0.082 <0.075 -0.073 -0.072 -0.070 -0.069 =0.068
.45 -0.130 -0.123 =-0.120 -0.118 =0.116 =0.115 ~0.113
.55 -0.178 =-0.170 <=0.167 =0.165 <0.162 =0.161 =0.159
.65 -0.226 -0.219 <0.215 =0.213 -=0.210 -0.209 =0.207
.78 -0.278 -0.272 -0.269 -0.267 =~0.264 -0.262 =-0.259
.85 -0.339 -0.338 -=0.334 -0.331 -0.325 -0.322 -0.311
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Table 28. Normalized stress intensity factors calculated at the
midsection of an internal planar elliptic crack with
d/h=0.10 in a plate under uniform bending M.

65

Kp/K,

a/Lo-..1.0 2.0 3.0 4.0 7.0 10.0 Plane
Lo/h Strain
.05 0.216 0.218 0.219 0.219 0.220 0.220 0.221
.15 0.263 0.270 0.273 0.27T4 0.2716 0.27T6 0.279
.25 0.308 0.321 0.325 0.328 0.331 0.332 0.337
.35 0.35T 0.376 0.38 0.387 0.393 0.395 0.403
45 0.412 0.440 0.451 0.457  0.467 0.471 0.484
.55 0.477 0.520 0.538 0.549 0.56 0.574 0.598
.65 0.571 0.642 0.676 0.697 0.730 0.746 0.797
.75 0.804 0.959 1.045 1.101 1.199 1.251 1.441
A Kg/K,

a/L,—»=1.0 2.0 3.0 4.0 7.0 10.0 Plane
LO/h Strain
.05 0.170 0.172 0.173 0.173 0.174 0.174 0.175
.15 0.114 0.120 0.123 0.124 0.125 0.126 0.128
.25 0.061 0.071 0.075 0.077 0.080 0.081 0.084
.35 0.010 0.024 0.030 0.033 0.037 0.038 0.043
.45 ~-0.038 -0.020 -0.013 <=0.009 =0.004 -0.001 0.005
.55- -0.084 -0.062 -0.053 -0.048 =0.040 -0.037 ~0.028
.65 -0.128 =0.102 -0.089 -0.08 ~0.071 -0.066 <=0.052
.75 -0.171 =0.137 =0.117 -0.105 =0.083 =0.073 ~0.037



Table 29. Normalized stress intensity factors calculated at the
midsection of an internal planar elliptic crack with
d/h=0.15 in a plate under uniform bending M.

KA/K°

a/Lo—>1.0 2.0 3.0 4.0 7.0 10.0 Plane
Lo/h Strain
.05 0.313 0.317 0.319 0.319 0.320 0.321 0.323
.15 0.355 0.367 0.37 0.373 0,376 0.378 0.382
.25 0.399 0.420 0.428 0.432 0.438 0.440 0.4449
.35 0.450 0.482 0.495 0.502 0.512 0.517 0.532
45 0.514 0.563 0.584 0.59% 0.614 0.623 0.650
.55 0.610 0.689 0.727 0.750 0.78 0.8%L4 0.80
.65 0.846 1.015  1.106 1.167 1.270  1.325 1.524

KB/Ko

a/Lo-q-1.0 2.0 3.0 4.0 7.0 10.0 Plane
Lo/h Straan
.05 0.266 0.270 0.272 0.273 0.273 0.274 0.275
.15 0.207 0.218 0.221 0.223 0.226 0.227 0.231
.25 0.152 0.169 0.176 0.179 0.184 0.186 0.191
.35 0.101 0.125 0.134 0.139 0.146 0.149 0.158
45 0.055 0.08 0.098 0.105 0.116 0.120 0.133
.55 0.011 0.051 0.069 0.080 0.0% 0.104 0.125
.65 -0.028 0.028 0.058 0.077 0.108 0.123 0.176
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Table 30. Normalized stress intensity factors calculated at the
midsection of an internal planar elliptic crack with
d/h=0.20 in a plate under uniform bending M.

KA/K‘J
a/Ly-»1.0 2.0 3.0 4.0 7.0 10.0 Plane
Lo/h Strain
.05 0.410 0.417 0.419 0.420 0.421 0.422 0.425
.15 0.445  0.464  0.471 0.474 0.479 0.481 0.488
.25 0.490 0.522 0.534 0.5 0.551 0.555 0.569
.35 0.549 0.600 0.621 0.633 0,651 0.660 0.687
.45 0.642 0.725 0.764 0.787 0.823 0.841 0.897
.55 0.875 1.050 1.142 1.202 1.303 1.357 1.549
KB/K‘>
- a/L°—>1.0 2.0 3.0 4.0 7.0 10.0 Plane
LO/h Strain
.05 0.362 0.368 0.370 0.372 0.373 0.373 0.376
.15 0.298 0.315 0.321 0.324 0.328 0.329 0.336
.25 0.242 0.268 0.278 0.283 0.291 0.2% 0.304
.35 0.193 0.229 0.244 0.252 0.264 0.269 0.285
A5 0.148 0.197 0.219 0.232 0.25% 0.261 0.289
.55 0.109 0.181 0.218 0.242 0.280 0.299 0.365
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Table 31. Normalized stress aintensity factcrs calculated at the
midsection of an internal planar elliptic crack with
d/h=0.25 in a plate under uniform bending M.

KA/KO
a/Lo-ﬂ>1.0 2.0 3.0 4.0 7.0 10.0 Plane
LO/h Strain
.05 0.506 0.516 0.519 0.520 0.523 0.523 0.527
.15 0.535 0.563 0.573 0.578 0.585 0.589 0.599
.25 0.58 0.633 0.652 0.662 0.677 0.685 0.708
<35 0.670 0.751 0.787 0.808 0. 840 0.856 0.907
45 0.895 1.066 1.182 1.206 1.298 1.346 1.515

Kp/K,
a/Lo-—>1.0 2.0 3.0 4.0 7.0 10.0 Plane
'Lo/h Strain
.05 0.457 0.466 0.469 0.471 0.473 0.473 0.477
.15 0.388 c.412 0.421 0. 425 0. 431 0.434 0.443
.25 0.332 0.370 0.385 0.393 0.405 c.410 0.427
35 0.285 0.340 0.363 0.377 0.398 C.407 0.438
.45 0.305 0.332 0.369 0.395 0.437 0.459 0.513

68



Table 32. Normalized streéé intensity factors calculated at the
midsection of an internal planar elliptic crack with
d/h=0.30 in a2 plate under uniform bending M.

KA/K°
a/Lo-_-1.0 2.0 3.0 4.0 7.0 10.0 Plane
Lo/h | Strain
.05 0.600 0.614 0.618 0.621 0.624 0.625 0.630
.15 0.627 0.666 0.680 0.688 0.698 0.703 0.720
.25 0.698 0.771 0.801 0.817 0.842 0.855 0.895
.35 0.910 1.067 1. 141 1.187 1. 261 1.300 1. 432
KB/Ko
a/Lo—a-1.0 2.0 3.0 4.0 7.0 10.0 Plane
Lolh 1 Strain
.05 0.550 0.563 0.567 0.570 0.572 0.574_  0.579
.15 0.477 0.511 0.524 0.530 0.539 0.543 0.557
.25 0. 423 0.479 0.501 0.51% 0.533 0.542 0.570
.35 0.381 0.471 0.513 0.538 0.579 0.600 0.669

Table 33. Normalized stress intensity factors calculated at the
midsection of two opposite planar elliptic edge cracks
in a plate under uniform tension N.

a/Ly—=1.0 2.0 3.0 40 10.0  100.0 Plane
Loy/h Strain
0.1 1.060 1.089  1.099 1.104 1.113 1.119 1.123
0.2 1.009 1.062 1.081 1.091 1.109 1.121 1.125
0.3 0.966 1.028 1.065 1.079 1.106 1.124  1.129
0.4 0.929 1.019 1.053 1.072 1.108 1.131 1.137
0.5 0.902 1.008 1.050 1.073 1.118 1.148 1.155
0.6 0.902 1.038 1.080 1.108 1.165 1.203 1.212
0.7 0.929 1,082 1.149 1.186 1.262 1.315 1.325
0.8 0.997 1.195 1,284 1.336 1.445 1.524  1.539
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Table 34. Maximum normalized stress intensity factors for
two planar elliptic edge cracks in a plate
under pure tension N

b/a == 0.1 1.0 5.0 20.0 Single
Lo/h a/Lo Crack
0.1 2 0.996 0.98 0.98& 0.981 0.981
0.1 4 1.072 1.065 1.062 1.062 1.062
0.1 10 1.127 1.122 1.121 1.120 j.120
0.2 2 0.979 0.959 0.951 0.%49 0.%49
0.2 y 1.107 1.060 1.084 1.08 1.08
0.2 10 1.221 1.210 1.207 1.206 1.206
0.3 2 1.007 0.975 0.963 0.961 0.961
0.3 y 1.189 1.160 1.151 1.149 1.149
0.3 10 1.38 1.364 1.359 1.358 1.358
0.4 2 1.051 1.006 0.991 0.989 0.989
0.4 '} 1.299 1.255 1.243 1.240 1.240
0.4 10 1.600 1.571 1.563 1.562 1.862
0.5 2 1.106 1.048 1.032 1.030 1.030
0.5 4 1.430 1.370 1.354 1.352 1.352
0.5 10 1.879 1.836 1. 824 1.822 1.821
0.6 2 1.230 1.066 1.080 1. 077 1.077
0.6 4 1.568  1.49 1.472 1.869 1.4609
0.6 10 2.208 2.141 2.124 2.121 2.121
0.7 2 1.370 1.120 1.100 1.097 1.097
0.7 4 1.694 1.575 1.553 1.550 1.550
0.7 10 2.532 2.434 2.4009 2.405 2.405
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Table 35. Maximum normalized stress intensity factors for
two planar elliptic edge cracks in a plate
under uniform bending M.

b/a —= 0.1 1.0 4.0 20.0 Single
Lo/h a/Lo Crack
0.1 2 0.874 0.864 0.861 0.860 0.860
0.1 L 0.9143 0. 936 0. 934 0.933 0.933
0.1 10 0.992 0.988 0.987 0.986 0.98
0.2 2 0.766 0.728 0.719 0.718 0.718
0.2 q 0.847 0. 830 0. 825 0.824 0.824
0.2 10 0.940 0.930 0.927 0.927 0.927
0.3 2 0.751 0.665 0.651 0.650 0.650
0.3 y 0. 803 0.755 0.745 0.744 0.744
0.3 10 0.915 0.900 0.896 0.896 0.895
0.4 2 0.792 0.677 0.659 0.658 0.656
0.4 4 0. 801 0.726 0.713 0.711 0.711
0.4 10 0.923 0.902 0.8% 0.895 0.895
0.5 2 0.826 0.684 0.663 0.661 _ 0.659
0.5 4 0. 834 0.719 0.703 0.701 0.700
0.5 10 0.950 0.910 0.902 0.901 0.901
0.6 2 0.855 0.68 0.662 0.660 0.659
0.6 h 0.909 0.743 0.724 0.722 0.721
0.6 10 0.995 0.925 0.912 0.910 0.910
0.7 2 0.874 0.683 0.658 0.655 0.654
0.7 ] 0.989 0.784 0.761 0.759 0.757
0.7 10 1.064 0.956 0.939 0.937 0.936
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Table 36. Nermalized stress intensity factors calculated at the
midsection of symmetrically located(d=0) two identical
planar internal elliptic cracks in a plate under
uniform tension N.

L,/h | a/Ly Crack
0.1 2 0.977  0.976  0.976  0.976  0.967
0.1 4 0.967 0.987 0.987  0.98  0.987
0.1 | 10 0.99%  0.993  0.993  0.993  0.993
0.2 2 0.975 0.972 0.971  0.97t  0.971
0.2 4 0.995  0.9%%  0.993  0.993  0.993
0.2 | 10 1.008  1.007  1.007  1.007  1.007
0.3 2 0.980  0.980  0.979  0.979  0.979
0.3 Y 1.015  1.013  1.012  1.012  1.012
0.3 | 10 1.035  1.03%  1.03%  1.03%  1.034
0.4 2 1.007  1.002  1.000  1.000  1.000
0.4 4 1.051  1.048  1.047  1.047  1.047
0.4 | 10 1.080  1.078  1.078  1.078  1.078
0.5 2 1.04  1.039  1.037  1.036  1.036
0.5 4 1.106  1.102  1.101  1.101  1.101
0.5 | 10 1,147 1,185 1155 11850 1,145
0.6 2 1.108  1.098  1.095  1.095  1.095
0.6 4 1.190  1.185  1.183  1.183  1.183
0.6 | 10 1.248  1.246  1.245  1.245  1.285
0.7 2 1.205  1.192  1.188  1.187  1.187
0.7 Y 1.321  1.313  1.311 1.310  1.310
0.7 | 10 1.407  1.404%  1.403  1.403  1.403
0.8 2 1.367  1.3%8  1.342  1.341 1.3
0.8 y 1.541  1.529  1.526  1.525  1.525
0.8 | 10 1.681  1.676  1.674  1.674  1.674
0.9 2 1.703  1.672  1.662  1.661  1.661
0.9 4 2.007  1.988  1.98  1.981  1.981
0.9 | 10 2.285  2.275  2.272  2.272
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Table 37. Normalized stress intensity factors calculated at the
midsection of two identical planar internal elliptic
cracks in a plate under uniform tension N.

Ry /K,
b/a—-—po.“ 1.0 u.o 20.0
d | Ly/hj, alLg
0.1 0.1 2 0.957 0. 81 0.981 0.979
0.1 0.1 y 1.002 0.99% 0.9%2 0.99
0.1 0.1 10 1.000 0.999 0.999 0.999
0.1 0.2 2 1.027 0.98 0.977 0.976
0.1 0.2 y 1.005 1.002 1.001 1.001
0.1 0.2 10 1.018 1.018 1.018 1.018
0.1 0.3 2 1.012 0.995 0.990 0.989
0.1 0.3 y 1.03% 1.032 1.031 1.031
0.1 0.3 10
0.1 0.35 2 1.021 1.010 1.005 1.004
0.1 0.35 | 1.058 1.056 1.055 1.055
0.1 0.35 10
0.2 0.1 2 0.947 0.783 0.979 0.976
0.2 0.1 4 1.006 0.995 0.992 0.992
0.2 0.1 10 1.003 1.002 1,002 1.002
0.2 0.2 2 1.052 0.993 0.981 0.979
0.2 0.2 4 1.020 1.016 1.014 1.014
0.2 0.2 10 1.039 1.038 1.038 1,038
~ 002 0025 2 10056 10003 0099“ 00992
0.2 0.25 4 1.044 1.040 1.040 1.039
0.2 c.25| 10 1.073 1.073 1.073 1.073
0.3 0.1 2 0.933 0.760 0.980 0.975
0.3 0.1 y 1.018 1.003 0.999 0.998
0.3 0.1 10 1.C14 1.013 1.013 1.013
0.3 0.15 2 0.81%4 0.98% 0.988 0.98
0.3 0.15 y 1.033 1.024 1.022 1.021
0.3 0.15 10 1.047 1.046 1.046 1.046
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Table 37- Cont.

Rg/K,
b/a—~001 1.0 uoo 20.0
L,/h | a/Ly,
0.1 | 0.1 | 2  0.959 0.830 0.982 0.979
0.1 0.1 4 1.002 0.993 0.991 0.991
0.1 0.1 10 0.999 0.999 0.999 0.999
0.1 0.2 2 1.020 0.984 0.978 0.976
0.1 0.2 4 1.002 1.000 0.999 0.999
0.1 0.2 10 1.014 1.014 1.014 1.014
0 0.3 2 1.004 0.989 0.985 0.984
0. 0.3 L 1.021 1.020 1.019 1.019
0 0.3 10
0.35 2 1.006 0.997 0.993 0.993
0.351 & 1.036 1.035 1.034 1.034
0.35 10
2 0.1 2 0.950 0.799 0.979 0.976
2 0.1 4 1.004 0.9% 0.9¢2 0.991
2 0.1 10 1.001 1.001 1.001 1.001
0.2 2 1.038 0.987 0.977 0.976
0.2 4 1.010 1.007 1.006 1.005
0.2 10 1.026 1.026 1.026 1.026
0.25 2 1.034 0.99 0.983 0.982
0.25 4 1.023 1.021 1.020 1.019
0.25 10 1.046 1.046 1.046 1.046
0.1 2 0.935 0.778 0.978 0.974
0.1 4 1.013 0.999 0.9% 0.995
0.1 10 1.009 1.009 1.008 1.008
0.15 2 0.&9 0.977 0.979 0.977
0.15 4 1.019 1,011 1.008 1.008
0.15 10 1.030 1.030 1.030 1.030
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Table 38, Normalized stress intensity factars calculated at
the midsection of three identical planar internal
elliptic cracks in a plate under uniform tension N.

Kp/Ky for the middle crack

b/a == 0.1 1.0 4.0 20.0
d Lo/h a/Lo
0.1 0.1 2 0.983 0.981 0.979 0.979
0.1 0.1 4 0.994 0.992 0.992 0.991
0.1 0.2 2 0.98 0.9&% 0.977 0.976
0.1 0.2 ) 1.007 1.004 1.002 1.001
0.1 0.3 2 1.006 0.997 0.991 0.989
0.1 0.3 4 1.040 1.035 1.032 1.031
0.2 0.1 2 0.98%1 0.978 0.976 0.975
0.2 0.1 4 0.995 0.994 0.992 0.992
0.2 0.2 2 0.993 0.986 0.981 0.979
0.2 0.2 4 1.023 1.018 1.015 1.014
0.3 0.1 2 0.983 0.979 0.976 0.975
0.3 0.1 y 1.003 1.001 0.999 0.998
KB/K° for the middle crack
0.1 0.1 2 0.984 0.981 0.980 0.979
0.1 0.1 4 0.993 0.992 0.991 0.991
0.1 0.2 2 0.984 0.980 0.977 0.976
0.1 0.2 4 1.003 1.001 0.999 0.999
0.1 0.3 2 0.997 0.990 0.98 0.984
0.1 0.3 4 1.026 1.022 1.020 1.019
0.2 0.1 2 0.981 0.678 0.977 0. 976
0.2 0.1 4 0.9%4 0.993 0.9¢92 0.99
0.2 0.2 2 0.987 0.981 0.977 0.976
0.2 0.2 4 1.012 1.009 1.006 1.005
0.3 0.1 2 0.981 0.977 0.975 0.674
0.3 0.1 4 0.999 0.997 0.996 0.995
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Table 38-Cont.

KA/Ko for outer crack

b/a —= 0.1 1.0 4.0 20.0
LO/h a/L°
0.1 0.1 2 0.9& 0.98 0.979 0.979
0.1 0.1 4 0.993 0.992 0.99 0.991
0.1 0.2 2 0.98 0.978 0.976 0.976
0.1 0.2 4 1.005 1.003 1.002 1.001
0.1 0.3 2 0.999 0.9% 0.991 0.989
0.1 0.3 4 1.037 1.034 1.032 1.031
0.2 0.1 2 0.979 0.977. 0.976 0.975
0.2 0.1 y 0.994 0.993 0.992 0.99%
0.2 0.2 2 0.988 0.983 0.980 0.979
0.2 0.2 4 1.019 1.016 1.014 1.014
0.3 0.1 2 0.980 0.978 0.976 0.975
0.3 0.1 y 1.001 1.000 0.999 0.998
KB/Ko for outer crack
0.1 0.1 2 0.98 0.980 0.98 0.979
0.1 0.1 4 0.993 0.992 0.99% 0.991
0.1 0.2 2 0.981 0.978 0.976 0.976
0.1 0.2 L 1.002 1.000 0.999 0.999
0.1 0.3 2 0.992 0.988 0.98 0.984
0.1 0.3 4 1.023 1.021 1.020 1.019
0.2 0.1 2 0.979 0.978 0.976 0.976
0.2 0.1 4 0.993 0.992 0.99 0.991
0.2 0.2 2 0.983 0.979 0.977 0.976
0.2 0.2 4 1.010 1.007 1.006 1.005
0.3 0.1 2 0.978 0.976 0.974 0.974
0.3 0.1 Yy 0.998 0.9% 0.995 0.99
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Table 39. Normalized stress intensity factars on the crack front
for an internal elliptie crack with d/h=0.20, Lo/hzo.ll5,

a/L =4.

x (Kp/Rody  (Kp/Koly  (Kp/Koly  (Kp/Koly
0.99 0.426 0.411 0.186 0.151
0. 90 0.723 0.707 0.357 0.218
0.80 0.865 0.831 0.454 0.229
0.70 0. 974 0.916 0.531 0.233
0.60 1.065 0.980 0.5% 0.233
0.50 1.143 1.028 0.649 0.233
0. 40 1.211 1.068 0.697 0.233
0.30 1.266 1.0% 0.735 0.233
0.20 1.307 . 1.116 0.763 . 0.233
0.10 1.333 1.128 0.781 0.233
0.00 1.342 1.132 0.787 0.232
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Table 40. Normalized stress intensity factors on the crack front
for an internal elliptic crack with d/h=0.10, L,/h=0.45,

a/L =4,

x (Rp/Rody  (Rp/Koly  (Kp/Kody  (Kp/Kody
0.99 0.411 0.393 0.097 0.065
0. 90 0.652 0.68 0.205 0. 072
0.80 0.816 0.804 0.269 0.057
0.70 0. 902 0.883 0.318 0.041
0.60 0. 967 0. 941 0. 357 0.028
0.50 1.018 0.984 0.388 0.016
0.40 1.061 1.019 0.414 0.007
0.30 1.092 1,044 0.433 0.000
0.20 1.114 1,061 0.4  -0.005
0.10 1.128 1.072 0.455  =0.008
0.00 1.132 1.075 0.457  -0.009
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Table 41. Normalized stress intensity factars on the crack front
for an elliptic edge crack with L/ h=0.45, a/L.=4.

x (Ky/K,) (Ky/K,)
0. 99 0.762 0.646
0.90 0.920 0.69%
0. 80 1.027 0.711
0.70 1.08 0.701
0.60 1.130 0.695
0.50 1.166 0.689
0.40 1.197 0.68
0.30 1.214 0.680
0.20 1.227 0.676
0.10 1.237 0.675
0.00 1.240 0.675
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Effect of d/h ratio on the normalized stress intensity
factors calculated at the midsection of various
internal elliptic cracks under pure tension.
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Figure 13. Effect of L,/h ratio on the normalized stress
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different d/h ratios under pure bending.
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Figure 14, Effect of L /h ratio on the normalized stress
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internal elliptic cracks with a/Lo=14 and
different d/h ratios under pure bending.
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Figure 16.

Effect of a/L, ratio on the normalized stress
intensity factors calculated at the midsection of
internal ellaiptic cracks with d/b=0.15 and
different Lolh ratios under pure bending.
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Figure 17. Effect of a/L, ratio on the normalized stress
intensity factors calculated at the midsection of
internal elliptic cracks with d/h=0.15 and
different Lo/h ratios under pure tension.
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APPENDIX I

The dimensionless quantities used in the formulation:

X1 x2 X3

X = ' y=—, Z =z — |,
ay ay ay
u.l u2 u3

U= e, V S e, W= s
ai ai ai

2 b2
m“=12(1-v2)i, K = =
h? 5 (1-9) at
2 172
p = [=—] )
K(1-p)
ai(1-“2) 3+v
Ry = —— Ro = ——
1 Y 3 ’ 27 v ’
42 (1 - ») y
Ry g —m ——— R, = .
3 (1 + %) 4 1T +¥
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APPENDIX II

Procedure for finding coefficients of the shape funections (51-.
and gb) are as follows, Loading should be seperated as pure tension

and pure bending. For pure tension case

By using (8), (9) and (10a)

K(s) =\[E6'st(s) ’
o

K(s) = \/;c VESs Zbi(3)2(1-1)
1s1

K(s) = c\/wL(x1) )3 bi(s)Z(i-n
s\

K(s) n
Z 2(i-

L \/‘RL(x.l) Lal )

Values of the left handside can easily be found for a wide range of
s values in related literature, which enables us to create n
equations with bi's as the n unknowns. Solution of this system is

the coefficient of corresponding shape function.

Same procedure 1s followed under pure bending to fand ci's .
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APPENDIX III

Solution of the Integral Equations

j- Gauss-Chebyshev Closed Type Integration Formula
The solution of the integral equation which only has the Cauchy

type singularity

I
1 | $(¢t)

o t=-x
-1

dt +fk(x,t) $(t) de = f(x) , =-1<x<1 ,

may be expressed as

t) = (1 - t3)"V2g¢)
1 1
K(x,t) = = —+ k(x,t)
® t-x
o 1 nai 1
— [— R(xjt)8(tq) +) K(xgtylalty) + —Klxgty)glty) ]
n=-1 2 isa 2
= f(xJ-) ’ J = 1, sevee ,(D-T)
i-1
ti=cos[—-— ] s i=1, coeees 40
n-1
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23-1
XJ=COS[ n ’ j= 1, evevne ,(n-1)
2n-2

and the additional condition

IO(t) dt = A ,
-l

becomes
n 1 .l 1
— [—a(ty) +) alty) + —alty) 1= 4
n-1 2 ind 2

One may find the detailed derivation of the formula in [4].

When there is a system of integral equations with more than one

unknown functions to be solved, the above procedure can be used by

applying the formula to each integration seperately. For example

o, (t)

dt + k11(x,t)¢1(t) dt
I

-1

-
I l

jk21 (x, t)°1(t) dt +f kzz(xyt)°2(t) dt
_l "l l
LR 2YC)

n t-x
-1

t-x

dt = f'z(x) ’
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J01(t)dt=A1, f¢2(t)dt=A2’ -1 <x<1
-] -1

can be solved as

¢,(t) = (1-t3)"V2 ()

®,(s) = (1~ s%)71/2

82(3) 9

s has been introduced to gef ine different collocation points for

each functions.

1 1
Kyq(X,t) = ome et Kqq(x,t) ,
1138 == == kyy(x,
K12(X,5) = k12(x13) '
K21 (x,s) = k21 (x,s) ?
1 1
n S=X
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n 1 el 1

[ Ryq(x55t4)8q(6q) + ) Koa(Xxiyt )8a(ts) +=Kaq(x syt a)g8q(t 431
111__1211,1111 §a1lji1i 211Jn11n1

© 1 Ny-|

[— K12(XJ,51 )82(31 ) + Z K12(XJ931)82(31)
ny=1 2 4=

L

1
+—K12(st$n2)82(sn2) 1= f2(xj) ?
2

23=-1
xj = COS[ ﬂ] y j = 1, ooooo ] (n1"‘1)

T 1 -1 1

[— K21 (xjst1 )81 (t1) "'.Z K21 (xjy ti)81 (ti) +—K21 (xjy tlﬂ )81 (tlﬂ )]
n1-1 2 A=d 2

< 1 Nl

[— K22(xj,s1 Jgy(sqy) + Z K22(xj’si)ga(si)
n2-1 2 i.-a

-+

1
+ —— K22(xj,sn2)gz(sn2) ]l = fZ(xj)
2

=]
X, = cos o, J= 1y teeees y{na=1)
J 2n,-2 2

- 1 Nl 1
[—gq(ty) +2 gq(t) +m—gq(t q) 1= 4 ,

n1-1 2 L=a 2

] 1 Nyl 1
—— [—ay(sq) +2 85(s3) +—go(sp) 1= 4,

-1 2 1= 2
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—1_1 -
ti = cos o, i
T »-n1-1 s
-1_1 -
8y = cos —n| , i
Ln2-1 d

1, s 00 sre ,n1

1) ceceen Iy

Above solution can also be used for any number of unknown functions

in the same manner.

ii- Order of Singularity in the Integral Equation

At .first glance, it seems that (31) has singularities other

than Cauchy type. But if we take a closer look to the equation, we

will see that modified Bessel function of the second kind has the

following property for relatively small values of the argument.

Kp(x) ~ 25T (rp-1) 1577

~ -2
Kz(x) 2 x .
By using above property, we can say that

2 K(‘l—v)

lim K, (plt-x]) = =
2
(t=x)-=0 p2(t=x)2  (t-x)?
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which gives

lim

— — Ky(plt=x[) -
(t=x)==0

[l; 1 4 (1-r) 1 ]
149 t=x 140 (t:-x)3

This proves that (31) has only Cauchy type singularity and can be

solved by Gauss-Chebyshev closed type integration formula.

Integrals on the interval (-1 , x) can be written on (-1 , +1)
by redifining the kernels by the use of a step function H(y) as

follows:

x l
£(t) dt =j H(x-t) £(t) dt
-] -

where,

0 if y< o0
H(y) =
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APPENDIX IV

Numerical Integration
Gauss-Chebyshev closed type integration formula is used for
numerical integration purposes. Any integral in the interval

(-1 , +1) can be expressed as,

[
f(x) dx n .1 n-1 1
= [ — f(xq) + Z fx,) +— f(xn)]

Vi-x2  n-1 " 2 =2 2

If an integration in the interval (-1 , x) is desired, above
formula can again be used by multiplyang the integrand with the H

function defined in Appendix III,

Number of poaints (n) in the integration should be much mgher
than the number of points used in the solution of integral equations
if one desires to evaluate the stress intensity factor or the crack
front at any point accurately. V3lues of the functions to be
integrated at any point can be found by interpolating the function
between the two surrounding known values found from the soclution of

integral equations.
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